]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ppc-sysv-tdep.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / gdb / ppc-sysv-tdep.c
CommitLineData
7b112f9c
JT
1/* Target-dependent code for PowerPC systems using the SVR4 ABI
2 for GDB, the GNU debugger.
3
28e7fd62 4 Copyright (C) 2000-2013 Free Software Foundation, Inc.
7b112f9c
JT
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
7b112f9c
JT
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
7b112f9c
JT
20
21#include "defs.h"
22#include "gdbcore.h"
23#include "inferior.h"
24#include "regcache.h"
25#include "value.h"
bdf64bac 26#include "gdb_string.h"
8be9034a 27#include "gdb_assert.h"
7b112f9c 28#include "ppc-tdep.h"
6066c3de 29#include "target.h"
0a90bcdd 30#include "objfiles.h"
7d9b040b 31#include "infcall.h"
54fcddd0 32#include "dwarf2.h"
7b112f9c 33
88aed45e
UW
34
35/* Check whether FTPYE is a (pointer to) function type that should use
36 the OpenCL vector ABI. */
37
38static int
39ppc_sysv_use_opencl_abi (struct type *ftype)
40{
41 ftype = check_typedef (ftype);
42
43 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
44 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
45
46 return (TYPE_CODE (ftype) == TYPE_CODE_FUNC
47 && TYPE_CALLING_CONVENTION (ftype) == DW_CC_GDB_IBM_OpenCL);
48}
49
0df8b418 50/* Pass the arguments in either registers, or in the stack. Using the
7b112f9c
JT
51 ppc sysv ABI, the first eight words of the argument list (that might
52 be less than eight parameters if some parameters occupy more than one
53 word) are passed in r3..r10 registers. float and double parameters are
0df8b418
MS
54 passed in fpr's, in addition to that. Rest of the parameters if any
55 are passed in user stack.
7b112f9c
JT
56
57 If the function is returning a structure, then the return address is passed
58 in r3, then the first 7 words of the parametes can be passed in registers,
0df8b418 59 starting from r4. */
7b112f9c
JT
60
61CORE_ADDR
7d9b040b 62ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
63 struct regcache *regcache, CORE_ADDR bp_addr,
64 int nargs, struct value **args, CORE_ADDR sp,
65 int struct_return, CORE_ADDR struct_addr)
7b112f9c 66{
40a6adc1 67 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 68 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
88aed45e 69 int opencl_abi = ppc_sysv_use_opencl_abi (value_type (function));
fb4443d8 70 ULONGEST saved_sp;
68856ea3
AC
71 int argspace = 0; /* 0 is an initial wrong guess. */
72 int write_pass;
7b112f9c 73
b14d30e1
JM
74 gdb_assert (tdep->wordsize == 4);
75
40a6adc1 76 regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
3e8c568d 77 &saved_sp);
fb4443d8 78
68856ea3 79 /* Go through the argument list twice.
7b112f9c 80
68856ea3
AC
81 Pass 1: Figure out how much new stack space is required for
82 arguments and pushed values. Unlike the PowerOpen ABI, the SysV
83 ABI doesn't reserve any extra space for parameters which are put
84 in registers, but does always push structures and then pass their
85 address.
7a41266b 86
68856ea3
AC
87 Pass 2: Replay the same computation but this time also write the
88 values out to the target. */
7b112f9c 89
68856ea3
AC
90 for (write_pass = 0; write_pass < 2; write_pass++)
91 {
92 int argno;
93 /* Next available floating point register for float and double
94 arguments. */
95 int freg = 1;
96 /* Next available general register for non-float, non-vector
97 arguments. */
98 int greg = 3;
99 /* Next available vector register for vector arguments. */
100 int vreg = 2;
101 /* Arguments start above the "LR save word" and "Back chain". */
102 int argoffset = 2 * tdep->wordsize;
103 /* Structures start after the arguments. */
104 int structoffset = argoffset + argspace;
105
106 /* If the function is returning a `struct', then the first word
944fcfab
AC
107 (which will be passed in r3) is used for struct return
108 address. In that case we should advance one word and start
109 from r4 register to copy parameters. */
68856ea3 110 if (struct_return)
7b112f9c 111 {
68856ea3
AC
112 if (write_pass)
113 regcache_cooked_write_signed (regcache,
114 tdep->ppc_gp0_regnum + greg,
115 struct_addr);
116 greg++;
7b112f9c 117 }
68856ea3
AC
118
119 for (argno = 0; argno < nargs; argno++)
7b112f9c 120 {
68856ea3 121 struct value *arg = args[argno];
df407dfe 122 struct type *type = check_typedef (value_type (arg));
68856ea3 123 int len = TYPE_LENGTH (type);
0fd88904 124 const bfd_byte *val = value_contents (arg);
68856ea3 125
55eddb0f
DJ
126 if (TYPE_CODE (type) == TYPE_CODE_FLT && len <= 8
127 && !tdep->soft_float)
7b112f9c 128 {
68856ea3 129 /* Floating point value converted to "double" then
944fcfab
AC
130 passed in an FP register, when the registers run out,
131 8 byte aligned stack is used. */
68856ea3
AC
132 if (freg <= 8)
133 {
134 if (write_pass)
135 {
136 /* Always store the floating point value using
944fcfab 137 the register's floating-point format. */
50fd1280 138 gdb_byte regval[MAX_REGISTER_SIZE];
68856ea3 139 struct type *regtype
366f009f 140 = register_type (gdbarch, tdep->ppc_fp0_regnum + freg);
68856ea3 141 convert_typed_floating (val, type, regval, regtype);
366f009f
JB
142 regcache_cooked_write (regcache,
143 tdep->ppc_fp0_regnum + freg,
68856ea3
AC
144 regval);
145 }
146 freg++;
147 }
7b112f9c
JT
148 else
149 {
f964a756
MK
150 /* The SysV ABI tells us to convert floats to
151 doubles before writing them to an 8 byte aligned
152 stack location. Unfortunately GCC does not do
153 that, and stores floats into 4 byte aligned
154 locations without converting them to doubles.
155 Since there is no know compiler that actually
156 follows the ABI here, we implement the GCC
157 convention. */
158
159 /* Align to 4 bytes or 8 bytes depending on the type of
160 the argument (float or double). */
161 argoffset = align_up (argoffset, len);
68856ea3 162 if (write_pass)
68856ea3 163 write_memory (sp + argoffset, val, len);
f964a756 164 argoffset += len;
7b112f9c
JT
165 }
166 }
b14d30e1
JM
167 else if (TYPE_CODE (type) == TYPE_CODE_FLT
168 && len == 16
169 && !tdep->soft_float
40a6adc1 170 && (gdbarch_long_double_format (gdbarch)
b14d30e1
JM
171 == floatformats_ibm_long_double))
172 {
173 /* IBM long double passed in two FP registers if
174 available, otherwise 8-byte aligned stack. */
175 if (freg <= 7)
176 {
177 if (write_pass)
178 {
179 regcache_cooked_write (regcache,
180 tdep->ppc_fp0_regnum + freg,
181 val);
182 regcache_cooked_write (regcache,
183 tdep->ppc_fp0_regnum + freg + 1,
184 val + 8);
185 }
186 freg += 2;
187 }
188 else
189 {
190 argoffset = align_up (argoffset, 8);
191 if (write_pass)
192 write_memory (sp + argoffset, val, len);
193 argoffset += 16;
194 }
195 }
55eddb0f
DJ
196 else if (len == 8
197 && (TYPE_CODE (type) == TYPE_CODE_INT /* long long */
00fbcec4
JM
198 || TYPE_CODE (type) == TYPE_CODE_FLT /* double */
199 || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
200 && tdep->soft_float)))
7b112f9c 201 {
00fbcec4
JM
202 /* "long long" or soft-float "double" or "_Decimal64"
203 passed in an odd/even register pair with the low
204 addressed word in the odd register and the high
205 addressed word in the even register, or when the
206 registers run out an 8 byte aligned stack
207 location. */
68856ea3
AC
208 if (greg > 9)
209 {
210 /* Just in case GREG was 10. */
211 greg = 11;
212 argoffset = align_up (argoffset, 8);
213 if (write_pass)
214 write_memory (sp + argoffset, val, len);
215 argoffset += 8;
216 }
68856ea3
AC
217 else
218 {
219 /* Must start on an odd register - r3/r4 etc. */
220 if ((greg & 1) == 0)
221 greg++;
222 if (write_pass)
223 {
224 regcache_cooked_write (regcache,
225 tdep->ppc_gp0_regnum + greg + 0,
226 val + 0);
227 regcache_cooked_write (regcache,
228 tdep->ppc_gp0_regnum + greg + 1,
229 val + 4);
230 }
231 greg += 2;
232 }
7b112f9c 233 }
00fbcec4
JM
234 else if (len == 16
235 && ((TYPE_CODE (type) == TYPE_CODE_FLT
236 && (gdbarch_long_double_format (gdbarch)
237 == floatformats_ibm_long_double))
238 || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
239 && tdep->soft_float)))
b14d30e1 240 {
00fbcec4
JM
241 /* Soft-float IBM long double or _Decimal128 passed in
242 four consecutive registers, or on the stack. The
243 registers are not necessarily odd/even pairs. */
b14d30e1
JM
244 if (greg > 7)
245 {
246 greg = 11;
247 argoffset = align_up (argoffset, 8);
248 if (write_pass)
249 write_memory (sp + argoffset, val, len);
250 argoffset += 16;
251 }
252 else
253 {
254 if (write_pass)
255 {
256 regcache_cooked_write (regcache,
257 tdep->ppc_gp0_regnum + greg + 0,
258 val + 0);
259 regcache_cooked_write (regcache,
260 tdep->ppc_gp0_regnum + greg + 1,
261 val + 4);
262 regcache_cooked_write (regcache,
263 tdep->ppc_gp0_regnum + greg + 2,
264 val + 8);
265 regcache_cooked_write (regcache,
266 tdep->ppc_gp0_regnum + greg + 3,
267 val + 12);
268 }
269 greg += 4;
270 }
271 }
1300a2f4
TJB
272 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && len <= 8
273 && !tdep->soft_float)
274 {
275 /* 32-bit and 64-bit decimal floats go in f1 .. f8. They can
276 end up in memory. */
277
278 if (freg <= 8)
279 {
280 if (write_pass)
281 {
282 gdb_byte regval[MAX_REGISTER_SIZE];
283 const gdb_byte *p;
284
285 /* 32-bit decimal floats are right aligned in the
286 doubleword. */
287 if (TYPE_LENGTH (type) == 4)
288 {
289 memcpy (regval + 4, val, 4);
290 p = regval;
291 }
292 else
293 p = val;
294
295 regcache_cooked_write (regcache,
296 tdep->ppc_fp0_regnum + freg, p);
297 }
298
299 freg++;
300 }
301 else
302 {
303 argoffset = align_up (argoffset, len);
304
305 if (write_pass)
306 /* Write value in the stack's parameter save area. */
307 write_memory (sp + argoffset, val, len);
308
309 argoffset += len;
310 }
311 }
312 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && len == 16
313 && !tdep->soft_float)
314 {
315 /* 128-bit decimal floats go in f2 .. f7, always in even/odd
316 pairs. They can end up in memory, using two doublewords. */
317
318 if (freg <= 6)
319 {
320 /* Make sure freg is even. */
321 freg += freg & 1;
322
323 if (write_pass)
324 {
325 regcache_cooked_write (regcache,
326 tdep->ppc_fp0_regnum + freg, val);
327 regcache_cooked_write (regcache,
328 tdep->ppc_fp0_regnum + freg + 1, val + 8);
329 }
330 }
331 else
332 {
333 argoffset = align_up (argoffset, 8);
334
335 if (write_pass)
336 write_memory (sp + argoffset, val, 16);
337
338 argoffset += 16;
339 }
340
341 /* If a 128-bit decimal float goes to the stack because only f7
342 and f8 are free (thus there's no even/odd register pair
343 available), these registers should be marked as occupied.
