]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/mips-tdep.c
* mips-tdep.c (mips32_in_function_epilogue_p): New function.
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
6aba47ca
DJ
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
47a35522 5 Free Software Foundation, Inc.
bf64bfd6 6
c906108c
SS
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
a9762ec7 14 the Free Software Foundation; either version 3 of the License, or
c5aa993b 15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b 22 You should have received a copy of the GNU General Public License
a9762ec7 23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
5e2e9765 27#include "gdb_assert.h"
c906108c
SS
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "language.h"
34#include "gdbcore.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdbtypes.h"
38#include "target.h"
28d069e6 39#include "arch-utils.h"
4e052eda 40#include "regcache.h"
70f80edf 41#include "osabi.h"
d1973055 42#include "mips-tdep.h"
fe898f56 43#include "block.h"
a4b8ebc8 44#include "reggroups.h"
c906108c 45#include "opcode/mips.h"
c2d11a7d
JM
46#include "elf/mips.h"
47#include "elf-bfd.h"
2475bac3 48#include "symcat.h"
a4b8ebc8 49#include "sim-regno.h"
a89aa300 50#include "dis-asm.h"
edfae063
AC
51#include "frame-unwind.h"
52#include "frame-base.h"
53#include "trad-frame.h"
7d9b040b 54#include "infcall.h"
fed7ba43 55#include "floatformat.h"
29709017
DJ
56#include "remote.h"
57#include "target-descriptions.h"
2bd0c3d7 58#include "dwarf2-frame.h"
f8b73d13 59#include "user-regs.h"
c906108c 60
8d5f9dcb
DJ
61static const struct objfile_data *mips_pdr_data;
62
5bbcb741 63static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 64
24e05951 65/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
66/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67#define ST0_FR (1 << 26)
68
b0069a17
AC
69/* The sizes of floating point registers. */
70
71enum
72{
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75};
76
1a69e1e4
DJ
77enum
78{
79 MIPS32_REGSIZE = 4,
80 MIPS64_REGSIZE = 8
81};
0dadbba0 82
2e4ebe70
DJ
83static const char *mips_abi_string;
84
85static const char *mips_abi_strings[] = {
86 "auto",
87 "n32",
88 "o32",
28d169de 89 "n64",
2e4ebe70
DJ
90 "o64",
91 "eabi32",
92 "eabi64",
93 NULL
94};
95
f8b73d13
DJ
96/* The standard register names, and all the valid aliases for them. */
97struct register_alias
98{
99 const char *name;
100 int regnum;
101};
102
103/* Aliases for o32 and most other ABIs. */
104const struct register_alias mips_o32_aliases[] = {
105 { "ta0", 12 },
106 { "ta1", 13 },
107 { "ta2", 14 },
108 { "ta3", 15 }
109};
110
111/* Aliases for n32 and n64. */
112const struct register_alias mips_n32_n64_aliases[] = {
113 { "ta0", 8 },
114 { "ta1", 9 },
115 { "ta2", 10 },
116 { "ta3", 11 }
117};
118
119/* Aliases for ABI-independent registers. */
120const struct register_alias mips_register_aliases[] = {
121 /* The architecture manuals specify these ABI-independent names for
122 the GPRs. */
123#define R(n) { "r" #n, n }
124 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
125 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
126 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
127 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
128#undef R
129
130 /* k0 and k1 are sometimes called these instead (for "kernel
131 temp"). */
132 { "kt0", 26 },
133 { "kt1", 27 },
134
135 /* This is the traditional GDB name for the CP0 status register. */
136 { "sr", MIPS_PS_REGNUM },
137
138 /* This is the traditional GDB name for the CP0 BadVAddr register. */
139 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
140
141 /* This is the traditional GDB name for the FCSR. */
142 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
143};
144
7a292a7a 145/* Some MIPS boards don't support floating point while others only
ceae6e75 146 support single-precision floating-point operations. */
c906108c
SS
147
148enum mips_fpu_type
6d82d43b
AC
149{
150 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
151 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
152 MIPS_FPU_NONE /* No floating point. */
153};
c906108c
SS
154
155#ifndef MIPS_DEFAULT_FPU_TYPE
156#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
157#endif
158static int mips_fpu_type_auto = 1;
159static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 160
9ace0497 161static int mips_debug = 0;
7a292a7a 162
29709017
DJ
163/* Properties (for struct target_desc) describing the g/G packet
164 layout. */
165#define PROPERTY_GP32 "internal: transfers-32bit-registers"
166#define PROPERTY_GP64 "internal: transfers-64bit-registers"
167
4eb0ad19
DJ
168struct target_desc *mips_tdesc_gp32;
169struct target_desc *mips_tdesc_gp64;
170
c2d11a7d
JM
171/* MIPS specific per-architecture information */
172struct gdbarch_tdep
6d82d43b
AC
173{
174 /* from the elf header */
175 int elf_flags;
176
177 /* mips options */
178 enum mips_abi mips_abi;
179 enum mips_abi found_abi;
180 enum mips_fpu_type mips_fpu_type;
181 int mips_last_arg_regnum;
182 int mips_last_fp_arg_regnum;
6d82d43b
AC
183 int default_mask_address_p;
184 /* Is the target using 64-bit raw integer registers but only
185 storing a left-aligned 32-bit value in each? */
186 int mips64_transfers_32bit_regs_p;
187 /* Indexes for various registers. IRIX and embedded have
188 different values. This contains the "public" fields. Don't
189 add any that do not need to be public. */
190 const struct mips_regnum *regnum;
191 /* Register names table for the current register set. */
192 const char **mips_processor_reg_names;
29709017
DJ
193
194 /* The size of register data available from the target, if known.
195 This doesn't quite obsolete the manual
196 mips64_transfers_32bit_regs_p, since that is documented to force
197 left alignment even for big endian (very strange). */
198 int register_size_valid_p;
199 int register_size;
6d82d43b 200};
c2d11a7d 201
fed7ba43
JB
202static int
203n32n64_floatformat_always_valid (const struct floatformat *fmt,
2244f671 204 const void *from)
fed7ba43
JB
205{
206 return 1;
207}
208
209/* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
210 They are implemented as a pair of 64bit doubles where the high
211 part holds the result of the operation rounded to double, and
212 the low double holds the difference between the exact result and
213 the rounded result. So "high" + "low" contains the result with
214 added precision. Unfortunately, the floatformat structure used
215 by GDB is not powerful enough to describe this format. As a temporary
216 measure, we define a 128bit floatformat that only uses the high part.
217 We lose a bit of precision but that's probably the best we can do
218 for now with the current infrastructure. */
219
220static const struct floatformat floatformat_n32n64_long_double_big =
221{
222 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
223 floatformat_intbit_no,
8da61cc4 224 "floatformat_n32n64_long_double_big",
fed7ba43
JB
225 n32n64_floatformat_always_valid
226};
227
8da61cc4
DJ
228static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
229{
230 &floatformat_n32n64_long_double_big,
231 &floatformat_n32n64_long_double_big
232};
233
56cea623
AC
234const struct mips_regnum *
235mips_regnum (struct gdbarch *gdbarch)
236{
237 return gdbarch_tdep (gdbarch)->regnum;
238}
239
240static int
241mips_fpa0_regnum (struct gdbarch *gdbarch)
242{
243 return mips_regnum (gdbarch)->fp0 + 12;
244}
245
0dadbba0 246#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 247 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 248
c2d11a7d 249#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 250
c2d11a7d 251#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 252
c2d11a7d 253#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 254
95404a3e
AC
255/* MIPS16 function addresses are odd (bit 0 is set). Here are some
256 functions to test, set, or clear bit 0 of addresses. */
257
258static CORE_ADDR
259is_mips16_addr (CORE_ADDR addr)
260{
261 return ((addr) & 1);
262}
263
95404a3e
AC
264static CORE_ADDR
265unmake_mips16_addr (CORE_ADDR addr)
266{
5b652102 267 return ((addr) & ~(CORE_ADDR) 1);
95404a3e
AC
268}
269
d1973055
KB
270/* Return the MIPS ABI associated with GDBARCH. */
271enum mips_abi
272mips_abi (struct gdbarch *gdbarch)
273{
274 return gdbarch_tdep (gdbarch)->mips_abi;
275}
276
4246e332 277int
1b13c4f6 278mips_isa_regsize (struct gdbarch *gdbarch)
4246e332 279{
29709017
DJ
280 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
281
282 /* If we know how big the registers are, use that size. */
283 if (tdep->register_size_valid_p)
284 return tdep->register_size;
285
286 /* Fall back to the previous behavior. */
4246e332
AC
287 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
288 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
289}
290
480d3dd2
AC
291/* Return the currently configured (or set) saved register size. */
292
e6bc2e8a 293unsigned int
13326b4e 294mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 295{
1a69e1e4
DJ
296 switch (mips_abi (gdbarch))
297 {
298 case MIPS_ABI_EABI32:
299 case MIPS_ABI_O32:
300 return 4;
301 case MIPS_ABI_N32:
302 case MIPS_ABI_N64:
303 case MIPS_ABI_O64:
304 case MIPS_ABI_EABI64:
305 return 8;
306 case MIPS_ABI_UNKNOWN:
307 case MIPS_ABI_LAST:
308 default:
309 internal_error (__FILE__, __LINE__, _("bad switch"));
310 }
d929b26f
AC
311}
312
71b8ef93 313/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa 314 marks it as 16-bit function. The MSB of the minimal symbol's
f594e5e9 315 "info" field is used for this purpose.
5a89d8aa 316
95f1da47 317 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
5a89d8aa
MS
318 i.e. refers to a 16-bit function, and sets a "special" bit in a
319 minimal symbol to mark it as a 16-bit function
320
f594e5e9 321 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
5a89d8aa 322
5a89d8aa 323static void
6d82d43b
AC
324mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
325{
326 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
327 {
328 MSYMBOL_INFO (msym) = (char *)
329 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
330 SYMBOL_VALUE_ADDRESS (msym) |= 1;
331 }
5a89d8aa
MS
332}
333
71b8ef93
MS
334static int
335msymbol_is_special (struct minimal_symbol *msym)
336{
337 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
338}
339
88658117
AC
340/* XFER a value from the big/little/left end of the register.
341 Depending on the size of the value it might occupy the entire
342 register or just part of it. Make an allowance for this, aligning
343 things accordingly. */
344
345static void
346mips_xfer_register (struct regcache *regcache, int reg_num, int length,
870cd05e
MK
347 enum bfd_endian endian, gdb_byte *in,
348 const gdb_byte *out, int buf_offset)
88658117 349{
88658117 350 int reg_offset = 0;
f57d151a 351 gdb_assert (reg_num >= gdbarch_num_regs (current_gdbarch));
cb1d2653
AC
352 /* Need to transfer the left or right part of the register, based on
353 the targets byte order. */
88658117
AC
354 switch (endian)
355 {
356 case BFD_ENDIAN_BIG:
719ec221 357 reg_offset = register_size (current_gdbarch, reg_num) - length;
88658117
AC
358 break;
359 case BFD_ENDIAN_LITTLE:
360 reg_offset = 0;
361 break;
6d82d43b 362 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
363 reg_offset = 0;
364 break;
365 default:
e2e0b3e5 366 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
367 }
368 if (mips_debug)
cb1d2653
AC
369 fprintf_unfiltered (gdb_stderr,
370 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
371 reg_num, reg_offset, buf_offset, length);
88658117
AC
372 if (mips_debug && out != NULL)
373 {
374 int i;
cb1d2653 375 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 376 for (i = 0; i < length; i++)
cb1d2653 377 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
378 }
379 if (in != NULL)
6d82d43b
AC
380 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
381 in + buf_offset);
88658117 382 if (out != NULL)
6d82d43b
AC
383 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
384 out + buf_offset);
88658117
AC
385 if (mips_debug && in != NULL)
386 {
387 int i;
cb1d2653 388 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 389 for (i = 0; i < length; i++)
cb1d2653 390 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
391 }
392 if (mips_debug)
393 fprintf_unfiltered (gdb_stdlog, "\n");
394}
395
dd824b04
DJ
396/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
397 compatiblity mode. A return value of 1 means that we have
398 physical 64-bit registers, but should treat them as 32-bit registers. */
399
400static int
9c9acae0 401mips2_fp_compat (struct frame_info *frame)
dd824b04
DJ
402{
403 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
404 meaningful. */
6d82d43b
AC
405 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
406 4)
dd824b04
DJ
407 return 0;
408
409#if 0
410 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
411 in all the places we deal with FP registers. PR gdb/413. */
412 /* Otherwise check the FR bit in the status register - it controls
413 the FP compatiblity mode. If it is clear we are in compatibility
414 mode. */
9c9acae0 415 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
416 return 1;
417#endif
361d1df0 418
dd824b04
DJ
419 return 0;
420}
421
7a292a7a 422#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 423
a14ed312 424static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 425
a14ed312 426static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 427
67b2c998
DJ
428static struct type *mips_float_register_type (void);
429static struct type *mips_double_register_type (void);
430
acdb74a0
AC
431/* The list of available "set mips " and "show mips " commands */
432
433static struct cmd_list_element *setmipscmdlist = NULL;
434static struct cmd_list_element *showmipscmdlist = NULL;
435
5e2e9765
KB
436/* Integer registers 0 thru 31 are handled explicitly by
437 mips_register_name(). Processor specific registers 32 and above
8a9fc081 438 are listed in the following tables. */
691c0433 439
6d82d43b
AC
440enum
441{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
442
443/* Generic MIPS. */
444
445static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
446 "sr", "lo", "hi", "bad", "cause", "pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
451 "fsr", "fir", "" /*"fp" */ , "",
452 "", "", "", "", "", "", "", "",
453 "", "", "", "", "", "", "", "",
691c0433
AC
454};
455
456/* Names of IDT R3041 registers. */
457
458static const char *mips_r3041_reg_names[] = {
6d82d43b
AC
459 "sr", "lo", "hi", "bad", "cause", "pc",
460 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
461 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
462 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
463 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
464 "fsr", "fir", "", /*"fp" */ "",
465 "", "", "bus", "ccfg", "", "", "", "",
466 "", "", "port", "cmp", "", "", "epc", "prid",
691c0433
AC
467};
468
469/* Names of tx39 registers. */
470
471static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
472 "sr", "lo", "hi", "bad", "cause", "pc",
473 "", "", "", "", "", "", "", "",
474 "", "", "", "", "", "", "", "",
475 "", "", "", "", "", "", "", "",
476 "", "", "", "", "", "", "", "",
477 "", "", "", "",
478 "", "", "", "", "", "", "", "",
479 "", "", "config", "cache", "debug", "depc", "epc", ""
691c0433
AC
480};
481
482/* Names of IRIX registers. */
483static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
484 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
485 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
486 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
487 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
488 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
691c0433
AC
489};
490
cce74817 491
5e2e9765 492/* Return the name of the register corresponding to REGNO. */
5a89d8aa 493static const char *
5e2e9765 494mips_register_name (int regno)
cce74817 495{
691c0433 496 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5e2e9765
KB
497 /* GPR names for all ABIs other than n32/n64. */
498 static char *mips_gpr_names[] = {
6d82d43b
AC
499 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
500 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
501 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
502 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
503 };
504
505 /* GPR names for n32 and n64 ABIs. */
506 static char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
507 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
508 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
509 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
510 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
511 };
512
513 enum mips_abi abi = mips_abi (current_gdbarch);
514
f57d151a
UW
515 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
516 but then don't make the raw register names visible. */
517 int rawnum = regno % gdbarch_num_regs (current_gdbarch);
518 if (regno < gdbarch_num_regs (current_gdbarch))
a4b8ebc8
AC
519 return "";
520
5e2e9765
KB
521 /* The MIPS integer registers are always mapped from 0 to 31. The
522 names of the registers (which reflects the conventions regarding
523 register use) vary depending on the ABI. */
a4b8ebc8 524 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
525 {
526 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 527 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 528 else
a4b8ebc8 529 return mips_gpr_names[rawnum];
5e2e9765 530 }
f8b73d13
DJ
531 else if (tdesc_has_registers (gdbarch_target_desc (current_gdbarch)))
532 return tdesc_register_name (rawnum);
f57d151a 533 else if (32 <= rawnum && rawnum < gdbarch_num_regs (current_gdbarch))
691c0433
AC
534 {
535 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
536 return tdep->mips_processor_reg_names[rawnum - 32];
537 }
5e2e9765
KB
538 else
539 internal_error (__FILE__, __LINE__,
e2e0b3e5 540 _("mips_register_name: bad register number %d"), rawnum);
cce74817 541}
5e2e9765 542
a4b8ebc8 543/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 544
a4b8ebc8
AC
545static int
546mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
547 struct reggroup *reggroup)
548{
549 int vector_p;
550 int float_p;
551 int raw_p;
f57d151a
UW
552 int rawnum = regnum % gdbarch_num_regs (current_gdbarch);
553 int pseudo = regnum / gdbarch_num_regs (current_gdbarch);
a4b8ebc8
AC
554 if (reggroup == all_reggroup)
555 return pseudo;
556 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
557 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
558 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
559 (gdbarch), as not all architectures are multi-arch. */
f57d151a 560 raw_p = rawnum < gdbarch_num_regs (current_gdbarch);
c9f4d572
UW
561 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
562 || gdbarch_register_name (current_gdbarch, regnum)[0] == '\0')
a4b8ebc8
AC
563 return 0;
564 if (reggroup == float_reggroup)
565 return float_p && pseudo;
566 if (reggroup == vector_reggroup)
567 return vector_p && pseudo;
568 if (reggroup == general_reggroup)
569 return (!vector_p && !float_p) && pseudo;
570 /* Save the pseudo registers. Need to make certain that any code
571 extracting register values from a saved register cache also uses
572 pseudo registers. */
573 if (reggroup == save_reggroup)
574 return raw_p && pseudo;
575 /* Restore the same pseudo register. */
576 if (reggroup == restore_reggroup)
577 return raw_p && pseudo;
6d82d43b 578 return 0;
a4b8ebc8
AC
579}
580
f8b73d13
DJ
581/* Return the groups that a MIPS register can be categorised into.
582 This version is only used if we have a target description which
583 describes real registers (and their groups). */
584
585static int
586mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
587 struct reggroup *reggroup)
588{
589 int rawnum = regnum % gdbarch_num_regs (gdbarch);
590 int pseudo = regnum / gdbarch_num_regs (gdbarch);
591 int ret;
592
593 /* Only save, restore, and display the pseudo registers. Need to
594 make certain that any code extracting register values from a
595 saved register cache also uses pseudo registers.
596
597 Note: saving and restoring the pseudo registers is slightly
598 strange; if we have 64 bits, we should save and restore all
599 64 bits. But this is hard and has little benefit. */
600 if (!pseudo)
601 return 0;
602
603 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
604 if (ret != -1)
605 return ret;
606
607 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
608}
609
a4b8ebc8 610/* Map the symbol table registers which live in the range [1 *
f57d151a 611 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
47ebcfbe 612 registers. Take care of alignment and size problems. */
c5aa993b 613
a4b8ebc8
AC
614static void
615mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
47a35522 616 int cookednum, gdb_byte *buf)
a4b8ebc8 617{
f57d151a
UW
618 int rawnum = cookednum % gdbarch_num_regs (current_gdbarch);
619 gdb_assert (cookednum >= gdbarch_num_regs (current_gdbarch)
620 && cookednum < 2 * gdbarch_num_regs (current_gdbarch));
47ebcfbe 621 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 622 regcache_raw_read (regcache, rawnum, buf);
6d82d43b
AC
623 else if (register_size (gdbarch, rawnum) >
624 register_size (gdbarch, cookednum))
47ebcfbe
AC
625 {
626 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
4c6b5505 627 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
47ebcfbe
AC
628 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
629 else
630 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
631 }
632 else
e2e0b3e5 633 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
634}
635
636static void
6d82d43b
AC
637mips_pseudo_register_write (struct gdbarch *gdbarch,
638 struct regcache *regcache, int cookednum,
47a35522 639 const gdb_byte *buf)
a4b8ebc8 640{
f57d151a
UW
641 int rawnum = cookednum % gdbarch_num_regs (current_gdbarch);
642 gdb_assert (cookednum >= gdbarch_num_regs (current_gdbarch)
643 && cookednum < 2 * gdbarch_num_regs (current_gdbarch));
47ebcfbe 644 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 645 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
646 else if (register_size (gdbarch, rawnum) >
647 register_size (gdbarch, cookednum))
47ebcfbe
AC
648 {
649 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
4c6b5505 650 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
47ebcfbe
AC
651 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
652 else
653 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
654 }
655 else
e2e0b3e5 656 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 657}
c5aa993b 658
c906108c 659/* Table to translate MIPS16 register field to actual register number. */
6d82d43b 660static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
661
662/* Heuristic_proc_start may hunt through the text section for a long
663 time across a 2400 baud serial line. Allows the user to limit this
664 search. */
665
666static unsigned int heuristic_fence_post = 0;
667
46cd78fb 668/* Number of bytes of storage in the actual machine representation for
719ec221
AC
669 register N. NOTE: This defines the pseudo register type so need to
670 rebuild the architecture vector. */
43e526b9
JM
671
672static int mips64_transfers_32bit_regs_p = 0;
673
719ec221
AC
674static void
675set_mips64_transfers_32bit_regs (char *args, int from_tty,
676 struct cmd_list_element *c)
43e526b9 677{
719ec221
AC
678 struct gdbarch_info info;
679 gdbarch_info_init (&info);
680 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
681 instead of relying on globals. Doing that would let generic code
682 handle the search for this specific architecture. */
683 if (!gdbarch_update_p (info))
a4b8ebc8 684 {
719ec221 685 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 686 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 687 }
a4b8ebc8
AC
688}
689
47ebcfbe 690/* Convert to/from a register and the corresponding memory value. */
43e526b9 691
ff2e87ac
AC
692static int
693mips_convert_register_p (int regnum, struct type *type)
694{
4c6b5505 695 return (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
719ec221 696 && register_size (current_gdbarch, regnum) == 4
f57d151a
UW
697 && (regnum % gdbarch_num_regs (current_gdbarch))
698 >= mips_regnum (current_gdbarch)->fp0
699 && (regnum % gdbarch_num_regs (current_gdbarch))
700 < mips_regnum (current_gdbarch)->fp0 + 32
6d82d43b 701 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
702}
703
42c466d7 704static void
ff2e87ac 705mips_register_to_value (struct frame_info *frame, int regnum,
47a35522 706 struct type *type, gdb_byte *to)
102182a9 707{
47a35522
MK
708 get_frame_register (frame, regnum + 0, to + 4);
709 get_frame_register (frame, regnum + 1, to + 0);
102182a9
MS
710}
711
42c466d7 712static void
ff2e87ac 713mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 714 struct type *type, const gdb_byte *from)
102182a9 715{
47a35522
MK
716 put_frame_register (frame, regnum + 0, from + 4);
717 put_frame_register (frame, regnum + 1, from + 0);
102182a9
MS
718}
719
a4b8ebc8
AC
720/* Return the GDB type object for the "standard" data type of data in
721 register REG. */
78fde5f8
KB
722
723static struct type *
a4b8ebc8
AC
724mips_register_type (struct gdbarch *gdbarch, int regnum)
725{
f57d151a
UW
726 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (current_gdbarch));
727 if ((regnum % gdbarch_num_regs (current_gdbarch))
728 >= mips_regnum (current_gdbarch)->fp0
729 && (regnum % gdbarch_num_regs (current_gdbarch))
730 < mips_regnum (current_gdbarch)->fp0 + 32)
a6425924 731 {
5ef80fb0 732 /* The floating-point registers raw, or cooked, always match
1b13c4f6 733 mips_isa_regsize(), and also map 1:1, byte for byte. */
8da61cc4
DJ
734 if (mips_isa_regsize (gdbarch) == 4)
735 return builtin_type_ieee_single;
736 else
737 return builtin_type_ieee_double;
a6425924 738 }
f57d151a 739 else if (regnum < gdbarch_num_regs (current_gdbarch))
d5ac5a39
AC
740 {
741 /* The raw or ISA registers. These are all sized according to
742 the ISA regsize. */
743 if (mips_isa_regsize (gdbarch) == 4)
744 return builtin_type_int32;
745 else
746 return builtin_type_int64;
747 }
78fde5f8 748 else
d5ac5a39
AC
749 {
750 /* The cooked or ABI registers. These are sized according to
751 the ABI (with a few complications). */
f57d151a 752 if (regnum >= (gdbarch_num_regs (current_gdbarch)
d5ac5a39 753 + mips_regnum (current_gdbarch)->fp_control_status)
f57d151a
UW
754 && regnum <= gdbarch_num_regs (current_gdbarch)
755 + MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
756 /* The pseudo/cooked view of the embedded registers is always
757 32-bit. The raw view is handled below. */
758 return builtin_type_int32;
759 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
760 /* The target, while possibly using a 64-bit register buffer,
761 is only transfering 32-bits of each integer register.
762 Reflect this in the cooked/pseudo (ABI) register value. */
763 return builtin_type_int32;
764 else if (mips_abi_regsize (gdbarch) == 4)
765 /* The ABI is restricted to 32-bit registers (the ISA could be
766 32- or 64-bit). */
767 return builtin_type_int32;
768 else
769 /* 64-bit ABI. */
770 return builtin_type_int64;
771 }
78fde5f8
KB
772}
773
f8b73d13
DJ
774/* Return the GDB type for the pseudo register REGNUM, which is the
775 ABI-level view. This function is only called if there is a target
776 description which includes registers, so we know precisely the
777 types of hardware registers. */
778
779static struct type *
780mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
781{
782 const int num_regs = gdbarch_num_regs (gdbarch);
783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
784 int rawnum = regnum % num_regs;
785 struct type *rawtype;
786
787 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
788
789 /* Absent registers are still absent. */
790 rawtype = gdbarch_register_type (gdbarch, rawnum);
791 if (TYPE_LENGTH (rawtype) == 0)
792 return rawtype;
793
794 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
795 /* Present the floating point registers however the hardware did;
796 do not try to convert between FPU layouts. */
797 return rawtype;
798
799 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
800 {
801 /* The pseudo/cooked view of embedded registers is always
802 32-bit, even if the target transfers 64-bit values for them.
