]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/mt-tdep.c
Add default_breakpoint_from_pc
[thirdparty/binutils-gdb.git] / gdb / mt-tdep.c
CommitLineData
d031aafb 1/* Target-dependent code for Morpho mt processor, for GDB.
61def6bd 2
618f726f 3 Copyright (C) 2005-2016 Free Software Foundation, Inc.
61def6bd
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
61def6bd
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
61def6bd
KB
19
20/* Contributed by Michael Snyder, msnyder@redhat.com. */
21
22#include "defs.h"
23#include "frame.h"
24#include "frame-unwind.h"
25#include "frame-base.h"
26#include "symtab.h"
27#include "dis-asm.h"
28#include "arch-utils.h"
29#include "gdbtypes.h"
61def6bd
KB
30#include "regcache.h"
31#include "reggroups.h"
32#include "gdbcore.h"
33#include "trad-frame.h"
34#include "inferior.h"
35#include "dwarf2-frame.h"
36#include "infcall.h"
d8ca156b 37#include "language.h"
79a45b7d 38#include "valprint.h"
61def6bd 39
d031aafb 40enum mt_arch_constants
61def6bd 41{
d031aafb 42 MT_MAX_STRUCT_SIZE = 16
61def6bd
KB
43};
44
d031aafb 45enum mt_gdb_regnums
61def6bd 46{
d031aafb
NS
47 MT_R0_REGNUM, /* 32 bit regs. */
48 MT_R1_REGNUM,
49 MT_1ST_ARGREG = MT_R1_REGNUM,
50 MT_R2_REGNUM,
51 MT_R3_REGNUM,
52 MT_R4_REGNUM,
53 MT_LAST_ARGREG = MT_R4_REGNUM,
54 MT_R5_REGNUM,
55 MT_R6_REGNUM,
56 MT_R7_REGNUM,
57 MT_R8_REGNUM,
58 MT_R9_REGNUM,
59 MT_R10_REGNUM,
60 MT_R11_REGNUM,
61 MT_R12_REGNUM,
62 MT_FP_REGNUM = MT_R12_REGNUM,
63 MT_R13_REGNUM,
64 MT_SP_REGNUM = MT_R13_REGNUM,
65 MT_R14_REGNUM,
66 MT_RA_REGNUM = MT_R14_REGNUM,
67 MT_R15_REGNUM,
68 MT_IRA_REGNUM = MT_R15_REGNUM,
69 MT_PC_REGNUM,
61def6bd
KB
70
71 /* Interrupt Enable pseudo-register, exported by SID. */
d031aafb 72 MT_INT_ENABLE_REGNUM,
61def6bd
KB
73 /* End of CPU regs. */
74
d031aafb 75 MT_NUM_CPU_REGS,
61def6bd
KB
76
77 /* Co-processor registers. */
d031aafb
NS
78 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
79 MT_CPR0_REGNUM,
80 MT_CPR1_REGNUM,
81 MT_CPR2_REGNUM,
82 MT_CPR3_REGNUM,
83 MT_CPR4_REGNUM,
84 MT_CPR5_REGNUM,
85 MT_CPR6_REGNUM,
86 MT_CPR7_REGNUM,
87 MT_CPR8_REGNUM,
88 MT_CPR9_REGNUM,
89 MT_CPR10_REGNUM,
90 MT_CPR11_REGNUM,
91 MT_CPR12_REGNUM,
92 MT_CPR13_REGNUM,
93 MT_CPR14_REGNUM,
94 MT_CPR15_REGNUM,
95 MT_BYPA_REGNUM, /* 32 bit regs. */
96 MT_BYPB_REGNUM,
97 MT_BYPC_REGNUM,
98 MT_FLAG_REGNUM,
99 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
61def6bd 100 six bytes). */
d031aafb
NS
101 MT_MAC_REGNUM, /* 32 bits. */
102 MT_Z1_REGNUM, /* 16 bits. */
103 MT_Z2_REGNUM, /* 16 bits. */
104 MT_ICHANNEL_REGNUM, /* 32 bits. */
105 MT_ISCRAMB_REGNUM, /* 32 bits. */
106 MT_QSCRAMB_REGNUM, /* 32 bits. */
107 MT_OUT_REGNUM, /* 16 bits. */
108 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
109 MT_QCHANNEL_REGNUM, /* 32 bits. */
03a73f77
MM
110 MT_ZI2_REGNUM, /* 16 bits. */
111 MT_ZQ2_REGNUM, /* 16 bits. */
112 MT_CHANNEL2_REGNUM, /* 32 bits. */
113 MT_ISCRAMB2_REGNUM, /* 32 bits. */
114 MT_QSCRAMB2_REGNUM, /* 32 bits. */
115 MT_QCHANNEL2_REGNUM, /* 32 bits. */
61def6bd
KB
116
117 /* Number of real registers. */
d031aafb 118 MT_NUM_REGS,
61def6bd
KB
119
120 /* Pseudo-registers. */
d031aafb
NS
121 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
122 MT_MAC_PSEUDOREG_REGNUM,
60e81fcc
NS
123 MT_COPRO_PSEUDOREG_ARRAY,
124
125 MT_COPRO_PSEUDOREG_DIM_1 = 2,
126 MT_COPRO_PSEUDOREG_DIM_2 = 8,
03a73f77
MM
127 /* The number of pseudo-registers for each coprocessor. These
128 include the real coprocessor registers, the pseudo-registe for
129 the coprocessor number, and the pseudo-register for the MAC. */
130 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
131 /* The register number of the MAC, relative to a given coprocessor. */
132 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
61def6bd
KB
133
134 /* Two pseudo-regs ('coprocessor' and 'mac'). */
60e81fcc
NS
135 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
136 * MT_COPRO_PSEUDOREG_DIM_1
137 * MT_COPRO_PSEUDOREG_DIM_2)
61def6bd
KB
138};
139
df4df182
UW
140/* The tdep structure. */
141struct gdbarch_tdep
142{
143 /* ISA-specific types. */
144 struct type *copro_type;
145};
146
147
61def6bd
KB
148/* Return name of register number specified by REGNUM. */
149
150static const char *
d93859e2 151mt_register_name (struct gdbarch *gdbarch, int regnum)
61def6bd 152{
58b78171 153 static const char *const register_names[] = {
61def6bd
KB
154 /* CPU regs. */
155 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
156 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
157 "pc", "IE",
158 /* Co-processor regs. */
159 "", /* copro register. */
160 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
161 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
162 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
163 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
03a73f77 164 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
61def6bd
KB
165 /* Pseudo-registers. */
166 "coprocessor", "MAC"
167 };
60e81fcc
NS
168 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
169 * MT_COPRO_PSEUDOREG_DIM_1
170 * MT_COPRO_PSEUDOREG_DIM_2];
171
172 if (regnum < 0)
173 return "";
174 if (regnum < ARRAY_SIZE (register_names))
175 return register_names[regnum];
176 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