344 Hence we increase freg even when writing to memory. */
345 freg += 2;
346 }
54fcddd0
UW
347 else if (len < 16
348 && TYPE_CODE (type) == TYPE_CODE_ARRAY
349 && TYPE_VECTOR (type)
350 && opencl_abi)
351 {
352 /* OpenCL vectors shorter than 16 bytes are passed as if
353 a series of independent scalars. */
354 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
355 int i, nelt = TYPE_LENGTH (type) / TYPE_LENGTH (eltype);
356
357 for (i = 0; i < nelt; i++)
358 {
359 const gdb_byte *elval = val + i * TYPE_LENGTH (eltype);
360
361 if (TYPE_CODE (eltype) == TYPE_CODE_FLT && !tdep->soft_float)
362 {
363 if (freg <= 8)
364 {
365 if (write_pass)
366 {
367 int regnum = tdep->ppc_fp0_regnum + freg;
368 gdb_byte regval[MAX_REGISTER_SIZE];
369 struct type *regtype
370 = register_type (gdbarch, regnum);
371 convert_typed_floating (elval, eltype,
372 regval, regtype);
373 regcache_cooked_write (regcache, regnum, regval);
374 }
375 freg++;
376 }
377 else
378 {
379 argoffset = align_up (argoffset, len);
380 if (write_pass)
381 write_memory (sp + argoffset, val, len);
382 argoffset += len;
383 }
384 }
385 else if (TYPE_LENGTH (eltype) == 8)
386 {
387 if (greg > 9)
388 {
389 /* Just in case GREG was 10. */
390 greg = 11;
391 argoffset = align_up (argoffset, 8);
392 if (write_pass)
393 write_memory (sp + argoffset, elval,
394 TYPE_LENGTH (eltype));
395 argoffset += 8;
396 }
397 else
398 {
399 /* Must start on an odd register - r3/r4 etc. */
400 if ((greg & 1) == 0)
401 greg++;
402 if (write_pass)
403 {
404 int regnum = tdep->ppc_gp0_regnum + greg;
405 regcache_cooked_write (regcache,
406 regnum + 0, elval + 0);
407 regcache_cooked_write (regcache,
408 regnum + 1, elval + 4);
409 }
410 greg += 2;
411 }
412 }
413 else
414 {
415 gdb_byte word[MAX_REGISTER_SIZE];
416 store_unsigned_integer (word, tdep->wordsize, byte_order,
417 unpack_long (eltype, elval));
418
419 if (greg <= 10)
420 {
421 if (write_pass)
422 regcache_cooked_write (regcache,
423 tdep->ppc_gp0_regnum + greg,
424 word);
425 greg++;
426 }
427 else
428 {
429 argoffset = align_up (argoffset, tdep->wordsize);
430 if (write_pass)
431 write_memory (sp + argoffset, word, tdep->wordsize);
432 argoffset += tdep->wordsize;
433 }
434 }
435 }
436 }
437 else if (len >= 16
438 && TYPE_CODE (type) == TYPE_CODE_ARRAY
439 && TYPE_VECTOR (type)
440 && opencl_abi)
441 {
442 /* OpenCL vectors 16 bytes or longer are passed as if
443 a series of AltiVec vectors. */
444 int i;
445
446 for (i = 0; i < len / 16; i++)
447 {
448 const gdb_byte *elval = val + i * 16;
449
450 if (vreg <= 13)
451 {
452 if (write_pass)
453 regcache_cooked_write (regcache,
454 tdep->ppc_vr0_regnum + vreg,
455 elval);
456 vreg++;
457 }
458 else
459 {
460 argoffset = align_up (argoffset, 16);
461 if (write_pass)
462 write_memory (sp + argoffset, elval, 16);
463 argoffset += 16;
464 }
465 }
466 }
68856ea3
AC
467 else if (len == 16
468 && TYPE_CODE (type) == TYPE_CODE_ARRAY
55eddb0f
DJ
469 && TYPE_VECTOR (type)
470 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
7b112f9c 471 {
68856ea3 472 /* Vector parameter passed in an Altivec register, or
944fcfab 473 when that runs out, 16 byte aligned stack location. */
7b112f9c
JT
474 if (vreg <= 13)
475 {
68856ea3 476 if (write_pass)
9c9acae0 477 regcache_cooked_write (regcache,
944fcfab 478 tdep->ppc_vr0_regnum + vreg, val);
7b112f9c
JT
479 vreg++;
480 }
481 else
482 {
68856ea3
AC
483 argoffset = align_up (argoffset, 16);
484 if (write_pass)
485 write_memory (sp + argoffset, val, 16);
7b112f9c
JT
486 argoffset += 16;
487 }
488 }
944fcfab 489 else if (len == 8
0a613259 490 && TYPE_CODE (type) == TYPE_CODE_ARRAY
55eddb0f
DJ
491 && TYPE_VECTOR (type)
492 && tdep->vector_abi == POWERPC_VEC_SPE)
944fcfab 493 {
68856ea3 494 /* Vector parameter passed in an e500 register, or when
944fcfab
AC
495 that runs out, 8 byte aligned stack location. Note
496 that since e500 vector and general purpose registers
497 both map onto the same underlying register set, a
498 "greg" and not a "vreg" is consumed here. A cooked
499 write stores the value in the correct locations
500 within the raw register cache. */
501 if (greg <= 10)
502 {
68856ea3 503 if (write_pass)
9c9acae0 504 regcache_cooked_write (regcache,
944fcfab
AC
505 tdep->ppc_ev0_regnum + greg, val);
506 greg++;
507 }
508 else
509 {
68856ea3
AC
510 argoffset = align_up (argoffset, 8);
511 if (write_pass)
512 write_memory (sp + argoffset, val, 8);
944fcfab
AC
513 argoffset += 8;
514 }
515 }
68856ea3
AC
516 else
517 {
518 /* Reduce the parameter down to something that fits in a
944fcfab 519 "word". */
50fd1280 520 gdb_byte word[MAX_REGISTER_SIZE];
68856ea3
AC
521 memset (word, 0, MAX_REGISTER_SIZE);
522 if (len > tdep->wordsize
523 || TYPE_CODE (type) == TYPE_CODE_STRUCT
524 || TYPE_CODE (type) == TYPE_CODE_UNION)
525 {
55eddb0f 526 /* Structs and large values are put in an
0df8b418 527 aligned stack slot ... */
55eddb0f
DJ
528 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
529 && TYPE_VECTOR (type)
530 && len >= 16)
531 structoffset = align_up (structoffset, 16);
532 else
533 structoffset = align_up (structoffset, 8);
534
68856ea3
AC
535 if (write_pass)
536 write_memory (sp + structoffset, val, len);
537 /* ... and then a "word" pointing to that address is
944fcfab 538 passed as the parameter. */
e17a4113 539 store_unsigned_integer (word, tdep->wordsize, byte_order,
68856ea3
AC
540 sp + structoffset);
541 structoffset += len;
542 }
543 else if (TYPE_CODE (type) == TYPE_CODE_INT)
544 /* Sign or zero extend the "int" into a "word". */
e17a4113 545 store_unsigned_integer (word, tdep->wordsize, byte_order,
68856ea3
AC
546 unpack_long (type, val));
547 else
548 /* Always goes in the low address. */
549 memcpy (word, val, len);
550 /* Store that "word" in a register, or on the stack.