803 New targets relying on XML descriptions should only transfer
804 the necessary 32 bits, but older versions of GDB expected 64,
805 so allow the target to provide 64 bits without interfering
806 with the displayed type. */
807 return builtin_type_int32;
808 }
809
810 /* Use pointer types for registers if we can. For n32 we can not,
811 since we do not have a 64-bit pointer type. */
812 if (mips_abi_regsize (gdbarch) == TYPE_LENGTH (builtin_type_void_data_ptr))
813 {
814 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
815 return builtin_type_void_data_ptr;
816 else if (rawnum == MIPS_EMBED_PC_REGNUM)
817 return builtin_type_void_func_ptr;
818 }
819
820 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
821 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
822 return builtin_type_int32;
823
824 /* For all other registers, pass through the hardware type. */
825 return rawtype;
826}
bcb0cc15 827
c906108c 828/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 829enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
830
831static int
480d3dd2 832mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
833{
834 switch (mask_address_var)
835 {
7f19b9a2 836 case AUTO_BOOLEAN_TRUE:
4014092b 837 return 1;
7f19b9a2 838 case AUTO_BOOLEAN_FALSE:
4014092b
AC
839 return 0;
840 break;
7f19b9a2 841 case AUTO_BOOLEAN_AUTO:
480d3dd2 842 return tdep->default_mask_address_p;
4014092b 843 default:
e2e0b3e5 844 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
4014092b 845 return -1;
361d1df0 846 }
4014092b
AC
847}
848
849static void
08546159
AC
850show_mask_address (struct ui_file *file, int from_tty,
851 struct cmd_list_element *c, const char *value)
4014092b 852{
480d3dd2 853 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
08546159
AC
854
855 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
856 switch (mask_address_var)
857 {
7f19b9a2 858 case AUTO_BOOLEAN_TRUE:
4014092b
AC
859 printf_filtered ("The 32 bit mips address mask is enabled\n");
860 break;
7f19b9a2 861 case AUTO_BOOLEAN_FALSE:
4014092b
AC
862 printf_filtered ("The 32 bit mips address mask is disabled\n");
863 break;
7f19b9a2 864 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
865 printf_filtered
866 ("The 32 bit address mask is set automatically. Currently %s\n",
867 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
868 break;
869 default:
e2e0b3e5 870 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 871 break;
361d1df0 872 }
4014092b 873}
c906108c 874
c906108c
SS
875/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
876
0fe7e7c8
AC
877int
878mips_pc_is_mips16 (CORE_ADDR memaddr)
c906108c
SS
879{
880 struct minimal_symbol *sym;
881
882 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 883 if (is_mips16_addr (memaddr))
c906108c
SS
884 return 1;
885
886 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
887 the high bit of the info field. Use this to decide if the function is
888 MIPS16 or normal MIPS. */
889 sym = lookup_minimal_symbol_by_pc (memaddr);
890 if (sym)
71b8ef93 891 return msymbol_is_special (sym);
c906108c
SS
892 else
893 return 0;
894}
895
b2fa5097 896/* MIPS believes that the PC has a sign extended value. Perhaps the
6c997a34
AC
897 all registers should be sign extended for simplicity? */
898
899static CORE_ADDR
61a1198a 900mips_read_pc (struct regcache *regcache)
6c997a34 901{
61a1198a
UW
902 ULONGEST pc;
903 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
904 regcache_cooked_read_signed (regcache, regnum, &pc);
905 return pc;
b6cb9035
AC
906}
907
58dfe9ff
AC
908static CORE_ADDR
909mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
910{
edfae063 911 return frame_unwind_register_signed (next_frame,
f57d151a
UW
912 gdbarch_num_regs (current_gdbarch)
913 + mips_regnum (gdbarch)->pc);
edfae063
AC
914}
915
30244cd8
UW
916static CORE_ADDR
917mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
918{
f57d151a
UW
919 return frame_unwind_register_signed (next_frame,
920 gdbarch_num_regs (current_gdbarch)
921 + MIPS_SP_REGNUM);
30244cd8
UW
922}
923
edfae063
AC
924/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
925 dummy frame. The frame ID's base needs to match the TOS value
926 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
927 breakpoint. */
928
929static struct frame_id
930mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
931{
f57d151a
UW
932 return frame_id_build
933 (frame_unwind_register_signed (next_frame,
934 gdbarch_num_regs (current_gdbarch)
935 + MIPS_SP_REGNUM),
936 frame_pc_unwind (next_frame));
58dfe9ff
AC
937}
938
b6cb9035 939static void
61a1198a 940mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
b6cb9035 941{
61a1198a
UW
942 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
943 regcache_cooked_write_unsigned (regcache, regnum, pc);
6c997a34 944}
c906108c 945
c906108c
SS
946/* Fetch and return instruction from the specified location. If the PC
947 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
948
d37cca3d 949static ULONGEST
acdb74a0 950mips_fetch_instruction (CORE_ADDR addr)
c906108c 951{
47a35522 952 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
953 int instlen;
954 int status;
955
0fe7e7c8 956 if (mips_pc_is_mips16 (addr))
c906108c 957 {
95ac2dcf 958 instlen = MIPS_INSN16_SIZE;
95404a3e 959 addr = unmake_mips16_addr (addr);
c906108c
SS
960 }
961 else
95ac2dcf 962 instlen = MIPS_INSN32_SIZE;
359a9262 963 status = read_memory_nobpt (addr, buf, instlen);
c906108c
SS
964 if (status)
965 memory_error (status, addr);
966 return extract_unsigned_integer (buf, instlen);
967}
968
c906108c 969/* These the fields of 32 bit mips instructions */
e135b889
DJ
970#define mips32_op(x) (x >> 26)
971#define itype_op(x) (x >> 26)
972#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 973#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 974#define itype_immediate(x) (x & 0xffff)
c906108c 975
e135b889
DJ
976#define jtype_op(x) (x >> 26)
977#define jtype_target(x) (x & 0x03ffffff)
c906108c 978
e135b889
DJ
979#define rtype_op(x) (x >> 26)
980#define rtype_rs(x) ((x >> 21) & 0x1f)
981#define rtype_rt(x) ((x >> 16) & 0x1f)
982#define rtype_rd(x) ((x >> 11) & 0x1f)
983#define rtype_shamt(x) ((x >> 6) & 0x1f)
984#define rtype_funct(x) (x & 0x3f)
c906108c 985
06987e64
MK
986static LONGEST
987mips32_relative_offset (ULONGEST inst)
c5aa993b 988{
06987e64 989 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
990}
991
f49e4e6d
MS
992/* Determine where to set a single step breakpoint while considering
993 branch prediction. */
5a89d8aa 994static CORE_ADDR
0b1b3e42 995mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
c5aa993b
JM
996{
997 unsigned long inst;
998 int op;
999 inst = mips_fetch_instruction (pc);
e135b889 1000 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 1001 {
e135b889 1002 if (itype_op (inst) >> 2 == 5)
6d82d43b 1003 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1004 {
e135b889 1005 op = (itype_op (inst) & 0x03);
c906108c
SS
1006 switch (op)
1007 {
e135b889
DJ
1008 case 0: /* BEQL */
1009 goto equal_branch;
1010 case 1: /* BNEL */
1011 goto neq_branch;
1012 case 2: /* BLEZL */
1013 goto less_branch;
1014 case 3: /* BGTZ */
1015 goto greater_branch;
c5aa993b
JM
1016 default:
1017 pc += 4;
c906108c
SS
1018 }
1019 }
e135b889 1020 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
6d82d43b 1021 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
e135b889
DJ
1022 {
1023 int tf = itype_rt (inst) & 0x01;
1024 int cnum = itype_rt (inst) >> 2;
6d82d43b 1025 int fcrcs =
0b1b3e42
UW
1026 get_frame_register_signed (frame, mips_regnum (current_gdbarch)->
1027 fp_control_status);
e135b889
DJ
1028 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1029
1030 if (((cond >> cnum) & 0x01) == tf)
1031 pc += mips32_relative_offset (inst) + 4;
1032 else
1033 pc += 8;
1034 }
c5aa993b
JM
1035 else
1036 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
1037 }
1038 else
c5aa993b
JM
1039 { /* This gets way messy */
1040
c906108c 1041 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 1042 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 1043 {
c5aa993b
JM
1044 case 0: /* SPECIAL */
1045 op = rtype_funct (inst);
1046 switch (op)
1047 {
1048 case 8: /* JR */
1049 case 9: /* JALR */
6c997a34 1050 /* Set PC to that address */
0b1b3e42 1051 pc = get_frame_register_signed (frame, rtype_rs (inst));
c5aa993b
JM
1052 break;
1053 default:
1054 pc += 4;
1055 }
1056
6d82d43b 1057 break; /* end SPECIAL */
c5aa993b 1058 case 1: /* REGIMM */
c906108c 1059 {
e135b889
DJ
1060 op = itype_rt (inst); /* branch condition */
1061 switch (op)
c906108c 1062 {
c5aa993b 1063 case 0: /* BLTZ */
e135b889
DJ
1064 case 2: /* BLTZL */
1065 case 16: /* BLTZAL */
c5aa993b 1066 case 18: /* BLTZALL */
c906108c 1067 less_branch:
0b1b3e42 1068 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
c5aa993b
JM
1069 pc += mips32_relative_offset (inst) + 4;
1070 else
1071 pc += 8; /* after the delay slot */
1072 break;
e135b889 1073 case 1: /* BGEZ */
c5aa993b
JM
1074 case 3: /* BGEZL */
1075 case 17: /* BGEZAL */
1076 case 19: /* BGEZALL */
0b1b3e42 1077 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
c5aa993b
JM
1078 pc += mips32_relative_offset (inst) + 4;
1079 else
1080 pc += 8; /* after the delay slot */
1081 break;
e135b889 1082 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1083 default:
1084 pc += 4;
c906108c
SS
1085 }
1086 }
6d82d43b 1087 break; /* end REGIMM */
c5aa993b
JM
1088 case 2: /* J */
1089 case 3: /* JAL */
1090 {
1091 unsigned long reg;
1092 reg = jtype_target (inst) << 2;
e135b889 1093 /* Upper four bits get never changed... */
5b652102 1094 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 1095 }
c5aa993b
JM
1096 break;
1097 /* FIXME case JALX : */
1098 {
1099 unsigned long reg;
1100 reg = jtype_target (inst) << 2;
5b652102 1101 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
c906108c
SS
1102 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1103 }
c5aa993b 1104 break; /* The new PC will be alternate mode */
e135b889 1105 case 4: /* BEQ, BEQL */
c5aa993b 1106 equal_branch:
0b1b3e42
UW
1107 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1108 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1109 pc += mips32_relative_offset (inst) + 4;
1110 else
1111 pc += 8;
1112 break;
e135b889 1113 case 5: /* BNE, BNEL */
c5aa993b 1114 neq_branch:
0b1b3e42
UW
1115 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1116 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1117 pc += mips32_relative_offset (inst) + 4;
1118 else
1119 pc += 8;
1120 break;
e135b889 1121 case 6: /* BLEZ, BLEZL */
0b1b3e42 1122 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
c5aa993b
JM
1123 pc += mips32_relative_offset (inst) + 4;
1124 else
1125 pc += 8;
1126 break;
1127 case 7:
e135b889
DJ
1128 default:
1129 greater_branch: /* BGTZ, BGTZL */
0b1b3e42 1130 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
c5aa993b
JM
1131 pc += mips32_relative_offset (inst) + 4;
1132 else
1133 pc += 8;
1134 break;
c5aa993b
JM
1135 } /* switch */
1136 } /* else */
1137 return pc;
1138} /* mips32_next_pc */
c906108c
SS
1139
1140/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1141 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1142 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1143 We dont want to set a single step instruction on the extend instruction
1144 either.
c5aa993b 1145 */
c906108c
SS
1146
1147/* Lots of mips16 instruction formats */
1148/* Predicting jumps requires itype,ritype,i8type
1149 and their extensions extItype,extritype,extI8type
c5aa993b 1150 */
c906108c
SS
1151enum mips16_inst_fmts
1152{
c5aa993b
JM
1153 itype, /* 0 immediate 5,10 */
1154 ritype, /* 1 5,3,8 */
1155 rrtype, /* 2 5,3,3,5 */
1156 rritype, /* 3 5,3,3,5 */
1157 rrrtype, /* 4 5,3,3,3,2 */
1158 rriatype, /* 5 5,3,3,1,4 */
1159 shifttype, /* 6 5,3,3,3,2 */
1160 i8type, /* 7 5,3,8 */
1161 i8movtype, /* 8 5,3,3,5 */
1162 i8mov32rtype, /* 9 5,3,5,3 */
1163 i64type, /* 10 5,3,8 */
1164 ri64type, /* 11 5,3,3,5 */
1165 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1166 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1167 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1168 extRRItype, /* 15 5,5,5,5,3,3,5 */
1169 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1170 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1171 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1172 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1173 extRi64type, /* 20 5,6,5,5,3,3,5 */
1174 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1175};
12f02c2a
AC
1176/* I am heaping all the fields of the formats into one structure and
1177 then, only the fields which are involved in instruction extension */
c906108c 1178struct upk_mips16
6d82d43b
AC
1179{
1180 CORE_ADDR offset;
1181 unsigned int regx; /* Function in i8 type */
1182 unsigned int regy;
1183};
c906108c
SS
1184
1185
12f02c2a
AC
1186/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1187 for the bits which make up the immediatate extension. */
c906108c 1188
12f02c2a
AC
1189static CORE_ADDR
1190extended_offset (unsigned int extension)
c906108c 1191{
12f02c2a 1192 CORE_ADDR value;
c5aa993b
JM
1193 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1194 value = value << 6;
1195 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1196 value = value << 5;
1197 value |= extension & 0x01f; /* extract 4:0 */
1198 return value;
c906108c
SS
1199}
1200
1201/* Only call this function if you know that this is an extendable
bcf1ea1e
MR
1202 instruction. It won't malfunction, but why make excess remote memory
1203 references? If the immediate operands get sign extended or something,
1204 do it after the extension is performed. */
c906108c 1205/* FIXME: Every one of these cases needs to worry about sign extension
bcf1ea1e 1206 when the offset is to be used in relative addressing. */
c906108c 1207
12f02c2a 1208static unsigned int
c5aa993b 1209fetch_mips_16 (CORE_ADDR pc)
c906108c 1210{
47a35522 1211 gdb_byte buf[8];
c5aa993b
JM
1212 pc &= 0xfffffffe; /* clear the low order bit */
1213 target_read_memory (pc, buf, 2);
1214 return extract_unsigned_integer (buf, 2);
c906108c
SS
1215}
1216
1217static void
c5aa993b 1218unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1219 unsigned int extension,
1220 unsigned int inst,
6d82d43b 1221 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 1222{
12f02c2a
AC
1223 CORE_ADDR offset;
1224 int regx;
1225 int regy;
1226 switch (insn_format)
c906108c 1227 {
c5aa993b 1228 case itype:
c906108c 1229 {
12f02c2a
AC
1230 CORE_ADDR value;
1231 if (extension)
c5aa993b
JM
1232 {
1233 value = extended_offset (extension);
1234 value = value << 11; /* rom for the original value */
6d82d43b 1235 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1236 }
1237 else
c5aa993b 1238 {
12f02c2a 1239 value = inst & 0x7ff;
c5aa993b 1240 /* FIXME : Consider sign extension */
c906108c 1241 }
12f02c2a
AC
1242 offset = value;
1243 regx = -1;
1244 regy = -1;
c906108c 1245 }
c5aa993b
JM
1246 break;
1247 case ritype:
1248 case i8type:
1249 { /* A register identifier and an offset */
c906108c
SS
1250 /* Most of the fields are the same as I type but the
1251 immediate value is of a different length */
12f02c2a
AC
1252 CORE_ADDR value;
1253 if (extension)
c906108c 1254 {
c5aa993b
JM
1255 value = extended_offset (extension);
1256 value = value << 8; /* from the original instruction */
12f02c2a
AC
1257 value |= inst & 0xff; /* eleven bits from instruction */
1258 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1259 if (value & 0x4000) /* test the sign bit , bit 26 */
1260 {
1261 value &= ~0x3fff; /* remove the sign bit */
1262 value = -value;
c906108c
SS
1263 }
1264 }
c5aa993b
JM
1265 else
1266 {
12f02c2a
AC
1267 value = inst & 0xff; /* 8 bits */
1268 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1269 /* FIXME: Do sign extension , this format needs it */
1270 if (value & 0x80) /* THIS CONFUSES ME */
1271 {
1272 value &= 0xef; /* remove the sign bit */
1273 value = -value;
1274 }
c5aa993b 1275 }
12f02c2a
AC
1276 offset = value;
1277 regy = -1;
c5aa993b 1278 break;
c906108c 1279 }
c5aa993b 1280 case jalxtype:
c906108c 1281 {
c5aa993b 1282 unsigned long value;
12f02c2a
AC
1283 unsigned int nexthalf;
1284 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1285 value = value << 16;
1286 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1287 value |= nexthalf;
12f02c2a
AC
1288 offset = value;
1289 regx = -1;
1290 regy = -1;
c5aa993b 1291 break;
c906108c
SS
1292 }
1293 default:
e2e0b3e5 1294 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 1295 }
12f02c2a
AC
1296 upk->offset = offset;
1297 upk->regx = regx;
1298 upk->regy = regy;
c906108c
SS
1299}
1300
1301
c5aa993b
JM
1302static CORE_ADDR
1303add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1304{
5b652102 1305 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
c906108c
SS
1306}
1307
12f02c2a 1308static CORE_ADDR
0b1b3e42 1309extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
6d82d43b 1310 unsigned int extension, unsigned int insn)
c906108c 1311{
12f02c2a
AC
1312 int op = (insn >> 11);
1313 switch (op)
c906108c 1314 {
6d82d43b 1315 case 2: /* Branch */
12f02c2a
AC
1316 {
1317 CORE_ADDR offset;
1318 struct upk_mips16 upk;
1319 unpack_mips16 (pc, extension, insn, itype, &upk);
1320 offset = upk.offset;
1321 if (offset & 0x800)
1322 {
1323 offset &= 0xeff;
1324 offset = -offset;
1325 }
1326 pc += (offset << 1) + 2;
1327 break;
1328 }
6d82d43b 1329 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
12f02c2a
AC
1330 {
1331 struct upk_mips16 upk;
1332 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1333 pc = add_offset_16 (pc, upk.offset);
1334 if ((insn >> 10) & 0x01) /* Exchange mode */
1335 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1336 else
1337 pc |= 0x01;
1338 break;
1339 }
6d82d43b 1340 case 4: /* beqz */
12f02c2a
AC
1341 {
1342 struct upk_mips16 upk;
1343 int reg;
1344 unpack_mips16 (pc, extension, insn, ritype, &upk);
0b1b3e42 1345 reg = get_frame_register_signed (frame, upk.regx);
12f02c2a
AC
1346 if (reg == 0)
1347 pc += (upk.offset << 1) + 2;
1348 else
1349 pc += 2;
1350 break;
1351 }
6d82d43b 1352 case 5: /* bnez */
12f02c2a
AC
1353 {
1354 struct upk_mips16 upk;
1355 int reg;
1356 unpack_mips16 (pc, extension, insn, ritype, &upk);
0b1b3e42 1357 reg = get_frame_register_signed (frame, upk.regx);
12f02c2a
AC
1358 if (reg != 0)
1359 pc += (upk.offset << 1) + 2;
1360 else
1361 pc += 2;
1362 break;
1363 }
6d82d43b 1364 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
1365 {
1366 struct upk_mips16 upk;
1367 int reg;
1368 unpack_mips16 (pc, extension, insn, i8type, &upk);
1369 /* upk.regx contains the opcode */
0b1b3e42 1370 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
12f02c2a
AC
1371 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1372 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1373 /* pc = add_offset_16(pc,upk.offset) ; */
1374 pc += (upk.offset << 1) + 2;
1375 else
1376 pc += 2;
1377 break;
1378 }
6d82d43b 1379 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
1380 {
1381 struct upk_mips16 upk;
1382 /* upk.fmt = rrtype; */
1383 op = insn & 0x1f;
1384 if (op == 0)
c5aa993b 1385 {
12f02c2a
AC
1386 int reg;
1387 upk.regx = (insn >> 8) & 0x07;
1388 upk.regy = (insn >> 5) & 0x07;
1389 switch (upk.regy)
c5aa993b 1390 {
12f02c2a
AC
1391 case 0:
1392 reg = upk.regx;
1393 break;
1394 case 1:
1395 reg = 31;
6d82d43b 1396 break; /* Function return instruction */
12f02c2a
AC
1397 case 2:
1398 reg = upk.regx;
1399 break;
1400 default:
1401 reg = 31;
6d82d43b 1402 break; /* BOGUS Guess */
c906108c 1403 }
0b1b3e42 1404 pc = get_frame_register_signed (frame, reg);
c906108c 1405 }
12f02c2a 1406 else
c5aa993b 1407 pc += 2;
12f02c2a
AC
1408 break;
1409 }
1410 case 30:
1411 /* This is an instruction extension. Fetch the real instruction
1412 (which follows the extension) and decode things based on
1413 that. */
1414 {
1415 pc += 2;
0b1b3e42 1416 pc = extended_mips16_next_pc (frame, pc, insn, fetch_mips_16 (pc));
12f02c2a
AC
1417 break;
1418 }
1419 default:
1420 {
1421 pc += 2;
1422 break;
1423 }
c906108c 1424 }
c5aa993b 1425 return pc;
12f02c2a 1426}
c906108c 1427
5a89d8aa 1428static CORE_ADDR
0b1b3e42 1429mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
12f02c2a
AC
1430{
1431 unsigned int insn = fetch_mips_16 (pc);
0b1b3e42 1432 return extended_mips16_next_pc (frame, pc, 0, insn);
12f02c2a
AC
1433}
1434
1435/* The mips_next_pc function supports single_step when the remote
7e73cedf 1436 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1437 It works by decoding the current instruction and predicting where a
1438 branch will go. This isnt hard because all the data is available.
ce1f96de 1439 The MIPS32 and MIPS16 variants are quite different. */
ad527d2e 1440static CORE_ADDR
0b1b3e42 1441mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 1442{
ce1f96de 1443 if (is_mips16_addr (pc))
0b1b3e42 1444 return mips16_next_pc (frame, pc);
c5aa993b 1445 else
0b1b3e42 1446 return mips32_next_pc (frame, pc);
12f02c2a 1447}
c906108c 1448
edfae063
AC
1449struct mips_frame_cache
1450{
1451 CORE_ADDR base;
1452 struct trad_frame_saved_reg *saved_regs;
1453};
1454
29639122
JB
1455/* Set a register's saved stack address in temp_saved_regs. If an
1456 address has already been set for this register, do nothing; this
1457 way we will only recognize the first save of a given register in a
1458 function prologue.
eec63939 1459
f57d151a
UW
1460 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1461 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1462 Strictly speaking, only the second range is used as it is only second
1463 range (the ABI instead of ISA registers) that comes into play when finding
1464 saved registers in a frame. */
eec63939
AC
1465
1466static void
29639122
JB
1467set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1468 CORE_ADDR offset)
eec63939 1469{
29639122
JB
1470 if (this_cache != NULL
1471 && this_cache->saved_regs[regnum].addr == -1)
1472 {
f57d151a
UW
1473 this_cache->saved_regs[regnum
1474 + 0 * gdbarch_num_regs (current_gdbarch)].addr
1475 = offset;
1476 this_cache->saved_regs[regnum
1477 + 1 * gdbarch_num_regs (current_gdbarch)].addr
1478 = offset;
29639122 1479 }
eec63939
AC
1480}
1481
eec63939 1482
29639122
JB
1483/* Fetch the immediate value from a MIPS16 instruction.
1484 If the previous instruction was an EXTEND, use it to extend
1485 the upper bits of the immediate value. This is a helper function
1486 for mips16_scan_prologue. */
eec63939 1487
29639122
JB
1488static int
1489mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1490 unsigned short inst, /* current instruction */
1491 int nbits, /* number of bits in imm field */
1492 int scale, /* scale factor to be applied to imm */
1493 int is_signed) /* is the imm field signed? */
eec63939 1494{
29639122 1495 int offset;
eec63939 1496
29639122
JB
1497 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1498 {
1499 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1500 if (offset & 0x8000) /* check for negative extend */
1501 offset = 0 - (0x10000 - (offset & 0xffff));
1502 return offset | (inst & 0x1f);
1503 }
eec63939 1504 else
29639122
JB
1505 {
1506 int max_imm = 1 << nbits;
1507 int mask = max_imm - 1;
1508 int sign_bit = max_imm >> 1;
45c9dd44 1509
29639122
JB
1510 offset = inst & mask;
1511 if (is_signed && (offset & sign_bit))
1512 offset = 0 - (max_imm - offset);
1513 return offset * scale;
1514 }
1515}
eec63939 1516
65596487 1517
29639122
JB
1518/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1519 the associated FRAME_CACHE if not null.
