]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/rs6000-tdep.c
2003-08-18 Andreas Schwab <schwab@suse.de>
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1e698235 3 1998, 1999, 2000, 2001, 2002, 2003
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
4be87837 37#include "osabi.h"
7a78ae4e 38
2fccf04a 39#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 40#include "coff/internal.h" /* for libcoff.h */
2fccf04a 41#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
42#include "coff/xcoff.h"
43#include "libxcoff.h"
7a78ae4e 44
9aa1e687 45#include "elf-bfd.h"
7a78ae4e 46
6ded7999 47#include "solib-svr4.h"
9aa1e687 48#include "ppc-tdep.h"
7a78ae4e 49
338ef23d
AC
50#include "gdb_assert.h"
51
7a78ae4e
ND
52/* If the kernel has to deliver a signal, it pushes a sigcontext
53 structure on the stack and then calls the signal handler, passing
54 the address of the sigcontext in an argument register. Usually
55 the signal handler doesn't save this register, so we have to
56 access the sigcontext structure via an offset from the signal handler
57 frame.
58 The following constants were determined by experimentation on AIX 3.2. */
59#define SIG_FRAME_PC_OFFSET 96
60#define SIG_FRAME_LR_OFFSET 108
61#define SIG_FRAME_FP_OFFSET 284
62
7a78ae4e
ND
63/* To be used by skip_prologue. */
64
65struct rs6000_framedata
66 {
67 int offset; /* total size of frame --- the distance
68 by which we decrement sp to allocate
69 the frame */
70 int saved_gpr; /* smallest # of saved gpr */
71 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 72 int saved_vr; /* smallest # of saved vr */
96ff0de4 73 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
74 int alloca_reg; /* alloca register number (frame ptr) */
75 char frameless; /* true if frameless functions. */
76 char nosavedpc; /* true if pc not saved. */
77 int gpr_offset; /* offset of saved gprs from prev sp */
78 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 79 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 80 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
81 int lr_offset; /* offset of saved lr */
82 int cr_offset; /* offset of saved cr */
6be8bc0c 83 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
84 };
85
86/* Description of a single register. */
87
88struct reg
89 {
90 char *name; /* name of register */
91 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
92 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
93 unsigned char fpr; /* whether register is floating-point */
489461e2 94 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
95 };
96
c906108c
SS
97/* Breakpoint shadows for the single step instructions will be kept here. */
98
c5aa993b
JM
99static struct sstep_breaks
100 {
101 /* Address, or 0 if this is not in use. */
102 CORE_ADDR address;
103 /* Shadow contents. */
104 char data[4];
105 }
106stepBreaks[2];
c906108c
SS
107
108/* Hook for determining the TOC address when calling functions in the
109 inferior under AIX. The initialization code in rs6000-nat.c sets
110 this hook to point to find_toc_address. */
111
7a78ae4e
ND
112CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
113
114/* Hook to set the current architecture when starting a child process.
115 rs6000-nat.c sets this. */
116
117void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
118
119/* Static function prototypes */
120
a14ed312
KB
121static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
122 CORE_ADDR safety);
077276e8
KB
123static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
7a78ae4e
ND
125static void frame_get_saved_regs (struct frame_info * fi,
126 struct rs6000_framedata * fdatap);
127static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 128
64b84175
KB
129/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
130int
131altivec_register_p (int regno)
132{
133 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
134 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
135 return 0;
136 else
137 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
138}
139
0a613259
AC
140/* Use the architectures FP registers? */
141int
142ppc_floating_point_unit_p (struct gdbarch *gdbarch)
143{
144 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
145 if (info->arch == bfd_arch_powerpc)
146 return (info->mach != bfd_mach_ppc_e500);
147 if (info->arch == bfd_arch_rs6000)
148 return 1;
149 return 0;
150}
151
7a78ae4e 152/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 153
7a78ae4e
ND
154static CORE_ADDR
155read_memory_addr (CORE_ADDR memaddr, int len)
156{
157 return read_memory_unsigned_integer (memaddr, len);
158}
c906108c 159
7a78ae4e
ND
160static CORE_ADDR
161rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
162{
163 struct rs6000_framedata frame;
077276e8 164 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
165 return pc;
166}
167
168
c906108c
SS
169/* Fill in fi->saved_regs */
170
171struct frame_extra_info
172{
173 /* Functions calling alloca() change the value of the stack
174 pointer. We need to use initial stack pointer (which is saved in
175 r31 by gcc) in such cases. If a compiler emits traceback table,
176 then we should use the alloca register specified in traceback
177 table. FIXME. */
c5aa993b 178 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
179};
180
9aa1e687 181void
7a78ae4e 182rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 183{
c9012c71
AC
184 struct frame_extra_info *extra_info =
185 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
186 extra_info->initial_sp = 0;
bdd78e62
AC
187 if (get_next_frame (fi) != NULL
188 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
7a292a7a 189 /* We're in get_prev_frame */
c906108c
SS
190 /* and this is a special signal frame. */
191 /* (fi->pc will be some low address in the kernel, */
192 /* to which the signal handler returns). */
5a203e44 193 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
c906108c
SS
194}
195
7a78ae4e
ND
196/* Put here the code to store, into a struct frame_saved_regs,
197 the addresses of the saved registers of frame described by FRAME_INFO.
198 This includes special registers such as pc and fp saved in special
199 ways in the stack frame. sp is even more special:
200 the address we return for it IS the sp for the next frame. */
c906108c 201
7a78ae4e
ND
202/* In this implementation for RS/6000, we do *not* save sp. I am
203 not sure if it will be needed. The following function takes care of gpr's
204 and fpr's only. */
205
9aa1e687 206void
7a78ae4e 207rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
208{
209 frame_get_saved_regs (fi, NULL);
210}
211
7a78ae4e
ND
212static CORE_ADDR
213rs6000_frame_args_address (struct frame_info *fi)
c906108c 214{
c9012c71
AC
215 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
216 if (extra_info->initial_sp != 0)
217 return extra_info->initial_sp;
c906108c
SS
218 else
219 return frame_initial_stack_address (fi);
220}
221
7a78ae4e
ND
222/* Immediately after a function call, return the saved pc.
223 Can't go through the frames for this because on some machines
224 the new frame is not set up until the new function executes
225 some instructions. */
226
227static CORE_ADDR
228rs6000_saved_pc_after_call (struct frame_info *fi)
229{
2188cbdd 230 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 231}
c906108c 232
143985b7 233/* Get the ith function argument for the current function. */
b9362cc7 234static CORE_ADDR
143985b7
AF
235rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
236 struct type *type)
237{
238 CORE_ADDR addr;
239 frame_read_register (frame, 3 + argi, &addr);
240 return addr;
241}
242
c906108c
SS
243/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
244
245static CORE_ADDR
7a78ae4e 246branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
247{
248 CORE_ADDR dest;
249 int immediate;
250 int absolute;
251 int ext_op;
252
253 absolute = (int) ((instr >> 1) & 1);
254
c5aa993b
JM
255 switch (opcode)
256 {
257 case 18:
258 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
259 if (absolute)
260 dest = immediate;
261 else
262 dest = pc + immediate;
263 break;
264
265 case 16:
266 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
267 if (absolute)
268 dest = immediate;
269 else
270 dest = pc + immediate;
271 break;
272
273 case 19:
274 ext_op = (instr >> 1) & 0x3ff;
275
276 if (ext_op == 16) /* br conditional register */
277 {
2188cbdd 278 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
279
280 /* If we are about to return from a signal handler, dest is
281 something like 0x3c90. The current frame is a signal handler
282 caller frame, upon completion of the sigreturn system call
283 execution will return to the saved PC in the frame. */
284 if (dest < TEXT_SEGMENT_BASE)
285 {
286 struct frame_info *fi;
287
288 fi = get_current_frame ();
289 if (fi != NULL)
8b36eed8 290 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 291 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
292 }
293 }
294
295 else if (ext_op == 528) /* br cond to count reg */
296 {
2188cbdd 297 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
298
299 /* If we are about to execute a system call, dest is something
300 like 0x22fc or 0x3b00. Upon completion the system call
301 will return to the address in the link register. */
302 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 303 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
304 }
305 else
306 return -1;
307 break;
c906108c 308
c5aa993b
JM
309 default:
310 return -1;
311 }
c906108c
SS
312 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
313}
314
315
316/* Sequence of bytes for breakpoint instruction. */
317
f4f9705a 318const static unsigned char *
7a78ae4e 319rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 320{
aaab4dba
AC
321 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
322 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 323 *bp_size = 4;
d7449b42 324 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
325 return big_breakpoint;
326 else
327 return little_breakpoint;
328}
329
330
331/* AIX does not support PT_STEP. Simulate it. */
332
333void
379d08a1
AC
334rs6000_software_single_step (enum target_signal signal,
335 int insert_breakpoints_p)
c906108c 336{
7c40d541
KB
337 CORE_ADDR dummy;
338 int breakp_sz;
f4f9705a 339 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
340 int ii, insn;
341 CORE_ADDR loc;
342 CORE_ADDR breaks[2];
343 int opcode;
344
c5aa993b
JM
345 if (insert_breakpoints_p)
346 {
c906108c 347
c5aa993b 348 loc = read_pc ();
c906108c 349
c5aa993b 350 insn = read_memory_integer (loc, 4);
c906108c 351
7c40d541 352 breaks[0] = loc + breakp_sz;
c5aa993b
JM
353 opcode = insn >> 26;
354 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 355
c5aa993b
JM
356 /* Don't put two breakpoints on the same address. */
357 if (breaks[1] == breaks[0])
358 breaks[1] = -1;
c906108c 359
c5aa993b 360 stepBreaks[1].address = 0;
c906108c 361
c5aa993b
JM
362 for (ii = 0; ii < 2; ++ii)
363 {
c906108c 364
c5aa993b
JM
365 /* ignore invalid breakpoint. */
366 if (breaks[ii] == -1)
367 continue;
7c40d541 368 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
369 stepBreaks[ii].address = breaks[ii];
370 }
c906108c 371
c5aa993b
JM
372 }
373 else
374 {
c906108c 375
c5aa993b
JM
376 /* remove step breakpoints. */
377 for (ii = 0; ii < 2; ++ii)
378 if (stepBreaks[ii].address != 0)
7c40d541
KB
379 target_remove_breakpoint (stepBreaks[ii].address,
380 stepBreaks[ii].data);
c5aa993b 381 }
c906108c 382 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 383 /* What errors? {read,write}_memory call error(). */
c906108c
SS
384}
385
386
387/* return pc value after skipping a function prologue and also return
388 information about a function frame.
389
390 in struct rs6000_framedata fdata:
c5aa993b
JM
391 - frameless is TRUE, if function does not have a frame.
392 - nosavedpc is TRUE, if function does not save %pc value in its frame.
393 - offset is the initial size of this stack frame --- the amount by
394 which we decrement the sp to allocate the frame.
395 - saved_gpr is the number of the first saved gpr.
396 - saved_fpr is the number of the first saved fpr.
6be8bc0c 397 - saved_vr is the number of the first saved vr.
96ff0de4 398 - saved_ev is the number of the first saved ev.
c5aa993b
JM
399 - alloca_reg is the number of the register used for alloca() handling.
400 Otherwise -1.
401 - gpr_offset is the offset of the first saved gpr from the previous frame.
