]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ppc-sysv-tdep.c
doc/ChangeLog:
[thirdparty/binutils-gdb.git] / gdb / ppc-sysv-tdep.c
CommitLineData
7b112f9c
JT
1/* Target-dependent code for PowerPC systems using the SVR4 ABI
2 for GDB, the GNU debugger.
3
9b254dd1 4 Copyright (C) 2000, 2001, 2002, 2003, 2005, 2007, 2008
65ada037 5 Free Software Foundation, Inc.
7b112f9c
JT
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
7b112f9c
JT
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
7b112f9c
JT
21
22#include "defs.h"
23#include "gdbcore.h"
24#include "inferior.h"
25#include "regcache.h"
26#include "value.h"
bdf64bac 27#include "gdb_string.h"
8be9034a 28#include "gdb_assert.h"
7b112f9c 29#include "ppc-tdep.h"
6066c3de 30#include "target.h"
0a90bcdd 31#include "objfiles.h"
7d9b040b 32#include "infcall.h"
7b112f9c 33
7b112f9c
JT
34/* Pass the arguments in either registers, or in the stack. Using the
35 ppc sysv ABI, the first eight words of the argument list (that might
36 be less than eight parameters if some parameters occupy more than one
37 word) are passed in r3..r10 registers. float and double parameters are
38 passed in fpr's, in addition to that. Rest of the parameters if any
39 are passed in user stack.
40
41 If the function is returning a structure, then the return address is passed
42 in r3, then the first 7 words of the parametes can be passed in registers,
43 starting from r4. */
44
45CORE_ADDR
7d9b040b 46ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
47 struct regcache *regcache, CORE_ADDR bp_addr,
48 int nargs, struct value **args, CORE_ADDR sp,
49 int struct_return, CORE_ADDR struct_addr)
7b112f9c 50{
40a6adc1 51 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
fb4443d8 52 ULONGEST saved_sp;
68856ea3
AC
53 int argspace = 0; /* 0 is an initial wrong guess. */
54 int write_pass;
7b112f9c 55
b14d30e1
JM
56 gdb_assert (tdep->wordsize == 4);
57
40a6adc1 58 regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
3e8c568d 59 &saved_sp);
fb4443d8 60
68856ea3 61 /* Go through the argument list twice.
7b112f9c 62
68856ea3
AC
63 Pass 1: Figure out how much new stack space is required for
64 arguments and pushed values. Unlike the PowerOpen ABI, the SysV
65 ABI doesn't reserve any extra space for parameters which are put
66 in registers, but does always push structures and then pass their
67 address.
7a41266b 68
68856ea3
AC
69 Pass 2: Replay the same computation but this time also write the
70 values out to the target. */
7b112f9c 71
68856ea3
AC
72 for (write_pass = 0; write_pass < 2; write_pass++)
73 {
74 int argno;
75 /* Next available floating point register for float and double
76 arguments. */
77 int freg = 1;
78 /* Next available general register for non-float, non-vector
79 arguments. */
80 int greg = 3;
81 /* Next available vector register for vector arguments. */
82 int vreg = 2;
83 /* Arguments start above the "LR save word" and "Back chain". */
84 int argoffset = 2 * tdep->wordsize;
85 /* Structures start after the arguments. */
86 int structoffset = argoffset + argspace;
87
88 /* If the function is returning a `struct', then the first word
944fcfab
AC
89 (which will be passed in r3) is used for struct return
90 address. In that case we should advance one word and start
91 from r4 register to copy parameters. */
68856ea3 92 if (struct_return)
7b112f9c 93 {
68856ea3
AC
94 if (write_pass)
95 regcache_cooked_write_signed (regcache,
96 tdep->ppc_gp0_regnum + greg,
97 struct_addr);
98 greg++;
7b112f9c 99 }
68856ea3
AC
100
101 for (argno = 0; argno < nargs; argno++)
7b112f9c 102 {
68856ea3 103 struct value *arg = args[argno];
df407dfe 104 struct type *type = check_typedef (value_type (arg));
68856ea3 105 int len = TYPE_LENGTH (type);
0fd88904 106 const bfd_byte *val = value_contents (arg);
68856ea3 107
55eddb0f
DJ
108 if (TYPE_CODE (type) == TYPE_CODE_FLT && len <= 8
109 && !tdep->soft_float)
7b112f9c 110 {
68856ea3 111 /* Floating point value converted to "double" then
944fcfab
AC
112 passed in an FP register, when the registers run out,
113 8 byte aligned stack is used. */
68856ea3
AC
114 if (freg <= 8)
115 {
116 if (write_pass)
117 {
118 /* Always store the floating point value using
944fcfab 119 the register's floating-point format. */
50fd1280 120 gdb_byte regval[MAX_REGISTER_SIZE];
68856ea3 121 struct type *regtype
366f009f 122 = register_type (gdbarch, tdep->ppc_fp0_regnum + freg);
68856ea3 123 convert_typed_floating (val, type, regval, regtype);
366f009f
JB
124 regcache_cooked_write (regcache,
125 tdep->ppc_fp0_regnum + freg,
68856ea3
AC
126 regval);
127 }
128 freg++;
129 }
7b112f9c
JT
130 else
131 {
f964a756
MK
132 /* The SysV ABI tells us to convert floats to
133 doubles before writing them to an 8 byte aligned
134 stack location. Unfortunately GCC does not do
135 that, and stores floats into 4 byte aligned
136 locations without converting them to doubles.
