]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/rs6000-tdep.c
* amd64-tdep.c (struct amd64_register_info): Remove.
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
6aba47ca
DJ
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
721d14ba 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
c906108c 31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d195bc9f 34#include "regset.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
1fcc0bb8 37#include "parser-defs.h"
4be87837 38#include "osabi.h"
7d9b040b 39#include "infcall.h"
9f643768
JB
40#include "sim-regno.h"
41#include "gdb/sim-ppc.h"
6ced10dd 42#include "reggroups.h"
4fc771b8 43#include "dwarf2-frame.h"
7a78ae4e 44
2fccf04a 45#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 46#include "coff/internal.h" /* for libcoff.h */
2fccf04a 47#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
48#include "coff/xcoff.h"
49#include "libxcoff.h"
7a78ae4e 50
9aa1e687 51#include "elf-bfd.h"
7a78ae4e 52
6ded7999 53#include "solib-svr4.h"
9aa1e687 54#include "ppc-tdep.h"
7a78ae4e 55
338ef23d 56#include "gdb_assert.h"
a89aa300 57#include "dis-asm.h"
338ef23d 58
61a65099
KB
59#include "trad-frame.h"
60#include "frame-unwind.h"
61#include "frame-base.h"
62
1f82754b 63#include "rs6000-tdep.h"
c44ca51c 64
7a78ae4e
ND
65/* If the kernel has to deliver a signal, it pushes a sigcontext
66 structure on the stack and then calls the signal handler, passing
67 the address of the sigcontext in an argument register. Usually
68 the signal handler doesn't save this register, so we have to
69 access the sigcontext structure via an offset from the signal handler
70 frame.
71 The following constants were determined by experimentation on AIX 3.2. */
72#define SIG_FRAME_PC_OFFSET 96
73#define SIG_FRAME_LR_OFFSET 108
74#define SIG_FRAME_FP_OFFSET 284
75
7a78ae4e
ND
76/* To be used by skip_prologue. */
77
78struct rs6000_framedata
79 {
80 int offset; /* total size of frame --- the distance
81 by which we decrement sp to allocate
82 the frame */
83 int saved_gpr; /* smallest # of saved gpr */
84 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 85 int saved_vr; /* smallest # of saved vr */
96ff0de4 86 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
87 int alloca_reg; /* alloca register number (frame ptr) */
88 char frameless; /* true if frameless functions. */
89 char nosavedpc; /* true if pc not saved. */
90 int gpr_offset; /* offset of saved gprs from prev sp */
91 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 92 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 93 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
94 int lr_offset; /* offset of saved lr */
95 int cr_offset; /* offset of saved cr */
6be8bc0c 96 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
97 };
98
99/* Description of a single register. */
100
101struct reg
102 {
103 char *name; /* name of register */
0bcc32ae
JB
104 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
105 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
7a78ae4e 106 unsigned char fpr; /* whether register is floating-point */
489461e2 107 unsigned char pseudo; /* whether register is pseudo */
13ac140c
JB
108 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
109 This is an ISA SPR number, not a GDB
110 register number. */
7a78ae4e
ND
111 };
112
c906108c
SS
113/* Hook for determining the TOC address when calling functions in the
114 inferior under AIX. The initialization code in rs6000-nat.c sets
115 this hook to point to find_toc_address. */
116
7a78ae4e
ND
117CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
118
c906108c
SS
119/* Static function prototypes */
120
0b1b3e42
UW
121static CORE_ADDR branch_dest (struct frame_info *frame, int opcode,
122 int instr, CORE_ADDR pc, CORE_ADDR safety);
077276e8
KB
123static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
c906108c 125
64b84175
KB
126/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127int
128altivec_register_p (int regno)
129{
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135}
136
383f0f5b 137
867e2dc5
JB
138/* Return true if REGNO is an SPE register, false otherwise. */
139int
140spe_register_p (int regno)
141{
142 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
143
144 /* Is it a reference to EV0 -- EV31, and do we have those? */
145 if (tdep->ppc_ev0_regnum >= 0
146 && tdep->ppc_ev31_regnum >= 0
147 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
148 return 1;
149
6ced10dd
JB
150 /* Is it a reference to one of the raw upper GPR halves? */
151 if (tdep->ppc_ev0_upper_regnum >= 0
152 && tdep->ppc_ev0_upper_regnum <= regno
153 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
154 return 1;
155
867e2dc5
JB
156 /* Is it a reference to the 64-bit accumulator, and do we have that? */
157 if (tdep->ppc_acc_regnum >= 0
158 && tdep->ppc_acc_regnum == regno)
159 return 1;
160
161 /* Is it a reference to the SPE floating-point status and control register,
162 and do we have that? */
163 if (tdep->ppc_spefscr_regnum >= 0
164 && tdep->ppc_spefscr_regnum == regno)
165 return 1;
166
167 return 0;
168}
169
170
383f0f5b
JB
171/* Return non-zero if the architecture described by GDBARCH has
172 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
173int
174ppc_floating_point_unit_p (struct gdbarch *gdbarch)
175{
383f0f5b
JB
176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177
178 return (tdep->ppc_fp0_regnum >= 0
179 && tdep->ppc_fpscr_regnum >= 0);
0a613259 180}
9f643768 181
09991fa0
JB
182
183/* Check that TABLE[GDB_REGNO] is not already initialized, and then
184 set it to SIM_REGNO.
185
186 This is a helper function for init_sim_regno_table, constructing
187 the table mapping GDB register numbers to sim register numbers; we
188 initialize every element in that table to -1 before we start
189 filling it in. */
9f643768
JB
190static void
191set_sim_regno (int *table, int gdb_regno, int sim_regno)
192{
193 /* Make sure we don't try to assign any given GDB register a sim
194 register number more than once. */
195 gdb_assert (table[gdb_regno] == -1);
196 table[gdb_regno] = sim_regno;
197}
198
09991fa0
JB
199
200/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
201 numbers to simulator register numbers, based on the values placed
202 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
203static void
204init_sim_regno_table (struct gdbarch *arch)
205{
206 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
207 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
208 const struct reg *regs = tdep->regs;
209 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
210 int i;
211
212 /* Presume that all registers not explicitly mentioned below are
213 unavailable from the sim. */
214 for (i = 0; i < total_regs; i++)
215 sim_regno[i] = -1;
216
217 /* General-purpose registers. */
218 for (i = 0; i < ppc_num_gprs; i++)
219 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
220
221 /* Floating-point registers. */
222 if (tdep->ppc_fp0_regnum >= 0)
223 for (i = 0; i < ppc_num_fprs; i++)
224 set_sim_regno (sim_regno,
225 tdep->ppc_fp0_regnum + i,
226 sim_ppc_f0_regnum + i);
227 if (tdep->ppc_fpscr_regnum >= 0)
228 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
229
230 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
231 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
232 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
233
234 /* Segment registers. */
235 if (tdep->ppc_sr0_regnum >= 0)
236 for (i = 0; i < ppc_num_srs; i++)
237 set_sim_regno (sim_regno,
238 tdep->ppc_sr0_regnum + i,
239 sim_ppc_sr0_regnum + i);
240
241 /* Altivec registers. */
242 if (tdep->ppc_vr0_regnum >= 0)
243 {
244 for (i = 0; i < ppc_num_vrs; i++)
245 set_sim_regno (sim_regno,
246 tdep->ppc_vr0_regnum + i,
247 sim_ppc_vr0_regnum + i);
248
249 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
250 we can treat this more like the other cases. */
251 set_sim_regno (sim_regno,
252 tdep->ppc_vr0_regnum + ppc_num_vrs,
253 sim_ppc_vscr_regnum);
254 }
255 /* vsave is a special-purpose register, so the code below handles it. */
256
257 /* SPE APU (E500) registers. */
258 if (tdep->ppc_ev0_regnum >= 0)
259 for (i = 0; i < ppc_num_gprs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_ev0_regnum + i,
262 sim_ppc_ev0_regnum + i);
6ced10dd
JB
263 if (tdep->ppc_ev0_upper_regnum >= 0)
264 for (i = 0; i < ppc_num_gprs; i++)
265 set_sim_regno (sim_regno,
266 tdep->ppc_ev0_upper_regnum + i,
267 sim_ppc_rh0_regnum + i);
9f643768
JB
268 if (tdep->ppc_acc_regnum >= 0)
269 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
270 /* spefscr is a special-purpose register, so the code below handles it. */
271
272 /* Now handle all special-purpose registers. Verify that they
273 haven't mistakenly been assigned numbers by any of the above
274 code). */
275 for (i = 0; i < total_regs; i++)
276 if (regs[i].spr_num >= 0)
277 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
278
279 /* Drop the initialized array into place. */
280 tdep->sim_regno = sim_regno;
281}
282
09991fa0
JB
283
284/* Given a GDB register number REG, return the corresponding SIM
285 register number. */
9f643768
JB
286static int
287rs6000_register_sim_regno (int reg)
288{
289 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
290 int sim_regno;
291
f57d151a
UW
292 gdb_assert (0 <= reg
293 && reg <= gdbarch_num_regs (current_gdbarch)
294 + gdbarch_num_pseudo_regs (current_gdbarch));
9f643768
JB
295 sim_regno = tdep->sim_regno[reg];
296
297 if (sim_regno >= 0)
298 return sim_regno;
299 else
300 return LEGACY_SIM_REGNO_IGNORE;
301}
302
d195bc9f
MK
303\f
304
305/* Register set support functions. */
306
307static void
308ppc_supply_reg (struct regcache *regcache, int regnum,
50fd1280 309 const gdb_byte *regs, size_t offset)
d195bc9f
MK
310{
311 if (regnum != -1 && offset != -1)
312 regcache_raw_supply (regcache, regnum, regs + offset);
313}
314
315static void
316ppc_collect_reg (const struct regcache *regcache, int regnum,
50fd1280 317 gdb_byte *regs, size_t offset)
d195bc9f
MK
318{
319 if (regnum != -1 && offset != -1)
320 regcache_raw_collect (regcache, regnum, regs + offset);
321}
322
323/* Supply register REGNUM in the general-purpose register set REGSET
324 from the buffer specified by GREGS and LEN to register cache
325 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
326
327void
328ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
329 int regnum, const void *gregs, size_t len)
330{
331 struct gdbarch *gdbarch = get_regcache_arch (regcache);
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333 const struct ppc_reg_offsets *offsets = regset->descr;
334 size_t offset;
335 int i;
336
cdf2c5f5 337 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
063715bf 338 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 339 i++, offset += 4)
d195bc9f
MK
340 {
341 if (regnum == -1 || regnum == i)
342 ppc_supply_reg (regcache, i, gregs, offset);
343 }
344
345 if (regnum == -1 || regnum == PC_REGNUM)
346 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
347 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
348 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
349 gregs, offsets->ps_offset);
350 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
351 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
352 gregs, offsets->cr_offset);
353 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
354 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
355 gregs, offsets->lr_offset);
356 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
357 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
358 gregs, offsets->ctr_offset);
359 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
360 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
361 gregs, offsets->cr_offset);
362 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
363 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
364}
365
366/* Supply register REGNUM in the floating-point register set REGSET
367 from the buffer specified by FPREGS and LEN to register cache
368 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
369
370void
371ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
372 int regnum, const void *fpregs, size_t len)
373{
374 struct gdbarch *gdbarch = get_regcache_arch (regcache);
375 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
376 const struct ppc_reg_offsets *offsets = regset->descr;
377 size_t offset;
378 int i;
379
383f0f5b
JB
380 gdb_assert (ppc_floating_point_unit_p (gdbarch));
381
d195bc9f 382 offset = offsets->f0_offset;
366f009f
JB
383 for (i = tdep->ppc_fp0_regnum;
384 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 385 i++, offset += 8)
d195bc9f
MK
386 {
387 if (regnum == -1 || regnum == i)
388 ppc_supply_reg (regcache, i, fpregs, offset);
389 }
390
391 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
392 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
393 fpregs, offsets->fpscr_offset);
394}
395
396/* Collect register REGNUM in the general-purpose register set
397 REGSET. from register cache REGCACHE into the buffer specified by
398 GREGS and LEN. If REGNUM is -1, do this for all registers in
399 REGSET. */
400
401void
402ppc_collect_gregset (const struct regset *regset,
403 const struct regcache *regcache,
404 int regnum, void *gregs, size_t len)
405{
406 struct gdbarch *gdbarch = get_regcache_arch (regcache);
407 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
408 const struct ppc_reg_offsets *offsets = regset->descr;
409 size_t offset;
410 int i;
411
412 offset = offsets->r0_offset;
cdf2c5f5 413 for (i = tdep->ppc_gp0_regnum;
063715bf 414 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 415 i++, offset += 4)
d195bc9f
MK
416 {
417 if (regnum == -1 || regnum == i)
2e56e9c1 418 ppc_collect_reg (regcache, i, gregs, offset);
d195bc9f
MK
419 }
420
421 if (regnum == -1 || regnum == PC_REGNUM)
422 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
423 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
424 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
425 gregs, offsets->ps_offset);
426 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
427 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
428 gregs, offsets->cr_offset);
429 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
430 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
431 gregs, offsets->lr_offset);
432 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
433 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
434 gregs, offsets->ctr_offset);
435 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
436 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
437 gregs, offsets->xer_offset);
438 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
439 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
440 gregs, offsets->mq_offset);
441}
442
443/* Collect register REGNUM in the floating-point register set
444 REGSET. from register cache REGCACHE into the buffer specified by
445 FPREGS and LEN. If REGNUM is -1, do this for all registers in
446 REGSET. */
447
448void
449ppc_collect_fpregset (const struct regset *regset,
450 const struct regcache *regcache,
451 int regnum, void *fpregs, size_t len)
452{
453 struct gdbarch *gdbarch = get_regcache_arch (regcache);
454 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
455 const struct ppc_reg_offsets *offsets = regset->descr;
456 size_t offset;
457 int i;
458
383f0f5b
JB
459 gdb_assert (ppc_floating_point_unit_p (gdbarch));
460
d195bc9f 461 offset = offsets->f0_offset;
366f009f
JB
462 for (i = tdep->ppc_fp0_regnum;
463 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 464 i++, offset += 8)
d195bc9f
MK
465 {
466 if (regnum == -1 || regnum == i)
bdbcb8b4 467 ppc_collect_reg (regcache, i, fpregs, offset);
d195bc9f
MK
468 }
469
470 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
471 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
472 fpregs, offsets->fpscr_offset);
473}
474\f
0a613259 475
7a78ae4e 476/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 477
7a78ae4e
ND
478static CORE_ADDR
479read_memory_addr (CORE_ADDR memaddr, int len)
480{
481 return read_memory_unsigned_integer (memaddr, len);
482}
c906108c 483
7a78ae4e
ND
484static CORE_ADDR
485rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
486{
487 struct rs6000_framedata frame;
4e463ff5
DJ
488 CORE_ADDR limit_pc, func_addr;
489
490 /* See if we can determine the end of the prologue via the symbol table.