402 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 403 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 404 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
405 - lr_offset is the offset of the saved lr
406 - cr_offset is the offset of the saved cr
6be8bc0c 407 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 408 */
c906108c
SS
409
410#define SIGNED_SHORT(x) \
411 ((sizeof (short) == 2) \
412 ? ((int)(short)(x)) \
413 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
414
415#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
416
55d05f3b
KB
417/* Limit the number of skipped non-prologue instructions, as the examining
418 of the prologue is expensive. */
419static int max_skip_non_prologue_insns = 10;
420
421/* Given PC representing the starting address of a function, and
422 LIM_PC which is the (sloppy) limit to which to scan when looking
423 for a prologue, attempt to further refine this limit by using
424 the line data in the symbol table. If successful, a better guess
425 on where the prologue ends is returned, otherwise the previous
426 value of lim_pc is returned. */
427static CORE_ADDR
428refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
429{
430 struct symtab_and_line prologue_sal;
431
432 prologue_sal = find_pc_line (pc, 0);
433 if (prologue_sal.line != 0)
434 {
435 int i;
436 CORE_ADDR addr = prologue_sal.end;
437
438 /* Handle the case in which compiler's optimizer/scheduler
439 has moved instructions into the prologue. We scan ahead
440 in the function looking for address ranges whose corresponding
441 line number is less than or equal to the first one that we
442 found for the function. (It can be less than when the
443 scheduler puts a body instruction before the first prologue
444 instruction.) */
445 for (i = 2 * max_skip_non_prologue_insns;
446 i > 0 && (lim_pc == 0 || addr < lim_pc);
447 i--)
448 {
449 struct symtab_and_line sal;
450
451 sal = find_pc_line (addr, 0);
452 if (sal.line == 0)
453 break;
454 if (sal.line <= prologue_sal.line
455 && sal.symtab == prologue_sal.symtab)
456 {
457 prologue_sal = sal;
458 }
459 addr = sal.end;
460 }
461
462 if (lim_pc == 0 || prologue_sal.end < lim_pc)
463 lim_pc = prologue_sal.end;
464 }
465 return lim_pc;
466}
467
468
7a78ae4e 469static CORE_ADDR
077276e8 470skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
471{
472 CORE_ADDR orig_pc = pc;
55d05f3b 473 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 474 CORE_ADDR li_found_pc = 0;
c906108c
SS
475 char buf[4];
476 unsigned long op;
477 long offset = 0;
6be8bc0c 478 long vr_saved_offset = 0;
482ca3f5
KB
479 int lr_reg = -1;
480 int cr_reg = -1;
6be8bc0c 481 int vr_reg = -1;
96ff0de4
EZ
482 int ev_reg = -1;
483 long ev_offset = 0;
6be8bc0c 484 int vrsave_reg = -1;
c906108c
SS
485 int reg;
486 int framep = 0;
487 int minimal_toc_loaded = 0;
ddb20c56 488 int prev_insn_was_prologue_insn = 1;
55d05f3b 489 int num_skip_non_prologue_insns = 0;
96ff0de4 490 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 491 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 492
55d05f3b
KB
493 /* Attempt to find the end of the prologue when no limit is specified.
494 Note that refine_prologue_limit() has been written so that it may
495 be used to "refine" the limits of non-zero PC values too, but this
496 is only safe if we 1) trust the line information provided by the
497 compiler and 2) iterate enough to actually find the end of the
498 prologue.
499
500 It may become a good idea at some point (for both performance and
501 accuracy) to unconditionally call refine_prologue_limit(). But,
502 until we can make a clear determination that this is beneficial,
503 we'll play it safe and only use it to obtain a limit when none
504 has been specified. */
505 if (lim_pc == 0)
506 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 507
ddb20c56 508 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
509 fdata->saved_gpr = -1;
510 fdata->saved_fpr = -1;
6be8bc0c 511 fdata->saved_vr = -1;
96ff0de4 512 fdata->saved_ev = -1;
c906108c
SS
513 fdata->alloca_reg = -1;
514 fdata->frameless = 1;
515 fdata->nosavedpc = 1;
516
55d05f3b 517 for (;; pc += 4)
c906108c 518 {
ddb20c56
KB
519 /* Sometimes it isn't clear if an instruction is a prologue
520 instruction or not. When we encounter one of these ambiguous
521 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
522 Otherwise, we'll assume that it really is a prologue instruction. */
523 if (prev_insn_was_prologue_insn)
524 last_prologue_pc = pc;
55d05f3b
KB
525
526 /* Stop scanning if we've hit the limit. */
527 if (lim_pc != 0 && pc >= lim_pc)
528 break;
529
ddb20c56
KB
530 prev_insn_was_prologue_insn = 1;
531
55d05f3b 532 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
533 if (target_read_memory (pc, buf, 4))
534 break;
535 op = extract_signed_integer (buf, 4);
c906108c 536
c5aa993b
JM
537 if ((op & 0xfc1fffff) == 0x7c0802a6)
538 { /* mflr Rx */
98f08d3d 539 lr_reg = (op & 0x03e00000);
c5aa993b 540 continue;
c906108c 541
c5aa993b
JM
542 }
543 else if ((op & 0xfc1fffff) == 0x7c000026)
544 { /* mfcr Rx */
98f08d3d 545 cr_reg = (op & 0x03e00000);
c5aa993b 546 continue;
c906108c 547
c906108c 548 }
c5aa993b
JM
549 else if ((op & 0xfc1f0000) == 0xd8010000)
550 { /* stfd Rx,NUM(r1) */
551 reg = GET_SRC_REG (op);
552 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
553 {
554 fdata->saved_fpr = reg;
555 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
556 }
557 continue;
c906108c 558
c5aa993b
JM
559 }
560 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
561 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
562 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
563 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
564 {
565
566 reg = GET_SRC_REG (op);
567 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
568 {
569 fdata->saved_gpr = reg;
7a78ae4e 570 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 571 op &= ~3UL;
c5aa993b
JM
572 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
573 }
574 continue;
c906108c 575
ddb20c56
KB
576 }
577 else if ((op & 0xffff0000) == 0x60000000)
578 {
96ff0de4 579 /* nop */
ddb20c56
KB
580 /* Allow nops in the prologue, but do not consider them to
581 be part of the prologue unless followed by other prologue
582 instructions. */
583 prev_insn_was_prologue_insn = 0;
584 continue;
585
c906108c 586 }
c5aa993b
JM
587 else if ((op & 0xffff0000) == 0x3c000000)
588 { /* addis 0,0,NUM, used
589 for >= 32k frames */
590 fdata->offset = (op & 0x0000ffff) << 16;
591 fdata->frameless = 0;
592 continue;
593
594 }
595 else if ((op & 0xffff0000) == 0x60000000)
596 { /* ori 0,0,NUM, 2nd ha
597 lf of >= 32k frames */
598 fdata->offset |= (op & 0x0000ffff);
599 fdata->frameless = 0;
600 continue;
601
602 }
98f08d3d
KB
603 else if (lr_reg != -1 &&
604 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
605 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
606 /* stw Rx, NUM(r1) */
607 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
608 /* stwu Rx, NUM(r1) */
609 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
610 { /* where Rx == lr */
611 fdata->lr_offset = offset;
c5aa993b
JM
612 fdata->nosavedpc = 0;
613 lr_reg = 0;
98f08d3d
KB
614 if ((op & 0xfc000003) == 0xf8000000 || /* std */
615 (op & 0xfc000000) == 0x90000000) /* stw */
616 {
617 /* Does not update r1, so add displacement to lr_offset. */
618 fdata->lr_offset += SIGNED_SHORT (op);
619 }
c5aa993b
JM
620 continue;
621
622 }
98f08d3d
KB
623 else if (cr_reg != -1 &&
624 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
625 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
626 /* stw Rx, NUM(r1) */
627 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
628 /* stwu Rx, NUM(r1) */
629 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
630 { /* where Rx == cr */
631 fdata->cr_offset = offset;
c5aa993b 632 cr_reg = 0;
98f08d3d
KB
633 if ((op & 0xfc000003) == 0xf8000000 ||
634 (op & 0xfc000000) == 0x90000000)
635 {
636 /* Does not update r1, so add displacement to cr_offset. */
637 fdata->cr_offset += SIGNED_SHORT (op);
638 }
c5aa993b
JM
639 continue;
640
641 }
642 else if (op == 0x48000005)
643 { /* bl .+4 used in
644 -mrelocatable */
645 continue;
646
647 }
648 else if (op == 0x48000004)
649 { /* b .+4 (xlc) */
650 break;
651
c5aa993b 652 }
6be8bc0c
EZ
653 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
654 in V.4 -mminimal-toc */
c5aa993b
JM
655 (op & 0xffff0000) == 0x3bde0000)
656 { /* addi 30,30,foo@l */
657 continue;
c906108c 658
c5aa993b
JM
659 }
660 else if ((op & 0xfc000001) == 0x48000001)
661 { /* bl foo,
662 to save fprs??? */
c906108c 663
c5aa993b 664 fdata->frameless = 0;
6be8bc0c
EZ
665 /* Don't skip over the subroutine call if it is not within
666 the first three instructions of the prologue. */
c5aa993b
JM
667 if ((pc - orig_pc) > 8)
668 break;
669
670 op = read_memory_integer (pc + 4, 4);
671
6be8bc0c
EZ
672 /* At this point, make sure this is not a trampoline
673 function (a function that simply calls another functions,
674 and nothing else). If the next is not a nop, this branch
675 was part of the function prologue. */
c5aa993b
JM
676
677 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
678 break; /* don't skip over
679 this branch */
680 continue;
681
c5aa993b 682 }
98f08d3d
KB
683 /* update stack pointer */
684 else if ((op & 0xfc1f0000) == 0x94010000)
685 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
686 fdata->frameless = 0;
687 fdata->offset = SIGNED_SHORT (op);
688 offset = fdata->offset;
689 continue;
c5aa993b 690 }
98f08d3d
KB
691 else if ((op & 0xfc1f016a) == 0x7c01016e)
692 { /* stwux rX,r1,rY */
693 /* no way to figure out what r1 is going to be */
694 fdata->frameless = 0;
695 offset = fdata->offset;
696 continue;
697 }
698 else if ((op & 0xfc1f0003) == 0xf8010001)
699 { /* stdu rX,NUM(r1) */
700 fdata->frameless = 0;
701 fdata->offset = SIGNED_SHORT (op & ~3UL);
702 offset = fdata->offset;
703 continue;
704 }
705 else if ((op & 0xfc1f016a) == 0x7c01016a)
706 { /* stdux rX,r1,rY */
707 /* no way to figure out what r1 is going to be */
c5aa993b
JM
708 fdata->frameless = 0;
709 offset = fdata->offset;
710 continue;
c5aa993b 711 }
98f08d3d
KB
712 /* Load up minimal toc pointer */
713 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
714 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 715 && !minimal_toc_loaded)
98f08d3d 716 {
c5aa993b
JM
717 minimal_toc_loaded = 1;
718 continue;
719
f6077098
KB
720 /* move parameters from argument registers to local variable
721 registers */
722 }
723 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
724 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
725 (((op >> 21) & 31) <= 10) &&
96ff0de4 726 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
727 {
728 continue;
729
c5aa993b
JM
730 /* store parameters in stack */
731 }
6be8bc0c 732 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 733 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
734 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
735 {
c5aa993b 736 continue;
c906108c 737
c5aa993b
JM
738 /* store parameters in stack via frame pointer */
739 }
740 else if (framep &&
741 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
742 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
743 (op & 0xfc1f0000) == 0xfc1f0000))
744 { /* frsp, fp?,NUM(r1) */
745 continue;
746
747 /* Set up frame pointer */
748 }
749 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
750 || op == 0x7c3f0b78)
751 { /* mr r31, r1 */
752 fdata->frameless = 0;
753 framep = 1;
6f99cb26 754 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
755 continue;
756
757 /* Another way to set up the frame pointer. */
758 }
759 else if ((op & 0xfc1fffff) == 0x38010000)
760 { /* addi rX, r1, 0x0 */
761 fdata->frameless = 0;
762 framep = 1;
6f99cb26
AC
763 fdata->alloca_reg = (tdep->ppc_gp0_regnum
764 + ((op & ~0x38010000) >> 21));
c5aa993b 765 continue;
c5aa993b 766 }
6be8bc0c
EZ
767 /* AltiVec related instructions. */
768 /* Store the vrsave register (spr 256) in another register for
769 later manipulation, or load a register into the vrsave
770 register. 2 instructions are used: mfvrsave and
771 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
772 and mtspr SPR256, Rn. */
773 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
774 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
775 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
776 {
777 vrsave_reg = GET_SRC_REG (op);
778 continue;
779 }
780 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
781 {
782 continue;
783 }
784 /* Store the register where vrsave was saved to onto the stack:
785 rS is the register where vrsave was stored in a previous
786 instruction. */
787 /* 100100 sssss 00001 dddddddd dddddddd */
788 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
789 {
790 if (vrsave_reg == GET_SRC_REG (op))
791 {
792 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
793 vrsave_reg = -1;
794 }
795 continue;
796 }
797 /* Compute the new value of vrsave, by modifying the register
798 where vrsave was saved to. */
799 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
800 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
801 {
802 continue;
803 }
804 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
805 in a pair of insns to save the vector registers on the
806 stack. */
807 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
808 /* 001110 01110 00000 iiii iiii iiii iiii */
809 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
810 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
811 {
812 li_found_pc = pc;
813 vr_saved_offset = SIGNED_SHORT (op);
814 }
815 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
816 /* 011111 sssss 11111 00000 00111001110 */
817 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
818 {
819 if (pc == (li_found_pc + 4))
820 {
821 vr_reg = GET_SRC_REG (op);
822 /* If this is the first vector reg to be saved, or if
823 it has a lower number than others previously seen,
824 reupdate the frame info. */
825 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
826 {
827 fdata->saved_vr = vr_reg;
828 fdata->vr_offset = vr_saved_offset + offset;
829 }
830 vr_saved_offset = -1;
831 vr_reg = -1;
832 li_found_pc = 0;
833 }
834 }
835 /* End AltiVec related instructions. */
96ff0de4
EZ
836
837 /* Start BookE related instructions. */
838 /* Store gen register S at (r31+uimm).
