]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/s390-tdep.c
2002-11-18 Andrew Cagney <ac131313@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / s390-tdep.c
CommitLineData
5769d3cd 1/* Target-dependent code for GDB, the GNU debugger.
ca557f44
AC
2
3 Copyright 2001, 2002 Free Software Foundation, Inc.
4
5769d3cd
AC
5 Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
6 for IBM Deutschland Entwicklung GmbH, IBM Corporation.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25#define S390_TDEP /* for special macros in tm-s390.h */
26#include <defs.h>
27#include "arch-utils.h"
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "target.h"
32#include "gdbcore.h"
33#include "gdbcmd.h"
34#include "symfile.h"
35#include "objfiles.h"
36#include "tm.h"
37#include "../bfd/bfd.h"
38#include "floatformat.h"
39#include "regcache.h"
fd0407d6 40#include "value.h"
78f8b424 41#include "gdb_assert.h"
5769d3cd
AC
42
43
44
60e6cc42 45
5769d3cd 46/* Number of bytes of storage in the actual machine representation
23b7362f 47 for register N. */
5769d3cd
AC
48int
49s390_register_raw_size (int reg_nr)
50{
23b7362f
JB
51 if (S390_FP0_REGNUM <= reg_nr
52 && reg_nr < S390_FP0_REGNUM + S390_NUM_FPRS)
53 return S390_FPR_SIZE;
54 else
55 return 4;
5769d3cd
AC
56}
57
58int
59s390x_register_raw_size (int reg_nr)
60{
61 return (reg_nr == S390_FPC_REGNUM)
62 || (reg_nr >= S390_FIRST_ACR && reg_nr <= S390_LAST_ACR) ? 4 : 8;
63}
64
65int
66s390_cannot_fetch_register (int regno)
67{
68 return (regno >= S390_FIRST_CR && regno < (S390_FIRST_CR + 9)) ||
69 (regno >= (S390_FIRST_CR + 12) && regno <= S390_LAST_CR);
70}
71
72int
73s390_register_byte (int reg_nr)
74{
75 if (reg_nr <= S390_GP_LAST_REGNUM)
76 return reg_nr * S390_GPR_SIZE;
77 if (reg_nr <= S390_LAST_ACR)
78 return S390_ACR0_OFFSET + (((reg_nr) - S390_FIRST_ACR) * S390_ACR_SIZE);
79 if (reg_nr <= S390_LAST_CR)
80 return S390_CR0_OFFSET + (((reg_nr) - S390_FIRST_CR) * S390_CR_SIZE);
81 if (reg_nr == S390_FPC_REGNUM)
82 return S390_FPC_OFFSET;
83 else
84 return S390_FP0_OFFSET + (((reg_nr) - S390_FP0_REGNUM) * S390_FPR_SIZE);
85}
86
87#ifndef GDBSERVER
88#define S390_MAX_INSTR_SIZE (6)
89#define S390_SYSCALL_OPCODE (0x0a)
90#define S390_SYSCALL_SIZE (2)
91#define S390_SIGCONTEXT_SREGS_OFFSET (8)
92#define S390X_SIGCONTEXT_SREGS_OFFSET (8)
93#define S390_SIGREGS_FP0_OFFSET (144)
94#define S390X_SIGREGS_FP0_OFFSET (216)
95#define S390_UC_MCONTEXT_OFFSET (256)
96#define S390X_UC_MCONTEXT_OFFSET (344)
97#define S390_STACK_FRAME_OVERHEAD (GDB_TARGET_IS_ESAME ? 160:96)
98#define S390_SIGNAL_FRAMESIZE (GDB_TARGET_IS_ESAME ? 160:96)
99#define s390_NR_sigreturn 119
100#define s390_NR_rt_sigreturn 173
101
102
103
104struct frame_extra_info
105{
106 int initialised;
107 int good_prologue;
108 CORE_ADDR function_start;
109 CORE_ADDR skip_prologue_function_start;
110 CORE_ADDR saved_pc_valid;
111 CORE_ADDR saved_pc;
112 CORE_ADDR sig_fixed_saved_pc_valid;
113 CORE_ADDR sig_fixed_saved_pc;
114 CORE_ADDR frame_pointer_saved_pc; /* frame pointer needed for alloca */
115 CORE_ADDR stack_bought; /* amount we decrement the stack pointer by */
116 CORE_ADDR sigcontext;
117};
118
119
120static CORE_ADDR s390_frame_saved_pc_nofix (struct frame_info *fi);
121
122int
123s390_readinstruction (bfd_byte instr[], CORE_ADDR at,
124 struct disassemble_info *info)
125{
126 int instrlen;
127
128 static int s390_instrlen[] = {
129 2,
130 4,
131 4,
132 6
133 };
134 if ((*info->read_memory_func) (at, &instr[0], 2, info))
135 return -1;
136 instrlen = s390_instrlen[instr[0] >> 6];
c5e243bb
JB
137 if (instrlen > 2)
138 {
139 if ((*info->read_memory_func) (at + 2, &instr[2], instrlen - 2, info))
140 return -1;
141 }
5769d3cd
AC
142 return instrlen;
143}
144
145static void
146s390_memset_extra_info (struct frame_extra_info *fextra_info)
147{
148 memset (fextra_info, 0, sizeof (struct frame_extra_info));