177 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
178
179 {
180 char *name;
181 const char *stub;
182 unsigned dim_1;
183 unsigned dim_2;
184 unsigned index;
185
186 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
187 index = regnum % MT_COPRO_PSEUDOREG_REGS;
188 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
189 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
190 % MT_COPRO_PSEUDOREG_DIM_1);
191
03a73f77 192 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc 193 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
03a73f77 194 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
60e81fcc
NS
195 stub = "";
196 else
197 stub = register_names[index + MT_CPR0_REGNUM];
198 if (!*stub)
199 {
200 array_names[regnum] = stub;
201 return stub;
202 }
224c3ddb 203 name = (char *) xmalloc (30);
60e81fcc
NS
204 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
205 array_names[regnum] = name;
206 return name;
207 }
208}
61def6bd 209
60e81fcc
NS
210/* Return the type of a coprocessor register. */
211
212static struct type *
213mt_copro_register_type (struct gdbarch *arch, int regnum)
214{
215 switch (regnum)
216 {
217 case MT_INT_ENABLE_REGNUM:
218 case MT_ICHANNEL_REGNUM:
219 case MT_QCHANNEL_REGNUM:
220 case MT_ISCRAMB_REGNUM:
221 case MT_QSCRAMB_REGNUM:
df4df182 222 return builtin_type (arch)->builtin_int32;
60e81fcc
NS
223 case MT_BYPA_REGNUM:
224 case MT_BYPB_REGNUM:
225 case MT_BYPC_REGNUM:
226 case MT_Z1_REGNUM:
227 case MT_Z2_REGNUM:
228 case MT_OUT_REGNUM:
03a73f77
MM
229 case MT_ZI2_REGNUM:
230 case MT_ZQ2_REGNUM:
df4df182 231 return builtin_type (arch)->builtin_int16;
60e81fcc
NS
232 case MT_EXMAC_REGNUM:
233 case MT_MAC_REGNUM:
df4df182 234 return builtin_type (arch)->builtin_uint32;
60e81fcc 235 case MT_CONTEXT_REGNUM:
0dfff4cb 236 return builtin_type (arch)->builtin_long_long;
60e81fcc 237 case MT_FLAG_REGNUM:
0dfff4cb 238 return builtin_type (arch)->builtin_unsigned_char;
60e81fcc
NS
239 default:
240 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
df4df182 241 return builtin_type (arch)->builtin_int16;
03a73f77 242 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc
NS
243 {
244 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
245 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
df4df182 246 return builtin_type (arch)->builtin_uint64;
60e81fcc 247 else
df4df182 248 return builtin_type (arch)->builtin_uint32;
60e81fcc
NS
249 }
250 else
df4df182 251 return builtin_type (arch)->builtin_uint32;
60e81fcc 252 }
61def6bd
KB
253}
254
255/* Given ARCH and a register number specified by REGNUM, return the
256 type of that register. */
257
258static struct type *
d031aafb 259mt_register_type (struct gdbarch *arch, int regnum)
61def6bd 260{
df4df182 261 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
61def6bd 262
d031aafb 263 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
61def6bd 264 {
61def6bd
KB
265 switch (regnum)
266 {
d031aafb
NS
267 case MT_PC_REGNUM:
268 case MT_RA_REGNUM:
269 case MT_IRA_REGNUM:
fde6c819 270 return builtin_type (arch)->builtin_func_ptr;
d031aafb
NS
271 case MT_SP_REGNUM:
272 case MT_FP_REGNUM:
fde6c819 273 return builtin_type (arch)->builtin_data_ptr;
d031aafb
NS
274 case MT_COPRO_REGNUM:
275 case MT_COPRO_PSEUDOREG_REGNUM:
df4df182
UW
276 if (tdep->copro_type == NULL)
277 {
278 struct type *elt = builtin_type (arch)->builtin_int16;
279 tdep->copro_type = lookup_array_range_type (elt, 0, 1);
280 }
281 return tdep->copro_type;
d031aafb 282 case MT_MAC_PSEUDOREG_REGNUM:
60e81fcc
NS
283 return mt_copro_register_type (arch,
284 MT_CPR0_REGNUM
03a73f77 285 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
61def6bd 286 default:
d031aafb 287 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
df4df182 288 return builtin_type (arch)->builtin_int32;
60e81fcc
NS
289 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
290 return mt_copro_register_type (arch, regnum);
291 else
292 {
293 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
294 regnum %= MT_COPRO_PSEUDOREG_REGS;
295 regnum += MT_CPR0_REGNUM;
296 return mt_copro_register_type (arch, regnum);
297 }
61def6bd
KB
298 }
299 }
300 internal_error (__FILE__, __LINE__,
d031aafb 301 _("mt_register_type: illegal register number %d"), regnum);
61def6bd
KB
302}
303
304/* Return true if register REGNUM is a member of the register group
305 specified by GROUP. */
306
307static int
d031aafb 308mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
61def6bd
KB
309 struct reggroup *group)
310{
311 /* Groups of registers that can be displayed via "info reg". */
312 if (group == all_reggroup)
313 return (regnum >= 0
d031aafb 314 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
d93859e2 315 && mt_register_name (gdbarch, regnum)[0] != '\0');
61def6bd
KB
316
317 if (group == general_reggroup)
d031aafb 318 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
61def6bd
KB
319
320 if (group == float_reggroup)
321 return 0; /* No float regs. */
322
323 if (group == vector_reggroup)
324 return 0; /* No vector regs. */
325
326 /* For any that are not handled above. */
327 return default_register_reggroup_p (gdbarch, regnum, group);
328}
329
330/* Return the return value convention used for a given type TYPE.
