]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/objfiles.c
* fileread.cc (File_read::~File_read): Don't delete whole_file_view_.
[thirdparty/binutils-gdb.git] / gdb / objfiles.c
CommitLineData
c906108c 1/* GDB routines for manipulating objfiles.
af5f3db6 2
6aba47ca 3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4c38e0a4 4 2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
af5f3db6 5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23/* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26#include "defs.h"
27#include "bfd.h" /* Binary File Description */
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "gdb-stabs.h"
32#include "target.h"
af5f3db6 33#include "bcache.h"
5b123146 34#include "mdebugread.h"
9bdcbae7
DJ
35#include "expression.h"
36#include "parser-defs.h"
37
0d0e1a63 38#include "gdb_assert.h"
c906108c
SS
39#include <sys/types.h>
40#include "gdb_stat.h"
41#include <fcntl.h>
04ea0df1 42#include "gdb_obstack.h"
c906108c 43#include "gdb_string.h"
2de7ced7 44#include "hashtab.h"
c906108c 45
7a292a7a 46#include "breakpoint.h"
fe898f56 47#include "block.h"
de4f826b 48#include "dictionary.h"
cb5d864f 49#include "source.h"
801e3a5b 50#include "addrmap.h"
5e2b427d 51#include "arch-utils.h"
30510692 52#include "exec.h"
a845f5cb 53#include "observer.h"
6fbf07cd 54#include "complaints.h"
7a292a7a 55
c906108c
SS
56/* Prototypes for local functions */
57
0d0e1a63
MK
58static void objfile_alloc_data (struct objfile *objfile);
59static void objfile_free_data (struct objfile *objfile);
60
c906108c
SS
61/* Externally visible variables that are owned by this module.
62 See declarations in objfile.h for more info. */
63
c906108c 64struct objfile *current_objfile; /* For symbol file being read in */
c906108c
SS
65struct objfile *rt_common_objfile; /* For runtime common symbols */
66
6c95b8df
PA
67struct objfile_pspace_info
68{
69 int objfiles_changed_p;
70 struct obj_section **sections;
71 int num_sections;
72};
73
74/* Per-program-space data key. */
75static const struct program_space_data *objfiles_pspace_data;
76
77static void
78objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
79{
80 struct objfile_pspace_info *info;
81
82 info = program_space_data (pspace, objfiles_pspace_data);
83 if (info != NULL)
84 {
85 xfree (info->sections);
86 xfree (info);
87 }
88}
89
90/* Get the current svr4 data. If none is found yet, add it now. This
91 function always returns a valid object. */
92
93static struct objfile_pspace_info *
94get_objfile_pspace_data (struct program_space *pspace)
95{
96 struct objfile_pspace_info *info;
97
98 info = program_space_data (pspace, objfiles_pspace_data);
99 if (info == NULL)
100 {
101 info = XZALLOC (struct objfile_pspace_info);
102 set_program_space_data (pspace, objfiles_pspace_data, info);
103 }
104
105 return info;
106}
107
a845f5cb
PP
108/* Records whether any objfiles appeared or disappeared since we last updated
109 address to obj section map. */
110
c906108c
SS
111/* Locate all mappable sections of a BFD file.
112 objfile_p_char is a char * to get it through
113 bfd_map_over_sections; we cast it back to its proper type. */
114
96baa820
JM
115/* Called via bfd_map_over_sections to build up the section table that
116 the objfile references. The objfile contains pointers to the start
117 of the table (objfile->sections) and to the first location after
118 the end of the table (objfile->sections_end). */
119
c906108c 120static void
7be0c536
AC
121add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
122 void *objfile_p_char)
c906108c
SS
123{
124 struct objfile *objfile = (struct objfile *) objfile_p_char;
125 struct obj_section section;
126 flagword aflag;
127
128 aflag = bfd_get_section_flags (abfd, asect);
129
ed7c5e43 130 if (!(aflag & SEC_ALLOC))
c906108c
SS
131 return;
132
133 if (0 == bfd_section_size (abfd, asect))
134 return;
c906108c
SS
135 section.objfile = objfile;
136 section.the_bfd_section = asect;
137 section.ovly_mapped = 0;
8b92e4d5 138 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
f1f6aadf
PA
139 objfile->sections_end
140 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
c906108c
SS
141}
142
143/* Builds a section table for OBJFILE.
144 Returns 0 if OK, 1 on error (in which case bfd_error contains the
96baa820
JM
145 error).
146
147 Note that while we are building the table, which goes into the
148 psymbol obstack, we hijack the sections_end pointer to instead hold
149 a count of the number of sections. When bfd_map_over_sections
150 returns, this count is used to compute the pointer to the end of
151 the sections table, which then overwrites the count.
152
153 Also note that the OFFSET and OVLY_MAPPED in each table entry
154 are initialized to zero.
155
156 Also note that if anything else writes to the psymbol obstack while
157 we are building the table, we're pretty much hosed. */
c906108c
SS
158
159int
fba45db2 160build_objfile_section_table (struct objfile *objfile)
c906108c
SS
161{
162 /* objfile->sections can be already set when reading a mapped symbol
163 file. I believe that we do need to rebuild the section table in
164 this case (we rebuild other things derived from the bfd), but we
8b92e4d5 165 can't free the old one (it's in the objfile_obstack). So we just
c906108c
SS
166 waste some memory. */
167
168 objfile->sections_end = 0;
f1f6aadf
PA
169 bfd_map_over_sections (objfile->obfd,
170 add_to_objfile_sections, (void *) objfile);
171 objfile->sections = obstack_finish (&objfile->objfile_obstack);
172 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
c5aa993b 173 return (0);
c906108c
SS
174}
175
2df3850c
JM
176/* Given a pointer to an initialized bfd (ABFD) and some flag bits
177 allocate a new objfile struct, fill it in as best we can, link it
178 into the list of all known objfiles, and return a pointer to the
179 new objfile struct.