1520 Return the address of the first instruction past the prologue. */
eec63939 1521
29639122
JB
1522static CORE_ADDR
1523mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1524 struct frame_info *next_frame,
1525 struct mips_frame_cache *this_cache)
1526{
1527 CORE_ADDR cur_pc;
1528 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1529 CORE_ADDR sp;
1530 long frame_offset = 0; /* Size of stack frame. */
1531 long frame_adjust = 0; /* Offset of FP from SP. */
1532 int frame_reg = MIPS_SP_REGNUM;
1533 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1534 unsigned inst = 0; /* current instruction */
1535 unsigned entry_inst = 0; /* the entry instruction */
1536 int reg, offset;
a343eb3c 1537
29639122
JB
1538 int extend_bytes = 0;
1539 int prev_extend_bytes;
1540 CORE_ADDR end_prologue_addr = 0;
a343eb3c 1541
29639122
JB
1542 /* Can be called when there's no process, and hence when there's no
1543 NEXT_FRAME. */
1544 if (next_frame != NULL)
d2ca4222
UW
1545 sp = frame_unwind_register_signed (next_frame,
1546 gdbarch_num_regs (current_gdbarch)
1547 + MIPS_SP_REGNUM);
29639122
JB
1548 else
1549 sp = 0;
eec63939 1550
29639122
JB
1551 if (limit_pc > start_pc + 200)
1552 limit_pc = start_pc + 200;
eec63939 1553
95ac2dcf 1554 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122
JB
1555 {
1556 /* Save the previous instruction. If it's an EXTEND, we'll extract
1557 the immediate offset extension from it in mips16_get_imm. */
1558 prev_inst = inst;
eec63939 1559
29639122
JB
1560 /* Fetch and decode the instruction. */
1561 inst = (unsigned short) mips_fetch_instruction (cur_pc);
eec63939 1562
29639122
JB
1563 /* Normally we ignore extend instructions. However, if it is
1564 not followed by a valid prologue instruction, then this
1565 instruction is not part of the prologue either. We must
1566 remember in this case to adjust the end_prologue_addr back
1567 over the extend. */
1568 if ((inst & 0xf800) == 0xf000) /* extend */
1569 {
95ac2dcf 1570 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
1571 continue;
1572 }
eec63939 1573
29639122
JB
1574 prev_extend_bytes = extend_bytes;
1575 extend_bytes = 0;
eec63939 1576
29639122
JB
1577 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1578 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1579 {
1580 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1581 if (offset < 0) /* negative stack adjustment? */
1582 frame_offset -= offset;
1583 else
1584 /* Exit loop if a positive stack adjustment is found, which
1585 usually means that the stack cleanup code in the function
1586 epilogue is reached. */
1587 break;
1588 }
1589 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1590 {
1591 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1592 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1593 set_reg_offset (this_cache, reg, sp + offset);
1594 }
1595 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1596 {
1597 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1598 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1599 set_reg_offset (this_cache, reg, sp + offset);
1600 }
1601 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1602 {
1603 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4c7d22cb 1604 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1605 }
1606 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1607 {
1608 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
4c7d22cb 1609 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1610 }
1611 else if (inst == 0x673d) /* move $s1, $sp */
1612 {
1613 frame_addr = sp;
1614 frame_reg = 17;
1615 }
1616 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1617 {
1618 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1619 frame_addr = sp + offset;
1620 frame_reg = 17;
1621 frame_adjust = offset;
1622 }
1623 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1624 {
1625 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1626 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1627 set_reg_offset (this_cache, reg, frame_addr + offset);
1628 }
1629 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1630 {
1631 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1632 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1633 set_reg_offset (this_cache, reg, frame_addr + offset);
1634 }
1635 else if ((inst & 0xf81f) == 0xe809
1636 && (inst & 0x700) != 0x700) /* entry */
1637 entry_inst = inst; /* save for later processing */
1638 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
95ac2dcf 1639 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
29639122
JB
1640 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1641 {
1642 /* This instruction is part of the prologue, but we don't
1643 need to do anything special to handle it. */
1644 }
1645 else
1646 {
1647 /* This instruction is not an instruction typically found
1648 in a prologue, so we must have reached the end of the
1649 prologue. */
1650 if (end_prologue_addr == 0)
1651 end_prologue_addr = cur_pc - prev_extend_bytes;
1652 }
1653 }
eec63939 1654
29639122
JB
1655 /* The entry instruction is typically the first instruction in a function,
1656 and it stores registers at offsets relative to the value of the old SP
1657 (before the prologue). But the value of the sp parameter to this
1658 function is the new SP (after the prologue has been executed). So we
1659 can't calculate those offsets until we've seen the entire prologue,
1660 and can calculate what the old SP must have been. */
1661 if (entry_inst != 0)
1662 {
1663 int areg_count = (entry_inst >> 8) & 7;
1664 int sreg_count = (entry_inst >> 6) & 3;
eec63939 1665
29639122
JB
1666 /* The entry instruction always subtracts 32 from the SP. */
1667 frame_offset += 32;
1668
1669 /* Now we can calculate what the SP must have been at the
1670 start of the function prologue. */
1671 sp += frame_offset;
1672
1673 /* Check if a0-a3 were saved in the caller's argument save area. */
1674 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1675 {
1676 set_reg_offset (this_cache, reg, sp + offset);
1677 offset += mips_abi_regsize (current_gdbarch);
1678 }
1679
1680 /* Check if the ra register was pushed on the stack. */
1681 offset = -4;
1682 if (entry_inst & 0x20)
1683 {
4c7d22cb 1684 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1685 offset -= mips_abi_regsize (current_gdbarch);
1686 }
1687
1688 /* Check if the s0 and s1 registers were pushed on the stack. */
1689 for (reg = 16; reg < sreg_count + 16; reg++)
1690 {
1691 set_reg_offset (this_cache, reg, sp + offset);
1692 offset -= mips_abi_regsize (current_gdbarch);
1693 }
1694 }
1695
1696 if (this_cache != NULL)
1697 {
1698 this_cache->base =
f57d151a
UW
1699 (frame_unwind_register_signed (next_frame,
1700 gdbarch_num_regs (current_gdbarch)
1701 + frame_reg)
29639122
JB
1702 + frame_offset - frame_adjust);
1703 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1704 be able to get rid of the assignment below, evetually. But it's
1705 still needed for now. */
f57d151a
UW
1706 this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
1707 + mips_regnum (current_gdbarch)->pc]
1708 = this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
1709 + MIPS_RA_REGNUM];
29639122
JB
1710 }
1711
1712 /* If we didn't reach the end of the prologue when scanning the function
1713 instructions, then set end_prologue_addr to the address of the
1714 instruction immediately after the last one we scanned. */
1715 if (end_prologue_addr == 0)
1716 end_prologue_addr = cur_pc;
1717
1718 return end_prologue_addr;
eec63939
AC
1719}
1720
29639122
JB
1721/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1722 Procedures that use the 32-bit instruction set are handled by the
1723 mips_insn32 unwinder. */
1724
1725static struct mips_frame_cache *
1726mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
eec63939 1727{
29639122 1728 struct mips_frame_cache *cache;
eec63939
AC
1729
1730 if ((*this_cache) != NULL)
1731 return (*this_cache);
29639122
JB
1732 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1733 (*this_cache) = cache;
1734 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
eec63939 1735
29639122
JB
1736 /* Analyze the function prologue. */
1737 {
6de5b849
JB
1738 const CORE_ADDR pc =
1739 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
29639122 1740 CORE_ADDR start_addr;
eec63939 1741
29639122
JB
1742 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1743 if (start_addr == 0)
1744 start_addr = heuristic_proc_start (pc);
1745 /* We can't analyze the prologue if we couldn't find the begining
1746 of the function. */
1747 if (start_addr == 0)
1748 return cache;
eec63939 1749
29639122
JB
1750 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1751 }
1752
3e8c568d 1753 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a
UW
1754 trad_frame_set_value (cache->saved_regs, gdbarch_num_regs (current_gdbarch)
1755 + MIPS_SP_REGNUM, cache->base);
eec63939 1756
29639122 1757 return (*this_cache);
eec63939
AC
1758}
1759
1760static void
29639122
JB
1761mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1762 struct frame_id *this_id)
eec63939 1763{
29639122
JB
1764 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1765 this_cache);
93d42b30
DJ
1766 (*this_id) = frame_id_build (info->base,
1767 frame_func_unwind (next_frame, NORMAL_FRAME));
eec63939
AC
1768}
1769
1770static void
29639122 1771mips_insn16_frame_prev_register (struct frame_info *next_frame,
eec63939
AC
1772 void **this_cache,
1773 int regnum, int *optimizedp,
1774 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 1775 int *realnump, gdb_byte *valuep)
eec63939 1776{
29639122
JB
1777 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1778 this_cache);
1779 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1780 optimizedp, lvalp, addrp, realnump, valuep);
eec63939
AC
1781}
1782
29639122 1783static const struct frame_unwind mips_insn16_frame_unwind =
eec63939
AC
1784{
1785 NORMAL_FRAME,
29639122
JB
1786 mips_insn16_frame_this_id,
1787 mips_insn16_frame_prev_register
eec63939
AC
1788};
1789
1790static const struct frame_unwind *
29639122 1791mips_insn16_frame_sniffer (struct frame_info *next_frame)
eec63939 1792{
6de5b849 1793 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 1794 if (mips_pc_is_mips16 (pc))
29639122
JB
1795 return &mips_insn16_frame_unwind;
1796 return NULL;
eec63939
AC
1797}
1798
1799static CORE_ADDR
29639122
JB
1800mips_insn16_frame_base_address (struct frame_info *next_frame,
1801 void **this_cache)
eec63939 1802{
29639122
JB
1803 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1804 this_cache);
1805 return info->base;
eec63939
AC
1806}
1807
29639122 1808static const struct frame_base mips_insn16_frame_base =
eec63939 1809{
29639122
JB
1810 &mips_insn16_frame_unwind,
1811 mips_insn16_frame_base_address,
1812 mips_insn16_frame_base_address,
1813 mips_insn16_frame_base_address
eec63939
AC
1814};
1815
1816static const struct frame_base *
29639122 1817mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
eec63939 1818{
29639122
JB
1819 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1820 return &mips_insn16_frame_base;
eec63939
AC
1821 else
1822 return NULL;
edfae063
AC
1823}
1824
29639122
JB
1825/* Mark all the registers as unset in the saved_regs array
1826 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1827
1828void
1829reset_saved_regs (struct mips_frame_cache *this_cache)
c906108c 1830{
29639122
JB
1831 if (this_cache == NULL || this_cache->saved_regs == NULL)
1832 return;
1833
1834 {
f57d151a 1835 const int num_regs = gdbarch_num_regs (current_gdbarch);
29639122 1836 int i;
64159455 1837
29639122
JB
1838 for (i = 0; i < num_regs; i++)
1839 {
1840 this_cache->saved_regs[i].addr = -1;
1841 }
1842 }
c906108c
SS
1843}
1844
29639122
JB
1845/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1846 the associated FRAME_CACHE if not null.
1847 Return the address of the first instruction past the prologue. */
c906108c 1848
875e1767 1849static CORE_ADDR
29639122
JB
1850mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1851 struct frame_info *next_frame,
1852 struct mips_frame_cache *this_cache)
c906108c 1853{
29639122
JB
1854 CORE_ADDR cur_pc;
1855 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1856 CORE_ADDR sp;
1857 long frame_offset;
1858 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 1859
29639122
JB
1860 CORE_ADDR end_prologue_addr = 0;
1861 int seen_sp_adjust = 0;
1862 int load_immediate_bytes = 0;
8fa9cfa1 1863
29639122
JB
1864 /* Can be called when there's no process, and hence when there's no
1865 NEXT_FRAME. */
1866 if (next_frame != NULL)
d2ca4222
UW
1867 sp = frame_unwind_register_signed (next_frame,
1868 gdbarch_num_regs (current_gdbarch)
1869 + MIPS_SP_REGNUM);
8fa9cfa1 1870 else
29639122 1871 sp = 0;
9022177c 1872
29639122
JB
1873 if (limit_pc > start_pc + 200)
1874 limit_pc = start_pc + 200;
9022177c 1875
29639122 1876restart:
9022177c 1877
29639122 1878 frame_offset = 0;
95ac2dcf 1879 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 1880 {
29639122
JB
1881 unsigned long inst, high_word, low_word;
1882 int reg;
9022177c 1883
29639122
JB
1884 /* Fetch the instruction. */
1885 inst = (unsigned long) mips_fetch_instruction (cur_pc);
9022177c 1886
29639122
JB
1887 /* Save some code by pre-extracting some useful fields. */
1888 high_word = (inst >> 16) & 0xffff;
1889 low_word = inst & 0xffff;
1890 reg = high_word & 0x1f;
fe29b929 1891
29639122
JB
1892 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1893 || high_word == 0x23bd /* addi $sp,$sp,-i */
1894 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1895 {
1896 if (low_word & 0x8000) /* negative stack adjustment? */
1897 frame_offset += 0x10000 - low_word;
1898 else
1899 /* Exit loop if a positive stack adjustment is found, which
1900 usually means that the stack cleanup code in the function
1901 epilogue is reached. */
1902 break;
1903 seen_sp_adjust = 1;
1904 }
1905 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1906 {
1907 set_reg_offset (this_cache, reg, sp + low_word);
1908 }
1909 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1910 {
1911 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1912 set_reg_offset (this_cache, reg, sp + low_word);
1913 }
1914 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1915 {
1916 /* Old gcc frame, r30 is virtual frame pointer. */
1917 if ((long) low_word != frame_offset)
1918 frame_addr = sp + low_word;
d2ca4222 1919 else if (next_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
1920 {
1921 unsigned alloca_adjust;
a4b8ebc8 1922
29639122 1923 frame_reg = 30;
d2ca4222
UW
1924 frame_addr = frame_unwind_register_signed
1925 (next_frame,
1926 gdbarch_num_regs (current_gdbarch) + 30);
1927
29639122
JB
1928 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1929 if (alloca_adjust > 0)
1930 {
1931 /* FP > SP + frame_size. This may be because of
1932 an alloca or somethings similar. Fix sp to
1933 "pre-alloca" value, and try again. */
1934 sp += alloca_adjust;
1935 /* Need to reset the status of all registers. Otherwise,
1936 we will hit a guard that prevents the new address
1937 for each register to be recomputed during the second
1938 pass. */
1939 reset_saved_regs (this_cache);
1940 goto restart;
1941 }
1942 }
1943 }
1944 /* move $30,$sp. With different versions of gas this will be either
1945 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1946 Accept any one of these. */
1947 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1948 {
1949 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
d2ca4222 1950 if (next_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
1951 {
1952 unsigned alloca_adjust;
c906108c 1953
29639122 1954 frame_reg = 30;
d2ca4222
UW
1955 frame_addr = frame_unwind_register_signed
1956 (next_frame,
1957 gdbarch_num_regs (current_gdbarch) + 30);
1958
29639122
JB
1959 alloca_adjust = (unsigned) (frame_addr - sp);
1960 if (alloca_adjust > 0)
1961 {
1962 /* FP > SP + frame_size. This may be because of
1963 an alloca or somethings similar. Fix sp to
1964 "pre-alloca" value, and try again. */
1965 sp = frame_addr;
1966 /* Need to reset the status of all registers. Otherwise,
1967 we will hit a guard that prevents the new address
1968 for each register to be recomputed during the second
1969 pass. */
1970 reset_saved_regs (this_cache);
1971 goto restart;
1972 }
1973 }
1974 }
1975 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1976 {
1977 set_reg_offset (this_cache, reg, frame_addr + low_word);
1978 }
1979 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1980 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1981 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1982 || high_word == 0x3c1c /* lui $gp,n */
1983 || high_word == 0x279c /* addiu $gp,$gp,n */
1984 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1985 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1986 )
1987 {
1988 /* These instructions are part of the prologue, but we don't
1989 need to do anything special to handle them. */
1990 }
1991 /* The instructions below load $at or $t0 with an immediate
1992 value in preparation for a stack adjustment via
1993 subu $sp,$sp,[$at,$t0]. These instructions could also
1994 initialize a local variable, so we accept them only before
1995 a stack adjustment instruction was seen. */
1996 else if (!seen_sp_adjust
1997 && (high_word == 0x3c01 /* lui $at,n */
1998 || high_word == 0x3c08 /* lui $t0,n */
1999 || high_word == 0x3421 /* ori $at,$at,n */
2000 || high_word == 0x3508 /* ori $t0,$t0,n */
2001 || high_word == 0x3401 /* ori $at,$zero,n */
2002 || high_word == 0x3408 /* ori $t0,$zero,n */
2003 ))
2004 {
95ac2dcf 2005 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
29639122
JB
2006 }
2007 else
2008 {
2009 /* This instruction is not an instruction typically found
2010 in a prologue, so we must have reached the end of the
2011 prologue. */
2012 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2013 loop now? Why would we need to continue scanning the function
2014 instructions? */
2015 if (end_prologue_addr == 0)
2016 end_prologue_addr = cur_pc;
2017 }
a4b8ebc8 2018 }
c906108c 2019
29639122
JB
2020 if (this_cache != NULL)
2021 {
2022 this_cache->base =
f57d151a
UW
2023 (frame_unwind_register_signed (next_frame,
2024 gdbarch_num_regs (current_gdbarch)
2025 + frame_reg)
29639122
JB
2026 + frame_offset);
2027 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2028 this assignment below, eventually. But it's still needed
2029 for now. */
f57d151a
UW
2030 this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
2031 + mips_regnum (current_gdbarch)->pc]
2032 = this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
2033 + MIPS_RA_REGNUM];
29639122 2034 }
c906108c 2035
29639122
JB
2036 /* If we didn't reach the end of the prologue when scanning the function
2037 instructions, then set end_prologue_addr to the address of the
2038 instruction immediately after the last one we scanned. */
2039 /* brobecker/2004-10-10: I don't think this would ever happen, but
2040 we may as well be careful and do our best if we have a null
2041 end_prologue_addr. */
2042 if (end_prologue_addr == 0)
2043 end_prologue_addr = cur_pc;
2044
2045 /* In a frameless function, we might have incorrectly
2046 skipped some load immediate instructions. Undo the skipping
2047 if the load immediate was not followed by a stack adjustment. */
2048 if (load_immediate_bytes && !seen_sp_adjust)
2049 end_prologue_addr -= load_immediate_bytes;
c906108c 2050
29639122 2051 return end_prologue_addr;
c906108c
SS
2052}
2053
29639122
JB
2054/* Heuristic unwinder for procedures using 32-bit instructions (covers
2055 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2056 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2057 unwinder. */
c906108c 2058
29639122
JB
2059static struct mips_frame_cache *
2060mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
c906108c 2061{
29639122 2062 struct mips_frame_cache *cache;
c906108c 2063
29639122
JB
2064 if ((*this_cache) != NULL)
2065 return (*this_cache);
c5aa993b 2066
29639122
JB
2067 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2068 (*this_cache) = cache;
2069 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c5aa993b 2070
29639122
JB
2071 /* Analyze the function prologue. */
2072 {
6de5b849
JB
2073 const CORE_ADDR pc =
2074 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
29639122 2075 CORE_ADDR start_addr;
c906108c 2076
29639122
JB
2077 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2078 if (start_addr == 0)
2079 start_addr = heuristic_proc_start (pc);
2080 /* We can't analyze the prologue if we couldn't find the begining
2081 of the function. */
2082 if (start_addr == 0)
2083 return cache;
c5aa993b 2084
29639122
JB
2085 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
2086 }
2087
3e8c568d 2088 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a
UW
2089 trad_frame_set_value (cache->saved_regs,
2090 gdbarch_num_regs (current_gdbarch) + MIPS_SP_REGNUM,
2091 cache->base);
c5aa993b 2092
29639122 2093 return (*this_cache);
c906108c
SS
2094}
2095
29639122
JB
2096static void
2097mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
2098 struct frame_id *this_id)
c906108c 2099{
29639122
JB
2100 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2101 this_cache);
93d42b30
DJ
2102 (*this_id) = frame_id_build (info->base,
2103 frame_func_unwind (next_frame, NORMAL_FRAME));
29639122 2104}
c906108c 2105
29639122
JB
2106static void
2107mips_insn32_frame_prev_register (struct frame_info *next_frame,
2108 void **this_cache,
2109 int regnum, int *optimizedp,
2110 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 2111 int *realnump, gdb_byte *valuep)
29639122
JB
2112{
2113 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2114 this_cache);
2115 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2116 optimizedp, lvalp, addrp, realnump, valuep);
c906108c
SS
2117}
2118
29639122
JB
2119static const struct frame_unwind mips_insn32_frame_unwind =
2120{
2121 NORMAL_FRAME,
2122 mips_insn32_frame_this_id,
2123 mips_insn32_frame_prev_register
2124};
c906108c 2125
29639122
JB
2126static const struct frame_unwind *
2127mips_insn32_frame_sniffer (struct frame_info *next_frame)
2128{
6de5b849 2129 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 2130 if (! mips_pc_is_mips16 (pc))
29639122
JB
2131 return &mips_insn32_frame_unwind;
2132 return NULL;
2133}
c906108c 2134
1c645fec 2135static CORE_ADDR
29639122
JB
2136mips_insn32_frame_base_address (struct frame_info *next_frame,
2137 void **this_cache)
c906108c 2138{
29639122
JB
2139 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2140 this_cache);
2141 return info->base;
2142}
c906108c 2143
29639122
JB
2144static const struct frame_base mips_insn32_frame_base =
2145{
2146 &mips_insn32_frame_unwind,
2147 mips_insn32_frame_base_address,
2148 mips_insn32_frame_base_address,
2149 mips_insn32_frame_base_address
2150};
1c645fec 2151
29639122
JB
2152static const struct frame_base *
2153mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2154{
2155 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2156 return &mips_insn32_frame_base;
a65bbe44 2157 else
29639122
JB
2158 return NULL;
2159}
a65bbe44 2160
29639122
JB
2161static struct trad_frame_cache *
2162mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2163{
2164 CORE_ADDR pc;
2165 CORE_ADDR start_addr;
2166 CORE_ADDR stack_addr;
2167 struct trad_frame_cache *this_trad_cache;
c906108c 2168
29639122
JB
2169 if ((*this_cache) != NULL)
2170 return (*this_cache);
2171 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2172 (*this_cache) = this_trad_cache;
1c645fec 2173
29639122 2174 /* The return address is in the link register. */
3e8c568d
UW
2175 trad_frame_set_reg_realreg (this_trad_cache,
2176 gdbarch_pc_regnum (current_gdbarch),
aa6c981f
DJ
2177 (gdbarch_num_regs (current_gdbarch)
2178 + MIPS_RA_REGNUM));
1c645fec 2179
29639122
JB
2180 /* Frame ID, since it's a frameless / stackless function, no stack
2181 space is allocated and SP on entry is the current SP. */
2182 pc = frame_pc_unwind (next_frame);
2183 find_pc_partial_function (pc, NULL, &start_addr, NULL);
4c7d22cb 2184 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
aa6c981f 2185 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
1c645fec 2186
29639122
JB
2187 /* Assume that the frame's base is the same as the
2188 stack-pointer. */
2189 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 2190
29639122
JB
2191 return this_trad_cache;
2192}
c906108c 2193
29639122
JB
2194static void
2195mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2196 struct frame_id *this_id)
2197{
2198 struct trad_frame_cache *this_trad_cache
2199 = mips_stub_frame_cache (next_frame, this_cache);
2200 trad_frame_get_id (this_trad_cache, this_id);
2201}
c906108c 2202
29639122
JB
2203static void
2204mips_stub_frame_prev_register (struct frame_info *next_frame,
2205 void **this_cache,
2206 int regnum, int *optimizedp,
2207 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 2208 int *realnump, gdb_byte *valuep)
29639122
JB
2209{
2210 struct trad_frame_cache *this_trad_cache
2211 = mips_stub_frame_cache (next_frame, this_cache);
2212 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2213 lvalp, addrp, realnump, valuep);
2214}
c906108c 2215
29639122
JB
2216static const struct frame_unwind mips_stub_frame_unwind =
2217{
2218 NORMAL_FRAME,
2219 mips_stub_frame_this_id,
2220 mips_stub_frame_prev_register
2221};
c906108c 2222
29639122
JB
2223static const struct frame_unwind *
2224mips_stub_frame_sniffer (struct frame_info *next_frame)
2225{
aa6c981f 2226 gdb_byte dummy[4];
979b38e0 2227 struct obj_section *s;
93d42b30 2228 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
979b38e0 2229
aa6c981f
DJ
2230 /* Use the stub unwinder for unreadable code. */
2231 if (target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
2232 return &mips_stub_frame_unwind;
2233
29639122
JB
2234 if (in_plt_section (pc, NULL))
2235 return &mips_stub_frame_unwind;
979b38e0
DJ
2236
2237 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2238 s = find_pc_section (pc);
2239
2240 if (s != NULL
2241 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2242 ".MIPS.stubs") == 0)
2243 return &mips_stub_frame_unwind;
2244
2245 return NULL;
29639122 2246}
c906108c 2247
29639122
JB
2248static CORE_ADDR
2249mips_stub_frame_base_address (struct frame_info *next_frame,
2250 void **this_cache)
2251{
2252 struct trad_frame_cache *this_trad_cache
2253 = mips_stub_frame_cache (next_frame, this_cache);
2254 return trad_frame_get_this_base (this_trad_cache);
2255}
0fce0821 2256
29639122
JB
2257static const struct frame_base mips_stub_frame_base =
2258{
2259 &mips_stub_frame_unwind,
2260 mips_stub_frame_base_address,
2261 mips_stub_frame_base_address,
2262 mips_stub_frame_base_address
2263};
2264
2265static const struct frame_base *
2266mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2267{
2268 if (mips_stub_frame_sniffer (next_frame) != NULL)
2269 return &mips_stub_frame_base;
2270 else
2271 return NULL;
2272}
2273
29639122 2274/* mips_addr_bits_remove - remove useless address bits */
65596487 2275
29639122
JB
2276static CORE_ADDR
2277mips_addr_bits_remove (CORE_ADDR addr)
65596487 2278{
29639122
JB
2279 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2280 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2281 /* This hack is a work-around for existing boards using PMON, the
2282 simulator, and any other 64-bit targets that doesn't have true
2283 64-bit addressing. On these targets, the upper 32 bits of
2284 addresses are ignored by the hardware. Thus, the PC or SP are