149}
150
151
152
fa88f677 153const char *
5769d3cd
AC
154s390_register_name (int reg_nr)
155{
156 static char *register_names[] = {
157 "pswm", "pswa",
4ed90530
JB
158 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
159 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5769d3cd
AC
160 "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
161 "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15",
162 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
163 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
164 "fpc",
4ed90530
JB
165 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
166 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
5769d3cd
AC
167 };
168
b09677dc
JB
169 if (reg_nr <= S390_LAST_REGNUM)
170 return register_names[reg_nr];
171 else
5769d3cd 172 return NULL;
5769d3cd
AC
173}
174
175
176
177
178int
179s390_stab_reg_to_regnum (int regno)
180{
181 return regno >= 64 ? S390_PSWM_REGNUM - 64 :
182 regno >= 48 ? S390_FIRST_ACR - 48 :
183 regno >= 32 ? S390_FIRST_CR - 32 :
184 regno <= 15 ? (regno + 2) :
185 S390_FP0_REGNUM + ((regno - 16) & 8) + (((regno - 16) & 3) << 1) +
186 (((regno - 16) & 4) >> 2);
187}
188
189
12bffad7
JB
190/* Return true if REGIDX is the number of a register used to pass
191 arguments, false otherwise. */
192static int
193is_arg_reg (int regidx)
194{
195 return 2 <= regidx && regidx <= 6;
196}
197
5769d3cd
AC
198
199/* s390_get_frame_info based on Hartmuts
200 prologue definition in
201 gcc-2.8.1/config/l390/linux.c
202
203 It reads one instruction at a time & based on whether
204 it looks like prologue code or not it makes a decision on
205 whether the prologue is over, there are various state machines
206 in the code to determine if the prologue code is possilby valid.
207
208 This is done to hopefully allow the code survive minor revs of
209 calling conventions.
210
211 */
212
213int
214s390_get_frame_info (CORE_ADDR pc, struct frame_extra_info *fextra_info,
215 struct frame_info *fi, int init_extra_info)
216{
217#define CONST_POOL_REGIDX 13
218#define GOT_REGIDX 12
219 bfd_byte instr[S390_MAX_INSTR_SIZE];
220 CORE_ADDR test_pc = pc, test_pc2;
221 CORE_ADDR orig_sp = 0, save_reg_addr = 0, *saved_regs = NULL;
222 int valid_prologue, good_prologue = 0;
223 int gprs_saved[S390_NUM_GPRS];
224 int fprs_saved[S390_NUM_FPRS];
225 int regidx, instrlen;
6df29de2 226 int const_pool_state;
7286245e 227 int varargs_state;
5769d3cd 228 int loop_cnt, gdb_gpr_store, gdb_fpr_store;
5769d3cd
AC
229 int offset, expected_offset;
230 int err = 0;
231 disassemble_info info;
8ac0e65a 232
7286245e
JB
233 /* Have we seen an instruction initializing the frame pointer yet?
234 If we've seen an `lr %r11, %r15', then frame_pointer_found is
235 non-zero, and frame_pointer_regidx == 11. Otherwise,
236 frame_pointer_found is zero and frame_pointer_regidx is 15,
237 indicating that we're using the stack pointer as our frame
238 pointer. */
239 int frame_pointer_found = 0;
240 int frame_pointer_regidx = 0xf;
241
6df29de2
JB
242 /* What we've seen so far regarding saving the back chain link:
243 0 -- nothing yet; sp still has the same value it had at the entry
244 point. Since not all functions allocate frames, this is a
245 valid state for the prologue to finish in.
246 1 -- We've saved the original sp in some register other than the
247 frame pointer (hard-coded to be %r11, yuck).
248 save_link_regidx is the register we saved it in.
249 2 -- We've seen the initial `bras' instruction of the sequence for
250 reserving more than 32k of stack:
251 bras %rX, .+8
252 .long N
253 s %r15, 0(%rX)
254 where %rX is not the constant pool register.
255 subtract_sp_regidx is %rX, and fextra_info->stack_bought is N.
256 3 -- We've reserved space for a new stack frame. This means we
257 either saw a simple `ahi %r15,-N' in state 1, or the final
258 `s %r15, ...' in state 2.