c906108c 180
2df3850c 181 The FLAGS word contains various bits (OBJF_*) that can be taken as
78a4a9b9
AC
182 requests for specific operations. Other bits like OBJF_SHARED are
183 simply copied through to the new objfile flags member. */
c906108c 184
eb9a305d
DC
185/* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
186 by jv-lang.c, to create an artificial objfile used to hold
187 information about dynamically-loaded Java classes. Unfortunately,
188 that branch of this function doesn't get tested very frequently, so
189 it's prone to breakage. (E.g. at one time the name was set to NULL
190 in that situation, which broke a loop over all names in the dynamic
191 library loader.) If you change this function, please try to leave
192 things in a consistent state even if abfd is NULL. */
193
c906108c 194struct objfile *
fba45db2 195allocate_objfile (bfd *abfd, int flags)
c906108c 196{
2f6e5d7e 197 struct objfile *objfile;
c906108c 198
6a0fa043 199 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
2f6e5d7e
TG
200 objfile->psymbol_cache = bcache_xmalloc ();
201 objfile->macro_cache = bcache_xmalloc ();
10abe6bf 202 objfile->filename_cache = bcache_xmalloc ();
2f6e5d7e
TG
203 /* We could use obstack_specify_allocation here instead, but
204 gdb_obstack.h specifies the alloc/dealloc functions. */
205 obstack_init (&objfile->objfile_obstack);
206 terminate_minimal_symbol_table (objfile);
c906108c 207
0d0e1a63
MK
208 objfile_alloc_data (objfile);
209
c906108c
SS
210 /* Update the per-objfile information that comes from the bfd, ensuring
211 that any data that is reference is saved in the per-objfile data
212 region. */
213
3db741ef 214 objfile->obfd = gdb_bfd_ref (abfd);
c5aa993b 215 if (objfile->name != NULL)
c906108c 216 {
2dc74dc1 217 xfree (objfile->name);
c906108c
SS
218 }
219 if (abfd != NULL)
220 {
5e2b427d
UW
221 /* Look up the gdbarch associated with the BFD. */
222 objfile->gdbarch = gdbarch_from_bfd (abfd);
223
982526a1 224 objfile->name = xstrdup (bfd_get_filename (abfd));
c5aa993b 225 objfile->mtime = bfd_get_mtime (abfd);
c906108c
SS
226
227 /* Build section table. */
228
229 if (build_objfile_section_table (objfile))
230 {
8a3fe4f8 231 error (_("Can't find the file sections in `%s': %s"),
c5aa993b 232 objfile->name, bfd_errmsg (bfd_get_error ()));
c906108c
SS
233 }
234 }
eb9a305d
DC
235 else
236 {
982526a1 237 objfile->name = xstrdup ("<<anonymous objfile>>");
eb9a305d 238 }
c906108c 239
6c95b8df
PA
240 objfile->pspace = current_program_space;
241
b8fbeb18
EZ
242 /* Initialize the section indexes for this objfile, so that we can
243 later detect if they are used w/o being properly assigned to. */
244
5c4e30ca
DC
245 objfile->sect_index_text = -1;
246 objfile->sect_index_data = -1;
247 objfile->sect_index_bss = -1;
248 objfile->sect_index_rodata = -1;
249
250 /* We don't yet have a C++-specific namespace symtab. */
251
252 objfile->cp_namespace_symtab = NULL;
b8fbeb18 253
c906108c
SS
254 /* Add this file onto the tail of the linked list of other such files. */
255
c5aa993b 256 objfile->next = NULL;
c906108c
SS
257 if (object_files == NULL)
258 object_files = objfile;
259 else
260 {
2f6e5d7e
TG
261 struct objfile *last_one;
262
c906108c 263 for (last_one = object_files;
c5aa993b
JM
264 last_one->next;
265 last_one = last_one->next);
266 last_one->next = objfile;
c906108c
SS
267 }
268
2df3850c
JM
269 /* Save passed in flag bits. */
270 objfile->flags |= flags;
c906108c 271
6c95b8df
PA
272 /* Rebuild section map next time we need it. */
273 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
bb272892 274
6c95b8df 275 return objfile;
c906108c
SS
276}
277
5e2b427d
UW
278/* Retrieve the gdbarch associated with OBJFILE. */
279struct gdbarch *
280get_objfile_arch (struct objfile *objfile)
281{
282 return objfile->gdbarch;
283}
284
9ab9195f
EZ
285/* Initialize entry point information for this objfile. */
286
287void
288init_entry_point_info (struct objfile *objfile)
289{
290 /* Save startup file's range of PC addresses to help blockframe.c
291 decide where the bottom of the stack is. */
292
293 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
294 {
295 /* Executable file -- record its entry point so we'll recognize
296 the startup file because it contains the entry point. */
297 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
abd0a5fa 298 objfile->ei.entry_point_p = 1;
9ab9195f 299 }
574dffa2
DJ
300 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
301 && bfd_get_start_address (objfile->obfd) != 0)
abd0a5fa
JK
302 {
303 /* Some shared libraries may have entry points set and be
304 runnable. There's no clear way to indicate this, so just check
305 for values other than zero. */
306 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
307 objfile->ei.entry_point_p = 1;
308 }
9ab9195f
EZ
309 else
310 {
311 /* Examination of non-executable.o files. Short-circuit this stuff. */
abd0a5fa 312 objfile->ei.entry_point_p = 0;
9ab9195f 313 }
9ab9195f
EZ
314}
315
abd0a5fa
JK
316/* If there is a valid and known entry point, function fills *ENTRY_P with it
317 and returns non-zero; otherwise it returns zero. */
9ab9195f 318
abd0a5fa
JK
319int
320entry_point_address_query (CORE_ADDR *entry_p)
9ab9195f 321{
3612b192
DJ
322 struct gdbarch *gdbarch;
323 CORE_ADDR entry_point;
324
abd0a5fa 325 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
3612b192
DJ
326 return 0;
327
328 gdbarch = get_objfile_arch (symfile_objfile);
329
330 entry_point = symfile_objfile->ei.entry_point;
331
332 /* Make certain that the address points at real code, and not a
333 function descriptor. */
334 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
335 &current_target);
336
337 /* Remove any ISA markers, so that this matches entries in the
338 symbol table. */
339 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
340
abd0a5fa
JK
341 *entry_p = entry_point;
342 return 1;
343}
344
345/* Get current entry point address. Call error if it is not known. */
346
347CORE_ADDR
348entry_point_address (void)
349{
350 CORE_ADDR retval;
351
352 if (!entry_point_address_query (&retval))
353 error (_("Entry point address is not known."));
354
355 return retval;
9ab9195f 356}
15831452
JB
357
358/* Create the terminating entry of OBJFILE's minimal symbol table.
359 If OBJFILE->msymbols is zero, allocate a single entry from
4a146b47 360 OBJFILE->objfile_obstack; otherwise, just initialize
15831452
JB
361 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
362void
363terminate_minimal_symbol_table (struct objfile *objfile)
364{
365 if (! objfile->msymbols)
366 objfile->msymbols = ((struct minimal_symbol *)
4a146b47 367 obstack_alloc (&objfile->objfile_obstack,
15831452
JB
368 sizeof (objfile->msymbols[0])));
369
370 {
371 struct minimal_symbol *m
372 = &objfile->msymbols[objfile->minimal_symbol_count];
373
374 memset (m, 0, sizeof (*m));
5bf0017e
EZ
375 /* Don't rely on these enumeration values being 0's. */
376 MSYMBOL_TYPE (m) = mst_unknown;
15831452
JB
377 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
378 }
379}
380
15d123c9
TG
381/* Iterator on PARENT and every separate debug objfile of PARENT.