2285 likely to have been sign extended to all 1s by instruction
2286 sequences that load 32-bit addresses. For example, a typical
2287 piece of code that loads an address is this:
65596487 2288
29639122
JB
2289 lui $r2, <upper 16 bits>
2290 ori $r2, <lower 16 bits>
65596487 2291
29639122
JB
2292 But the lui sign-extends the value such that the upper 32 bits
2293 may be all 1s. The workaround is simply to mask off these
2294 bits. In the future, gcc may be changed to support true 64-bit
2295 addressing, and this masking will have to be disabled. */
2296 return addr &= 0xffffffffUL;
2297 else
2298 return addr;
65596487
JB
2299}
2300
29639122
JB
2301/* mips_software_single_step() is called just before we want to resume
2302 the inferior, if we want to single-step it but there is no hardware
2303 or kernel single-step support (MIPS on GNU/Linux for example). We find
e0cd558a 2304 the target of the coming instruction and breakpoint it. */
29639122 2305
e6590a1b 2306int
0b1b3e42 2307mips_software_single_step (struct frame_info *frame)
c906108c 2308{
8181d85f 2309 CORE_ADDR pc, next_pc;
65596487 2310
0b1b3e42
UW
2311 pc = get_frame_pc (frame);
2312 next_pc = mips_next_pc (frame, pc);
e6590a1b 2313
e0cd558a 2314 insert_single_step_breakpoint (next_pc);
e6590a1b 2315 return 1;
29639122 2316}
a65bbe44 2317
29639122
JB
2318/* Test whether the PC points to the return instruction at the
2319 end of a function. */
65596487 2320
29639122
JB
2321static int
2322mips_about_to_return (CORE_ADDR pc)
2323{
0fe7e7c8 2324 if (mips_pc_is_mips16 (pc))
29639122
JB
2325 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2326 generates a "jr $ra"; other times it generates code to load
2327 the return address from the stack to an accessible register (such
2328 as $a3), then a "jr" using that register. This second case
2329 is almost impossible to distinguish from an indirect jump
2330 used for switch statements, so we don't even try. */
2331 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2332 else
2333 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2334}
c906108c 2335
c906108c 2336
29639122
JB
2337/* This fencepost looks highly suspicious to me. Removing it also
2338 seems suspicious as it could affect remote debugging across serial
2339 lines. */
c906108c 2340
29639122
JB
2341static CORE_ADDR
2342heuristic_proc_start (CORE_ADDR pc)
2343{
2344 CORE_ADDR start_pc;
2345 CORE_ADDR fence;
2346 int instlen;
2347 int seen_adjsp = 0;
65596487 2348
bf6ae464 2349 pc = gdbarch_addr_bits_remove (current_gdbarch, pc);
29639122
JB
2350 start_pc = pc;
2351 fence = start_pc - heuristic_fence_post;
2352 if (start_pc == 0)
2353 return 0;
65596487 2354
29639122
JB
2355 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2356 fence = VM_MIN_ADDRESS;
65596487 2357
95ac2dcf 2358 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
98b4dd94 2359
29639122
JB
2360 /* search back for previous return */
2361 for (start_pc -= instlen;; start_pc -= instlen)
2362 if (start_pc < fence)
2363 {
2364 /* It's not clear to me why we reach this point when
2365 stop_soon, but with this test, at least we
2366 don't print out warnings for every child forked (eg, on
2367 decstation). 22apr93 rich@cygnus.com. */
2368 if (stop_soon == NO_STOP_QUIETLY)
2369 {
2370 static int blurb_printed = 0;
98b4dd94 2371
8a3fe4f8 2372 warning (_("GDB can't find the start of the function at 0x%s."),
29639122
JB
2373 paddr_nz (pc));
2374
2375 if (!blurb_printed)
2376 {
2377 /* This actually happens frequently in embedded
2378 development, when you first connect to a board
2379 and your stack pointer and pc are nowhere in
2380 particular. This message needs to give people
2381 in that situation enough information to
2382 determine that it's no big deal. */
2383 printf_filtered ("\n\
2384 GDB is unable to find the start of the function at 0x%s\n\
2385and thus can't determine the size of that function's stack frame.\n\
2386This means that GDB may be unable to access that stack frame, or\n\
2387the frames below it.\n\
2388 This problem is most likely caused by an invalid program counter or\n\
2389stack pointer.\n\
2390 However, if you think GDB should simply search farther back\n\
2391from 0x%s for code which looks like the beginning of a\n\
2392function, you can increase the range of the search using the `set\n\
2393heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2394 blurb_printed = 1;
2395 }
2396 }
2397
2398 return 0;
2399 }
0fe7e7c8 2400 else if (mips_pc_is_mips16 (start_pc))
29639122
JB
2401 {
2402 unsigned short inst;
2403
2404 /* On MIPS16, any one of the following is likely to be the
2405 start of a function:
193774b3
MR
2406 extend save
2407 save
29639122
JB
2408 entry
2409 addiu sp,-n
2410 daddiu sp,-n
2411 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2412 inst = mips_fetch_instruction (start_pc);
193774b3
MR
2413 if ((inst & 0xff80) == 0x6480) /* save */
2414 {
2415 if (start_pc - instlen >= fence)
2416 {
2417 inst = mips_fetch_instruction (start_pc - instlen);
2418 if ((inst & 0xf800) == 0xf000) /* extend */
2419 start_pc -= instlen;
2420 }
2421 break;
2422 }
2423 else if (((inst & 0xf81f) == 0xe809
2424 && (inst & 0x700) != 0x700) /* entry */
2425 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2426 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2427 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
29639122
JB
2428 break;
2429 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2430 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2431 seen_adjsp = 1;
2432 else
2433 seen_adjsp = 0;
2434 }
2435 else if (mips_about_to_return (start_pc))
2436 {
4c7d22cb 2437 /* Skip return and its delay slot. */
95ac2dcf 2438 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
2439 break;
2440 }
2441
2442 return start_pc;
c906108c
SS
2443}
2444
6c0d6680
DJ
2445struct mips_objfile_private
2446{
2447 bfd_size_type size;
2448 char *contents;
2449};
2450
f09ded24
AC
2451/* According to the current ABI, should the type be passed in a
2452 floating-point register (assuming that there is space)? When there
a1f5b845 2453 is no FPU, FP are not even considered as possible candidates for
f09ded24
AC
2454 FP registers and, consequently this returns false - forces FP
2455 arguments into integer registers. */
2456
2457static int
2458fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2459{
2460 return ((typecode == TYPE_CODE_FLT
2461 || (MIPS_EABI
6d82d43b
AC
2462 && (typecode == TYPE_CODE_STRUCT
2463 || typecode == TYPE_CODE_UNION)
f09ded24 2464 && TYPE_NFIELDS (arg_type) == 1
b2d6f210
MS
2465 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2466 == TYPE_CODE_FLT))
c86b5b38 2467 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2468}
2469
49e790b0
DJ
2470/* On o32, argument passing in GPRs depends on the alignment of the type being
2471 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2472
2473static int
2474mips_type_needs_double_align (struct type *type)
2475{
2476 enum type_code typecode = TYPE_CODE (type);
361d1df0 2477
49e790b0
DJ
2478 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2479 return 1;
2480 else if (typecode == TYPE_CODE_STRUCT)
2481 {
2482 if (TYPE_NFIELDS (type) < 1)
2483 return 0;
2484 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2485 }
2486 else if (typecode == TYPE_CODE_UNION)
2487 {
361d1df0 2488 int i, n;
49e790b0
DJ
2489
2490 n = TYPE_NFIELDS (type);
2491 for (i = 0; i < n; i++)
2492 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2493 return 1;
2494 return 0;
2495 }
2496 return 0;
2497}
2498
dc604539
AC
2499/* Adjust the address downward (direction of stack growth) so that it
2500 is correctly aligned for a new stack frame. */
2501static CORE_ADDR
2502mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2503{
5b03f266 2504 return align_down (addr, 16);
dc604539
AC
2505}
2506
f7ab6ec6 2507static CORE_ADDR
7d9b040b 2508mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2509 struct regcache *regcache, CORE_ADDR bp_addr,
2510 int nargs, struct value **args, CORE_ADDR sp,
2511 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
2512{
2513 int argreg;
2514 int float_argreg;
2515 int argnum;
2516 int len = 0;
2517 int stack_offset = 0;
480d3dd2 2518 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2519 CORE_ADDR func_addr = find_function_addr (function, NULL);
1a69e1e4 2520 int regsize = mips_abi_regsize (gdbarch);
c906108c 2521
25ab4790
AC
2522 /* For shared libraries, "t9" needs to point at the function
2523 address. */
4c7d22cb 2524 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2525
2526 /* Set the return address register to point to the entry point of
2527 the program, where a breakpoint lies in wait. */
4c7d22cb 2528 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2529
c906108c 2530 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2531 are properly aligned. The stack has to be at least 64-bit
2532 aligned even on 32-bit machines, because doubles must be 64-bit
2533 aligned. For n32 and n64, stack frames need to be 128-bit
2534 aligned, so we round to this widest known alignment. */
2535
5b03f266
AC
2536 sp = align_down (sp, 16);
2537 struct_addr = align_down (struct_addr, 16);
c5aa993b 2538
46e0f506 2539 /* Now make space on the stack for the args. We allocate more
c906108c 2540 than necessary for EABI, because the first few arguments are
46e0f506 2541 passed in registers, but that's OK. */
c906108c 2542 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 2543 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
5b03f266 2544 sp -= align_up (len, 16);
c906108c 2545
9ace0497 2546 if (mips_debug)
6d82d43b 2547 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2548 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2549 paddr_nz (sp), (long) align_up (len, 16));
9ace0497 2550
c906108c 2551 /* Initialize the integer and float register pointers. */
4c7d22cb 2552 argreg = MIPS_A0_REGNUM;
56cea623 2553 float_argreg = mips_fpa0_regnum (current_gdbarch);
c906108c 2554
46e0f506 2555 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2556 if (struct_return)
9ace0497
AC
2557 {
2558 if (mips_debug)
2559 fprintf_unfiltered (gdb_stdlog,
25ab4790 2560 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2561 argreg, paddr_nz (struct_addr));
9c9acae0 2562 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
9ace0497 2563 }
c906108c
SS
2564
2565 /* Now load as many as possible of the first arguments into
2566 registers, and push the rest onto the stack. Loop thru args
2567 from first to last. */
2568 for (argnum = 0; argnum < nargs; argnum++)
2569 {
47a35522
MK
2570 const gdb_byte *val;
2571 gdb_byte valbuf[MAX_REGISTER_SIZE];
ea7c478f 2572 struct value *arg = args[argnum];
4991999e 2573 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
2574 int len = TYPE_LENGTH (arg_type);
2575 enum type_code typecode = TYPE_CODE (arg_type);
2576
9ace0497
AC
2577 if (mips_debug)
2578 fprintf_unfiltered (gdb_stdlog,
25ab4790 2579 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2580 argnum + 1, len, (int) typecode);
9ace0497 2581
c906108c 2582 /* The EABI passes structures that do not fit in a register by
46e0f506 2583 reference. */
1a69e1e4 2584 if (len > regsize
9ace0497 2585 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2586 {
1a69e1e4 2587 store_unsigned_integer (valbuf, regsize, VALUE_ADDRESS (arg));
c906108c 2588 typecode = TYPE_CODE_PTR;
1a69e1e4 2589 len = regsize;
c906108c 2590 val = valbuf;
9ace0497
AC
2591 if (mips_debug)
2592 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2593 }
2594 else
47a35522 2595 val = value_contents (arg);
c906108c
SS
2596
2597 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2598 even-numbered floating point register. Round the FP register
2599 up before the check to see if there are any FP registers
46e0f506
MS
2600 left. Non MIPS_EABI targets also pass the FP in the integer
2601 registers so also round up normal registers. */
1a69e1e4 2602 if (regsize < 8 && fp_register_arg_p (typecode, arg_type))
acdb74a0
AC
2603 {
2604 if ((float_argreg & 1))
2605 float_argreg++;
2606 }
c906108c
SS
2607
2608 /* Floating point arguments passed in registers have to be
2609 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2610 are passed in register pairs; the even register gets
2611 the low word, and the odd register gets the high word.
2612 On non-EABI processors, the first two floating point arguments are
2613 also copied to general registers, because MIPS16 functions
2614 don't use float registers for arguments. This duplication of
2615 arguments in general registers can't hurt non-MIPS16 functions
2616 because those registers are normally skipped. */
1012bd0e
EZ
2617 /* MIPS_EABI squeezes a struct that contains a single floating
2618 point value into an FP register instead of pushing it onto the
46e0f506 2619 stack. */
f09ded24
AC
2620 if (fp_register_arg_p (typecode, arg_type)
2621 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c 2622 {
6da397e0
KB
2623 /* EABI32 will pass doubles in consecutive registers, even on
2624 64-bit cores. At one time, we used to check the size of
2625 `float_argreg' to determine whether or not to pass doubles
2626 in consecutive registers, but this is not sufficient for
2627 making the ABI determination. */
2628 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
c906108c 2629 {
4c6b5505
UW
2630 int low_offset = gdbarch_byte_order (current_gdbarch)
2631 == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2632 unsigned long regval;
2633
2634 /* Write the low word of the double to the even register(s). */
c5aa993b 2635 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2636 if (mips_debug)
acdb74a0 2637 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2638 float_argreg, phex (regval, 4));
9c9acae0 2639 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2640
2641 /* Write the high word of the double to the odd register(s). */
c5aa993b 2642 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2643 if (mips_debug)
acdb74a0 2644 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2645 float_argreg, phex (regval, 4));
9c9acae0 2646 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2647 }
2648 else
2649 {
2650 /* This is a floating point value that fits entirely
2651 in a single register. */
53a5351d 2652 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 2653 above to ensure that it is even register aligned. */
9ace0497
AC
2654 LONGEST regval = extract_unsigned_integer (val, len);
2655 if (mips_debug)
acdb74a0 2656 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2657 float_argreg, phex (regval, len));
9c9acae0 2658 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2659 }
2660 }
2661 else
2662 {
2663 /* Copy the argument to general registers or the stack in
2664 register-sized pieces. Large arguments are split between
2665 registers and stack. */
1a69e1e4
DJ
2666 /* Note: structs whose size is not a multiple of regsize
2667 are treated specially: Irix cc passes
d5ac5a39
AC
2668 them in registers where gcc sometimes puts them on the
2669 stack. For maximum compatibility, we will put them in
2670 both places. */
1a69e1e4 2671 int odd_sized_struct = (len > regsize && len % regsize != 0);
46e0f506 2672
f09ded24 2673 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2674 register are only written to memory. */
c906108c
SS
2675 while (len > 0)
2676 {
ebafbe83 2677 /* Remember if the argument was written to the stack. */
566f0f7a 2678 int stack_used_p = 0;
1a69e1e4 2679 int partial_len = (len < regsize ? len : regsize);
c906108c 2680
acdb74a0
AC
2681 if (mips_debug)
2682 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2683 partial_len);
2684
566f0f7a 2685 /* Write this portion of the argument to the stack. */
f09ded24
AC
2686 if (argreg > MIPS_LAST_ARG_REGNUM
2687 || odd_sized_struct
2688 || fp_register_arg_p (typecode, arg_type))
c906108c 2689 {
c906108c
SS
2690 /* Should shorter than int integer values be
2691 promoted to int before being stored? */
c906108c 2692 int longword_offset = 0;
9ace0497 2693 CORE_ADDR addr;
566f0f7a 2694 stack_used_p = 1;
4c6b5505 2695 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
7a292a7a 2696 {
1a69e1e4 2697 if (regsize == 8
480d3dd2
AC
2698 && (typecode == TYPE_CODE_INT
2699 || typecode == TYPE_CODE_PTR
6d82d43b 2700 || typecode == TYPE_CODE_FLT) && len <= 4)
1a69e1e4 2701 longword_offset = regsize - len;
480d3dd2
AC
2702 else if ((typecode == TYPE_CODE_STRUCT
2703 || typecode == TYPE_CODE_UNION)
1a69e1e4
DJ
2704 && TYPE_LENGTH (arg_type) < regsize)
2705 longword_offset = regsize - len;
7a292a7a 2706 }
c5aa993b 2707
9ace0497
AC
2708 if (mips_debug)
2709 {
cb3d25d1
MS
2710 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2711 paddr_nz (stack_offset));
2712 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2713 paddr_nz (longword_offset));
9ace0497 2714 }
361d1df0 2715
9ace0497
AC
2716 addr = sp + stack_offset + longword_offset;
2717
2718 if (mips_debug)
2719 {
2720 int i;
6d82d43b 2721 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1 2722 paddr_nz (addr));
9ace0497
AC
2723 for (i = 0; i < partial_len; i++)
2724 {
6d82d43b 2725 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 2726 val[i] & 0xff);
9ace0497
AC
2727 }
2728 }
2729 write_memory (addr, val, partial_len);
c906108c
SS
2730 }
2731
f09ded24
AC
2732 /* Note!!! This is NOT an else clause. Odd sized
2733 structs may go thru BOTH paths. Floating point
46e0f506 2734 arguments will not. */
566f0f7a 2735 /* Write this portion of the argument to a general
6d82d43b 2736 purpose register. */
f09ded24
AC
2737 if (argreg <= MIPS_LAST_ARG_REGNUM
2738 && !fp_register_arg_p (typecode, arg_type))
c906108c 2739 {
6d82d43b
AC
2740 LONGEST regval =
2741 extract_unsigned_integer (val, partial_len);
c906108c 2742
9ace0497 2743 if (mips_debug)
acdb74a0 2744 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2745 argreg,
1a69e1e4 2746 phex (regval, regsize));
9c9acae0 2747 regcache_cooked_write_unsigned (regcache, argreg, regval);
c906108c 2748 argreg++;
c906108c 2749 }
c5aa993b 2750
c906108c
SS
2751 len -= partial_len;
2752 val += partial_len;
2753
566f0f7a 2754 /* Compute the the offset into the stack at which we
6d82d43b 2755 will copy the next parameter.
566f0f7a 2756
566f0f7a 2757 In the new EABI (and the NABI32), the stack_offset
46e0f506 2758 only needs to be adjusted when it has been used. */
c906108c 2759
46e0f506 2760 if (stack_used_p)
1a69e1e4 2761 stack_offset += align_up (partial_len, regsize);
c906108c
SS
2762 }
2763 }
9ace0497
AC
2764 if (mips_debug)
2765 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2766 }
2767
f10683bb 2768 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 2769
0f71a2f6
JM
2770 /* Return adjusted stack pointer. */
2771 return sp;
2772}
2773
a1f5b845 2774/* Determine the return value convention being used. */
6d82d43b 2775
9c8fdbfa
AC
2776static enum return_value_convention
2777mips_eabi_return_value (struct gdbarch *gdbarch,
2778 struct type *type, struct regcache *regcache,
47a35522 2779 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 2780{
9c8fdbfa
AC
2781 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2782 return RETURN_VALUE_STRUCT_CONVENTION;
2783 if (readbuf)
2784 memset (readbuf, 0, TYPE_LENGTH (type));
2785 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
2786}
2787
6d82d43b
AC
2788
2789/* N32/N64 ABI stuff. */
ebafbe83 2790
8d26208a
DJ
2791/* Search for a naturally aligned double at OFFSET inside a struct
2792 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
2793 registers. */
2794
2795static int
2796mips_n32n64_fp_arg_chunk_p (struct type *arg_type, int offset)
2797{
2798 int i;
2799
2800 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
2801 return 0;
2802
2803 if (MIPS_FPU_TYPE != MIPS_FPU_DOUBLE)
2804 return 0;
2805
2806 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
2807 return 0;
2808
2809 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
2810 {
2811 int pos;
2812 struct type *field_type;
2813
2814 /* We're only looking at normal fields. */
2815 if (TYPE_FIELD_STATIC (arg_type, i)
2816 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
2817 continue;
2818
2819 /* If we have gone past the offset, there is no double to pass. */
2820 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
2821 if (pos > offset)
2822 return 0;
2823
2824 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
2825
2826 /* If this field is entirely before the requested offset, go
2827 on to the next one. */
2828 if (pos + TYPE_LENGTH (field_type) <= offset)
2829 continue;
2830
2831 /* If this is our special aligned double, we can stop. */
2832 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
2833 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
2834 return 1;
2835
2836 /* This field starts at or before the requested offset, and
2837 overlaps it. If it is a structure, recurse inwards. */
2838 return mips_n32n64_fp_arg_chunk_p (field_type, offset - pos);
2839 }
2840
2841 return 0;
2842}
2843
f7ab6ec6 2844static CORE_ADDR
7d9b040b 2845mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2846 struct regcache *regcache, CORE_ADDR bp_addr,
2847 int nargs, struct value **args, CORE_ADDR sp,
2848 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
2849{
2850 int argreg;
2851 int float_argreg;
2852 int argnum;
2853 int len = 0;
2854 int stack_offset = 0;
480d3dd2 2855 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2856 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 2857
25ab4790
AC
2858 /* For shared libraries, "t9" needs to point at the function
2859 address. */
4c7d22cb 2860 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2861
2862 /* Set the return address register to point to the entry point of
2863 the program, where a breakpoint lies in wait. */
4c7d22cb 2864 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2865
cb3d25d1
MS
2866 /* First ensure that the stack and structure return address (if any)
2867 are properly aligned. The stack has to be at least 64-bit
2868 aligned even on 32-bit machines, because doubles must be 64-bit
2869 aligned. For n32 and n64, stack frames need to be 128-bit
2870 aligned, so we round to this widest known alignment. */
2871
5b03f266
AC
2872 sp = align_down (sp, 16);
2873 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
2874
2875 /* Now make space on the stack for the args. */
2876 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 2877 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
5b03f266 2878 sp -= align_up (len, 16);
cb3d25d1
MS
2879
2880 if (mips_debug)
6d82d43b 2881 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2882 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2883 paddr_nz (sp), (long) align_up (len, 16));
cb3d25d1
MS
2884
2885 /* Initialize the integer and float register pointers. */
4c7d22cb 2886 argreg = MIPS_A0_REGNUM;
56cea623 2887 float_argreg = mips_fpa0_regnum (current_gdbarch);
cb3d25d1 2888
46e0f506 2889 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2890 if (struct_return)
2891 {
2892 if (mips_debug)
2893 fprintf_unfiltered (gdb_stdlog,
25ab4790 2894 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2895 argreg, paddr_nz (struct_addr));
9c9acae0 2896 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
cb3d25d1
MS
2897 }
2898
2899 /* Now load as many as possible of the first arguments into
2900 registers, and push the rest onto the stack. Loop thru args
2901 from first to last. */
2902 for (argnum = 0; argnum < nargs; argnum++)
2903 {
47a35522 2904 const gdb_byte *val;
cb3d25d1 2905 struct value *arg = args[argnum];
4991999e 2906 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
2907 int len = TYPE_LENGTH (arg_type);
2908 enum type_code typecode = TYPE_CODE (arg_type);
2909
2910 if (mips_debug)
2911 fprintf_unfiltered (gdb_stdlog,
25ab4790 2912 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
2913 argnum + 1, len, (int) typecode);
2914
47a35522 2915 val = value_contents (arg);
cb3d25d1
MS
2916
2917 if (fp_register_arg_p (typecode, arg_type)
8d26208a 2918 && argreg <= MIPS_LAST_ARG_REGNUM)
cb3d25d1
MS
2919 {
2920 /* This is a floating point value that fits entirely
2921 in a single register. */
cb3d25d1
MS
2922 LONGEST regval = extract_unsigned_integer (val, len);
2923 if (mips_debug)
2924 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2925 float_argreg, phex (regval, len));
8d26208a 2926 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
cb3d25d1
MS
2927
2928 if (mips_debug)
2929 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2930 argreg, phex (regval, len));
9c9acae0 2931 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
2932 float_argreg++;
2933 argreg++;
cb3d25d1
MS
2934 }
2935 else
2936 {
2937 /* Copy the argument to general registers or the stack in
2938 register-sized pieces. Large arguments are split between
2939 registers and stack. */
1a69e1e4 2940 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
436aafc4
MR
2941 are treated specially: Irix cc passes them in registers
2942 where gcc sometimes puts them on the stack. For maximum
2943 compatibility, we will put them in both places. */
1a69e1e4
DJ
2944 int odd_sized_struct = (len > MIPS64_REGSIZE
2945 && len % MIPS64_REGSIZE != 0);
cb3d25d1 2946 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2947 register are only written to memory. */
cb3d25d1
MS
2948 while (len > 0)
2949 {
ad018eee 2950 /* Remember if the argument was written to the stack. */
cb3d25d1 2951 int stack_used_p = 0;
1a69e1e4 2952 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
cb3d25d1
MS
2953
2954 if (mips_debug)
2955 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2956 partial_len);
2957
8d26208a
DJ
2958 if (fp_register_arg_p (typecode, arg_type))
2959 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM);
2960
cb3d25d1
MS
2961 /* Write this portion of the argument to the stack. */
2962 if (argreg > MIPS_LAST_ARG_REGNUM
8d26208a 2963 || odd_sized_struct)
cb3d25d1
MS
2964 {
2965 /* Should shorter than int integer values be
2966 promoted to int before being stored? */
2967 int longword_offset = 0;
2968 CORE_ADDR addr;
2969 stack_used_p = 1;
4c6b5505 2970 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
cb3d25d1 2971 {
1a69e1e4
DJ
2972 if ((typecode == TYPE_CODE_INT
2973 || typecode == TYPE_CODE_PTR
2974 || typecode == TYPE_CODE_FLT)
2975 && len <= 4)
2976 longword_offset = MIPS64_REGSIZE - len;
cb3d25d1
MS
2977 }
2978
2979 if (mips_debug)
2980 {
2981 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2982 paddr_nz (stack_offset));
2983 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2984 paddr_nz (longword_offset));
2985 }
2986
2987 addr = sp + stack_offset + longword_offset;
2988
2989 if (mips_debug)
2990 {
2991 int i;
6d82d43b 2992 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1
MS
2993 paddr_nz (addr));
2994 for (i = 0; i < partial_len; i++)
2995 {
6d82d43b 2996 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
2997 val[i] & 0xff);
2998 }
2999 }
3000 write_memory (addr, val, partial_len);
3001 }
3002
3003 /* Note!!! This is NOT an else clause. Odd sized
8d26208a 3004 structs may go thru BOTH paths. */
cb3d25d1 3005 /* Write this portion of the argument to a general
6d82d43b 3006 purpose register. */
8d26208a 3007 if (argreg <= MIPS_LAST_ARG_REGNUM)
cb3d25d1 3008 {
6d82d43b
AC
3009 LONGEST regval =
3010 extract_unsigned_integer (val, partial_len);
cb3d25d1
MS
3011
3012 /* A non-floating-point argument being passed in a
3013 general register. If a struct or union, and if
3014 the remaining length is smaller than the register
3015 size, we have to adjust the register value on
3016 big endian targets.
