]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/nat/i386-dregs.c
Move shared native target specific code to gdb/nat
[thirdparty/binutils-gdb.git] / gdb / nat / i386-dregs.c
CommitLineData
3a8ee006
GB
1/* Debug register code for the i386.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#ifdef GDBSERVER
21#include "server.h"
3a8ee006
GB
22#else
23#include "defs.h"
3a8ee006
GB
24#include "inferior.h"
25#endif
125f8a3d 26#include "i386-dregs.h"
3a8ee006
GB
27
28/* Support for hardware watchpoints and breakpoints using the i386
29 debug registers.
30
31 This provides several functions for inserting and removing
32 hardware-assisted breakpoints and watchpoints, testing if one or
33 more of the watchpoints triggered and at what address, checking
34 whether a given region can be watched, etc.
35
36 The functions below implement debug registers sharing by reference
37 counts, and allow to watch regions up to 16 bytes long. */
38
42995dbd
GB
39/* Accessor macros for low-level function vector. */
40
41/* Can we update the inferior's debug registers? */
42#define i386_dr_low_can_set_addr() (i386_dr_low.set_addr != NULL)
43
44/* Update the inferior's debug register REGNUM from STATE. */
45#define i386_dr_low_set_addr(new_state, i) \
46 (i386_dr_low.set_addr ((i), (new_state)->dr_mirror[(i)]))
47
48/* Return the inferior's debug register REGNUM. */
49#define i386_dr_low_get_addr(i) (i386_dr_low.get_addr ((i)))
50
51/* Can we update the inferior's DR7 control register? */
52#define i386_dr_low_can_set_control() (i386_dr_low.set_control != NULL)
53
54/* Update the inferior's DR7 debug control register from STATE. */
55#define i386_dr_low_set_control(new_state) \
56 (i386_dr_low.set_control ((new_state)->dr_control_mirror))
57
58/* Return the value of the inferior's DR7 debug control register. */
59#define i386_dr_low_get_control() (i386_dr_low.get_control ())
60
61/* Return the value of the inferior's DR6 debug status register. */
62#define i386_dr_low_get_status() (i386_dr_low.get_status ())
63
64/* Return the debug register size, in bytes. */
65#define i386_get_debug_register_length() \
66 (i386_dr_low.debug_register_length)
67
3a8ee006
GB
68/* Support for 8-byte wide hw watchpoints. */
69#define TARGET_HAS_DR_LEN_8 (i386_get_debug_register_length () == 8)
70
71/* DR7 Debug Control register fields. */
72
73/* How many bits to skip in DR7 to get to R/W and LEN fields. */
74#define DR_CONTROL_SHIFT 16
75/* How many bits in DR7 per R/W and LEN field for each watchpoint. */
76#define DR_CONTROL_SIZE 4
77
78/* Watchpoint/breakpoint read/write fields in DR7. */
79#define DR_RW_EXECUTE (0x0) /* Break on instruction execution. */
80#define DR_RW_WRITE (0x1) /* Break on data writes. */
81#define DR_RW_READ (0x3) /* Break on data reads or writes. */
82
83/* This is here for completeness. No platform supports this
84 functionality yet (as of March 2001). Note that the DE flag in the
85 CR4 register needs to be set to support this. */
86#ifndef DR_RW_IORW
87#define DR_RW_IORW (0x2) /* Break on I/O reads or writes. */
88#endif
89
90/* Watchpoint/breakpoint length fields in DR7. The 2-bit left shift
91 is so we could OR this with the read/write field defined above. */
92#define DR_LEN_1 (0x0 << 2) /* 1-byte region watch or breakpoint. */
93#define DR_LEN_2 (0x1 << 2) /* 2-byte region watch. */
94#define DR_LEN_4 (0x3 << 2) /* 4-byte region watch. */
95#define DR_LEN_8 (0x2 << 2) /* 8-byte region watch (AMD64). */
96
97/* Local and Global Enable flags in DR7.
98
99 When the Local Enable flag is set, the breakpoint/watchpoint is
100 enabled only for the current task; the processor automatically
101 clears this flag on every task switch. When the Global Enable flag
102 is set, the breakpoint/watchpoint is enabled for all tasks; the
103 processor never clears this flag.