382 The usage pattern is:
383 for (objfile = parent;
384 objfile;
385 objfile = objfile_separate_debug_iterate (parent, objfile))
386 ...
387*/
388
389struct objfile *
390objfile_separate_debug_iterate (const struct objfile *parent,
391 const struct objfile *objfile)
392{
393 struct objfile *res;
394
399f313b 395 /* If any, return the first child. */
15d123c9
TG
396 res = objfile->separate_debug_objfile;
397 if (res)
398 return res;
399
15d123c9
TG
400 /* Common case where there is no separate debug objfile. */
401 if (objfile == parent)
402 return NULL;
403
399f313b
TG
404 /* Return the brother if any. Note that we don't iterate on brothers of
405 the parents. */
406 res = objfile->separate_debug_objfile_link;
407 if (res)
408 return res;
409
15d123c9
TG
410 for (res = objfile->separate_debug_objfile_backlink;
411 res != parent;
412 res = res->separate_debug_objfile_backlink)
413 {
414 gdb_assert (res != NULL);
415 if (res->separate_debug_objfile_link)
416 return res->separate_debug_objfile_link;
417 }
418 return NULL;
419}
15831452 420
5b5d99cf
JB
421/* Put one object file before a specified on in the global list.
422 This can be used to make sure an object file is destroyed before
423 another when using ALL_OBJFILES_SAFE to free all objfiles. */
424void
425put_objfile_before (struct objfile *objfile, struct objfile *before_this)
426{
427 struct objfile **objp;
428
429 unlink_objfile (objfile);
430
431 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
432 {
433 if (*objp == before_this)
434 {
435 objfile->next = *objp;
436 *objp = objfile;
437 return;
438 }
439 }
440
441 internal_error (__FILE__, __LINE__,
e2e0b3e5 442 _("put_objfile_before: before objfile not in list"));
5b5d99cf
JB
443}
444
c906108c
SS
445/* Put OBJFILE at the front of the list. */
446
447void
fba45db2 448objfile_to_front (struct objfile *objfile)
c906108c
SS
449{
450 struct objfile **objp;
451 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
452 {
453 if (*objp == objfile)
454 {
455 /* Unhook it from where it is. */
456 *objp = objfile->next;
457 /* Put it in the front. */
458 objfile->next = object_files;
459 object_files = objfile;
460 break;
461 }
462 }
463}
464
465/* Unlink OBJFILE from the list of known objfiles, if it is found in the
466 list.
467
468 It is not a bug, or error, to call this function if OBJFILE is not known
469 to be in the current list. This is done in the case of mapped objfiles,
470 for example, just to ensure that the mapped objfile doesn't appear twice
471 in the list. Since the list is threaded, linking in a mapped objfile
472 twice would create a circular list.
473
474 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
475 unlinking it, just to ensure that we have completely severed any linkages
476 between the OBJFILE and the list. */
477
478void
fba45db2 479unlink_objfile (struct objfile *objfile)
c906108c 480{
c5aa993b 481 struct objfile **objpp;
c906108c 482
c5aa993b 483 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
c906108c 484 {
c5aa993b 485 if (*objpp == objfile)
c906108c 486 {
c5aa993b
JM
487 *objpp = (*objpp)->next;
488 objfile->next = NULL;
07cd4b97 489 return;
c906108c
SS
490 }
491 }
07cd4b97 492
8e65ff28 493 internal_error (__FILE__, __LINE__,
e2e0b3e5 494 _("unlink_objfile: objfile already unlinked"));
c906108c
SS
495}
496
15d123c9
TG
497/* Add OBJFILE as a separate debug objfile of PARENT. */
498
499void
500add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
501{
502 gdb_assert (objfile && parent);
503
504 /* Must not be already in a list. */
505 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
506 gdb_assert (objfile->separate_debug_objfile_link == NULL);
507
508 objfile->separate_debug_objfile_backlink = parent;
509 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
510 parent->separate_debug_objfile = objfile;
511
512 /* Put the separate debug object before the normal one, this is so that
513 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
514 put_objfile_before (objfile, parent);
515}
516
517/* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
518 itself. */
519
520void
521free_objfile_separate_debug (struct objfile *objfile)
522{
523 struct objfile *child;
524
525 for (child = objfile->separate_debug_objfile; child;)
526 {
527 struct objfile *next_child = child->separate_debug_objfile_link;
528 free_objfile (child);
529 child = next_child;
530 }
531}
c906108c
SS
532
533/* Destroy an objfile and all the symtabs and psymtabs under it. Note
4a146b47
EZ
534 that as much as possible is allocated on the objfile_obstack
535 so that the memory can be efficiently freed.