3017
3018 It does not seem to be necessary to do the
1a69e1e4 3019 same for integral types. */
cb3d25d1 3020
4c6b5505 3021 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3022 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
3023 && (typecode == TYPE_CODE_STRUCT
3024 || typecode == TYPE_CODE_UNION))
1a69e1e4 3025 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 3026 * TARGET_CHAR_BIT);
cb3d25d1
MS
3027
3028 if (mips_debug)
3029 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3030 argreg,
1a69e1e4 3031 phex (regval, MIPS64_REGSIZE));
9c9acae0 3032 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
3033
3034 if (mips_n32n64_fp_arg_chunk_p (arg_type,
3035 TYPE_LENGTH (arg_type) - len))
3036 {
3037 if (mips_debug)
3038 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3039 float_argreg,
3040 phex (regval, MIPS64_REGSIZE));
3041 regcache_cooked_write_unsigned (regcache, float_argreg,
3042 regval);
3043 }
3044
3045 float_argreg++;
cb3d25d1
MS
3046 argreg++;
3047 }
3048
3049 len -= partial_len;
3050 val += partial_len;
3051
3052 /* Compute the the offset into the stack at which we
6d82d43b 3053 will copy the next parameter.
cb3d25d1
MS
3054
3055 In N32 (N64?), the stack_offset only needs to be
3056 adjusted when it has been used. */
3057
3058 if (stack_used_p)
1a69e1e4 3059 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
cb3d25d1
MS
3060 }
3061 }
3062 if (mips_debug)
3063 fprintf_unfiltered (gdb_stdlog, "\n");
3064 }
3065
f10683bb 3066 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3067
cb3d25d1
MS
3068 /* Return adjusted stack pointer. */
3069 return sp;
3070}
3071
6d82d43b
AC
3072static enum return_value_convention
3073mips_n32n64_return_value (struct gdbarch *gdbarch,
3074 struct type *type, struct regcache *regcache,
47a35522 3075 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 3076{
6d82d43b
AC
3077 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3078 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3079 || TYPE_CODE (type) == TYPE_CODE_UNION
3080 || TYPE_CODE (type) == TYPE_CODE_ARRAY
1a69e1e4 3081 || TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
6d82d43b 3082 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
3083 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3084 && TYPE_LENGTH (type) == 16
3085 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3086 {
3087 /* A 128-bit floating-point value fills both $f0 and $f2. The
3088 two registers are used in the same as memory order, so the
3089 eight bytes with the lower memory address are in $f0. */
3090 if (mips_debug)
3091 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
3092 mips_xfer_register (regcache,
f57d151a
UW
3093 gdbarch_num_regs (current_gdbarch)
3094 + mips_regnum (current_gdbarch)->fp0,
4c6b5505
UW
3095 8, gdbarch_byte_order (current_gdbarch),
3096 readbuf, writebuf, 0);
d05f6826 3097 mips_xfer_register (regcache,
f57d151a
UW
3098 gdbarch_num_regs (current_gdbarch)
3099 + mips_regnum (current_gdbarch)->fp0 + 2,
4c6b5505
UW
3100 8, gdbarch_byte_order (current_gdbarch),
3101 readbuf ? readbuf + 8 : readbuf,
d05f6826
DJ
3102 writebuf ? writebuf + 8 : writebuf, 0);
3103 return RETURN_VALUE_REGISTER_CONVENTION;
3104 }
6d82d43b
AC
3105 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3106 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3107 {
3108 /* A floating-point value belongs in the least significant part
3109 of FP0. */
3110 if (mips_debug)
3111 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3112 mips_xfer_register (regcache,
f57d151a
UW
3113 gdbarch_num_regs (current_gdbarch)
3114 + mips_regnum (current_gdbarch)->fp0,
6d82d43b 3115 TYPE_LENGTH (type),
4c6b5505
UW
3116 gdbarch_byte_order (current_gdbarch),
3117 readbuf, writebuf, 0);
6d82d43b
AC
3118 return RETURN_VALUE_REGISTER_CONVENTION;
3119 }
3120 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3121 && TYPE_NFIELDS (type) <= 2
3122 && TYPE_NFIELDS (type) >= 1
3123 && ((TYPE_NFIELDS (type) == 1
3124 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3125 == TYPE_CODE_FLT))
3126 || (TYPE_NFIELDS (type) == 2
3127 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3128 == TYPE_CODE_FLT)
3129 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3130 == TYPE_CODE_FLT)))
3131 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3132 {
3133 /* A struct that contains one or two floats. Each value is part
3134 in the least significant part of their floating point
3135 register.. */
6d82d43b
AC
3136 int regnum;
3137 int field;
3138 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3139 field < TYPE_NFIELDS (type); field++, regnum += 2)
3140 {
3141 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3142 / TARGET_CHAR_BIT);
3143 if (mips_debug)
3144 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3145 offset);
f57d151a
UW
3146 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3147 + regnum,
6d82d43b 3148 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4c6b5505
UW
3149 gdbarch_byte_order (current_gdbarch),
3150 readbuf, writebuf, offset);
6d82d43b
AC
3151 }
3152 return RETURN_VALUE_REGISTER_CONVENTION;
3153 }
3154 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3155 || TYPE_CODE (type) == TYPE_CODE_UNION)
3156 {
3157 /* A structure or union. Extract the left justified value,
3158 regardless of the byte order. I.e. DO NOT USE
3159 mips_xfer_lower. */
3160 int offset;
3161 int regnum;
4c7d22cb 3162 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3163 offset < TYPE_LENGTH (type);
3164 offset += register_size (current_gdbarch, regnum), regnum++)
3165 {
3166 int xfer = register_size (current_gdbarch, regnum);
3167 if (offset + xfer > TYPE_LENGTH (type))
3168 xfer = TYPE_LENGTH (type) - offset;
3169 if (mips_debug)
3170 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3171 offset, xfer, regnum);
f57d151a
UW
3172 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3173 + regnum, xfer,
6d82d43b
AC
3174 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3175 }
3176 return RETURN_VALUE_REGISTER_CONVENTION;
3177 }
3178 else
3179 {
3180 /* A scalar extract each part but least-significant-byte
3181 justified. */
3182 int offset;
3183 int regnum;
4c7d22cb 3184 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3185 offset < TYPE_LENGTH (type);
3186 offset += register_size (current_gdbarch, regnum), regnum++)
3187 {
3188 int xfer = register_size (current_gdbarch, regnum);
6d82d43b
AC
3189 if (offset + xfer > TYPE_LENGTH (type))
3190 xfer = TYPE_LENGTH (type) - offset;
3191 if (mips_debug)
3192 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3193 offset, xfer, regnum);
f57d151a
UW
3194 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3195 + regnum, xfer,
4c6b5505
UW
3196 gdbarch_byte_order (current_gdbarch),
3197 readbuf, writebuf, offset);
6d82d43b
AC
3198 }
3199 return RETURN_VALUE_REGISTER_CONVENTION;
3200 }
3201}
3202
3203/* O32 ABI stuff. */
3204
3205static CORE_ADDR
7d9b040b 3206mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3207 struct regcache *regcache, CORE_ADDR bp_addr,
3208 int nargs, struct value **args, CORE_ADDR sp,
3209 int struct_return, CORE_ADDR struct_addr)
3210{
3211 int argreg;
3212 int float_argreg;
3213 int argnum;
3214 int len = 0;
3215 int stack_offset = 0;
3216 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3217 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
3218
3219 /* For shared libraries, "t9" needs to point at the function
3220 address. */
4c7d22cb 3221 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
3222
3223 /* Set the return address register to point to the entry point of
3224 the program, where a breakpoint lies in wait. */
4c7d22cb 3225 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
3226
3227 /* First ensure that the stack and structure return address (if any)
3228 are properly aligned. The stack has to be at least 64-bit
3229 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
3230 aligned. For n32 and n64, stack frames need to be 128-bit
3231 aligned, so we round to this widest known alignment. */
3232
5b03f266
AC
3233 sp = align_down (sp, 16);
3234 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
3235
3236 /* Now make space on the stack for the args. */
3237 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
3238 {
3239 struct type *arg_type = check_typedef (value_type (args[argnum]));
3240 int arglen = TYPE_LENGTH (arg_type);
3241
3242 /* Align to double-word if necessary. */
2afd3f0a 3243 if (mips_type_needs_double_align (arg_type))
1a69e1e4 3244 len = align_up (len, MIPS32_REGSIZE * 2);
968b5391 3245 /* Allocate space on the stack. */
1a69e1e4 3246 len += align_up (arglen, MIPS32_REGSIZE);
968b5391 3247 }
5b03f266 3248 sp -= align_up (len, 16);
ebafbe83
MS
3249
3250 if (mips_debug)
6d82d43b 3251 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3252 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3253 paddr_nz (sp), (long) align_up (len, 16));
ebafbe83
MS
3254
3255 /* Initialize the integer and float register pointers. */
4c7d22cb 3256 argreg = MIPS_A0_REGNUM;
56cea623 3257 float_argreg = mips_fpa0_regnum (current_gdbarch);
ebafbe83 3258
bcb0cc15 3259 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3260 if (struct_return)
3261 {
3262 if (mips_debug)
3263 fprintf_unfiltered (gdb_stdlog,
25ab4790 3264 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83 3265 argreg, paddr_nz (struct_addr));
9c9acae0 3266 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 3267 stack_offset += MIPS32_REGSIZE;
ebafbe83
MS
3268 }
3269
3270 /* Now load as many as possible of the first arguments into
3271 registers, and push the rest onto the stack. Loop thru args
3272 from first to last. */
3273 for (argnum = 0; argnum < nargs; argnum++)
3274 {
47a35522 3275 const gdb_byte *val;
ebafbe83 3276 struct value *arg = args[argnum];
4991999e 3277 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
3278 int len = TYPE_LENGTH (arg_type);
3279 enum type_code typecode = TYPE_CODE (arg_type);
3280
3281 if (mips_debug)
3282 fprintf_unfiltered (gdb_stdlog,
25ab4790 3283 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3284 argnum + 1, len, (int) typecode);
3285
47a35522 3286 val = value_contents (arg);
46cac009
AC
3287
3288 /* 32-bit ABIs always start floating point arguments in an
3289 even-numbered floating point register. Round the FP register
3290 up before the check to see if there are any FP registers
3291 left. O32/O64 targets also pass the FP in the integer
3292 registers so also round up normal registers. */
2afd3f0a 3293 if (fp_register_arg_p (typecode, arg_type))
46cac009
AC
3294 {
3295 if ((float_argreg & 1))
3296 float_argreg++;
3297 }
3298
3299 /* Floating point arguments passed in registers have to be
3300 treated specially. On 32-bit architectures, doubles
3301 are passed in register pairs; the even register gets
3302 the low word, and the odd register gets the high word.
3303 On O32/O64, the first two floating point arguments are
3304 also copied to general registers, because MIPS16 functions
3305 don't use float registers for arguments. This duplication of
3306 arguments in general registers can't hurt non-MIPS16 functions
3307 because those registers are normally skipped. */
3308
3309 if (fp_register_arg_p (typecode, arg_type)
3310 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3311 {
8b07f6d8 3312 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
46cac009 3313 {
4c6b5505
UW
3314 int low_offset = gdbarch_byte_order (current_gdbarch)
3315 == BFD_ENDIAN_BIG ? 4 : 0;
46cac009
AC
3316 unsigned long regval;
3317
3318 /* Write the low word of the double to the even register(s). */
3319 regval = extract_unsigned_integer (val + low_offset, 4);
3320 if (mips_debug)
3321 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3322 float_argreg, phex (regval, 4));
9c9acae0 3323 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009
AC
3324 if (mips_debug)
3325 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3326 argreg, phex (regval, 4));
9c9acae0 3327 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
3328
3329 /* Write the high word of the double to the odd register(s). */
3330 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3331 if (mips_debug)
3332 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3333 float_argreg, phex (regval, 4));
9c9acae0 3334 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009
AC
3335
3336 if (mips_debug)
3337 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3338 argreg, phex (regval, 4));
9c9acae0 3339 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
3340 }
3341 else
3342 {
3343 /* This is a floating point value that fits entirely
3344 in a single register. */
3345 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 3346 above to ensure that it is even register aligned. */
46cac009
AC
3347 LONGEST regval = extract_unsigned_integer (val, len);
3348 if (mips_debug)
3349 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3350 float_argreg, phex (regval, len));
9c9acae0 3351 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009 3352 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
6d82d43b
AC
3353 registers for each argument. The below is (my
3354 guess) to ensure that the corresponding integer
3355 register has reserved the same space. */
46cac009
AC
3356 if (mips_debug)
3357 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3358 argreg, phex (regval, len));
9c9acae0 3359 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 3360 argreg += 2;
46cac009
AC
3361 }
3362 /* Reserve space for the FP register. */
1a69e1e4 3363 stack_offset += align_up (len, MIPS32_REGSIZE);
46cac009
AC
3364 }
3365 else
3366 {
3367 /* Copy the argument to general registers or the stack in
3368 register-sized pieces. Large arguments are split between
3369 registers and stack. */
1a69e1e4
DJ
3370 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3371 are treated specially: Irix cc passes
d5ac5a39
AC
3372 them in registers where gcc sometimes puts them on the
3373 stack. For maximum compatibility, we will put them in
3374 both places. */
1a69e1e4
DJ
3375 int odd_sized_struct = (len > MIPS32_REGSIZE
3376 && len % MIPS32_REGSIZE != 0);
46cac009
AC
3377 /* Structures should be aligned to eight bytes (even arg registers)
3378 on MIPS_ABI_O32, if their first member has double precision. */
2afd3f0a 3379 if (mips_type_needs_double_align (arg_type))
46cac009
AC
3380 {
3381 if ((argreg & 1))
968b5391
MR
3382 {
3383 argreg++;
1a69e1e4 3384 stack_offset += MIPS32_REGSIZE;
968b5391 3385 }
46cac009 3386 }
46cac009
AC
3387 while (len > 0)
3388 {
3389 /* Remember if the argument was written to the stack. */
3390 int stack_used_p = 0;
1a69e1e4 3391 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
46cac009
AC
3392
3393 if (mips_debug)
3394 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3395 partial_len);
3396
3397 /* Write this portion of the argument to the stack. */
3398 if (argreg > MIPS_LAST_ARG_REGNUM
968b5391 3399 || odd_sized_struct)
46cac009
AC
3400 {
3401 /* Should shorter than int integer values be
3402 promoted to int before being stored? */
3403 int longword_offset = 0;
3404 CORE_ADDR addr;
3405 stack_used_p = 1;
46cac009
AC
3406
3407 if (mips_debug)
3408 {
3409 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3410 paddr_nz (stack_offset));
3411 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3412 paddr_nz (longword_offset));
3413 }
3414
3415 addr = sp + stack_offset + longword_offset;
3416
3417 if (mips_debug)
3418 {
3419 int i;
6d82d43b 3420 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
46cac009
AC
3421 paddr_nz (addr));
3422 for (i = 0; i < partial_len; i++)
3423 {
6d82d43b 3424 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
3425 val[i] & 0xff);
3426 }
3427 }
3428 write_memory (addr, val, partial_len);
3429 }
3430
3431 /* Note!!! This is NOT an else clause. Odd sized
968b5391 3432 structs may go thru BOTH paths. */
46cac009 3433 /* Write this portion of the argument to a general
6d82d43b 3434 purpose register. */
968b5391 3435 if (argreg <= MIPS_LAST_ARG_REGNUM)
46cac009
AC
3436 {
3437 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3438 /* Value may need to be sign extended, because
1b13c4f6 3439 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
3440
3441 /* A non-floating-point argument being passed in a
3442 general register. If a struct or union, and if
3443 the remaining length is smaller than the register
3444 size, we have to adjust the register value on
3445 big endian targets.
3446
3447 It does not seem to be necessary to do the
3448 same for integral types.
3449
3450 Also don't do this adjustment on O64 binaries.
3451
3452 cagney/2001-07-23: gdb/179: Also, GCC, when
3453 outputting LE O32 with sizeof (struct) <
e914cb17
MR
3454 mips_abi_regsize(), generates a left shift
3455 as part of storing the argument in a register
3456 (the left shift isn't generated when
1b13c4f6 3457 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
3458 it is quite possible that this is GCC
3459 contradicting the LE/O32 ABI, GDB has not been
3460 adjusted to accommodate this. Either someone
3461 needs to demonstrate that the LE/O32 ABI
3462 specifies such a left shift OR this new ABI gets
3463 identified as such and GDB gets tweaked
3464 accordingly. */
3465
4c6b5505 3466 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3467 && partial_len < MIPS32_REGSIZE
06f9a1af
MR
3468 && (typecode == TYPE_CODE_STRUCT
3469 || typecode == TYPE_CODE_UNION))
1a69e1e4 3470 regval <<= ((MIPS32_REGSIZE - partial_len)
9ecf7166 3471 * TARGET_CHAR_BIT);
46cac009
AC
3472
3473 if (mips_debug)
3474 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3475 argreg,
1a69e1e4 3476 phex (regval, MIPS32_REGSIZE));
9c9acae0 3477 regcache_cooked_write_unsigned (regcache, argreg, regval);
46cac009
AC
3478 argreg++;
3479
3480 /* Prevent subsequent floating point arguments from
3481 being passed in floating point registers. */
3482 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3483 }
3484
3485 len -= partial_len;
3486 val += partial_len;
3487
3488 /* Compute the the offset into the stack at which we
6d82d43b 3489 will copy the next parameter.
46cac009 3490
6d82d43b
AC
3491 In older ABIs, the caller reserved space for
3492 registers that contained arguments. This was loosely
3493 refered to as their "home". Consequently, space is
3494 always allocated. */
46cac009 3495
1a69e1e4 3496 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
46cac009
AC
3497 }
3498 }
3499 if (mips_debug)
3500 fprintf_unfiltered (gdb_stdlog, "\n");
3501 }
3502
f10683bb 3503 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3504
46cac009
AC
3505 /* Return adjusted stack pointer. */
3506 return sp;
3507}
3508
6d82d43b
AC
3509static enum return_value_convention
3510mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3511 struct regcache *regcache,
47a35522 3512 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b
AC
3513{
3514 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3515
3516 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3517 || TYPE_CODE (type) == TYPE_CODE_UNION
3518 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3519 return RETURN_VALUE_STRUCT_CONVENTION;
3520 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3521 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3522 {
3523 /* A single-precision floating-point value. It fits in the
3524 least significant part of FP0. */
3525 if (mips_debug)
3526 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3527 mips_xfer_register (regcache,
f57d151a
UW
3528 gdbarch_num_regs (current_gdbarch)
3529 + mips_regnum (current_gdbarch)->fp0,
6d82d43b 3530 TYPE_LENGTH (type),
4c6b5505
UW
3531 gdbarch_byte_order (current_gdbarch),
3532 readbuf, writebuf, 0);
6d82d43b
AC
3533 return RETURN_VALUE_REGISTER_CONVENTION;
3534 }
3535 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3536 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3537 {
3538 /* A double-precision floating-point value. The most
3539 significant part goes in FP1, and the least significant in
3540 FP0. */
3541 if (mips_debug)
3542 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
4c6b5505 3543 switch (gdbarch_byte_order (current_gdbarch))
6d82d43b
AC
3544 {
3545 case BFD_ENDIAN_LITTLE:
3546 mips_xfer_register (regcache,
f57d151a
UW
3547 gdbarch_num_regs (current_gdbarch)
3548 + mips_regnum (current_gdbarch)->fp0 +
4c6b5505
UW
3549 0, 4, gdbarch_byte_order (current_gdbarch),
3550 readbuf, writebuf, 0);
6d82d43b 3551 mips_xfer_register (regcache,
f57d151a
UW
3552 gdbarch_num_regs (current_gdbarch)
3553 + mips_regnum (current_gdbarch)->fp0 + 1,
4c6b5505
UW
3554 4, gdbarch_byte_order (current_gdbarch),
3555 readbuf, writebuf, 4);
6d82d43b
AC
3556 break;
3557 case BFD_ENDIAN_BIG:
3558 mips_xfer_register (regcache,
f57d151a
UW
3559 gdbarch_num_regs (current_gdbarch)
3560 + mips_regnum (current_gdbarch)->fp0 + 1,
4c6b5505
UW
3561 4, gdbarch_byte_order (current_gdbarch),
3562 readbuf, writebuf, 0);
6d82d43b 3563 mips_xfer_register (regcache,
f57d151a
UW
3564 gdbarch_num_regs (current_gdbarch)
3565 + mips_regnum (current_gdbarch)->fp0 + 0,
4c6b5505
UW
3566 4, gdbarch_byte_order (current_gdbarch),
3567 readbuf, writebuf, 4);
6d82d43b
AC
3568 break;
3569 default:
e2e0b3e5 3570 internal_error (__FILE__, __LINE__, _("bad switch"));
6d82d43b
AC
3571 }
3572 return RETURN_VALUE_REGISTER_CONVENTION;
3573 }
3574#if 0
3575 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3576 && TYPE_NFIELDS (type) <= 2
3577 && TYPE_NFIELDS (type) >= 1
3578 && ((TYPE_NFIELDS (type) == 1
3579 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3580 == TYPE_CODE_FLT))
3581 || (TYPE_NFIELDS (type) == 2
3582 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3583 == TYPE_CODE_FLT)
3584 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3585 == TYPE_CODE_FLT)))
3586 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3587 {
3588 /* A struct that contains one or two floats. Each value is part
3589 in the least significant part of their floating point
3590 register.. */
870cd05e 3591 gdb_byte reg[MAX_REGISTER_SIZE];
6d82d43b
AC
3592 int regnum;
3593 int field;
3594 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3595 field < TYPE_NFIELDS (type); field++, regnum += 2)
3596 {
3597 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3598 / TARGET_CHAR_BIT);
3599 if (mips_debug)
3600 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3601 offset);
f57d151a
UW
3602 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3603 + regnum,
6d82d43b 3604 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4c6b5505
UW
3605 gdbarch_byte_order (current_gdbarch),
3606 readbuf, writebuf, offset);
6d82d43b
AC
3607 }
3608 return RETURN_VALUE_REGISTER_CONVENTION;
3609 }
3610#endif
3611#if 0
3612 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3613 || TYPE_CODE (type) == TYPE_CODE_UNION)
3614 {
3615 /* A structure or union. Extract the left justified value,
3616 regardless of the byte order. I.e. DO NOT USE
3617 mips_xfer_lower. */
3618 int offset;
3619 int regnum;
4c7d22cb 3620 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3621 offset < TYPE_LENGTH (type);
3622 offset += register_size (current_gdbarch, regnum), regnum++)
3623 {
3624 int xfer = register_size (current_gdbarch, regnum);
3625 if (offset + xfer > TYPE_LENGTH (type))
3626 xfer = TYPE_LENGTH (type) - offset;
3627 if (mips_debug)
3628 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3629 offset, xfer, regnum);
f57d151a
UW
3630 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3631 + regnum, xfer,
6d82d43b
AC
3632 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3633 }
3634 return RETURN_VALUE_REGISTER_CONVENTION;
3635 }
3636#endif
3637 else
3638 {
3639 /* A scalar extract each part but least-significant-byte
3640 justified. o32 thinks registers are 4 byte, regardless of
1a69e1e4 3641 the ISA. */
6d82d43b
AC
3642 int offset;
3643 int regnum;
4c7d22cb 3644 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3645 offset < TYPE_LENGTH (type);
1a69e1e4 3646 offset += MIPS32_REGSIZE, regnum++)
6d82d43b 3647 {
1a69e1e4 3648 int xfer = MIPS32_REGSIZE;
6d82d43b
AC
3649 if (offset + xfer > TYPE_LENGTH (type))
3650 xfer = TYPE_LENGTH (type) - offset;
3651 if (mips_debug)
3652 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3653 offset, xfer, regnum);
f57d151a
UW
3654 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3655 + regnum, xfer,
4c6b5505
UW
3656 gdbarch_byte_order (current_gdbarch),
3657 readbuf, writebuf, offset);
6d82d43b
AC
3658 }
3659 return RETURN_VALUE_REGISTER_CONVENTION;
3660 }
3661}
3662
3663/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3664 ABI. */
46cac009
AC
3665
3666static CORE_ADDR
7d9b040b 3667mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3668 struct regcache *regcache, CORE_ADDR bp_addr,
3669 int nargs,
3670 struct value **args, CORE_ADDR sp,
3671 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
3672{
3673 int argreg;
3674 int float_argreg;
3675 int argnum;
3676 int len = 0;
3677 int stack_offset = 0;
480d3dd2 3678 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3679 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 3680
25ab4790
AC
3681 /* For shared libraries, "t9" needs to point at the function
3682 address. */
4c7d22cb 3683 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
3684
3685 /* Set the return address register to point to the entry point of
3686 the program, where a breakpoint lies in wait. */
4c7d22cb 3687 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 3688
46cac009
AC
3689 /* First ensure that the stack and structure return address (if any)
3690 are properly aligned. The stack has to be at least 64-bit
3691 aligned even on 32-bit machines, because doubles must be 64-bit
3692 aligned. For n32 and n64, stack frames need to be 128-bit
3693 aligned, so we round to this widest known alignment. */
3694
5b03f266
AC
3695 sp = align_down (sp, 16);
3696 struct_addr = align_down (struct_addr, 16);
46cac009
AC
3697
3698 /* Now make space on the stack for the args. */
3699 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
3700 {
3701 struct type *arg_type = check_typedef (value_type (args[argnum]));
3702 int arglen = TYPE_LENGTH (arg_type);
3703
968b5391 3704 /* Allocate space on the stack. */
1a69e1e4 3705 len += align_up (arglen, MIPS64_REGSIZE);
968b5391 3706 }
5b03f266 3707 sp -= align_up (len, 16);
46cac009
AC
3708
3709 if (mips_debug)
6d82d43b 3710 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3711 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3712 paddr_nz (sp), (long) align_up (len, 16));
46cac009
AC
3713
3714 /* Initialize the integer and float register pointers. */
4c7d22cb 3715 argreg = MIPS_A0_REGNUM;
56cea623 3716 float_argreg = mips_fpa0_regnum (current_gdbarch);
46cac009
AC
3717
3718 /* The struct_return pointer occupies the first parameter-passing reg. */
3719 if (struct_return)
3720 {
3721 if (mips_debug)
3722 fprintf_unfiltered (gdb_stdlog,
25ab4790 3723 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009 3724 argreg, paddr_nz (struct_addr));
9c9acae0 3725 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 3726 stack_offset += MIPS64_REGSIZE;
46cac009
AC
3727 }
3728
3729 /* Now load as many as possible of the first arguments into
3730 registers, and push the rest onto the stack. Loop thru args
3731 from first to last. */
3732 for (argnum = 0; argnum < nargs; argnum++)
3733 {
47a35522 3734 const gdb_byte *val;
46cac009 3735 struct value *arg = args[argnum];
4991999e 3736 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
3737 int len = TYPE_LENGTH (arg_type);
3738 enum type_code typecode = TYPE_CODE (arg_type);
3739
3740 if (mips_debug)
3741 fprintf_unfiltered (gdb_stdlog,
25ab4790 3742 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3743 argnum + 1, len, (int) typecode);
3744
47a35522 3745 val = value_contents (arg);
ebafbe83 3746
ebafbe83
MS
3747 /* Floating point arguments passed in registers have to be
3748 treated specially. On 32-bit architectures, doubles
3749 are passed in register pairs; the even register gets
3750 the low word, and the odd register gets the high word.