259 4 -- The frame and link are now fully initialized. We've
260 reserved space for the new stack frame, and stored the old
261 stack pointer captured in the back chain pointer field. */
7286245e 262 int save_link_state = 0;
6df29de2
JB
263 int save_link_regidx, subtract_sp_regidx;
264
8ac0e65a
JB
265 /* What we've seen so far regarding r12 --- the GOT (Global Offset
266 Table) pointer. We expect to see `l %r12, N(%r13)', which loads
267 r12 with the offset from the constant pool to the GOT, and then
268 an `ar %r12, %r13', which adds the constant pool address,
269 yielding the GOT's address. Here's what got_state means:
270 0 -- seen nothing
271 1 -- seen `l %r12, N(%r13)', but no `ar'
272 2 -- seen load and add, so GOT pointer is totally initialized
273 When got_state is 1, then got_load_addr is the address of the
274 load instruction, and got_load_len is the length of that
275 instruction. */
7286245e 276 int got_state= 0;
64f9bb98 277 CORE_ADDR got_load_addr = 0, got_load_len = 0;
8ac0e65a 278
7286245e
JB
279 const_pool_state = varargs_state = 0;
280
5769d3cd
AC
281 memset (gprs_saved, 0, sizeof (gprs_saved));
282 memset (fprs_saved, 0, sizeof (fprs_saved));
283 info.read_memory_func = dis_asm_read_memory;
284
285 save_link_regidx = subtract_sp_regidx = 0;
286 if (fextra_info)
287 {
288 if (fi && fi->frame)
289 {
76cc2cf0 290 orig_sp = fi->frame;
386e4208 291 if (! init_extra_info && fextra_info->initialised)
76cc2cf0 292 orig_sp += fextra_info->stack_bought;
5769d3cd
AC
293 saved_regs = fi->saved_regs;
294 }
295 if (init_extra_info || !fextra_info->initialised)
296 {
297 s390_memset_extra_info (fextra_info);
298 fextra_info->function_start = pc;
299 fextra_info->initialised = 1;
300 }
301 }
302 instrlen = 0;
303 do
304 {
305 valid_prologue = 0;
306 test_pc += instrlen;
307 /* add the previous instruction len */
308 instrlen = s390_readinstruction (instr, test_pc, &info);
309 if (instrlen < 0)
310 {
311 good_prologue = 0;
312 err = -1;
313 break;
314 }
315 /* We probably are in a glibc syscall */
316 if (instr[0] == S390_SYSCALL_OPCODE && test_pc == pc)
317 {
318 good_prologue = 1;
319 if (saved_regs && fextra_info && fi->next && fi->next->extra_info
320 && fi->next->extra_info->sigcontext)
321 {
322 /* We are backtracing from a signal handler */
323 save_reg_addr = fi->next->extra_info->sigcontext +
324 REGISTER_BYTE (S390_GP0_REGNUM);
325 for (regidx = 0; regidx < S390_NUM_GPRS; regidx++)
326 {
327 saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
328 save_reg_addr += S390_GPR_SIZE;
329 }
330 save_reg_addr = fi->next->extra_info->sigcontext +
331 (GDB_TARGET_IS_ESAME ? S390X_SIGREGS_FP0_OFFSET :
332 S390_SIGREGS_FP0_OFFSET);
333 for (regidx = 0; regidx < S390_NUM_FPRS; regidx++)
334 {
335 saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr;
336 save_reg_addr += S390_FPR_SIZE;
337 }
338 }
339 break;
340 }
341 if (save_link_state == 0)
342 {
343 /* check for a stack relative STMG or STM */
344 if (((GDB_TARGET_IS_ESAME &&
345 ((instr[0] == 0xeb) && (instr[5] == 0x24))) ||
346 (instr[0] == 0x90)) && ((instr[2] >> 4) == 0xf))
347 {
348 regidx = (instr[1] >> 4);
349 if (regidx < 6)
350 varargs_state = 1;
351 offset = ((instr[2] & 0xf) << 8) + instr[3];
352 expected_offset =
353 S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6));
354 if (offset != expected_offset)
355 {
356 good_prologue = 0;
357 break;
358 }
359 if (saved_regs)
360 save_reg_addr = orig_sp + offset;
361 for (; regidx <= (instr[1] & 0xf); regidx++)
362 {
363 if (gprs_saved[regidx])
364 {
365 good_prologue = 0;
366 break;
367 }
368 good_prologue = 1;
369 gprs_saved[regidx] = 1;
370 if (saved_regs)
371 {
372 saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
373 save_reg_addr += S390_GPR_SIZE;
374 }
375 }
376 valid_prologue = 1;
377 continue;
378 }
379 }
380 /* check for a stack relative STG or ST */
381 if ((save_link_state == 0 || save_link_state == 3) &&
382 ((GDB_TARGET_IS_ESAME &&
383 ((instr[0] == 0xe3) && (instr[5] == 0x24))) ||
384 (instr[0] == 0x50)) && ((instr[2] >> 4) == 0xf))
385 {
386 regidx = instr[1] >> 4;
387 offset = ((instr[2] & 0xf) << 8) + instr[3];
388 if (offset == 0)
389 {
390 if (save_link_state == 3 && regidx == save_link_regidx)
391 {
392 save_link_state = 4;
393 valid_prologue = 1;
394 continue;
395 }
396 else
397 break;
398 }
399 if (regidx < 6)
400 varargs_state = 1;
401 expected_offset =
402 S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6));
403 if (offset != expected_offset)
404 {
405 good_prologue = 0;
406 break;
407 }
408 if (gprs_saved[regidx])
409 {
410 good_prologue = 0;
411 break;
412 }
413 good_prologue = 1;
414 gprs_saved[regidx] = 1;
415 if (saved_regs)
416 {
417 save_reg_addr = orig_sp + offset;
418 saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
419 }
420 valid_prologue = 1;
421 continue;
422 }
423
12bffad7 424 /* Check for an fp-relative STG, ST, or STM. This is probably
7666f43c
JB
425 spilling an argument from a register out into a stack slot.