104
105 Currently, all watchpoint are locally enabled. If you need to
106 enable them globally, read the comment which pertains to this in
107 i386_insert_aligned_watchpoint below. */
108#define DR_LOCAL_ENABLE_SHIFT 0 /* Extra shift to the local enable bit. */
109#define DR_GLOBAL_ENABLE_SHIFT 1 /* Extra shift to the global enable bit. */
110#define DR_ENABLE_SIZE 2 /* Two enable bits per debug register. */
111
112/* Local and global exact breakpoint enable flags (a.k.a. slowdown
113 flags). These are only required on i386, to allow detection of the
114 exact instruction which caused a watchpoint to break; i486 and
115 later processors do that automatically. We set these flags for
116 backwards compatibility. */
117#define DR_LOCAL_SLOWDOWN (0x100)
118#define DR_GLOBAL_SLOWDOWN (0x200)
119
120/* Fields reserved by Intel. This includes the GD (General Detect
121 Enable) flag, which causes a debug exception to be generated when a
122 MOV instruction accesses one of the debug registers.
123
124 FIXME: My Intel manual says we should use 0xF800, not 0xFC00. */
125#define DR_CONTROL_RESERVED (0xFC00)
126
127/* Auxiliary helper macros. */
128
129/* A value that masks all fields in DR7 that are reserved by Intel. */
130#define I386_DR_CONTROL_MASK (~DR_CONTROL_RESERVED)
131
132/* The I'th debug register is vacant if its Local and Global Enable
133 bits are reset in the Debug Control register. */
134#define I386_DR_VACANT(state, i) \
135 (((state)->dr_control_mirror & (3 << (DR_ENABLE_SIZE * (i)))) == 0)
136
137/* Locally enable the break/watchpoint in the I'th debug register. */
138#define I386_DR_LOCAL_ENABLE(state, i) \
139 do { \
140 (state)->dr_control_mirror |= \
141 (1 << (DR_LOCAL_ENABLE_SHIFT + DR_ENABLE_SIZE * (i))); \
142 } while (0)
143
144/* Globally enable the break/watchpoint in the I'th debug register. */
145#define I386_DR_GLOBAL_ENABLE(state, i) \
146 do { \
147 (state)->dr_control_mirror |= \
148 (1 << (DR_GLOBAL_ENABLE_SHIFT + DR_ENABLE_SIZE * (i))); \
149 } while (0)
150
151/* Disable the break/watchpoint in the I'th debug register. */
152#define I386_DR_DISABLE(state, i) \
153 do { \
154 (state)->dr_control_mirror &= \
155 ~(3 << (DR_ENABLE_SIZE * (i))); \
156 } while (0)
157
158/* Set in DR7 the RW and LEN fields for the I'th debug register. */
159#define I386_DR_SET_RW_LEN(state, i, rwlen) \
160 do { \
161 (state)->dr_control_mirror &= \
162 ~(0x0f << (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))); \
163 (state)->dr_control_mirror |= \
164 ((rwlen) << (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))); \
165 } while (0)
166
167/* Get from DR7 the RW and LEN fields for the I'th debug register. */
168#define I386_DR_GET_RW_LEN(dr7, i) \
169 (((dr7) \
170 >> (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))) & 0x0f)
171
172/* Did the watchpoint whose address is in the I'th register break? */
173#define I386_DR_WATCH_HIT(dr6, i) ((dr6) & (1 << (i)))
174
175/* Types of operations supported by i386_handle_nonaligned_watchpoint. */
176typedef enum { WP_INSERT, WP_REMOVE, WP_COUNT } i386_wp_op_t;
177
3a8ee006 178#ifndef GDBSERVER
42995dbd
GB
179/* Whether or not to print the mirrored debug registers. */
180extern int debug_hw_points;
181
182/* Print debugging messages. */
3a8ee006
GB
183#define debug_printf(fmt, args...) \
184 fprintf_unfiltered (gdb_stdlog, fmt, ##args);
185#endif
186
187/* Print the values of the mirrored debug registers. */
188
189static void