3751 On O32/O64, the first two floating point arguments are
3752 also copied to general registers, because MIPS16 functions
3753 don't use float registers for arguments. This duplication of
3754 arguments in general registers can't hurt non-MIPS16 functions
3755 because those registers are normally skipped. */
3756
3757 if (fp_register_arg_p (typecode, arg_type)
3758 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3759 {
2afd3f0a
MR
3760 LONGEST regval = extract_unsigned_integer (val, len);
3761 if (mips_debug)
3762 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3763 float_argreg, phex (regval, len));
9c9acae0 3764 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2afd3f0a
MR
3765 if (mips_debug)
3766 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3767 argreg, phex (regval, len));
9c9acae0 3768 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 3769 argreg++;
ebafbe83 3770 /* Reserve space for the FP register. */
1a69e1e4 3771 stack_offset += align_up (len, MIPS64_REGSIZE);
ebafbe83
MS
3772 }
3773 else
3774 {
3775 /* Copy the argument to general registers or the stack in
3776 register-sized pieces. Large arguments are split between
3777 registers and stack. */
1a69e1e4 3778 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
436aafc4
MR
3779 are treated specially: Irix cc passes them in registers
3780 where gcc sometimes puts them on the stack. For maximum
3781 compatibility, we will put them in both places. */
1a69e1e4
DJ
3782 int odd_sized_struct = (len > MIPS64_REGSIZE
3783 && len % MIPS64_REGSIZE != 0);
ebafbe83
MS
3784 while (len > 0)
3785 {
3786 /* Remember if the argument was written to the stack. */
3787 int stack_used_p = 0;
1a69e1e4 3788 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
ebafbe83
MS
3789
3790 if (mips_debug)
3791 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3792 partial_len);
3793
3794 /* Write this portion of the argument to the stack. */
3795 if (argreg > MIPS_LAST_ARG_REGNUM
968b5391 3796 || odd_sized_struct)
ebafbe83
MS
3797 {
3798 /* Should shorter than int integer values be
3799 promoted to int before being stored? */
3800 int longword_offset = 0;
3801 CORE_ADDR addr;
3802 stack_used_p = 1;
4c6b5505 3803 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
ebafbe83 3804 {
1a69e1e4
DJ
3805 if ((typecode == TYPE_CODE_INT
3806 || typecode == TYPE_CODE_PTR
3807 || typecode == TYPE_CODE_FLT)
3808 && len <= 4)
3809 longword_offset = MIPS64_REGSIZE - len;
ebafbe83
MS
3810 }
3811
3812 if (mips_debug)
3813 {
3814 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3815 paddr_nz (stack_offset));
3816 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3817 paddr_nz (longword_offset));
3818 }
3819
3820 addr = sp + stack_offset + longword_offset;
3821
3822 if (mips_debug)
3823 {
3824 int i;
6d82d43b 3825 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
ebafbe83
MS
3826 paddr_nz (addr));
3827 for (i = 0; i < partial_len; i++)
3828 {
6d82d43b 3829 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
3830 val[i] & 0xff);
3831 }
3832 }
3833 write_memory (addr, val, partial_len);
3834 }
3835
3836 /* Note!!! This is NOT an else clause. Odd sized
968b5391 3837 structs may go thru BOTH paths. */
ebafbe83 3838 /* Write this portion of the argument to a general
6d82d43b 3839 purpose register. */
968b5391 3840 if (argreg <= MIPS_LAST_ARG_REGNUM)
ebafbe83
MS
3841 {
3842 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3843 /* Value may need to be sign extended, because
1b13c4f6 3844 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
3845
3846 /* A non-floating-point argument being passed in a
3847 general register. If a struct or union, and if
3848 the remaining length is smaller than the register
3849 size, we have to adjust the register value on
3850 big endian targets.
3851
3852 It does not seem to be necessary to do the
401835eb 3853 same for integral types. */
480d3dd2 3854
4c6b5505 3855 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3856 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
3857 && (typecode == TYPE_CODE_STRUCT
3858 || typecode == TYPE_CODE_UNION))
1a69e1e4 3859 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 3860 * TARGET_CHAR_BIT);
ebafbe83
MS
3861
3862 if (mips_debug)
3863 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3864 argreg,
1a69e1e4 3865 phex (regval, MIPS64_REGSIZE));
9c9acae0 3866 regcache_cooked_write_unsigned (regcache, argreg, regval);
ebafbe83
MS
3867 argreg++;
3868
3869 /* Prevent subsequent floating point arguments from
3870 being passed in floating point registers. */
3871 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3872 }
3873
3874 len -= partial_len;
3875 val += partial_len;
3876
3877 /* Compute the the offset into the stack at which we
6d82d43b 3878 will copy the next parameter.
ebafbe83 3879
6d82d43b
AC
3880 In older ABIs, the caller reserved space for
3881 registers that contained arguments. This was loosely
3882 refered to as their "home". Consequently, space is
3883 always allocated. */
ebafbe83 3884
1a69e1e4 3885 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
ebafbe83
MS
3886 }
3887 }
3888 if (mips_debug)
3889 fprintf_unfiltered (gdb_stdlog, "\n");
3890 }
3891
f10683bb 3892 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3893
ebafbe83
MS
3894 /* Return adjusted stack pointer. */
3895 return sp;
3896}
3897
9c8fdbfa
AC
3898static enum return_value_convention
3899mips_o64_return_value (struct gdbarch *gdbarch,
3900 struct type *type, struct regcache *regcache,
47a35522 3901 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 3902{
7a076fd2
FF
3903 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3904
3905 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3906 || TYPE_CODE (type) == TYPE_CODE_UNION
3907 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3908 return RETURN_VALUE_STRUCT_CONVENTION;
3909 else if (fp_register_arg_p (TYPE_CODE (type), type))
3910 {
3911 /* A floating-point value. It fits in the least significant
3912 part of FP0. */
3913 if (mips_debug)
3914 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3915 mips_xfer_register (regcache,
f57d151a
UW
3916 gdbarch_num_regs (current_gdbarch)
3917 + mips_regnum (current_gdbarch)->fp0,
7a076fd2 3918 TYPE_LENGTH (type),
4c6b5505
UW
3919 gdbarch_byte_order (current_gdbarch),
3920 readbuf, writebuf, 0);
7a076fd2
FF
3921 return RETURN_VALUE_REGISTER_CONVENTION;
3922 }
3923 else
3924 {
3925 /* A scalar extract each part but least-significant-byte
3926 justified. */
3927 int offset;
3928 int regnum;
3929 for (offset = 0, regnum = MIPS_V0_REGNUM;
3930 offset < TYPE_LENGTH (type);
1a69e1e4 3931 offset += MIPS64_REGSIZE, regnum++)
7a076fd2 3932 {
1a69e1e4 3933 int xfer = MIPS64_REGSIZE;
7a076fd2
FF
3934 if (offset + xfer > TYPE_LENGTH (type))
3935 xfer = TYPE_LENGTH (type) - offset;
3936 if (mips_debug)
3937 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3938 offset, xfer, regnum);
f57d151a
UW
3939 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3940 + regnum, xfer,
4c6b5505
UW
3941 gdbarch_byte_order (current_gdbarch),
3942 readbuf, writebuf, offset);
7a076fd2
FF
3943 }
3944 return RETURN_VALUE_REGISTER_CONVENTION;
3945 }
6d82d43b
AC
3946}
3947
dd824b04
DJ
3948/* Floating point register management.
3949
3950 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3951 64bit operations, these early MIPS cpus treat fp register pairs
3952 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3953 registers and offer a compatibility mode that emulates the MIPS2 fp
3954 model. When operating in MIPS2 fp compat mode, later cpu's split
3955 double precision floats into two 32-bit chunks and store them in
3956 consecutive fp regs. To display 64-bit floats stored in this
3957 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3958 Throw in user-configurable endianness and you have a real mess.
3959
3960 The way this works is:
3961 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3962 double-precision value will be split across two logical registers.
3963 The lower-numbered logical register will hold the low-order bits,
3964 regardless of the processor's endianness.
3965 - If we are on a 64-bit processor, and we are looking for a
3966 single-precision value, it will be in the low ordered bits
3967 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3968 save slot in memory.
3969 - If we are in 64-bit mode, everything is straightforward.
3970
3971 Note that this code only deals with "live" registers at the top of the
3972 stack. We will attempt to deal with saved registers later, when
3973 the raw/cooked register interface is in place. (We need a general
3974 interface that can deal with dynamic saved register sizes -- fp
3975 regs could be 32 bits wide in one frame and 64 on the frame above
3976 and below). */
3977
67b2c998
DJ
3978static struct type *
3979mips_float_register_type (void)
3980{
8da61cc4 3981 return builtin_type_ieee_single;
67b2c998
DJ
3982}
3983
3984static struct type *
3985mips_double_register_type (void)
3986{
8da61cc4 3987 return builtin_type_ieee_double;
67b2c998
DJ
3988}
3989
dd824b04
DJ
3990/* Copy a 32-bit single-precision value from the current frame
3991 into rare_buffer. */
3992
3993static void
e11c53d2 3994mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 3995 gdb_byte *rare_buffer)
dd824b04 3996{
719ec221 3997 int raw_size = register_size (current_gdbarch, regno);
47a35522 3998 gdb_byte *raw_buffer = alloca (raw_size);
dd824b04 3999
e11c53d2 4000 if (!frame_register_read (frame, regno, raw_buffer))
c9f4d572
UW
4001 error (_("can't read register %d (%s)"),
4002 regno, gdbarch_register_name (current_gdbarch, regno));
dd824b04
DJ
4003 if (raw_size == 8)
4004 {
4005 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 4006 32 bits. */
dd824b04
DJ
4007 int offset;
4008
4c6b5505 4009 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
dd824b04
DJ
4010 offset = 4;
4011 else
4012 offset = 0;
4013
4014 memcpy (rare_buffer, raw_buffer + offset, 4);
4015 }
4016 else
4017 {
4018 memcpy (rare_buffer, raw_buffer, 4);
4019 }
4020}
4021
4022/* Copy a 64-bit double-precision value from the current frame into
4023 rare_buffer. This may include getting half of it from the next
4024 register. */
4025
4026static void
e11c53d2 4027mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 4028 gdb_byte *rare_buffer)
dd824b04 4029{
719ec221 4030 int raw_size = register_size (current_gdbarch, regno);
dd824b04 4031
9c9acae0 4032 if (raw_size == 8 && !mips2_fp_compat (frame))
dd824b04
DJ
4033 {
4034 /* We have a 64-bit value for this register, and we should use
6d82d43b 4035 all 64 bits. */
e11c53d2 4036 if (!frame_register_read (frame, regno, rare_buffer))
c9f4d572
UW
4037 error (_("can't read register %d (%s)"),
4038 regno, gdbarch_register_name (current_gdbarch, regno));
dd824b04
DJ
4039 }
4040 else
4041 {
56cea623 4042 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
dd824b04 4043 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
4044 _("mips_read_fp_register_double: bad access to "
4045 "odd-numbered FP register"));
dd824b04
DJ
4046
4047 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 4048 each register. */
4c6b5505 4049 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
dd824b04 4050 {
e11c53d2
AC
4051 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4052 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 4053 }
361d1df0 4054 else
dd824b04 4055 {
e11c53d2
AC
4056 mips_read_fp_register_single (frame, regno, rare_buffer);
4057 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
4058 }
4059 }
4060}
4061
c906108c 4062static void
e11c53d2
AC
4063mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4064 int regnum)
c5aa993b 4065{ /* do values for FP (float) regs */
47a35522 4066 gdb_byte *raw_buffer;
3903d437
AC
4067 double doub, flt1; /* doubles extracted from raw hex data */
4068 int inv1, inv2;
c5aa993b 4069
47a35522
MK
4070 raw_buffer = alloca (2 * register_size (current_gdbarch,
4071 mips_regnum (current_gdbarch)->fp0));
c906108c 4072
c9f4d572
UW
4073 fprintf_filtered (file, "%s:",
4074 gdbarch_register_name (current_gdbarch, regnum));
4075 fprintf_filtered (file, "%*s",
4076 4 - (int) strlen (gdbarch_register_name
4077 (current_gdbarch, regnum)),
e11c53d2 4078 "");
f0ef6b29 4079
9c9acae0 4080 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat (frame))
c906108c 4081 {
f0ef6b29
KB
4082 /* 4-byte registers: Print hex and floating. Also print even
4083 numbered registers as doubles. */
e11c53d2 4084 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 4085 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4086
6d82d43b
AC
4087 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
4088 file);
dd824b04 4089
e11c53d2 4090 fprintf_filtered (file, " flt: ");
1adad886 4091 if (inv1)
e11c53d2 4092 fprintf_filtered (file, " <invalid float> ");
1adad886 4093 else
e11c53d2 4094 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4095
f0ef6b29
KB
4096 if (regnum % 2 == 0)
4097 {
e11c53d2 4098 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29 4099 doub = unpack_double (mips_double_register_type (), raw_buffer,
6d82d43b 4100 &inv2);
1adad886 4101
e11c53d2 4102 fprintf_filtered (file, " dbl: ");
f0ef6b29 4103 if (inv2)
e11c53d2 4104 fprintf_filtered (file, "<invalid double>");
f0ef6b29 4105 else
e11c53d2 4106 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 4107 }
c906108c
SS
4108 }
4109 else
dd824b04 4110 {
f0ef6b29 4111 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 4112 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 4113 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 4114
e11c53d2 4115 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4116 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4117
361d1df0 4118
6d82d43b
AC
4119 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4120 file);
f0ef6b29 4121
e11c53d2 4122 fprintf_filtered (file, " flt: ");
1adad886 4123 if (inv1)
e11c53d2 4124 fprintf_filtered (file, "<invalid float>");
1adad886 4125 else
e11c53d2 4126 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4127
e11c53d2 4128 fprintf_filtered (file, " dbl: ");
f0ef6b29 4129 if (inv2)
e11c53d2 4130 fprintf_filtered (file, "<invalid double>");
1adad886 4131 else
e11c53d2 4132 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
4133 }
4134}
4135
4136static void
e11c53d2 4137mips_print_register (struct ui_file *file, struct frame_info *frame,
0cc93a06 4138 int regnum)
f0ef6b29 4139{
a4b8ebc8 4140 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 4141 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4142 int offset;
1adad886 4143
7b9ee6a8 4144 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
f0ef6b29 4145 {
e11c53d2 4146 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
4147 return;
4148 }
4149
4150 /* Get the data in raw format. */
e11c53d2 4151 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4152 {
c9f4d572
UW
4153 fprintf_filtered (file, "%s: [Invalid]",
4154 gdbarch_register_name (current_gdbarch, regnum));
f0ef6b29 4155 return;
c906108c 4156 }
f0ef6b29 4157
c9f4d572 4158 fputs_filtered (gdbarch_register_name (current_gdbarch, regnum), file);
f0ef6b29
KB
4159
4160 /* The problem with printing numeric register names (r26, etc.) is that
4161 the user can't use them on input. Probably the best solution is to
4162 fix it so that either the numeric or the funky (a2, etc.) names
4163 are accepted on input. */
4164 if (regnum < MIPS_NUMREGS)
e11c53d2 4165 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4166 else
e11c53d2 4167 fprintf_filtered (file, ": ");
f0ef6b29 4168
4c6b5505 4169 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
6d82d43b
AC
4170 offset =
4171 register_size (current_gdbarch,
4172 regnum) - register_size (current_gdbarch, regnum);
f0ef6b29
KB
4173 else
4174 offset = 0;
4175
6d82d43b 4176 print_scalar_formatted (raw_buffer + offset,
7b9ee6a8 4177 register_type (gdbarch, regnum), 'x', 0,
6d82d43b 4178 file);
c906108c
SS
4179}
4180
f0ef6b29
KB
4181/* Replacement for generic do_registers_info.
4182 Print regs in pretty columns. */
4183
4184static int
e11c53d2
AC
4185print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4186 int regnum)
f0ef6b29 4187{
e11c53d2
AC
4188 fprintf_filtered (file, " ");
4189 mips_print_fp_register (file, frame, regnum);
4190 fprintf_filtered (file, "\n");
f0ef6b29
KB
4191 return regnum + 1;
4192}
4193
4194
c906108c
SS
4195/* Print a row's worth of GP (int) registers, with name labels above */
4196
4197static int
e11c53d2 4198print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 4199 int start_regnum)
c906108c 4200{
a4b8ebc8 4201 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 4202 /* do values for GP (int) regs */
47a35522 4203 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
d5ac5a39 4204 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
c906108c 4205 int col, byte;
a4b8ebc8 4206 int regnum;
c906108c
SS
4207
4208 /* For GP registers, we print a separate row of names above the vals */
a4b8ebc8 4209 for (col = 0, regnum = start_regnum;
f57d151a
UW
4210 col < ncols && regnum < gdbarch_num_regs (current_gdbarch)
4211 + gdbarch_num_pseudo_regs (current_gdbarch);
4212 regnum++)
c906108c 4213 {
c9f4d572 4214 if (*gdbarch_register_name (current_gdbarch, regnum) == '\0')
c5aa993b 4215 continue; /* unused register */
7b9ee6a8 4216 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4217 TYPE_CODE_FLT)
c5aa993b 4218 break; /* end the row: reached FP register */
0cc93a06
DJ
4219 /* Large registers are handled separately. */
4220 if (register_size (current_gdbarch, regnum)
4221 > mips_abi_regsize (current_gdbarch))
4222 {
4223 if (col > 0)
4224 break; /* End the row before this register. */
4225
4226 /* Print this register on a row by itself. */
4227 mips_print_register (file, frame, regnum);
4228 fprintf_filtered (file, "\n");
4229 return regnum + 1;
4230 }
d05f6826
DJ
4231 if (col == 0)
4232 fprintf_filtered (file, " ");
6d82d43b 4233 fprintf_filtered (file,
d5ac5a39 4234 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
c9f4d572 4235 gdbarch_register_name (current_gdbarch, regnum));
c906108c
SS
4236 col++;
4237 }
d05f6826
DJ
4238
4239 if (col == 0)
4240 return regnum;
4241
a4b8ebc8 4242 /* print the R0 to R31 names */
f57d151a
UW
4243 if ((start_regnum % gdbarch_num_regs (current_gdbarch)) < MIPS_NUMREGS)
4244 fprintf_filtered (file, "\n R%-4d",
4245 start_regnum % gdbarch_num_regs (current_gdbarch));
20e6603c
AC
4246 else
4247 fprintf_filtered (file, "\n ");
c906108c 4248
c906108c 4249 /* now print the values in hex, 4 or 8 to the row */
a4b8ebc8 4250 for (col = 0, regnum = start_regnum;
f57d151a
UW
4251 col < ncols && regnum < gdbarch_num_regs (current_gdbarch)
4252 + gdbarch_num_pseudo_regs (current_gdbarch);
4253 regnum++)
c906108c 4254 {
c9f4d572 4255 if (*gdbarch_register_name (current_gdbarch, regnum) == '\0')
c5aa993b 4256 continue; /* unused register */
7b9ee6a8 4257 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4258 TYPE_CODE_FLT)
c5aa993b 4259 break; /* end row: reached FP register */
0cc93a06
DJ
4260 if (register_size (current_gdbarch, regnum)
4261 > mips_abi_regsize (current_gdbarch))
4262 break; /* End row: large register. */
4263
c906108c 4264 /* OK: get the data in raw format. */
e11c53d2 4265 if (!frame_register_read (frame, regnum, raw_buffer))
c9f4d572
UW
4266 error (_("can't read register %d (%s)"),
4267 regnum, gdbarch_register_name (current_gdbarch, regnum));
c906108c 4268 /* pad small registers */
4246e332 4269 for (byte = 0;
d5ac5a39 4270 byte < (mips_abi_regsize (current_gdbarch)
6d82d43b 4271 - register_size (current_gdbarch, regnum)); byte++)
c906108c
SS
4272 printf_filtered (" ");
4273 /* Now print the register value in hex, endian order. */
4c6b5505 4274 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
6d82d43b
AC
4275 for (byte =
4276 register_size (current_gdbarch,
4277 regnum) - register_size (current_gdbarch, regnum);
4278 byte < register_size (current_gdbarch, regnum); byte++)
47a35522 4279 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 4280 else
c73e8f27 4281 for (byte = register_size (current_gdbarch, regnum) - 1;
6d82d43b 4282 byte >= 0; byte--)
47a35522 4283 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 4284 fprintf_filtered (file, " ");
c906108c
SS
4285 col++;
4286 }
c5aa993b 4287 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4288 fprintf_filtered (file, "\n");
c906108c
SS
4289
4290 return regnum;
4291}
4292
4293/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4294
bf1f5b4c 4295static void
e11c53d2
AC
4296mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4297 struct frame_info *frame, int regnum, int all)
c906108c 4298{
c5aa993b 4299 if (regnum != -1) /* do one specified register */
c906108c 4300 {
f57d151a 4301 gdb_assert (regnum >= gdbarch_num_regs (current_gdbarch));
c9f4d572 4302 if (*(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
8a3fe4f8 4303 error (_("Not a valid register for the current processor type"));
c906108c 4304
0cc93a06 4305 mips_print_register (file, frame, regnum);
e11c53d2 4306 fprintf_filtered (file, "\n");
c906108c 4307 }
c5aa993b
JM
4308 else
4309 /* do all (or most) registers */
c906108c 4310 {
f57d151a
UW
4311 regnum = gdbarch_num_regs (current_gdbarch);
4312 while (regnum < gdbarch_num_regs (current_gdbarch)
4313 + gdbarch_num_pseudo_regs (current_gdbarch))
c906108c 4314 {
7b9ee6a8 4315 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4316 TYPE_CODE_FLT)
e11c53d2
AC
4317 {
4318 if (all) /* true for "INFO ALL-REGISTERS" command */
4319 regnum = print_fp_register_row (file, frame, regnum);
4320 else
4321 regnum += MIPS_NUMREGS; /* skip floating point regs */
4322 }
c906108c 4323 else
e11c53d2 4324 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4325 }
4326 }
4327}
4328
c906108c
SS
4329/* Is this a branch with a delay slot? */
4330
c906108c 4331static int
acdb74a0 4332is_delayed (unsigned long insn)
c906108c
SS
4333{
4334 int i;
4335 for (i = 0; i < NUMOPCODES; ++i)
4336 if (mips_opcodes[i].pinfo != INSN_MACRO
4337 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4338 break;
4339 return (i < NUMOPCODES
4340 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4341 | INSN_COND_BRANCH_DELAY
4342 | INSN_COND_BRANCH_LIKELY)));
4343}
4344
4345int
3352ef37
AC
4346mips_single_step_through_delay (struct gdbarch *gdbarch,
4347 struct frame_info *frame)
c906108c 4348{
3352ef37 4349 CORE_ADDR pc = get_frame_pc (frame);
47a35522 4350 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
4351
4352 /* There is no branch delay slot on MIPS16. */
0fe7e7c8 4353 if (mips_pc_is_mips16 (pc))
c906108c
SS
4354 return 0;
4355
06648491
MK
4356 if (!breakpoint_here_p (pc + 4))
4357 return 0;
4358
3352ef37
AC
4359 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4360 /* If error reading memory, guess that it is not a delayed
4361 branch. */
c906108c 4362 return 0;
4c7d22cb 4363 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
c906108c
SS
4364}
4365
6d82d43b
AC
4366/* To skip prologues, I use this predicate. Returns either PC itself
4367 if the code at PC does not look like a function prologue; otherwise
4368 returns an address that (if we're lucky) follows the prologue. If
4369 LENIENT, then we must skip everything which is involved in setting
4370 up the frame (it's OK to skip more, just so long as we don't skip
4371 anything which might clobber the registers which are being saved.