426 This could be a user instruction, but if we haven't included
427 any other suspicious instructions in the prologue, this
428 could only be an initializing store, which isn't too bad to
429 skip. The consequences of not including arg-to-stack spills
430 are more serious, though --- you don't see the proper values
431 of the arguments. */
432 if ((save_link_state == 3 || save_link_state == 4)
12bffad7
JB
433 && ((instr[0] == 0x50 /* st %rA, D(%rX,%rB) */
434 && (instr[1] & 0xf) == 0 /* %rX is zero, no index reg */
435 && is_arg_reg ((instr[1] >> 4) & 0xf)
436 && ((instr[2] >> 4) & 0xf) == frame_pointer_regidx)
437 || (instr[0] == 0x90 /* stm %rA, %rB, D(%rC) */
438 && is_arg_reg ((instr[1] >> 4) & 0xf)
439 && is_arg_reg (instr[1] & 0xf)
440 && ((instr[2] >> 4) & 0xf) == frame_pointer_regidx)))
7666f43c
JB
441 {
442 valid_prologue = 1;
443 continue;
444 }
445
5769d3cd
AC
446 /* check for STD */
447 if (instr[0] == 0x60 && (instr[2] >> 4) == 0xf)
448 {
449 regidx = instr[1] >> 4;
450 if (regidx == 0 || regidx == 2)
451 varargs_state = 1;
452 if (fprs_saved[regidx])
453 {
454 good_prologue = 0;
455 break;
456 }
457 fprs_saved[regidx] = 1;
458 if (saved_regs)
459 {
460 save_reg_addr = orig_sp + (((instr[2] & 0xf) << 8) + instr[3]);
461 saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr;
462 }
463 valid_prologue = 1;
464 continue;
465 }
466
467
468 if (const_pool_state == 0)
469 {
470
471 if (GDB_TARGET_IS_ESAME)
472 {
473 /* Check for larl CONST_POOL_REGIDX,offset on ESAME */
474 if ((instr[0] == 0xc0)
475 && (instr[1] == (CONST_POOL_REGIDX << 4)))
476 {
477 const_pool_state = 2;
478 valid_prologue = 1;
479 continue;
480 }
481 }
482 else
483 {
484 /* Check for BASR gpr13,gpr0 used to load constant pool pointer to r13 in old compiler */
485 if (instr[0] == 0xd && (instr[1] & 0xf) == 0
486 && ((instr[1] >> 4) == CONST_POOL_REGIDX))
487 {
488 const_pool_state = 1;
489 valid_prologue = 1;
490 continue;
491 }
492 }
493 /* Check for new fangled bras %r13,newpc to load new constant pool */
494 /* embedded in code, older pre abi compilers also emitted this stuff. */
495 if ((instr[0] == 0xa7) && ((instr[1] & 0xf) == 0x5) &&
496 ((instr[1] >> 4) == CONST_POOL_REGIDX)
497 && ((instr[2] & 0x80) == 0))
498 {
499 const_pool_state = 2;
500 test_pc +=
501 (((((instr[2] & 0xf) << 8) + instr[3]) << 1) - instrlen);
502 valid_prologue = 1;
503 continue;
504 }
505 }
506 /* Check for AGHI or AHI CONST_POOL_REGIDX,val */
507 if (const_pool_state == 1 && (instr[0] == 0xa7) &&
508 ((GDB_TARGET_IS_ESAME &&
509 (instr[1] == ((CONST_POOL_REGIDX << 4) | 0xb))) ||
510 (instr[1] == ((CONST_POOL_REGIDX << 4) | 0xa))))
511 {
512 const_pool_state = 2;
513 valid_prologue = 1;
514 continue;
515 }
516 /* Check for LGR or LR gprx,15 */
517 if ((GDB_TARGET_IS_ESAME &&
518 instr[0] == 0xb9 && instr[1] == 0x04 && (instr[3] & 0xf) == 0xf) ||
519 (instr[0] == 0x18 && (instr[1] & 0xf) == 0xf))
520 {
521 if (GDB_TARGET_IS_ESAME)
522 regidx = instr[3] >> 4;
523 else
524 regidx = instr[1] >> 4;
525 if (save_link_state == 0 && regidx != 0xb)
526 {
527 /* Almost defintely code for
528 decrementing the stack pointer
529 ( i.e. a non leaf function
530 or else leaf with locals ) */
531 save_link_regidx = regidx;
532 save_link_state = 1;
533 valid_prologue = 1;
534 continue;
535 }
536 /* We use this frame pointer for alloca
537 unfortunately we need to assume its gpr11