944fcfab 551 The words have "4" byte alignment. */
68856ea3
AC
552 if (greg <= 10)
553 {
554 if (write_pass)
555 regcache_cooked_write (regcache,
944fcfab 556 tdep->ppc_gp0_regnum + greg, word);
68856ea3
AC
557 greg++;
558 }
559 else
560 {
561 argoffset = align_up (argoffset, tdep->wordsize);
562 if (write_pass)
563 write_memory (sp + argoffset, word, tdep->wordsize);
564 argoffset += tdep->wordsize;
565 }
566 }
567 }
568
569 /* Compute the actual stack space requirements. */
570 if (!write_pass)
571 {
572 /* Remember the amount of space needed by the arguments. */
573 argspace = argoffset;
574 /* Allocate space for both the arguments and the structures. */
575 sp -= (argoffset + structoffset);
576 /* Ensure that the stack is still 16 byte aligned. */
577 sp = align_down (sp, 16);
578 }
65ada037
MK
579
580 /* The psABI says that "A caller of a function that takes a
581 variable argument list shall set condition register bit 6 to
582 1 if it passes one or more arguments in the floating-point
0df8b418 583 registers. It is strongly recommended that the caller set the
65ada037
MK
584 bit to 0 otherwise..." Doing this for normal functions too
585 shouldn't hurt. */
586 if (write_pass)
587 {
588 ULONGEST cr;
589
590 regcache_cooked_read_unsigned (regcache, tdep->ppc_cr_regnum, &cr);
591 if (freg > 1)
592 cr |= 0x02000000;
593 else
594 cr &= ~0x02000000;
595 regcache_cooked_write_unsigned (regcache, tdep->ppc_cr_regnum, cr);
596 }
7b112f9c
JT
597 }
598
68856ea3 599 /* Update %sp. */
40a6adc1 600 regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
68856ea3
AC
601
602 /* Write the backchain (it occupies WORDSIZED bytes). */
e17a4113 603 write_memory_signed_integer (sp, tdep->wordsize, byte_order, saved_sp);
68856ea3 604
e56a0ecc
AC
605 /* Point the inferior function call's return address at the dummy's
606 breakpoint. */
68856ea3 607 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
e56a0ecc 608
7b112f9c
JT
609 return sp;
610}
611
1300a2f4
TJB
612/* Handle the return-value conventions for Decimal Floating Point values
613 in both ppc32 and ppc64, which are the same. */
614static int
615get_decimal_float_return_value (struct gdbarch *gdbarch, struct type *valtype,
616 struct regcache *regcache, gdb_byte *readbuf,
617 const gdb_byte *writebuf)
618{
619 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
620
621 gdb_assert (TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT);
622
623 /* 32-bit and 64-bit decimal floats in f1. */
624 if (TYPE_LENGTH (valtype) <= 8)
625 {
626 if (writebuf != NULL)
627 {
628 gdb_byte regval[MAX_REGISTER_SIZE];
629 const gdb_byte *p;
630
631 /* 32-bit decimal float is right aligned in the doubleword. */
632 if (TYPE_LENGTH (valtype) == 4)
633 {
634 memcpy (regval + 4, writebuf, 4);
635 p = regval;
636 }
637 else
638 p = writebuf;
639
640 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, p);
641 }
642 if (readbuf != NULL)
643 {
644 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);
645
646 /* Left align 32-bit decimal float. */
647 if (TYPE_LENGTH (valtype) == 4)
648 memcpy (readbuf, readbuf + 4, 4);
649 }
650 }
651 /* 128-bit decimal floats in f2,f3. */
652 else if (TYPE_LENGTH (valtype) == 16)
653 {
654 if (writebuf != NULL || readbuf != NULL)
655 {
656 int i;
657
658 for (i = 0; i < 2; i++)
659 {
660 if (writebuf != NULL)
661 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2 + i,
662 writebuf + i * 8);
663 if (readbuf != NULL)
664 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2 + i,
665 readbuf + i * 8);
666 }
667 }
668 }
669 else
670 /* Can't happen. */
9b20d036 671 internal_error (__FILE__, __LINE__, _("Unknown decimal float size."));
1300a2f4
TJB
672
673 return RETURN_VALUE_REGISTER_CONVENTION;
674}
675
e754ae69
AC
676/* Handle the return-value conventions specified by the SysV 32-bit
677 PowerPC ABI (including all the supplements):
678
679 no floating-point: floating-point values returned using 32-bit
680 general-purpose registers.
681
682 Altivec: 128-bit vectors returned using vector registers.
683
684 e500: 64-bit vectors returned using the full full 64 bit EV
685 register, floating-point values returned using 32-bit
686 general-purpose registers.
687
688 GCC (broken): Small struct values right (instead of left) aligned
689 when returned in general-purpose registers. */
690
691static enum return_value_convention
54fcddd0
UW
692do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *func_type,
693 struct type *type, struct regcache *regcache,
694 gdb_byte *readbuf, const gdb_byte *writebuf,
695 int broken_gcc)
e754ae69 696{
05580c65 697 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 698 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
88aed45e 699 int opencl_abi = func_type? ppc_sysv_use_opencl_abi (func_type) : 0;
54fcddd0 700
e754ae69 701 gdb_assert (tdep->wordsize == 4);
54fcddd0 702
e754ae69
AC
703 if (TYPE_CODE (type) == TYPE_CODE_FLT
704 && TYPE_LENGTH (type) <= 8
55eddb0f 705 && !tdep->soft_float)
e754ae69 706 {
963e2bb7 707 if (readbuf)
e754ae69
AC
708 {
709 /* Floats and doubles stored in "f1". Convert the value to
710 the required type. */
50fd1280 711 gdb_byte regval[MAX_REGISTER_SIZE];
366f009f
JB
712 struct type *regtype = register_type (gdbarch,
713 tdep->ppc_fp0_regnum + 1);
714 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
963e2bb7 715 convert_typed_floating (regval, regtype, readbuf, type);
e754ae69 716 }
963e2bb7 717 if (writebuf)
e754ae69
AC
718 {
719 /* Floats and doubles stored in "f1". Convert the value to
720 the register's "double" type. */
50fd1280 721 gdb_byte regval[MAX_REGISTER_SIZE];
366f009f 722 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
963e2bb7 723 convert_typed_floating (writebuf, type, regval, regtype);
366f009f 724 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
e754ae69
AC
725 }
726 return RETURN_VALUE_REGISTER_CONVENTION;
727 }
b14d30e1
JM
728 if (TYPE_CODE (type) == TYPE_CODE_FLT
729 && TYPE_LENGTH (type) == 16
730 && !tdep->soft_float
0df8b418
MS
731 && (gdbarch_long_double_format (gdbarch)
732 == floatformats_ibm_long_double))
b14d30e1
JM
733 {
734 /* IBM long double stored in f1 and f2. */
735 if (readbuf)
736 {
737 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);
738 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2,
739 readbuf + 8);
740 }
741 if (writebuf)
742 {
743 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, writebuf);
744 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2,
745 writebuf + 8);
746 }
747 return RETURN_VALUE_REGISTER_CONVENTION;
748 }
00fbcec4
JM
749 if (TYPE_LENGTH (type) == 16
750 && ((TYPE_CODE (type) == TYPE_CODE_FLT
0df8b418
MS
751 && (gdbarch_long_double_format (gdbarch)
752 == floatformats_ibm_long_double))
00fbcec4 753 || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && tdep->soft_float)))
b14d30e1 754 {
00fbcec4
JM
755 /* Soft-float IBM long double or _Decimal128 stored in r3, r4,
756 r5, r6. */
b14d30e1
JM
757 if (readbuf)
758 {
759 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
760 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
761 readbuf + 4);
762 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
763 readbuf + 8);
764 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
765 readbuf + 12);
766 }
767 if (writebuf)
768 {
769 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
770 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
771 writebuf + 4);
772 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
773 writebuf + 8);
774 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
775 writebuf + 12);
776 }
777 return RETURN_VALUE_REGISTER_CONVENTION;
778 }
e754ae69 779 if ((TYPE_CODE (type) == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
00fbcec4
JM
780 || (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
781 || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 8
782 && tdep->soft_float))
e754ae69 783 {
963e2bb7 784 if (readbuf)
e754ae69 785 {
00fbcec4
JM
786 /* A long long, double or _Decimal64 stored in the 32 bit
787 r3/r4. */
e754ae69 788 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
55eddb0f 789 readbuf + 0);
e754ae69 790 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
55eddb0f 791 readbuf + 4);
e754ae69 792 }
963e2bb7 793 if (writebuf)
e754ae69 794 {
00fbcec4
JM
795 /* A long long, double or _Decimal64 stored in the 32 bit
796 r3/r4. */
e754ae69 797 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
55eddb0f 798 writebuf + 0);
e754ae69 799 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
55eddb0f 800 writebuf + 4);
e754ae69
AC
801 }
802 return RETURN_VALUE_REGISTER_CONVENTION;
803 }
1300a2f4
TJB
804 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && !tdep->soft_float)
805 return get_decimal_float_return_value (gdbarch, type, regcache, readbuf,
806 writebuf);
f0027ce2
DJ
807 else if ((TYPE_CODE (type) == TYPE_CODE_INT
808 || TYPE_CODE (type) == TYPE_CODE_CHAR
809 || TYPE_CODE (type) == TYPE_CODE_BOOL
810 || TYPE_CODE (type) == TYPE_CODE_PTR
811 || TYPE_CODE (type) == TYPE_CODE_REF