137 Since there is no know compiler that actually
138 follows the ABI here, we implement the GCC
139 convention. */
140
141 /* Align to 4 bytes or 8 bytes depending on the type of
142 the argument (float or double). */
143 argoffset = align_up (argoffset, len);
68856ea3 144 if (write_pass)
68856ea3 145 write_memory (sp + argoffset, val, len);
f964a756 146 argoffset += len;
7b112f9c
JT
147 }
148 }
b14d30e1
JM
149 else if (TYPE_CODE (type) == TYPE_CODE_FLT
150 && len == 16
151 && !tdep->soft_float
40a6adc1 152 && (gdbarch_long_double_format (gdbarch)
b14d30e1
JM
153 == floatformats_ibm_long_double))
154 {
155 /* IBM long double passed in two FP registers if
156 available, otherwise 8-byte aligned stack. */
157 if (freg <= 7)
158 {
159 if (write_pass)
160 {
161 regcache_cooked_write (regcache,
162 tdep->ppc_fp0_regnum + freg,
163 val);
164 regcache_cooked_write (regcache,
165 tdep->ppc_fp0_regnum + freg + 1,
166 val + 8);
167 }
168 freg += 2;
169 }
170 else
171 {
172 argoffset = align_up (argoffset, 8);
173 if (write_pass)
174 write_memory (sp + argoffset, val, len);
175 argoffset += 16;
176 }
177 }
55eddb0f
DJ
178 else if (len == 8
179 && (TYPE_CODE (type) == TYPE_CODE_INT /* long long */
180 || TYPE_CODE (type) == TYPE_CODE_FLT)) /* double */
7b112f9c 181 {
55eddb0f 182 /* "long long" or soft-float "double" passed in an odd/even
944fcfab
AC
183 register pair with the low addressed word in the odd
184 register and the high addressed word in the even
185 register, or when the registers run out an 8 byte
186 aligned stack location. */
68856ea3
AC
187 if (greg > 9)
188 {
189 /* Just in case GREG was 10. */
190 greg = 11;
191 argoffset = align_up (argoffset, 8);
192 if (write_pass)
193 write_memory (sp + argoffset, val, len);
194 argoffset += 8;
195 }
68856ea3
AC
196 else
197 {
198 /* Must start on an odd register - r3/r4 etc. */
199 if ((greg & 1) == 0)
200 greg++;
201 if (write_pass)
202 {
203 regcache_cooked_write (regcache,
204 tdep->ppc_gp0_regnum + greg + 0,
205 val + 0);
206 regcache_cooked_write (regcache,
207 tdep->ppc_gp0_regnum + greg + 1,
208 val + 4);
209 }
210 greg += 2;
211 }
7b112f9c 212 }
b14d30e1 213 else if (len == 16 && TYPE_CODE (type) == TYPE_CODE_FLT
40a6adc1 214 && (gdbarch_long_double_format (gdbarch)
b14d30e1
JM
215 == floatformats_ibm_long_double))
216 {
217 /* Soft-float IBM long double passed in four consecutive
218 registers, or on the stack. The registers are not
219 necessarily odd/even pairs. */
220 if (greg > 7)
221 {
222 greg = 11;
223 argoffset = align_up (argoffset, 8);
224 if (write_pass)
225 write_memory (sp + argoffset, val, len);
226 argoffset += 16;
227 }
228 else
229 {
230 if (write_pass)
231 {
232 regcache_cooked_write (regcache,
233 tdep->ppc_gp0_regnum + greg + 0,
234 val + 0);
235 regcache_cooked_write (regcache,
236 tdep->ppc_gp0_regnum + greg + 1,
237 val + 4);
238 regcache_cooked_write (regcache,
239 tdep->ppc_gp0_regnum + greg + 2,
240 val + 8);
241 regcache_cooked_write (regcache,
242 tdep->ppc_gp0_regnum + greg + 3,
243 val + 12);
244 }
245 greg += 4;
246 }
247 }
1300a2f4
TJB
248 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && len <= 8
249 && !tdep->soft_float)
250 {
251 /* 32-bit and 64-bit decimal floats go in f1 .. f8. They can
252 end up in memory. */
253
254 if (freg <= 8)
255 {
256 if (write_pass)
257 {
258 gdb_byte regval[MAX_REGISTER_SIZE];
259 const gdb_byte *p;
260
261 /* 32-bit decimal floats are right aligned in the
262 doubleword. */
263 if (TYPE_LENGTH (type) == 4)
264 {
265 memcpy (regval + 4, val, 4);
266 p = regval;
267 }
268 else
269 p = val;
270
271 regcache_cooked_write (regcache,
272 tdep->ppc_fp0_regnum + freg, p);
273 }
274
275 freg++;
276 }
277 else
278 {
279 argoffset = align_up (argoffset, len);
280
281 if (write_pass)
282 /* Write value in the stack's parameter save area. */
283 write_memory (sp + argoffset, val, len);
284
285 argoffset += len;
286 }
287 }
288 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && len == 16
289 && !tdep->soft_float)
290 {
291 /* 128-bit decimal floats go in f2 .. f7, always in even/odd
292 pairs. They can end up in memory, using two doublewords. */
293
294 if (freg <= 6)
295 {
296 /* Make sure freg is even. */
297 freg += freg & 1;
298
299 if (write_pass)
300 {
301 regcache_cooked_write (regcache,
302 tdep->ppc_fp0_regnum + freg, val);
303 regcache_cooked_write (regcache,
304 tdep->ppc_fp0_regnum + freg + 1, val + 8);
305 }
306 }
307 else
308 {
309 argoffset = align_up (argoffset, 8);
310
311 if (write_pass)
312 write_memory (sp + argoffset, val, 16);
313
314 argoffset += 16;
315 }
316
317 /* If a 128-bit decimal float goes to the stack because only f7
318 and f8 are free (thus there's no even/odd register pair
319 available), these registers should be marked as occupied.
320 Hence we increase freg even when writing to memory. */
321 freg += 2;
322 }
68856ea3
AC
323 else if (len == 16
324 && TYPE_CODE (type) == TYPE_CODE_ARRAY
55eddb0f
DJ
325 && TYPE_VECTOR (type)
326 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
7b112f9c 327 {
68856ea3 328 /* Vector parameter passed in an Altivec register, or
944fcfab 329 when that runs out, 16 byte aligned stack location. */
7b112f9c
JT
330 if (vreg <= 13)
331 {
68856ea3 332 if (write_pass)
9c9acae0 333 regcache_cooked_write (regcache,
944fcfab 334 tdep->ppc_vr0_regnum + vreg, val);
7b112f9c
JT
335 vreg++;
336 }
337 else
338 {
68856ea3
AC
339 argoffset = align_up (argoffset, 16);
340 if (write_pass)
341 write_memory (sp + argoffset, val, 16);
7b112f9c
JT
342 argoffset += 16;
343 }
344 }
944fcfab 345 else if (len == 8
0a613259 346 && TYPE_CODE (type) == TYPE_CODE_ARRAY
55eddb0f
DJ
347 && TYPE_VECTOR (type)
348 && tdep->vector_abi == POWERPC_VEC_SPE)
944fcfab 349 {
68856ea3 350 /* Vector parameter passed in an e500 register, or when
944fcfab
AC
351 that runs out, 8 byte aligned stack location. Note
352 that since e500 vector and general purpose registers
353 both map onto the same underlying register set, a
354 "greg" and not a "vreg" is consumed here. A cooked
355 write stores the value in the correct locations
356 within the raw register cache. */
357 if (greg <= 10)
358 {
68856ea3 359 if (write_pass)
9c9acae0 360 regcache_cooked_write (regcache,
944fcfab
AC
361 tdep->ppc_ev0_regnum + greg, val);
362 greg++;
363 }
364 else
365 {
68856ea3
AC
366 argoffset = align_up (argoffset, 8);
367 if (write_pass)
368 write_memory (sp + argoffset, val, 8);
944fcfab
AC
369 argoffset += 8;
370 }
371 }
68856ea3
AC
372 else
373 {
374 /* Reduce the parameter down to something that fits in a
944fcfab 375 "word". */
50fd1280 376 gdb_byte word[MAX_REGISTER_SIZE];
68856ea3
AC
377 memset (word, 0, MAX_REGISTER_SIZE);
378 if (len > tdep->wordsize
379 || TYPE_CODE (type) == TYPE_CODE_STRUCT
380 || TYPE_CODE (type) == TYPE_CODE_UNION)
381 {
55eddb0f
DJ
382 /* Structs and large values are put in an
383 aligned stack slot ... */
384 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
385 && TYPE_VECTOR (type)
386 && len >= 16)
387 structoffset = align_up (structoffset, 16);
388 else
389 structoffset = align_up (structoffset, 8);
390
68856ea3
AC
391 if (write_pass)
392 write_memory (sp + structoffset, val, len);
393 /* ... and then a "word" pointing to that address is
944fcfab 394 passed as the parameter. */
68856ea3
AC
395 store_unsigned_integer (word, tdep->wordsize,
396 sp + structoffset);
397 structoffset += len;
398 }
399 else if (TYPE_CODE (type) == TYPE_CODE_INT)
400 /* Sign or zero extend the "int" into a "word". */
401 store_unsigned_integer (word, tdep->wordsize,
402 unpack_long (type, val));
403 else
404 /* Always goes in the low address. */
405 memcpy (word, val, len);
406 /* Store that "word" in a register, or on the stack.