c906108c
SS
536
537 Things which we do NOT free because they are not in malloc'd memory
538 or not in memory specific to the objfile include:
539
c5aa993b 540 objfile -> sf
c906108c
SS
541
542 FIXME: If the objfile is using reusable symbol information (via mmalloc),
543 then we need to take into account the fact that more than one process
544 may be using the symbol information at the same time (when mmalloc is
545 extended to support cooperative locking). When more than one process
546 is using the mapped symbol info, we need to be more careful about when
547 we free objects in the reusable area. */
548
549void
fba45db2 550free_objfile (struct objfile *objfile)
c906108c 551{
15d123c9
TG
552 /* Free all separate debug objfiles. */
553 free_objfile_separate_debug (objfile);
554
5b5d99cf
JB
555 if (objfile->separate_debug_objfile_backlink)
556 {
557 /* We freed the separate debug file, make sure the base objfile
558 doesn't reference it. */
15d123c9
TG
559 struct objfile *child;
560
561 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
562
563 if (child == objfile)
564 {
565 /* OBJFILE is the first child. */
566 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
567 objfile->separate_debug_objfile_link;
568 }
569 else
570 {
571 /* Find OBJFILE in the list. */
572 while (1)
573 {
574 if (child->separate_debug_objfile_link == objfile)
575 {
576 child->separate_debug_objfile_link =
577 objfile->separate_debug_objfile_link;
578 break;
579 }
580 child = child->separate_debug_objfile_link;
581 gdb_assert (child);
582 }
583 }
5b5d99cf
JB
584 }
585
ae5a43e0
DJ
586 /* Remove any references to this objfile in the global value
587 lists. */
588 preserve_values (objfile);
589
c906108c
SS
590 /* First do any symbol file specific actions required when we are
591 finished with a particular symbol file. Note that if the objfile
592 is using reusable symbol information (via mmalloc) then each of
593 these routines is responsible for doing the correct thing, either
594 freeing things which are valid only during this particular gdb
595 execution, or leaving them to be reused during the next one. */
596
c5aa993b 597 if (objfile->sf != NULL)
c906108c 598 {
c5aa993b 599 (*objfile->sf->sym_finish) (objfile);
c906108c
SS
600 }
601
c5bc3a77
DJ
602 /* Discard any data modules have associated with the objfile. */
603 objfile_free_data (objfile);
604
e3c69974 605 gdb_bfd_unref (objfile->obfd);
c906108c
SS
606
607 /* Remove it from the chain of all objfiles. */
608
609 unlink_objfile (objfile);
610
adb7f338
JK
611 if (objfile == symfile_objfile)
612 symfile_objfile = NULL;
c906108c
SS
613
614 if (objfile == rt_common_objfile)
615 rt_common_objfile = NULL;
616
617 /* Before the symbol table code was redone to make it easier to
618 selectively load and remove information particular to a specific
619 linkage unit, gdb used to do these things whenever the monolithic
620 symbol table was blown away. How much still needs to be done
621 is unknown, but we play it safe for now and keep each action until
622 it is shown to be no longer needed. */
c5aa993b 623
cb5d864f
FF
624 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
625 for example), so we need to call this here. */
c906108c
SS
626 clear_pc_function_cache ();
627
9bdcbae7
DJ
628 /* Clear globals which might have pointed into a removed objfile.
629 FIXME: It's not clear which of these are supposed to persist
630 between expressions and which ought to be reset each time. */
631 expression_context_block = NULL;
632 innermost_block = NULL;
633
cb5d864f
FF
634 /* Check to see if the current_source_symtab belongs to this objfile,
635 and if so, call clear_current_source_symtab_and_line. */
636
637 {
638 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
639 struct symtab *s;
640
641 ALL_OBJFILE_SYMTABS (objfile, s)
642 {
643 if (s == cursal.symtab)
644 clear_current_source_symtab_and_line ();
645 }
646 }
647
78a4a9b9 648 /* The last thing we do is free the objfile struct itself. */
c906108c 649
78a4a9b9 650 if (objfile->name != NULL)
c906108c 651 {
2dc74dc1 652 xfree (objfile->name);
c906108c 653 }
78a4a9b9 654 if (objfile->global_psymbols.list)
2dc74dc1 655 xfree (objfile->global_psymbols.list);
78a4a9b9 656 if (objfile->static_psymbols.list)
2dc74dc1 657 xfree (objfile->static_psymbols.list);
78a4a9b9
AC
658 /* Free the obstacks for non-reusable objfiles */
659 bcache_xfree (objfile->psymbol_cache);
660 bcache_xfree (objfile->macro_cache);
10abe6bf 661 bcache_xfree (objfile->filename_cache);
78a4a9b9
AC
662 if (objfile->demangled_names_hash)
663 htab_delete (objfile->demangled_names_hash);
b99607ea 664 obstack_free (&objfile->objfile_obstack, 0);
6c95b8df
PA
665
666 /* Rebuild section map next time we need it. */
667 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
668
2dc74dc1 669 xfree (objfile);
c906108c
SS
670}
671
74b7792f
AC
672static void
673do_free_objfile_cleanup (void *obj)
674{
675 free_objfile (obj);
676}
677
678struct cleanup *
679make_cleanup_free_objfile (struct objfile *obj)
680{
681 return make_cleanup (do_free_objfile_cleanup, obj);
682}
c906108c
SS
683
684/* Free all the object files at once and clean up their users. */
685
686void
fba45db2 687free_all_objfiles (void)
c906108c
SS
688{
689 struct objfile *objfile, *temp;
690
691 ALL_OBJFILES_SAFE (objfile, temp)
c5aa993b
JM
692 {
693 free_objfile (objfile);
694 }
c906108c
SS
695 clear_symtab_users ();
696}
697\f
698/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
b260e109
JK
699 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
700 Return non-zero iff any change happened. */
567995e1 701
b260e109 702static int
567995e1 703objfile_relocate1 (struct objfile *objfile, struct section_offsets *new_offsets)
c906108c 704{
30510692 705 struct obj_section *s;
d4f3574e 706 struct section_offsets *delta =
a39a16c4
MM
707 ((struct section_offsets *)
708 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
c906108c
SS
709
710 {
711 int i;
712 int something_changed = 0;
713 for (i = 0; i < objfile->num_sections; ++i)
714 {
a4c8257b 715 delta->offsets[i] =
c906108c
SS
716 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
717 if (ANOFFSET (delta, i) != 0)
718 something_changed = 1;
719 }
720 if (!something_changed)
b260e109 721 return 0;
c906108c
SS
722 }
723
724 /* OK, get all the symtabs. */
725 {
726 struct symtab *s;
727
728 ALL_OBJFILE_SYMTABS (objfile, s)
c5aa993b
JM
729 {
730 struct linetable *l;
731 struct blockvector *bv;
732 int i;
733
734 /* First the line table. */
735 l = LINETABLE (s);
736 if (l)
737 {
738 for (i = 0; i < l->nitems; ++i)
739 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
740 }
c906108c 741
c5aa993b
JM
742 /* Don't relocate a shared blockvector more than once. */
743 if (!s->primary)
744 continue;
c906108c 745
c5aa993b 746 bv = BLOCKVECTOR (s);
b101f7a1
UW
747 if (BLOCKVECTOR_MAP (bv))
748 addrmap_relocate (BLOCKVECTOR_MAP (bv),
749 ANOFFSET (delta, s->block_line_section));
750
c5aa993b
JM
751 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
752 {
753 struct block *b;
e88c90f2 754 struct symbol *sym;