331 Optionally, fetch or set the return value via READBUF or
332 WRITEBUF respectively using REGCACHE for the register
333 values. */
334
335static enum return_value_convention
6a3a010b 336mt_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
337 struct type *type, struct regcache *regcache,
338 gdb_byte *readbuf, const gdb_byte *writebuf)
61def6bd 339{
e17a4113
UW
340 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
341
61def6bd
KB
342 if (TYPE_LENGTH (type) > 4)
343 {
344 /* Return values > 4 bytes are returned in memory,
345 pointed to by R11. */
346 if (readbuf)
347 {
348 ULONGEST addr;
349
d031aafb 350 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
61def6bd
KB
351 read_memory (addr, readbuf, TYPE_LENGTH (type));
352 }
353
354 if (writebuf)
355 {
356 ULONGEST addr;
357
d031aafb 358 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
61def6bd
KB
359 write_memory (addr, writebuf, TYPE_LENGTH (type));
360 }
361
362 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
363 }
364 else
365 {
366 if (readbuf)
367 {
368 ULONGEST temp;
369
370 /* Return values of <= 4 bytes are returned in R11. */
d031aafb 371 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
e17a4113
UW
372 store_unsigned_integer (readbuf, TYPE_LENGTH (type),
373 byte_order, temp);
61def6bd
KB
374 }
375
376 if (writebuf)
377 {
378 if (TYPE_LENGTH (type) < 4)
379 {
380 gdb_byte buf[4];
381 /* Add leading zeros to the value. */
382 memset (buf, 0, sizeof (buf));
383 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
384 writebuf, TYPE_LENGTH (type));
d031aafb 385 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
61def6bd
KB
386 }
387 else /* (TYPE_LENGTH (type) == 4 */
d031aafb 388 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
61def6bd
KB
389 }
390
391 return RETURN_VALUE_REGISTER_CONVENTION;
392 }
393}
394
395/* If the input address, PC, is in a function prologue, return the
396 address of the end of the prologue, otherwise return the input
397 address.
398
399 Note: PC is likely to be the function start, since this function
400 is mainly used for advancing a breakpoint to the first line, or
401 stepping to the first line when we have stepped into a function
402 call. */
403
404static CORE_ADDR
6093d2eb 405mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
61def6bd 406{
e17a4113 407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61def6bd 408 CORE_ADDR func_addr = 0, func_end = 0;
2c02bd72 409 const char *func_name;
61def6bd
KB
410 unsigned long instr;
411
412 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
413 {
414 struct symtab_and_line sal;
415 struct symbol *sym;
416
417 /* Found a function. */
835a09d9 418 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL).symbol;
61def6bd
KB
419 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
420 {
421 /* Don't use this trick for assembly source files. */
422 sal = find_pc_line (func_addr, 0);
423
424 if (sal.end && sal.end < func_end)
425 {
426 /* Found a line number, use it as end of prologue. */
427 return sal.end;
428 }
429 }
430 }
431
432 /* No function symbol, or no line symbol. Use prologue scanning method. */
433 for (;; pc += 4)
434 {
e17a4113 435 instr = read_memory_unsigned_integer (pc, 4, byte_order);
61def6bd
KB
436 if (instr == 0x12000000) /* nop */
437 continue;
438 if (instr == 0x12ddc000) /* copy sp into fp */
439 continue;
440 instr >>= 16;
441 if (instr == 0x05dd) /* subi sp, sp, imm */
442 continue;
443 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
444 continue;
445 /* Not an obvious prologue instruction. */
446 break;
447 }
448
449 return pc;
450}
451
cd6c3b4f
YQ
452/* Implement the breakpoint_kind_from_pc gdbarch method. */
453
d19280ad
YQ
454static int
455mt_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
456{
457 return 4;
458}
61def6bd 459
cd6c3b4f
YQ
460/* Implement the sw_breakpoint_from_kind gdbarch method. */
461
61def6bd 462static const gdb_byte *
d19280ad 463mt_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
61def6bd 464{
d19280ad
YQ
465 /* The breakpoint instruction must be the same size as the smallest
466 instruction in the instruction set.