491 If so, then return either PC, or the PC after the prologue, whichever
492 is greater. */
493 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
494 {
495 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
496 if (post_prologue_pc != 0)
497 return max (pc, post_prologue_pc);
498 }
499
500 /* Can't determine prologue from the symbol table, need to examine
501 instructions. */
502
503 /* Find an upper limit on the function prologue using the debug
504 information. If the debug information could not be used to provide
505 that bound, then use an arbitrary large number as the upper bound. */
506 limit_pc = skip_prologue_using_sal (pc);
507 if (limit_pc == 0)
508 limit_pc = pc + 100; /* Magic. */
509
510 pc = skip_prologue (pc, limit_pc, &frame);
b83266a0
SS
511 return pc;
512}
513
0d1243d9
PG
514static int
515insn_changes_sp_or_jumps (unsigned long insn)
516{
517 int opcode = (insn >> 26) & 0x03f;
518 int sd = (insn >> 21) & 0x01f;
519 int a = (insn >> 16) & 0x01f;
520 int subcode = (insn >> 1) & 0x3ff;
521
522 /* Changes the stack pointer. */
523
524 /* NOTE: There are many ways to change the value of a given register.
525 The ways below are those used when the register is R1, the SP,
526 in a funtion's epilogue. */
527
528 if (opcode == 31 && subcode == 444 && a == 1)
529 return 1; /* mr R1,Rn */
530 if (opcode == 14 && sd == 1)
531 return 1; /* addi R1,Rn,simm */
532 if (opcode == 58 && sd == 1)
533 return 1; /* ld R1,ds(Rn) */
534
535 /* Transfers control. */
536
537 if (opcode == 18)
538 return 1; /* b */
539 if (opcode == 16)
540 return 1; /* bc */
541 if (opcode == 19 && subcode == 16)
542 return 1; /* bclr */
543 if (opcode == 19 && subcode == 528)
544 return 1; /* bcctr */
545
546 return 0;
547}
548
549/* Return true if we are in the function's epilogue, i.e. after the
550 instruction that destroyed the function's stack frame.
551
552 1) scan forward from the point of execution:
553 a) If you find an instruction that modifies the stack pointer
554 or transfers control (except a return), execution is not in
555 an epilogue, return.
556 b) Stop scanning if you find a return instruction or reach the
557 end of the function or reach the hard limit for the size of
558 an epilogue.
559 2) scan backward from the point of execution:
560 a) If you find an instruction that modifies the stack pointer,
561 execution *is* in an epilogue, return.
562 b) Stop scanning if you reach an instruction that transfers
563 control or the beginning of the function or reach the hard
564 limit for the size of an epilogue. */
565
566static int
567rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
568{
569 bfd_byte insn_buf[PPC_INSN_SIZE];
570 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
571 unsigned long insn;
572 struct frame_info *curfrm;
573
574 /* Find the search limits based on function boundaries and hard limit. */
575
576 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
577 return 0;
578
579 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
580 if (epilogue_start < func_start) epilogue_start = func_start;
581
582 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
583 if (epilogue_end > func_end) epilogue_end = func_end;
584
585 curfrm = get_current_frame ();
586
587 /* Scan forward until next 'blr'. */
588
589 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
590 {
591 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
592 return 0;
4e463ff5 593 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
0d1243d9
PG
594 if (insn == 0x4e800020)
595 break;
596 if (insn_changes_sp_or_jumps (insn))
597 return 0;
598 }
599
600 /* Scan backward until adjustment to stack pointer (R1). */
601
602 for (scan_pc = pc - PPC_INSN_SIZE;
603 scan_pc >= epilogue_start;
604 scan_pc -= PPC_INSN_SIZE)
605 {
606 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
607 return 0;
4e463ff5 608 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
0d1243d9
PG
609 if (insn_changes_sp_or_jumps (insn))
610 return 1;
611 }
612
613 return 0;
614}
615
143985b7 616/* Get the ith function argument for the current function. */
b9362cc7 617static CORE_ADDR
143985b7
AF
618rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
619 struct type *type)
620{
50fd1280 621 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
622}
623
c906108c
SS
624/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
625
626static CORE_ADDR
0b1b3e42
UW
627branch_dest (struct frame_info *frame, int opcode, int instr,
628 CORE_ADDR pc, CORE_ADDR safety)
c906108c 629{
0b1b3e42 630 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
c906108c
SS
631 CORE_ADDR dest;
632 int immediate;
633 int absolute;
634 int ext_op;
635
636 absolute = (int) ((instr >> 1) & 1);
637
c5aa993b
JM
638 switch (opcode)
639 {
640 case 18:
641 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
642 if (absolute)
643 dest = immediate;
644 else
645 dest = pc + immediate;
646 break;
647
648 case 16:
649 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
650 if (absolute)
651 dest = immediate;
652 else
653 dest = pc + immediate;
654 break;
655
656 case 19:
657 ext_op = (instr >> 1) & 0x3ff;
658
659 if (ext_op == 16) /* br conditional register */
660 {
0b1b3e42 661 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
c5aa993b
JM
662
663 /* If we are about to return from a signal handler, dest is
664 something like 0x3c90. The current frame is a signal handler
665 caller frame, upon completion of the sigreturn system call
666 execution will return to the saved PC in the frame. */
0b1b3e42
UW
667 if (dest < tdep->text_segment_base)
668 dest = read_memory_addr (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
669 tdep->wordsize);
c5aa993b
JM
670 }
671
672 else if (ext_op == 528) /* br cond to count reg */
673 {
0b1b3e42 674 dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3;
c5aa993b
JM
675
676 /* If we are about to execute a system call, dest is something
677 like 0x22fc or 0x3b00. Upon completion the system call
678 will return to the address in the link register. */
0b1b3e42
UW
679 if (dest < tdep->text_segment_base)
680 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
c5aa993b
JM
681 }
682 else
683 return -1;
684 break;
c906108c 685
c5aa993b
JM
686 default:
687 return -1;
688 }
0b1b3e42 689 return (dest < tdep->text_segment_base) ? safety : dest;
c906108c
SS
690}
691
692
693/* Sequence of bytes for breakpoint instruction. */
694
f4f9705a 695const static unsigned char *
7a78ae4e 696rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 697{
aaab4dba
AC
698 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
699 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 700 *bp_size = 4;
4c6b5505 701 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
702 return big_breakpoint;
703 else
704 return little_breakpoint;
705}
706
707
ce5eab59
UW
708/* Instruction masks used during single-stepping of atomic sequences. */
709#define LWARX_MASK 0xfc0007fe
710#define LWARX_INSTRUCTION 0x7c000028
711#define LDARX_INSTRUCTION 0x7c0000A8
712#define STWCX_MASK 0xfc0007ff
713#define STWCX_INSTRUCTION 0x7c00012d
714#define STDCX_INSTRUCTION 0x7c0001ad
715#define BC_MASK 0xfc000000
716#define BC_INSTRUCTION 0x40000000
717
718/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
719 instruction and ending with a STWCX/STDCX instruction. If such a sequence
720 is found, attempt to step through it. A breakpoint is placed at the end of
721 the sequence. */
722
723static int
0b1b3e42 724deal_with_atomic_sequence (struct frame_info *frame)
ce5eab59 725{
0b1b3e42 726 CORE_ADDR pc = get_frame_pc (frame);
ce5eab59
UW
727 CORE_ADDR breaks[2] = {-1, -1};
728 CORE_ADDR loc = pc;
729 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
24d45690 730 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
ce5eab59
UW
731 int insn = read_memory_integer (loc, PPC_INSN_SIZE);
732 int insn_count;
733 int index;
734 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
735 const int atomic_sequence_length = 16; /* Instruction sequence length. */
24d45690 736 int opcode; /* Branch instruction's OPcode. */
ce5eab59
UW
737 int bc_insn_count = 0; /* Conditional branch instruction count. */
738
739 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
740 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
741 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
742 return 0;
743
744 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
745 instructions. */
746 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
747 {
748 loc += PPC_INSN_SIZE;
749 insn = read_memory_integer (loc, PPC_INSN_SIZE);
750
751 /* Assume that there is at most one conditional branch in the atomic
752 sequence. If a conditional branch is found, put a breakpoint in
753 its destination address. */
754 if ((insn & BC_MASK) == BC_INSTRUCTION)
755 {
756 if (bc_insn_count >= 1)
757 return 0; /* More than one conditional branch found, fallback
758 to the standard single-step code. */
759
24d45690 760 opcode = insn >> 26;
0b1b3e42 761 branch_bp = branch_dest (frame, opcode, insn, pc, breaks[0]);
ce5eab59
UW
762
763 if (branch_bp != -1)
764 {
765 breaks[1] = branch_bp;
766 bc_insn_count++;
767 last_breakpoint++;
768 }
769 }
770
771 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
772 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
773 break;
774 }
775
776 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
777 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
778 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
779 return 0;
780
24d45690 781 closing_insn = loc;
ce5eab59
UW
782 loc += PPC_INSN_SIZE;
783 insn = read_memory_integer (loc, PPC_INSN_SIZE);
784
785 /* Insert a breakpoint right after the end of the atomic sequence. */
786 breaks[0] = loc;
787
24d45690
UW
788 /* Check for duplicated breakpoints. Check also for a breakpoint
789 placed (branch instruction's destination) at the stwcx/stdcx
790 instruction, this resets the reservation and take us back to the
791 lwarx/ldarx instruction at the beginning of the atomic sequence. */
792 if (last_breakpoint && ((breaks[1] == breaks[0])
793 || (breaks[1] == closing_insn)))
ce5eab59
UW
794 last_breakpoint = 0;
795
796 /* Effectively inserts the breakpoints. */
797 for (index = 0; index <= last_breakpoint; index++)
798 insert_single_step_breakpoint (breaks[index]);
799
800 return 1;
801}
802
803/* AIX does not support PT_STEP. Simulate it. */
c906108c 804
e6590a1b 805int
0b1b3e42 806rs6000_software_single_step (struct frame_info *frame)
c906108c 807{
7c40d541
KB
808 CORE_ADDR dummy;
809 int breakp_sz;
50fd1280 810 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
811 int ii, insn;
812 CORE_ADDR loc;
813 CORE_ADDR breaks[2];
814 int opcode;
815
0b1b3e42 816 loc = get_frame_pc (frame);
c906108c 817
e0cd558a 818 insn = read_memory_integer (loc, 4);
c906108c 819
0b1b3e42 820 if (deal_with_atomic_sequence (frame))
ce5eab59
UW
821 return 1;
822
e0cd558a
UW
823 breaks[0] = loc + breakp_sz;
824 opcode = insn >> 26;
0b1b3e42 825 breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
c906108c 826
e0cd558a
UW
827 /* Don't put two breakpoints on the same address. */
828 if (breaks[1] == breaks[0])
829 breaks[1] = -1;
c906108c 830
e0cd558a
UW
831 for (ii = 0; ii < 2; ++ii)
832 {
833 /* ignore invalid breakpoint. */
834 if (breaks[ii] == -1)
835 continue;
836 insert_single_step_breakpoint (breaks[ii]);
c5aa993b 837 }
c906108c 838
c906108c 839 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 840 /* What errors? {read,write}_memory call error(). */
e6590a1b 841 return 1;
c906108c
SS
842}
843
844
845/* return pc value after skipping a function prologue and also return
846 information about a function frame.
847
848 in struct rs6000_framedata fdata:
c5aa993b
JM
849 - frameless is TRUE, if function does not have a frame.
850 - nosavedpc is TRUE, if function does not save %pc value in its frame.
851 - offset is the initial size of this stack frame --- the amount by
852 which we decrement the sp to allocate the frame.
853 - saved_gpr is the number of the first saved gpr.
854 - saved_fpr is the number of the first saved fpr.
6be8bc0c 855 - saved_vr is the number of the first saved vr.
96ff0de4 856 - saved_ev is the number of the first saved ev.
c5aa993b
JM
857 - alloca_reg is the number of the register used for alloca() handling.
858 Otherwise -1.
859 - gpr_offset is the offset of the first saved gpr from the previous frame.
860 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 861 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 862 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
863 - lr_offset is the offset of the saved lr
864 - cr_offset is the offset of the saved cr
6be8bc0c 865 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 866 */
c906108c
SS
867
868#define SIGNED_SHORT(x) \
869 ((sizeof (short) == 2) \
870 ? ((int)(short)(x)) \
871 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
872
873#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
874
55d05f3b
KB
875/* Limit the number of skipped non-prologue instructions, as the examining
876 of the prologue is expensive. */
877static int max_skip_non_prologue_insns = 10;
878
773df3e5
JB
879/* Return nonzero if the given instruction OP can be part of the prologue
880 of a function and saves a parameter on the stack. FRAMEP should be
881 set if one of the previous instructions in the function has set the
882 Frame Pointer. */
883
884static int
885store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
886{
887 /* Move parameters from argument registers to temporary register. */
888 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
889 {
890 /* Rx must be scratch register r0. */
891 const int rx_regno = (op >> 16) & 31;
892 /* Ry: Only r3 - r10 are used for parameter passing. */
893 const int ry_regno = GET_SRC_REG (op);
894
895 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
896 {
897 *r0_contains_arg = 1;
898 return 1;
899 }
900 else
901 return 0;
902 }
903
904 /* Save a General Purpose Register on stack. */
905
906 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
907 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
908 {
909 /* Rx: Only r3 - r10 are used for parameter passing. */
910 const int rx_regno = GET_SRC_REG (op);
911
912 return (rx_regno >= 3 && rx_regno <= 10);
913 }
914
915 /* Save a General Purpose Register on stack via the Frame Pointer. */
916
917 if (framep &&
918 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
919 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
920 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
921 {
922 /* Rx: Usually, only r3 - r10 are used for parameter passing.
923 However, the compiler sometimes uses r0 to hold an argument. */
924 const int rx_regno = GET_SRC_REG (op);
925
926 return ((rx_regno >= 3 && rx_regno <= 10)
927 || (rx_regno == 0 && *r0_contains_arg));
928 }
929
930 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
931 {
932 /* Only f2 - f8 are used for parameter passing. */
933 const int src_regno = GET_SRC_REG (op);
934
935 return (src_regno >= 2 && src_regno <= 8);
936 }
937
938 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
939 {
940 /* Only f2 - f8 are used for parameter passing. */
941 const int src_regno = GET_SRC_REG (op);
942
943 return (src_regno >= 2 && src_regno <= 8);
944 }
945
946 /* Not an insn that saves a parameter on stack. */
947 return 0;
948}
55d05f3b 949
3c77c82a
DJ
950/* Assuming that INSN is a "bl" instruction located at PC, return
951 nonzero if the destination of the branch is a "blrl" instruction.