190i386_show_dr (struct i386_debug_reg_state *state,
191 const char *func, CORE_ADDR addr,
192 int len, enum target_hw_bp_type type)
193{
194 int i;
195
196 debug_printf ("%s", func);
197 if (addr || len)
198 debug_printf (" (addr=%s, len=%d, type=%s)",
199 phex (addr, 8), len,
200 type == hw_write ? "data-write"
201 : (type == hw_read ? "data-read"
202 : (type == hw_access ? "data-read/write"
203 : (type == hw_execute ? "instruction-execute"
204 /* FIXME: if/when I/O read/write
205 watchpoints are supported, add them
206 here. */
207 : "??unknown??"))));
208 debug_printf (":\n");
209 debug_printf ("\tCONTROL (DR7): %s STATUS (DR6): %s\n",
210 phex (state->dr_control_mirror, 8),
211 phex (state->dr_status_mirror, 8));
212 ALL_DEBUG_REGISTERS (i)
213 {
214 debug_printf ("\
215\tDR%d: addr=0x%s, ref.count=%d DR%d: addr=0x%s, ref.count=%d\n",
216 i, phex (state->dr_mirror[i],
217 i386_get_debug_register_length ()),
218 state->dr_ref_count[i],
219 i + 1, phex (state->dr_mirror[i + 1],
220 i386_get_debug_register_length ()),
221 state->dr_ref_count[i + 1]);
222 i++;
223 }
224}
225
226/* Return the value of a 4-bit field for DR7 suitable for watching a
227 region of LEN bytes for accesses of type TYPE. LEN is assumed to
228 have the value of 1, 2, or 4. */
229
230static unsigned
231i386_length_and_rw_bits (int len, enum target_hw_bp_type type)
232{
233 unsigned rw;
234
235 switch (type)
236 {
237 case hw_execute:
238 rw = DR_RW_EXECUTE;
239 break;
240 case hw_write:
241 rw = DR_RW_WRITE;
242 break;
243 case hw_read:
244 internal_error (__FILE__, __LINE__,
245 _("The i386 doesn't support "
246 "data-read watchpoints.\n"));
247 case hw_access:
248 rw = DR_RW_READ;
249 break;
250#if 0
251 /* Not yet supported. */
252 case hw_io_access:
253 rw = DR_RW_IORW;
254 break;
255#endif
256 default:
257 internal_error (__FILE__, __LINE__, _("\
258Invalid hardware breakpoint type %d in i386_length_and_rw_bits.\n"),
259 (int) type);
260 }
261
262 switch (len)
263 {
264 case 1:
265 return (DR_LEN_1 | rw);
266 case 2:
267 return (DR_LEN_2 | rw);
268 case 4:
269 return (DR_LEN_4 | rw);
270 case 8:
271 if (TARGET_HAS_DR_LEN_8)
272 return (DR_LEN_8 | rw);
273 /* ELSE FALL THROUGH */
274 default:
275 internal_error (__FILE__, __LINE__, _("\
276Invalid hardware breakpoint length %d in i386_length_and_rw_bits.\n"), len);
277 }
278}
279
280/* Insert a watchpoint at address ADDR, which is assumed to be aligned
281 according to the length of the region to watch. LEN_RW_BITS is the
282 value of the bits from DR7 which describes the length and access
283 type of the region to be watched by this watchpoint. Return 0 on
284 success, -1 on failure. */
285
286static int
287i386_insert_aligned_watchpoint (struct i386_debug_reg_state *state,
288 CORE_ADDR addr, unsigned len_rw_bits)
289{
290 int i;
291
292 if (!i386_dr_low_can_set_addr () || !i386_dr_low_can_set_control ())
293 return -1;
294
295 /* First, look for an occupied debug register with the same address
296 and the same RW and LEN definitions. If we find one, we can
297 reuse it for this watchpoint as well (and save a register). */
298 ALL_DEBUG_REGISTERS (i)
299 {
300 if (!I386_DR_VACANT (state, i)
301 && state->dr_mirror[i] == addr
302 && I386_DR_GET_RW_LEN (state->dr_control_mirror, i) == len_rw_bits)
303 {
304 state->dr_ref_count[i]++;
305 return 0;
306 }
307 }
308
309 /* Next, look for a vacant debug register. */
310 ALL_DEBUG_REGISTERS (i)
311 {
312 if (I386_DR_VACANT (state, i))
313 break;