538 otherwise we would need a smarter prologue
539 walker. */
540 if (!frame_pointer_found && regidx == 0xb)
541 {
542 frame_pointer_regidx = 0xb;
543 frame_pointer_found = 1;
544 if (fextra_info)
545 fextra_info->frame_pointer_saved_pc = test_pc;
546 valid_prologue = 1;
547 continue;
548 }
549 }
550 /* Check for AHI or AGHI gpr15,val */
551 if (save_link_state == 1 && (instr[0] == 0xa7) &&
552 ((GDB_TARGET_IS_ESAME && (instr[1] == 0xfb)) || (instr[1] == 0xfa)))
553 {
554 if (fextra_info)
555 fextra_info->stack_bought =
556 -extract_signed_integer (&instr[2], 2);
557 save_link_state = 3;
558 valid_prologue = 1;
559 continue;
560 }
561 /* Alternatively check for the complex construction for
562 buying more than 32k of stack
563 BRAS gprx,.+8
6df29de2
JB
564 long val
565 s %r15,0(%gprx) gprx currently r1 */
5769d3cd
AC
566 if ((save_link_state == 1) && (instr[0] == 0xa7)
567 && ((instr[1] & 0xf) == 0x5) && (instr[2] == 0)
568 && (instr[3] == 0x4) && ((instr[1] >> 4) != CONST_POOL_REGIDX))
569 {
570 subtract_sp_regidx = instr[1] >> 4;
571 save_link_state = 2;
572 if (fextra_info)
573 target_read_memory (test_pc + instrlen,
574 (char *) &fextra_info->stack_bought,
575 sizeof (fextra_info->stack_bought));
576 test_pc += 4;
577 valid_prologue = 1;
578 continue;
579 }
580 if (save_link_state == 2 && instr[0] == 0x5b
581 && instr[1] == 0xf0 &&
582 instr[2] == (subtract_sp_regidx << 4) && instr[3] == 0)
583 {
584 save_link_state = 3;
585 valid_prologue = 1;
586 continue;
587 }
588 /* check for LA gprx,offset(15) used for varargs */
589 if ((instr[0] == 0x41) && ((instr[2] >> 4) == 0xf) &&
590 ((instr[1] & 0xf) == 0))
591 {
592 /* some code uses gpr7 to point to outgoing args */
593 if (((instr[1] >> 4) == 7) && (save_link_state == 0) &&
594 ((instr[2] & 0xf) == 0)
595 && (instr[3] == S390_STACK_FRAME_OVERHEAD))
596 {
597 valid_prologue = 1;
598 continue;
599 }
600 if (varargs_state == 1)
601 {
602 varargs_state = 2;
603 valid_prologue = 1;
604 continue;
605 }
606 }
607 /* Check for a GOT load */
608
609 if (GDB_TARGET_IS_ESAME)
610 {
611 /* Check for larl GOT_REGIDX, on ESAME */
612 if ((got_state == 0) && (instr[0] == 0xc0)
613 && (instr[1] == (GOT_REGIDX << 4)))
614 {
615 got_state = 2;
616 valid_prologue = 1;
617 continue;
618 }
619 }
620 else
621 {
622 /* check for l GOT_REGIDX,x(CONST_POOL_REGIDX) */
623 if (got_state == 0 && const_pool_state == 2 && instr[0] == 0x58
624 && (instr[2] == (CONST_POOL_REGIDX << 4))
625 && ((instr[1] >> 4) == GOT_REGIDX))
626 {
8ac0e65a
JB
627 got_state = 1;
628 got_load_addr = test_pc;
629 got_load_len = instrlen;
5769d3cd
AC
630 valid_prologue = 1;
631 continue;
632 }
633 /* Check for subsequent ar got_regidx,basr_regidx */
634 if (got_state == 1 && instr[0] == 0x1a &&
635 instr[1] == ((GOT_REGIDX << 4) | CONST_POOL_REGIDX))
636 {
637 got_state = 2;
638 valid_prologue = 1;
639 continue;
640 }
641 }
642 }
643 while (valid_prologue && good_prologue);
644 if (good_prologue)
645 {
8ac0e65a
JB
646 /* If this function doesn't reference the global offset table,
647 then the compiler may use r12 for other things. If the last
648 instruction we saw was a load of r12 from the constant pool,
649 with no subsequent add to make the address PC-relative, then
650 the load was probably a genuine body instruction; don't treat
651 it as part of the prologue. */
652 if (got_state == 1
653 && got_load_addr + got_load_len == test_pc)
654 {