944fcfab 407 The words have "4" byte alignment. */
68856ea3
AC
408 if (greg <= 10)
409 {
410 if (write_pass)
411 regcache_cooked_write (regcache,
944fcfab 412 tdep->ppc_gp0_regnum + greg, word);
68856ea3
AC
413 greg++;
414 }
415 else
416 {
417 argoffset = align_up (argoffset, tdep->wordsize);
418 if (write_pass)
419 write_memory (sp + argoffset, word, tdep->wordsize);
420 argoffset += tdep->wordsize;
421 }
422 }
423 }
424
425 /* Compute the actual stack space requirements. */
426 if (!write_pass)
427 {
428 /* Remember the amount of space needed by the arguments. */
429 argspace = argoffset;
430 /* Allocate space for both the arguments and the structures. */
431 sp -= (argoffset + structoffset);
432 /* Ensure that the stack is still 16 byte aligned. */
433 sp = align_down (sp, 16);
434 }
65ada037
MK
435
436 /* The psABI says that "A caller of a function that takes a
437 variable argument list shall set condition register bit 6 to
438 1 if it passes one or more arguments in the floating-point
439 registers. It is strongly recommended that the caller set the
440 bit to 0 otherwise..." Doing this for normal functions too
441 shouldn't hurt. */
442 if (write_pass)
443 {
444 ULONGEST cr;
445
446 regcache_cooked_read_unsigned (regcache, tdep->ppc_cr_regnum, &cr);
447 if (freg > 1)
448 cr |= 0x02000000;
449 else
450 cr &= ~0x02000000;
451 regcache_cooked_write_unsigned (regcache, tdep->ppc_cr_regnum, cr);
452 }
7b112f9c
JT
453 }
454
68856ea3 455 /* Update %sp. */
40a6adc1 456 regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
68856ea3
AC
457
458 /* Write the backchain (it occupies WORDSIZED bytes). */
459 write_memory_signed_integer (sp, tdep->wordsize, saved_sp);
460
e56a0ecc
AC
461 /* Point the inferior function call's return address at the dummy's
462 breakpoint. */
68856ea3 463 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
e56a0ecc 464
7b112f9c
JT
465 return sp;
466}
467
1300a2f4
TJB
468/* Handle the return-value conventions for Decimal Floating Point values
469 in both ppc32 and ppc64, which are the same. */
470static int
471get_decimal_float_return_value (struct gdbarch *gdbarch, struct type *valtype,
472 struct regcache *regcache, gdb_byte *readbuf,
473 const gdb_byte *writebuf)
474{
475 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
476
477 gdb_assert (TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT);
478
479 /* 32-bit and 64-bit decimal floats in f1. */
480 if (TYPE_LENGTH (valtype) <= 8)
481 {
482 if (writebuf != NULL)
483 {
484 gdb_byte regval[MAX_REGISTER_SIZE];
485 const gdb_byte *p;
486
487 /* 32-bit decimal float is right aligned in the doubleword. */
488 if (TYPE_LENGTH (valtype) == 4)
489 {
490 memcpy (regval + 4, writebuf, 4);
491 p = regval;
492 }
493 else
494 p = writebuf;
495
496 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, p);
497 }
498 if (readbuf != NULL)
499 {
500 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);
501
502 /* Left align 32-bit decimal float. */
503 if (TYPE_LENGTH (valtype) == 4)
504 memcpy (readbuf, readbuf + 4, 4);
505 }
506 }
507 /* 128-bit decimal floats in f2,f3. */
508 else if (TYPE_LENGTH (valtype) == 16)
509 {
510 if (writebuf != NULL || readbuf != NULL)
511 {
512 int i;
513
514 for (i = 0; i < 2; i++)
515 {
516 if (writebuf != NULL)
517 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2 + i,
518 writebuf + i * 8);
519 if (readbuf != NULL)
520 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2 + i,
521 readbuf + i * 8);
522 }
523 }
524 }
525 else
526 /* Can't happen. */
527 internal_error (__FILE__, __LINE__, "Unknown decimal float size.");
528
529 return RETURN_VALUE_REGISTER_CONVENTION;
530}
531
e754ae69
AC
532/* Handle the return-value conventions specified by the SysV 32-bit
533 PowerPC ABI (including all the supplements):
534
535 no floating-point: floating-point values returned using 32-bit
536 general-purpose registers.
537
538 Altivec: 128-bit vectors returned using vector registers.
539
540 e500: 64-bit vectors returned using the full full 64 bit EV
541 register, floating-point values returned using 32-bit
542 general-purpose registers.
543
544 GCC (broken): Small struct values right (instead of left) aligned
545 when returned in general-purpose registers. */
546
547static enum return_value_convention
05580c65 548do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *type,
55eddb0f
DJ
549 struct regcache *regcache, gdb_byte *readbuf,
550 const gdb_byte *writebuf, int broken_gcc)
e754ae69 551{
05580c65 552 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e754ae69
AC
553 gdb_assert (tdep->wordsize == 4);
554 if (TYPE_CODE (type) == TYPE_CODE_FLT
555 && TYPE_LENGTH (type) <= 8
55eddb0f 556 && !tdep->soft_float)
e754ae69 557 {
963e2bb7 558 if (readbuf)
e754ae69
AC
559 {
560 /* Floats and doubles stored in "f1". Convert the value to
561 the required type. */
50fd1280 562 gdb_byte regval[MAX_REGISTER_SIZE];
366f009f
JB
563 struct type *regtype = register_type (gdbarch,
564 tdep->ppc_fp0_regnum + 1);
565 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
963e2bb7 566 convert_typed_floating (regval, regtype, readbuf, type);
e754ae69 567 }
963e2bb7 568 if (writebuf)
e754ae69
AC
569 {
570 /* Floats and doubles stored in "f1". Convert the value to
571 the register's "double" type. */
50fd1280 572 gdb_byte regval[MAX_REGISTER_SIZE];
366f009f 573 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
963e2bb7 574 convert_typed_floating (writebuf, type, regval, regtype);
366f009f 575 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
e754ae69
AC
576 }
577 return RETURN_VALUE_REGISTER_CONVENTION;
578 }
b14d30e1
JM
579 if (TYPE_CODE (type) == TYPE_CODE_FLT
580 && TYPE_LENGTH (type) == 16
581 && !tdep->soft_float
40a6adc1 582 && (gdbarch_long_double_format (gdbarch) == floatformats_ibm_long_double))
b14d30e1
JM
583 {
584 /* IBM long double stored in f1 and f2. */
585 if (readbuf)
586 {
587 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);
588 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2,
589 readbuf + 8);
590 }
591 if (writebuf)
592 {
593 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, writebuf);
594 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2,
595 writebuf + 8);
596 }
597 return RETURN_VALUE_REGISTER_CONVENTION;
598 }
599 if (TYPE_CODE (type) == TYPE_CODE_FLT
600 && TYPE_LENGTH (type) == 16
40a6adc1 601 && (gdbarch_long_double_format (gdbarch) == floatformats_ibm_long_double))
b14d30e1
JM
602 {
603 /* Soft-float IBM long double stored in r3, r4, r5, r6. */
604 if (readbuf)
605 {
606 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
607 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
608 readbuf + 4);
609 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
610 readbuf + 8);
611 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
612 readbuf + 12);
613 }
614 if (writebuf)
615 {
616 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
617 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
618 writebuf + 4);
619 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
620 writebuf + 8);
621 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
622 writebuf + 12);
623 }
624 return RETURN_VALUE_REGISTER_CONVENTION;
625 }
e754ae69
AC
626 if ((TYPE_CODE (type) == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
627 || (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8))
628 {
963e2bb7 629 if (readbuf)
e754ae69
AC
630 {
631 /* A long long, or a double stored in the 32 bit r3/r4. */
632 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
55eddb0f 633 readbuf + 0);