952
953 This sequence is sometimes found in certain function prologues.
954 It allows the function to load the LR register with a value that
955 they can use to access PIC data using PC-relative offsets. */
956
957static int
958bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
959{
0b1b3e42
UW
960 CORE_ADDR dest;
961 int immediate;
962 int absolute;
3c77c82a
DJ
963 int dest_insn;
964
0b1b3e42
UW
965 absolute = (int) ((insn >> 1) & 1);
966 immediate = ((insn & ~3) << 6) >> 6;
967 if (absolute)
968 dest = immediate;
969 else
970 dest = pc + immediate;
971
3c77c82a
DJ
972 dest_insn = read_memory_integer (dest, 4);
973 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
974 return 1;
975
976 return 0;
977}
978
7a78ae4e 979static CORE_ADDR
077276e8 980skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
981{
982 CORE_ADDR orig_pc = pc;
55d05f3b 983 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 984 CORE_ADDR li_found_pc = 0;
50fd1280 985 gdb_byte buf[4];
c906108c
SS
986 unsigned long op;
987 long offset = 0;
6be8bc0c 988 long vr_saved_offset = 0;
482ca3f5
KB
989 int lr_reg = -1;
990 int cr_reg = -1;
6be8bc0c 991 int vr_reg = -1;
96ff0de4
EZ
992 int ev_reg = -1;
993 long ev_offset = 0;
6be8bc0c 994 int vrsave_reg = -1;
c906108c
SS
995 int reg;
996 int framep = 0;
997 int minimal_toc_loaded = 0;
ddb20c56 998 int prev_insn_was_prologue_insn = 1;
55d05f3b 999 int num_skip_non_prologue_insns = 0;
773df3e5 1000 int r0_contains_arg = 0;
96ff0de4 1001 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 1002 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1003
ddb20c56 1004 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
1005 fdata->saved_gpr = -1;
1006 fdata->saved_fpr = -1;
6be8bc0c 1007 fdata->saved_vr = -1;
96ff0de4 1008 fdata->saved_ev = -1;
c906108c
SS
1009 fdata->alloca_reg = -1;
1010 fdata->frameless = 1;
1011 fdata->nosavedpc = 1;
1012
55d05f3b 1013 for (;; pc += 4)
c906108c 1014 {
ddb20c56
KB
1015 /* Sometimes it isn't clear if an instruction is a prologue
1016 instruction or not. When we encounter one of these ambiguous
1017 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1018 Otherwise, we'll assume that it really is a prologue instruction. */
1019 if (prev_insn_was_prologue_insn)
1020 last_prologue_pc = pc;
55d05f3b
KB
1021
1022 /* Stop scanning if we've hit the limit. */
4e463ff5 1023 if (pc >= lim_pc)
55d05f3b
KB
1024 break;
1025
ddb20c56
KB
1026 prev_insn_was_prologue_insn = 1;
1027
55d05f3b 1028 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
1029 if (target_read_memory (pc, buf, 4))
1030 break;
4e463ff5 1031 op = extract_unsigned_integer (buf, 4);
c906108c 1032
c5aa993b
JM
1033 if ((op & 0xfc1fffff) == 0x7c0802a6)
1034 { /* mflr Rx */
43b1ab88
AC
1035 /* Since shared library / PIC code, which needs to get its
1036 address at runtime, can appear to save more than one link
1037 register vis:
1038
1039 *INDENT-OFF*
1040 stwu r1,-304(r1)
1041 mflr r3
1042 bl 0xff570d0 (blrl)
1043 stw r30,296(r1)
1044 mflr r30
1045 stw r31,300(r1)
1046 stw r3,308(r1);
1047 ...
1048 *INDENT-ON*
1049
1050 remember just the first one, but skip over additional
1051 ones. */
721d14ba 1052 if (lr_reg == -1)
43b1ab88 1053 lr_reg = (op & 0x03e00000);
773df3e5
JB
1054 if (lr_reg == 0)
1055 r0_contains_arg = 0;
c5aa993b 1056 continue;
c5aa993b
JM
1057 }
1058 else if ((op & 0xfc1fffff) == 0x7c000026)
1059 { /* mfcr Rx */
98f08d3d 1060 cr_reg = (op & 0x03e00000);
773df3e5
JB
1061 if (cr_reg == 0)
1062 r0_contains_arg = 0;
c5aa993b 1063 continue;
c906108c 1064
c906108c 1065 }
c5aa993b
JM
1066 else if ((op & 0xfc1f0000) == 0xd8010000)
1067 { /* stfd Rx,NUM(r1) */
1068 reg = GET_SRC_REG (op);
1069 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1070 {
1071 fdata->saved_fpr = reg;
1072 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1073 }
1074 continue;
c906108c 1075
c5aa993b
JM
1076 }
1077 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
1078 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1079 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1080 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
1081 {
1082
1083 reg = GET_SRC_REG (op);
1084 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1085 {
1086 fdata->saved_gpr = reg;
7a78ae4e 1087 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1088 op &= ~3UL;
c5aa993b
JM
1089 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1090 }
1091 continue;
c906108c 1092
ddb20c56
KB
1093 }
1094 else if ((op & 0xffff0000) == 0x60000000)
1095 {
96ff0de4 1096 /* nop */
ddb20c56
KB
1097 /* Allow nops in the prologue, but do not consider them to
1098 be part of the prologue unless followed by other prologue
1099 instructions. */
1100 prev_insn_was_prologue_insn = 0;
1101 continue;
1102
c906108c 1103 }
c5aa993b
JM
1104 else if ((op & 0xffff0000) == 0x3c000000)
1105 { /* addis 0,0,NUM, used
1106 for >= 32k frames */
1107 fdata->offset = (op & 0x0000ffff) << 16;
1108 fdata->frameless = 0;
773df3e5 1109 r0_contains_arg = 0;
c5aa993b
JM
1110 continue;
1111
1112 }
1113 else if ((op & 0xffff0000) == 0x60000000)
1114 { /* ori 0,0,NUM, 2nd ha
1115 lf of >= 32k frames */
1116 fdata->offset |= (op & 0x0000ffff);
1117 fdata->frameless = 0;
773df3e5 1118 r0_contains_arg = 0;
c5aa993b
JM
1119 continue;
1120
1121 }
be723e22 1122 else if (lr_reg >= 0 &&
98f08d3d
KB
1123 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1124 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1125 /* stw Rx, NUM(r1) */
1126 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1127 /* stwu Rx, NUM(r1) */
1128 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1129 { /* where Rx == lr */
1130 fdata->lr_offset = offset;
c5aa993b 1131 fdata->nosavedpc = 0;
be723e22
MS
1132 /* Invalidate lr_reg, but don't set it to -1.
1133 That would mean that it had never been set. */
1134 lr_reg = -2;
98f08d3d
KB
1135 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1136 (op & 0xfc000000) == 0x90000000) /* stw */
1137 {
1138 /* Does not update r1, so add displacement to lr_offset. */
1139 fdata->lr_offset += SIGNED_SHORT (op);
1140 }
c5aa993b
JM
1141 continue;
1142
1143 }
be723e22 1144 else if (cr_reg >= 0 &&
98f08d3d
KB
1145 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1146 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1147 /* stw Rx, NUM(r1) */
1148 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1149 /* stwu Rx, NUM(r1) */
1150 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1151 { /* where Rx == cr */
1152 fdata->cr_offset = offset;
be723e22
MS
1153 /* Invalidate cr_reg, but don't set it to -1.
1154 That would mean that it had never been set. */
1155 cr_reg = -2;
98f08d3d
KB
1156 if ((op & 0xfc000003) == 0xf8000000 ||
1157 (op & 0xfc000000) == 0x90000000)
1158 {
1159 /* Does not update r1, so add displacement to cr_offset. */
1160 fdata->cr_offset += SIGNED_SHORT (op);
1161 }
c5aa993b
JM
1162 continue;
1163
1164 }
721d14ba
DJ
1165 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1166 {
1167 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1168 prediction bits. If the LR has already been saved, we can
1169 skip it. */
1170 continue;
1171 }
c5aa993b
JM
1172 else if (op == 0x48000005)
1173 { /* bl .+4 used in
1174 -mrelocatable */
1175 continue;
1176
1177 }
1178 else if (op == 0x48000004)
1179 { /* b .+4 (xlc) */
1180 break;
1181
c5aa993b 1182 }
6be8bc0c
EZ
1183 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1184 in V.4 -mminimal-toc */
c5aa993b
JM
1185 (op & 0xffff0000) == 0x3bde0000)
1186 { /* addi 30,30,foo@l */
1187 continue;
c906108c 1188
c5aa993b
JM
1189 }
1190 else if ((op & 0xfc000001) == 0x48000001)
1191 { /* bl foo,
1192 to save fprs??? */
c906108c 1193
c5aa993b 1194 fdata->frameless = 0;
3c77c82a
DJ
1195
1196 /* If the return address has already been saved, we can skip
1197 calls to blrl (for PIC). */
1198 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1199 continue;
1200
6be8bc0c 1201 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1202 the first three instructions of the prologue and either
1203 we have no line table information or the line info tells
1204 us that the subroutine call is not part of the line
1205 associated with the prologue. */
c5aa993b 1206 if ((pc - orig_pc) > 8)
ebd98106
FF
1207 {
1208 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1209 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1210
1211 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1212 break;
1213 }
c5aa993b
JM
1214
1215 op = read_memory_integer (pc + 4, 4);
1216
6be8bc0c
EZ
1217 /* At this point, make sure this is not a trampoline
1218 function (a function that simply calls another functions,
1219 and nothing else). If the next is not a nop, this branch
1220 was part of the function prologue. */
c5aa993b
JM
1221
1222 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1223 break; /* don't skip over
1224 this branch */
1225 continue;
1226
c5aa993b 1227 }
98f08d3d
KB
1228 /* update stack pointer */
1229 else if ((op & 0xfc1f0000) == 0x94010000)
1230 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1231 fdata->frameless = 0;
1232 fdata->offset = SIGNED_SHORT (op);
1233 offset = fdata->offset;
1234 continue;
c5aa993b 1235 }
98f08d3d
KB
1236 else if ((op & 0xfc1f016a) == 0x7c01016e)
1237 { /* stwux rX,r1,rY */
1238 /* no way to figure out what r1 is going to be */
1239 fdata->frameless = 0;
1240 offset = fdata->offset;
1241 continue;
1242 }
1243 else if ((op & 0xfc1f0003) == 0xf8010001)
1244 { /* stdu rX,NUM(r1) */
1245 fdata->frameless = 0;
1246 fdata->offset = SIGNED_SHORT (op & ~3UL);
1247 offset = fdata->offset;
1248 continue;
1249 }
1250 else if ((op & 0xfc1f016a) == 0x7c01016a)
1251 { /* stdux rX,r1,rY */
1252 /* no way to figure out what r1 is going to be */
c5aa993b
JM
1253 fdata->frameless = 0;
1254 offset = fdata->offset;
1255 continue;
c5aa993b 1256 }
7313566f
FF
1257 else if ((op & 0xffff0000) == 0x38210000)
1258 { /* addi r1,r1,SIMM */
1259 fdata->frameless = 0;
1260 fdata->offset += SIGNED_SHORT (op);
1261 offset = fdata->offset;
1262 continue;
1263 }
4e463ff5
DJ
1264 /* Load up minimal toc pointer. Do not treat an epilogue restore
1265 of r31 as a minimal TOC load. */
98f08d3d
KB
1266 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1267 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
4e463ff5 1268 && !framep
c5aa993b 1269 && !minimal_toc_loaded)
98f08d3d 1270 {
c5aa993b
JM
1271 minimal_toc_loaded = 1;
1272 continue;
1273
f6077098
KB
1274 /* move parameters from argument registers to local variable
1275 registers */
1276 }
1277 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1278 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1279 (((op >> 21) & 31) <= 10) &&
96ff0de4 1280 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1281 {
1282 continue;
1283
c5aa993b
JM
1284 /* store parameters in stack */
1285 }
e802b915 1286 /* Move parameters from argument registers to temporary register. */
773df3e5 1287 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1288 {
c5aa993b
JM
1289 continue;
1290
1291 /* Set up frame pointer */
1292 }
1293 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1294 || op == 0x7c3f0b78)
1295 { /* mr r31, r1 */
1296 fdata->frameless = 0;
1297 framep = 1;
6f99cb26 1298 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1299 continue;
1300
1301 /* Another way to set up the frame pointer. */
1302 }
1303 else if ((op & 0xfc1fffff) == 0x38010000)
1304 { /* addi rX, r1, 0x0 */
1305 fdata->frameless = 0;
1306 framep = 1;
6f99cb26
AC
1307 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1308 + ((op & ~0x38010000) >> 21));
c5aa993b 1309 continue;
c5aa993b 1310 }
6be8bc0c
EZ
1311 /* AltiVec related instructions. */
1312 /* Store the vrsave register (spr 256) in another register for
1313 later manipulation, or load a register into the vrsave
1314 register. 2 instructions are used: mfvrsave and
1315 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1316 and mtspr SPR256, Rn. */
1317 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1318 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1319 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1320 {
1321 vrsave_reg = GET_SRC_REG (op);
1322 continue;
1323 }
1324 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1325 {
1326 continue;
1327 }
1328 /* Store the register where vrsave was saved to onto the stack:
1329 rS is the register where vrsave was stored in a previous
1330 instruction. */
1331 /* 100100 sssss 00001 dddddddd dddddddd */
1332 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1333 {
1334 if (vrsave_reg == GET_SRC_REG (op))
1335 {
1336 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1337 vrsave_reg = -1;
1338 }
1339 continue;
1340 }
1341 /* Compute the new value of vrsave, by modifying the register
1342 where vrsave was saved to. */
1343 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1344 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1345 {
1346 continue;
1347 }
1348 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1349 in a pair of insns to save the vector registers on the
1350 stack. */
1351 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1352 /* 001110 01110 00000 iiii iiii iiii iiii */
1353 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1354 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1355 {
773df3e5
JB
1356 if ((op & 0xffff0000) == 0x38000000)
1357 r0_contains_arg = 0;
6be8bc0c
EZ
1358 li_found_pc = pc;
1359 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1360
1361 /* This insn by itself is not part of the prologue, unless
1362 if part of the pair of insns mentioned above. So do not
1363 record this insn as part of the prologue yet. */
1364 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1365 }
1366 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1367 /* 011111 sssss 11111 00000 00111001110 */
1368 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1369 {
1370 if (pc == (li_found_pc + 4))
1371 {
1372 vr_reg = GET_SRC_REG (op);
1373 /* If this is the first vector reg to be saved, or if
1374 it has a lower number than others previously seen,
1375 reupdate the frame info. */
1376 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1377 {
1378 fdata->saved_vr = vr_reg;
1379 fdata->vr_offset = vr_saved_offset + offset;
1380 }
1381 vr_saved_offset = -1;
1382 vr_reg = -1;
1383 li_found_pc = 0;
1384 }
1385 }
1386 /* End AltiVec related instructions. */
96ff0de4
EZ
1387
1388 /* Start BookE related instructions. */
1389 /* Store gen register S at (r31+uimm).