de4f826b 755 struct dict_iterator iter;
c5aa993b
JM
756
757 b = BLOCKVECTOR_BLOCK (bv, i);
758 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
759 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
760
de4f826b 761 ALL_BLOCK_SYMBOLS (b, iter, sym)
c5aa993b 762 {
7a78d0ee
KB
763 fixup_symbol_section (sym, objfile);
764
c5aa993b 765 /* The RS6000 code from which this was taken skipped
176620f1 766 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
c5aa993b
JM
767 But I'm leaving out that test, on the theory that
768 they can't possibly pass the tests below. */
769 if ((SYMBOL_CLASS (sym) == LOC_LABEL
0bb4e8c4 770 || SYMBOL_CLASS (sym) == LOC_STATIC)
c5aa993b
JM
771 && SYMBOL_SECTION (sym) >= 0)
772 {
773 SYMBOL_VALUE_ADDRESS (sym) +=
774 ANOFFSET (delta, SYMBOL_SECTION (sym));
775 }
c5aa993b
JM
776 }
777 }
778 }
c906108c
SS
779 }
780
9b14d7aa
JK
781 if (objfile->psymtabs_addrmap)
782 addrmap_relocate (objfile->psymtabs_addrmap,
783 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
784
c906108c
SS
785 {
786 struct partial_symtab *p;
787
788 ALL_OBJFILE_PSYMTABS (objfile, p)
c5aa993b 789 {
b8fbeb18
EZ
790 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
791 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
c5aa993b 792 }
c906108c
SS
793 }
794
795 {
796 struct partial_symbol **psym;
797
798 for (psym = objfile->global_psymbols.list;
799 psym < objfile->global_psymbols.next;
800 psym++)
7a78d0ee
KB
801 {
802 fixup_psymbol_section (*psym, objfile);
803 if (SYMBOL_SECTION (*psym) >= 0)
804 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
805 SYMBOL_SECTION (*psym));
806 }
c906108c
SS
807 for (psym = objfile->static_psymbols.list;
808 psym < objfile->static_psymbols.next;
809 psym++)
7a78d0ee
KB
810 {
811 fixup_psymbol_section (*psym, objfile);
812 if (SYMBOL_SECTION (*psym) >= 0)
813 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
814 SYMBOL_SECTION (*psym));
815 }
c906108c
SS
816 }
817
818 {
819 struct minimal_symbol *msym;
820 ALL_OBJFILE_MSYMBOLS (objfile, msym)
821 if (SYMBOL_SECTION (msym) >= 0)
c5aa993b 822 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
c906108c
SS
823 }
824 /* Relocating different sections by different amounts may cause the symbols
825 to be out of order. */
826 msymbols_sort (objfile);
827
abd0a5fa 828 if (objfile->ei.entry_point_p)
36b0c0e0
PS
829 {
830 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
831 only as a fallback. */
832 struct obj_section *s;
833 s = find_pc_section (objfile->ei.entry_point);
834 if (s)
835 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
836 else
837 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
838 }
839
f1f2b5f4
PA
840 {
841 int i;
842 for (i = 0; i < objfile->num_sections; ++i)
843 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
844 }
845
846 /* Rebuild section map next time we need it. */
6c95b8df 847 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
f1f2b5f4 848
30510692
DJ
849 /* Update the table in exec_ops, used to read memory. */
850 ALL_OBJFILE_OSECTIONS (objfile, s)
851 {
852 int idx = s->the_bfd_section->index;
853
854 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
f1f6aadf 855 obj_section_addr (s));
30510692 856 }
b260e109
JK
857
858 /* Data changed. */
859 return 1;
567995e1
JK
860}
861
862/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
863 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
864
865 The number and ordering of sections does differ between the two objfiles.
866 Only their names match. Also the file offsets will differ (objfile being
867 possibly prelinked but separate_debug_objfile is probably not prelinked) but
868 the in-memory absolute address as specified by NEW_OFFSETS must match both
869 files. */
870
871void
872objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
873{
874 struct objfile *debug_objfile;
b260e109 875 int changed = 0;
567995e1 876
b260e109 877 changed |= objfile_relocate1 (objfile, new_offsets);
567995e1
JK
878
879 for (debug_objfile = objfile->separate_debug_objfile;
880 debug_objfile;
881 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
882 {
883 struct section_addr_info *objfile_addrs;
884 struct section_offsets *new_debug_offsets;
885 int new_debug_num_sections;
886 struct cleanup *my_cleanups;
887
888 objfile_addrs = build_section_addr_info_from_objfile (objfile);
889 my_cleanups = make_cleanup (xfree, objfile_addrs);
890
891 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
892 relative ones must be already created according to debug_objfile. */
893
894 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
895
896 gdb_assert (debug_objfile->num_sections
897 == bfd_count_sections (debug_objfile->obfd));
898 new_debug_offsets = xmalloc (SIZEOF_N_SECTION_OFFSETS
899 (debug_objfile->num_sections));
900 make_cleanup (xfree, new_debug_offsets);
901 relative_addr_info_to_section_offsets (new_debug_offsets,
902 debug_objfile->num_sections,
903 objfile_addrs);
904
b260e109 905 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
567995e1
JK
906
907 do_cleanups (my_cleanups);
908 }
30510692 909
c906108c 910 /* Relocate breakpoints as necessary, after things are relocated. */
b260e109
JK
911 if (changed)
912 breakpoint_re_set ();
c906108c
SS
913}
914\f
55333a84
DE
915/* Return non-zero if OBJFILE has partial symbols. */
916
917int
918objfile_has_partial_symbols (struct objfile *objfile)
919{
920 return objfile->psymtabs != NULL;
921}
922
923/* Return non-zero if OBJFILE has full symbols. */
924
925int
926objfile_has_full_symbols (struct objfile *objfile)
927{
928 return objfile->symtabs != NULL;
929}
930
e361b228 931/* Return non-zero if OBJFILE has full or partial symbols, either directly
15d123c9 932 or through a separate debug file. */
e361b228
TG
933
934int
935objfile_has_symbols (struct objfile *objfile)
936{
15d123c9 937 struct objfile *o;
e361b228 938
15d123c9
TG
939 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
940 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
941 return 1;
e361b228
TG
942 return 0;
943}
944
945
c906108c
SS
946/* Many places in gdb want to test just to see if we have any partial
947 symbols available. This function returns zero if none are currently
948 available, nonzero otherwise. */
949
950int
fba45db2 951have_partial_symbols (void)
c906108c
SS
952{
953 struct objfile *ofp;
954
955 ALL_OBJFILES (ofp)
c5aa993b 956 {
55333a84
DE
957 if (objfile_has_partial_symbols (ofp))
958 return 1;
c5aa993b 959 }
c906108c
SS
960 return 0;
961}
962
963/* Many places in gdb want to test just to see if we have any full
964 symbols available. This function returns zero if none are currently
965 available, nonzero otherwise. */
966
967int
fba45db2 968have_full_symbols (void)
c906108c
SS
969{
970 struct objfile *ofp;
971
972 ALL_OBJFILES (ofp)
c5aa993b 973 {
55333a84
DE
974 if (objfile_has_full_symbols (ofp))
975 return 1;
c5aa993b 976 }
c906108c
SS
977 return 0;
978}
979
980
981/* This operations deletes all objfile entries that represent solibs that
982 weren't explicitly loaded by the user, via e.g., the add-symbol-file
983 command.