e754ae69 634 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
55eddb0f 635 readbuf + 4);
e754ae69 636 }
963e2bb7 637 if (writebuf)
e754ae69
AC
638 {
639 /* A long long, or a double stored in the 32 bit r3/r4. */
640 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
55eddb0f 641 writebuf + 0);
e754ae69 642 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
55eddb0f 643 writebuf + 4);
e754ae69
AC
644 }
645 return RETURN_VALUE_REGISTER_CONVENTION;
646 }
1300a2f4
TJB
647 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && !tdep->soft_float)
648 return get_decimal_float_return_value (gdbarch, type, regcache, readbuf,
649 writebuf);
f0027ce2
DJ
650 else if ((TYPE_CODE (type) == TYPE_CODE_INT
651 || TYPE_CODE (type) == TYPE_CODE_CHAR
652 || TYPE_CODE (type) == TYPE_CODE_BOOL
653 || TYPE_CODE (type) == TYPE_CODE_PTR
654 || TYPE_CODE (type) == TYPE_CODE_REF
655 || TYPE_CODE (type) == TYPE_CODE_ENUM)
656 && TYPE_LENGTH (type) <= tdep->wordsize)
e754ae69 657 {
963e2bb7 658 if (readbuf)
e754ae69
AC
659 {
660 /* Some sort of integer stored in r3. Since TYPE isn't
661 bigger than the register, sign extension isn't a problem
662 - just do everything unsigned. */
663 ULONGEST regval;
664 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
665 &regval);
963e2bb7 666 store_unsigned_integer (readbuf, TYPE_LENGTH (type), regval);
e754ae69 667 }
963e2bb7 668 if (writebuf)
e754ae69
AC
669 {
670 /* Some sort of integer stored in r3. Use unpack_long since
671 that should handle any required sign extension. */
672 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
963e2bb7 673 unpack_long (type, writebuf));
e754ae69
AC
674 }
675 return RETURN_VALUE_REGISTER_CONVENTION;
676 }
677 if (TYPE_LENGTH (type) == 16
678 && TYPE_CODE (type) == TYPE_CODE_ARRAY
55eddb0f
DJ
679 && TYPE_VECTOR (type)
680 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
e754ae69 681 {
963e2bb7 682 if (readbuf)
e754ae69
AC
683 {
684 /* Altivec places the return value in "v2". */
963e2bb7 685 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
e754ae69 686 }
963e2bb7 687 if (writebuf)
e754ae69
AC
688 {
689 /* Altivec places the return value in "v2". */
963e2bb7 690 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
e754ae69
AC
691 }
692 return RETURN_VALUE_REGISTER_CONVENTION;
693 }
55eddb0f
DJ
694 if (TYPE_LENGTH (type) == 16
695 && TYPE_CODE (type) == TYPE_CODE_ARRAY
696 && TYPE_VECTOR (type)
697 && tdep->vector_abi == POWERPC_VEC_GENERIC)
698 {
699 /* GCC -maltivec -mabi=no-altivec returns vectors in r3/r4/r5/r6.
700 GCC without AltiVec returns them in memory, but it warns about
701 ABI risks in that case; we don't try to support it. */
702 if (readbuf)
703 {
704 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
705 readbuf + 0);
706 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
707 readbuf + 4);
708 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
709 readbuf + 8);
710 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
711 readbuf + 12);
712 }
713 if (writebuf)
714 {
715 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
716 writebuf + 0);
717 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
718 writebuf + 4);
719 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
720 writebuf + 8);
721 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
722 writebuf + 12);
723 }
724 return RETURN_VALUE_REGISTER_CONVENTION;
725 }
e754ae69
AC
726 if (TYPE_LENGTH (type) == 8
727 && TYPE_CODE (type) == TYPE_CODE_ARRAY
55eddb0f
DJ
728 && TYPE_VECTOR (type)
729 && tdep->vector_abi == POWERPC_VEC_SPE)
e754ae69
AC
730 {
731 /* The e500 ABI places return values for the 64-bit DSP types
732 (__ev64_opaque__) in r3. However, in GDB-speak, ev3
733 corresponds to the entire r3 value for e500, whereas GDB's r3
734 only corresponds to the least significant 32-bits. So place
735 the 64-bit DSP type's value in ev3. */
963e2bb7
AC
736 if (readbuf)
737 regcache_cooked_read (regcache, tdep->ppc_ev0_regnum + 3, readbuf);
738 if (writebuf)
739 regcache_cooked_write (regcache, tdep->ppc_ev0_regnum + 3, writebuf);
e754ae69
AC
740 return RETURN_VALUE_REGISTER_CONVENTION;
741 }
742 if (broken_gcc && TYPE_LENGTH (type) <= 8)
743 {
61bf9ae0
MK
744 /* GCC screwed up for structures or unions whose size is less
745 than or equal to 8 bytes.. Instead of left-aligning, it
746 right-aligns the data into the buffer formed by r3, r4. */
747 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
748 int len = TYPE_LENGTH (type);
749 int offset = (2 * tdep->wordsize - len) % tdep->wordsize;
750
963e2bb7 751 if (readbuf)
e754ae69 752 {
61bf9ae0
MK
753 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
754 regvals + 0 * tdep->wordsize);
755 if (len > tdep->wordsize)
756 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
757 regvals + 1 * tdep->wordsize);
758 memcpy (readbuf, regvals + offset, len);
e754ae69 759 }
963e2bb7 760 if (writebuf)
e754ae69 761 {
61bf9ae0
MK
762 memset (regvals, 0, sizeof regvals);
763 memcpy (regvals + offset, writebuf, len);
764 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
765 regvals + 0 * tdep->wordsize);
766 if (len > tdep->wordsize)
767 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
768 regvals + 1 * tdep->wordsize);
e754ae69 769 }
61bf9ae0 770
e754ae69
AC
771 return RETURN_VALUE_REGISTER_CONVENTION;
772 }
773 if (TYPE_LENGTH (type) <= 8)
774 {
963e2bb7 775 if (readbuf)
e754ae69
AC
776 {
777 /* This matches SVr4 PPC, it does not match GCC. */
778 /* The value is right-padded to 8 bytes and then loaded, as
779 two "words", into r3/r4. */
50fd1280 780 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
e754ae69
AC
781 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
782 regvals + 0 * tdep->wordsize);
783 if (TYPE_LENGTH (type) > tdep->wordsize)
784 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
785 regvals + 1 * tdep->wordsize);
963e2bb7 786 memcpy (readbuf, regvals, TYPE_LENGTH (type));
e754ae69 787 }
963e2bb7 788 if (writebuf)
e754ae69
AC
789 {
790 /* This matches SVr4 PPC, it does not match GCC. */
791 /* The value is padded out to 8 bytes and then loaded, as
792 two "words" into r3/r4. */
50fd1280 793 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
e754ae69 794 memset (regvals, 0, sizeof regvals);
963e2bb7 795 memcpy (regvals, writebuf, TYPE_LENGTH (type));
e754ae69
AC
796 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
797 regvals + 0 * tdep->wordsize);
798 if (TYPE_LENGTH (type) > tdep->wordsize)
799 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
800 regvals + 1 * tdep->wordsize);
801 }
802 return RETURN_VALUE_REGISTER_CONVENTION;
803 }
804 return RETURN_VALUE_STRUCT_CONVENTION;
805}
806
05580c65 807enum return_value_convention
c055b101
CV
808ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *func_type,
809 struct type *valtype, struct regcache *regcache,
810 gdb_byte *readbuf, const gdb_byte *writebuf)
e754ae69 811{
963e2bb7
AC
812 return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf,
813 writebuf, 0);
e754ae69
AC
814}
815
05580c65 816enum return_value_convention
963e2bb7 817ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch,
c055b101 818 struct type *func_type,
963e2bb7
AC
819 struct type *valtype,
820 struct regcache *regcache,
50fd1280 821 gdb_byte *readbuf, const gdb_byte *writebuf)
e754ae69 822{
963e2bb7
AC
823 return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf,
824 writebuf, 1);
944fcfab 825}
afd48b75 826
b6e1c027
AC
827/* The helper function for 64-bit SYSV push_dummy_call. Converts the
828 function's code address back into the function's descriptor
829 address.