839 Any register less than r13 is volatile, so we don't care. */
840 /* 000100 sssss 11111 iiiii 01100100001 */
841 else if (arch_info->mach == bfd_mach_ppc_e500
842 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
843 {
844 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
845 {
846 unsigned int imm;
847 ev_reg = GET_SRC_REG (op);
848 imm = (op >> 11) & 0x1f;
849 ev_offset = imm * 8;
850 /* If this is the first vector reg to be saved, or if
851 it has a lower number than others previously seen,
852 reupdate the frame info. */
853 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
854 {
855 fdata->saved_ev = ev_reg;
856 fdata->ev_offset = ev_offset + offset;
857 }
858 }
859 continue;
860 }
861 /* Store gen register rS at (r1+rB). */
862 /* 000100 sssss 00001 bbbbb 01100100000 */
863 else if (arch_info->mach == bfd_mach_ppc_e500
864 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
865 {
866 if (pc == (li_found_pc + 4))
867 {
868 ev_reg = GET_SRC_REG (op);
869 /* If this is the first vector reg to be saved, or if
870 it has a lower number than others previously seen,
871 reupdate the frame info. */
872 /* We know the contents of rB from the previous instruction. */
873 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
874 {
875 fdata->saved_ev = ev_reg;
876 fdata->ev_offset = vr_saved_offset + offset;
877 }
878 vr_saved_offset = -1;
879 ev_reg = -1;
880 li_found_pc = 0;
881 }
882 continue;
883 }
884 /* Store gen register r31 at (rA+uimm). */
885 /* 000100 11111 aaaaa iiiii 01100100001 */
886 else if (arch_info->mach == bfd_mach_ppc_e500
887 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
888 {
889 /* Wwe know that the source register is 31 already, but
890 it can't hurt to compute it. */
891 ev_reg = GET_SRC_REG (op);
892 ev_offset = ((op >> 11) & 0x1f) * 8;
893 /* If this is the first vector reg to be saved, or if
894 it has a lower number than others previously seen,
895 reupdate the frame info. */
896 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
897 {
898 fdata->saved_ev = ev_reg;
899 fdata->ev_offset = ev_offset + offset;
900 }
901
902 continue;
903 }
904 /* Store gen register S at (r31+r0).
905 Store param on stack when offset from SP bigger than 4 bytes. */
906 /* 000100 sssss 11111 00000 01100100000 */
907 else if (arch_info->mach == bfd_mach_ppc_e500
908 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
909 {
910 if (pc == (li_found_pc + 4))
911 {
912 if ((op & 0x03e00000) >= 0x01a00000)
913 {
914 ev_reg = GET_SRC_REG (op);
915 /* If this is the first vector reg to be saved, or if
916 it has a lower number than others previously seen,
917 reupdate the frame info. */
918 /* We know the contents of r0 from the previous
919 instruction. */
920 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
921 {
922 fdata->saved_ev = ev_reg;
923 fdata->ev_offset = vr_saved_offset + offset;
924 }
925 ev_reg = -1;
926 }
927 vr_saved_offset = -1;
928 li_found_pc = 0;
929 continue;
930 }
931 }
932 /* End BookE related instructions. */
933
c5aa993b
JM
934 else
935 {
55d05f3b
KB
936 /* Not a recognized prologue instruction.
937 Handle optimizer code motions into the prologue by continuing
938 the search if we have no valid frame yet or if the return
939 address is not yet saved in the frame. */
940 if (fdata->frameless == 0
941 && (lr_reg == -1 || fdata->nosavedpc == 0))
942 break;
943
944 if (op == 0x4e800020 /* blr */
945 || op == 0x4e800420) /* bctr */
946 /* Do not scan past epilogue in frameless functions or
947 trampolines. */
948 break;
949 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 950 /* Never skip branches. */
55d05f3b
KB
951 break;
952
953 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
954 /* Do not scan too many insns, scanning insns is expensive with
955 remote targets. */
956 break;
957
958 /* Continue scanning. */
959 prev_insn_was_prologue_insn = 0;
960 continue;
c5aa993b 961 }
c906108c
SS
962 }
963
964#if 0
965/* I have problems with skipping over __main() that I need to address
966 * sometime. Previously, I used to use misc_function_vector which
967 * didn't work as well as I wanted to be. -MGO */
968
969 /* If the first thing after skipping a prolog is a branch to a function,
970 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 971 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 972 work before calling a function right after a prologue, thus we can
64366f1c 973 single out such gcc2 behaviour. */
c906108c 974
c906108c 975
c5aa993b
JM
976 if ((op & 0xfc000001) == 0x48000001)
977 { /* bl foo, an initializer function? */
978 op = read_memory_integer (pc + 4, 4);
979
980 if (op == 0x4def7b82)
981 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 982
64366f1c
EZ
983 /* Check and see if we are in main. If so, skip over this
984 initializer function as well. */
c906108c 985
c5aa993b 986 tmp = find_pc_misc_function (pc);
51cc5b07 987 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
c5aa993b
JM
988 return pc + 8;
989 }
c906108c 990 }
c906108c 991#endif /* 0 */
c5aa993b
JM
992
993 fdata->offset = -fdata->offset;
ddb20c56 994 return last_prologue_pc;
c906108c
SS
995}
996
997
998/*************************************************************************
f6077098 999 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1000 frames, etc.
1001*************************************************************************/
1002
c906108c 1003
64366f1c 1004/* Pop the innermost frame, go back to the caller. */
c5aa993b 1005
c906108c 1006static void
7a78ae4e 1007rs6000_pop_frame (void)
c906108c 1008{
470d5666 1009 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
1010 struct rs6000_framedata fdata;
1011 struct frame_info *frame = get_current_frame ();
470d5666 1012 int ii, wordsize;
c906108c
SS
1013
1014 pc = read_pc ();
c193f6ac 1015 sp = get_frame_base (frame);
c906108c 1016
bdd78e62 1017 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
8b36eed8
AC
1018 get_frame_base (frame),
1019 get_frame_base (frame)))
c906108c 1020 {
7a78ae4e
ND
1021 generic_pop_dummy_frame ();
1022 flush_cached_frames ();
1023 return;
c906108c
SS
1024 }
1025
1026 /* Make sure that all registers are valid. */
b8b527c5 1027 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
c906108c 1028
64366f1c 1029 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 1030 still in the link register, otherwise walk the frames and retrieve the
64366f1c 1031 saved %pc value in the previous frame. */
c906108c 1032
be41e9f4 1033 addr = get_frame_func (frame);
bdd78e62 1034 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
c906108c 1035
21283beb 1036 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
1037 if (fdata.frameless)
1038 prev_sp = sp;
1039 else
7a78ae4e 1040 prev_sp = read_memory_addr (sp, wordsize);
c906108c 1041 if (fdata.lr_offset == 0)
2188cbdd 1042 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1043 else
7a78ae4e 1044 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
1045
1046 /* reset %pc value. */
1047 write_register (PC_REGNUM, lr);
1048
64366f1c 1049 /* reset register values if any was saved earlier. */
c906108c
SS
1050
1051 if (fdata.saved_gpr != -1)
1052 {
1053 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
1054 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1055 {
524d7c18
AC
1056 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1057 wordsize);
7a78ae4e 1058 addr += wordsize;
c5aa993b 1059 }
c906108c
SS
1060 }
1061
1062 if (fdata.saved_fpr != -1)
1063 {
1064 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
1065 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1066 {
524d7c18 1067 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
c5aa993b
JM
1068 addr += 8;
1069 }
c906108c
SS
1070 }
1071
1072 write_register (SP_REGNUM, prev_sp);
1073 target_store_registers (-1);
1074 flush_cached_frames ();
1075}
1076
7a78ae4e 1077/* Fixup the call sequence of a dummy function, with the real function
64366f1c 1078 address. Its arguments will be passed by gdb. */
c906108c 1079
7a78ae4e
ND
1080static void
1081rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
ea7c478f 1082 int nargs, struct value **args, struct type *type,
7a78ae4e 1083 int gcc_p)
c906108c 1084{
c906108c
SS
1085 int ii;
1086 CORE_ADDR target_addr;
1087
7a78ae4e 1088 if (rs6000_find_toc_address_hook != NULL)
f6077098 1089 {
7a78ae4e 1090 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
2188cbdd
EZ
1091 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1092 tocvalue);
f6077098 1093 }
c906108c
SS
1094}
1095
11269d7e
AC
1096/* All the ABI's require 16 byte alignment. */
1097static CORE_ADDR
1098rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1099{
1100 return (addr & -16);
1101}
1102
7a78ae4e 1103/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1104 the first eight words of the argument list (that might be less than
1105 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1106 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1107 passed in fpr's, in addition to that. Rest of the parameters if any
1108 are passed in user stack. There might be cases in which half of the
c906108c
SS
1109 parameter is copied into registers, the other half is pushed into
1110 stack.
1111
7a78ae4e
ND
1112 Stack must be aligned on 64-bit boundaries when synthesizing
1113 function calls.
1114
c906108c
SS
1115 If the function is returning a structure, then the return address is passed
1116 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1117 starting from r4. */
c906108c 1118
7a78ae4e 1119static CORE_ADDR
ea7c478f 1120rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
7a78ae4e 1121 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1122{
1123 int ii;
1124 int len = 0;
c5aa993b
JM
1125 int argno; /* current argument number */
1126 int argbytes; /* current argument byte */
1127 char tmp_buffer[50];
1128 int f_argno = 0; /* current floating point argno */
21283beb 1129 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1130
ea7c478f 1131 struct value *arg = 0;
c906108c
SS
1132 struct type *type;
1133
1134 CORE_ADDR saved_sp;
1135
64366f1c
EZ
1136 /* The first eight words of ther arguments are passed in registers.
1137 Copy them appropriately.
c906108c
SS
1138
1139 If the function is returning a `struct', then the first word (which
64366f1c 1140 will be passed in r3) is used for struct return address. In that
c906108c 1141 case we should advance one word and start from r4 register to copy
64366f1c 1142 parameters. */
c906108c 1143
c5aa993b 1144 ii = struct_return ? 1 : 0;
c906108c
SS
1145
1146/*
c5aa993b
JM
1147 effectively indirect call... gcc does...
1148
1149 return_val example( float, int);
1150
1151 eabi:
1152 float in fp0, int in r3
1153 offset of stack on overflow 8/16
1154 for varargs, must go by type.
1155 power open:
1156 float in r3&r4, int in r5
1157 offset of stack on overflow different
1158 both:
1159 return in r3 or f0. If no float, must study how gcc emulates floats;
1160 pay attention to arg promotion.