314 }
315
316 /* No more debug registers! */
317 if (i >= DR_NADDR)
318 return -1;
319
320 /* Now set up the register I to watch our region. */
321
322 /* Record the info in our local mirrored array. */
323 state->dr_mirror[i] = addr;
324 state->dr_ref_count[i] = 1;
325 I386_DR_SET_RW_LEN (state, i, len_rw_bits);
326 /* Note: we only enable the watchpoint locally, i.e. in the current
327 task. Currently, no i386 target allows or supports global
328 watchpoints; however, if any target would want that in the
329 future, GDB should probably provide a command to control whether
330 to enable watchpoints globally or locally, and the code below
331 should use global or local enable and slow-down flags as
332 appropriate. */
333 I386_DR_LOCAL_ENABLE (state, i);
334 state->dr_control_mirror |= DR_LOCAL_SLOWDOWN;
335 state->dr_control_mirror &= I386_DR_CONTROL_MASK;
336
337 return 0;
338}
339
340/* Remove a watchpoint at address ADDR, which is assumed to be aligned
341 according to the length of the region to watch. LEN_RW_BITS is the
342 value of the bits from DR7 which describes the length and access
343 type of the region watched by this watchpoint. Return 0 on
344 success, -1 on failure. */
345
346static int
347i386_remove_aligned_watchpoint (struct i386_debug_reg_state *state,
348 CORE_ADDR addr, unsigned len_rw_bits)
349{
350 int i, retval = -1;
351
352 ALL_DEBUG_REGISTERS (i)
353 {
354 if (!I386_DR_VACANT (state, i)
355 && state->dr_mirror[i] == addr
356 && I386_DR_GET_RW_LEN (state->dr_control_mirror, i) == len_rw_bits)
357 {
358 if (--state->dr_ref_count[i] == 0) /* No longer in use? */
359 {
360 /* Reset our mirror. */
361 state->dr_mirror[i] = 0;
362 I386_DR_DISABLE (state, i);
363 }
364 retval = 0;
365 }
366 }
367
368 return retval;
369}
370
371/* Insert or remove a (possibly non-aligned) watchpoint, or count the
372 number of debug registers required to watch a region at address
373 ADDR whose length is LEN for accesses of type TYPE. Return 0 on
374 successful insertion or removal, a positive number when queried
375 about the number of registers, or -1 on failure. If WHAT is not a
376 valid value, bombs through internal_error. */
377
378static int
379i386_handle_nonaligned_watchpoint (struct i386_debug_reg_state *state,
380 i386_wp_op_t what, CORE_ADDR addr, int len,
381 enum target_hw_bp_type type)
382{
383 int retval = 0;
384 int max_wp_len = TARGET_HAS_DR_LEN_8 ? 8 : 4;
385
386 static const int size_try_array[8][8] =
387 {
388 {1, 1, 1, 1, 1, 1, 1, 1}, /* Trying size one. */
389 {2, 1, 2, 1, 2, 1, 2, 1}, /* Trying size two. */
390 {2, 1, 2, 1, 2, 1, 2, 1}, /* Trying size three. */
391 {4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size four. */
392 {4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size five. */
393 {4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size six. */
394 {4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size seven. */
395 {8, 1, 2, 1, 4, 1, 2, 1}, /* Trying size eight. */
396 };
397
398 while (len > 0)
399 {
400 int align = addr % max_wp_len;
401 /* Four (eight on AMD64) is the maximum length a debug register
402 can watch. */
403 int try = (len > max_wp_len ? (max_wp_len - 1) : len - 1);
404 int size = size_try_array[try][align];
405
406 if (what == WP_COUNT)
407 {
408 /* size_try_array[] is defined such that each iteration
409 through the loop is guaranteed to produce an address and a
410 size that can be watched with a single debug register.