830
831 Find a value for the TOC register. Every symbol should have both
832 ".FN" and "FN" in the minimal symbol table. "FN" points at the
833 FN's descriptor, while ".FN" points at the entry point (which
834 matches FUNC_ADDR). Need to reverse from FUNC_ADDR back to the
835 FN's descriptor address (while at the same time being careful to
836 find "FN" in the same object file as ".FN"). */
837
838static int
839convert_code_addr_to_desc_addr (CORE_ADDR code_addr, CORE_ADDR *desc_addr)
840{
841 struct obj_section *dot_fn_section;
842 struct minimal_symbol *dot_fn;
843 struct minimal_symbol *fn;
844 CORE_ADDR toc;
845 /* Find the minimal symbol that corresponds to CODE_ADDR (should
846 have a name of the form ".FN"). */
847 dot_fn = lookup_minimal_symbol_by_pc (code_addr);
848 if (dot_fn == NULL || SYMBOL_LINKAGE_NAME (dot_fn)[0] != '.')
849 return 0;
850 /* Get the section that contains CODE_ADDR. Need this for the
851 "objfile" that it contains. */
852 dot_fn_section = find_pc_section (code_addr);
853 if (dot_fn_section == NULL || dot_fn_section->objfile == NULL)
854 return 0;
855 /* Now find the corresponding "FN" (dropping ".") minimal symbol's
856 address. Only look for the minimal symbol in ".FN"'s object file
857 - avoids problems when two object files (i.e., shared libraries)
858 contain a minimal symbol with the same name. */
859 fn = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (dot_fn) + 1, NULL,
860 dot_fn_section->objfile);
861 if (fn == NULL)
862 return 0;
863 /* Found a descriptor. */
864 (*desc_addr) = SYMBOL_VALUE_ADDRESS (fn);
865 return 1;
866}
867
8be9034a
AC
868/* Pass the arguments in either registers, or in the stack. Using the
869 ppc 64 bit SysV ABI.
870
871 This implements a dumbed down version of the ABI. It always writes
872 values to memory, GPR and FPR, even when not necessary. Doing this
873 greatly simplifies the logic. */
874
875CORE_ADDR
7d9b040b 876ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
8be9034a
AC
877 struct regcache *regcache, CORE_ADDR bp_addr,
878 int nargs, struct value **args, CORE_ADDR sp,
879 int struct_return, CORE_ADDR struct_addr)
880{
7d9b040b 881 CORE_ADDR func_addr = find_function_addr (function, NULL);
40a6adc1 882 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
fb4443d8 883 ULONGEST back_chain;
8be9034a
AC
884 /* See for-loop comment below. */
885 int write_pass;
886 /* Size of the Altivec's vector parameter region, the final value is
887 computed in the for-loop below. */
888 LONGEST vparam_size = 0;
889 /* Size of the general parameter region, the final value is computed
890 in the for-loop below. */
891 LONGEST gparam_size = 0;
892 /* Kevin writes ... I don't mind seeing tdep->wordsize used in the
893 calls to align_up(), align_down(), etc. because this makes it
894 easier to reuse this code (in a copy/paste sense) in the future,
895 but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
896 at some point makes it easier to verify that this function is
897 correct without having to do a non-local analysis to figure out
898 the possible values of tdep->wordsize. */
899 gdb_assert (tdep->wordsize == 8);
900
55eddb0f
DJ
901 /* This function exists to support a calling convention that
902 requires floating-point registers. It shouldn't be used on
903 processors that lack them. */
904 gdb_assert (ppc_floating_point_unit_p (gdbarch));
905
fb4443d8
UW
906 /* By this stage in the proceedings, SP has been decremented by "red
907 zone size" + "struct return size". Fetch the stack-pointer from
908 before this and use that as the BACK_CHAIN. */
40a6adc1 909 regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
3e8c568d 910 &back_chain);
fb4443d8 911
8be9034a
AC
912 /* Go through the argument list twice.
913
914 Pass 1: Compute the function call's stack space and register
915 requirements.
916
917 Pass 2: Replay the same computation but this time also write the
918 values out to the target. */
919
920 for (write_pass = 0; write_pass < 2; write_pass++)
921 {
922 int argno;
923 /* Next available floating point register for float and double
924 arguments. */
925 int freg = 1;
926 /* Next available general register for non-vector (but possibly
927 float) arguments. */
928 int greg = 3;
929 /* Next available vector register for vector arguments. */
930 int vreg = 2;
931 /* The address, at which the next general purpose parameter
932 (integer, struct, float, ...) should be saved. */
933 CORE_ADDR gparam;
934 /* Address, at which the next Altivec vector parameter should be
935 saved. */
936 CORE_ADDR vparam;
937
938 if (!write_pass)
939 {
940 /* During the first pass, GPARAM and VPARAM are more like
941 offsets (start address zero) than addresses. That way
942 the accumulate the total stack space each region
943 requires. */
944 gparam = 0;
945 vparam = 0;
946 }
947 else
948 {
949 /* Decrement the stack pointer making space for the Altivec
950 and general on-stack parameters. Set vparam and gparam
951 to their corresponding regions. */
952 vparam = align_down (sp - vparam_size, 16);
953 gparam = align_down (vparam - gparam_size, 16);
954 /* Add in space for the TOC, link editor double word,
955 compiler double word, LR save area, CR save area. */
956 sp = align_down (gparam - 48, 16);
957 }
958
959 /* If the function is returning a `struct', then there is an
960 extra hidden parameter (which will be passed in r3)
961 containing the address of that struct.. In that case we
962 should advance one word and start from r4 register to copy
963 parameters. This also consumes one on-stack parameter slot. */
964 if (struct_return)
965 {
966 if (write_pass)
967 regcache_cooked_write_signed (regcache,
968 tdep->ppc_gp0_regnum + greg,
969 struct_addr);
970 greg++;
971 gparam = align_up (gparam + tdep->wordsize, tdep->wordsize);
972 }
973
974 for (argno = 0; argno < nargs; argno++)
975 {
976 struct value *arg = args[argno];
df407dfe 977 struct type *type = check_typedef (value_type (arg));
0fd88904 978 const bfd_byte *val = value_contents (arg);
ce0451ad 979
8be9034a
AC
980 if (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) <= 8)
981 {
982 /* Floats and Doubles go in f1 .. f13. They also
983 consume a left aligned GREG,, and can end up in
984 memory. */
985 if (write_pass)
986 {
ce0451ad
TJB
987 gdb_byte regval[MAX_REGISTER_SIZE];
988 const gdb_byte *p;
989
990 /* Version 1.7 of the 64-bit PowerPC ELF ABI says:
991
992 "Single precision floating point values are mapped to
993 the first word in a single doubleword."