467
468 The BP for ms1 is defined as 0x68000000 (BREAK).
469 The BP for ms2 is defined as 0x69000000 (illegal). */
3950dc3f
NS
470 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
471 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
61def6bd 472
d19280ad
YQ
473 *size = kind;
474
67d57894 475 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
3950dc3f 476 return ms2_breakpoint;
d19280ad 477
3950dc3f 478 return ms1_breakpoint;
61def6bd
KB
479}
480
60e81fcc
NS
481/* Select the correct coprocessor register bank. Return the pseudo
482 regnum we really want to read. */
483
484static int
485mt_select_coprocessor (struct gdbarch *gdbarch,
486 struct regcache *regcache, int regno)
487{
e17a4113 488 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
60e81fcc
NS
489 unsigned index, base;
490 gdb_byte copro[4];
491
025bb325 492 /* Get the copro pseudo regnum. */
60e81fcc 493 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
e17a4113
UW
494 base = ((extract_signed_integer (&copro[0], 2, byte_order)
495 * MT_COPRO_PSEUDOREG_DIM_2)
496 + extract_signed_integer (&copro[2], 2, byte_order));
60e81fcc
NS
497
498 regno -= MT_COPRO_PSEUDOREG_ARRAY;
499 index = regno % MT_COPRO_PSEUDOREG_REGS;
500 regno /= MT_COPRO_PSEUDOREG_REGS;
501 if (base != regno)
502 {
503 /* Select the correct coprocessor register bank. Invalidate the
504 coprocessor register cache. */
505 unsigned ix;
506
e17a4113
UW
507 store_signed_integer (&copro[0], 2, byte_order,
508 regno / MT_COPRO_PSEUDOREG_DIM_2);
509 store_signed_integer (&copro[2], 2, byte_order,
510 regno % MT_COPRO_PSEUDOREG_DIM_2);
60e81fcc
NS
511 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
512
513 /* We must flush the cache, as it is now invalid. */
514 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
9c5ea4d9 515 regcache_invalidate (regcache, ix);
60e81fcc
NS
516 }
517
518 return index;
519}
520
61def6bd
KB
521/* Fetch the pseudo registers:
522
60e81fcc 523 There are two regular pseudo-registers:
61def6bd
KB
524 1) The 'coprocessor' pseudo-register (which mirrors the
525 "real" coprocessor register sent by the target), and
526 2) The 'MAC' pseudo-register (which represents the union
527 of the original 32 bit target MAC register and the new
60e81fcc
NS
528 8-bit extended-MAC register).
529
530 Additionally there is an array of coprocessor registers which track
531 the coprocessor registers for each coprocessor. */
61def6bd 532
05d1431c 533static enum register_status
d031aafb 534mt_pseudo_register_read (struct gdbarch *gdbarch,
05d1431c 535 struct regcache *regcache, int regno, gdb_byte *buf)
61def6bd 536{
e17a4113
UW
537 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
538
61def6bd
KB
539 switch (regno)
540 {
d031aafb
NS
541 case MT_COPRO_REGNUM:
542 case MT_COPRO_PSEUDOREG_REGNUM:
05d1431c 543 return regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
d031aafb
NS
544 case MT_MAC_REGNUM:
545 case MT_MAC_PSEUDOREG_REGNUM:
3950dc3f
NS
546 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
547 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
61def6bd 548 {
05d1431c 549 enum register_status status;
61def6bd
KB
550 ULONGEST oldmac = 0, ext_mac = 0;
551 ULONGEST newmac;
552
05d1431c
PA
553 status = regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
554 if (status != REG_VALID)
555 return status;
556
d031aafb 557 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
05d1431c
PA
558 if (status != REG_VALID)
559 return status;
560
61def6bd
KB
561 newmac =
562 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
e17a4113 563 store_signed_integer (buf, 8, byte_order, newmac);
05d1431c
PA
564
565 return REG_VALID;
61def6bd
KB
566 }
567 else
05d1431c 568 return regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
61def6bd
KB
569 break;
570 default:
60e81fcc
NS
571 {
572 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
573
03a73f77 574 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
05d1431c
PA
575 return mt_pseudo_register_read (gdbarch, regcache,
576 MT_MAC_PSEUDOREG_REGNUM, buf);
60e81fcc 577 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
05d1431c
PA
578 return regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
579 else
580 /* ??? */
581 return REG_VALID;
60e81fcc 582 }
61def6bd
KB
583 break;
584 }
585}
586
587/* Write the pseudo registers:
588
d031aafb 589 Mt pseudo-registers are stored directly to the target. The
61def6bd
KB
590 'coprocessor' register is special, because when it is modified, all
591 the other coprocessor regs must be flushed from the reg cache. */
592
593static void
d031aafb 594mt_pseudo_register_write (struct gdbarch *gdbarch,
61def6bd
KB
595 struct regcache *regcache,
596 int regno, const gdb_byte *buf)
597{
e17a4113 598 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61def6bd
KB
599 int i;
600
601 switch (regno)
602 {
d031aafb
NS
603 case MT_COPRO_REGNUM:
604 case MT_COPRO_PSEUDOREG_REGNUM:
605 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
606 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
9c5ea4d9 607 regcache_invalidate (regcache, i);
61def6bd 608 break;
d031aafb
NS
609 case MT_MAC_REGNUM:
610 case MT_MAC_PSEUDOREG_REGNUM:
3950dc3f
NS
611 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
612 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
61def6bd
KB
613 {
614 /* The 8-byte MAC pseudo-register must be broken down into two
615 32-byte registers. */
616 unsigned int oldmac, ext_mac;
617 ULONGEST newmac;
618
e17a4113 619 newmac = extract_unsigned_integer (buf, 8, byte_order);
61def6bd
KB
620 oldmac = newmac & 0xffffffff;
621 ext_mac = (newmac >> 32) & 0xff;
d031aafb
NS
622 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