c5aa993b 984 */
c906108c 985void
fba45db2 986objfile_purge_solibs (void)
c906108c 987{
c5aa993b
JM
988 struct objfile *objf;
989 struct objfile *temp;
c906108c
SS
990
991 ALL_OBJFILES_SAFE (objf, temp)
992 {
993 /* We assume that the solib package has been purged already, or will
994 be soon.
c5aa993b 995 */
2df3850c 996 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
c906108c
SS
997 free_objfile (objf);
998 }
999}
1000
1001
1002/* Many places in gdb want to test just to see if we have any minimal
1003 symbols available. This function returns zero if none are currently
1004 available, nonzero otherwise. */
1005
1006int
fba45db2 1007have_minimal_symbols (void)
c906108c
SS
1008{
1009 struct objfile *ofp;
1010
1011 ALL_OBJFILES (ofp)
c5aa993b 1012 {
15831452 1013 if (ofp->minimal_symbol_count > 0)
c5aa993b
JM
1014 {
1015 return 1;
1016 }
1017 }
c906108c
SS
1018 return 0;
1019}
1020
a845f5cb
PP
1021/* Qsort comparison function. */
1022
1023static int
1024qsort_cmp (const void *a, const void *b)
1025{
1026 const struct obj_section *sect1 = *(const struct obj_section **) a;
1027 const struct obj_section *sect2 = *(const struct obj_section **) b;
1028 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1029 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1030
1031 if (sect1_addr < sect2_addr)
6fbf07cd 1032 return -1;
a845f5cb 1033 else if (sect1_addr > sect2_addr)
6fbf07cd
PP
1034 return 1;
1035 else
1036 {
1037 /* Sections are at the same address. This could happen if
1038 A) we have an objfile and a separate debuginfo.
1039 B) we are confused, and have added sections without proper relocation,
1040 or something like that. */
1041
1042 const struct objfile *const objfile1 = sect1->objfile;
1043 const struct objfile *const objfile2 = sect2->objfile;
1044
1045 if (objfile1->separate_debug_objfile == objfile2
1046 || objfile2->separate_debug_objfile == objfile1)
1047 {
1048 /* Case A. The ordering doesn't matter: separate debuginfo files
1049 will be filtered out later. */
1050
1051 return 0;
1052 }
1053
1054 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1055 triage. This section could be slow (since we iterate over all
1056 objfiles in each call to qsort_cmp), but this shouldn't happen
1057 very often (GDB is already in a confused state; one hopes this
1058 doesn't happen at all). If you discover that significant time is
1059 spent in the loops below, do 'set complaints 100' and examine the
1060 resulting complaints. */
1061
1062 if (objfile1 == objfile2)
1063 {
1064 /* Both sections came from the same objfile. We are really confused.
1065 Sort on sequence order of sections within the objfile. */
1066
1067 const struct obj_section *osect;
1068
1069 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1070 if (osect == sect1)
1071 return -1;
1072 else if (osect == sect2)
1073 return 1;
1074
1075 /* We should have found one of the sections before getting here. */
1076 gdb_assert (0);
1077 }
1078 else
1079 {
1080 /* Sort on sequence number of the objfile in the chain. */
1081
1082 const struct objfile *objfile;
1083
1084 ALL_OBJFILES (objfile)
1085 if (objfile == objfile1)
1086 return -1;
1087 else if (objfile == objfile2)
1088 return 1;
1089
1090 /* We should have found one of the objfiles before getting here. */
1091 gdb_assert (0);
1092 }
1093
1094 }
1095
1096 /* Unreachable. */
1097 gdb_assert (0);
a845f5cb
PP
1098 return 0;
1099}
1100
3aad21cf
PP
1101/* Select "better" obj_section to keep. We prefer the one that came from
1102 the real object, rather than the one from separate debuginfo.
1103 Most of the time the two sections are exactly identical, but with
1104 prelinking the .rel.dyn section in the real object may have different
1105 size. */
1106
1107static struct obj_section *
1108preferred_obj_section (struct obj_section *a, struct obj_section *b)
1109{
1110 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1111 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1112 || (b->objfile->separate_debug_objfile == a->objfile));
1113 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1114 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1115
1116 if (a->objfile->separate_debug_objfile != NULL)
1117 return a;
1118 return b;
1119}
1120
6fbf07cd
PP
1121/* Return 1 if SECTION should be inserted into the section map.
1122 We want to insert only non-overlay and non-TLS section. */
1123
1124static int
1125insert_section_p (const struct bfd *abfd,
1126 const struct bfd_section *section)
1127{
1128 const bfd_vma lma = bfd_section_lma (abfd, section);
1129
1130 if (lma != 0 && lma != bfd_section_vma (abfd, section)
1131 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1132 /* This is an overlay section. IN_MEMORY check is needed to avoid
1133 discarding sections from the "system supplied DSO" (aka vdso)
1134 on some Linux systems (e.g. Fedora 11). */
1135 return 0;
1136 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1137 /* This is a TLS section. */
1138 return 0;
1139
1140 return 1;
1141}
1142
1143/* Filter out overlapping sections where one section came from the real
1144 objfile, and the other from a separate debuginfo file.
1145 Return the size of table after redundant sections have been eliminated. */
1146
1147static int
1148filter_debuginfo_sections (struct obj_section **map, int map_size)
1149{
1150 int i, j;
1151
1152 for (i = 0, j = 0; i < map_size - 1; i++)
1153 {
1154 struct obj_section *const sect1 = map[i];
1155 struct obj_section *const sect2 = map[i + 1];
1156 const struct objfile *const objfile1 = sect1->objfile;
1157 const struct objfile *const objfile2 = sect2->objfile;
1158 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1159 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1160
1161 if (sect1_addr == sect2_addr
1162 && (objfile1->separate_debug_objfile == objfile2
1163 || objfile2->separate_debug_objfile == objfile1))
1164 {
1165 map[j++] = preferred_obj_section (sect1, sect2);
1166 ++i;
1167 }
1168 else
1169 map[j++] = sect1;
1170 }
1171
1172 if (i < map_size)
1173 {
1174 gdb_assert (i == map_size - 1);
1175 map[j++] = map[i];
1176 }
1177
1178 /* The map should not have shrunk to less than half the original size. */
1179 gdb_assert (map_size / 2 <= j);
1180
1181 return j;
1182}
1183
1184/* Filter out overlapping sections, issuing a warning if any are found.