655 test_pc = got_load_addr;
656 instrlen = got_load_len;
657 }
658
659 good_prologue = (((const_pool_state == 0) || (const_pool_state == 2)) &&
5769d3cd
AC
660 ((save_link_state == 0) || (save_link_state == 4)) &&
661 ((varargs_state == 0) || (varargs_state == 2)));
662 }
663 if (fextra_info)
664 {
665 fextra_info->good_prologue = good_prologue;
666 fextra_info->skip_prologue_function_start =
667 (good_prologue ? test_pc : pc);
668 }
09025237
JB
669 if (saved_regs)
670 /* The SP's element of the saved_regs array holds the old SP,
671 not the address at which it is saved. */
672 saved_regs[S390_SP_REGNUM] = orig_sp;
5769d3cd
AC
673 return err;
674}
675
676
677int
678s390_check_function_end (CORE_ADDR pc)
679{
680 bfd_byte instr[S390_MAX_INSTR_SIZE];
681 disassemble_info info;
682 int regidx, instrlen;
683
684 info.read_memory_func = dis_asm_read_memory;
685 instrlen = s390_readinstruction (instr, pc, &info);
686 if (instrlen < 0)
687 return -1;
688 /* check for BR */
689 if (instrlen != 2 || instr[0] != 07 || (instr[1] >> 4) != 0xf)
690 return 0;
691 regidx = instr[1] & 0xf;
692 /* Check for LMG or LG */
693 instrlen =
694 s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 6 : 4), &info);
695 if (instrlen < 0)
696 return -1;
697 if (GDB_TARGET_IS_ESAME)
698 {
699
700 if (instrlen != 6 || instr[0] != 0xeb || instr[5] != 0x4)
701 return 0;
702 }
703 else if (instrlen != 4 || instr[0] != 0x98)
704 {
705 return 0;
706 }
707 if ((instr[2] >> 4) != 0xf)
708 return 0;
709 if (regidx == 14)
710 return 1;
711 instrlen = s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 12 : 8),
712 &info);
713 if (instrlen < 0)
714 return -1;
715 if (GDB_TARGET_IS_ESAME)
716 {
717 /* Check for LG */
718 if (instrlen != 6 || instr[0] != 0xe3 || instr[5] != 0x4)
719 return 0;
720 }
721 else
722 {
723 /* Check for L */
724 if (instrlen != 4 || instr[0] != 0x58)
725 return 0;
726 }
727 if (instr[2] >> 4 != 0xf)
728 return 0;
729 if (instr[1] >> 4 != regidx)
730 return 0;
731 return 1;
732}
733
734static CORE_ADDR
735s390_sniff_pc_function_start (CORE_ADDR pc, struct frame_info *fi)
736{
737 CORE_ADDR function_start, test_function_start;
738 int loop_cnt, err, function_end;
739 struct frame_extra_info fextra_info;
740 function_start = get_pc_function_start (pc);
741
742 if (function_start == 0)
743 {
744 test_function_start = pc;
745 if (test_function_start & 1)
746 return 0; /* This has to be bogus */
747 loop_cnt = 0;
748 do
749 {
750
751 err =
752 s390_get_frame_info (test_function_start, &fextra_info, fi, 1);
753 loop_cnt++;
754 test_function_start -= 2;
755 function_end = s390_check_function_end (test_function_start);
756 }
757 while (!(function_end == 1 || err || loop_cnt >= 4096 ||
758 (fextra_info.good_prologue)));
759 if (fextra_info.good_prologue)
760 function_start = fextra_info.function_start;
761 else if (function_end == 1)
762 function_start = test_function_start;
763 }
764 return function_start;
765}
766
767
768
769CORE_ADDR
770s390_function_start (struct frame_info *fi)
771{
772 CORE_ADDR function_start = 0;
773
774 if (fi->extra_info && fi->extra_info->initialised)
775 function_start = fi->extra_info->function_start;
776 else if (fi->pc)
777 function_start = get_pc_function_start (fi->pc);
778 return function_start;
779}
780
781
782
783
784int
785s390_frameless_function_invocation (struct frame_info *fi)
786{
787 struct frame_extra_info fextra_info, *fextra_info_ptr;