1161 User may have to cast\args to handle promotion correctly
1162 since gdb won't know if prototype supplied or not.
1163 */
c906108c 1164
c5aa993b
JM
1165 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1166 {
f6077098 1167 int reg_size = REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1168
1169 arg = args[argno];
1170 type = check_typedef (VALUE_TYPE (arg));
1171 len = TYPE_LENGTH (type);
1172
1173 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1174 {
1175
64366f1c 1176 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1177 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1178 there is no way we would run out of them. */
c5aa993b
JM
1179
1180 if (len > 8)
1181 printf_unfiltered (
1182 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1183
524d7c18 1184 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1185 VALUE_CONTENTS (arg),
1186 len);
1187 ++f_argno;
1188 }
1189
f6077098 1190 if (len > reg_size)
c5aa993b
JM
1191 {
1192
64366f1c 1193 /* Argument takes more than one register. */
c5aa993b
JM
1194 while (argbytes < len)
1195 {
524d7c18
AC
1196 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1197 reg_size);
1198 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
c5aa993b 1199 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1200 (len - argbytes) > reg_size
1201 ? reg_size : len - argbytes);
1202 ++ii, argbytes += reg_size;
c5aa993b
JM
1203
1204 if (ii >= 8)
1205 goto ran_out_of_registers_for_arguments;
1206 }
1207 argbytes = 0;
1208 --ii;
1209 }
1210 else
64366f1c
EZ
1211 {
1212 /* Argument can fit in one register. No problem. */
d7449b42 1213 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
524d7c18
AC
1214 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1215 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
f6077098 1216 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1217 }
1218 ++argno;
c906108c 1219 }
c906108c
SS
1220
1221ran_out_of_registers_for_arguments:
1222
7a78ae4e 1223 saved_sp = read_sp ();
cc9836a8 1224
64366f1c 1225 /* Location for 8 parameters are always reserved. */
7a78ae4e 1226 sp -= wordsize * 8;
f6077098 1227
64366f1c 1228 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1229 sp -= wordsize * 6;
f6077098 1230
64366f1c 1231 /* Stack pointer must be quadword aligned. */
7a78ae4e 1232 sp &= -16;
c906108c 1233
64366f1c
EZ
1234 /* If there are more arguments, allocate space for them in
1235 the stack, then push them starting from the ninth one. */
c906108c 1236
c5aa993b
JM
1237 if ((argno < nargs) || argbytes)
1238 {
1239 int space = 0, jj;
c906108c 1240
c5aa993b
JM
1241 if (argbytes)
1242 {
1243 space += ((len - argbytes + 3) & -4);
1244 jj = argno + 1;
1245 }
1246 else
1247 jj = argno;
c906108c 1248
c5aa993b
JM
1249 for (; jj < nargs; ++jj)
1250 {
ea7c478f 1251 struct value *val = args[jj];
c5aa993b
JM
1252 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1253 }
c906108c 1254
64366f1c 1255 /* Add location required for the rest of the parameters. */
f6077098 1256 space = (space + 15) & -16;
c5aa993b 1257 sp -= space;
c906108c 1258
64366f1c
EZ
1259 /* This is another instance we need to be concerned about
1260 securing our stack space. If we write anything underneath %sp
1261 (r1), we might conflict with the kernel who thinks he is free
1262 to use this area. So, update %sp first before doing anything
1263 else. */
c906108c 1264
c5aa993b 1265 write_register (SP_REGNUM, sp);
c906108c 1266
64366f1c
EZ
1267 /* If the last argument copied into the registers didn't fit there
1268 completely, push the rest of it into stack. */
c906108c 1269
c5aa993b
JM
1270 if (argbytes)
1271 {
1272 write_memory (sp + 24 + (ii * 4),
1273 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1274 len - argbytes);
1275 ++argno;
1276 ii += ((len - argbytes + 3) & -4) / 4;
1277 }
c906108c 1278
64366f1c 1279 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1280 for (; argno < nargs; ++argno)
1281 {
c906108c 1282
c5aa993b
JM
1283 arg = args[argno];
1284 type = check_typedef (VALUE_TYPE (arg));
1285 len = TYPE_LENGTH (type);
c906108c
SS
1286
1287
64366f1c
EZ
1288 /* Float types should be passed in fpr's, as well as in the
1289 stack. */
c5aa993b
JM
1290 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1291 {
c906108c 1292
c5aa993b
JM
1293 if (len > 8)
1294 printf_unfiltered (
1295 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1296
524d7c18 1297 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1298 VALUE_CONTENTS (arg),
1299 len);
1300 ++f_argno;
1301 }
c906108c 1302
c5aa993b
JM
1303 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1304 ii += ((len + 3) & -4) / 4;
1305 }
c906108c 1306 }
c906108c 1307 else
64366f1c 1308 /* Secure stack areas first, before doing anything else. */
c906108c
SS
1309 write_register (SP_REGNUM, sp);
1310
c906108c 1311 /* set back chain properly */
fbd9dcd3 1312 store_unsigned_integer (tmp_buffer, 4, saved_sp);
c906108c
SS
1313 write_memory (sp, tmp_buffer, 4);
1314
1315 target_store_registers (-1);
1316 return sp;
1317}
c906108c
SS
1318
1319/* Function: ppc_push_return_address (pc, sp)
64366f1c 1320 Set up the return address for the inferior function call. */
c906108c 1321
7a78ae4e
ND
1322static CORE_ADDR
1323ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c 1324{
2188cbdd
EZ
1325 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1326 CALL_DUMMY_ADDRESS ());
c906108c
SS
1327 return sp;
1328}
1329
7a78ae4e 1330/* Extract a function return value of type TYPE from raw register array
64366f1c 1331 REGBUF, and copy that return value into VALBUF in virtual format. */
96ff0de4 1332static void
46d79c04 1333e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
96ff0de4
EZ
1334{
1335 int offset = 0;
1336 int vallen = TYPE_LENGTH (valtype);
1337 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1338
1339 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1340 && vallen == 8
1341 && TYPE_VECTOR (valtype))
1342 {
1343 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1344 }
1345 else
1346 {
1347 /* Return value is copied starting from r3. Note that r3 for us
1348 is a pseudo register. */
1349 int offset = 0;
1350 int return_regnum = tdep->ppc_gp0_regnum + 3;
1351 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1352 int reg_part_size;
1353 char *val_buffer;
1354 int copied = 0;
1355 int i = 0;
1356
1357 /* Compute where we will start storing the value from. */
1358 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1359 {
1360 if (vallen <= reg_size)
1361 offset = reg_size - vallen;
1362 else
1363 offset = reg_size + (reg_size - vallen);
1364 }
1365
1366 /* How big does the local buffer need to be? */
1367 if (vallen <= reg_size)
1368 val_buffer = alloca (reg_size);
1369 else
1370 val_buffer = alloca (vallen);
1371
1372 /* Read all we need into our private buffer. We copy it in
1373 chunks that are as long as one register, never shorter, even
1374 if the value is smaller than the register. */
1375 while (copied < vallen)
1376 {
1377 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1378 /* It is a pseudo/cooked register. */
1379 regcache_cooked_read (regbuf, return_regnum + i,
1380 val_buffer + copied);
1381 copied += reg_part_size;
1382 i++;
1383 }
1384 /* Put the stuff in the return buffer. */
1385 memcpy (valbuf, val_buffer + offset, vallen);
1386 }
1387}
c906108c 1388
7a78ae4e
ND
1389static void
1390rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1391{
1392 int offset = 0;
ace1378a 1393 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1394
c5aa993b
JM
1395 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1396 {
c906108c 1397
c5aa993b
JM
1398 double dd;
1399 float ff;
1400 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1401 We need to truncate the return value into float size (4 byte) if
64366f1c 1402 necessary. */
c906108c 1403
c5aa993b
JM
1404 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1405 memcpy (valbuf,
1406 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1407 TYPE_LENGTH (valtype));
1408 else
1409 { /* float */
1410 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1411 ff = (float) dd;
1412 memcpy (valbuf, &ff, sizeof (float));
1413 }
1414 }
ace1378a
EZ
1415 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1416 && TYPE_LENGTH (valtype) == 16
1417 && TYPE_VECTOR (valtype))
1418 {
1419 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1420 TYPE_LENGTH (valtype));
1421 }
c5aa993b
JM
1422 else
1423 {
1424 /* return value is copied starting from r3. */
d7449b42 1425 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
c5aa993b
JM
1426 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1427 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1428
1429 memcpy (valbuf,
1430 regbuf + REGISTER_BYTE (3) + offset,
c906108c 1431 TYPE_LENGTH (valtype));
c906108c 1432 }
c906108c
SS
1433}
1434
977adac5
ND
1435/* Return whether handle_inferior_event() should proceed through code
1436 starting at PC in function NAME when stepping.
1437
1438 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1439 handle memory references that are too distant to fit in instructions
1440 generated by the compiler. For example, if 'foo' in the following
1441 instruction:
1442
1443 lwz r9,foo(r2)
1444
1445 is greater than 32767, the linker might replace the lwz with a branch to
1446 somewhere in @FIX1 that does the load in 2 instructions and then branches
1447 back to where execution should continue.
1448
1449 GDB should silently step over @FIX code, just like AIX dbx does.
1450 Unfortunately, the linker uses the "b" instruction for the branches,
1451 meaning that the link register doesn't get set. Therefore, GDB's usual
1452 step_over_function() mechanism won't work.
1453
1454 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1455 in handle_inferior_event() to skip past @FIX code. */
1456
1457int
1458rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1459{
1460 return name && !strncmp (name, "@FIX", 4);
1461}
1462
1463/* Skip code that the user doesn't want to see when stepping:
1464
1465 1. Indirect function calls use a piece of trampoline code to do context
1466 switching, i.e. to set the new TOC table. Skip such code if we are on
1467 its first instruction (as when we have single-stepped to here).
1468
1469 2. Skip shared library trampoline code (which is different from
c906108c 1470 indirect function call trampolines).
977adac5
ND
1471
1472 3. Skip bigtoc fixup code.