623 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
61def6bd
KB
624 }
625 else
d031aafb 626 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
61def6bd
KB
627 break;
628 default:
60e81fcc
NS
629 {
630 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
631
03a73f77 632 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc 633 mt_pseudo_register_write (gdbarch, regcache,
03a73f77 634 MT_MAC_PSEUDOREG_REGNUM, buf);
60e81fcc
NS
635 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
636 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
637 }
61def6bd
KB
638 break;
639 }
640}
641
642static CORE_ADDR
d031aafb 643mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
61def6bd
KB
644{
645 /* Register size is 4 bytes. */
646 return align_down (sp, 4);
647}
648
649/* Implements the "info registers" command. When ``all'' is non-zero,
650 the coprocessor registers will be printed in addition to the rest
651 of the registers. */
652
653static void
d031aafb 654mt_registers_info (struct gdbarch *gdbarch,
d93859e2
UW
655 struct ui_file *file,
656 struct frame_info *frame, int regnum, int all)
61def6bd 657{
e17a4113
UW
658 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
659
61def6bd
KB
660 if (regnum == -1)
661 {
662 int lim;
663
d031aafb 664 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
61def6bd
KB
665
666 for (regnum = 0; regnum < lim; regnum++)
667 {
668 /* Don't display the Qchannel register since it will be displayed
669 along with Ichannel. (See below.) */
d031aafb 670 if (regnum == MT_QCHANNEL_REGNUM)
61def6bd
KB
671 continue;
672
d031aafb 673 mt_registers_info (gdbarch, file, frame, regnum, all);
61def6bd
KB
674
675 /* Display the Qchannel register immediately after Ichannel. */
d031aafb
NS
676 if (regnum == MT_ICHANNEL_REGNUM)
677 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
61def6bd
KB
678 }
679 }
680 else
681 {
d031aafb 682 if (regnum == MT_EXMAC_REGNUM)
61def6bd 683 return;
d031aafb 684 else if (regnum == MT_CONTEXT_REGNUM)
61def6bd
KB
685 {
686 /* Special output handling for 38-bit context register. */
687 unsigned char *buff;
870f88f7 688 unsigned int i, regsize;
61def6bd
KB
689
690 regsize = register_size (gdbarch, regnum);
691
224c3ddb 692 buff = (unsigned char *) alloca (regsize);
61def6bd 693
ca9d61b9 694 deprecated_frame_register_read (frame, regnum, buff);
61def6bd 695
c9f4d572 696 fputs_filtered (gdbarch_register_name
d93859e2 697 (gdbarch, regnum), file);
c9f4d572 698 print_spaces_filtered (15 - strlen (gdbarch_register_name
d93859e2 699 (gdbarch, regnum)),
c9f4d572 700 file);
61def6bd
KB
701 fputs_filtered ("0x", file);
702
703 for (i = 0; i < regsize; i++)
704 fprintf_filtered (file, "%02x", (unsigned int)
e17a4113 705 extract_unsigned_integer (buff + i, 1, byte_order));
61def6bd
KB
706 fputs_filtered ("\t", file);
707 print_longest (file, 'd', 0,
e17a4113 708 extract_unsigned_integer (buff, regsize, byte_order));
61def6bd
KB
709 fputs_filtered ("\n", file);
710 }
d031aafb
NS
711 else if (regnum == MT_COPRO_REGNUM
712 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
61def6bd
KB
713 {
714 /* Special output handling for the 'coprocessor' register. */
58b78171 715 gdb_byte *buf;
79a45b7d 716 struct value_print_options opts;
61def6bd 717
224c3ddb 718 buf = (gdb_byte *) alloca (register_size (gdbarch, MT_COPRO_REGNUM));
ca9d61b9 719 deprecated_frame_register_read (frame, MT_COPRO_REGNUM, buf);
61def6bd 720 /* And print. */
d031aafb 721 regnum = MT_COPRO_PSEUDOREG_REGNUM;
d93859e2 722 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
c9f4d572
UW
723 file);
724 print_spaces_filtered (15 - strlen (gdbarch_register_name
d93859e2 725 (gdbarch, regnum)),
c9f4d572 726 file);
915dd369 727 get_no_prettyformat_print_options (&opts);
79a45b7d 728 opts.deref_ref = 1;
61def6bd 729 val_print (register_type (gdbarch, regnum), buf,
0e03807e
TT
730 0, 0, file, 0, NULL,
731 &opts, current_language);
61def6bd
KB
732 fputs_filtered ("\n", file);
733 }
d031aafb 734 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
61def6bd
KB
735 {
736 ULONGEST oldmac, ext_mac, newmac;
58b78171 737 gdb_byte buf[3 * sizeof (LONGEST)];
61def6bd
KB
738
739 /* Get the two "real" mac registers. */
ca9d61b9 740 deprecated_frame_register_read (frame, MT_MAC_REGNUM, buf);
3950dc3f 741 oldmac = extract_unsigned_integer
e17a4113 742 (buf, register_size (gdbarch, MT_MAC_REGNUM), byte_order);
58b78171
NS
743 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
744 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
61def6bd 745 {
ca9d61b9 746 deprecated_frame_register_read (frame, MT_EXMAC_REGNUM, buf);
3950dc3f 747 ext_mac = extract_unsigned_integer
e17a4113 748 (buf, register_size (gdbarch, MT_EXMAC_REGNUM), byte_order);
61def6bd
KB
749 }
750 else
751 ext_mac = 0;
752
753 /* Add them together. */
754 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
755
756 /* And print. */
d031aafb 757 regnum = MT_MAC_PSEUDOREG_REGNUM;
d93859e2 758 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
c9f4d572
UW
759 file);
760 print_spaces_filtered (15 - strlen (gdbarch_register_name
d93859e2 761 (gdbarch, regnum)),
c9f4d572 762 file);
61def6bd
KB
763 fputs_filtered ("0x", file);
764 print_longest (file, 'x', 0, newmac);
765 fputs_filtered ("\t", file);
766 print_longest (file, 'u', 0, newmac);
767 fputs_filtered ("\n", file);
768 }
769 else
770 default_print_registers_info (gdbarch, file, frame, regnum, all);
771 }
772}
773
774/* Set up the callee's arguments for an inferior function call. The
775 arguments are pushed on the stack or are placed in registers as
776 appropriate. It also sets up the return address (which points to
777 the call dummy breakpoint).