788 int frameless = 0;
789
790 if (fi->next == NULL) /* no may be frameless */
791 {
792 if (fi->extra_info)
793 fextra_info_ptr = fi->extra_info;
794 else
795 {
796 fextra_info_ptr = &fextra_info;
797 s390_get_frame_info (s390_sniff_pc_function_start (fi->pc, fi),
798 fextra_info_ptr, fi, 1);
799 }
800 frameless = ((fextra_info_ptr->stack_bought == 0));
801 }
802 return frameless;
803
804}
805
806
807static int
808s390_is_sigreturn (CORE_ADDR pc, struct frame_info *sighandler_fi,
809 CORE_ADDR *sregs, CORE_ADDR *sigcaller_pc)
810{
811 bfd_byte instr[S390_MAX_INSTR_SIZE];
812 disassemble_info info;
813 int instrlen;
814 CORE_ADDR scontext;
815 int retval = 0;
816 CORE_ADDR orig_sp;
817 CORE_ADDR temp_sregs;
818
819 scontext = temp_sregs = 0;
820
821 info.read_memory_func = dis_asm_read_memory;
822 instrlen = s390_readinstruction (instr, pc, &info);
823 if (sigcaller_pc)
824 *sigcaller_pc = 0;
825 if (((instrlen == S390_SYSCALL_SIZE) &&
826 (instr[0] == S390_SYSCALL_OPCODE)) &&
827 ((instr[1] == s390_NR_sigreturn) || (instr[1] == s390_NR_rt_sigreturn)))
828 {
829 if (sighandler_fi)
830 {
831 if (s390_frameless_function_invocation (sighandler_fi))
832 orig_sp = sighandler_fi->frame;
833 else
834 orig_sp = ADDR_BITS_REMOVE ((CORE_ADDR)
835 read_memory_integer (sighandler_fi->
836 frame,
837 S390_GPR_SIZE));
838 if (orig_sp && sigcaller_pc)
839 {
840 scontext = orig_sp + S390_SIGNAL_FRAMESIZE;
841 if (pc == scontext && instr[1] == s390_NR_rt_sigreturn)
842 {
843 /* We got a new style rt_signal */
844 /* get address of read ucontext->uc_mcontext */
845 temp_sregs = orig_sp + (GDB_TARGET_IS_ESAME ?
846 S390X_UC_MCONTEXT_OFFSET :
847 S390_UC_MCONTEXT_OFFSET);
848 }
849 else
850 {
851 /* read sigcontext->sregs */
852 temp_sregs = ADDR_BITS_REMOVE ((CORE_ADDR)
853 read_memory_integer (scontext
854 +
855 (GDB_TARGET_IS_ESAME
856 ?
857 S390X_SIGCONTEXT_SREGS_OFFSET
858 :
859 S390_SIGCONTEXT_SREGS_OFFSET),
860 S390_GPR_SIZE));
861
862 }
863 /* read sigregs->psw.addr */
864 *sigcaller_pc =
865 ADDR_BITS_REMOVE ((CORE_ADDR)
866 read_memory_integer (temp_sregs +
867 REGISTER_BYTE
868 (S390_PC_REGNUM),
869 S390_PSW_ADDR_SIZE));
870 }
871 }
872 retval = 1;
873 }
874 if (sregs)
875 *sregs = temp_sregs;
876 return retval;
877}
878
879/*
880 We need to do something better here but this will keep us out of trouble
881 for the moment.
882 For some reason the blockframe.c calls us with fi->next->fromleaf
883 so this seems of little use to us. */
884void
885s390_init_frame_pc_first (int next_fromleaf, struct frame_info *fi)
886{
887 CORE_ADDR sigcaller_pc;
888
889 fi->pc = 0;
890 if (next_fromleaf)
891 {
892 fi->pc = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
893 /* fix signal handlers */
894 }
895 else if (fi->next && fi->next->pc)
896 fi->pc = s390_frame_saved_pc_nofix (fi->next);
897 if (fi->pc && fi->next && fi->next->frame &&
898 s390_is_sigreturn (fi->pc, fi->next, NULL, &sigcaller_pc))
899 {
900 fi->pc = sigcaller_pc;
901 }
902
903}
904
905void
906s390_init_extra_frame_info (int fromleaf, struct frame_info *fi)
907{
908 fi->extra_info = frame_obstack_alloc (sizeof (struct frame_extra_info));
909 if (fi->pc)
910 s390_get_frame_info (s390_sniff_pc_function_start (fi->pc, fi),
911 fi->extra_info, fi, 1);
912 else
913 s390_memset_extra_info (fi->extra_info);
914}
915
916/* If saved registers of frame FI are not known yet, read and cache them.