1473
c906108c 1474 Result is desired PC to step until, or NULL if we are not in
977adac5 1475 code that should be skipped. */
c906108c
SS
1476
1477CORE_ADDR
7a78ae4e 1478rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
1479{
1480 register unsigned int ii, op;
977adac5 1481 int rel;
c906108c 1482 CORE_ADDR solib_target_pc;
977adac5 1483 struct minimal_symbol *msymbol;
c906108c 1484
c5aa993b
JM
1485 static unsigned trampoline_code[] =
1486 {
1487 0x800b0000, /* l r0,0x0(r11) */
1488 0x90410014, /* st r2,0x14(r1) */
1489 0x7c0903a6, /* mtctr r0 */
1490 0x804b0004, /* l r2,0x4(r11) */
1491 0x816b0008, /* l r11,0x8(r11) */
1492 0x4e800420, /* bctr */
1493 0x4e800020, /* br */
1494 0
c906108c
SS
1495 };
1496
977adac5
ND
1497 /* Check for bigtoc fixup code. */
1498 msymbol = lookup_minimal_symbol_by_pc (pc);
22abf04a 1499 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1500 {
1501 /* Double-check that the third instruction from PC is relative "b". */
1502 op = read_memory_integer (pc + 8, 4);
1503 if ((op & 0xfc000003) == 0x48000000)
1504 {
1505 /* Extract bits 6-29 as a signed 24-bit relative word address and
1506 add it to the containing PC. */
1507 rel = ((int)(op << 6) >> 6);
1508 return pc + 8 + rel;
1509 }
1510 }
1511
c906108c
SS
1512 /* If pc is in a shared library trampoline, return its target. */
1513 solib_target_pc = find_solib_trampoline_target (pc);
1514 if (solib_target_pc)
1515 return solib_target_pc;
1516
c5aa993b
JM
1517 for (ii = 0; trampoline_code[ii]; ++ii)
1518 {
1519 op = read_memory_integer (pc + (ii * 4), 4);
1520 if (op != trampoline_code[ii])
1521 return 0;
1522 }
1523 ii = read_register (11); /* r11 holds destination addr */
21283beb 1524 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1525 return pc;
1526}
1527
1528/* Determines whether the function FI has a frame on the stack or not. */
1529
9aa1e687 1530int
c877c8e6 1531rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1532{
1533 CORE_ADDR func_start;
1534 struct rs6000_framedata fdata;
1535
1536 /* Don't even think about framelessness except on the innermost frame
1537 or if the function was interrupted by a signal. */
75e3c1f9
AC
1538 if (get_next_frame (fi) != NULL
1539 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
c906108c 1540 return 0;
c5aa993b 1541
be41e9f4 1542 func_start = get_frame_func (fi);
c906108c
SS
1543
1544 /* If we failed to find the start of the function, it is a mistake
64366f1c 1545 to inspect the instructions. */
c906108c
SS
1546
1547 if (!func_start)
1548 {
1549 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1550 function pointer, normally causing an immediate core dump of the
64366f1c 1551 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1552 of setting up a stack frame. */
bdd78e62 1553 if (get_frame_pc (fi) == 0)
c906108c
SS
1554 return 1;
1555 else
1556 return 0;
1557 }
1558
bdd78e62 1559 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c
SS
1560 return fdata.frameless;
1561}
1562
64366f1c 1563/* Return the PC saved in a frame. */
c906108c 1564
9aa1e687 1565CORE_ADDR
c877c8e6 1566rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1567{
1568 CORE_ADDR func_start;
1569 struct rs6000_framedata fdata;
21283beb 1570 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1571 int wordsize = tdep->wordsize;
c906108c 1572
5a203e44 1573 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
8b36eed8
AC
1574 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1575 wordsize);
c906108c 1576
bdd78e62 1577 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
8b36eed8
AC
1578 get_frame_base (fi),
1579 get_frame_base (fi)))
bdd78e62 1580 return deprecated_read_register_dummy (get_frame_pc (fi),
8b36eed8 1581 get_frame_base (fi), PC_REGNUM);
c906108c 1582
be41e9f4 1583 func_start = get_frame_func (fi);
c906108c
SS
1584
1585 /* If we failed to find the start of the function, it is a mistake
64366f1c 1586 to inspect the instructions. */
c906108c
SS
1587 if (!func_start)
1588 return 0;
1589
bdd78e62 1590 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c 1591
75e3c1f9 1592 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
c906108c 1593 {
75e3c1f9 1594 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
8b36eed8
AC
1595 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1596 + SIG_FRAME_LR_OFFSET),
7a78ae4e 1597 wordsize);
bdd78e62 1598 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
8b69000d
AC
1599 /* The link register wasn't saved by this frame and the next
1600 (inner, newer) frame is a dummy. Get the link register
1601 value by unwinding it from that [dummy] frame. */
1602 {
1603 ULONGEST lr;
1604 frame_unwind_unsigned_register (get_next_frame (fi),
1605 tdep->ppc_lr_regnum, &lr);
1606 return lr;
1607 }
c906108c 1608 else
618ce49f
AC
1609 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1610 + tdep->lr_frame_offset,
7a78ae4e 1611 wordsize);
c906108c
SS
1612 }
1613
1614 if (fdata.lr_offset == 0)
2188cbdd 1615 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1616
618ce49f
AC
1617 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1618 wordsize);
c906108c
SS
1619}
1620
1621/* If saved registers of frame FI are not known yet, read and cache them.
1622 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1623 in which case the framedata are read. */
1624
1625static void
7a78ae4e 1626frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1627{
c5aa993b 1628 CORE_ADDR frame_addr;
c906108c 1629 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1630 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1631 int wordsize = tdep->wordsize;
c906108c 1632
c9012c71 1633 if (get_frame_saved_regs (fi))
c906108c 1634 return;
c5aa993b 1635
c906108c
SS
1636 if (fdatap == NULL)
1637 {
1638 fdatap = &work_fdata;
be41e9f4 1639 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
c906108c
SS
1640 }
1641
1642 frame_saved_regs_zalloc (fi);
1643
1644 /* If there were any saved registers, figure out parent's stack
64366f1c 1645 pointer. */
c906108c 1646 /* The following is true only if the frame doesn't have a call to
64366f1c 1647 alloca(), FIXME. */
c906108c 1648
6be8bc0c
EZ
1649 if (fdatap->saved_fpr == 0
1650 && fdatap->saved_gpr == 0
1651 && fdatap->saved_vr == 0
96ff0de4 1652 && fdatap->saved_ev == 0
6be8bc0c
EZ
1653 && fdatap->lr_offset == 0
1654 && fdatap->cr_offset == 0
96ff0de4
EZ
1655 && fdatap->vr_offset == 0
1656 && fdatap->ev_offset == 0)
c906108c 1657 frame_addr = 0;
c906108c 1658 else
bf75c8c1
AC
1659 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1660 address of the current frame. Things might be easier if the
1661 ->frame pointed to the outer-most address of the frame. In the
1662 mean time, the address of the prev frame is used as the base
1663 address of this frame. */
618ce49f 1664 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
c5aa993b 1665
c906108c
SS
1666 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1667 All fpr's from saved_fpr to fp31 are saved. */
1668
1669 if (fdatap->saved_fpr >= 0)
1670 {
1671 int i;
7a78ae4e 1672 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1673 for (i = fdatap->saved_fpr; i < 32; i++)
1674 {
c9012c71 1675 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
7a78ae4e 1676 fpr_addr += 8;
c906108c
SS
1677 }
1678 }
1679
1680 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1681 All gpr's from saved_gpr to gpr31 are saved. */
1682
1683 if (fdatap->saved_gpr >= 0)
1684 {
1685 int i;
7a78ae4e 1686 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1687 for (i = fdatap->saved_gpr; i < 32; i++)
1688 {
366cfc9e 1689 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
7a78ae4e 1690 gpr_addr += wordsize;
c906108c
SS
1691 }
1692 }
1693
6be8bc0c
EZ
1694 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1695 All vr's from saved_vr to vr31 are saved. */
1696 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1697 {
1698 if (fdatap->saved_vr >= 0)
1699 {
1700 int i;
1701 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1702 for (i = fdatap->saved_vr; i < 32; i++)
1703 {
c9012c71 1704 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
6be8bc0c
EZ
1705 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1706 }
1707 }
1708 }
1709
96ff0de4
EZ
1710 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1711 All vr's from saved_ev to ev31 are saved. ????? */
1712 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1713 {
1714 if (fdatap->saved_ev >= 0)
1715 {
1716 int i;
1717 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1718 for (i = fdatap->saved_ev; i < 32; i++)
1719 {
c9012c71
AC
1720 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1721 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
96ff0de4
EZ
1722 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1723 }
1724 }
1725 }
1726
c906108c
SS
1727 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1728 the CR. */
1729 if (fdatap->cr_offset != 0)
c9012c71 1730 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1731
1732 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1733 the LR. */
1734 if (fdatap->lr_offset != 0)
c9012c71 1735 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
6be8bc0c
EZ
1736
1737 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1738 the VRSAVE. */
1739 if (fdatap->vrsave_offset != 0)
c9012c71 1740 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1741}
1742
1743/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1744 was first allocated. For functions calling alloca(), it might be saved in
1745 an alloca register. */
c906108c
SS
1746
1747static CORE_ADDR
7a78ae4e 1748frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1749{
1750 CORE_ADDR tmpaddr;
1751 struct rs6000_framedata fdata;
1752 struct frame_info *callee_fi;
1753
64366f1c
EZ
1754 /* If the initial stack pointer (frame address) of this frame is known,
1755 just return it. */
c906108c 1756
c9012c71
AC
1757 if (get_frame_extra_info (fi)->initial_sp)
1758 return get_frame_extra_info (fi)->initial_sp;
c906108c 1759
64366f1c 1760 /* Find out if this function is using an alloca register. */
c906108c 1761
be41e9f4 1762 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
c906108c 1763
64366f1c
EZ
1764 /* If saved registers of this frame are not known yet, read and
1765 cache them. */
c906108c 1766
c9012c71 1767 if (!get_frame_saved_regs (fi))
c906108c
SS
1768 frame_get_saved_regs (fi, &fdata);
1769
1770 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1771 this frame, and it is good enough. */
c906108c
SS
1772
1773 if (fdata.alloca_reg < 0)
1774 {
c9012c71
AC
1775 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1776 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1777 }
1778
953836b2
AC
1779 /* There is an alloca register, use its value, in the current frame,
1780 as the initial stack pointer. */
1781 {
d9d9c31f 1782 char tmpbuf[MAX_REGISTER_SIZE];
953836b2
AC
1783 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1784 {
c9012c71 1785 get_frame_extra_info (fi)->initial_sp
953836b2
AC
1786 = extract_unsigned_integer (tmpbuf,
1787 REGISTER_RAW_SIZE (fdata.alloca_reg));
1788 }
1789 else
1790 /* NOTE: cagney/2002-04-17: At present the only time
1791 frame_register_read will fail is when the register isn't
1792 available. If that does happen, use the frame. */
c9012c71 1793 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
953836b2 1794 }
c9012c71 1795 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1796}
1797
7a78ae4e
ND
1798/* Describe the pointer in each stack frame to the previous stack frame
1799 (its caller). */
1800
618ce49f
AC
1801/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1802 the frame's chain-pointer. */
7a78ae4e
ND
1803
1804/* In the case of the RS/6000, the frame's nominal address
1805 is the address of a 4-byte word containing the calling frame's address. */
1806
9aa1e687 1807CORE_ADDR
7a78ae4e 1808rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1809{
7a78ae4e 1810 CORE_ADDR fp, fpp, lr;
21283beb 1811 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1812
bdd78e62 1813 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
8b36eed8
AC
1814 get_frame_base (thisframe),
1815 get_frame_base (thisframe)))
9f3b7f07
AC
1816 /* A dummy frame always correctly chains back to the previous
1817 frame. */
8b36eed8 1818 return read_memory_addr (get_frame_base (thisframe), wordsize);
c906108c 1819
bdd78e62
AC
1820 if (inside_entry_file (get_frame_pc (thisframe))
1821 || get_frame_pc (thisframe) == entry_point_address ())
c906108c
SS
1822 return 0;
1823
5a203e44 1824 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
8b36eed8
AC
1825 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1826 wordsize);
75e3c1f9
AC
1827 else if (get_next_frame (thisframe) != NULL
1828 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
c877c8e6 1829 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1830 /* A frameless function interrupted by a signal did not change the
1831 frame pointer. */
c193f6ac 1832 fp = get_frame_base (thisframe);
c906108c 1833 else
8b36eed8 1834 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
7a78ae4e
ND
1835 return fp;
1836}
1837
1838/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1839 isn't available with that word size, return 0. */
7a78ae4e
ND
1840
1841static int
1842regsize (const struct reg *reg, int wordsize)
1843{
1844 return wordsize == 8 ? reg->sz64 : reg->sz32;
1845}
1846
1847/* Return the name of register number N, or null if no such register exists
64366f1c 1848 in the current architecture. */
7a78ae4e 1849
fa88f677 1850static const char *
7a78ae4e
ND
1851rs6000_register_name (int n)
1852{
21283beb 1853 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1854 const struct reg *reg = tdep->regs + n;
1855
1856 if (!regsize (reg, tdep->wordsize))
1857 return NULL;
1858 return reg->name;
1859}
1860
1861/* Index within `registers' of the first byte of the space for
1862 register N. */
1863
1864static int
1865rs6000_register_byte (int n)
1866{
21283beb 1867 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1868}
1869
1870/* Return the number of bytes of storage in the actual machine representation
64366f1c 1871 for register N if that register is available, else return 0. */
7a78ae4e
ND
1872
1873static int
1874rs6000_register_raw_size (int n)
1875{
21283beb 1876 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1877 const struct reg *reg = tdep->regs + n;
1878 return regsize (reg, tdep->wordsize);
1879}
1880
7a78ae4e
ND
1881/* Return the GDB type object for the "standard" data type
1882 of data in register N. */
1883
1884static struct type *
fba45db2 1885rs6000_register_virtual_type (int n)
7a78ae4e 1886{
21283beb 1887 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1888 const struct reg *reg = tdep->regs + n;
1889
1fcc0bb8
EZ
1890 if (reg->fpr)
1891 return builtin_type_double;
1892 else
1893 {
1894 int size = regsize (reg, tdep->wordsize);
1895 switch (size)
1896 {
449a5da4
AC
1897 case 0:
1898 return builtin_type_int0;
1899 case 4:
1900 return builtin_type_int32;
1fcc0bb8 1901 case 8:
c8001721
EZ
1902 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1903 return builtin_type_vec64;
1904 else
1905 return builtin_type_int64;
1fcc0bb8
EZ
1906 break;
1907 case 16:
08cf96df 1908 return builtin_type_vec128;
1fcc0bb8
EZ
1909 break;
1910 default:
449a5da4
AC
1911 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1912 n, size);
1fcc0bb8
EZ
1913 }
1914 }
7a78ae4e
ND
1915}
1916
7a78ae4e
ND
1917/* Return whether register N requires conversion when moving from raw format
1918 to virtual format.