4372 We must skip more in the case where part of the prologue is in the
4373 delay slot of a non-prologue instruction). */
4374
4375static CORE_ADDR
4376mips_skip_prologue (CORE_ADDR pc)
4377{
8b622e6a
AC
4378 CORE_ADDR limit_pc;
4379 CORE_ADDR func_addr;
4380
6d82d43b
AC
4381 /* See if we can determine the end of the prologue via the symbol table.
4382 If so, then return either PC, or the PC after the prologue, whichever
4383 is greater. */
8b622e6a
AC
4384 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4385 {
4386 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4387 if (post_prologue_pc != 0)
4388 return max (pc, post_prologue_pc);
4389 }
6d82d43b
AC
4390
4391 /* Can't determine prologue from the symbol table, need to examine
4392 instructions. */
4393
98b4dd94
JB
4394 /* Find an upper limit on the function prologue using the debug
4395 information. If the debug information could not be used to provide
4396 that bound, then use an arbitrary large number as the upper bound. */
4397 limit_pc = skip_prologue_using_sal (pc);
4398 if (limit_pc == 0)
4399 limit_pc = pc + 100; /* Magic. */
4400
0fe7e7c8 4401 if (mips_pc_is_mips16 (pc))
a65bbe44 4402 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
6d82d43b 4403 else
a65bbe44 4404 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
88658117
AC
4405}
4406
97ab0fdd
MR
4407/* Check whether the PC is in a function epilogue (32-bit version).
4408 This is a helper function for mips_in_function_epilogue_p. */
4409static int
4410mips32_in_function_epilogue_p (CORE_ADDR pc)
4411{
4412 CORE_ADDR func_addr = 0, func_end = 0;
4413
4414 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4415 {
4416 /* The MIPS epilogue is max. 12 bytes long. */
4417 CORE_ADDR addr = func_end - 12;
4418
4419 if (addr < func_addr + 4)
4420 addr = func_addr + 4;
4421 if (pc < addr)
4422 return 0;
4423
4424 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
4425 {
4426 unsigned long high_word;
4427 unsigned long inst;
4428
4429 inst = mips_fetch_instruction (pc);
4430 high_word = (inst >> 16) & 0xffff;
4431
4432 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
4433 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
4434 && inst != 0x03e00008 /* jr $ra */
4435 && inst != 0x00000000) /* nop */
4436 return 0;
4437 }
4438
4439 return 1;
4440 }
4441
4442 return 0;
4443}
4444
4445/* Check whether the PC is in a function epilogue (16-bit version).
4446 This is a helper function for mips_in_function_epilogue_p. */
4447static int
4448mips16_in_function_epilogue_p (CORE_ADDR pc)
4449{
4450 CORE_ADDR func_addr = 0, func_end = 0;
4451
4452 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4453 {
4454 /* The MIPS epilogue is max. 12 bytes long. */
4455 CORE_ADDR addr = func_end - 12;
4456
4457 if (addr < func_addr + 4)
4458 addr = func_addr + 4;
4459 if (pc < addr)
4460 return 0;
4461
4462 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
4463 {
4464 unsigned short inst;
4465
4466 inst = mips_fetch_instruction (pc);
4467
4468 if ((inst & 0xf800) == 0xf000) /* extend */
4469 continue;
4470
4471 if (inst != 0x6300 /* addiu $sp,offset */
4472 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
4473 && inst != 0xe820 /* jr $ra */
4474 && inst != 0xe8a0 /* jrc $ra */
4475 && inst != 0x6500) /* nop */
4476 return 0;
4477 }
4478
4479 return 1;
4480 }
4481
4482 return 0;
4483}
4484
4485/* The epilogue is defined here as the area at the end of a function,
4486 after an instruction which destroys the function's stack frame. */
4487static int
4488mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4489{
4490 if (mips_pc_is_mips16 (pc))
4491 return mips16_in_function_epilogue_p (pc);
4492 else
4493 return mips32_in_function_epilogue_p (pc);
4494}
4495
a5ea2558
AC
4496/* Root of all "set mips "/"show mips " commands. This will eventually be
4497 used for all MIPS-specific commands. */
4498
a5ea2558 4499static void
acdb74a0 4500show_mips_command (char *args, int from_tty)
a5ea2558
AC
4501{
4502 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4503}
4504
a5ea2558 4505static void
acdb74a0 4506set_mips_command (char *args, int from_tty)
a5ea2558 4507{
6d82d43b
AC
4508 printf_unfiltered
4509 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
4510 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4511}
4512
c906108c
SS
4513/* Commands to show/set the MIPS FPU type. */
4514
c906108c 4515static void
acdb74a0 4516show_mipsfpu_command (char *args, int from_tty)
c906108c 4517{
c906108c
SS
4518 char *fpu;
4519 switch (MIPS_FPU_TYPE)
4520 {
4521 case MIPS_FPU_SINGLE:
4522 fpu = "single-precision";
4523 break;
4524 case MIPS_FPU_DOUBLE:
4525 fpu = "double-precision";
4526 break;
4527 case MIPS_FPU_NONE:
4528 fpu = "absent (none)";
4529 break;
93d56215 4530 default:
e2e0b3e5 4531 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
4532 }
4533 if (mips_fpu_type_auto)
6d82d43b
AC
4534 printf_unfiltered
4535 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4536 fpu);
c906108c 4537 else
6d82d43b
AC
4538 printf_unfiltered
4539 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
4540}
4541
4542
c906108c 4543static void
acdb74a0 4544set_mipsfpu_command (char *args, int from_tty)
c906108c 4545{
6d82d43b
AC
4546 printf_unfiltered
4547 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
c906108c
SS
4548 show_mipsfpu_command (args, from_tty);
4549}
4550
c906108c 4551static void
acdb74a0 4552set_mipsfpu_single_command (char *args, int from_tty)
c906108c 4553{
8d5838b5
AC
4554 struct gdbarch_info info;
4555 gdbarch_info_init (&info);
c906108c
SS
4556 mips_fpu_type = MIPS_FPU_SINGLE;
4557 mips_fpu_type_auto = 0;
8d5838b5
AC
4558 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4559 instead of relying on globals. Doing that would let generic code
4560 handle the search for this specific architecture. */
4561 if (!gdbarch_update_p (info))
e2e0b3e5 4562 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4563}
4564
c906108c 4565static void
acdb74a0 4566set_mipsfpu_double_command (char *args, int from_tty)
c906108c 4567{
8d5838b5
AC
4568 struct gdbarch_info info;
4569 gdbarch_info_init (&info);
c906108c
SS
4570 mips_fpu_type = MIPS_FPU_DOUBLE;
4571 mips_fpu_type_auto = 0;
8d5838b5
AC
4572 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4573 instead of relying on globals. Doing that would let generic code
4574 handle the search for this specific architecture. */
4575 if (!gdbarch_update_p (info))
e2e0b3e5 4576 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4577}
4578
c906108c 4579static void
acdb74a0 4580set_mipsfpu_none_command (char *args, int from_tty)
c906108c 4581{
8d5838b5
AC
4582 struct gdbarch_info info;
4583 gdbarch_info_init (&info);
c906108c
SS
4584 mips_fpu_type = MIPS_FPU_NONE;
4585 mips_fpu_type_auto = 0;
8d5838b5
AC
4586 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4587 instead of relying on globals. Doing that would let generic code
4588 handle the search for this specific architecture. */
4589 if (!gdbarch_update_p (info))
e2e0b3e5 4590 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4591}
4592
c906108c 4593static void
acdb74a0 4594set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
4595{
4596 mips_fpu_type_auto = 1;
4597}
4598
c906108c 4599/* Attempt to identify the particular processor model by reading the
691c0433
AC
4600 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4601 the relevant processor still exists (it dates back to '94) and
4602 secondly this is not the way to do this. The processor type should
4603 be set by forcing an architecture change. */
c906108c 4604
691c0433
AC
4605void
4606deprecated_mips_set_processor_regs_hack (void)
c906108c 4607{
691c0433 4608 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a9614958 4609 ULONGEST prid;
c906108c 4610
594f7785 4611 regcache_cooked_read_unsigned (get_current_regcache (),
a9614958 4612 MIPS_PRID_REGNUM, &prid);
c906108c 4613 if ((prid & ~0xf) == 0x700)
691c0433 4614 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
4615}
4616
4617/* Just like reinit_frame_cache, but with the right arguments to be
4618 callable as an sfunc. */
4619
4620static void
acdb74a0
AC
4621reinit_frame_cache_sfunc (char *args, int from_tty,
4622 struct cmd_list_element *c)
c906108c
SS
4623{
4624 reinit_frame_cache ();
4625}
4626
a89aa300
AC
4627static int
4628gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 4629{
e5ab0dce 4630 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 4631
d31431ed
AC
4632 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4633 disassembler needs to be able to locally determine the ISA, and
4634 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4635 work. */
ec4045ea
AC
4636 if (mips_pc_is_mips16 (memaddr))
4637 info->mach = bfd_mach_mips16;
c906108c
SS
4638
4639 /* Round down the instruction address to the appropriate boundary. */
65c11066 4640 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 4641
e5ab0dce 4642 /* Set the disassembler options. */
6d82d43b 4643 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
e5ab0dce
AC
4644 {
4645 /* Set up the disassembler info, so that we get the right
6d82d43b 4646 register names from libopcodes. */
e5ab0dce
AC
4647 if (tdep->mips_abi == MIPS_ABI_N32)
4648 info->disassembler_options = "gpr-names=n32";
4649 else
4650 info->disassembler_options = "gpr-names=64";
4651 info->flavour = bfd_target_elf_flavour;
4652 }
4653 else
4654 /* This string is not recognized explicitly by the disassembler,
4655 but it tells the disassembler to not try to guess the ABI from
4656 the bfd elf headers, such that, if the user overrides the ABI
4657 of a program linked as NewABI, the disassembly will follow the
4658 register naming conventions specified by the user. */
4659 info->disassembler_options = "gpr-names=32";
4660
c906108c 4661 /* Call the appropriate disassembler based on the target endian-ness. */
4c6b5505 4662 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
4663 return print_insn_big_mips (memaddr, info);
4664 else
4665 return print_insn_little_mips (memaddr, info);
4666}
4667
3b3b875c
UW
4668/* This function implements gdbarch_breakpoint_from_pc. It uses the program
4669 counter value to determine whether a 16- or 32-bit breakpoint should be used.
4670 It returns a pointer to a string of bytes that encode a breakpoint
4671 instruction, stores the length of the string to *lenptr, and adjusts pc (if
4672 necessary) to point to the actual memory location where the breakpoint
4673 should be inserted. */
c906108c 4674
47a35522 4675static const gdb_byte *
6d82d43b 4676mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 4677{
4c6b5505 4678 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c 4679 {
0fe7e7c8 4680 if (mips_pc_is_mips16 (*pcptr))
c906108c 4681 {
47a35522 4682 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
95404a3e 4683 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4684 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
4685 return mips16_big_breakpoint;
4686 }
4687 else
4688 {
aaab4dba
AC
4689 /* The IDT board uses an unusual breakpoint value, and
4690 sometimes gets confused when it sees the usual MIPS
4691 breakpoint instruction. */
47a35522
MK
4692 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4693 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4694 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
c906108c 4695
c5aa993b 4696 *lenptr = sizeof (big_breakpoint);
c906108c
SS
4697
4698 if (strcmp (target_shortname, "mips") == 0)
4699 return idt_big_breakpoint;
4700 else if (strcmp (target_shortname, "ddb") == 0
4701 || strcmp (target_shortname, "pmon") == 0
4702 || strcmp (target_shortname, "lsi") == 0)
4703 return pmon_big_breakpoint;
4704 else
4705 return big_breakpoint;
4706 }
4707 }
4708 else
4709 {
0fe7e7c8 4710 if (mips_pc_is_mips16 (*pcptr))
c906108c 4711 {
47a35522 4712 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
95404a3e 4713 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4714 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
4715 return mips16_little_breakpoint;
4716 }
4717 else
4718 {
47a35522
MK
4719 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4720 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4721 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
c906108c 4722
c5aa993b 4723 *lenptr = sizeof (little_breakpoint);
c906108c
SS
4724
4725 if (strcmp (target_shortname, "mips") == 0)
4726 return idt_little_breakpoint;
4727 else if (strcmp (target_shortname, "ddb") == 0
4728 || strcmp (target_shortname, "pmon") == 0
4729 || strcmp (target_shortname, "lsi") == 0)
4730 return pmon_little_breakpoint;
4731 else
4732 return little_breakpoint;
4733 }
4734 }
4735}
4736
4737/* If PC is in a mips16 call or return stub, return the address of the target
4738 PC, which is either the callee or the caller. There are several
4739 cases which must be handled:
4740
4741 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 4742 target PC is in $31 ($ra).
c906108c 4743 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 4744 and the target PC is in $2.
c906108c 4745 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4746 before the jal instruction, this is effectively a call stub
4747 and the the target PC is in $2. Otherwise this is effectively
4748 a return stub and the target PC is in $18.
c906108c
SS
4749
4750 See the source code for the stubs in gcc/config/mips/mips16.S for
e7d6a6d2 4751 gory details. */
c906108c 4752
757a7cc6 4753static CORE_ADDR
52f729a7 4754mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c
SS
4755{
4756 char *name;
4757 CORE_ADDR start_addr;
4758
4759 /* Find the starting address and name of the function containing the PC. */
4760 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4761 return 0;
4762
4763 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4764 target PC is in $31 ($ra). */
4765 if (strcmp (name, "__mips16_ret_sf") == 0
4766 || strcmp (name, "__mips16_ret_df") == 0)
52f729a7 4767 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
c906108c
SS
4768
4769 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4770 {
4771 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4772 and the target PC is in $2. */
4773 if (name[19] >= '0' && name[19] <= '9')
52f729a7 4774 return get_frame_register_signed (frame, 2);
c906108c
SS
4775
4776 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4777 before the jal instruction, this is effectively a call stub
4778 and the the target PC is in $2. Otherwise this is effectively
4779 a return stub and the target PC is in $18. */
c906108c
SS
4780 else if (name[19] == 's' || name[19] == 'd')
4781 {
4782 if (pc == start_addr)
4783 {
4784 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
4785 stub. Such a stub for a function bar might have a name
4786 like __fn_stub_bar, and might look like this:
4787 mfc1 $4,$f13
4788 mfc1 $5,$f12
4789 mfc1 $6,$f15
4790 mfc1 $7,$f14
4791 la $1,bar (becomes a lui/addiu pair)
4792 jr $1
4793 So scan down to the lui/addi and extract the target
4794 address from those two instructions. */
c906108c 4795
52f729a7 4796 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
d37cca3d 4797 ULONGEST inst;
c906108c
SS
4798 int i;
4799
4800 /* See if the name of the target function is __fn_stub_*. */
6d82d43b
AC
4801 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4802 0)
c906108c
SS
4803 return target_pc;
4804 if (strncmp (name, "__fn_stub_", 10) != 0
4805 && strcmp (name, "etext") != 0
4806 && strcmp (name, "_etext") != 0)
4807 return target_pc;
4808
4809 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
4810 The limit on the search is arbitrarily set to 20
4811 instructions. FIXME. */
95ac2dcf 4812 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
c906108c 4813 {
c5aa993b
JM
4814 inst = mips_fetch_instruction (target_pc);
4815 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4816 pc = (inst << 16) & 0xffff0000; /* high word */
4817 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4818 return pc | (inst & 0xffff); /* low word */
c906108c
SS
4819 }
4820
4821 /* Couldn't find the lui/addui pair, so return stub address. */
4822 return target_pc;
4823 }
4824 else
4825 /* This is the 'return' part of a call stub. The return
4826 address is in $r18. */
52f729a7 4827 return get_frame_register_signed (frame, 18);
c906108c
SS
4828 }
4829 }
c5aa993b 4830 return 0; /* not a stub */
c906108c
SS
4831}
4832
a4b8ebc8 4833/* Convert a dbx stab register number (from `r' declaration) to a GDB
f57d151a 4834 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
4835
4836static int
4837mips_stab_reg_to_regnum (int num)
4838{
a4b8ebc8 4839 int regnum;
2f38ef89 4840 if (num >= 0 && num < 32)
a4b8ebc8 4841 regnum = num;
2f38ef89 4842 else if (num >= 38 && num < 70)
56cea623 4843 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
040b99fd 4844 else if (num == 70)
56cea623 4845 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4846 else if (num == 71)
56cea623 4847 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4848 else
a4b8ebc8
AC
4849 /* This will hopefully (eventually) provoke a warning. Should
4850 we be calling complaint() here? */
f57d151a
UW
4851 return gdbarch_num_regs (current_gdbarch)
4852 + gdbarch_num_pseudo_regs (current_gdbarch);
4853 return gdbarch_num_regs (current_gdbarch) + regnum;
88c72b7d
AC
4854}
4855
2f38ef89 4856
a4b8ebc8 4857/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
f57d151a 4858 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
4859
4860static int
2f38ef89 4861mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 4862{
a4b8ebc8 4863 int regnum;
2f38ef89 4864 if (num >= 0 && num < 32)
a4b8ebc8 4865 regnum = num;
2f38ef89 4866 else if (num >= 32 && num < 64)
56cea623 4867 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
040b99fd 4868 else if (num == 64)
56cea623 4869 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4870 else if (num == 65)
56cea623 4871 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4872 else
a4b8ebc8
AC
4873 /* This will hopefully (eventually) provoke a warning. Should we
4874 be calling complaint() here? */
f57d151a
UW
4875 return gdbarch_num_regs (current_gdbarch)
4876 + gdbarch_num_pseudo_regs (current_gdbarch);
4877 return gdbarch_num_regs (current_gdbarch) + regnum;
a4b8ebc8
AC
4878}
4879
4880static int
4881mips_register_sim_regno (int regnum)
4882{
4883 /* Only makes sense to supply raw registers. */
f57d151a 4884 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch));
a4b8ebc8
AC
4885 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4886 decide if it is valid. Should instead define a standard sim/gdb
4887 register numbering scheme. */
c9f4d572
UW
4888 if (gdbarch_register_name (current_gdbarch,
4889 gdbarch_num_regs
4890 (current_gdbarch) + regnum) != NULL
4891 && gdbarch_register_name (current_gdbarch,
4892 gdbarch_num_regs
4893 (current_gdbarch) + regnum)[0] != '\0')
a4b8ebc8
AC
4894 return regnum;
4895 else
6d82d43b 4896 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
4897}
4898
2f38ef89 4899
4844f454
CV
4900/* Convert an integer into an address. Extracting the value signed
4901 guarantees a correctly sign extended address. */
fc0c74b1
AC
4902
4903static CORE_ADDR
79dd2d24 4904mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 4905 struct type *type, const gdb_byte *buf)
fc0c74b1 4906{
4844f454 4907 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
fc0c74b1
AC
4908}
4909
caaa3122
DJ
4910static void
4911mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4912{
4913 enum mips_abi *abip = (enum mips_abi *) obj;
4914 const char *name = bfd_get_section_name (abfd, sect);
4915
4916 if (*abip != MIPS_ABI_UNKNOWN)
4917 return;
4918
4919 if (strncmp (name, ".mdebug.", 8) != 0)
4920 return;
4921
4922 if (strcmp (name, ".mdebug.abi32") == 0)
4923 *abip = MIPS_ABI_O32;
4924 else if (strcmp (name, ".mdebug.abiN32") == 0)
4925 *abip = MIPS_ABI_N32;
62a49b2c 4926 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 4927 *abip = MIPS_ABI_N64;
caaa3122
DJ
4928 else if (strcmp (name, ".mdebug.abiO64") == 0)
4929 *abip = MIPS_ABI_O64;
4930 else if (strcmp (name, ".mdebug.eabi32") == 0)
4931 *abip = MIPS_ABI_EABI32;
4932 else if (strcmp (name, ".mdebug.eabi64") == 0)
4933 *abip = MIPS_ABI_EABI64;
4934 else
8a3fe4f8 4935 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
4936}
4937
22e47e37
FF
4938static void
4939mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4940{
4941 int *lbp = (int *) obj;
4942 const char *name = bfd_get_section_name (abfd, sect);
4943
4944 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4945 *lbp = 32;
4946 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4947 *lbp = 64;
4948 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4949 warning (_("unrecognized .gcc_compiled_longXX"));
4950}
4951
2e4ebe70
DJ
4952static enum mips_abi
4953global_mips_abi (void)
4954{
4955 int i;
4956
4957 for (i = 0; mips_abi_strings[i] != NULL; i++)
4958 if (mips_abi_strings[i] == mips_abi_string)
4959 return (enum mips_abi) i;
4960
e2e0b3e5 4961 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
4962}
4963
29709017
DJ
4964static void
4965mips_register_g_packet_guesses (struct gdbarch *gdbarch)
4966{
29709017
DJ
4967 /* If the size matches the set of 32-bit or 64-bit integer registers,
4968 assume that's what we've got. */
4eb0ad19
DJ
4969 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
4970 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
29709017
DJ
4971
4972 /* If the size matches the full set of registers GDB traditionally
4973 knows about, including floating point, for either 32-bit or
4974 64-bit, assume that's what we've got. */
4eb0ad19
DJ
4975 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
4976 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
29709017
DJ
4977
4978 /* Otherwise we don't have a useful guess. */
4979}
4980
f8b73d13
DJ
4981static struct value *
4982value_of_mips_user_reg (struct frame_info *frame, const void *baton)
4983{
4984 const int *reg_p = baton;
4985 return value_of_register (*reg_p, frame);
4986}
4987
c2d11a7d 4988static struct gdbarch *
6d82d43b 4989mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 4990{
c2d11a7d
JM
4991 struct gdbarch *gdbarch;
4992 struct gdbarch_tdep *tdep;
4993 int elf_flags;
2e4ebe70 4994 enum mips_abi mips_abi, found_abi, wanted_abi;
f8b73d13 4995 int i, num_regs;
8d5838b5 4996 enum mips_fpu_type fpu_type;
f8b73d13 4997 struct tdesc_arch_data *tdesc_data = NULL;
609ca2b9 4998 int elf_fpu_type = 0;
f8b73d13
DJ
4999
5000 /* Check any target description for validity. */
5001 if (tdesc_has_registers (info.target_desc))
5002 {
5003 static const char *const mips_gprs[] = {
5004 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5005 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5006 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5007 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5008 };
5009 static const char *const mips_fprs[] = {
5010 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5011 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5012 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5013 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
5014 };
5015
5016 const struct tdesc_feature *feature;
5017 int valid_p;
5018
5019 feature = tdesc_find_feature (info.target_desc,
5020 "org.gnu.gdb.mips.cpu");
5021 if (feature == NULL)
5022 return NULL;
5023
5024 tdesc_data = tdesc_data_alloc ();
5025
5026 valid_p = 1;
5027 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
5028 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
5029 mips_gprs[i]);
5030
5031
5032 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5033 MIPS_EMBED_LO_REGNUM, "lo");
5034 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5035 MIPS_EMBED_HI_REGNUM, "hi");
5036 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5037 MIPS_EMBED_PC_REGNUM, "pc");
5038
5039 if (!valid_p)
5040 {
5041 tdesc_data_cleanup (tdesc_data);
5042 return NULL;
5043 }
5044
5045 feature = tdesc_find_feature (info.target_desc,
5046 "org.gnu.gdb.mips.cp0");
5047 if (feature == NULL)
5048 {
5049 tdesc_data_cleanup (tdesc_data);
5050 return NULL;
5051 }
5052
5053 valid_p = 1;
5054 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5055 MIPS_EMBED_BADVADDR_REGNUM,
5056 "badvaddr");
5057 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5058 MIPS_PS_REGNUM, "status");
5059 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5060 MIPS_EMBED_CAUSE_REGNUM, "cause");
5061
5062 if (!valid_p)
5063 {
5064 tdesc_data_cleanup (tdesc_data);
5065 return NULL;
5066 }
5067
5068 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
5069 backend is not prepared for that, though. */
5070 feature = tdesc_find_feature (info.target_desc,
5071 "org.gnu.gdb.mips.fpu");
5072 if (feature == NULL)
5073 {
5074 tdesc_data_cleanup (tdesc_data);
5075 return NULL;
5076 }
5077
5078 valid_p = 1;
5079 for (i = 0; i < 32; i++)
5080 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5081 i + MIPS_EMBED_FP0_REGNUM,
5082 mips_fprs[i]);
5083
5084 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5085 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5086 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5087 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5088
5089 if (!valid_p)
5090 {
5091 tdesc_data_cleanup (tdesc_data);
5092 return NULL;
5093 }
5094
5095 /* It would be nice to detect an attempt to use a 64-bit ABI
5096 when only 32-bit registers are provided. */
5097 }
c2d11a7d 5098
ec03c1ac
AC
5099 /* First of all, extract the elf_flags, if available. */
5100 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5101 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
5102 else if (arches != NULL)
5103 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
5104 else
5105 elf_flags = 0;
5106 if (gdbarch_debug)
5107 fprintf_unfiltered (gdb_stdlog,
6d82d43b 5108 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 5109
102182a9 5110 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5111 switch ((elf_flags & EF_MIPS_ABI))
5112 {
5113 case E_MIPS_ABI_O32:
ec03c1ac 5114 found_abi = MIPS_ABI_O32;
0dadbba0
AC
5115 break;
5116 case E_MIPS_ABI_O64:
ec03c1ac 5117 found_abi = MIPS_ABI_O64;
0dadbba0
AC
5118 break;
5119 case E_MIPS_ABI_EABI32:
ec03c1ac 5120 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
5121 break;
5122 case E_MIPS_ABI_EABI64:
ec03c1ac 5123 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5124 break;
5125 default:
acdb74a0 5126 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 5127 found_abi = MIPS_ABI_N32;
acdb74a0 5128 else
ec03c1ac 5129 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5130 break;
5131 }
acdb74a0 5132
caaa3122 5133 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
5134 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5135 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 5136
dc305454 5137 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
5138 MIPS architecture (if there is one). */
5139 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5140 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 5141
32a6503c 5142 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 5143 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
5144 && info.bfd_arch_info != NULL
5145 && info.bfd_arch_info->arch == bfd_arch_mips)
5146 {
5147 switch (info.bfd_arch_info->mach)
5148 {
5149 case bfd_mach_mips3900:
ec03c1ac 5150 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
5151 break;
5152 case bfd_mach_mips4100:
5153 case bfd_mach_mips5000:
ec03c1ac 5154 found_abi = MIPS_ABI_EABI64;
bf64bfd6 5155 break;
1d06468c
EZ
5156 case bfd_mach_mips8000:
5157 case bfd_mach_mips10000:
32a6503c
KB
5158 /* On Irix, ELF64 executables use the N64 ABI. The
5159 pseudo-sections which describe the ABI aren't present
5160 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5161 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5162 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 5163 found_abi = MIPS_ABI_N64;
28d169de 5164 else
ec03c1ac 5165 found_abi = MIPS_ABI_N32;
1d06468c 5166 break;
bf64bfd6
AC
5167 }
5168 }
2e4ebe70 5169
26c53e50
DJ
5170 /* Default 64-bit objects to N64 instead of O32. */
5171 if (found_abi == MIPS_ABI_UNKNOWN
5172 && info.abfd != NULL