411 Thus, for counting the registers required to watch a
412 region, we simply need to increment the count on each
413 iteration. */
414 retval++;
415 }
416 else
417 {
418 unsigned len_rw = i386_length_and_rw_bits (size, type);
419
420 if (what == WP_INSERT)
421 retval = i386_insert_aligned_watchpoint (state, addr, len_rw);
422 else if (what == WP_REMOVE)
423 retval = i386_remove_aligned_watchpoint (state, addr, len_rw);
424 else
425 internal_error (__FILE__, __LINE__, _("\
426Invalid value %d of operation in i386_handle_nonaligned_watchpoint.\n"),
427 (int) what);
428 if (retval)
429 break;
430 }
431
432 addr += size;
433 len -= size;
434 }
435
436 return retval;
437}
438
439/* Update the inferior debug registers state, in STATE, with the
440 new debug registers state, in NEW_STATE. */
441
442static void
443i386_update_inferior_debug_regs (struct i386_debug_reg_state *state,
444 struct i386_debug_reg_state *new_state)
445{
446 int i;
447
448 ALL_DEBUG_REGISTERS (i)
449 {
450 if (I386_DR_VACANT (new_state, i) != I386_DR_VACANT (state, i))
451 i386_dr_low_set_addr (new_state, i);
452 else
453 gdb_assert (new_state->dr_mirror[i] == state->dr_mirror[i]);
454 }
455
456 if (new_state->dr_control_mirror != state->dr_control_mirror)
457 i386_dr_low_set_control (new_state);
458
459 *state = *new_state;
460}
461
462/* Insert a watchpoint to watch a memory region which starts at
463 address ADDR and whose length is LEN bytes. Watch memory accesses
464 of the type TYPE. Return 0 on success, -1 on failure. */
465
466int
467i386_dr_insert_watchpoint (struct i386_debug_reg_state *state,
468 enum target_hw_bp_type type,
469 CORE_ADDR addr, int len)
470{
471 int retval;
472 /* Work on a local copy of the debug registers, and on success,
473 commit the change back to the inferior. */
474 struct i386_debug_reg_state local_state = *state;
475
476 if (type == hw_read)
477 return 1; /* unsupported */
478
479 if (((len != 1 && len != 2 && len != 4)
480 && !(TARGET_HAS_DR_LEN_8 && len == 8))
481 || addr % len != 0)
482 {
483 retval = i386_handle_nonaligned_watchpoint (&local_state,
484 WP_INSERT,
485 addr, len, type);
486 }
487 else
488 {
489 unsigned len_rw = i386_length_and_rw_bits (len, type);
490
491 retval = i386_insert_aligned_watchpoint (&local_state,
492 addr, len_rw);
493 }
494
495 if (retval == 0)
496 i386_update_inferior_debug_regs (state, &local_state);
497
498 if (debug_hw_points)
499 i386_show_dr (state, "insert_watchpoint", addr, len, type);
500
501 return retval;
502}
503
504/* Remove a watchpoint that watched the memory region which starts at
505 address ADDR, whose length is LEN bytes, and for accesses of the
506 type TYPE. Return 0 on success, -1 on failure. */
507
508int
509i386_dr_remove_watchpoint (struct i386_debug_reg_state *state,
510 enum target_hw_bp_type type,
511 CORE_ADDR addr, int len)
512{
513 int retval;
514 /* Work on a local copy of the debug registers, and on success,
515 commit the change back to the inferior. */
516 struct i386_debug_reg_state local_state = *state;
517
518 if (((len != 1 && len != 2 && len != 4)
519 && !(TARGET_HAS_DR_LEN_8 && len == 8))
520 || addr % len != 0)
521 {
522 retval = i386_handle_nonaligned_watchpoint (&local_state,
523 WP_REMOVE,
524 addr, len, type);
525 }
526 else
527 {
528 unsigned len_rw = i386_length_and_rw_bits (len, type);
529
530 retval = i386_remove_aligned_watchpoint (&local_state,
531 addr, len_rw);
532 }
533
534 if (retval == 0)
535 i386_update_inferior_debug_regs (state, &local_state);
536
537 if (debug_hw_points)
538 i386_show_dr (state, "remove_watchpoint", addr, len, type);
539
540 return retval;
541}
542
543/* Return non-zero if we can watch a memory region that starts at
544 address ADDR and whose length is LEN bytes. */
545
546int
547i386_dr_region_ok_for_watchpoint (struct i386_debug_reg_state *state,
548 CORE_ADDR addr, int len)
549{
550 int nregs;
551
552 /* Compute how many aligned watchpoints we would need to cover this
553 region. */
554 nregs = i386_handle_nonaligned_watchpoint (state, WP_COUNT,
555 addr, len, hw_write);
556 return nregs <= DR_NADDR ? 1 : 0;
557}
558
559/* If the inferior has some break/watchpoint that triggered, set the
560 address associated with that break/watchpoint and return non-zero.