1919
1920 The register format for RS/6000 floating point registers is always
64366f1c 1921 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1922
1923static int
1924rs6000_register_convertible (int n)
1925{
21283beb 1926 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1927 return reg->fpr;
1928}
1929
1930/* Convert data from raw format for register N in buffer FROM
64366f1c 1931 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1932
1933static void
1934rs6000_register_convert_to_virtual (int n, struct type *type,
1935 char *from, char *to)
1936{
1937 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
7a292a7a 1938 {
f1908289
AC
1939 double val = deprecated_extract_floating (from, REGISTER_RAW_SIZE (n));
1940 deprecated_store_floating (to, TYPE_LENGTH (type), val);
7a78ae4e
ND
1941 }
1942 else
1943 memcpy (to, from, REGISTER_RAW_SIZE (n));
1944}
1945
1946/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1947 to raw format for register N in buffer TO. */
7a292a7a 1948
7a78ae4e
ND
1949static void
1950rs6000_register_convert_to_raw (struct type *type, int n,
781a750d 1951 const char *from, char *to)
7a78ae4e
ND
1952{
1953 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1954 {
f1908289
AC
1955 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1956 deprecated_store_floating (to, REGISTER_RAW_SIZE (n), val);
7a292a7a 1957 }
7a78ae4e
ND
1958 else
1959 memcpy (to, from, REGISTER_RAW_SIZE (n));
1960}
c906108c 1961
c8001721
EZ
1962static void
1963e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1964 int reg_nr, void *buffer)
1965{
1966 int base_regnum;
1967 int offset = 0;
d9d9c31f 1968 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1969 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1970
1971 if (reg_nr >= tdep->ppc_gp0_regnum
1972 && reg_nr <= tdep->ppc_gplast_regnum)
1973 {
1974 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1975
1976 /* Build the value in the provided buffer. */
1977 /* Read the raw register of which this one is the lower portion. */
1978 regcache_raw_read (regcache, base_regnum, temp_buffer);
1979 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1980 offset = 4;
1981 memcpy ((char *) buffer, temp_buffer + offset, 4);
1982 }
1983}
1984
1985static void
1986e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1987 int reg_nr, const void *buffer)
1988{
1989 int base_regnum;
1990 int offset = 0;
d9d9c31f 1991 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1992 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1993
1994 if (reg_nr >= tdep->ppc_gp0_regnum
1995 && reg_nr <= tdep->ppc_gplast_regnum)
1996 {
1997 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1998 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1999 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2000 offset = 4;
2001
2002 /* Let's read the value of the base register into a temporary
2003 buffer, so that overwriting the last four bytes with the new
2004 value of the pseudo will leave the upper 4 bytes unchanged. */
2005 regcache_raw_read (regcache, base_regnum, temp_buffer);
2006
2007 /* Write as an 8 byte quantity. */
2008 memcpy (temp_buffer + offset, (char *) buffer, 4);
2009 regcache_raw_write (regcache, base_regnum, temp_buffer);
2010 }
2011}
2012
2013/* Convert a dwarf2 register number to a gdb REGNUM. */
2014static int
2015e500_dwarf2_reg_to_regnum (int num)
2016{
2017 int regnum;
2018 if (0 <= num && num <= 31)
2019 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
2020 else
2021 return num;
2022}
2023
2188cbdd 2024/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 2025 REGNUM. */
2188cbdd
EZ
2026static int
2027rs6000_stab_reg_to_regnum (int num)
2028{
2029 int regnum;
2030 switch (num)
2031 {
2032 case 64:
2033 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
2034 break;
2035 case 65:
2036 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
2037 break;
2038 case 66:
2039 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
2040 break;
2041 case 76:
2042 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
2043 break;
2044 default:
2045 regnum = num;
2046 break;
2047 }
2048 return regnum;
2049}
2050
7a78ae4e 2051/* Store the address of the place in which to copy the structure the
11269d7e 2052 subroutine will return. */
7a78ae4e
ND
2053
2054static void
2055rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2056{
da3eff49
AC
2057 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2058 write_register (tdep->ppc_gp0_regnum + 3, addr);
7a78ae4e
ND
2059}
2060
2061/* Write into appropriate registers a function return value
2062 of type TYPE, given in virtual format. */
96ff0de4
EZ
2063static void
2064e500_store_return_value (struct type *type, char *valbuf)
2065{
2066 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2067
2068 /* Everything is returned in GPR3 and up. */
2069 int copied = 0;
2070 int i = 0;
2071 int len = TYPE_LENGTH (type);
2072 while (copied < len)
2073 {
2074 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2075 int reg_size = REGISTER_RAW_SIZE (regnum);
2076 char *reg_val_buf = alloca (reg_size);
2077
2078 memcpy (reg_val_buf, valbuf + copied, reg_size);
2079 copied += reg_size;
4caf0990 2080 deprecated_write_register_gen (regnum, reg_val_buf);
96ff0de4
EZ
2081 i++;
2082 }
2083}
7a78ae4e
ND
2084
2085static void
2086rs6000_store_return_value (struct type *type, char *valbuf)
2087{
ace1378a
EZ
2088 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2089
7a78ae4e
ND
2090 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2091
2092 /* Floating point values are returned starting from FPR1 and up.
2093 Say a double_double_double type could be returned in
64366f1c 2094 FPR1/FPR2/FPR3 triple. */
7a78ae4e 2095
73937e03
AC
2096 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2097 TYPE_LENGTH (type));
ace1378a
EZ
2098 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2099 {
2100 if (TYPE_LENGTH (type) == 16
2101 && TYPE_VECTOR (type))
73937e03
AC
2102 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2103 valbuf, TYPE_LENGTH (type));
ace1378a 2104 }
7a78ae4e 2105 else
64366f1c 2106 /* Everything else is returned in GPR3 and up. */
73937e03
AC
2107 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2108 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
2109}
2110
2111/* Extract from an array REGBUF containing the (raw) register state
2112 the address in which a function should return its structure value,
2113 as a CORE_ADDR (or an expression that can be used as one). */
2114
2115static CORE_ADDR
11269d7e
AC
2116rs6000_extract_struct_value_address (struct regcache *regcache)
2117{
2118 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2119 function call GDB knows the address of the struct return value
2120 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2121 the current call_function_by_hand() code only saves the most
2122 recent struct address leading to occasional calls. The code
2123 should instead maintain a stack of such addresses (in the dummy
2124 frame object). */
11269d7e
AC
2125 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2126 really got no idea where the return value is being stored. While
2127 r3, on function entry, contained the address it will have since
2128 been reused (scratch) and hence wouldn't be valid */
2129 return 0;
7a78ae4e
ND
2130}
2131
2132/* Return whether PC is in a dummy function call.
2133
2134 FIXME: This just checks for the end of the stack, which is broken
64366f1c 2135 for things like stepping through gcc nested function stubs. */
7a78ae4e
ND
2136
2137static int
2138rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2139{
2140 return sp < pc && pc < fp;
2141}
2142
64366f1c 2143/* Hook called when a new child process is started. */
7a78ae4e
ND
2144
2145void
2146rs6000_create_inferior (int pid)
2147{
2148 if (rs6000_set_host_arch_hook)
2149 rs6000_set_host_arch_hook (pid);
c906108c
SS
2150}
2151\f
7a78ae4e
ND
2152/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2153
2154 Usually a function pointer's representation is simply the address
2155 of the function. On the RS/6000 however, a function pointer is
2156 represented by a pointer to a TOC entry. This TOC entry contains
2157 three words, the first word is the address of the function, the
2158 second word is the TOC pointer (r2), and the third word is the
2159 static chain value. Throughout GDB it is currently assumed that a
2160 function pointer contains the address of the function, which is not
2161 easy to fix. In addition, the conversion of a function address to
2162 a function pointer would require allocation of a TOC entry in the
2163 inferior's memory space, with all its drawbacks. To be able to
2164 call C++ virtual methods in the inferior (which are called via
f517ea4e 2165 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2166 function address from a function pointer. */
2167
f517ea4e
PS
2168/* Return real function address if ADDR (a function pointer) is in the data
2169 space and is therefore a special function pointer. */
c906108c 2170
b9362cc7 2171static CORE_ADDR
7a78ae4e 2172rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
c906108c
SS
2173{
2174 struct obj_section *s;
2175
2176 s = find_pc_section (addr);
2177 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2178 return addr;
c906108c 2179
7a78ae4e 2180 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2181 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2182}
c906108c 2183\f
c5aa993b 2184
7a78ae4e 2185/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2186
2187
7a78ae4e
ND
2188/* The arrays here called registers_MUMBLE hold information about available
2189 registers.
c906108c
SS
2190
2191 For each family of PPC variants, I've tried to isolate out the
2192 common registers and put them up front, so that as long as you get
2193 the general family right, GDB will correctly identify the registers
2194 common to that family. The common register sets are:
2195
2196 For the 60x family: hid0 hid1 iabr dabr pir
2197
2198 For the 505 and 860 family: eie eid nri
2199
2200 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2201 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2202 pbu1 pbl2 pbu2
c906108c
SS
2203
2204 Most of these register groups aren't anything formal. I arrived at
2205 them by looking at the registers that occurred in more than one
6f5987a6
KB
2206 processor.