994
995 And version 1.9 says:
996
997 "Single precision floating point values are mapped to
998 the second word in a single doubleword."
999
1000 GDB then writes single precision floating point values
1001 at both words in a doubleword, to support both ABIs. */
1002 if (TYPE_LENGTH (type) == 4)
1003 {
1004 memcpy (regval, val, 4);
1005 memcpy (regval + 4, val, 4);
1006 p = regval;
1007 }
1008 else
1009 p = val;
1010
1011 /* Write value in the stack's parameter save area. */
1012 write_memory (gparam, p, 8);
1013
55eddb0f 1014 if (freg <= 13)
8be9034a 1015 {
366f009f
JB
1016 struct type *regtype
1017 = register_type (gdbarch, tdep->ppc_fp0_regnum);
ce0451ad 1018
8be9034a 1019 convert_typed_floating (val, type, regval, regtype);
366f009f
JB
1020 regcache_cooked_write (regcache,
1021 tdep->ppc_fp0_regnum + freg,
8be9034a
AC
1022 regval);
1023 }
1024 if (greg <= 10)
ce0451ad
TJB
1025 regcache_cooked_write (regcache,
1026 tdep->ppc_gp0_regnum + greg,
1027 regval);
8be9034a 1028 }
ce0451ad 1029
8be9034a
AC
1030 freg++;
1031 greg++;
ce0451ad
TJB
1032 /* Always consume parameter stack space. */
1033 gparam = align_up (gparam + 8, tdep->wordsize);
8be9034a 1034 }
b14d30e1
JM
1035 else if (TYPE_CODE (type) == TYPE_CODE_FLT
1036 && TYPE_LENGTH (type) == 16
40a6adc1 1037 && (gdbarch_long_double_format (gdbarch)
b14d30e1
JM
1038 == floatformats_ibm_long_double))
1039 {
1040 /* IBM long double stored in two doublewords of the
1041 parameter save area and corresponding registers. */
1042 if (write_pass)
1043 {
1044 if (!tdep->soft_float && freg <= 13)
1045 {
1046 regcache_cooked_write (regcache,
1047 tdep->ppc_fp0_regnum + freg,
1048 val);
1049 if (freg <= 12)
1050 regcache_cooked_write (regcache,
1051 tdep->ppc_fp0_regnum + freg + 1,
1052 val + 8);
1053 }
1054 if (greg <= 10)
1055 {
1056 regcache_cooked_write (regcache,
1057 tdep->ppc_gp0_regnum + greg,
1058 val);
1059 if (greg <= 9)
1060 regcache_cooked_write (regcache,
1061 tdep->ppc_gp0_regnum + greg + 1,
1062 val + 8);
1063 }
1064 write_memory (gparam, val, TYPE_LENGTH (type));
1065 }
1066 freg += 2;
1067 greg += 2;
1068 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
1069 }
1300a2f4
TJB
1070 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
1071 && TYPE_LENGTH (type) <= 8)
1072 {
1073 /* 32-bit and 64-bit decimal floats go in f1 .. f13. They can
1074 end up in memory. */
1075 if (write_pass)
1076 {
1077 gdb_byte regval[MAX_REGISTER_SIZE];
1078 const gdb_byte *p;
1079
1080 /* 32-bit decimal floats are right aligned in the
1081 doubleword. */
1082 if (TYPE_LENGTH (type) == 4)
1083 {
1084 memcpy (regval + 4, val, 4);
1085 p = regval;
1086 }
1087 else
1088 p = val;
1089
1090 /* Write value in the stack's parameter save area. */
1091 write_memory (gparam, p, 8);
1092
1093 if (freg <= 13)
1094 regcache_cooked_write (regcache,
1095 tdep->ppc_fp0_regnum + freg, p);
1096 }
1097
1098 freg++;
1099 greg++;
1100 /* Always consume parameter stack space. */
1101 gparam = align_up (gparam + 8, tdep->wordsize);
1102 }
1103 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT &&
1104 TYPE_LENGTH (type) == 16)
1105 {
1106 /* 128-bit decimal floats go in f2 .. f12, always in even/odd
1107 pairs. They can end up in memory, using two doublewords. */
1108 if (write_pass)
1109 {
1110 if (freg <= 12)
1111 {
1112 /* Make sure freg is even. */
1113 freg += freg & 1;
1114 regcache_cooked_write (regcache,
1115 tdep->ppc_fp0_regnum + freg, val);
1116 regcache_cooked_write (regcache,
1117 tdep->ppc_fp0_regnum + freg + 1, val + 8);
1118 }
1119
1120 write_memory (gparam, val, TYPE_LENGTH (type));
1121 }
1122
1123 freg += 2;
1124 greg += 2;
1125 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
1126 }
8be9034a
AC
1127 else if (TYPE_LENGTH (type) == 16 && TYPE_VECTOR (type)
1128 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1129 && tdep->ppc_vr0_regnum >= 0)
1130 {
1131 /* In the Altivec ABI, vectors go in the vector
1132 registers v2 .. v13, or when that runs out, a vector
1133 annex which goes above all the normal parameters.