561 Otherwise, return zero. */
562
563int
564i386_dr_stopped_data_address (struct i386_debug_reg_state *state,
565 CORE_ADDR *addr_p)
566{
567 CORE_ADDR addr = 0;
568 int i;
569 int rc = 0;
570 /* The current thread's DR_STATUS. We always need to read this to
571 check whether some watchpoint caused the trap. */
572 unsigned status;
573 /* We need DR_CONTROL as well, but only iff DR_STATUS indicates a
574 data breakpoint trap. Only fetch it when necessary, to avoid an
575 unnecessary extra syscall when no watchpoint triggered. */
576 int control_p = 0;
577 unsigned control = 0;
578
579 /* In non-stop/async, threads can be running while we change the
580 global dr_mirror (and friends). Say, we set a watchpoint, and
581 let threads resume. Now, say you delete the watchpoint, or
582 add/remove watchpoints such that dr_mirror changes while threads
583 are running. On targets that support non-stop,
584 inserting/deleting watchpoints updates the global dr_mirror only.
585 It does not update the real thread's debug registers; that's only
586 done prior to resume. Instead, if threads are running when the
587 mirror changes, a temporary and transparent stop on all threads
588 is forced so they can get their copy of the debug registers
589 updated on re-resume. Now, say, a thread hit a watchpoint before
590 having been updated with the new dr_mirror contents, and we
591 haven't yet handled the corresponding SIGTRAP. If we trusted
592 dr_mirror below, we'd mistake the real trapped address (from the
593 last time we had updated debug registers in the thread) with
594 whatever was currently in dr_mirror. So to fix this, dr_mirror
595 always represents intention, what we _want_ threads to have in
596 debug registers. To get at the address and cause of the trap, we
597 need to read the state the thread still has in its debug
598 registers.
599
600 In sum, always get the current debug register values the current
601 thread has, instead of trusting the global mirror. If the thread
602 was running when we last changed watchpoints, the mirror no
603 longer represents what was set in this thread's debug
604 registers. */
605 status = i386_dr_low_get_status ();
606
607 ALL_DEBUG_REGISTERS (i)
608 {
609 if (!I386_DR_WATCH_HIT (status, i))
610 continue;
611
612 if (!control_p)
613 {
614 control = i386_dr_low_get_control ();
615 control_p = 1;
616 }
617
618 /* This second condition makes sure DRi is set up for a data
619 watchpoint, not a hardware breakpoint. The reason is that
620 GDB doesn't call the target_stopped_data_address method
621 except for data watchpoints. In other words, I'm being
622 paranoiac. */
623 if (I386_DR_GET_RW_LEN (control, i) != 0)
624 {
625 addr = i386_dr_low_get_addr (i);
626 rc = 1;
627 if (debug_hw_points)
628 i386_show_dr (state, "watchpoint_hit", addr, -1, hw_write);
629 }
630 }
631
632 if (debug_hw_points && addr == 0)
633 i386_show_dr (state, "stopped_data_addr", 0, 0, hw_write);
634
635 if (rc)
636 *addr_p = addr;
637 return rc;
638}
639
640/* Return non-zero if the inferior has some watchpoint that triggered.
641 Otherwise return zero. */
642
643int
644i386_dr_stopped_by_watchpoint (struct i386_debug_reg_state *state)
645{
646 CORE_ADDR addr = 0;
647 return i386_dr_stopped_data_address (state, &addr);
648}