812 || TYPE_CODE (type) == TYPE_CODE_ENUM)
813 && TYPE_LENGTH (type) <= tdep->wordsize)
e754ae69 814 {
963e2bb7 815 if (readbuf)
e754ae69
AC
816 {
817 /* Some sort of integer stored in r3. Since TYPE isn't
818 bigger than the register, sign extension isn't a problem
819 - just do everything unsigned. */
820 ULONGEST regval;
821 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
822 &regval);
e17a4113
UW
823 store_unsigned_integer (readbuf, TYPE_LENGTH (type), byte_order,
824 regval);
e754ae69 825 }
963e2bb7 826 if (writebuf)
e754ae69
AC
827 {
828 /* Some sort of integer stored in r3. Use unpack_long since
829 that should handle any required sign extension. */
830 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
963e2bb7 831 unpack_long (type, writebuf));
e754ae69
AC
832 }
833 return RETURN_VALUE_REGISTER_CONVENTION;
834 }
54fcddd0
UW
835 /* OpenCL vectors < 16 bytes are returned as distinct
836 scalars in f1..f2 or r3..r10. */
837 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
838 && TYPE_VECTOR (type)
839 && TYPE_LENGTH (type) < 16
840 && opencl_abi)
841 {
842 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
843 int i, nelt = TYPE_LENGTH (type) / TYPE_LENGTH (eltype);
844
845 for (i = 0; i < nelt; i++)
846 {
847 int offset = i * TYPE_LENGTH (eltype);
848
849 if (TYPE_CODE (eltype) == TYPE_CODE_FLT)
850 {
851 int regnum = tdep->ppc_fp0_regnum + 1 + i;
852 gdb_byte regval[MAX_REGISTER_SIZE];
853 struct type *regtype = register_type (gdbarch, regnum);
854
855 if (writebuf != NULL)
856 {
857 convert_typed_floating (writebuf + offset, eltype,
858 regval, regtype);
859 regcache_cooked_write (regcache, regnum, regval);
860 }
861 if (readbuf != NULL)
862 {
863 regcache_cooked_read (regcache, regnum, regval);
864 convert_typed_floating (regval, regtype,
865 readbuf + offset, eltype);
866 }
867 }
868 else
869 {
870 int regnum = tdep->ppc_gp0_regnum + 3 + i;
871 ULONGEST regval;
872
873 if (writebuf != NULL)
874 {
875 regval = unpack_long (eltype, writebuf + offset);
876 regcache_cooked_write_unsigned (regcache, regnum, regval);
877 }
878 if (readbuf != NULL)
879 {
880 regcache_cooked_read_unsigned (regcache, regnum, &regval);
881 store_unsigned_integer (readbuf + offset,
882 TYPE_LENGTH (eltype), byte_order,
883 regval);
884 }
885 }
886 }
887
888 return RETURN_VALUE_REGISTER_CONVENTION;
889 }
890 /* OpenCL vectors >= 16 bytes are returned in v2..v9. */
891 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
892 && TYPE_VECTOR (type)
893 && TYPE_LENGTH (type) >= 16
894 && opencl_abi)
895 {
896 int n_regs = TYPE_LENGTH (type) / 16;
897 int i;
898
899 for (i = 0; i < n_regs; i++)
900 {
901 int offset = i * 16;
902 int regnum = tdep->ppc_vr0_regnum + 2 + i;
903
904 if (writebuf != NULL)
905 regcache_cooked_write (regcache, regnum, writebuf + offset);
906 if (readbuf != NULL)
907 regcache_cooked_read (regcache, regnum, readbuf + offset);
908 }
909
910 return RETURN_VALUE_REGISTER_CONVENTION;
911 }
e754ae69
AC
912 if (TYPE_LENGTH (type) == 16
913 && TYPE_CODE (type) == TYPE_CODE_ARRAY
55eddb0f
DJ
914 && TYPE_VECTOR (type)
915 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
e754ae69 916 {
963e2bb7 917 if (readbuf)
e754ae69
AC
918 {
919 /* Altivec places the return value in "v2". */
963e2bb7 920 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
e754ae69 921 }
963e2bb7 922 if (writebuf)
e754ae69
AC
923 {
924 /* Altivec places the return value in "v2". */
963e2bb7 925 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
e754ae69
AC
926 }
927 return RETURN_VALUE_REGISTER_CONVENTION;
928 }
55eddb0f
DJ
929 if (TYPE_LENGTH (type) == 16
930 && TYPE_CODE (type) == TYPE_CODE_ARRAY
931 && TYPE_VECTOR (type)
932 && tdep->vector_abi == POWERPC_VEC_GENERIC)
933 {
934 /* GCC -maltivec -mabi=no-altivec returns vectors in r3/r4/r5/r6.
935 GCC without AltiVec returns them in memory, but it warns about
936 ABI risks in that case; we don't try to support it. */
937 if (readbuf)
938 {
939 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
940 readbuf + 0);
941 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
942 readbuf + 4);
943 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
944 readbuf + 8);
945 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
946 readbuf + 12);
947 }
948 if (writebuf)
949 {
950 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
951 writebuf + 0);
952 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
953 writebuf + 4);
954 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
955 writebuf + 8);
956 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
957 writebuf + 12);
958 }
959 return RETURN_VALUE_REGISTER_CONVENTION;
960 }
e754ae69
AC
961 if (TYPE_LENGTH (type) == 8
962 && TYPE_CODE (type) == TYPE_CODE_ARRAY
55eddb0f
DJ
963 && TYPE_VECTOR (type)
964 && tdep->vector_abi == POWERPC_VEC_SPE)
e754ae69
AC
965 {
966 /* The e500 ABI places return values for the 64-bit DSP types
967 (__ev64_opaque__) in r3. However, in GDB-speak, ev3
968 corresponds to the entire r3 value for e500, whereas GDB's r3
969 only corresponds to the least significant 32-bits. So place
970 the 64-bit DSP type's value in ev3. */
963e2bb7
AC
971 if (readbuf)
972 regcache_cooked_read (regcache, tdep->ppc_ev0_regnum + 3, readbuf);
973 if (writebuf)
974 regcache_cooked_write (regcache, tdep->ppc_ev0_regnum + 3, writebuf);
e754ae69
AC
975 return RETURN_VALUE_REGISTER_CONVENTION;
976 }
977 if (broken_gcc && TYPE_LENGTH (type) <= 8)
978 {
61bf9ae0
MK
979 /* GCC screwed up for structures or unions whose size is less
980 than or equal to 8 bytes.. Instead of left-aligning, it
981 right-aligns the data into the buffer formed by r3, r4. */
982 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
983 int len = TYPE_LENGTH (type);
984 int offset = (2 * tdep->wordsize - len) % tdep->wordsize;
985
963e2bb7 986 if (readbuf)
e754ae69 987 {
61bf9ae0
MK
988 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
989 regvals + 0 * tdep->wordsize);
990 if (len > tdep->wordsize)
991 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
992 regvals + 1 * tdep->wordsize);
993 memcpy (readbuf, regvals + offset, len);
e754ae69 994 }
963e2bb7 995 if (writebuf)
e754ae69 996 {
61bf9ae0
MK
997 memset (regvals, 0, sizeof regvals);
998 memcpy (regvals + offset, writebuf, len);
999 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
1000 regvals + 0 * tdep->wordsize);
1001 if (len > tdep->wordsize)
1002 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1003 regvals + 1 * tdep->wordsize);
e754ae69 1004 }
61bf9ae0 1005
e754ae69
AC
1006 return RETURN_VALUE_REGISTER_CONVENTION;
1007 }
1008 if (TYPE_LENGTH (type) <= 8)
1009 {
963e2bb7 1010 if (readbuf)
e754ae69
AC
1011 {
1012 /* This matches SVr4 PPC, it does not match GCC. */
1013 /* The value is right-padded to 8 bytes and then loaded, as
1014 two "words", into r3/r4. */
50fd1280 1015 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
e754ae69
AC
1016 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
1017 regvals + 0 * tdep->wordsize);
1018 if (TYPE_LENGTH (type) > tdep->wordsize)
1019 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1020 regvals + 1 * tdep->wordsize);
963e2bb7 1021 memcpy (readbuf, regvals, TYPE_LENGTH (type));
e754ae69 1022 }
963e2bb7 1023 if (writebuf)
e754ae69
AC
1024 {
1025 /* This matches SVr4 PPC, it does not match GCC. */
1026 /* The value is padded out to 8 bytes and then loaded, as
1027 two "words" into r3/r4. */
50fd1280 1028 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
e754ae69 1029 memset (regvals, 0, sizeof regvals);
963e2bb7 1030 memcpy (regvals, writebuf, TYPE_LENGTH (type));
e754ae69
AC
1031 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
1032 regvals + 0 * tdep->wordsize);
1033 if (TYPE_LENGTH (type) > tdep->wordsize)
1034 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1035 regvals + 1 * tdep->wordsize);
1036 }
1037 return RETURN_VALUE_REGISTER_CONVENTION;
1038 }
1039 return RETURN_VALUE_STRUCT_CONVENTION;
1040}
1041
05580c65 1042enum return_value_convention
6a3a010b 1043ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1044 struct type *valtype, struct regcache *regcache,
1045 gdb_byte *readbuf, const gdb_byte *writebuf)
e754ae69 1046{
6a3a010b
MR
1047 return do_ppc_sysv_return_value (gdbarch,
1048 function ? value_type (function) : NULL,
1049 valtype, regcache, readbuf, writebuf, 0);
e754ae69
AC
1050}
1051
05580c65 1052enum return_value_convention
963e2bb7 1053ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch,
6a3a010b 1054 struct value *function,
963e2bb7
AC
1055 struct type *valtype,
1056 struct regcache *regcache,
50fd1280 1057 gdb_byte *readbuf, const gdb_byte *writebuf)
e754ae69 1058{
6a3a010b
MR
1059 return do_ppc_sysv_return_value (gdbarch,
1060 function ? value_type (function) : NULL,
1061 valtype, regcache, readbuf, writebuf, 1);
944fcfab 1062}
afd48b75 1063
b6e1c027
AC
1064/* The helper function for 64-bit SYSV push_dummy_call. Converts the
1065 function's code address back into the function's descriptor
1066 address.