1134 NOTE: cagney/2003-09-21: This is a guess based on the
1135 PowerOpen Altivec ABI. */
1136 if (vreg <= 13)
1137 {
1138 if (write_pass)
1139 regcache_cooked_write (regcache,
1140 tdep->ppc_vr0_regnum + vreg, val);
1141 vreg++;
1142 }
1143 else
1144 {
1145 if (write_pass)
1146 write_memory (vparam, val, TYPE_LENGTH (type));
1147 vparam = align_up (vparam + TYPE_LENGTH (type), 16);
1148 }
1149 }
1150 else if ((TYPE_CODE (type) == TYPE_CODE_INT
b6e1c027
AC
1151 || TYPE_CODE (type) == TYPE_CODE_ENUM
1152 || TYPE_CODE (type) == TYPE_CODE_PTR)
8be9034a
AC
1153 && TYPE_LENGTH (type) <= 8)
1154 {
b6e1c027
AC
1155 /* Scalars and Pointers get sign[un]extended and go in
1156 gpr3 .. gpr10. They can also end up in memory. */
8be9034a
AC
1157 if (write_pass)
1158 {
1159 /* Sign extend the value, then store it unsigned. */
1160 ULONGEST word = unpack_long (type, val);
b6e1c027
AC
1161 /* Convert any function code addresses into
1162 descriptors. */
1163 if (TYPE_CODE (type) == TYPE_CODE_PTR
1164 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1165 {
1166 CORE_ADDR desc = word;
1167 convert_code_addr_to_desc_addr (word, &desc);
1168 word = desc;
1169 }
8be9034a
AC
1170 if (greg <= 10)
1171 regcache_cooked_write_unsigned (regcache,
1172 tdep->ppc_gp0_regnum +
1173 greg, word);
1174 write_memory_unsigned_integer (gparam, tdep->wordsize,
1175 word);
1176 }
1177 greg++;
1178 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
1179 }
1180 else
1181 {
1182 int byte;
1183 for (byte = 0; byte < TYPE_LENGTH (type);
1184 byte += tdep->wordsize)
1185 {
1186 if (write_pass && greg <= 10)
1187 {
50fd1280 1188 gdb_byte regval[MAX_REGISTER_SIZE];
8be9034a
AC
1189 int len = TYPE_LENGTH (type) - byte;
1190 if (len > tdep->wordsize)
1191 len = tdep->wordsize;
1192 memset (regval, 0, sizeof regval);
36815e57
JM
1193 /* The ABI (version 1.9) specifies that values
1194 smaller than one doubleword are right-aligned
1195 and those larger are left-aligned. GCC
1196 versions before 3.4 implemented this
1197 incorrectly; see
1198 <http://gcc.gnu.org/gcc-3.4/powerpc-abi.html>. */
1199 if (byte == 0)
8be9034a
AC
1200 memcpy (regval + tdep->wordsize - len,
1201 val + byte, len);
36815e57
JM
1202 else
1203 memcpy (regval, val + byte, len);
8be9034a
AC
1204 regcache_cooked_write (regcache, greg, regval);
1205 }
1206 greg++;
1207 }
1208 if (write_pass)
1209 /* WARNING: cagney/2003-09-21: Strictly speaking, this
1210 isn't necessary, unfortunately, GCC appears to get
1211 "struct convention" parameter passing wrong putting
1212 odd sized structures in memory instead of in a
1213 register. Work around this by always writing the
1214 value to memory. Fortunately, doing this
1215 simplifies the code. */
1216 write_memory (gparam, val, TYPE_LENGTH (type));
36815e57
JM
1217 if (freg <= 13
1218 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1219 && TYPE_NFIELDS (type) == 1
1220 && TYPE_LENGTH (type) <= 16)
1221 {
1222 /* The ABI (version 1.9) specifies that structs
1223 containing a single floating-point value, at any
1224 level of nesting of single-member structs, are
1225 passed in floating-point registers. */
1226 while (TYPE_CODE (type) == TYPE_CODE_STRUCT
1227 && TYPE_NFIELDS (type) == 1)
1228 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1229 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1230 {
1231 if (TYPE_LENGTH (type) <= 8)
1232 {
1233 if (write_pass)
1234 {
1235 gdb_byte regval[MAX_REGISTER_SIZE];
1236 struct type *regtype
1237 = register_type (gdbarch,
1238 tdep->ppc_fp0_regnum);
1239 convert_typed_floating (val, type, regval,
1240 regtype);
1241 regcache_cooked_write (regcache,
1242 (tdep->ppc_fp0_regnum
1243 + freg),
1244 regval);
1245 }
1246 freg++;
1247 }
1248 else if (TYPE_LENGTH (type) == 16
40a6adc1 1249 && (gdbarch_long_double_format (gdbarch)
36815e57
JM
1250 == floatformats_ibm_long_double))
1251 {
1252 if (write_pass)
1253 {
1254 regcache_cooked_write (regcache,
1255 (tdep->ppc_fp0_regnum
1256 + freg),
1257 val);
1258 if (freg <= 12)
1259 regcache_cooked_write (regcache,
1260 (tdep->ppc_fp0_regnum
1261 + freg + 1),
1262 val + 8);
1263 }
1264 freg += 2;
1265 }
1266 }
1267 }
8be9034a
AC
1268 /* Always consume parameter stack space. */
1269 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
1270 }
1271 }
1272
1273 if (!write_pass)
1274 {
1275 /* Save the true region sizes ready for the second pass. */
1276 vparam_size = vparam;
1277 /* Make certain that the general parameter save area is at
1278 least the minimum 8 registers (or doublewords) in size. */
1279 if (greg < 8)
1280 gparam_size = 8 * tdep->wordsize;
1281 else
1282 gparam_size = gparam;
1283 }
1284 }
1285
1286 /* Update %sp. */
40a6adc1 1287 regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
8be9034a
AC
1288
1289 /* Write the backchain (it occupies WORDSIZED bytes). */
1290 write_memory_signed_integer (sp, tdep->wordsize, back_chain);
1291
1292 /* Point the inferior function call's return address at the dummy's
1293 breakpoint. */
1294 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1295
b6e1c027
AC
1296 /* Use the func_addr to find the descriptor, and use that to find
1297 the TOC. */
8be9034a 1298 {
b6e1c027
AC
1299 CORE_ADDR desc_addr;
1300 if (convert_code_addr_to_desc_addr (func_addr, &desc_addr))
8be9034a 1301 {
b6e1c027
AC
1302 /* The TOC is the second double word in the descriptor. */
1303 CORE_ADDR toc =
1304 read_memory_unsigned_integer (desc_addr + tdep->wordsize,
1305 tdep->wordsize);
1306 regcache_cooked_write_unsigned (regcache,
1307 tdep->ppc_gp0_regnum + 2, toc);
8be9034a
AC
1308 }
1309 }
1310
1311 return sp;
1312}
1313
afd48b75 1314
55eddb0f 1315/* The 64 bit ABI return value convention.
afd48b75
AC
1316
1317 Return non-zero if the return-value is stored in a register, return
1318 0 if the return-value is instead stored on the stack (a.k.a.,
1319 struct return convention).