1185 Overlapping sections could really be overlay sections which we didn't
1186 classify as such in insert_section_p, or we could be dealing with a
1187 corrupt binary. */
1188
1189static int
1190filter_overlapping_sections (struct obj_section **map, int map_size)
1191{
1192 int i, j;
1193
1194 for (i = 0, j = 0; i < map_size - 1; )
1195 {
1196 int k;
1197
1198 map[j++] = map[i];
1199 for (k = i + 1; k < map_size; k++)
1200 {
1201 struct obj_section *const sect1 = map[i];
1202 struct obj_section *const sect2 = map[k];
1203 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1204 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1205 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1206
1207 gdb_assert (sect1_addr <= sect2_addr);
1208
1209 if (sect1_endaddr <= sect2_addr)
1210 break;
1211 else
1212 {
1213 /* We have an overlap. Report it. */
1214
1215 struct objfile *const objf1 = sect1->objfile;
1216 struct objfile *const objf2 = sect2->objfile;
1217
1218 const struct bfd *const abfd1 = objf1->obfd;
1219 const struct bfd *const abfd2 = objf2->obfd;
1220
1221 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1222 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1223
1224 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1225
1226 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1227
1228 complaint (&symfile_complaints,
1229 _("unexpected overlap between:\n"
1230 " (A) section `%s' from `%s' [%s, %s)\n"
1231 " (B) section `%s' from `%s' [%s, %s).\n"
1232 "Will ignore section B"),
1233 bfd_section_name (abfd1, bfds1), objf1->name,
1234 paddress (gdbarch, sect1_addr),
1235 paddress (gdbarch, sect1_endaddr),
1236 bfd_section_name (abfd2, bfds2), objf2->name,
1237 paddress (gdbarch, sect2_addr),
1238 paddress (gdbarch, sect2_endaddr));
1239 }
1240 }
1241 i = k;
1242 }
1243
1244 if (i < map_size)
1245 {
1246 gdb_assert (i == map_size - 1);
1247 map[j++] = map[i];
1248 }
1249
1250 return j;
1251}
1252
1253
1254/* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1255 TLS, overlay and overlapping sections. */
a845f5cb
PP
1256
1257static void
6c95b8df
PA
1258update_section_map (struct program_space *pspace,
1259 struct obj_section ***pmap, int *pmap_size)
a845f5cb 1260{
6fbf07cd 1261 int alloc_size, map_size, i;
a845f5cb
PP
1262 struct obj_section *s, **map;
1263 struct objfile *objfile;
1264
6c95b8df 1265 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
a845f5cb
PP
1266
1267 map = *pmap;
1268 xfree (map);
1269
6fbf07cd 1270 alloc_size = 0;
6c95b8df
PA
1271 ALL_PSPACE_OBJFILES (pspace, objfile)
1272 ALL_OBJFILE_OSECTIONS (objfile, s)
1273 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1274 alloc_size += 1;
a845f5cb 1275
65a97ab3
PP
1276 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1277 if (alloc_size == 0)
1278 {
1279 *pmap = NULL;
1280 *pmap_size = 0;
1281 return;
1282 }
1283
6fbf07cd 1284 map = xmalloc (alloc_size * sizeof (*map));
a845f5cb 1285
3aad21cf 1286 i = 0;
6c95b8df
PA
1287 ALL_PSPACE_OBJFILES (pspace, objfile)
1288 ALL_OBJFILE_OSECTIONS (objfile, s)
1289 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1290 map[i++] = s;
a845f5cb 1291
6fbf07cd
PP
1292 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1293 map_size = filter_debuginfo_sections(map, alloc_size);
1294 map_size = filter_overlapping_sections(map, map_size);
a845f5cb 1295
6fbf07cd
PP
1296 if (map_size < alloc_size)
1297 /* Some sections were eliminated. Trim excess space. */
1298 map = xrealloc (map, map_size * sizeof (*map));
3aad21cf 1299 else
6fbf07cd 1300 gdb_assert (alloc_size == map_size);
3aad21cf 1301
a845f5cb
PP
1302 *pmap = map;
1303 *pmap_size = map_size;
1304}
1305
1306/* Bsearch comparison function. */
1307
1308static int
1309bsearch_cmp (const void *key, const void *elt)
1310{
1311 const CORE_ADDR pc = *(CORE_ADDR *) key;
1312 const struct obj_section *section = *(const struct obj_section **) elt;
1313
1314 if (pc < obj_section_addr (section))
1315 return -1;
1316 if (pc < obj_section_endaddr (section))
1317 return 0;
1318 return 1;
1319}
1320
714835d5 1321/* Returns a section whose range includes PC or NULL if none found. */
c906108c
SS
1322
1323struct obj_section *
714835d5 1324find_pc_section (CORE_ADDR pc)
c906108c 1325{
6c95b8df 1326 struct objfile_pspace_info *pspace_info;
a845f5cb 1327 struct obj_section *s, **sp;
c5aa993b 1328
714835d5
UW
1329 /* Check for mapped overlay section first. */
1330 s = find_pc_mapped_section (pc);
1331 if (s)
1332 return s;
c906108c 1333
6c95b8df
PA
1334 pspace_info = get_objfile_pspace_data (current_program_space);
1335 if (pspace_info->objfiles_changed_p != 0)
a845f5cb 1336 {
6c95b8df
PA
1337 update_section_map (current_program_space,
1338 &pspace_info->sections,
1339 &pspace_info->num_sections);
c906108c 1340
6c95b8df
PA
1341 /* Don't need updates to section map until objfiles are added,
1342 removed or relocated. */
1343 pspace_info->objfiles_changed_p = 0;
a845f5cb
PP
1344 }
1345
65a97ab3
PP
1346 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1347 bsearch be non-NULL. */
1348 if (pspace_info->sections == NULL)
1349 {
1350 gdb_assert (pspace_info->num_sections == 0);
1351 return NULL;
1352 }
1353
6c95b8df
PA
1354 sp = (struct obj_section **) bsearch (&pc,
1355 pspace_info->sections,
1356 pspace_info->num_sections,
1357 sizeof (*pspace_info->sections),
1358 bsearch_cmp);
a845f5cb
PP
1359 if (sp != NULL)
1360 return *sp;
714835d5 1361 return NULL;
c906108c 1362}
c5aa993b 1363
c906108c
SS
1364
1365/* In SVR4, we recognize a trampoline by it's section name.