1067
1068 Find a value for the TOC register. Every symbol should have both
1069 ".FN" and "FN" in the minimal symbol table. "FN" points at the
1070 FN's descriptor, while ".FN" points at the entry point (which
1071 matches FUNC_ADDR). Need to reverse from FUNC_ADDR back to the
1072 FN's descriptor address (while at the same time being careful to
1073 find "FN" in the same object file as ".FN"). */
1074
1075static int
1076convert_code_addr_to_desc_addr (CORE_ADDR code_addr, CORE_ADDR *desc_addr)
1077{
1078 struct obj_section *dot_fn_section;
1079 struct minimal_symbol *dot_fn;
1080 struct minimal_symbol *fn;
b6e1c027
AC
1081 /* Find the minimal symbol that corresponds to CODE_ADDR (should
1082 have a name of the form ".FN"). */
1083 dot_fn = lookup_minimal_symbol_by_pc (code_addr);
1084 if (dot_fn == NULL || SYMBOL_LINKAGE_NAME (dot_fn)[0] != '.')
1085 return 0;
1086 /* Get the section that contains CODE_ADDR. Need this for the
1087 "objfile" that it contains. */
1088 dot_fn_section = find_pc_section (code_addr);
1089 if (dot_fn_section == NULL || dot_fn_section->objfile == NULL)
1090 return 0;
1091 /* Now find the corresponding "FN" (dropping ".") minimal symbol's
1092 address. Only look for the minimal symbol in ".FN"'s object file
1093 - avoids problems when two object files (i.e., shared libraries)
1094 contain a minimal symbol with the same name. */
1095 fn = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (dot_fn) + 1, NULL,
1096 dot_fn_section->objfile);
1097 if (fn == NULL)
1098 return 0;
1099 /* Found a descriptor. */
1100 (*desc_addr) = SYMBOL_VALUE_ADDRESS (fn);
1101 return 1;
1102}
1103
0df8b418 1104/* Pass the arguments in either registers, or in the stack. Using the
8be9034a
AC
1105 ppc 64 bit SysV ABI.
1106
1107 This implements a dumbed down version of the ABI. It always writes
1108 values to memory, GPR and FPR, even when not necessary. Doing this
0df8b418 1109 greatly simplifies the logic. */
8be9034a
AC
1110
1111CORE_ADDR
0df8b418
MS
1112ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch,
1113 struct value *function,
8be9034a
AC
1114 struct regcache *regcache, CORE_ADDR bp_addr,
1115 int nargs, struct value **args, CORE_ADDR sp,
1116 int struct_return, CORE_ADDR struct_addr)
1117{
7d9b040b 1118 CORE_ADDR func_addr = find_function_addr (function, NULL);
40a6adc1 1119 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1120 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
88aed45e 1121 int opencl_abi = ppc_sysv_use_opencl_abi (value_type (function));
fb4443d8 1122 ULONGEST back_chain;
8be9034a
AC
1123 /* See for-loop comment below. */
1124 int write_pass;
24e9cda0
UW
1125 /* Size of the by-reference parameter copy region, the final value is
1126 computed in the for-loop below. */
1127 LONGEST refparam_size = 0;
8be9034a
AC
1128 /* Size of the general parameter region, the final value is computed
1129 in the for-loop below. */
1130 LONGEST gparam_size = 0;
1131 /* Kevin writes ... I don't mind seeing tdep->wordsize used in the
0df8b418 1132 calls to align_up(), align_down(), etc. because this makes it
8be9034a
AC
1133 easier to reuse this code (in a copy/paste sense) in the future,
1134 but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
1135 at some point makes it easier to verify that this function is
1136 correct without having to do a non-local analysis to figure out
1137 the possible values of tdep->wordsize. */
1138 gdb_assert (tdep->wordsize == 8);
1139
55eddb0f
DJ
1140 /* This function exists to support a calling convention that
1141 requires floating-point registers. It shouldn't be used on
1142 processors that lack them. */
1143 gdb_assert (ppc_floating_point_unit_p (gdbarch));
1144
fb4443d8
UW
1145 /* By this stage in the proceedings, SP has been decremented by "red
1146 zone size" + "struct return size". Fetch the stack-pointer from
1147 before this and use that as the BACK_CHAIN. */
40a6adc1 1148 regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
3e8c568d 1149 &back_chain);
fb4443d8 1150
8be9034a
AC
1151 /* Go through the argument list twice.
1152
1153 Pass 1: Compute the function call's stack space and register
1154 requirements.
1155
1156 Pass 2: Replay the same computation but this time also write the
1157 values out to the target. */
1158
1159 for (write_pass = 0; write_pass < 2; write_pass++)
1160 {
1161 int argno;
1162 /* Next available floating point register for float and double
1163 arguments. */
1164 int freg = 1;
1165 /* Next available general register for non-vector (but possibly
1166 float) arguments. */
1167 int greg = 3;
1168 /* Next available vector register for vector arguments. */
1169 int vreg = 2;
1170 /* The address, at which the next general purpose parameter
d6dafb7c 1171 (integer, struct, float, vector, ...) should be saved. */
8be9034a 1172 CORE_ADDR gparam;
24e9cda0
UW
1173 /* The address, at which the next by-reference parameter
1174 (non-Altivec vector, variably-sized type) should be saved. */
1175 CORE_ADDR refparam;
8be9034a
AC
1176
1177 if (!write_pass)
1178 {
24e9cda0
UW
1179 /* During the first pass, GPARAM and REFPARAM are more like
1180 offsets (start address zero) than addresses. That way
1181 they accumulate the total stack space each region
1182 requires. */
8be9034a 1183 gparam = 0;
24e9cda0 1184 refparam = 0;
8be9034a
AC
1185 }
1186 else
1187 {
24e9cda0
UW
1188 /* Decrement the stack pointer making space for the Altivec
1189 and general on-stack parameters. Set refparam and gparam
1190 to their corresponding regions. */
1191 refparam = align_down (sp - refparam_size, 16);
1192 gparam = align_down (refparam - gparam_size, 16);
8be9034a
AC
1193 /* Add in space for the TOC, link editor double word,
1194 compiler double word, LR save area, CR save area. */
1195 sp = align_down (gparam - 48, 16);
1196 }
1197
1198 /* If the function is returning a `struct', then there is an
1199 extra hidden parameter (which will be passed in r3)
1200 containing the address of that struct.. In that case we
1201 should advance one word and start from r4 register to copy
1202 parameters. This also consumes one on-stack parameter slot. */
1203 if (struct_return)
1204 {
1205 if (write_pass)
1206 regcache_cooked_write_signed (regcache,
1207 tdep->ppc_gp0_regnum + greg,
1208 struct_addr);
1209 greg++;
1210 gparam = align_up (gparam + tdep->wordsize, tdep->wordsize);
1211 }
1212
1213 for (argno = 0; argno < nargs; argno++)
1214 {
1215 struct value *arg = args[argno];
df407dfe 1216 struct type *type = check_typedef (value_type (arg));
0fd88904 1217 const bfd_byte *val = value_contents (arg);
ce0451ad 1218
8be9034a
AC
1219 if (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) <= 8)
1220 {
1221 /* Floats and Doubles go in f1 .. f13. They also
1222 consume a left aligned GREG,, and can end up in
1223 memory. */
1224 if (write_pass)
1225 {
ce0451ad
TJB
1226 gdb_byte regval[MAX_REGISTER_SIZE];
1227 const gdb_byte *p;
1228
1229 /* Version 1.7 of the 64-bit PowerPC ELF ABI says:
1230
1231 "Single precision floating point values are mapped to
1232 the first word in a single doubleword."
1233
1234 And version 1.9 says:
1235
1236 "Single precision floating point values are mapped to
1237 the second word in a single doubleword."