778
779 Returns the updated (and aligned) stack pointer. */
780
781static CORE_ADDR
d031aafb 782mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
61def6bd
KB
783 struct regcache *regcache, CORE_ADDR bp_addr,
784 int nargs, struct value **args, CORE_ADDR sp,
785 int struct_return, CORE_ADDR struct_addr)
786{
787#define wordsize 4
e17a4113 788 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d031aafb
NS
789 gdb_byte buf[MT_MAX_STRUCT_SIZE];
790 int argreg = MT_1ST_ARGREG;
61def6bd
KB
791 int split_param_len = 0;
792 int stack_dest = sp;
793 int slacklen;
794 int typelen;
795 int i, j;
796
d031aafb
NS
797 /* First handle however many args we can fit into MT_1ST_ARGREG thru
798 MT_LAST_ARGREG. */
799 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
61def6bd 800 {
58b78171 801 const gdb_byte *val;
61def6bd
KB
802 typelen = TYPE_LENGTH (value_type (args[i]));
803 switch (typelen)
804 {
805 case 1:
806 case 2:
807 case 3:
808 case 4:
809 regcache_cooked_write_unsigned (regcache, argreg++,
810 extract_unsigned_integer
811 (value_contents (args[i]),
e17a4113 812 wordsize, byte_order));
61def6bd
KB
813 break;
814 case 8:
815 case 12:
816 case 16:
817 val = value_contents (args[i]);
818 while (typelen > 0)
819 {
d031aafb 820 if (argreg <= MT_LAST_ARGREG)
61def6bd
KB
821 {
822 /* This word of the argument is passed in a register. */
823 regcache_cooked_write_unsigned (regcache, argreg++,
824 extract_unsigned_integer
e17a4113 825 (val, wordsize, byte_order));
61def6bd
KB
826 typelen -= wordsize;
827 val += wordsize;
828 }
829 else
830 {
831 /* Remainder of this arg must be passed on the stack
832 (deferred to do later). */
833 split_param_len = typelen;
834 memcpy (buf, val, typelen);
835 break; /* No more args can be handled in regs. */
836 }
837 }
838 break;
839 default:
840 /* By reverse engineering of gcc output, args bigger than
841 16 bytes go on the stack, and their address is passed
842 in the argreg. */
843 stack_dest -= typelen;
844 write_memory (stack_dest, value_contents (args[i]), typelen);
845 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
846 break;
847 }
848 }
849
850 /* Next, the rest of the arguments go onto the stack, in reverse order. */
851 for (j = nargs - 1; j >= i; j--)
852 {
58b78171 853 gdb_byte *val;
ecfb0d68
SP
854 struct cleanup *back_to;
855 const gdb_byte *contents = value_contents (args[j]);
58b78171 856
61def6bd
KB
857 /* Right-justify the value in an aligned-length buffer. */
858 typelen = TYPE_LENGTH (value_type (args[j]));
859 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
224c3ddb 860 val = (gdb_byte *) xmalloc (typelen + slacklen);
ecfb0d68
SP
861 back_to = make_cleanup (xfree, val);
862 memcpy (val, contents, typelen);
61def6bd
KB
863 memset (val + typelen, 0, slacklen);
864 /* Now write this data to the stack. */
865 stack_dest -= typelen + slacklen;
866 write_memory (stack_dest, val, typelen + slacklen);
ecfb0d68 867 do_cleanups (back_to);
61def6bd
KB
868 }
869
870 /* Finally, if a param needs to be split between registers and stack,
871 write the second half to the stack now. */
872 if (split_param_len != 0)
873 {
874 stack_dest -= split_param_len;
875 write_memory (stack_dest, buf, split_param_len);
876 }
877
878 /* Set up return address (provided to us as bp_addr). */
d031aafb 879 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
61def6bd
KB
880
881 /* Store struct return address, if given. */
882 if (struct_return && struct_addr != 0)
d031aafb 883 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
61def6bd
KB
884
885 /* Set aside 16 bytes for the callee to save regs 1-4. */
886 stack_dest -= 16;
887
888 /* Update the stack pointer. */
d031aafb 889 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
61def6bd
KB
890
891 /* And that should do it. Return the new stack pointer. */
892 return stack_dest;
893}
894
895
896/* The 'unwind_cache' data structure. */
897
d031aafb 898struct mt_unwind_cache
61def6bd 899{
025bb325 900 /* The previous frame's inner most stack address.
61def6bd
KB
901 Used as this frame ID's stack_addr. */
902 CORE_ADDR prev_sp;
903 CORE_ADDR frame_base;
904 int framesize;
905 int frameless_p;
906
907 /* Table indicating the location of each and every register. */
908 struct trad_frame_saved_reg *saved_regs;
909};
910
911/* Initialize an unwind_cache. Build up the saved_regs table etc. for
912 the frame. */
913
d031aafb 914static struct mt_unwind_cache *
94afd7a6 915mt_frame_unwind_cache (struct frame_info *this_frame,
61def6bd
KB
916 void **this_prologue_cache)
917{
918 struct gdbarch *gdbarch;
d031aafb 919 struct mt_unwind_cache *info;
61def6bd
KB
920 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
921 unsigned long instr, upper_half, delayed_store = 0;
922 int regnum, offset;
923 ULONGEST sp, fp;
924
925 if ((*this_prologue_cache))
19ba03f4 926 return (struct mt_unwind_cache *) (*this_prologue_cache);
61def6bd 927
94afd7a6 928 gdbarch = get_frame_arch (this_frame);
d031aafb 929 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
61def6bd
KB
930 (*this_prologue_cache) = info;
931
932 info->prev_sp = 0;
933 info->framesize = 0;
934 info->frame_base = 0;
935 info->frameless_p = 1;
94afd7a6 936 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
61def6bd 937
025bb325 938 /* Grab the frame-relative values of SP and FP, needed below.