1366 That is, if the pc is in a section named ".plt" then we are in
1367 a trampoline. */
1368
1369int
fba45db2 1370in_plt_section (CORE_ADDR pc, char *name)
c906108c
SS
1371{
1372 struct obj_section *s;
1373 int retval = 0;
c5aa993b
JM
1374
1375 s = find_pc_section (pc);
1376
c906108c
SS
1377 retval = (s != NULL
1378 && s->the_bfd_section->name != NULL
6314a349 1379 && strcmp (s->the_bfd_section->name, ".plt") == 0);
c5aa993b 1380 return (retval);
c906108c 1381}
0d0e1a63
MK
1382\f
1383
1384/* Keep a registry of per-objfile data-pointers required by other GDB
1385 modules. */
1386
1387struct objfile_data
1388{
1389 unsigned index;
c1bd65d0
DE
1390 void (*save) (struct objfile *, void *);
1391 void (*free) (struct objfile *, void *);
0d0e1a63
MK
1392};
1393
1394struct objfile_data_registration
1395{
1396 struct objfile_data *data;
1397 struct objfile_data_registration *next;
1398};
1399
1400struct objfile_data_registry
1401{
1402 struct objfile_data_registration *registrations;
1403 unsigned num_registrations;
1404};
1405
1406static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1407
1408const struct objfile_data *
c1bd65d0
DE
1409register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1410 void (*free) (struct objfile *, void *))
0d0e1a63
MK
1411{
1412 struct objfile_data_registration **curr;
1413
1414 /* Append new registration. */
1415 for (curr = &objfile_data_registry.registrations;
1416 *curr != NULL; curr = &(*curr)->next);
7be570e7 1417
0d0e1a63
MK
1418 *curr = XMALLOC (struct objfile_data_registration);
1419 (*curr)->next = NULL;
1420 (*curr)->data = XMALLOC (struct objfile_data);
1421 (*curr)->data->index = objfile_data_registry.num_registrations++;
c1bd65d0
DE
1422 (*curr)->data->save = save;
1423 (*curr)->data->free = free;
0d0e1a63
MK
1424
1425 return (*curr)->data;
1426}
1427
60c5725c
DJ
1428const struct objfile_data *
1429register_objfile_data (void)
1430{
c1bd65d0 1431 return register_objfile_data_with_cleanup (NULL, NULL);
60c5725c
DJ
1432}
1433
0d0e1a63
MK
1434static void
1435objfile_alloc_data (struct objfile *objfile)
1436{
1437 gdb_assert (objfile->data == NULL);
1438 objfile->num_data = objfile_data_registry.num_registrations;
1439 objfile->data = XCALLOC (objfile->num_data, void *);
1440}
1441
1442static void
1443objfile_free_data (struct objfile *objfile)
1444{
1445 gdb_assert (objfile->data != NULL);
60c5725c 1446 clear_objfile_data (objfile);
0d0e1a63
MK
1447 xfree (objfile->data);
1448 objfile->data = NULL;
1449}
1450
7b097ae3
MK
1451void
1452clear_objfile_data (struct objfile *objfile)
1453{
60c5725c
DJ
1454 struct objfile_data_registration *registration;
1455 int i;
1456
7b097ae3 1457 gdb_assert (objfile->data != NULL);
60c5725c 1458
c1bd65d0
DE
1459 /* Process all the save handlers. */
1460
1461 for (registration = objfile_data_registry.registrations, i = 0;
1462 i < objfile->num_data;
1463 registration = registration->next, i++)
1464 if (objfile->data[i] != NULL && registration->data->save != NULL)
1465 registration->data->save (objfile, objfile->data[i]);
1466
1467 /* Now process all the free handlers. */
1468
60c5725c
DJ
1469 for (registration = objfile_data_registry.registrations, i = 0;
1470 i < objfile->num_data;
1471 registration = registration->next, i++)
c1bd65d0
DE
1472 if (objfile->data[i] != NULL && registration->data->free != NULL)
1473 registration->data->free (objfile, objfile->data[i]);
60c5725c 1474
7b097ae3
MK
1475 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1476}
1477
0d0e1a63
MK
1478void
1479set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1480 void *value)
1481{
1482 gdb_assert (data->index < objfile->num_data);
1483 objfile->data[data->index] = value;
1484}
1485
1486void *
1487objfile_data (struct objfile *objfile, const struct objfile_data *data)
1488{
1489 gdb_assert (data->index < objfile->num_data);
1490 return objfile->data[data->index];
1491}
a845f5cb 1492
bb272892
PP
1493/* Set objfiles_changed_p so section map will be rebuilt next time it
1494 is used. Called by reread_symbols. */
a845f5cb
PP
1495
1496void
bb272892 1497objfiles_changed (void)
a845f5cb 1498{
6c95b8df
PA
1499 /* Rebuild section map next time we need it. */
1500 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
a845f5cb 1501}
e3c69974 1502
3db741ef
PP
1503/* Add reference to ABFD. Returns ABFD. */
1504struct bfd *
1505gdb_bfd_ref (struct bfd *abfd)
1506{
6f451e5e
TT
1507 int *p_refcount;
1508
1509 if (abfd == NULL)
1510 return NULL;
1511
1512 p_refcount = bfd_usrdata (abfd);
3db741ef
PP
1513
1514 if (p_refcount != NULL)
1515 {
1516 *p_refcount += 1;
1517 return abfd;
1518 }
1519
1520 p_refcount = xmalloc (sizeof (*p_refcount));
1521 *p_refcount = 1;
1522 bfd_usrdata (abfd) = p_refcount;
1523
1524 return abfd;
1525}
1526
1527/* Unreference and possibly close ABFD. */
e3c69974
PP
1528void
1529gdb_bfd_unref (struct bfd *abfd)
1530{
1531 int *p_refcount;
1532 char *name;
1533
1534 if (abfd == NULL)
1535 return;
1536
4f6f9936 1537 p_refcount = bfd_usrdata (abfd);
e3c69974 1538
3db741ef
PP
1539 /* Valid range for p_refcount: a pointer to int counter, which has a
1540 value of 1 (single owner) or 2 (shared). */
1541 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1542
1543 *p_refcount -= 1;
1544 if (*p_refcount > 0)
1545 return;
e3c69974 1546
e3c69974 1547 xfree (p_refcount);
4f6f9936 1548 bfd_usrdata (abfd) = NULL; /* Paranoia. */
e3c69974
PP
1549
1550 name = bfd_get_filename (abfd);
1551 if (!bfd_close (abfd))
1552 warning (_("cannot close \"%s\": %s"),
1553 name, bfd_errmsg (bfd_get_error ()));
1554 xfree (name);
1555}
6c95b8df
PA
1556
1557/* Provide a prototype to silence -Wmissing-prototypes. */
1558extern initialize_file_ftype _initialize_objfiles;
1559
1560void
1561_initialize_objfiles (void)
1562{
1563 objfiles_pspace_data
1564 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1565}