1238
1239 GDB then writes single precision floating point values
1240 at both words in a doubleword, to support both ABIs. */
1241 if (TYPE_LENGTH (type) == 4)
1242 {
1243 memcpy (regval, val, 4);
1244 memcpy (regval + 4, val, 4);
1245 p = regval;
1246 }
1247 else
1248 p = val;
1249
1250 /* Write value in the stack's parameter save area. */
1251 write_memory (gparam, p, 8);
1252
55eddb0f 1253 if (freg <= 13)
8be9034a 1254 {
366f009f
JB
1255 struct type *regtype
1256 = register_type (gdbarch, tdep->ppc_fp0_regnum);
ce0451ad 1257
8be9034a 1258 convert_typed_floating (val, type, regval, regtype);
366f009f
JB
1259 regcache_cooked_write (regcache,
1260 tdep->ppc_fp0_regnum + freg,
8be9034a
AC
1261 regval);
1262 }
1263 if (greg <= 10)
ce0451ad
TJB
1264 regcache_cooked_write (regcache,
1265 tdep->ppc_gp0_regnum + greg,
1266 regval);
8be9034a 1267 }
ce0451ad 1268
8be9034a
AC
1269 freg++;
1270 greg++;
ce0451ad
TJB
1271 /* Always consume parameter stack space. */
1272 gparam = align_up (gparam + 8, tdep->wordsize);
8be9034a 1273 }
b14d30e1
JM
1274 else if (TYPE_CODE (type) == TYPE_CODE_FLT
1275 && TYPE_LENGTH (type) == 16
40a6adc1 1276 && (gdbarch_long_double_format (gdbarch)
b14d30e1
JM
1277 == floatformats_ibm_long_double))
1278 {
1279 /* IBM long double stored in two doublewords of the
1280 parameter save area and corresponding registers. */
1281 if (write_pass)
1282 {
1283 if (!tdep->soft_float && freg <= 13)
1284 {
1285 regcache_cooked_write (regcache,
1286 tdep->ppc_fp0_regnum + freg,
1287 val);
1288 if (freg <= 12)
1289 regcache_cooked_write (regcache,
1290 tdep->ppc_fp0_regnum + freg + 1,
1291 val + 8);
1292 }
1293 if (greg <= 10)
1294 {
1295 regcache_cooked_write (regcache,
1296 tdep->ppc_gp0_regnum + greg,
1297 val);
1298 if (greg <= 9)
1299 regcache_cooked_write (regcache,
1300 tdep->ppc_gp0_regnum + greg + 1,
1301 val + 8);
1302 }
1303 write_memory (gparam, val, TYPE_LENGTH (type));
1304 }
1305 freg += 2;
1306 greg += 2;
1307 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
1308 }
1300a2f4
TJB
1309 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
1310 && TYPE_LENGTH (type) <= 8)
1311 {
1312 /* 32-bit and 64-bit decimal floats go in f1 .. f13. They can
1313 end up in memory. */
1314 if (write_pass)
1315 {
1316 gdb_byte regval[MAX_REGISTER_SIZE];
1317 const gdb_byte *p;
1318
1319 /* 32-bit decimal floats are right aligned in the
1320 doubleword. */
1321 if (TYPE_LENGTH (type) == 4)
1322 {
1323 memcpy (regval + 4, val, 4);
1324 p = regval;
1325 }
1326 else
1327 p = val;
1328
1329 /* Write value in the stack's parameter save area. */
1330 write_memory (gparam, p, 8);
1331
1332 if (freg <= 13)
1333 regcache_cooked_write (regcache,
1334 tdep->ppc_fp0_regnum + freg, p);
1335 }
1336
1337 freg++;
1338 greg++;
1339 /* Always consume parameter stack space. */
1340 gparam = align_up (gparam + 8, tdep->wordsize);
1341 }
1342 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT &&
1343 TYPE_LENGTH (type) == 16)
1344 {
1345 /* 128-bit decimal floats go in f2 .. f12, always in even/odd
1346 pairs. They can end up in memory, using two doublewords. */
1347 if (write_pass)
1348 {
1349 if (freg <= 12)
1350 {
1351 /* Make sure freg is even. */
1352 freg += freg & 1;
1353 regcache_cooked_write (regcache,
1354 tdep->ppc_fp0_regnum + freg, val);
1355 regcache_cooked_write (regcache,
1356 tdep->ppc_fp0_regnum + freg + 1, val + 8);
1357 }
1358
1359 write_memory (gparam, val, TYPE_LENGTH (type));
1360 }
1361
1362 freg += 2;
1363 greg += 2;
1364 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
1365 }
54fcddd0
UW
1366 else if (TYPE_LENGTH (type) < 16
1367 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1368 && TYPE_VECTOR (type)
1369 && opencl_abi)
1370 {
1371 /* OpenCL vectors shorter than 16 bytes are passed as if
1372 a series of independent scalars. */
1373 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1374 int i, nelt = TYPE_LENGTH (type) / TYPE_LENGTH (eltype);
1375
1376 for (i = 0; i < nelt; i++)
1377 {
1378 const gdb_byte *elval = val + i * TYPE_LENGTH (eltype);
1379
1380 if (TYPE_CODE (eltype) == TYPE_CODE_FLT)
1381 {
1382 if (write_pass)
1383 {
1384 gdb_byte regval[MAX_REGISTER_SIZE];
1385 const gdb_byte *p;
1386
1387 if (TYPE_LENGTH (eltype) == 4)
1388 {
1389 memcpy (regval, elval, 4);
1390 memcpy (regval + 4, elval, 4);
1391 p = regval;
1392 }
1393 else
1394 p = elval;
1395
1396 write_memory (gparam, p, 8);
1397
1398 if (freg <= 13)
1399 {
1400 int regnum = tdep->ppc_fp0_regnum + freg;
1401 struct type *regtype
1402 = register_type (gdbarch, regnum);
1403
1404 convert_typed_floating (elval, eltype,
1405 regval, regtype);
1406 regcache_cooked_write (regcache, regnum, regval);
1407 }
1408
1409 if (greg <= 10)
1410 regcache_cooked_write (regcache,
1411 tdep->ppc_gp0_regnum + greg,
1412 regval);
1413 }
1414
1415 freg++;
1416 greg++;
1417 gparam = align_up (gparam + 8, tdep->wordsize);
1418 }
1419 else
1420 {
1421 if (write_pass)
1422 {
1423 ULONGEST word = unpack_long (eltype, elval);
1424 if (greg <= 10)
1425 regcache_cooked_write_unsigned
1426 (regcache, tdep->ppc_gp0_regnum + greg, word);
1427
1428 write_memory_unsigned_integer
1429 (gparam, tdep->wordsize, byte_order, word);
1430 }
1431
1432 greg++;
1433 gparam = align_up (gparam + TYPE_LENGTH (eltype),
1434 tdep->wordsize);
1435 }
1436 }
1437 }
1438 else if (TYPE_LENGTH (type) >= 16
1439 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1440 && TYPE_VECTOR (type)
1441 && opencl_abi)
1442 {
1443 /* OpenCL vectors 16 bytes or longer are passed as if
1444 a series of AltiVec vectors. */
1445 int i;
1446
1447 for (i = 0; i < TYPE_LENGTH (type) / 16; i++)
1448 {
1449 const gdb_byte *elval = val + i * 16;
1450
1451 gparam = align_up (gparam, 16);
1452 greg += greg & 1;
1453
1454 if (write_pass)
1455 {
1456 if (vreg <= 13)
1457 regcache_cooked_write (regcache,
1458 tdep->ppc_vr0_regnum + vreg,
1459 elval);
1460
1461 write_memory (gparam, elval, 16);
1462 }
1463
1464 greg += 2;
1465 vreg++;
1466 gparam += 16;
1467 }
1468 }
8be9034a
AC
1469 else if (TYPE_LENGTH (type) == 16 && TYPE_VECTOR (type)
1470 && TYPE_CODE (type) == TYPE_CODE_ARRAY
24e9cda0 1471 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
8be9034a 1472 {
d6dafb7c
UW
1473 /* In the Altivec ABI, vectors go in the vector registers
1474 v2 .. v13, as well as the parameter area -- always at
1475 16-byte aligned addresses. */
1476
1477 gparam = align_up (gparam, 16);
1478 greg += greg & 1;
1479
1480 if (write_pass)
8be9034a 1481 {
d6dafb7c 1482 if (vreg <= 13)
8be9034a
AC
1483 regcache_cooked_write (regcache,
1484 tdep->ppc_vr0_regnum + vreg, val);
d6dafb7c
UW
1485
1486 write_memory (gparam, val, TYPE_LENGTH (type));
8be9034a 1487 }
d6dafb7c
UW
1488
1489 greg += 2;
1490 vreg++;
1491 gparam += 16;
8be9034a 1492 }
24e9cda0
UW
1493 else if (TYPE_LENGTH (type) >= 16 && TYPE_VECTOR (type)
1494 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
1495 {
1496 /* Non-Altivec vectors are passed by reference. */
1497