1390 Any register less than r13 is volatile, so we don't care. */
1391 /* 000100 sssss 11111 iiiii 01100100001 */
1392 else if (arch_info->mach == bfd_mach_ppc_e500
1393 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1394 {
1395 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1396 {
1397 unsigned int imm;
1398 ev_reg = GET_SRC_REG (op);
1399 imm = (op >> 11) & 0x1f;
1400 ev_offset = imm * 8;
1401 /* If this is the first vector reg to be saved, or if
1402 it has a lower number than others previously seen,
1403 reupdate the frame info. */
1404 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1405 {
1406 fdata->saved_ev = ev_reg;
1407 fdata->ev_offset = ev_offset + offset;
1408 }
1409 }
1410 continue;
1411 }
1412 /* Store gen register rS at (r1+rB). */
1413 /* 000100 sssss 00001 bbbbb 01100100000 */
1414 else if (arch_info->mach == bfd_mach_ppc_e500
1415 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1416 {
1417 if (pc == (li_found_pc + 4))
1418 {
1419 ev_reg = GET_SRC_REG (op);
1420 /* If this is the first vector reg to be saved, or if
1421 it has a lower number than others previously seen,
1422 reupdate the frame info. */
1423 /* We know the contents of rB from the previous instruction. */
1424 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1425 {
1426 fdata->saved_ev = ev_reg;
1427 fdata->ev_offset = vr_saved_offset + offset;
1428 }
1429 vr_saved_offset = -1;
1430 ev_reg = -1;
1431 li_found_pc = 0;
1432 }
1433 continue;
1434 }
1435 /* Store gen register r31 at (rA+uimm). */
1436 /* 000100 11111 aaaaa iiiii 01100100001 */
1437 else if (arch_info->mach == bfd_mach_ppc_e500
1438 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1439 {
1440 /* Wwe know that the source register is 31 already, but
1441 it can't hurt to compute it. */
1442 ev_reg = GET_SRC_REG (op);
1443 ev_offset = ((op >> 11) & 0x1f) * 8;
1444 /* If this is the first vector reg to be saved, or if
1445 it has a lower number than others previously seen,
1446 reupdate the frame info. */
1447 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1448 {
1449 fdata->saved_ev = ev_reg;
1450 fdata->ev_offset = ev_offset + offset;
1451 }
1452
1453 continue;
1454 }
1455 /* Store gen register S at (r31+r0).
1456 Store param on stack when offset from SP bigger than 4 bytes. */
1457 /* 000100 sssss 11111 00000 01100100000 */
1458 else if (arch_info->mach == bfd_mach_ppc_e500
1459 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1460 {
1461 if (pc == (li_found_pc + 4))
1462 {
1463 if ((op & 0x03e00000) >= 0x01a00000)
1464 {
1465 ev_reg = GET_SRC_REG (op);
1466 /* If this is the first vector reg to be saved, or if
1467 it has a lower number than others previously seen,
1468 reupdate the frame info. */
1469 /* We know the contents of r0 from the previous
1470 instruction. */
1471 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1472 {
1473 fdata->saved_ev = ev_reg;
1474 fdata->ev_offset = vr_saved_offset + offset;
1475 }
1476 ev_reg = -1;
1477 }
1478 vr_saved_offset = -1;
1479 li_found_pc = 0;
1480 continue;
1481 }
1482 }
1483 /* End BookE related instructions. */
1484
c5aa993b
JM
1485 else
1486 {
55d05f3b
KB
1487 /* Not a recognized prologue instruction.
1488 Handle optimizer code motions into the prologue by continuing
1489 the search if we have no valid frame yet or if the return
1490 address is not yet saved in the frame. */
4e463ff5 1491 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
55d05f3b
KB
1492 break;
1493
1494 if (op == 0x4e800020 /* blr */
1495 || op == 0x4e800420) /* bctr */
1496 /* Do not scan past epilogue in frameless functions or
1497 trampolines. */
1498 break;
1499 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1500 /* Never skip branches. */
55d05f3b
KB
1501 break;
1502
1503 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1504 /* Do not scan too many insns, scanning insns is expensive with
1505 remote targets. */
1506 break;
1507
1508 /* Continue scanning. */
1509 prev_insn_was_prologue_insn = 0;
1510 continue;
c5aa993b 1511 }
c906108c
SS
1512 }
1513
1514#if 0
1515/* I have problems with skipping over __main() that I need to address
1516 * sometime. Previously, I used to use misc_function_vector which
1517 * didn't work as well as I wanted to be. -MGO */
1518
1519 /* If the first thing after skipping a prolog is a branch to a function,
1520 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 1521 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 1522 work before calling a function right after a prologue, thus we can
64366f1c 1523 single out such gcc2 behaviour. */
c906108c 1524
c906108c 1525
c5aa993b
JM
1526 if ((op & 0xfc000001) == 0x48000001)
1527 { /* bl foo, an initializer function? */
1528 op = read_memory_integer (pc + 4, 4);
1529
1530 if (op == 0x4def7b82)
1531 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 1532
64366f1c
EZ
1533 /* Check and see if we are in main. If so, skip over this
1534 initializer function as well. */
c906108c 1535
c5aa993b 1536 tmp = find_pc_misc_function (pc);
6314a349
AC
1537 if (tmp >= 0
1538 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1539 return pc + 8;
1540 }
c906108c 1541 }
c906108c 1542#endif /* 0 */
c5aa993b
JM
1543
1544 fdata->offset = -fdata->offset;
ddb20c56 1545 return last_prologue_pc;
c906108c
SS
1546}
1547
1548
1549/*************************************************************************
f6077098 1550 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1551 frames, etc.
1552*************************************************************************/
1553
c906108c 1554
11269d7e
AC
1555/* All the ABI's require 16 byte alignment. */
1556static CORE_ADDR
1557rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1558{
1559 return (addr & -16);
1560}
1561
7a78ae4e 1562/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1563 the first eight words of the argument list (that might be less than
1564 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1565 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1566 passed in fpr's, in addition to that. Rest of the parameters if any
1567 are passed in user stack. There might be cases in which half of the
c906108c
SS
1568 parameter is copied into registers, the other half is pushed into
1569 stack.
1570
7a78ae4e
ND
1571 Stack must be aligned on 64-bit boundaries when synthesizing
1572 function calls.
1573
c906108c
SS
1574 If the function is returning a structure, then the return address is passed
1575 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1576 starting from r4. */
c906108c 1577
7a78ae4e 1578static CORE_ADDR
7d9b040b 1579rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
1580 struct regcache *regcache, CORE_ADDR bp_addr,
1581 int nargs, struct value **args, CORE_ADDR sp,
1582 int struct_return, CORE_ADDR struct_addr)
c906108c 1583{
7a41266b 1584 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1585 int ii;
1586 int len = 0;
c5aa993b
JM
1587 int argno; /* current argument number */
1588 int argbytes; /* current argument byte */
50fd1280 1589 gdb_byte tmp_buffer[50];
c5aa993b 1590 int f_argno = 0; /* current floating point argno */
21283beb 1591 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
7d9b040b 1592 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 1593
ea7c478f 1594 struct value *arg = 0;
c906108c
SS
1595 struct type *type;
1596
fb4443d8 1597 ULONGEST saved_sp;
c906108c 1598
383f0f5b
JB
1599 /* The calling convention this function implements assumes the
1600 processor has floating-point registers. We shouldn't be using it
1601 on PPC variants that lack them. */
1602 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1603
64366f1c 1604 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1605 Copy them appropriately. */
1606 ii = 0;
1607
1608 /* If the function is returning a `struct', then the first word
1609 (which will be passed in r3) is used for struct return address.
1610 In that case we should advance one word and start from r4
1611 register to copy parameters. */
1612 if (struct_return)
1613 {
1614 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1615 struct_addr);
1616 ii++;
1617 }
c906108c
SS
1618
1619/*
c5aa993b
JM
1620 effectively indirect call... gcc does...
1621
1622 return_val example( float, int);
1623
1624 eabi:
1625 float in fp0, int in r3
1626 offset of stack on overflow 8/16
1627 for varargs, must go by type.
1628 power open:
1629 float in r3&r4, int in r5
1630 offset of stack on overflow different
1631 both:
1632 return in r3 or f0. If no float, must study how gcc emulates floats;
1633 pay attention to arg promotion.
1634 User may have to cast\args to handle promotion correctly
1635 since gdb won't know if prototype supplied or not.
1636 */
c906108c 1637
c5aa993b
JM
1638 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1639 {
3acba339 1640 int reg_size = register_size (current_gdbarch, ii + 3);
c5aa993b
JM
1641
1642 arg = args[argno];
df407dfe 1643 type = check_typedef (value_type (arg));
c5aa993b
JM
1644 len = TYPE_LENGTH (type);
1645
1646 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1647 {
1648
64366f1c 1649 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1650 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1651 there is no way we would run out of them. */
c5aa993b 1652
9f335945
KB
1653 gdb_assert (len <= 8);
1654
1655 regcache_cooked_write (regcache,
1656 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1657 value_contents (arg));
c5aa993b
JM
1658 ++f_argno;
1659 }
1660
f6077098 1661 if (len > reg_size)
c5aa993b
JM
1662 {
1663
64366f1c 1664 /* Argument takes more than one register. */
c5aa993b
JM
1665 while (argbytes < len)
1666 {
50fd1280 1667 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1668 memset (word, 0, reg_size);
1669 memcpy (word,
0fd88904 1670 ((char *) value_contents (arg)) + argbytes,
f6077098
KB
1671 (len - argbytes) > reg_size
1672 ? reg_size : len - argbytes);
9f335945
KB
1673 regcache_cooked_write (regcache,
1674 tdep->ppc_gp0_regnum + 3 + ii,
1675 word);
f6077098 1676 ++ii, argbytes += reg_size;
c5aa993b
JM
1677
1678 if (ii >= 8)
1679 goto ran_out_of_registers_for_arguments;
1680 }
1681 argbytes = 0;
1682 --ii;
1683 }
1684 else
64366f1c
EZ
1685 {
1686 /* Argument can fit in one register. No problem. */
4c6b5505
UW
1687 int adj = gdbarch_byte_order (current_gdbarch)
1688 == BFD_ENDIAN_BIG ? reg_size - len : 0;
50fd1280 1689 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1690
1691 memset (word, 0, reg_size);
0fd88904 1692 memcpy (word, value_contents (arg), len);
9f335945 1693 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
c5aa993b
JM
1694 }
1695 ++argno;
c906108c 1696 }
c906108c
SS
1697
1698ran_out_of_registers_for_arguments:
1699
fb4443d8 1700 regcache_cooked_read_unsigned (regcache, SP_REGNUM, &saved_sp);
cc9836a8 1701
64366f1c 1702 /* Location for 8 parameters are always reserved. */
7a78ae4e 1703 sp -= wordsize * 8;
f6077098 1704
64366f1c 1705 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1706 sp -= wordsize * 6;
f6077098 1707
64366f1c 1708 /* Stack pointer must be quadword aligned. */
7a78ae4e 1709 sp &= -16;
c906108c 1710
64366f1c
EZ
1711 /* If there are more arguments, allocate space for them in
1712 the stack, then push them starting from the ninth one. */
c906108c 1713
c5aa993b
JM
1714 if ((argno < nargs) || argbytes)
1715 {
1716 int space = 0, jj;
c906108c 1717
c5aa993b
JM
1718 if (argbytes)
1719 {
1720 space += ((len - argbytes + 3) & -4);
1721 jj = argno + 1;
1722 }
1723 else
1724 jj = argno;
c906108c 1725
c5aa993b
JM
1726 for (; jj < nargs; ++jj)
1727 {
ea7c478f 1728 struct value *val = args[jj];
df407dfe 1729 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
c5aa993b 1730 }
c906108c 1731
64366f1c 1732 /* Add location required for the rest of the parameters. */
f6077098 1733 space = (space + 15) & -16;
c5aa993b 1734 sp -= space;
c906108c 1735
7aea86e6
AC
1736 /* This is another instance we need to be concerned about
1737 securing our stack space. If we write anything underneath %sp
1738 (r1), we might conflict with the kernel who thinks he is free
1739 to use this area. So, update %sp first before doing anything
1740 else. */
1741
1742 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1743
64366f1c
EZ
1744 /* If the last argument copied into the registers didn't fit there
1745 completely, push the rest of it into stack. */
c906108c 1746
c5aa993b
JM
1747 if (argbytes)
1748 {
1749 write_memory (sp + 24 + (ii * 4),
50fd1280 1750 value_contents (arg) + argbytes,
c5aa993b
JM
1751 len - argbytes);
1752 ++argno;
1753 ii += ((len - argbytes + 3) & -4) / 4;
1754 }
c906108c 1755
64366f1c 1756 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1757 for (; argno < nargs; ++argno)
1758 {
c906108c 1759
c5aa993b 1760 arg = args[argno];
df407dfe 1761 type = check_typedef (value_type (arg));
c5aa993b 1762 len = TYPE_LENGTH (type);
c906108c
SS
1763
1764
64366f1c
EZ
1765 /* Float types should be passed in fpr's, as well as in the
1766 stack. */
c5aa993b
JM
1767 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1768 {
c906108c 1769
9f335945 1770 gdb_assert (len <= 8);
c906108c 1771
9f335945
KB
1772 regcache_cooked_write (regcache,
1773 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1774 value_contents (arg));
c5aa993b
JM
1775 ++f_argno;
1776 }
c906108c 1777
50fd1280 1778 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
c5aa993b
JM
1779 ii += ((len + 3) & -4) / 4;
1780 }
c906108c 1781 }
c906108c 1782
69517000 1783 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1784 be set _before_ the corresponding stack space is used. On AIX,
1785 this even applies when the target has been completely stopped!