2207
2208 Note: kevinb/2002-04-30: Support for the fpscr register was added
2209 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2210 for Power. For PowerPC, slot 70 was unused and was already in the
2211 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2212 slot 70 was being used for "mq", so the next available slot (71)
2213 was chosen. It would have been nice to be able to make the
2214 register numbers the same across processor cores, but this wasn't
2215 possible without either 1) renumbering some registers for some
2216 processors or 2) assigning fpscr to a really high slot that's
2217 larger than any current register number. Doing (1) is bad because
2218 existing stubs would break. Doing (2) is undesirable because it
2219 would introduce a really large gap between fpscr and the rest of
2220 the registers for most processors. */
7a78ae4e 2221
64366f1c 2222/* Convenience macros for populating register arrays. */
7a78ae4e 2223
64366f1c 2224/* Within another macro, convert S to a string. */
7a78ae4e
ND
2225
2226#define STR(s) #s
2227
2228/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2229 and 64 bits on 64-bit systems. */
489461e2 2230#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
2231
2232/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2233 systems. */
489461e2 2234#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
2235
2236/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2237 systems. */
489461e2 2238#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 2239
1fcc0bb8 2240/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2241 systems. */
489461e2 2242#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 2243
64366f1c 2244/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
2245#define F(name) { STR(name), 8, 8, 1, 0 }
2246
64366f1c 2247/* Return a struct reg defining a pseudo register NAME. */
489461e2 2248#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
2249
2250/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2251 systems and that doesn't exist on 64-bit systems. */
489461e2 2252#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
2253
2254/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2255 systems and that doesn't exist on 32-bit systems. */
489461e2 2256#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 2257
64366f1c 2258/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 2259#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
2260
2261/* UISA registers common across all architectures, including POWER. */
2262
2263#define COMMON_UISA_REGS \
2264 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2265 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2266 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2267 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2268 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2269 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2270 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2271 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2272 /* 64 */ R(pc), R(ps)
2273
ebeac11a
EZ
2274#define COMMON_UISA_NOFP_REGS \
2275 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2276 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2277 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2278 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2279 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2280 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2281 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2282 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2283 /* 64 */ R(pc), R(ps)
2284
7a78ae4e
ND
2285/* UISA-level SPRs for PowerPC. */
2286#define PPC_UISA_SPRS \
e3f36dbd 2287 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 2288
c8001721
EZ
2289/* UISA-level SPRs for PowerPC without floating point support. */
2290#define PPC_UISA_NOFP_SPRS \
2291 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2292
7a78ae4e
ND
2293/* Segment registers, for PowerPC. */
2294#define PPC_SEGMENT_REGS \
2295 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2296 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2297 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2298 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2299
2300/* OEA SPRs for PowerPC. */
2301#define PPC_OEA_SPRS \
2302 /* 87 */ R4(pvr), \
2303 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2304 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2305 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2306 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2307 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2308 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2309 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2310 /* 116 */ R4(dec), R(dabr), R4(ear)
2311
64366f1c 2312/* AltiVec registers. */
1fcc0bb8
EZ
2313#define PPC_ALTIVEC_REGS \
2314 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2315 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2316 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2317 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2318 /*151*/R4(vscr), R4(vrsave)
2319
c8001721
EZ
2320/* Vectors of hi-lo general purpose registers. */
2321#define PPC_EV_REGS \
2322 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2323 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2324 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2325 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2326
2327/* Lower half of the EV registers. */
2328#define PPC_GPRS_PSEUDO_REGS \
2329 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2330 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2331 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
338ef23d 2332 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
c8001721 2333
7a78ae4e 2334/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2335 user-level SPR's. */
7a78ae4e 2336static const struct reg registers_power[] =
c906108c 2337{
7a78ae4e 2338 COMMON_UISA_REGS,
e3f36dbd
KB
2339 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2340 /* 71 */ R4(fpscr)
c906108c
SS
2341};
2342
7a78ae4e 2343/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2344 view of the PowerPC. */
7a78ae4e 2345static const struct reg registers_powerpc[] =
c906108c 2346{
7a78ae4e 2347 COMMON_UISA_REGS,
1fcc0bb8
EZ
2348 PPC_UISA_SPRS,
2349 PPC_ALTIVEC_REGS
c906108c
SS
2350};
2351
ebeac11a
EZ
2352/* PowerPC UISA - a PPC processor as viewed by user-level
2353 code, but without floating point registers. */
2354static const struct reg registers_powerpc_nofp[] =
2355{
2356 COMMON_UISA_NOFP_REGS,
2357 PPC_UISA_SPRS
2358};
2359
64366f1c 2360/* IBM PowerPC 403. */
7a78ae4e 2361static const struct reg registers_403[] =
c5aa993b 2362{
7a78ae4e
ND
2363 COMMON_UISA_REGS,
2364 PPC_UISA_SPRS,
2365 PPC_SEGMENT_REGS,
2366 PPC_OEA_SPRS,
2367 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2368 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2369 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2370 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2371 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2372 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2373};
2374
64366f1c 2375/* IBM PowerPC 403GC. */
7a78ae4e 2376static const struct reg registers_403GC[] =
c5aa993b 2377{
7a78ae4e
ND
2378 COMMON_UISA_REGS,
2379 PPC_UISA_SPRS,
2380 PPC_SEGMENT_REGS,
2381 PPC_OEA_SPRS,
2382 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2383 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2384 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2385 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2386 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2387 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2388 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2389 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2390};
2391
64366f1c 2392/* Motorola PowerPC 505. */
7a78ae4e 2393static const struct reg registers_505[] =
c5aa993b 2394{
7a78ae4e
ND
2395 COMMON_UISA_REGS,
2396 PPC_UISA_SPRS,
2397 PPC_SEGMENT_REGS,
2398 PPC_OEA_SPRS,
2399 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2400};
2401
64366f1c 2402/* Motorola PowerPC 860 or 850. */
7a78ae4e 2403static const struct reg registers_860[] =
c5aa993b 2404{
7a78ae4e
ND
2405 COMMON_UISA_REGS,
2406 PPC_UISA_SPRS,
2407 PPC_SEGMENT_REGS,
2408 PPC_OEA_SPRS,
2409 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2410 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2411 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2412 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2413 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2414 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2415 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2416 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2417 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2418 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2419 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2420 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2421};
2422
7a78ae4e
ND
2423/* Motorola PowerPC 601. Note that the 601 has different register numbers
2424 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2425 register is the stub's problem. */
7a78ae4e 2426static const struct reg registers_601[] =
c5aa993b 2427{
7a78ae4e
ND
2428 COMMON_UISA_REGS,
2429 PPC_UISA_SPRS,
2430 PPC_SEGMENT_REGS,
2431 PPC_OEA_SPRS,
2432 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2433 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2434};
2435
64366f1c 2436/* Motorola PowerPC 602. */
7a78ae4e 2437static const struct reg registers_602[] =
c5aa993b 2438{
7a78ae4e
ND
2439 COMMON_UISA_REGS,
2440 PPC_UISA_SPRS,
2441 PPC_SEGMENT_REGS,
2442 PPC_OEA_SPRS,
2443 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2444 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2445 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2446};
2447
64366f1c 2448/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2449static const struct reg registers_603[] =
c5aa993b 2450{
7a78ae4e
ND
2451 COMMON_UISA_REGS,
2452 PPC_UISA_SPRS,
2453 PPC_SEGMENT_REGS,
2454 PPC_OEA_SPRS,
2455 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2456 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2457 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2458};
2459
64366f1c 2460/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2461static const struct reg registers_604[] =
c5aa993b 2462{
7a78ae4e
ND
2463 COMMON_UISA_REGS,
2464 PPC_UISA_SPRS,
2465 PPC_SEGMENT_REGS,
2466 PPC_OEA_SPRS,
2467 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2468 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2469 /* 127 */ R(sia), R(sda)
c906108c
SS
2470};
2471
64366f1c 2472/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2473static const struct reg registers_750[] =
c5aa993b 2474{
7a78ae4e
ND
2475 COMMON_UISA_REGS,
2476 PPC_UISA_SPRS,
2477 PPC_SEGMENT_REGS,
2478 PPC_OEA_SPRS,
2479 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2480 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2481 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2482 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2483 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2484 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2485};
2486
2487
64366f1c 2488/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2489static const struct reg registers_7400[] =
2490{
2491 /* gpr0-gpr31, fpr0-fpr31 */
2492 COMMON_UISA_REGS,
2493 /* ctr, xre, lr, cr */
2494 PPC_UISA_SPRS,
2495 /* sr0-sr15 */
2496 PPC_SEGMENT_REGS,
2497 PPC_OEA_SPRS,
2498 /* vr0-vr31, vrsave, vscr */
2499 PPC_ALTIVEC_REGS
2500 /* FIXME? Add more registers? */
2501};
2502
c8001721
EZ
2503/* Motorola e500. */
2504static const struct reg registers_e500[] =
2505{
2506 R(pc), R(ps),
2507 /* cr, lr, ctr, xer, "" */
2508 PPC_UISA_NOFP_SPRS,
2509 /* 7...38 */
2510 PPC_EV_REGS,
338ef23d
AC
2511 R8(acc), R(spefscr),
2512 /* NOTE: Add new registers here the end of the raw register
2513 list and just before the first pseudo register. */
c8001721
EZ
2514 /* 39...70 */
2515 PPC_GPRS_PSEUDO_REGS
2516};
2517
c906108c 2518/* Information about a particular processor variant. */
7a78ae4e 2519
c906108c 2520struct variant
c5aa993b
JM
2521 {
2522 /* Name of this variant. */
2523 char *name;
c906108c 2524
c5aa993b
JM
2525 /* English description of the variant. */
2526 char *description;
c906108c 2527
64366f1c 2528 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2529 enum bfd_architecture arch;
2530
64366f1c 2531 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2532 unsigned long mach;
2533
489461e2
EZ
2534 /* Number of real registers. */
2535 int nregs;
2536
2537 /* Number of pseudo registers. */
2538 int npregs;
2539
2540 /* Number of total registers (the sum of nregs and npregs). */
2541 int num_tot_regs;
2542
c5aa993b
JM
2543 /* Table of register names; registers[R] is the name of the register
2544 number R. */
7a78ae4e 2545 const struct reg *regs;
c5aa993b 2546 };
c906108c 2547
489461e2
EZ
2548#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2549
2550static int
2551num_registers (const struct reg *reg_list, int num_tot_regs)
2552{
2553 int i;
2554 int nregs = 0;
2555
2556 for (i = 0; i < num_tot_regs; i++)
2557 if (!reg_list[i].pseudo)
2558 nregs++;
2559
2560 return nregs;
2561}
2562
2563static int
2564num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2565{
2566 int i;
2567 int npregs = 0;
2568
2569 for (i = 0; i < num_tot_regs; i++)
2570 if (reg_list[i].pseudo)
2571 npregs ++;
2572
2573 return npregs;
2574}
c906108c 2575
c906108c
SS
2576/* Information in this table comes from the following web sites:
2577 IBM: http://www.chips.ibm.com:80/products/embedded/
2578 Motorola: http://www.mot.com/SPS/PowerPC/
2579
2580 I'm sure I've got some of the variant descriptions not quite right.
2581 Please report any inaccuracies you find to GDB's maintainer.
2582
2583 If you add entries to this table, please be sure to allow the new
2584 value as an argument to the --with-cpu flag, in configure.in. */
2585
489461e2 2586static struct variant variants[] =
c906108c 2587{
489461e2 2588
7a78ae4e 2589 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2590 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2591 registers_powerpc},
7a78ae4e 2592 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2593 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2594 registers_power},
7a78ae4e 2595 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2596 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2597 registers_403},
7a78ae4e 2598 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2599 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2600 registers_601},
7a78ae4e 2601 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2602 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2603 registers_602},
7a78ae4e 2604 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2605 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2606 registers_603},
7a78ae4e 2607 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2608 604, -1, -1, tot_num_registers (registers_604),
2609 registers_604},
7a78ae4e 2610 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2611 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2612 registers_403GC},
7a78ae4e 2613 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2614 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2615 registers_505},
7a78ae4e 2616 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2617 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2618 registers_860},
7a78ae4e 2619 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2620 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2621 registers_750},
1fcc0bb8 2622 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2623 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2624 registers_7400},
c8001721
EZ
2625 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2626 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2627 registers_e500},
7a78ae4e 2628
5d57ee30
KB
2629 /* 64-bit */
2630 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2631 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2632 registers_powerpc},
7a78ae4e 2633 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2634 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2635 registers_powerpc},
5d57ee30 2636 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2637 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2638 registers_powerpc},
7a78ae4e 2639 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2640 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2641 registers_powerpc},
5d57ee30 2642 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2643 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2644 registers_powerpc},
5d57ee30 2645 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2646 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2647 registers_powerpc},
5d57ee30 2648
64366f1c 2649 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2650 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2651 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2652 registers_power},
7a78ae4e 2653 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2654 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2655 registers_power},
7a78ae4e 2656 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2657 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2658 registers_power},
7a78ae4e 2659
489461e2 2660 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2661};
2662
64366f1c 2663/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2664
2665static void
2666init_variants (void)
2667{
2668 struct variant *v;
2669
2670 for (v = variants; v->name; v++)
2671 {
2672 if (v->nregs == -1)
2673 v->nregs = num_registers (v->regs, v->num_tot_regs);
2674 if (v->npregs == -1)
2675 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2676 }
2677}
c906108c 2678
7a78ae4e 2679/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2680 MACH. If no such variant exists, return null. */
c906108c 2681
7a78ae4e
ND
2682static const struct variant *
2683find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2684{
7a78ae4e 2685 const struct variant *v;
c5aa993b 2686
7a78ae4e
ND
2687 for (v = variants; v->name; v++)
2688 if (arch == v->arch && mach == v->mach)
2689 return v;
c906108c 2690
7a78ae4e 2691 return NULL;
c906108c 2692}
9364a0ef
EZ
2693
2694static int
2695gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2696{
2697 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2698 return print_insn_big_powerpc (memaddr, info);
2699 else
2700 return print_insn_little_powerpc (memaddr, info);
2701}
7a78ae4e 2702\f
7a78ae4e
ND
2703/* Initialize the current architecture based on INFO. If possible, re-use an
2704 architecture from ARCHES, which is a list of architectures already created
2705 during this debugging session.