1498 /* Copy value onto the stack ... */
1499 refparam = align_up (refparam, 16);
1500 if (write_pass)
1501 write_memory (refparam, val, TYPE_LENGTH (type));
1502
1503 /* ... and pass a pointer to the copy as parameter. */
1504 if (write_pass)
1505 {
1506 if (greg <= 10)
1507 regcache_cooked_write_unsigned (regcache,
1508 tdep->ppc_gp0_regnum +
1509 greg, refparam);
1510 write_memory_unsigned_integer (gparam, tdep->wordsize,
1511 byte_order, refparam);
1512 }
1513 greg++;
1514 gparam = align_up (gparam + tdep->wordsize, tdep->wordsize);
1515 refparam = align_up (refparam + TYPE_LENGTH (type), tdep->wordsize);
1516 }
8be9034a 1517 else if ((TYPE_CODE (type) == TYPE_CODE_INT
b6e1c027 1518 || TYPE_CODE (type) == TYPE_CODE_ENUM
93d4208d
UW
1519 || TYPE_CODE (type) == TYPE_CODE_BOOL
1520 || TYPE_CODE (type) == TYPE_CODE_CHAR
1521 || TYPE_CODE (type) == TYPE_CODE_PTR
1522 || TYPE_CODE (type) == TYPE_CODE_REF)
8be9034a
AC
1523 && TYPE_LENGTH (type) <= 8)
1524 {
b6e1c027
AC
1525 /* Scalars and Pointers get sign[un]extended and go in
1526 gpr3 .. gpr10. They can also end up in memory. */
8be9034a
AC
1527 if (write_pass)
1528 {
1529 /* Sign extend the value, then store it unsigned. */
1530 ULONGEST word = unpack_long (type, val);
b6e1c027
AC
1531 /* Convert any function code addresses into
1532 descriptors. */
1533 if (TYPE_CODE (type) == TYPE_CODE_PTR
93d4208d 1534 || TYPE_CODE (type) == TYPE_CODE_REF)
b6e1c027 1535 {
93d4208d
UW
1536 struct type *target_type;
1537 target_type = check_typedef (TYPE_TARGET_TYPE (type));
1538
1539 if (TYPE_CODE (target_type) == TYPE_CODE_FUNC
1540 || TYPE_CODE (target_type) == TYPE_CODE_METHOD)
1541 {
1542 CORE_ADDR desc = word;
1543 convert_code_addr_to_desc_addr (word, &desc);
1544 word = desc;
1545 }
b6e1c027 1546 }
8be9034a
AC
1547 if (greg <= 10)
1548 regcache_cooked_write_unsigned (regcache,
1549 tdep->ppc_gp0_regnum +
1550 greg, word);
1551 write_memory_unsigned_integer (gparam, tdep->wordsize,
e17a4113 1552 byte_order, word);
8be9034a
AC
1553 }
1554 greg++;
1555 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
1556 }
1557 else
1558 {
1559 int byte;
1560 for (byte = 0; byte < TYPE_LENGTH (type);
1561 byte += tdep->wordsize)
1562 {
1563 if (write_pass && greg <= 10)
1564 {
50fd1280 1565 gdb_byte regval[MAX_REGISTER_SIZE];
8be9034a
AC
1566 int len = TYPE_LENGTH (type) - byte;
1567 if (len > tdep->wordsize)
1568 len = tdep->wordsize;
1569 memset (regval, 0, sizeof regval);
36815e57
JM
1570 /* The ABI (version 1.9) specifies that values
1571 smaller than one doubleword are right-aligned
1572 and those larger are left-aligned. GCC
1573 versions before 3.4 implemented this
1574 incorrectly; see
1575 <http://gcc.gnu.org/gcc-3.4/powerpc-abi.html>. */
1576 if (byte == 0)
8be9034a
AC
1577 memcpy (regval + tdep->wordsize - len,
1578 val + byte, len);
36815e57
JM
1579 else
1580 memcpy (regval, val + byte, len);
8be9034a
AC
1581 regcache_cooked_write (regcache, greg, regval);
1582 }
1583 greg++;
1584 }
1585 if (write_pass)
93d4208d
UW
1586 {
1587 /* WARNING: cagney/2003-09-21: Strictly speaking, this
1588 isn't necessary, unfortunately, GCC appears to get
1589 "struct convention" parameter passing wrong putting
1590 odd sized structures in memory instead of in a
1591 register. Work around this by always writing the
1592 value to memory. Fortunately, doing this
1593 simplifies the code. */
1594 int len = TYPE_LENGTH (type);
1595 if (len < tdep->wordsize)
1596 write_memory (gparam + tdep->wordsize - len, val, len);
1597 else
1598 write_memory (gparam, val, len);
1599 }
36815e57
JM
1600 if (freg <= 13
1601 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1602 && TYPE_NFIELDS (type) == 1
1603 && TYPE_LENGTH (type) <= 16)
1604 {
1605 /* The ABI (version 1.9) specifies that structs
1606 containing a single floating-point value, at any
1607 level of nesting of single-member structs, are
1608 passed in floating-point registers. */
1609 while (TYPE_CODE (type) == TYPE_CODE_STRUCT
1610 && TYPE_NFIELDS (type) == 1)
1611 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1612 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1613 {
1614 if (TYPE_LENGTH (type) <= 8)
1615 {
1616 if (write_pass)
1617 {
1618 gdb_byte regval[MAX_REGISTER_SIZE];
1619 struct type *regtype
1620 = register_type (gdbarch,
1621 tdep->ppc_fp0_regnum);
1622 convert_typed_floating (val, type, regval,
1623 regtype);
1624 regcache_cooked_write (regcache,
1625 (tdep->ppc_fp0_regnum
1626 + freg),
1627 regval);
1628 }
1629 freg++;
1630 }
1631 else if (TYPE_LENGTH (type) == 16
40a6adc1 1632 && (gdbarch_long_double_format (gdbarch)
36815e57
JM
1633 == floatformats_ibm_long_double))
1634 {
1635 if (write_pass)
1636 {
1637 regcache_cooked_write (regcache,
1638 (tdep->ppc_fp0_regnum
1639 + freg),
1640 val);
1641 if (freg <= 12)
1642 regcache_cooked_write (regcache,
1643 (tdep->ppc_fp0_regnum
1644 + freg + 1),
1645 val + 8);
1646 }
1647 freg += 2;
1648 }
1649 }
1650 }
8be9034a
AC
1651 /* Always consume parameter stack space. */
1652 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
1653 }
1654 }
1655
1656 if (!write_pass)
1657 {
24e9cda0
UW
1658 /* Save the true region sizes ready for the second pass. */
1659 refparam_size = refparam;
1660 /* Make certain that the general parameter save area is at
8be9034a
AC
1661 least the minimum 8 registers (or doublewords) in size. */
1662 if (greg < 8)
1663 gparam_size = 8 * tdep->wordsize;
1664 else
1665 gparam_size = gparam;
1666 }
1667 }
1668
1669 /* Update %sp. */
40a6adc1 1670 regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
8be9034a
AC
1671
1672 /* Write the backchain (it occupies WORDSIZED bytes). */
e17a4113 1673 write_memory_signed_integer (sp, tdep->wordsize, byte_order, back_chain);
8be9034a
AC
1674
1675 /* Point the inferior function call's return address at the dummy's
1676 breakpoint. */
1677 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1678
b6e1c027 1679 /* Use the func_addr to find the descriptor, and use that to find
69368a60
UW
1680 the TOC. If we're calling via a function pointer, the pointer
1681 itself identifies the descriptor. */
8be9034a 1682 {
69368a60
UW
1683 struct type *ftype = check_typedef (value_type (function));
1684 CORE_ADDR desc_addr = value_as_address (function);
1685
1686 if (TYPE_CODE (ftype) == TYPE_CODE_PTR
1687 || convert_code_addr_to_desc_addr (func_addr, &desc_addr))
8be9034a 1688 {
b6e1c027
AC
1689 /* The TOC is the second double word in the descriptor. */
1690 CORE_ADDR toc =
1691 read_memory_unsigned_integer (desc_addr + tdep->wordsize,
e17a4113 1692 tdep->wordsize, byte_order);
b6e1c027
AC
1693 regcache_cooked_write_unsigned (regcache,
1694 tdep->ppc_gp0_regnum + 2, toc);
8be9034a
AC
1695 }
1696 }
1697
1698 return sp;
1699}
1700
afd48b75 1701
55eddb0f 1702/* The 64 bit ABI return value convention.
afd48b75
AC
1703
1704 Return non-zero if the return-value is stored in a register, return
1705 0 if the return-value is instead stored on the stack (a.k.a.,
1706 struct return convention).