61def6bd
KB
939 The frame_saved_register function will find them on the
940 stack or in the registers as appropriate. */
94afd7a6
UW
941 sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
942 fp = get_frame_register_unsigned (this_frame, MT_FP_REGNUM);
61def6bd 943
94afd7a6 944 start_addr = get_frame_func (this_frame);
61def6bd
KB
945
946 /* Return early if GDB couldn't find the function. */
947 if (start_addr == 0)
948 return info;
949
94afd7a6 950 end_addr = get_frame_pc (this_frame);
d80b854b 951 prologue_end_addr = skip_prologue_using_sal (gdbarch, start_addr);
61def6bd
KB
952 if (end_addr == 0)
953 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
954 {
94afd7a6 955 instr = get_frame_memory_unsigned (this_frame, next_addr, 4);
025bb325 956 if (delayed_store) /* Previous instr was a push. */
61def6bd
KB
957 {
958 upper_half = delayed_store >> 16;
959 regnum = upper_half & 0xf;
960 offset = delayed_store & 0xffff;
961 switch (upper_half & 0xfff0)
962 {
025bb325 963 case 0x43c0: /* push using frame pointer. */
61def6bd
KB
964 info->saved_regs[regnum].addr = offset;
965 break;
025bb325 966 case 0x43d0: /* push using stack pointer. */
61def6bd
KB
967 info->saved_regs[regnum].addr = offset;
968 break;
969 default: /* lint */
970 break;
971 }
972 delayed_store = 0;
973 }
974
975 switch (instr)
976 {
977 case 0x12000000: /* NO-OP */
978 continue;
979 case 0x12ddc000: /* copy sp into fp */
025bb325
MS
980 info->frameless_p = 0; /* Record that the frame
981 pointer is in use. */
61def6bd
KB
982 continue;
983 default:
984 upper_half = instr >> 16;
985 if (upper_half == 0x05dd || /* subi sp, sp, imm */
986 upper_half == 0x07dd) /* subui sp, sp, imm */
987 {
988 /* Record the frame size. */
989 info->framesize = instr & 0xffff;
990 continue;
991 }
992 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
993 (upper_half & 0xfff0) == 0x43d0) /* stack push */
994 {
995 /* Save this instruction, but don't record the
996 pushed register as 'saved' until we see the
997 next instruction. That's because of deferred stores
998 on this target -- GDB won't be able to read the register
999 from the stack until one instruction later. */
1000 delayed_store = instr;
1001 continue;
1002 }
1003 /* Not a prologue instruction. Is this the end of the prologue?
1004 This is the most difficult decision; when to stop scanning.
1005
1006 If we have no line symbol, then the best thing we can do
1007 is to stop scanning when we encounter an instruction that
1008 is not likely to be a part of the prologue.
1009
1010 But if we do have a line symbol, then we should
1011 keep scanning until we reach it (or we reach end_addr). */
1012
1013 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
025bb325 1014 continue; /* Keep scanning, recording saved_regs etc. */
61def6bd 1015 else
025bb325 1016 break; /* Quit scanning: breakpoint can be set here. */
61def6bd
KB
1017 }
1018 }
1019
1020 /* Special handling for the "saved" address of the SP:
1021 The SP is of course never saved on the stack at all, so
1022 by convention what we put here is simply the previous
1023 _value_ of the SP (as opposed to an address where the
1024 previous value would have been pushed). This will also
1025 give us the frame base address. */
1026
1027 if (info->frameless_p)
1028 {
1029 info->frame_base = sp + info->framesize;
1030 info->prev_sp = sp + info->framesize;
1031 }
1032 else
1033 {
1034 info->frame_base = fp + info->framesize;
1035 info->prev_sp = fp + info->framesize;
1036 }
1037 /* Save prev_sp in saved_regs as a value, not as an address. */
d031aafb 1038 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
61def6bd
KB
1039
1040 /* Now convert frame offsets to actual addresses (not offsets). */
d031aafb 1041 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
61def6bd
KB
1042 if (trad_frame_addr_p (info->saved_regs, regnum))
1043 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
1044
1045 /* The call instruction moves the caller's PC in the callee's RA reg.