c906108c 2706
7a78ae4e 2707 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2708 a binary file. */
c906108c 2709
7a78ae4e
ND
2710static struct gdbarch *
2711rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2712{
2713 struct gdbarch *gdbarch;
2714 struct gdbarch_tdep *tdep;
9aa1e687 2715 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2716 struct reg *regs;
2717 const struct variant *v;
2718 enum bfd_architecture arch;
2719 unsigned long mach;
2720 bfd abfd;
7b112f9c 2721 int sysv_abi;
5bf1c677 2722 asection *sect;
7a78ae4e 2723
9aa1e687 2724 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2725 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2726
9aa1e687
KB
2727 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2728 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2729
2730 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2731
e712c1cf 2732 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2733 that, else choose a likely default. */
9aa1e687 2734 if (from_xcoff_exec)
c906108c 2735 {
11ed25ac 2736 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2737 wordsize = 8;
2738 else
2739 wordsize = 4;
c906108c 2740 }
9aa1e687
KB
2741 else if (from_elf_exec)
2742 {
2743 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2744 wordsize = 8;
2745 else
2746 wordsize = 4;
2747 }
c906108c 2748 else
7a78ae4e 2749 {
27b15785
KB
2750 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2751 wordsize = info.bfd_arch_info->bits_per_word /
2752 info.bfd_arch_info->bits_per_byte;
2753 else
2754 wordsize = 4;
7a78ae4e 2755 }
c906108c 2756
64366f1c 2757 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2758 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2759 arches != NULL;
2760 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2761 {
2762 /* Word size in the various PowerPC bfd_arch_info structs isn't
2763 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2764 separate word size check. */
7a78ae4e 2765 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 2766 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
2767 return arches->gdbarch;
2768 }
c906108c 2769
7a78ae4e
ND
2770 /* None found, create a new architecture from INFO, whose bfd_arch_info
2771 validity depends on the source:
2772 - executable useless
2773 - rs6000_host_arch() good
2774 - core file good
2775 - "set arch" trust blindly
2776 - GDB startup useless but harmless */
c906108c 2777
9aa1e687 2778 if (!from_xcoff_exec)
c906108c 2779 {
b732d07d 2780 arch = info.bfd_arch_info->arch;
7a78ae4e 2781 mach = info.bfd_arch_info->mach;
c906108c 2782 }
7a78ae4e 2783 else
c906108c 2784 {
7a78ae4e 2785 arch = bfd_arch_powerpc;
35cec841 2786 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 2787 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 2788 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
2789 }
2790 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2791 tdep->wordsize = wordsize;
5bf1c677
EZ
2792
2793 /* For e500 executables, the apuinfo section is of help here. Such
2794 section contains the identifier and revision number of each
2795 Application-specific Processing Unit that is present on the
2796 chip. The content of the section is determined by the assembler
2797 which looks at each instruction and determines which unit (and
2798 which version of it) can execute it. In our case we just look for
2799 the existance of the section. */
2800
2801 if (info.abfd)
2802 {
2803 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2804 if (sect)
2805 {
2806 arch = info.bfd_arch_info->arch;
2807 mach = bfd_mach_ppc_e500;
2808 bfd_default_set_arch_mach (&abfd, arch, mach);
2809 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2810 }
2811 }
2812
7a78ae4e
ND
2813 gdbarch = gdbarch_alloc (&info, tdep);
2814 power = arch == bfd_arch_rs6000;
2815
489461e2
EZ
2816 /* Initialize the number of real and pseudo registers in each variant. */
2817 init_variants ();
2818
64366f1c 2819 /* Choose variant. */
7a78ae4e
ND
2820 v = find_variant_by_arch (arch, mach);
2821 if (!v)
dd47e6fd
EZ
2822 return NULL;
2823
7a78ae4e
ND
2824 tdep->regs = v->regs;
2825
2188cbdd
EZ
2826 tdep->ppc_gp0_regnum = 0;
2827 tdep->ppc_gplast_regnum = 31;
2828 tdep->ppc_toc_regnum = 2;
2829 tdep->ppc_ps_regnum = 65;
2830 tdep->ppc_cr_regnum = 66;
2831 tdep->ppc_lr_regnum = 67;
2832 tdep->ppc_ctr_regnum = 68;
2833 tdep->ppc_xer_regnum = 69;
2834 if (v->mach == bfd_mach_ppc_601)
2835 tdep->ppc_mq_regnum = 124;
e3f36dbd 2836 else if (power)
2188cbdd 2837 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2838 else
2839 tdep->ppc_mq_regnum = -1;
2840 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2841
c8001721
EZ
2842 set_gdbarch_pc_regnum (gdbarch, 64);
2843 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 2844 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
96ff0de4
EZ
2845 set_gdbarch_deprecated_extract_return_value (gdbarch,
2846 rs6000_extract_return_value);
46d79c04 2847 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
c8001721 2848
1fcc0bb8
EZ
2849 if (v->arch == bfd_arch_powerpc)
2850 switch (v->mach)
2851 {
2852 case bfd_mach_ppc:
2853 tdep->ppc_vr0_regnum = 71;
2854 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2855 tdep->ppc_ev0_regnum = -1;
2856 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2857 break;
2858 case bfd_mach_ppc_7400:
2859 tdep->ppc_vr0_regnum = 119;
54c2a1e6 2860 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
2861 tdep->ppc_ev0_regnum = -1;
2862 tdep->ppc_ev31_regnum = -1;
2863 break;
2864 case bfd_mach_ppc_e500:
338ef23d
AC
2865 tdep->ppc_gp0_regnum = 41;
2866 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
c8001721
EZ
2867 tdep->ppc_toc_regnum = -1;
2868 tdep->ppc_ps_regnum = 1;
2869 tdep->ppc_cr_regnum = 2;
2870 tdep->ppc_lr_regnum = 3;
2871 tdep->ppc_ctr_regnum = 4;
2872 tdep->ppc_xer_regnum = 5;
2873 tdep->ppc_ev0_regnum = 7;
2874 tdep->ppc_ev31_regnum = 38;
2875 set_gdbarch_pc_regnum (gdbarch, 0);
338ef23d 2876 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
0ba6dca9 2877 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
c8001721
EZ
2878 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2879 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2880 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
96ff0de4 2881 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
46d79c04 2882 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
1fcc0bb8
EZ
2883 break;
2884 default:
2885 tdep->ppc_vr0_regnum = -1;
2886 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2887 tdep->ppc_ev0_regnum = -1;
2888 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2889 break;
2890 }
2891
338ef23d
AC
2892 /* Sanity check on registers. */
2893 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2894
a88376a3
KB
2895 /* Set lr_frame_offset. */
2896 if (wordsize == 8)
2897 tdep->lr_frame_offset = 16;
2898 else if (sysv_abi)
2899 tdep->lr_frame_offset = 4;
2900 else
2901 tdep->lr_frame_offset = 8;
2902
2903 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2904 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2905 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2906 {
2907 tdep->regoff[i] = off;
2908 off += regsize (v->regs + i, wordsize);
c906108c
SS
2909 }
2910
56a6dfb9
KB
2911 /* Select instruction printer. */
2912 if (arch == power)
9364a0ef 2913 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2914 else
9364a0ef 2915 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2916
7a78ae4e 2917 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
b46e02f6 2918 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
7a78ae4e
ND
2919
2920 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2921 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 2922 set_gdbarch_register_name (gdbarch, rs6000_register_name);
b1e29e33 2923 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
b8b527c5 2924 set_gdbarch_deprecated_register_bytes (gdbarch, off);
9c04cab7
AC
2925 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2926 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
a0ed5532 2927 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 16);
9c04cab7 2928 set_gdbarch_deprecated_register_virtual_size (gdbarch, generic_register_size);
a0ed5532 2929 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 16);
9c04cab7 2930 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
7a78ae4e
ND
2931
2932 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2933 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2934 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2935 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2936 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2937 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2938 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
2939 if (sysv_abi)
2940 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2941 else
2942 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2943 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 2944
b1e29e33 2945 set_gdbarch_deprecated_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
11269d7e 2946 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
a59fe496 2947 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
28f617b3 2948 set_gdbarch_deprecated_push_return_address (gdbarch, ppc_push_return_address);
7a78ae4e 2949 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7a78ae4e 2950
781a750d
AC
2951 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2952 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2953 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2954 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2ea5f656
KB
2955 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2956 is correct for the SysV ABI when the wordsize is 8, but I'm also
2957 fairly certain that ppc_sysv_abi_push_arguments() will give even
2958 worse results since it only works for 32-bit code. So, for the moment,
2959 we're better off calling rs6000_push_arguments() since it works for
2960 64-bit code. At some point in the future, this matter needs to be
2961 revisited. */
2962 if (sysv_abi && wordsize == 4)
b81774d8 2963 set_gdbarch_deprecated_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
9aa1e687 2964 else
b81774d8 2965 set_gdbarch_deprecated_push_arguments (gdbarch, rs6000_push_arguments);
7a78ae4e 2966
4183d812 2967 set_gdbarch_deprecated_store_struct_return (gdbarch, rs6000_store_struct_return);
11269d7e 2968 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
749b82f6 2969 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
7a78ae4e
ND
2970
2971 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2972 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2973 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2974 set_gdbarch_function_start_offset (gdbarch, 0);
2975 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2976
2977 /* Not sure on this. FIXMEmgo */
2978 set_gdbarch_frame_args_skip (gdbarch, 8);
2979
8e0662df 2980 if (sysv_abi)
7b112f9c
JT
2981 set_gdbarch_use_struct_convention (gdbarch,
2982 ppc_sysv_abi_use_struct_convention);
8e0662df 2983 else
7b112f9c
JT
2984 set_gdbarch_use_struct_convention (gdbarch,
2985 generic_use_struct_convention);
8e0662df 2986
7b112f9c
JT
2987 set_gdbarch_frameless_function_invocation (gdbarch,
2988 rs6000_frameless_function_invocation);
618ce49f 2989 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
8bedc050 2990 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
7b112f9c 2991
f30ee0bc 2992 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
e9582e71 2993 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
7b112f9c 2994
15813d3f
AC
2995 if (!sysv_abi)
2996 {
2997 /* Handle RS/6000 function pointers (which are really function
2998 descriptors). */
f517ea4e
PS
2999 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3000 rs6000_convert_from_func_ptr_addr);
9aa1e687 3001 }
42efa47a
AC
3002 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
3003 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
6913c89a 3004 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
7a78ae4e 3005
143985b7
AF
3006 /* Helpers for function argument information. */
3007 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3008
7b112f9c 3009 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3010 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3011
7a78ae4e 3012 return gdbarch;
c906108c
SS
3013}
3014
7b112f9c
JT
3015static void
3016rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3017{
3018 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3019
3020 if (tdep == NULL)
3021 return;
3022
4be87837 3023 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3024}
3025
1fcc0bb8
EZ
3026static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3027
3028static void
3029rs6000_info_powerpc_command (char *args, int from_tty)
3030{
3031 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3032}
3033
c906108c
SS
3034/* Initialization code. */
3035
a78f21af 3036extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3037
c906108c 3038void
fba45db2 3039_initialize_rs6000_tdep (void)
c906108c 3040{
7b112f9c
JT
3041 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3042 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
3043
3044 /* Add root prefix command for "info powerpc" commands */
3045 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3046 "Various POWERPC info specific commands.",
3047 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 3048}