5173 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5174 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5175 found_abi = MIPS_ABI_N64;
5176
ec03c1ac
AC
5177 if (gdbarch_debug)
5178 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5179 found_abi);
5180
5181 /* What has the user specified from the command line? */
5182 wanted_abi = global_mips_abi ();
5183 if (gdbarch_debug)
5184 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5185 wanted_abi);
2e4ebe70
DJ
5186
5187 /* Now that we have found what the ABI for this binary would be,
5188 check whether the user is overriding it. */
2e4ebe70
DJ
5189 if (wanted_abi != MIPS_ABI_UNKNOWN)
5190 mips_abi = wanted_abi;
ec03c1ac
AC
5191 else if (found_abi != MIPS_ABI_UNKNOWN)
5192 mips_abi = found_abi;
5193 else
5194 mips_abi = MIPS_ABI_O32;
5195 if (gdbarch_debug)
5196 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5197 mips_abi);
2e4ebe70 5198
ec03c1ac 5199 /* Also used when doing an architecture lookup. */
4b9b3959 5200 if (gdbarch_debug)
ec03c1ac
AC
5201 fprintf_unfiltered (gdb_stdlog,
5202 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5203 mips64_transfers_32bit_regs_p);
0dadbba0 5204
8d5838b5 5205 /* Determine the MIPS FPU type. */
609ca2b9
DJ
5206#ifdef HAVE_ELF
5207 if (info.abfd
5208 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5209 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5210 Tag_GNU_MIPS_ABI_FP);
5211#endif /* HAVE_ELF */
5212
8d5838b5
AC
5213 if (!mips_fpu_type_auto)
5214 fpu_type = mips_fpu_type;
609ca2b9
DJ
5215 else if (elf_fpu_type != 0)
5216 {
5217 switch (elf_fpu_type)
5218 {
5219 case 1:
5220 fpu_type = MIPS_FPU_DOUBLE;
5221 break;
5222 case 2:
5223 fpu_type = MIPS_FPU_SINGLE;
5224 break;
5225 case 3:
5226 default:
5227 /* Soft float or unknown. */
5228 fpu_type = MIPS_FPU_NONE;
5229 break;
5230 }
5231 }
8d5838b5
AC
5232 else if (info.bfd_arch_info != NULL
5233 && info.bfd_arch_info->arch == bfd_arch_mips)
5234 switch (info.bfd_arch_info->mach)
5235 {
5236 case bfd_mach_mips3900:
5237 case bfd_mach_mips4100:
5238 case bfd_mach_mips4111:
a9d61c86 5239 case bfd_mach_mips4120:
8d5838b5
AC
5240 fpu_type = MIPS_FPU_NONE;
5241 break;
5242 case bfd_mach_mips4650:
5243 fpu_type = MIPS_FPU_SINGLE;
5244 break;
5245 default:
5246 fpu_type = MIPS_FPU_DOUBLE;
5247 break;
5248 }
5249 else if (arches != NULL)
5250 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5251 else
5252 fpu_type = MIPS_FPU_DOUBLE;
5253 if (gdbarch_debug)
5254 fprintf_unfiltered (gdb_stdlog,
6d82d43b 5255 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 5256
29709017
DJ
5257 /* Check for blatant incompatibilities. */
5258
5259 /* If we have only 32-bit registers, then we can't debug a 64-bit
5260 ABI. */
5261 if (info.target_desc
5262 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5263 && mips_abi != MIPS_ABI_EABI32
5264 && mips_abi != MIPS_ABI_O32)
f8b73d13
DJ
5265 {
5266 if (tdesc_data != NULL)
5267 tdesc_data_cleanup (tdesc_data);
5268 return NULL;
5269 }
29709017 5270
c2d11a7d
JM
5271 /* try to find a pre-existing architecture */
5272 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5273 arches != NULL;
5274 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5275 {
5276 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5277 using. */
9103eae0 5278 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5279 continue;
9103eae0 5280 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5281 continue;
719ec221
AC
5282 /* Need to be pedantic about which register virtual size is
5283 used. */
5284 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5285 != mips64_transfers_32bit_regs_p)
5286 continue;
8d5838b5
AC
5287 /* Be pedantic about which FPU is selected. */
5288 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5289 continue;
f8b73d13
DJ
5290
5291 if (tdesc_data != NULL)
5292 tdesc_data_cleanup (tdesc_data);
4be87837 5293 return arches->gdbarch;
c2d11a7d
JM
5294 }
5295
102182a9 5296 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5297 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5298 gdbarch = gdbarch_alloc (&info, tdep);
5299 tdep->elf_flags = elf_flags;
719ec221 5300 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
5301 tdep->found_abi = found_abi;
5302 tdep->mips_abi = mips_abi;
8d5838b5 5303 tdep->mips_fpu_type = fpu_type;
29709017
DJ
5304 tdep->register_size_valid_p = 0;
5305 tdep->register_size = 0;
5306
5307 if (info.target_desc)
5308 {
5309 /* Some useful properties can be inferred from the target. */
5310 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5311 {
5312 tdep->register_size_valid_p = 1;
5313 tdep->register_size = 4;
5314 }
5315 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5316 {
5317 tdep->register_size_valid_p = 1;
5318 tdep->register_size = 8;
5319 }
5320 }
c2d11a7d 5321
102182a9 5322 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5323 set_gdbarch_short_bit (gdbarch, 16);
5324 set_gdbarch_int_bit (gdbarch, 32);
5325 set_gdbarch_float_bit (gdbarch, 32);
5326 set_gdbarch_double_bit (gdbarch, 64);
5327 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
5328 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5329 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5330 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 5331
6d82d43b 5332 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6
MS
5333 mips_elf_make_msymbol_special);
5334
16e109ca 5335 /* Fill in the OS dependant register numbers and names. */
56cea623 5336 {
16e109ca 5337 const char **reg_names;
56cea623
AC
5338 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5339 struct mips_regnum);
f8b73d13
DJ
5340 if (tdesc_has_registers (info.target_desc))
5341 {
5342 regnum->lo = MIPS_EMBED_LO_REGNUM;
5343 regnum->hi = MIPS_EMBED_HI_REGNUM;
5344 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5345 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5346 regnum->pc = MIPS_EMBED_PC_REGNUM;
5347 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5348 regnum->fp_control_status = 70;
5349 regnum->fp_implementation_revision = 71;
5350 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
5351 reg_names = NULL;
5352 }
5353 else if (info.osabi == GDB_OSABI_IRIX)
56cea623
AC
5354 {
5355 regnum->fp0 = 32;
5356 regnum->pc = 64;
5357 regnum->cause = 65;
5358 regnum->badvaddr = 66;
5359 regnum->hi = 67;
5360 regnum->lo = 68;
5361 regnum->fp_control_status = 69;
5362 regnum->fp_implementation_revision = 70;
5363 num_regs = 71;
16e109ca 5364 reg_names = mips_irix_reg_names;
56cea623
AC
5365 }
5366 else
5367 {
5368 regnum->lo = MIPS_EMBED_LO_REGNUM;
5369 regnum->hi = MIPS_EMBED_HI_REGNUM;
5370 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5371 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5372 regnum->pc = MIPS_EMBED_PC_REGNUM;
5373 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5374 regnum->fp_control_status = 70;
5375 regnum->fp_implementation_revision = 71;
5376 num_regs = 90;
16e109ca
AC
5377 if (info.bfd_arch_info != NULL
5378 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5379 reg_names = mips_tx39_reg_names;
5380 else
5381 reg_names = mips_generic_reg_names;
56cea623 5382 }
3e8c568d 5383 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
56cea623 5384 replaced by read_pc? */
f10683bb
MH
5385 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5386 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
56cea623
AC
5387 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5388 set_gdbarch_num_regs (gdbarch, num_regs);
5389 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
16e109ca
AC
5390 set_gdbarch_register_name (gdbarch, mips_register_name);
5391 tdep->mips_processor_reg_names = reg_names;
5392 tdep->regnum = regnum;
56cea623 5393 }
fe29b929 5394
0dadbba0 5395 switch (mips_abi)
c2d11a7d 5396 {
0dadbba0 5397 case MIPS_ABI_O32:
25ab4790 5398 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 5399 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 5400 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 5401 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 5402 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5403 set_gdbarch_long_bit (gdbarch, 32);
5404 set_gdbarch_ptr_bit (gdbarch, 32);
5405 set_gdbarch_long_long_bit (gdbarch, 64);
5406 break;
0dadbba0 5407 case MIPS_ABI_O64:
25ab4790 5408 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 5409 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 5410 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 5411 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 5412 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5413 set_gdbarch_long_bit (gdbarch, 32);
5414 set_gdbarch_ptr_bit (gdbarch, 32);
5415 set_gdbarch_long_long_bit (gdbarch, 64);
5416 break;
0dadbba0 5417 case MIPS_ABI_EABI32:
25ab4790 5418 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 5419 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 5420 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5421 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5422 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5423 set_gdbarch_long_bit (gdbarch, 32);
5424 set_gdbarch_ptr_bit (gdbarch, 32);
5425 set_gdbarch_long_long_bit (gdbarch, 64);
5426 break;
0dadbba0 5427 case MIPS_ABI_EABI64:
25ab4790 5428 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 5429 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 5430 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5431 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5432 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5433 set_gdbarch_long_bit (gdbarch, 64);
5434 set_gdbarch_ptr_bit (gdbarch, 64);
5435 set_gdbarch_long_long_bit (gdbarch, 64);
5436 break;
0dadbba0 5437 case MIPS_ABI_N32:
25ab4790 5438 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5439 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5440 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5441 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5442 tdep->default_mask_address_p = 0;
0dadbba0
AC
5443 set_gdbarch_long_bit (gdbarch, 32);
5444 set_gdbarch_ptr_bit (gdbarch, 32);
5445 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 5446 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 5447 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
28d169de
KB
5448 break;
5449 case MIPS_ABI_N64:
25ab4790 5450 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5451 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5452 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5453 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
5454 tdep->default_mask_address_p = 0;
5455 set_gdbarch_long_bit (gdbarch, 64);
5456 set_gdbarch_ptr_bit (gdbarch, 64);
5457 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 5458 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 5459 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
0dadbba0 5460 break;
c2d11a7d 5461 default:
e2e0b3e5 5462 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
5463 }
5464
22e47e37
FF
5465 /* GCC creates a pseudo-section whose name specifies the size of
5466 longs, since -mlong32 or -mlong64 may be used independent of
5467 other options. How those options affect pointer sizes is ABI and
5468 architecture dependent, so use them to override the default sizes
5469 set by the ABI. This table shows the relationship between ABI,
5470 -mlongXX, and size of pointers:
5471
5472 ABI -mlongXX ptr bits
5473 --- -------- --------
5474 o32 32 32
5475 o32 64 32
5476 n32 32 32
5477 n32 64 64
5478 o64 32 32
5479 o64 64 64
5480 n64 32 32
5481 n64 64 64
5482 eabi32 32 32
5483 eabi32 64 32
5484 eabi64 32 32
5485 eabi64 64 64
5486
5487 Note that for o32 and eabi32, pointers are always 32 bits
5488 regardless of any -mlongXX option. For all others, pointers and
5489 longs are the same, as set by -mlongXX or set by defaults.
5490 */
5491
5492 if (info.abfd != NULL)
5493 {
5494 int long_bit = 0;
5495
5496 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5497 if (long_bit)
5498 {
5499 set_gdbarch_long_bit (gdbarch, long_bit);
5500 switch (mips_abi)
5501 {
5502 case MIPS_ABI_O32:
5503 case MIPS_ABI_EABI32:
5504 break;
5505 case MIPS_ABI_N32:
5506 case MIPS_ABI_O64:
5507 case MIPS_ABI_N64:
5508 case MIPS_ABI_EABI64:
5509 set_gdbarch_ptr_bit (gdbarch, long_bit);
5510 break;
5511 default:
5512 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5513 }
5514 }
5515 }
5516
a5ea2558
AC
5517 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5518 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5519 comment:
5520
5521 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5522 flag in object files because to do so would make it impossible to
102182a9 5523 link with libraries compiled without "-gp32". This is
a5ea2558 5524 unnecessarily restrictive.
361d1df0 5525
a5ea2558
AC
5526 We could solve this problem by adding "-gp32" multilibs to gcc,
5527 but to set this flag before gcc is built with such multilibs will
5528 break too many systems.''
5529
5530 But even more unhelpfully, the default linker output target for
5531 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5532 for 64-bit programs - you need to change the ABI to change this,
102182a9 5533 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5534 this flag to detect 32-bit mode would do the wrong thing given
5535 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5536 as 32-bit programs by default. */
a5ea2558 5537
6c997a34 5538 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 5539 set_gdbarch_write_pc (gdbarch, mips_write_pc);
c2d11a7d 5540
102182a9
MS
5541 /* Add/remove bits from an address. The MIPS needs be careful to
5542 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5543 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5544
58dfe9ff
AC
5545 /* Unwind the frame. */
5546 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
30244cd8 5547 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
edfae063 5548 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
10312cc4 5549
102182a9 5550 /* Map debug register numbers onto internal register numbers. */
88c72b7d 5551 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
5552 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5553 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5554 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5555 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5556 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5557 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 5558 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 5559
c2d11a7d
JM
5560 /* MIPS version of CALL_DUMMY */
5561
9710e734
AC
5562 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5563 replaced by a command, and all targets will default to on stack
5564 (regardless of the stack's execute status). */
5565 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
dc604539 5566 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 5567
87783b8b
AC
5568 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5569 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5570 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5571
f7b9e9fc
AC
5572 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5573 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
f7b9e9fc
AC
5574
5575 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 5576
97ab0fdd
MR
5577 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
5578
fc0c74b1
AC
5579 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5580 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5581 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5582
a4b8ebc8 5583 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 5584
e11c53d2 5585 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 5586
e5ab0dce
AC
5587 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5588
3a3bc038
AC
5589 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5590 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5591 need to all be folded into the target vector. Since they are
5592 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5593 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5594 is sitting on? */
5595 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5596
e7d6a6d2 5597 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 5598
3352ef37
AC
5599 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5600
0d5de010
DJ
5601 /* Virtual tables. */
5602 set_gdbarch_vbit_in_delta (gdbarch, 1);
5603
29709017
DJ
5604 mips_register_g_packet_guesses (gdbarch);
5605
6de918a6 5606 /* Hook in OS ABI-specific overrides, if they have been registered. */
822b6570 5607 info.tdep_info = (void *) tdesc_data;
6de918a6 5608 gdbarch_init_osabi (info, gdbarch);
757a7cc6 5609
5792a79b 5610 /* Unwind the frame. */
2bd0c3d7 5611 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
eec63939 5612 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
45c9dd44
AC
5613 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5614 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
2bd0c3d7 5615 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
eec63939 5616 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44
AC
5617 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5618 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 5619
f8b73d13
DJ
5620 if (tdesc_data)
5621 {
5622 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
5623 tdesc_use_registers (gdbarch, tdesc_data);
5624
5625 /* Override the normal target description methods to handle our
5626 dual real and pseudo registers. */
5627 set_gdbarch_register_name (gdbarch, mips_register_name);
5628 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
5629
5630 num_regs = gdbarch_num_regs (gdbarch);
5631 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5632 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
5633 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5634 }
5635
5636 /* Add ABI-specific aliases for the registers. */
5637 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5638 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
5639 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
5640 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
5641 else
5642 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
5643 user_reg_add (gdbarch, mips_o32_aliases[i].name,
5644 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
5645
5646 /* Add some other standard aliases. */
5647 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
5648 user_reg_add (gdbarch, mips_register_aliases[i].name,
5649 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
5650
4b9b3959
AC
5651 return gdbarch;
5652}
5653
2e4ebe70 5654static void
6d82d43b 5655mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
5656{
5657 struct gdbarch_info info;
5658
5659 /* Force the architecture to update, and (if it's a MIPS architecture)
5660 mips_gdbarch_init will take care of the rest. */
5661 gdbarch_info_init (&info);
5662 gdbarch_update_p (info);
5663}
5664
ad188201
KB
5665/* Print out which MIPS ABI is in use. */
5666
5667static void
1f8ca57c
JB
5668show_mips_abi (struct ui_file *file,
5669 int from_tty,
5670 struct cmd_list_element *ignored_cmd,
5671 const char *ignored_value)
ad188201
KB
5672{
5673 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
1f8ca57c
JB
5674 fprintf_filtered
5675 (file,
5676 "The MIPS ABI is unknown because the current architecture "
5677 "is not MIPS.\n");
ad188201
KB
5678 else
5679 {
5680 enum mips_abi global_abi = global_mips_abi ();
5681 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5682 const char *actual_abi_str = mips_abi_strings[actual_abi];
5683
5684 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
5685 fprintf_filtered
5686 (file,
5687 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 5688 actual_abi_str);
ad188201 5689 else if (global_abi == actual_abi)
1f8ca57c
JB
5690 fprintf_filtered
5691 (file,
5692 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 5693 actual_abi_str);
ad188201
KB
5694 else
5695 {
5696 /* Probably shouldn't happen... */
1f8ca57c
JB
5697 fprintf_filtered
5698 (file,
5699 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6d82d43b 5700 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
5701 }
5702 }
5703}
5704
4b9b3959
AC
5705static void
5706mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5707{
5708 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5709 if (tdep != NULL)
c2d11a7d 5710 {
acdb74a0
AC
5711 int ef_mips_arch;
5712 int ef_mips_32bitmode;
f49e4e6d 5713 /* Determine the ISA. */
acdb74a0
AC
5714 switch (tdep->elf_flags & EF_MIPS_ARCH)
5715 {
5716 case E_MIPS_ARCH_1:
5717 ef_mips_arch = 1;
5718 break;
5719 case E_MIPS_ARCH_2:
5720 ef_mips_arch = 2;
5721 break;
5722 case E_MIPS_ARCH_3:
5723 ef_mips_arch = 3;
5724 break;
5725 case E_MIPS_ARCH_4:
93d56215 5726 ef_mips_arch = 4;
acdb74a0
AC
5727 break;
5728 default:
93d56215 5729 ef_mips_arch = 0;
acdb74a0
AC
5730 break;
5731 }
f49e4e6d 5732 /* Determine the size of a pointer. */
acdb74a0 5733 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
5734 fprintf_unfiltered (file,
5735 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 5736 tdep->elf_flags);
4b9b3959 5737 fprintf_unfiltered (file,
acdb74a0
AC
5738 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5739 ef_mips_32bitmode);
5740 fprintf_unfiltered (file,
5741 "mips_dump_tdep: ef_mips_arch = %d\n",
5742 ef_mips_arch);
5743 fprintf_unfiltered (file,
5744 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 5745 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b
AC
5746 fprintf_unfiltered (file,
5747 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
480d3dd2 5748 mips_mask_address_p (tdep),
4014092b 5749 tdep->default_mask_address_p);
c2d11a7d 5750 }
4b9b3959
AC
5751 fprintf_unfiltered (file,
5752 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5753 MIPS_DEFAULT_FPU_TYPE,
5754 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5755 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5756 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5757 : "???"));
6d82d43b 5758 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
4b9b3959
AC
5759 fprintf_unfiltered (file,
5760 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5761 MIPS_FPU_TYPE,
5762 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5763 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5764 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5765 : "???"));
c2d11a7d
JM
5766}
5767
6d82d43b 5768extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
a78f21af 5769
c906108c 5770void
acdb74a0 5771_initialize_mips_tdep (void)
c906108c
SS
5772{
5773 static struct cmd_list_element *mipsfpulist = NULL;
5774 struct cmd_list_element *c;
5775
6d82d43b 5776 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
5777 if (MIPS_ABI_LAST + 1
5778 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 5779 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 5780
4b9b3959 5781 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 5782
8d5f9dcb
DJ
5783 mips_pdr_data = register_objfile_data ();
5784
4eb0ad19
DJ
5785 /* Create feature sets with the appropriate properties. The values
5786 are not important. */
5787 mips_tdesc_gp32 = allocate_target_description ();
5788 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
5789
5790 mips_tdesc_gp64 = allocate_target_description ();
5791 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
5792
a5ea2558
AC
5793 /* Add root prefix command for all "set mips"/"show mips" commands */
5794 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 5795 _("Various MIPS specific commands."),
a5ea2558
AC
5796 &setmipscmdlist, "set mips ", 0, &setlist);
5797
5798 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 5799 _("Various MIPS specific commands."),
a5ea2558
AC
5800 &showmipscmdlist, "show mips ", 0, &showlist);
5801
2e4ebe70 5802 /* Allow the user to override the ABI. */
7ab04401
AC
5803 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5804 &mips_abi_string, _("\
5805Set the MIPS ABI used by this program."), _("\
5806Show the MIPS ABI used by this program."), _("\
5807This option can be set to one of:\n\
5808 auto - the default ABI associated with the current binary\n\
5809 o32\n\
5810 o64\n\
5811 n32\n\
5812 n64\n\
5813 eabi32\n\
5814 eabi64"),
5815 mips_abi_update,
5816 show_mips_abi,
5817 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 5818
c906108c
SS
5819 /* Let the user turn off floating point and set the fence post for
5820 heuristic_proc_start. */
5821
5822 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 5823 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
5824 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5825 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 5826 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
5827 &mipsfpulist);
5828 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 5829 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
5830 &mipsfpulist);
5831 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5832 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5833 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5834 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 5835 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
5836 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5837 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5838 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5839 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 5840 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
5841 &mipsfpulist);
5842 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 5843 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
5844 &showlist);
5845
c906108c
SS
5846 /* We really would like to have both "0" and "unlimited" work, but
5847 command.c doesn't deal with that. So make it a var_zinteger
5848 because the user can always use "999999" or some such for unlimited. */
6bcadd06 5849 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
5850 &heuristic_fence_post, _("\
5851Set the distance searched for the start of a function."), _("\
5852Show the distance searched for the start of a function."), _("\
c906108c
SS
5853If you are debugging a stripped executable, GDB needs to search through the\n\
5854program for the start of a function. This command sets the distance of the\n\
7915a72c 5855search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 5856 reinit_frame_cache_sfunc,
7915a72c 5857 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
6bcadd06 5858 &setlist, &showlist);
c906108c
SS
5859
5860 /* Allow the user to control whether the upper bits of 64-bit
5861 addresses should be zeroed. */
7915a72c
AC
5862 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5863 &mask_address_var, _("\
5864Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5865Show zeroing of upper 32 bits of 64-bit addresses."), _("\
e9e68a56 5866Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
7915a72c 5867allow GDB to determine the correct value."),
08546159
AC
5868 NULL, show_mask_address,
5869 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
5870
5871 /* Allow the user to control the size of 32 bit registers within the
5872 raw remote packet. */
b3f42336 5873 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
5874 &mips64_transfers_32bit_regs_p, _("\
5875Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5876 _("\
5877Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5878 _("\
719ec221
AC
5879Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5880that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 588164 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 5882 set_mips64_transfers_32bit_regs,
7915a72c 5883 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
7915a72c 5884 &setlist, &showlist);
9ace0497
AC
5885
5886 /* Debug this files internals. */
6bcadd06 5887 add_setshow_zinteger_cmd ("mips", class_maintenance,
7915a72c
AC
5888 &mips_debug, _("\
5889Set mips debugging."), _("\
5890Show mips debugging."), _("\
5891When non-zero, mips specific debugging is enabled."),
2c5b56ce 5892 NULL,
7915a72c 5893 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
6bcadd06 5894 &setdebuglist, &showdebuglist);
c906108c 5895}