1707
963e2bb7 1708 For a return-value stored in a register: when WRITEBUF is non-NULL,
afd48b75 1709 copy the buffer to the corresponding register return-value location
963e2bb7 1710 location; when READBUF is non-NULL, fill the buffer from the
afd48b75 1711 corresponding register return-value location. */
05580c65 1712enum return_value_convention
6a3a010b 1713ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1714 struct type *valtype, struct regcache *regcache,
1715 gdb_byte *readbuf, const gdb_byte *writebuf)
afd48b75 1716{
05580c65 1717 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1718 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6a3a010b 1719 struct type *func_type = function ? value_type (function) : NULL;
88aed45e 1720 int opencl_abi = func_type? ppc_sysv_use_opencl_abi (func_type) : 0;
16796152
JB
1721
1722 /* This function exists to support a calling convention that
1723 requires floating-point registers. It shouldn't be used on
1724 processors that lack them. */
1725 gdb_assert (ppc_floating_point_unit_p (gdbarch));
1726
afd48b75 1727 /* Floats and doubles in F1. */
944fcfab 1728 if (TYPE_CODE (valtype) == TYPE_CODE_FLT && TYPE_LENGTH (valtype) <= 8)
afd48b75 1729 {
50fd1280 1730 gdb_byte regval[MAX_REGISTER_SIZE];
366f009f 1731 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
963e2bb7 1732 if (writebuf != NULL)
afd48b75 1733 {
963e2bb7 1734 convert_typed_floating (writebuf, valtype, regval, regtype);
366f009f 1735 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
afd48b75 1736 }
963e2bb7 1737 if (readbuf != NULL)
afd48b75 1738 {
366f009f 1739 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
963e2bb7 1740 convert_typed_floating (regval, regtype, readbuf, valtype);
afd48b75
AC
1741 }
1742 return RETURN_VALUE_REGISTER_CONVENTION;
1743 }
1300a2f4
TJB
1744 if (TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT)
1745 return get_decimal_float_return_value (gdbarch, valtype, regcache, readbuf,
1746 writebuf);
3d8476bc 1747 /* Integers in r3. */
b6e1c027 1748 if ((TYPE_CODE (valtype) == TYPE_CODE_INT
93d4208d
UW
1749 || TYPE_CODE (valtype) == TYPE_CODE_ENUM
1750 || TYPE_CODE (valtype) == TYPE_CODE_CHAR
1751 || TYPE_CODE (valtype) == TYPE_CODE_BOOL)
b6e1c027 1752 && TYPE_LENGTH (valtype) <= 8)
afd48b75 1753 {
963e2bb7 1754 if (writebuf != NULL)
afd48b75
AC
1755 {
1756 /* Be careful to sign extend the value. */
1757 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
963e2bb7 1758 unpack_long (valtype, writebuf));
afd48b75 1759 }
963e2bb7 1760 if (readbuf != NULL)
afd48b75
AC
1761 {
1762 /* Extract the integer from r3. Since this is truncating the
1763 value, there isn't a sign extension problem. */
1764 ULONGEST regval;
1765 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1766 &regval);
e17a4113
UW
1767 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
1768 regval);
afd48b75
AC
1769 }
1770 return RETURN_VALUE_REGISTER_CONVENTION;
1771 }
1772 /* All pointers live in r3. */
93d4208d
UW
1773 if (TYPE_CODE (valtype) == TYPE_CODE_PTR
1774 || TYPE_CODE (valtype) == TYPE_CODE_REF)
afd48b75
AC
1775 {
1776 /* All pointers live in r3. */
963e2bb7
AC
1777 if (writebuf != NULL)
1778 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1779 if (readbuf != NULL)
1780 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
afd48b75
AC
1781 return RETURN_VALUE_REGISTER_CONVENTION;
1782 }
54fcddd0
UW
1783 /* OpenCL vectors < 16 bytes are returned as distinct
1784 scalars in f1..f2 or r3..r10. */
1785 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1786 && TYPE_VECTOR (valtype)
1787 && TYPE_LENGTH (valtype) < 16
1788 && opencl_abi)
1789 {
1790 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (valtype));
1791 int i, nelt = TYPE_LENGTH (valtype) / TYPE_LENGTH (eltype);
1792
1793 for (i = 0; i < nelt; i++)
1794 {
1795 int offset = i * TYPE_LENGTH (eltype);
1796
1797 if (TYPE_CODE (eltype) == TYPE_CODE_FLT)
1798 {
1799 int regnum = tdep->ppc_fp0_regnum + 1 + i;
1800 gdb_byte regval[MAX_REGISTER_SIZE];
1801 struct type *regtype = register_type (gdbarch, regnum);
1802
1803 if (writebuf != NULL)
1804 {
1805 convert_typed_floating (writebuf + offset, eltype,
1806 regval, regtype);
1807 regcache_cooked_write (regcache, regnum, regval);
1808 }
1809 if (readbuf != NULL)
1810 {
1811 regcache_cooked_read (regcache, regnum, regval);
1812 convert_typed_floating (regval, regtype,
1813 readbuf + offset, eltype);
1814 }
1815 }
1816 else
1817 {
1818 int regnum = tdep->ppc_gp0_regnum + 3 + i;
1819 ULONGEST regval;
1820
1821 if (writebuf != NULL)
1822 {
1823 regval = unpack_long (eltype, writebuf + offset);
1824 regcache_cooked_write_unsigned (regcache, regnum, regval);
1825 }
1826 if (readbuf != NULL)
1827 {
1828 regcache_cooked_read_unsigned (regcache, regnum, &regval);
1829 store_unsigned_integer (readbuf + offset,
1830 TYPE_LENGTH (eltype), byte_order,
1831 regval);
1832 }
1833 }
1834 }
1835
1836 return RETURN_VALUE_REGISTER_CONVENTION;
1837 }
1838 /* OpenCL vectors >= 16 bytes are returned in v2..v9. */
1839 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1840 && TYPE_VECTOR (valtype)
1841 && TYPE_LENGTH (valtype) >= 16
1842 && opencl_abi)
1843 {
1844 int n_regs = TYPE_LENGTH (valtype) / 16;
1845 int i;
1846
1847 for (i = 0; i < n_regs; i++)
1848 {
1849 int offset = i * 16;
1850 int regnum = tdep->ppc_vr0_regnum + 2 + i;
1851
1852 if (writebuf != NULL)
1853 regcache_cooked_write (regcache, regnum, writebuf + offset);
1854 if (readbuf != NULL)
1855 regcache_cooked_read (regcache, regnum, readbuf + offset);
1856 }
1857
1858 return RETURN_VALUE_REGISTER_CONVENTION;
1859 }
3d8476bc
PG
1860 /* Array type has more than one use. */
1861 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
afd48b75
AC
1862 {
1863 /* Small character arrays are returned, right justified, in r3. */
3d8476bc
PG
1864 if (TYPE_LENGTH (valtype) <= 8
1865 && TYPE_CODE (TYPE_TARGET_TYPE (valtype)) == TYPE_CODE_INT
1866 && TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1)
1867 {
1868 int offset = (register_size (gdbarch, tdep->ppc_gp0_regnum + 3)
1869 - TYPE_LENGTH (valtype));
1870 if (writebuf != NULL)
1871 regcache_cooked_write_part (regcache, tdep->ppc_gp0_regnum + 3,
1872 offset, TYPE_LENGTH (valtype), writebuf);
1873 if (readbuf != NULL)
1874 regcache_cooked_read_part (regcache, tdep->ppc_gp0_regnum + 3,
1875 offset, TYPE_LENGTH (valtype), readbuf);
1876 return RETURN_VALUE_REGISTER_CONVENTION;
1877 }
1878 /* A VMX vector is returned in v2. */
1879 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
24e9cda0
UW
1880 && TYPE_VECTOR (valtype)
1881 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
3d8476bc
PG
1882 {
1883 if (readbuf)
1884 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1885 if (writebuf)
0df8b418
MS
1886 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2,
1887 writebuf);
3d8476bc
PG
1888 return RETURN_VALUE_REGISTER_CONVENTION;
1889 }
afd48b75
AC
1890 }
1891 /* Big floating point values get stored in adjacent floating
3d8476bc 1892 point registers, starting with F1. */
afd48b75 1893 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
944fcfab 1894 && (TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 32))
afd48b75 1895 {
963e2bb7 1896 if (writebuf || readbuf != NULL)
afd48b75
AC
1897 {
1898 int i;
1899 for (i = 0; i < TYPE_LENGTH (valtype) / 8; i++)
1900 {
963e2bb7 1901 if (writebuf != NULL)
366f009f 1902 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
963e2bb7
AC
1903 (const bfd_byte *) writebuf + i * 8);
1904 if (readbuf != NULL)
366f009f 1905 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
963e2bb7 1906 (bfd_byte *) readbuf + i * 8);
afd48b75
AC
1907 }
1908 }
1909 return RETURN_VALUE_REGISTER_CONVENTION;
1910 }
1911 /* Complex values get returned in f1:f2, need to convert. */
1912 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX
1913 && (TYPE_LENGTH (valtype) == 8 || TYPE_LENGTH (valtype) == 16))
1914 {
1915 if (regcache != NULL)
1916 {
1917 int i;
1918 for (i = 0; i < 2; i++)
1919 {
50fd1280 1920 gdb_byte regval[MAX_REGISTER_SIZE];
944fcfab 1921 struct type *regtype =
40a6adc1 1922 register_type (gdbarch, tdep->ppc_fp0_regnum);
55a78401
SDJ
1923 struct type *target_type;
1924 target_type = check_typedef (TYPE_TARGET_TYPE (valtype));
963e2bb7 1925 if (writebuf != NULL)
afd48b75 1926 {
963e2bb7 1927 convert_typed_floating ((const bfd_byte *) writebuf +
55a78401
SDJ
1928 i * TYPE_LENGTH (target_type),
1929 target_type, regval, regtype);
366f009f
JB
1930 regcache_cooked_write (regcache,
1931 tdep->ppc_fp0_regnum + 1 + i,
944fcfab 1932 regval);
afd48b75 1933 }
963e2bb7 1934 if (readbuf != NULL)
afd48b75 1935 {
366f009f
JB
1936 regcache_cooked_read (regcache,
1937 tdep->ppc_fp0_regnum + 1 + i,
1938 regval);
afd48b75 1939 convert_typed_floating (regval, regtype,
963e2bb7 1940 (bfd_byte *) readbuf +
55a78401
SDJ
1941 i * TYPE_LENGTH (target_type),
1942 target_type);
afd48b75
AC
1943 }
1944 }
1945 }
1946 return RETURN_VALUE_REGISTER_CONVENTION;
1947 }
1948 /* Big complex values get stored in f1:f4. */
944fcfab 1949 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX && TYPE_LENGTH (valtype) == 32)
afd48b75
AC
1950 {
1951 if (regcache != NULL)
1952 {
1953 int i;
1954 for (i = 0; i < 4; i++)
1955 {
963e2bb7 1956 if (writebuf != NULL)
366f009f 1957 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
963e2bb7
AC
1958 (const bfd_byte *) writebuf + i * 8);
1959 if (readbuf != NULL)
366f009f 1960 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
963e2bb7 1961 (bfd_byte *) readbuf + i * 8);
afd48b75
AC
1962 }
1963 }
1964 return RETURN_VALUE_REGISTER_CONVENTION;
1965 }
1966 return RETURN_VALUE_STRUCT_CONVENTION;
1967}
1968