1786 Not doing this can lead to conflicts with the kernel which thinks
1787 that it still has control over this not-yet-allocated stack
1788 region. */
33a7c2fc
AC
1789 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1790
7aea86e6 1791 /* Set back chain properly. */
8ba0209f
AM
1792 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1793 write_memory (sp, tmp_buffer, wordsize);
7aea86e6 1794
e56a0ecc
AC
1795 /* Point the inferior function call's return address at the dummy's
1796 breakpoint. */
1797 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1798
794a477a
AC
1799 /* Set the TOC register, get the value from the objfile reader
1800 which, in turn, gets it from the VMAP table. */
1801 if (rs6000_find_toc_address_hook != NULL)
1802 {
1803 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1804 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1805 }
1806
56be3814 1807 target_store_registers (regcache, -1);
c906108c
SS
1808 return sp;
1809}
c906108c 1810
d217aaed
MK
1811static enum return_value_convention
1812rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1813 struct regcache *regcache, gdb_byte *readbuf,
1814 const gdb_byte *writebuf)
c906108c 1815{
ace1378a 1816 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
d217aaed 1817 gdb_byte buf[8];
c906108c 1818
383f0f5b
JB
1819 /* The calling convention this function implements assumes the
1820 processor has floating-point registers. We shouldn't be using it
d217aaed 1821 on PowerPC variants that lack them. */
383f0f5b
JB
1822 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1823
d217aaed
MK
1824 /* AltiVec extension: Functions that declare a vector data type as a
1825 return value place that return value in VR2. */
1826 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1827 && TYPE_LENGTH (valtype) == 16)
c5aa993b 1828 {
d217aaed
MK
1829 if (readbuf)
1830 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1831 if (writebuf)
1832 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
c906108c 1833
d217aaed 1834 return RETURN_VALUE_REGISTER_CONVENTION;
c5aa993b 1835 }
d217aaed
MK
1836
1837 /* If the called subprogram returns an aggregate, there exists an
1838 implicit first argument, whose value is the address of a caller-
1839 allocated buffer into which the callee is assumed to store its
1840 return value. All explicit parameters are appropriately
1841 relabeled. */
1842 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1843 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1844 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1845 return RETURN_VALUE_STRUCT_CONVENTION;
1846
1847 /* Scalar floating-point values are returned in FPR1 for float or
1848 double, and in FPR1:FPR2 for quadword precision. Fortran
1849 complex*8 and complex*16 are returned in FPR1:FPR2, and
1850 complex*32 is returned in FPR1:FPR4. */
1851 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1852 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1853 {
1854 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1855 gdb_byte regval[8];
1856
1857 /* FIXME: kettenis/2007-01-01: Add support for quadword
1858 precision and complex. */
1859
1860 if (readbuf)
1861 {
1862 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1863 convert_typed_floating (regval, regtype, readbuf, valtype);
1864 }
1865 if (writebuf)
1866 {
1867 convert_typed_floating (writebuf, valtype, regval, regtype);
1868 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1869 }
1870
1871 return RETURN_VALUE_REGISTER_CONVENTION;
1872 }
1873
1874 /* Values of the types int, long, short, pointer, and char (length
1875 is less than or equal to four bytes), as well as bit values of
1876 lengths less than or equal to 32 bits, must be returned right
1877 justified in GPR3 with signed values sign extended and unsigned
1878 values zero extended, as necessary. */
1879 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
ace1378a 1880 {
d217aaed
MK
1881 if (readbuf)
1882 {
1883 ULONGEST regval;
1884
1885 /* For reading we don't have to worry about sign extension. */
1886 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1887 &regval);
1888 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1889 }
1890 if (writebuf)
1891 {
1892 /* For writing, use unpack_long since that should handle any
1893 required sign extension. */
1894 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1895 unpack_long (valtype, writebuf));
1896 }
1897
1898 return RETURN_VALUE_REGISTER_CONVENTION;
ace1378a 1899 }
d217aaed
MK
1900
1901 /* Eight-byte non-floating-point scalar values must be returned in
1902 GPR3:GPR4. */
1903
1904 if (TYPE_LENGTH (valtype) == 8)
c5aa993b 1905 {
d217aaed
MK
1906 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
1907 gdb_assert (tdep->wordsize == 4);
1908
1909 if (readbuf)
1910 {
1911 gdb_byte regval[8];
1912
1913 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
1914 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1915 regval + 4);
1916 memcpy (readbuf, regval, 8);
1917 }
1918 if (writebuf)
1919 {
1920 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1921 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1922 writebuf + 4);
1923 }
1924
1925 return RETURN_VALUE_REGISTER_CONVENTION;
c906108c 1926 }
d217aaed
MK
1927
1928 return RETURN_VALUE_STRUCT_CONVENTION;
c906108c
SS
1929}
1930
977adac5
ND
1931/* Return whether handle_inferior_event() should proceed through code
1932 starting at PC in function NAME when stepping.
1933
1934 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1935 handle memory references that are too distant to fit in instructions
1936 generated by the compiler. For example, if 'foo' in the following
1937 instruction:
1938
1939 lwz r9,foo(r2)
1940
1941 is greater than 32767, the linker might replace the lwz with a branch to
1942 somewhere in @FIX1 that does the load in 2 instructions and then branches
1943 back to where execution should continue.
1944
1945 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
1946 Unfortunately, the linker uses the "b" instruction for the
1947 branches, meaning that the link register doesn't get set.
1948 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 1949
e76f05fa
UW
1950 Instead, use the gdbarch_skip_trampoline_code and
1951 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2ec664f5 1952 @FIX code. */
977adac5
ND
1953
1954int
1955rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1956{
1957 return name && !strncmp (name, "@FIX", 4);
1958}
1959
1960/* Skip code that the user doesn't want to see when stepping:
1961
1962 1. Indirect function calls use a piece of trampoline code to do context
1963 switching, i.e. to set the new TOC table. Skip such code if we are on
1964 its first instruction (as when we have single-stepped to here).
1965
1966 2. Skip shared library trampoline code (which is different from
c906108c 1967 indirect function call trampolines).
977adac5
ND
1968
1969 3. Skip bigtoc fixup code.
1970
c906108c 1971 Result is desired PC to step until, or NULL if we are not in
977adac5 1972 code that should be skipped. */
c906108c
SS
1973
1974CORE_ADDR
52f729a7 1975rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 1976{
52f0bd74 1977 unsigned int ii, op;
977adac5 1978 int rel;
c906108c 1979 CORE_ADDR solib_target_pc;
977adac5 1980 struct minimal_symbol *msymbol;
c906108c 1981
c5aa993b
JM
1982 static unsigned trampoline_code[] =
1983 {
1984 0x800b0000, /* l r0,0x0(r11) */
1985 0x90410014, /* st r2,0x14(r1) */
1986 0x7c0903a6, /* mtctr r0 */
1987 0x804b0004, /* l r2,0x4(r11) */
1988 0x816b0008, /* l r11,0x8(r11) */
1989 0x4e800420, /* bctr */
1990 0x4e800020, /* br */
1991 0
c906108c
SS
1992 };
1993
977adac5
ND
1994 /* Check for bigtoc fixup code. */
1995 msymbol = lookup_minimal_symbol_by_pc (pc);
2ec664f5
MS
1996 if (msymbol
1997 && rs6000_in_solib_return_trampoline (pc,
1998 DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1999 {
2000 /* Double-check that the third instruction from PC is relative "b". */
2001 op = read_memory_integer (pc + 8, 4);
2002 if ((op & 0xfc000003) == 0x48000000)
2003 {
2004 /* Extract bits 6-29 as a signed 24-bit relative word address and
2005 add it to the containing PC. */
2006 rel = ((int)(op << 6) >> 6);
2007 return pc + 8 + rel;
2008 }
2009 }
2010
c906108c 2011 /* If pc is in a shared library trampoline, return its target. */
52f729a7 2012 solib_target_pc = find_solib_trampoline_target (frame, pc);
c906108c
SS
2013 if (solib_target_pc)
2014 return solib_target_pc;
2015
c5aa993b
JM
2016 for (ii = 0; trampoline_code[ii]; ++ii)
2017 {
2018 op = read_memory_integer (pc + (ii * 4), 4);
2019 if (op != trampoline_code[ii])
2020 return 0;
2021 }
52f729a7 2022 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */
21283beb 2023 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
2024 return pc;
2025}
2026
7a78ae4e 2027/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 2028 isn't available with that word size, return 0. */
7a78ae4e
ND
2029
2030static int
2031regsize (const struct reg *reg, int wordsize)
2032{
2033 return wordsize == 8 ? reg->sz64 : reg->sz32;
2034}
2035
2036/* Return the name of register number N, or null if no such register exists
64366f1c 2037 in the current architecture. */
7a78ae4e 2038
fa88f677 2039static const char *
7a78ae4e
ND
2040rs6000_register_name (int n)
2041{
21283beb 2042 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
2043 const struct reg *reg = tdep->regs + n;
2044
2045 if (!regsize (reg, tdep->wordsize))
2046 return NULL;
2047 return reg->name;
2048}
2049
7a78ae4e
ND
2050/* Return the GDB type object for the "standard" data type
2051 of data in register N. */
2052
2053static struct type *
691d145a 2054rs6000_register_type (struct gdbarch *gdbarch, int n)
7a78ae4e 2055{
691d145a 2056 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e
ND
2057 const struct reg *reg = tdep->regs + n;
2058
1fcc0bb8
EZ
2059 if (reg->fpr)
2060 return builtin_type_double;
2061 else
2062 {
2063 int size = regsize (reg, tdep->wordsize);
2064 switch (size)
2065 {
449a5da4
AC
2066 case 0:
2067 return builtin_type_int0;
2068 case 4:
ed6edd9b 2069 return builtin_type_uint32;
1fcc0bb8 2070 case 8:
c8001721
EZ
2071 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
2072 return builtin_type_vec64;
2073 else
ed6edd9b 2074 return builtin_type_uint64;
1fcc0bb8
EZ
2075 break;
2076 case 16:
08cf96df 2077 return builtin_type_vec128;
1fcc0bb8
EZ
2078 break;
2079 default:
e2e0b3e5 2080 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
449a5da4 2081 n, size);
1fcc0bb8
EZ
2082 }
2083 }
7a78ae4e
ND
2084}
2085
c44ca51c
AC
2086/* Is REGNUM a member of REGGROUP? */
2087static int
2088rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2089 struct reggroup *group)
2090{
2091 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2092 int float_p;
2093 int vector_p;
2094 int general_p;
2095
c9f4d572
UW
2096 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
2097 || *gdbarch_register_name (current_gdbarch, regnum) == '\0')
c44ca51c
AC
2098 return 0;
2099 if (group == all_reggroup)
2100 return 1;
2101
2102 float_p = (regnum == tdep->ppc_fpscr_regnum
2103 || (regnum >= tdep->ppc_fp0_regnum
2104 && regnum < tdep->ppc_fp0_regnum + 32));
2105 if (group == float_reggroup)
2106 return float_p;
2107
826d5376
PG
2108 vector_p = ((tdep->ppc_vr0_regnum >= 0
2109 && regnum >= tdep->ppc_vr0_regnum
c44ca51c 2110 && regnum < tdep->ppc_vr0_regnum + 32)
826d5376
PG
2111 || (tdep->ppc_ev0_regnum >= 0
2112 && regnum >= tdep->ppc_ev0_regnum
c44ca51c 2113 && regnum < tdep->ppc_ev0_regnum + 32)
3bf49e1b 2114 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
c44ca51c
AC
2115 || regnum == tdep->ppc_vrsave_regnum
2116 || regnum == tdep->ppc_acc_regnum
2117 || regnum == tdep->ppc_spefscr_regnum);
2118 if (group == vector_reggroup)
2119 return vector_p;
2120
2121 /* Note that PS aka MSR isn't included - it's a system register (and
2122 besides, due to GCC's CFI foobar you do not want to restore
2123 it). */
2124 general_p = ((regnum >= tdep->ppc_gp0_regnum
2125 && regnum < tdep->ppc_gp0_regnum + 32)
2126 || regnum == tdep->ppc_toc_regnum
2127 || regnum == tdep->ppc_cr_regnum
2128 || regnum == tdep->ppc_lr_regnum
2129 || regnum == tdep->ppc_ctr_regnum
2130 || regnum == tdep->ppc_xer_regnum
2131 || regnum == PC_REGNUM);
2132 if (group == general_reggroup)
2133 return general_p;
2134
2135 if (group == save_reggroup || group == restore_reggroup)
2136 return general_p || vector_p || float_p;
2137
2138 return 0;
2139}
2140
691d145a 2141/* The register format for RS/6000 floating point registers is always
64366f1c 2142 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2143
2144static int
691d145a 2145rs6000_convert_register_p (int regnum, struct type *type)
7a78ae4e 2146{
691d145a
JB
2147 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2148
2149 return (reg->fpr
2150 && TYPE_CODE (type) == TYPE_CODE_FLT
2151 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
7a78ae4e
ND
2152}
2153
7a78ae4e 2154static void
691d145a
JB
2155rs6000_register_to_value (struct frame_info *frame,
2156 int regnum,
2157 struct type *type,
50fd1280 2158 gdb_byte *to)
7a78ae4e 2159{
691d145a 2160 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 2161 gdb_byte from[MAX_REGISTER_SIZE];
691d145a
JB
2162
2163 gdb_assert (reg->fpr);
2164 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 2165
691d145a
JB
2166 get_frame_register (frame, regnum, from);
2167 convert_typed_floating (from, builtin_type_double, to, type);
2168}
7a292a7a 2169
7a78ae4e 2170static void
691d145a
JB
2171rs6000_value_to_register (struct frame_info *frame,
2172 int regnum,
2173 struct type *type,
50fd1280 2174 const gdb_byte *from)
7a78ae4e 2175{
691d145a 2176 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 2177 gdb_byte to[MAX_REGISTER_SIZE];
691d145a
JB
2178
2179 gdb_assert (reg->fpr);
2180 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2181
2182 convert_typed_floating (from, type, to, builtin_type_double);
2183 put_frame_register (frame, regnum, to);
7a78ae4e 2184}
c906108c 2185
6ced10dd
JB
2186/* Move SPE vector register values between a 64-bit buffer and the two
2187 32-bit raw register halves in a regcache. This function handles
2188 both splitting a 64-bit value into two 32-bit halves, and joining
2189 two halves into a whole 64-bit value, depending on the function
2190 passed as the MOVE argument.
2191
2192 EV_REG must be the number of an SPE evN vector register --- a
2193 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2194 64-bit buffer.
2195
2196 Call MOVE once for each 32-bit half of that register, passing
2197 REGCACHE, the number of the raw register corresponding to that
2198 half, and the address of the appropriate half of BUFFER.
2199
2200 For example, passing 'regcache_raw_read' as the MOVE function will
2201 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2202 'regcache_raw_supply' will supply the contents of BUFFER to the
2203 appropriate pair of raw registers in REGCACHE.