1320
963e2bb7 1321 For a return-value stored in a register: when WRITEBUF is non-NULL,
afd48b75 1322 copy the buffer to the corresponding register return-value location
963e2bb7 1323 location; when READBUF is non-NULL, fill the buffer from the
afd48b75 1324 corresponding register return-value location. */
05580c65 1325enum return_value_convention
c055b101
CV
1326ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *func_type,
1327 struct type *valtype, struct regcache *regcache,
1328 gdb_byte *readbuf, const gdb_byte *writebuf)
afd48b75 1329{
05580c65 1330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
16796152
JB
1331
1332 /* This function exists to support a calling convention that
1333 requires floating-point registers. It shouldn't be used on
1334 processors that lack them. */
1335 gdb_assert (ppc_floating_point_unit_p (gdbarch));
1336
afd48b75 1337 /* Floats and doubles in F1. */
944fcfab 1338 if (TYPE_CODE (valtype) == TYPE_CODE_FLT && TYPE_LENGTH (valtype) <= 8)
afd48b75 1339 {
50fd1280 1340 gdb_byte regval[MAX_REGISTER_SIZE];
366f009f 1341 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
963e2bb7 1342 if (writebuf != NULL)
afd48b75 1343 {
963e2bb7 1344 convert_typed_floating (writebuf, valtype, regval, regtype);
366f009f 1345 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
afd48b75 1346 }
963e2bb7 1347 if (readbuf != NULL)
afd48b75 1348 {
366f009f 1349 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
963e2bb7 1350 convert_typed_floating (regval, regtype, readbuf, valtype);
afd48b75
AC
1351 }
1352 return RETURN_VALUE_REGISTER_CONVENTION;
1353 }
1300a2f4
TJB
1354 if (TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT)
1355 return get_decimal_float_return_value (gdbarch, valtype, regcache, readbuf,
1356 writebuf);
3d8476bc 1357 /* Integers in r3. */
b6e1c027
AC
1358 if ((TYPE_CODE (valtype) == TYPE_CODE_INT
1359 || TYPE_CODE (valtype) == TYPE_CODE_ENUM)
1360 && TYPE_LENGTH (valtype) <= 8)
afd48b75 1361 {
963e2bb7 1362 if (writebuf != NULL)
afd48b75
AC
1363 {
1364 /* Be careful to sign extend the value. */
1365 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
963e2bb7 1366 unpack_long (valtype, writebuf));
afd48b75 1367 }
963e2bb7 1368 if (readbuf != NULL)
afd48b75
AC
1369 {
1370 /* Extract the integer from r3. Since this is truncating the
1371 value, there isn't a sign extension problem. */
1372 ULONGEST regval;
1373 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1374 &regval);
963e2bb7 1375 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
afd48b75
AC
1376 }
1377 return RETURN_VALUE_REGISTER_CONVENTION;
1378 }
1379 /* All pointers live in r3. */
1380 if (TYPE_CODE (valtype) == TYPE_CODE_PTR)
1381 {
1382 /* All pointers live in r3. */
963e2bb7
AC
1383 if (writebuf != NULL)
1384 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1385 if (readbuf != NULL)
1386 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
afd48b75
AC
1387 return RETURN_VALUE_REGISTER_CONVENTION;
1388 }
3d8476bc
PG
1389 /* Array type has more than one use. */
1390 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
afd48b75
AC
1391 {
1392 /* Small character arrays are returned, right justified, in r3. */
3d8476bc
PG
1393 if (TYPE_LENGTH (valtype) <= 8
1394 && TYPE_CODE (TYPE_TARGET_TYPE (valtype)) == TYPE_CODE_INT
1395 && TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1)
1396 {
1397 int offset = (register_size (gdbarch, tdep->ppc_gp0_regnum + 3)
1398 - TYPE_LENGTH (valtype));
1399 if (writebuf != NULL)
1400 regcache_cooked_write_part (regcache, tdep->ppc_gp0_regnum + 3,
1401 offset, TYPE_LENGTH (valtype), writebuf);
1402 if (readbuf != NULL)
1403 regcache_cooked_read_part (regcache, tdep->ppc_gp0_regnum + 3,
1404 offset, TYPE_LENGTH (valtype), readbuf);
1405 return RETURN_VALUE_REGISTER_CONVENTION;
1406 }
1407 /* A VMX vector is returned in v2. */
1408 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1409 && TYPE_VECTOR (valtype) && tdep->ppc_vr0_regnum >= 0)
1410 {
1411 if (readbuf)
1412 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1413 if (writebuf)
1414 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
1415 return RETURN_VALUE_REGISTER_CONVENTION;
1416 }
afd48b75
AC
1417 }
1418 /* Big floating point values get stored in adjacent floating
3d8476bc 1419 point registers, starting with F1. */
afd48b75 1420 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
944fcfab 1421 && (TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 32))
afd48b75 1422 {
963e2bb7 1423 if (writebuf || readbuf != NULL)
afd48b75
AC
1424 {
1425 int i;
1426 for (i = 0; i < TYPE_LENGTH (valtype) / 8; i++)
1427 {
963e2bb7 1428 if (writebuf != NULL)
366f009f 1429 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
963e2bb7
AC
1430 (const bfd_byte *) writebuf + i * 8);
1431 if (readbuf != NULL)
366f009f 1432 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
963e2bb7 1433 (bfd_byte *) readbuf + i * 8);
afd48b75
AC
1434 }
1435 }
1436 return RETURN_VALUE_REGISTER_CONVENTION;
1437 }
1438 /* Complex values get returned in f1:f2, need to convert. */
1439 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX
1440 && (TYPE_LENGTH (valtype) == 8 || TYPE_LENGTH (valtype) == 16))
1441 {
1442 if (regcache != NULL)
1443 {
1444 int i;
1445 for (i = 0; i < 2; i++)
1446 {
50fd1280 1447 gdb_byte regval[MAX_REGISTER_SIZE];
944fcfab 1448 struct type *regtype =
40a6adc1 1449 register_type (gdbarch, tdep->ppc_fp0_regnum);
963e2bb7 1450 if (writebuf != NULL)
afd48b75 1451 {
963e2bb7 1452 convert_typed_floating ((const bfd_byte *) writebuf +
944fcfab 1453 i * (TYPE_LENGTH (valtype) / 2),
afd48b75 1454 valtype, regval, regtype);
366f009f
JB
1455 regcache_cooked_write (regcache,
1456 tdep->ppc_fp0_regnum + 1 + i,
944fcfab 1457 regval);
afd48b75 1458 }
963e2bb7 1459 if (readbuf != NULL)
afd48b75 1460 {
366f009f
JB
1461 regcache_cooked_read (regcache,
1462 tdep->ppc_fp0_regnum + 1 + i,
1463 regval);
afd48b75 1464 convert_typed_floating (regval, regtype,
963e2bb7 1465 (bfd_byte *) readbuf +
944fcfab 1466 i * (TYPE_LENGTH (valtype) / 2),
afd48b75
AC
1467 valtype);
1468 }
1469 }
1470 }
1471 return RETURN_VALUE_REGISTER_CONVENTION;
1472 }
1473 /* Big complex values get stored in f1:f4. */
944fcfab 1474 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX && TYPE_LENGTH (valtype) == 32)
afd48b75
AC
1475 {
1476 if (regcache != NULL)
1477 {
1478 int i;
1479 for (i = 0; i < 4; i++)
1480 {
963e2bb7 1481 if (writebuf != NULL)
366f009f 1482 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
963e2bb7
AC
1483 (const bfd_byte *) writebuf + i * 8);
1484 if (readbuf != NULL)
366f009f 1485 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
963e2bb7 1486 (bfd_byte *) readbuf + i * 8);
afd48b75
AC
1487 }
1488 }
1489 return RETURN_VALUE_REGISTER_CONVENTION;
1490 }
1491 return RETURN_VALUE_STRUCT_CONVENTION;
1492}
1493
6066c3de
AC
1494CORE_ADDR
1495ppc64_sysv_abi_adjust_breakpoint_address (struct gdbarch *gdbarch,
1496 CORE_ADDR bpaddr)
1497{
1498 /* PPC64 SYSV specifies that the minimal-symbol "FN" should point at
1499 a function-descriptor while the corresponding minimal-symbol
1500 ".FN" should point at the entry point. Consequently, a command
1501 like "break FN" applied to an object file with only minimal
1502 symbols, will insert the breakpoint into the descriptor at "FN"
1503 and not the function at ".FN". Avoid this confusion by adjusting
1504 any attempt to set a descriptor breakpoint into a corresponding
1505 function breakpoint. Note that GDB warns the user when this
1506 adjustment is applied - that's ok as otherwise the user will have
1507 no way of knowing why their breakpoint at "FN" resulted in the
1508 program stopping at ".FN". */
1509 return gdbarch_convert_from_func_ptr_addr (gdbarch, bpaddr, &current_target);
1510}