1046 Since this is an unwind, do the reverse. Copy the location of RA
1047 into PC (the address / regnum) so that a request for PC will be
1048 converted into a request for the RA. */
d031aafb 1049 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
61def6bd
KB
1050
1051 return info;
1052}
1053
1054static CORE_ADDR
d031aafb 1055mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
61def6bd
KB
1056{
1057 ULONGEST pc;
1058
11411de3 1059 pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
61def6bd
KB
1060 return pc;
1061}
1062
1063static CORE_ADDR
d031aafb 1064mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
61def6bd
KB
1065{
1066 ULONGEST sp;
1067
11411de3 1068 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
61def6bd
KB
1069 return sp;
1070}
1071
94afd7a6
UW
1072/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1073 frame. The frame ID's base needs to match the TOS value saved by
1074 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
61def6bd
KB
1075
1076static struct frame_id
94afd7a6 1077mt_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
61def6bd 1078{
94afd7a6
UW
1079 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
1080 return frame_id_build (sp, get_frame_pc (this_frame));
61def6bd
KB
1081}
1082
1083/* Given a GDB frame, determine the address of the calling function's
1084 frame. This will be used to create a new GDB frame struct. */
1085
1086static void
94afd7a6 1087mt_frame_this_id (struct frame_info *this_frame,
61def6bd
KB
1088 void **this_prologue_cache, struct frame_id *this_id)
1089{
d031aafb 1090 struct mt_unwind_cache *info =
94afd7a6 1091 mt_frame_unwind_cache (this_frame, this_prologue_cache);
61def6bd
KB
1092
1093 if (!(info == NULL || info->prev_sp == 0))
94afd7a6 1094 (*this_id) = frame_id_build (info->prev_sp, get_frame_func (this_frame));
93d42b30 1095
61def6bd
KB
1096 return;
1097}
1098
94afd7a6
UW
1099static struct value *
1100mt_frame_prev_register (struct frame_info *this_frame,
1101 void **this_prologue_cache, int regnum)
61def6bd 1102{
d031aafb 1103 struct mt_unwind_cache *info =
94afd7a6 1104 mt_frame_unwind_cache (this_frame, this_prologue_cache);
61def6bd 1105
94afd7a6 1106 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
61def6bd
KB
1107}
1108
1109static CORE_ADDR
94afd7a6 1110mt_frame_base_address (struct frame_info *this_frame,
61def6bd
KB
1111 void **this_prologue_cache)
1112{
d031aafb 1113 struct mt_unwind_cache *info =
94afd7a6 1114 mt_frame_unwind_cache (this_frame, this_prologue_cache);
61def6bd
KB
1115
1116 return info->frame_base;
1117}
1118
1119/* This is a shared interface: the 'frame_unwind' object is what's
1120 returned by the 'sniffer' function, and in turn specifies how to
1121 get a frame's ID and prev_regs.
1122
1123 This exports the 'prev_register' and 'this_id' methods. */
1124
d031aafb 1125static const struct frame_unwind mt_frame_unwind = {
61def6bd 1126 NORMAL_FRAME,
8fbca658 1127 default_frame_unwind_stop_reason,
d031aafb 1128 mt_frame_this_id,
94afd7a6
UW
1129 mt_frame_prev_register,
1130 NULL,
1131 default_frame_sniffer
61def6bd
KB
1132};
1133
61def6bd
KB
1134/* Another shared interface: the 'frame_base' object specifies how to
1135 unwind a frame and secure the base addresses for frame objects
1136 (locals, args). */
1137
d031aafb
NS
1138static struct frame_base mt_frame_base = {
1139 &mt_frame_unwind,
1140 mt_frame_base_address,
1141 mt_frame_base_address,
1142 mt_frame_base_address
61def6bd
KB
1143};
1144
1145static struct gdbarch *
d031aafb 1146mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
61def6bd
KB
1147{
1148 struct gdbarch *gdbarch;
df4df182 1149 struct gdbarch_tdep *tdep;
61def6bd
KB
1150
1151 /* Find a candidate among the list of pre-declared architectures. */
1152 arches = gdbarch_list_lookup_by_info (arches, &info);
1153 if (arches != NULL)
1154 return arches->gdbarch;
1155
1156 /* None found, create a new architecture from the information
1157 provided. */
fc270c35 1158 tdep = XCNEW (struct gdbarch_tdep);
df4df182 1159 gdbarch = gdbarch_alloc (&info, tdep);
61def6bd 1160
cb5c8c39
DJ
1161 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1162 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1163 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
61def6bd 1164
d031aafb
NS
1165 set_gdbarch_register_name (gdbarch, mt_register_name);
1166 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1167 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1168 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1169 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1170 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1171 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1172 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
61def6bd 1173 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
d19280ad 1174 SET_GDBARCH_BREAKPOINT_MANIPULATION (mt);
61def6bd
KB
1175 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1176 set_gdbarch_frame_args_skip (gdbarch, 0);
d031aafb
NS
1177 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1178 set_gdbarch_register_type (gdbarch, mt_register_type);
1179 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
61def6bd 1180
d031aafb
NS
1181 set_gdbarch_return_value (gdbarch, mt_return_value);
1182 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
61def6bd 1183
d031aafb 1184 set_gdbarch_frame_align (gdbarch, mt_frame_align);
61def6bd 1185
d031aafb 1186 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
61def6bd 1187
d031aafb 1188 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
61def6bd
KB
1189
1190 /* Target builtin data types. */
1191 set_gdbarch_short_bit (gdbarch, 16);
1192 set_gdbarch_int_bit (gdbarch, 32);
1193 set_gdbarch_long_bit (gdbarch, 32);
1194 set_gdbarch_long_long_bit (gdbarch, 64);
1195 set_gdbarch_float_bit (gdbarch, 32);
1196 set_gdbarch_double_bit (gdbarch, 64);
1197 set_gdbarch_long_double_bit (gdbarch, 64);
1198 set_gdbarch_ptr_bit (gdbarch, 32);
1199
1200 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1201 based sniffer. */
94afd7a6
UW
1202 dwarf2_append_unwinders (gdbarch);
1203 frame_unwind_append_unwinder (gdbarch, &mt_frame_unwind);
d031aafb 1204 frame_base_set_default (gdbarch, &mt_frame_base);
61def6bd
KB
1205
1206 /* Register the 'unwind_pc' method. */
d031aafb
NS
1207 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1208 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
61def6bd 1209
025bb325 1210 /* Methods for saving / extracting a dummy frame's ID.
61def6bd
KB
1211 The ID's stack address must match the SP value returned by
1212 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
94afd7a6 1213 set_gdbarch_dummy_id (gdbarch, mt_dummy_id);
61def6bd
KB
1214
1215 return gdbarch;
1216}
1217
63807e1d
PA
1218/* Provide a prototype to silence -Wmissing-prototypes. */
1219extern initialize_file_ftype _initialize_mt_tdep;
1220
61def6bd 1221void
d031aafb 1222_initialize_mt_tdep (void)
61def6bd 1223{
d031aafb 1224 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
61def6bd 1225}