2204
2205 You may need to cast away some 'const' qualifiers when passing
2206 MOVE, since this function can't tell at compile-time which of
2207 REGCACHE or BUFFER is acting as the source of the data. If C had
2208 co-variant type qualifiers, ... */
2209static void
2210e500_move_ev_register (void (*move) (struct regcache *regcache,
50fd1280 2211 int regnum, gdb_byte *buf),
6ced10dd 2212 struct regcache *regcache, int ev_reg,
50fd1280 2213 gdb_byte *buffer)
6ced10dd
JB
2214{
2215 struct gdbarch *arch = get_regcache_arch (regcache);
2216 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2217 int reg_index;
50fd1280 2218 gdb_byte *byte_buffer = buffer;
6ced10dd
JB
2219
2220 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2221 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2222
2223 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2224
4c6b5505 2225 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
6ced10dd
JB
2226 {
2227 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2228 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2229 }
2230 else
2231 {
2232 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2233 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2234 }
2235}
2236
c8001721
EZ
2237static void
2238e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2239 int reg_nr, gdb_byte *buffer)
c8001721 2240{
6ced10dd 2241 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2242 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2243
6ced10dd
JB
2244 gdb_assert (regcache_arch == gdbarch);
2245
2246 if (tdep->ppc_ev0_regnum <= reg_nr
2247 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2248 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2249 else
a44bddec 2250 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2251 _("e500_pseudo_register_read: "
2252 "called on unexpected register '%s' (%d)"),
a44bddec 2253 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2254}
2255
2256static void
2257e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2258 int reg_nr, const gdb_byte *buffer)
c8001721 2259{
6ced10dd 2260 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2261 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2262
6ced10dd
JB
2263 gdb_assert (regcache_arch == gdbarch);
2264
2265 if (tdep->ppc_ev0_regnum <= reg_nr
2266 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
50fd1280 2267 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
6ced10dd 2268 regcache_raw_write,
50fd1280 2269 regcache, reg_nr, (gdb_byte *) buffer);
6ced10dd 2270 else
a44bddec 2271 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2272 _("e500_pseudo_register_read: "
2273 "called on unexpected register '%s' (%d)"),
a44bddec 2274 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2275}
2276
2277/* The E500 needs a custom reggroup function: it has anonymous raw
2278 registers, and default_register_reggroup_p assumes that anonymous
2279 registers are not members of any reggroup. */
2280static int
2281e500_register_reggroup_p (struct gdbarch *gdbarch,
2282 int regnum,
2283 struct reggroup *group)
2284{
2285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2286
2287 /* The save and restore register groups need to include the
2288 upper-half registers, even though they're anonymous. */
2289 if ((group == save_reggroup
2290 || group == restore_reggroup)
2291 && (tdep->ppc_ev0_upper_regnum <= regnum
2292 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2293 return 1;
2294
2295 /* In all other regards, the default reggroup definition is fine. */
2296 return default_register_reggroup_p (gdbarch, regnum, group);
c8001721
EZ
2297}
2298
18ed0c4e 2299/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2300static int
18ed0c4e 2301rs6000_stab_reg_to_regnum (int num)
c8001721 2302{
9f744501 2303 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c8001721 2304
9f744501
JB
2305 if (0 <= num && num <= 31)
2306 return tdep->ppc_gp0_regnum + num;
2307 else if (32 <= num && num <= 63)
383f0f5b
JB
2308 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2309 specifies registers the architecture doesn't have? Our
2310 callers don't check the value we return. */
366f009f 2311 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2312 else if (77 <= num && num <= 108)
2313 return tdep->ppc_vr0_regnum + (num - 77);
9f744501
JB
2314 else if (1200 <= num && num < 1200 + 32)
2315 return tdep->ppc_ev0_regnum + (num - 1200);
2316 else
2317 switch (num)
2318 {
2319 case 64:
2320 return tdep->ppc_mq_regnum;
2321 case 65:
2322 return tdep->ppc_lr_regnum;
2323 case 66:
2324 return tdep->ppc_ctr_regnum;
2325 case 76:
2326 return tdep->ppc_xer_regnum;
2327 case 109:
2328 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2329 case 110:
2330 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2331 case 111:
18ed0c4e 2332 return tdep->ppc_acc_regnum;
867e2dc5 2333 case 112:
18ed0c4e 2334 return tdep->ppc_spefscr_regnum;
9f744501
JB
2335 default:
2336 return num;
2337 }
18ed0c4e 2338}
9f744501 2339
9f744501 2340
18ed0c4e
JB
2341/* Convert a Dwarf 2 register number to a GDB register number. */
2342static int
2343rs6000_dwarf2_reg_to_regnum (int num)
2344{
2345 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
9f744501 2346
18ed0c4e
JB
2347 if (0 <= num && num <= 31)
2348 return tdep->ppc_gp0_regnum + num;
2349 else if (32 <= num && num <= 63)
2350 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2351 specifies registers the architecture doesn't have? Our
2352 callers don't check the value we return. */
2353 return tdep->ppc_fp0_regnum + (num - 32);
2354 else if (1124 <= num && num < 1124 + 32)
2355 return tdep->ppc_vr0_regnum + (num - 1124);
2356 else if (1200 <= num && num < 1200 + 32)
2357 return tdep->ppc_ev0_regnum + (num - 1200);
2358 else
2359 switch (num)
2360 {
a489f789
AS
2361 case 64:
2362 return tdep->ppc_cr_regnum;
18ed0c4e
JB
2363 case 67:
2364 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2365 case 99:
2366 return tdep->ppc_acc_regnum;
2367 case 100:
2368 return tdep->ppc_mq_regnum;
2369 case 101:
2370 return tdep->ppc_xer_regnum;
2371 case 108:
2372 return tdep->ppc_lr_regnum;
2373 case 109:
2374 return tdep->ppc_ctr_regnum;
2375 case 356:
2376 return tdep->ppc_vrsave_regnum;
2377 case 612:
2378 return tdep->ppc_spefscr_regnum;
2379 default:
2380 return num;
2381 }
2188cbdd
EZ
2382}
2383
4fc771b8
DJ
2384/* Translate a .eh_frame register to DWARF register, or adjust a
2385 .debug_frame register. */
2386
2387static int
2388rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2389{
2390 /* GCC releases before 3.4 use GCC internal register numbering in
2391 .debug_frame (and .debug_info, et cetera). The numbering is
2392 different from the standard SysV numbering for everything except
2393 for GPRs and FPRs. We can not detect this problem in most cases
2394 - to get accurate debug info for variables living in lr, ctr, v0,
2395 et cetera, use a newer version of GCC. But we must detect
2396 one important case - lr is in column 65 in .debug_frame output,
2397 instead of 108.
2398
2399 GCC 3.4, and the "hammer" branch, have a related problem. They
2400 record lr register saves in .debug_frame as 108, but still record
2401 the return column as 65. We fix that up too.
2402
2403 We can do this because 65 is assigned to fpsr, and GCC never
2404 generates debug info referring to it. To add support for
2405 handwritten debug info that restores fpsr, we would need to add a
2406 producer version check to this. */
2407 if (!eh_frame_p)
2408 {
2409 if (num == 65)
2410 return 108;
2411 else
2412 return num;
2413 }
2414
2415 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2416 internal register numbering; translate that to the standard DWARF2
2417 register numbering. */
2418 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2419 return num;
2420 else if (68 <= num && num <= 75) /* cr0-cr8 */
2421 return num - 68 + 86;
2422 else if (77 <= num && num <= 108) /* vr0-vr31 */
2423 return num - 77 + 1124;
2424 else
2425 switch (num)
2426 {
2427 case 64: /* mq */
2428 return 100;
2429 case 65: /* lr */
2430 return 108;
2431 case 66: /* ctr */
2432 return 109;
2433 case 76: /* xer */
2434 return 101;
2435 case 109: /* vrsave */
2436 return 356;
2437 case 110: /* vscr */
2438 return 67;
2439 case 111: /* spe_acc */
2440 return 99;
2441 case 112: /* spefscr */
2442 return 612;
2443 default:
2444 return num;
2445 }
2446}
c906108c 2447\f
e2d0e7eb 2448/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2449
2450 Usually a function pointer's representation is simply the address
2451 of the function. On the RS/6000 however, a function pointer is
8ba0209f 2452 represented by a pointer to an OPD entry. This OPD entry contains
7a78ae4e
ND
2453 three words, the first word is the address of the function, the
2454 second word is the TOC pointer (r2), and the third word is the
2455 static chain value. Throughout GDB it is currently assumed that a
2456 function pointer contains the address of the function, which is not
2457 easy to fix. In addition, the conversion of a function address to
8ba0209f 2458 a function pointer would require allocation of an OPD entry in the
7a78ae4e
ND
2459 inferior's memory space, with all its drawbacks. To be able to
2460 call C++ virtual methods in the inferior (which are called via
f517ea4e 2461 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2462 function address from a function pointer. */
2463
f517ea4e
PS
2464/* Return real function address if ADDR (a function pointer) is in the data
2465 space and is therefore a special function pointer. */
c906108c 2466
b9362cc7 2467static CORE_ADDR
e2d0e7eb
AC
2468rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2469 CORE_ADDR addr,
2470 struct target_ops *targ)
c906108c
SS
2471{
2472 struct obj_section *s;
2473
2474 s = find_pc_section (addr);
2475 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2476 return addr;
c906108c 2477
7a78ae4e 2478 /* ADDR is in the data space, so it's a special function pointer. */
7f68ac27 2479 return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize);
c906108c 2480}
c906108c 2481\f
c5aa993b 2482
7a78ae4e 2483/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2484
2485
7a78ae4e
ND
2486/* The arrays here called registers_MUMBLE hold information about available
2487 registers.
c906108c
SS
2488
2489 For each family of PPC variants, I've tried to isolate out the
2490 common registers and put them up front, so that as long as you get
2491 the general family right, GDB will correctly identify the registers
2492 common to that family. The common register sets are:
2493
2494 For the 60x family: hid0 hid1 iabr dabr pir
2495
2496 For the 505 and 860 family: eie eid nri
2497
2498 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2499 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2500 pbu1 pbl2 pbu2
c906108c
SS
2501
2502 Most of these register groups aren't anything formal. I arrived at
2503 them by looking at the registers that occurred in more than one
6f5987a6
KB
2504 processor.
2505
2506 Note: kevinb/2002-04-30: Support for the fpscr register was added
2507 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2508 for Power. For PowerPC, slot 70 was unused and was already in the
2509 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2510 slot 70 was being used for "mq", so the next available slot (71)
2511 was chosen. It would have been nice to be able to make the
2512 register numbers the same across processor cores, but this wasn't
2513 possible without either 1) renumbering some registers for some
2514 processors or 2) assigning fpscr to a really high slot that's
2515 larger than any current register number. Doing (1) is bad because
2516 existing stubs would break. Doing (2) is undesirable because it
2517 would introduce a really large gap between fpscr and the rest of
2518 the registers for most processors. */
7a78ae4e 2519
64366f1c 2520/* Convenience macros for populating register arrays. */
7a78ae4e 2521
64366f1c 2522/* Within another macro, convert S to a string. */
7a78ae4e
ND
2523
2524#define STR(s) #s
2525
2526/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2527 and 64 bits on 64-bit systems. */
13ac140c 2528#define R(name) { STR(name), 4, 8, 0, 0, -1 }
7a78ae4e
ND
2529
2530/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2531 systems. */
13ac140c 2532#define R4(name) { STR(name), 4, 4, 0, 0, -1 }
7a78ae4e
ND
2533
2534/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2535 systems. */
13ac140c 2536#define R8(name) { STR(name), 8, 8, 0, 0, -1 }
7a78ae4e 2537
1fcc0bb8 2538/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2539 systems. */
13ac140c 2540#define R16(name) { STR(name), 16, 16, 0, 0, -1 }
1fcc0bb8 2541
64366f1c 2542/* Return a struct reg defining floating-point register NAME. */
13ac140c 2543#define F(name) { STR(name), 8, 8, 1, 0, -1 }
489461e2 2544
6ced10dd
JB
2545/* Return a struct reg defining a pseudo register NAME that is 64 bits
2546 long on all systems. */
2547#define P8(name) { STR(name), 8, 8, 0, 1, -1 }
7a78ae4e
ND
2548
2549/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2550 systems and that doesn't exist on 64-bit systems. */
13ac140c 2551#define R32(name) { STR(name), 4, 0, 0, 0, -1 }
7a78ae4e
ND
2552
2553/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2554 systems and that doesn't exist on 32-bit systems. */
13ac140c 2555#define R64(name) { STR(name), 0, 8, 0, 0, -1 }
7a78ae4e 2556
64366f1c 2557/* Return a struct reg placeholder for a register that doesn't exist. */
13ac140c 2558#define R0 { 0, 0, 0, 0, 0, -1 }
7a78ae4e 2559
6ced10dd
JB
2560/* Return a struct reg defining an anonymous raw register that's 32
2561 bits on all systems. */
2562#define A4 { 0, 4, 4, 0, 0, -1 }
2563
13ac140c
JB
2564/* Return a struct reg defining an SPR named NAME that is 32 bits on
2565 32-bit systems and 64 bits on 64-bit systems. */
2566#define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2567
2568/* Return a struct reg defining an SPR named NAME that is 32 bits on
2569 all systems. */
2570#define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2571
2572/* Return a struct reg defining an SPR named NAME that is 32 bits on
2573 all systems, and whose SPR number is NUMBER. */
2574#define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2575
2576/* Return a struct reg defining an SPR named NAME that's 64 bits on
2577 64-bit systems and that doesn't exist on 32-bit systems. */
2578#define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2579
7a78ae4e
ND
2580/* UISA registers common across all architectures, including POWER. */
2581
2582#define COMMON_UISA_REGS \
2583 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2584 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2585 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2586 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2587 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2588 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2589 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2590 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2591 /* 64 */ R(pc), R(ps)
2592
2593/* UISA-level SPRs for PowerPC. */
2594#define PPC_UISA_SPRS \
13ac140c 2595 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
7a78ae4e 2596
c8001721
EZ
2597/* UISA-level SPRs for PowerPC without floating point support. */
2598#define PPC_UISA_NOFP_SPRS \
13ac140c 2599 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
c8001721 2600
7a78ae4e
ND
2601/* Segment registers, for PowerPC. */
2602#define PPC_SEGMENT_REGS \
2603 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2604 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2605 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2606 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2607
2608/* OEA SPRs for PowerPC. */
2609#define PPC_OEA_SPRS \
13ac140c
JB
2610 /* 87 */ S4(pvr), \
2611 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2612 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2613 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2614 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2615 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2616 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2617 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2618 /* 116 */ S4(dec), S(dabr), S4(ear)
7a78ae4e 2619
64366f1c 2620/* AltiVec registers. */
1fcc0bb8
EZ
2621#define PPC_ALTIVEC_REGS \
2622 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2623 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2624 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2625 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2626 /*151*/R4(vscr), R4(vrsave)
2627
c8001721 2628
6ced10dd
JB
2629/* On machines supporting the SPE APU, the general-purpose registers
2630 are 64 bits long. There are SIMD vector instructions to treat them
2631 as pairs of floats, but the rest of the instruction set treats them
2632 as 32-bit registers, and only operates on their lower halves.
2633
2634 In the GDB regcache, we treat their high and low halves as separate
2635 registers. The low halves we present as the general-purpose
2636 registers, and then we have pseudo-registers that stitch together
2637 the upper and lower halves and present them as pseudo-registers. */
2638
2639/* SPE GPR lower halves --- raw registers. */
2640#define PPC_SPE_GP_REGS \
2641 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2642 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2643 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2644 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2645
2646/* SPE GPR upper halves --- anonymous raw registers. */
2647#define PPC_SPE_UPPER_GP_REGS \
2648 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2649 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2650 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2651 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2652
2653/* SPE GPR vector registers --- pseudo registers based on underlying
2654 gprs and the anonymous upper half raw registers. */
2655#define PPC_EV_PSEUDO_REGS \
2656/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2657/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2658/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2659/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
c8001721 2660
7a78ae4e 2661/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2662 user-level SPR's. */
7a78ae4e 2663static const struct reg registers_power[] =
c906108c 2664{
7a78ae4e 2665 COMMON_UISA_REGS,
13ac140c 2666 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
e3f36dbd 2667 /* 71 */ R4(fpscr)
c906108c
SS
2668};
2669
7a78ae4e 2670/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2671 view of the PowerPC. */
7a78ae4e 2672static const struct reg registers_powerpc[] =
c906108c 2673{
7a78ae4e 2674 COMMON_UISA_REGS,
1fcc0bb8
EZ
2675 PPC_UISA_SPRS,
2676 PPC_ALTIVEC_REGS
c906108c
SS
2677};
2678
13ac140c
JB
2679/* IBM PowerPC 403.
2680
2681 Some notes about the "tcr" special-purpose register:
2682 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2683 403's programmable interval timer, fixed interval timer, and
2684 watchdog timer.
2685 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2686 watchdog timer, and nothing else.
2687
2688 Some of the fields are similar between the two, but they're not
2689 compatible with each other. Since the two variants have different
2690 registers, with different numbers, but the same name, we can't
2691 splice the register name to get the SPR number. */
7a78ae4e 2692static const struct reg registers_403[] =
c5aa993b 2693{
7a78ae4e
ND
2694 COMMON_UISA_REGS,
2695 PPC_UISA_SPRS,
2696 PPC_SEGMENT_REGS,
2697 PPC_OEA_SPRS,
13ac140c
JB
2698 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2699 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2700 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2701 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2702 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2703 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
c906108c
SS
2704};
2705
13ac140c
JB
2706/* IBM PowerPC 403GC.
2707 See the comments about 'tcr' for the 403, above. */
7a78ae4e 2708static const struct reg registers_403GC[] =
c5aa993b 2709{
7a78ae4e
ND
2710 COMMON_UISA_REGS,
2711 PPC_UISA_SPRS,
2712 PPC_SEGMENT_REGS,
2713 PPC_OEA_SPRS,
13ac140c
JB
2714 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2715 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2716 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2717 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2718 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2719 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2720 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2721 /* 147 */ S(tbhu), S(tblu)
c906108c
SS
2722};
2723
64366f1c 2724/* Motorola PowerPC 505. */
7a78ae4e 2725static const struct reg registers_505[] =
c5aa993b 2726{
7a78ae4e
ND
2727 COMMON_UISA_REGS,
2728 PPC_UISA_SPRS,
2729 PPC_SEGMENT_REGS,
2730 PPC_OEA_SPRS,
13ac140c 2731 /* 119 */ S(eie), S(eid), S(nri)
c906108c
SS
2732};
2733
64366f1c 2734/* Motorola PowerPC 860 or 850. */
7a78ae4e 2735static const struct reg registers_860[] =
c5aa993b 2736{
7a78ae4e
ND
2737 COMMON_UISA_REGS,
2738 PPC_UISA_SPRS,
2739 PPC_SEGMENT_REGS,
2740 PPC_OEA_SPRS,
13ac140c
JB
2741 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2742 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2743 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2744 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2745 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2746 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2747 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2748 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2749 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2750 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2751 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2752 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
c906108c
SS
2753};
2754
7a78ae4e
ND
2755/* Motorola PowerPC 601. Note that the 601 has different register numbers
2756 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2757 register is the stub's problem. */
7a78ae4e 2758static const struct reg registers_601[] =
c5aa993b 2759{
7a78ae4e
ND
2760 COMMON_UISA_REGS,
2761 PPC_UISA_SPRS,
2762 PPC_SEGMENT_REGS,
2763 PPC_OEA_SPRS,
13ac140c
JB
2764 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2765 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
c906108c
SS
2766};
2767
13ac140c
JB
2768/* Motorola PowerPC 602.
2769 See the notes under the 403 about 'tcr'. */
7a78ae4e 2770static const struct reg registers_602[] =
c5aa993b 2771{
7a78ae4e
ND
2772 COMMON_UISA_REGS,
2773 PPC_UISA_SPRS,
2774 PPC_SEGMENT_REGS,
2775 PPC_OEA_SPRS,
13ac140c
JB
2776 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2777 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2778 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
c906108c
SS
2779};
2780
64366f1c 2781/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2782static const struct reg registers_603[] =
c5aa993b 2783{
7a78ae4e
ND
2784 COMMON_UISA_REGS,
2785 PPC_UISA_SPRS,
2786 PPC_SEGMENT_REGS,
2787 PPC_OEA_SPRS,
13ac140c
JB
2788 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2789 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2790 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
c906108c
SS
2791};
2792
64366f1c 2793/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2794static const struct reg registers_604[] =
c5aa993b 2795{
7a78ae4e
ND
2796 COMMON_UISA_REGS,
2797 PPC_UISA_SPRS,
2798 PPC_SEGMENT_REGS,
2799 PPC_OEA_SPRS,
13ac140c
JB
2800 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2801 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2802 /* 127 */ S(sia), S(sda)
c906108c
SS
2803};
2804
64366f1c 2805/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2806static const struct reg registers_750[] =
c5aa993b 2807{
7a78ae4e
ND
2808 COMMON_UISA_REGS,
2809 PPC_UISA_SPRS,
2810 PPC_SEGMENT_REGS,
2811 PPC_OEA_SPRS,
13ac140c
JB
2812 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2813 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2814 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2815 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2816 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2817 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
c906108c
SS
2818};
2819
2820
64366f1c 2821/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2822static const struct reg registers_7400[] =
2823{
2824 /* gpr0-gpr31, fpr0-fpr31 */
2825 COMMON_UISA_REGS,
13c7b1ca 2826 /* cr, lr, ctr, xer, fpscr */
1fcc0bb8
EZ
2827 PPC_UISA_SPRS,
2828 /* sr0-sr15 */
2829 PPC_SEGMENT_REGS,
2830 PPC_OEA_SPRS,
2831 /* vr0-vr31, vrsave, vscr */
2832 PPC_ALTIVEC_REGS
2833 /* FIXME? Add more registers? */
2834};
2835
c8001721
EZ
2836/* Motorola e500. */
2837static const struct reg registers_e500[] =
2838{
6ced10dd
JB
2839 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2840 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2841 /* 64 .. 65 */ R(pc), R(ps),
2842 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2843 /* 71 .. 72 */ R8(acc), S4(spefscr),
338ef23d
AC
2844 /* NOTE: Add new registers here the end of the raw register
2845 list and just before the first pseudo register. */
6ced10dd 2846 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
c8001721
EZ
2847};
2848
c906108c 2849/* Information about a particular processor variant. */
7a78ae4e 2850
c906108c 2851struct variant
c5aa993b
JM
2852 {
2853 /* Name of this variant. */
2854 char *name;
c906108c 2855
c5aa993b
JM
2856 /* English description of the variant. */
2857 char *description;
c906108c 2858
64366f1c 2859 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2860 enum bfd_architecture arch;
2861
64366f1c 2862 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2863 unsigned long mach;
2864
489461e2
EZ
2865 /* Number of real registers. */
2866 int nregs;
2867
2868 /* Number of pseudo registers. */
2869 int npregs;
2870
2871 /* Number of total registers (the sum of nregs and npregs). */
2872 int num_tot_regs;
2873
c5aa993b
JM
2874 /* Table of register names; registers[R] is the name of the register
2875 number R. */
7a78ae4e 2876 const struct reg *regs;
c5aa993b 2877 };
c906108c 2878
489461e2
EZ
2879#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2880
2881static int
2882num_registers (const struct reg *reg_list, int num_tot_regs)
2883{
2884 int i;
2885 int nregs = 0;
2886
2887 for (i = 0; i < num_tot_regs; i++)
2888 if (!reg_list[i].pseudo)
2889 nregs++;
2890
2891 return nregs;
2892}
2893
2894static int
2895num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2896{
2897 int i;
2898 int npregs = 0;
2899
2900 for (i = 0; i < num_tot_regs; i++)
2901 if (reg_list[i].pseudo)
2902 npregs ++;
2903
2904 return npregs;
2905}
c906108c 2906
c906108c
SS
2907/* Information in this table comes from the following web sites:
2908 IBM: http://www.chips.ibm.com:80/products/embedded/
2909 Motorola: http://www.mot.com/SPS/PowerPC/
2910
2911 I'm sure I've got some of the variant descriptions not quite right.
2912 Please report any inaccuracies you find to GDB's maintainer.
2913
2914 If you add entries to this table, please be sure to allow the new
2915 value as an argument to the --with-cpu flag, in configure.in. */
2916
489461e2 2917static struct variant variants[] =
c906108c 2918{
489461e2 2919
7a78ae4e 2920 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2921 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2922 registers_powerpc},
7a78ae4e 2923 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2924 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2925 registers_power},
7a78ae4e 2926 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2927 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2928 registers_403},
7a78ae4e 2929 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2930 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2931 registers_601},
7a78ae4e 2932 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2933 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2934 registers_602},
7a78ae4e 2935 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2936 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2937 registers_603},
7a78ae4e 2938 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2939 604, -1, -1, tot_num_registers (registers_604),
2940 registers_604},
7a78ae4e 2941 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2942 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2943 registers_403GC},
7a78ae4e 2944 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2945 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2946 registers_505},
7a78ae4e 2947 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2948 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2949 registers_860},
7a78ae4e 2950 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2951 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2952 registers_750},
1fcc0bb8 2953 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2954 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2955 registers_7400},
c8001721
EZ
2956 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2957 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2958 registers_e500},
7a78ae4e 2959
5d57ee30
KB
2960 /* 64-bit */
2961 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2962 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2963 registers_powerpc},
7a78ae4e 2964 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2965 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2966 registers_powerpc},
5d57ee30 2967 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2968 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2969 registers_powerpc},
7a78ae4e 2970 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2971 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2972 registers_powerpc},
5d57ee30 2973 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2974 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2975 registers_powerpc},
5d57ee30 2976 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2977 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2978 registers_powerpc},
5d57ee30 2979
64366f1c 2980 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2981 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2982 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2983 registers_power},
7a78ae4e 2984 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2985 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2986 registers_power},
7a78ae4e 2987 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2988 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2989 registers_power},
7a78ae4e 2990
489461e2 2991 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2992};
2993
64366f1c 2994/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2995
2996static void
2997init_variants (void)
2998{
2999 struct variant *v;
3000
3001 for (v = variants; v->name; v++)
3002 {
3003 if (v->nregs == -1)
3004 v->nregs = num_registers (v->regs, v->num_tot_regs);
3005 if (v->npregs == -1)
3006 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
3007 }
3008}
c906108c 3009
7a78ae4e 3010/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 3011 MACH. If no such variant exists, return null. */
c906108c 3012
7a78ae4e
ND
3013static const struct variant *
3014find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 3015{
7a78ae4e 3016 const struct variant *v;
c5aa993b 3017
7a78ae4e
ND
3018 for (v = variants; v->name; v++)
3019 if (arch == v->arch && mach == v->mach)
3020 return v;
c906108c 3021
7a78ae4e 3022 return NULL;
c906108c 3023}
9364a0ef
EZ
3024
3025static int
3026gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3027{
ee4f0f76
DJ
3028 if (!info->disassembler_options)
3029 info->disassembler_options = "any";
3030
4c6b5505 3031 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
9364a0ef
EZ
3032 return print_insn_big_powerpc (memaddr, info);
3033 else
3034 return print_insn_little_powerpc (memaddr, info);
3035}
7a78ae4e 3036\f
61a65099
KB
3037static CORE_ADDR
3038rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3039{
3040 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
3041}
3042
3043static struct frame_id
3044rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
3045{
3046 return frame_id_build (frame_unwind_register_unsigned (next_frame,
3047 SP_REGNUM),
3048 frame_pc_unwind (next_frame));
3049}
3050
3051struct rs6000_frame_cache
3052{
3053 CORE_ADDR base;
3054 CORE_ADDR initial_sp;
3055 struct trad_frame_saved_reg *saved_regs;
3056};
3057
3058static struct rs6000_frame_cache *
3059rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
3060{
3061 struct rs6000_frame_cache *cache;
3062 struct gdbarch *gdbarch = get_frame_arch (next_frame);
3063 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3064 struct rs6000_framedata fdata;
3065 int wordsize = tdep->wordsize;
e10b1c4c 3066 CORE_ADDR func, pc;
61a65099
KB
3067
3068 if ((*this_cache) != NULL)
3069 return (*this_cache);
3070 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3071 (*this_cache) = cache;
3072 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
3073
93d42b30 3074 func = frame_func_unwind (next_frame, NORMAL_FRAME);
e10b1c4c
DJ
3075 pc = frame_pc_unwind (next_frame);
3076 skip_prologue (func, pc, &fdata);
3077
3078 /* Figure out the parent's stack pointer. */
3079
3080 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3081 address of the current frame. Things might be easier if the
3082 ->frame pointed to the outer-most address of the frame. In
3083 the mean time, the address of the prev frame is used as the
3084 base address of this frame. */
3085 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3086
3087 /* If the function appears to be frameless, check a couple of likely
3088 indicators that we have simply failed to find the frame setup.
3089 Two common cases of this are missing symbols (i.e.
3090 frame_func_unwind returns the wrong address or 0), and assembly
3091 stubs which have a fast exit path but set up a frame on the slow
3092 path.
3093
3094 If the LR appears to return to this function, then presume that
3095 we have an ABI compliant frame that we failed to find. */
3096 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 3097 {
e10b1c4c
DJ
3098 CORE_ADDR saved_lr;
3099 int make_frame = 0;
3100
3101 saved_lr = frame_unwind_register_unsigned (next_frame,
3102 tdep->ppc_lr_regnum);
3103 if (func == 0 && saved_lr == pc)
3104 make_frame = 1;
3105 else if (func != 0)
3106 {
3107 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3108 if (func == saved_func)
3109 make_frame = 1;
3110 }
3111
3112 if (make_frame)
3113 {
3114 fdata.frameless = 0;
de6a76fd 3115 fdata.lr_offset = tdep->lr_frame_offset;
e10b1c4c 3116 }
61a65099 3117 }
e10b1c4c
DJ
3118
3119 if (!fdata.frameless)
3120 /* Frameless really means stackless. */
3121 cache->base = read_memory_addr (cache->base, wordsize);
3122
61a65099
KB
3123 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3124
3125 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3126 All fpr's from saved_fpr to fp31 are saved. */
3127
3128 if (fdata.saved_fpr >= 0)
3129 {
3130 int i;
3131 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
3132
3133 /* If skip_prologue says floating-point registers were saved,
3134 but the current architecture has no floating-point registers,
3135 then that's strange. But we have no indices to even record
3136 the addresses under, so we just ignore it. */
3137 if (ppc_floating_point_unit_p (gdbarch))
063715bf 3138 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
3139 {
3140 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3141 fpr_addr += 8;
3142 }
61a65099
KB
3143 }
3144
3145 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3146 All gpr's from saved_gpr to gpr31 are saved. */
3147
3148 if (fdata.saved_gpr >= 0)
3149 {
3150 int i;
3151 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 3152 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099
KB
3153 {
3154 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3155 gpr_addr += wordsize;
3156 }
3157 }
3158
3159 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3160 All vr's from saved_vr to vr31 are saved. */
3161 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3162 {
3163 if (fdata.saved_vr >= 0)
3164 {
3165 int i;
3166 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3167 for (i = fdata.saved_vr; i < 32; i++)
3168 {
3169 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3170 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3171 }
3172 }
3173 }
3174
3175 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3176 All vr's from saved_ev to ev31 are saved. ????? */
3177 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3178 {
3179 if (fdata.saved_ev >= 0)
3180 {
3181 int i;
3182 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
063715bf 3183 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
3184 {
3185 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3186 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3187 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3188 }
3189 }
3190 }
3191
3192 /* If != 0, fdata.cr_offset is the offset from the frame that
3193 holds the CR. */
3194 if (fdata.cr_offset != 0)
3195 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3196
3197 /* If != 0, fdata.lr_offset is the offset from the frame that
3198 holds the LR. */
3199 if (fdata.lr_offset != 0)
3200 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3201 /* The PC is found in the link register. */
3202 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3203
3204 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3205 holds the VRSAVE. */
3206 if (fdata.vrsave_offset != 0)
3207 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3208
3209 if (fdata.alloca_reg < 0)
3210 /* If no alloca register used, then fi->frame is the value of the
3211 %sp for this frame, and it is good enough. */
3212 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3213 else
3214 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3215 fdata.alloca_reg);
3216
3217 return cache;
3218}
3219
3220static void
3221rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3222 struct frame_id *this_id)
3223{
3224 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3225 this_cache);
93d42b30
DJ
3226 (*this_id) = frame_id_build (info->base,
3227 frame_func_unwind (next_frame, NORMAL_FRAME));
61a65099
KB
3228}
3229
3230static void
3231rs6000_frame_prev_register (struct frame_info *next_frame,
3232 void **this_cache,
3233 int regnum, int *optimizedp,
3234 enum lval_type *lvalp, CORE_ADDR *addrp,
50fd1280 3235 int *realnump, gdb_byte *valuep)
61a65099
KB
3236{
3237 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3238 this_cache);
1f67027d
AC
3239 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3240 optimizedp, lvalp, addrp, realnump, valuep);
61a65099
KB
3241}
3242
3243static const struct frame_unwind rs6000_frame_unwind =
3244{
3245 NORMAL_FRAME,
3246 rs6000_frame_this_id,
3247 rs6000_frame_prev_register
3248};
3249
3250static const struct frame_unwind *
3251rs6000_frame_sniffer (struct frame_info *next_frame)
3252{
3253 return &rs6000_frame_unwind;
3254}
3255
3256\f
3257
3258static CORE_ADDR
3259rs6000_frame_base_address (struct frame_info *next_frame,
3260 void **this_cache)
3261{
3262 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3263 this_cache);
3264 return info->initial_sp;
3265}
3266
3267static const struct frame_base rs6000_frame_base = {
3268 &rs6000_frame_unwind,
3269 rs6000_frame_base_address,
3270 rs6000_frame_base_address,
3271 rs6000_frame_base_address
3272};
3273
3274static const struct frame_base *
3275rs6000_frame_base_sniffer (struct frame_info *next_frame)
3276{
3277 return &rs6000_frame_base;
3278}
3279
7a78ae4e
ND
3280/* Initialize the current architecture based on INFO. If possible, re-use an
3281 architecture from ARCHES, which is a list of architectures already created
3282 during this debugging session.
c906108c 3283
7a78ae4e 3284 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 3285 a binary file. */
c906108c 3286
7a78ae4e
ND
3287static struct gdbarch *
3288rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3289{
3290 struct gdbarch *gdbarch;
3291 struct gdbarch_tdep *tdep;
708ff411 3292 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
7a78ae4e
ND
3293 struct reg *regs;
3294 const struct variant *v;
3295 enum bfd_architecture arch;
3296 unsigned long mach;
3297 bfd abfd;
7b112f9c 3298 int sysv_abi;
5bf1c677 3299 asection *sect;
7a78ae4e 3300
9aa1e687 3301 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
3302 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3303
9aa1e687
KB
3304 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3305 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3306
3307 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3308
e712c1cf 3309 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 3310 that, else choose a likely default. */
9aa1e687 3311 if (from_xcoff_exec)
c906108c 3312 {
11ed25ac 3313 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
3314 wordsize = 8;
3315 else
3316 wordsize = 4;
c906108c 3317 }
9aa1e687
KB
3318 else if (from_elf_exec)
3319 {
3320 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3321 wordsize = 8;
3322 else
3323 wordsize = 4;
3324 }
c906108c 3325 else
7a78ae4e 3326 {
27b15785
KB
3327 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3328 wordsize = info.bfd_arch_info->bits_per_word /
3329 info.bfd_arch_info->bits_per_byte;
3330 else
3331 wordsize = 4;
7a78ae4e 3332 }
c906108c 3333
13c0b536 3334 /* Find a candidate among extant architectures. */
7a78ae4e
ND
3335 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3336 arches != NULL;
3337 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3338 {
3339 /* Word size in the various PowerPC bfd_arch_info structs isn't
3340 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 3341 separate word size check. */
7a78ae4e 3342 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 3343 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
3344 return arches->gdbarch;
3345 }
c906108c 3346
7a78ae4e
ND
3347 /* None found, create a new architecture from INFO, whose bfd_arch_info
3348 validity depends on the source:
3349 - executable useless
3350 - rs6000_host_arch() good
3351 - core file good
3352 - "set arch" trust blindly
3353 - GDB startup useless but harmless */
c906108c 3354
9aa1e687 3355 if (!from_xcoff_exec)
c906108c 3356 {
b732d07d 3357 arch = info.bfd_arch_info->arch;
7a78ae4e 3358 mach = info.bfd_arch_info->mach;
c906108c 3359 }
7a78ae4e 3360 else
c906108c 3361 {
7a78ae4e 3362 arch = bfd_arch_powerpc;
35cec841 3363 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 3364 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 3365 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
3366 }
3367 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3368 tdep->wordsize = wordsize;
5bf1c677
EZ
3369
3370 /* For e500 executables, the apuinfo section is of help here. Such
3371 section contains the identifier and revision number of each
3372 Application-specific Processing Unit that is present on the
3373 chip. The content of the section is determined by the assembler
3374 which looks at each instruction and determines which unit (and
3375 which version of it) can execute it. In our case we just look for
3376 the existance of the section. */
3377
3378 if (info.abfd)
3379 {
3380 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3381 if (sect)
3382 {
3383 arch = info.bfd_arch_info->arch;
3384 mach = bfd_mach_ppc_e500;
3385 bfd_default_set_arch_mach (&abfd, arch, mach);
3386 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3387 }
3388 }
3389
7a78ae4e 3390 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 3391
489461e2
EZ
3392 /* Initialize the number of real and pseudo registers in each variant. */
3393 init_variants ();
3394
64366f1c 3395 /* Choose variant. */
7a78ae4e
ND
3396 v = find_variant_by_arch (arch, mach);
3397 if (!v)
dd47e6fd
EZ
3398 return NULL;
3399
7a78ae4e
ND
3400 tdep->regs = v->regs;
3401
2188cbdd 3402 tdep->ppc_gp0_regnum = 0;
2188cbdd
EZ
3403 tdep->ppc_toc_regnum = 2;
3404 tdep->ppc_ps_regnum = 65;
3405 tdep->ppc_cr_regnum = 66;
3406 tdep->ppc_lr_regnum = 67;
3407 tdep->ppc_ctr_regnum = 68;
3408 tdep->ppc_xer_regnum = 69;
3409 if (v->mach == bfd_mach_ppc_601)
3410 tdep->ppc_mq_regnum = 124;
708ff411 3411 else if (arch == bfd_arch_rs6000)
2188cbdd 3412 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
3413 else
3414 tdep->ppc_mq_regnum = -1;
366f009f 3415 tdep->ppc_fp0_regnum = 32;
708ff411 3416 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
f86a7158 3417 tdep->ppc_sr0_regnum = 71;
baffbae0
JB
3418 tdep->ppc_vr0_regnum = -1;
3419 tdep->ppc_vrsave_regnum = -1;
6ced10dd 3420 tdep->ppc_ev0_upper_regnum = -1;
baffbae0
JB
3421 tdep->ppc_ev0_regnum = -1;
3422 tdep->ppc_ev31_regnum = -1;
867e2dc5
JB
3423 tdep->ppc_acc_regnum = -1;
3424 tdep->ppc_spefscr_regnum = -1;
2188cbdd 3425
c8001721
EZ
3426 set_gdbarch_pc_regnum (gdbarch, 64);
3427 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 3428 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
6f7f3f0d 3429 set_gdbarch_fp0_regnum (gdbarch, 32);
9f643768 3430 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
afd48b75 3431 if (sysv_abi && wordsize == 8)
05580c65 3432 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 3433 else if (sysv_abi && wordsize == 4)
05580c65 3434 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75 3435 else
d217aaed 3436 set_gdbarch_return_value (gdbarch, rs6000_return_value);
c8001721 3437
baffbae0
JB
3438 /* Set lr_frame_offset. */
3439 if (wordsize == 8)
3440 tdep->lr_frame_offset = 16;
3441 else if (sysv_abi)
3442 tdep->lr_frame_offset = 4;
3443 else
3444 tdep->lr_frame_offset = 8;
3445
f86a7158
JB
3446 if (v->arch == bfd_arch_rs6000)
3447 tdep->ppc_sr0_regnum = -1;
3448 else if (v->arch == bfd_arch_powerpc)
1fcc0bb8
EZ
3449 switch (v->mach)
3450 {
3451 case bfd_mach_ppc:
412b3060 3452 tdep->ppc_sr0_regnum = -1;
1fcc0bb8
EZ
3453 tdep->ppc_vr0_regnum = 71;
3454 tdep->ppc_vrsave_regnum = 104;
3455 break;
3456 case bfd_mach_ppc_7400:
3457 tdep->ppc_vr0_regnum = 119;
54c2a1e6 3458 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
3459 break;
3460 case bfd_mach_ppc_e500:
c8001721 3461 tdep->ppc_toc_regnum = -1;
6ced10dd
JB
3462 tdep->ppc_ev0_upper_regnum = 32;
3463 tdep->ppc_ev0_regnum = 73;
3464 tdep->ppc_ev31_regnum = 104;
3465 tdep->ppc_acc_regnum = 71;
3466 tdep->ppc_spefscr_regnum = 72;
383f0f5b
JB
3467 tdep->ppc_fp0_regnum = -1;
3468 tdep->ppc_fpscr_regnum = -1;
f86a7158 3469 tdep->ppc_sr0_regnum = -1;
c8001721
EZ
3470 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3471 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
6ced10dd 3472 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
1fcc0bb8 3473 break;
f86a7158
JB
3474
3475 case bfd_mach_ppc64:
3476 case bfd_mach_ppc_620:
3477 case bfd_mach_ppc_630:
3478 case bfd_mach_ppc_a35:
3479 case bfd_mach_ppc_rs64ii:
3480 case bfd_mach_ppc_rs64iii:
3481 /* These processor's register sets don't have segment registers. */
3482 tdep->ppc_sr0_regnum = -1;
3483 break;
1fcc0bb8 3484 }
f86a7158
JB
3485 else
3486 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
3487 _("rs6000_gdbarch_init: "
3488 "received unexpected BFD 'arch' value"));
1fcc0bb8 3489
e0d24f8d
WZ
3490 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3491
338ef23d
AC
3492 /* Sanity check on registers. */
3493 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3494
56a6dfb9 3495 /* Select instruction printer. */
708ff411 3496 if (arch == bfd_arch_rs6000)
9364a0ef 3497 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 3498 else
9364a0ef 3499 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 3500
7a78ae4e 3501 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 3502 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 3503 set_gdbarch_register_name (gdbarch, rs6000_register_name);
691d145a 3504 set_gdbarch_register_type (gdbarch, rs6000_register_type);
c44ca51c 3505 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
7a78ae4e
ND
3506
3507 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3508 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3509 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3510 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3511 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3512 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3513 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
3514 if (sysv_abi)
3515 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3516 else
3517 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 3518 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 3519
11269d7e 3520 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
3521 if (sysv_abi && wordsize == 8)
3522 /* PPC64 SYSV. */
3523 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3524 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
3525 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3526 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3527 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3528 224. */
3529 set_gdbarch_frame_red_zone_size (gdbarch, 224);
7a78ae4e 3530
691d145a
JB
3531 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3532 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3533 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3534
18ed0c4e
JB
3535 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3536 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
d217aaed 3537
2ea5f656 3538 if (sysv_abi && wordsize == 4)
77b2b6d4 3539 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
3540 else if (sysv_abi && wordsize == 8)
3541 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 3542 else
77b2b6d4 3543 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 3544
7a78ae4e 3545 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
0d1243d9
PG
3546 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3547
7a78ae4e 3548 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
3549 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3550
ce5eab59
UW
3551 /* Handles single stepping of atomic sequences. */
3552 set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence);
3553
6066c3de
AC
3554 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3555 for the descriptor and ".FN" for the entry-point -- a user
3556 specifying "break FN" will unexpectedly end up with a breakpoint
3557 on the descriptor and not the function. This architecture method
3558 transforms any breakpoints on descriptors into breakpoints on the
3559 corresponding entry point. */
3560 if (sysv_abi && wordsize == 8)
3561 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3562
7a78ae4e
ND
3563 /* Not sure on this. FIXMEmgo */
3564 set_gdbarch_frame_args_skip (gdbarch, 8);
3565
15813d3f
AC
3566 if (!sysv_abi)
3567 {
3568 /* Handle RS/6000 function pointers (which are really function
3569 descriptors). */
f517ea4e
PS
3570 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3571 rs6000_convert_from_func_ptr_addr);
9aa1e687 3572 }
7a78ae4e 3573
143985b7
AF
3574 /* Helpers for function argument information. */
3575 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3576
6f7f3f0d
UW
3577 /* Trampoline. */
3578 set_gdbarch_in_solib_return_trampoline
3579 (gdbarch, rs6000_in_solib_return_trampoline);
3580 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3581
4fc771b8
DJ
3582 /* Hook in the DWARF CFI frame unwinder. */
3583 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3584 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3585
7b112f9c 3586 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3587 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3588
61a65099
KB
3589 switch (info.osabi)
3590 {
f5aecab8
PG
3591 case GDB_OSABI_LINUX:
3592 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3593 have altivec registers. If not, ptrace will fail the first time it's
3594 called to access one and will not be called again. This wart will
3595 be removed when Daniel Jacobowitz's proposal for autodetecting target
3596 registers is implemented. */
3597 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3598 {
3599 tdep->ppc_vr0_regnum = 71;
3600 tdep->ppc_vrsave_regnum = 104;
3601 }
3602 /* Fall Thru */
61a65099
KB
3603 case GDB_OSABI_NETBSD_AOUT:
3604 case GDB_OSABI_NETBSD_ELF:
3605 case GDB_OSABI_UNKNOWN:
61a65099
KB
3606 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3607 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3608 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3609 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3610 break;
3611 default:
61a65099 3612 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
3613
3614 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3615 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3616 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3617 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
3618 }
3619
9f643768
JB
3620 init_sim_regno_table (gdbarch);
3621
7a78ae4e 3622 return gdbarch;
c906108c
SS
3623}
3624
7b112f9c
JT
3625static void
3626rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3627{
3628 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3629
3630 if (tdep == NULL)
3631 return;
3632
4be87837 3633 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3634}
3635
c906108c
SS
3636/* Initialization code. */
3637
a78f21af 3638extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3639
c906108c 3640void
fba45db2 3641_initialize_rs6000_tdep (void)
c906108c 3642{
7b112f9c
JT
3643 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3644 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
c906108c 3645}