917 &FEXTRA_INFOP contains struct frame_extra_info; TDATAP can be NULL,
918 in which case the framedata are read. */
919
920void
921s390_frame_init_saved_regs (struct frame_info *fi)
922{
923
924 int quick;
925
926 if (fi->saved_regs == NULL)
927 {
928 /* zalloc memsets the saved regs */
929 frame_saved_regs_zalloc (fi);
930 if (fi->pc)
931 {
932 quick = (fi->extra_info && fi->extra_info->initialised
933 && fi->extra_info->good_prologue);
934 s390_get_frame_info (quick ? fi->extra_info->function_start :
935 s390_sniff_pc_function_start (fi->pc, fi),
936 fi->extra_info, fi, !quick);
937 }
938 }
939}
940
941
942
943CORE_ADDR
944s390_frame_args_address (struct frame_info *fi)
945{
946
947 /* Apparently gdb already knows gdb_args_offset itself */
948 return fi->frame;
949}
950
951
952static CORE_ADDR
953s390_frame_saved_pc_nofix (struct frame_info *fi)
954{
955 if (fi->extra_info && fi->extra_info->saved_pc_valid)
956 return fi->extra_info->saved_pc;
5c3cf190 957
da130f98 958 if (deprecated_generic_find_dummy_frame (fi->pc, fi->frame))
135c175f 959 return deprecated_read_register_dummy (fi->pc, fi->frame, S390_PC_REGNUM);
5c3cf190 960
5769d3cd
AC
961 s390_frame_init_saved_regs (fi);
962 if (fi->extra_info)
963 {
964 fi->extra_info->saved_pc_valid = 1;
529765f4
JB
965 if (fi->extra_info->good_prologue
966 && fi->saved_regs[S390_RETADDR_REGNUM])
967 fi->extra_info->saved_pc
968 = ADDR_BITS_REMOVE (read_memory_integer
969 (fi->saved_regs[S390_RETADDR_REGNUM],
970 S390_GPR_SIZE));
971 else
972 fi->extra_info->saved_pc
973 = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
974 return fi->extra_info->saved_pc;
5769d3cd
AC
975 }
976 return 0;
977}
978
979CORE_ADDR
980s390_frame_saved_pc (struct frame_info *fi)
981{
982 CORE_ADDR saved_pc = 0, sig_pc;
983
984 if (fi->extra_info && fi->extra_info->sig_fixed_saved_pc_valid)
985 return fi->extra_info->sig_fixed_saved_pc;
986 saved_pc = s390_frame_saved_pc_nofix (fi);
987
988 if (fi->extra_info)
989 {
990 fi->extra_info->sig_fixed_saved_pc_valid = 1;
991 if (saved_pc)
992 {
993 if (s390_is_sigreturn (saved_pc, fi, NULL, &sig_pc))
994 saved_pc = sig_pc;
995 }
996 fi->extra_info->sig_fixed_saved_pc = saved_pc;
997 }
998 return saved_pc;
999}
1000
1001
1002
1003
5a203e44
AC
1004/* We want backtraces out of signal handlers so we don't set
1005 (get_frame_type (thisframe) == SIGTRAMP_FRAME) to 1 */
5769d3cd
AC
1006
1007CORE_ADDR
1008s390_frame_chain (struct frame_info *thisframe)
1009{
1010 CORE_ADDR prev_fp = 0;
1011
da130f98 1012 if (deprecated_generic_find_dummy_frame (thisframe->pc, thisframe->frame))
135c175f
AC
1013 return deprecated_read_register_dummy (thisframe->pc, thisframe->frame,
1014 S390_SP_REGNUM);
5769d3cd
AC
1015 else
1016 {
1017 int sigreturn = 0;
1018 CORE_ADDR sregs = 0;
1019 struct frame_extra_info prev_fextra_info;
1020
1021 memset (&prev_fextra_info, 0, sizeof (prev_fextra_info));
1022 if (thisframe->pc)
1023 {
1024 CORE_ADDR saved_pc, sig_pc;
1025
1026 saved_pc = s390_frame_saved_pc_nofix (thisframe);
1027 if (saved_pc)
1028 {
1029 if ((sigreturn =
1030 s390_is_sigreturn (saved_pc, thisframe, &sregs, &sig_pc)))
1031 saved_pc = sig_pc;
1032 s390_get_frame_info (s390_sniff_pc_function_start
1033 (saved_pc, NULL), &prev_fextra_info, NULL,
1034 1);
1035 }
1036 }
1037 if (sigreturn)
1038 {
1039 /* read sigregs,regs.gprs[11 or 15] */
1040 prev_fp = read_memory_integer (sregs +
1041 REGISTER_BYTE (S390_GP0_REGNUM +
1042 (prev_fextra_info.
1043 frame_pointer_saved_pc
1044 ? 11 : 15)),
1045 S390_GPR_SIZE);
1046 thisframe->extra_info->sigcontext = sregs;
1047 }
1048 else
1049 {
1050 if (thisframe->saved_regs)
1051 {
5769d3cd
AC
1052 int regno;
1053
31c4d430
JB
1054 if (prev_fextra_info.frame_pointer_saved_pc
1055 && thisframe->saved_regs[S390_FRAME_REGNUM])
1056 regno = S390_FRAME_REGNUM;
1057 else
1058 regno = S390_SP_REGNUM;
1059
5769d3cd 1060 if (thisframe->saved_regs[regno])
31c4d430
JB
1061 {
1062 /* The SP's entry of `saved_regs' is special. */
1063 if (regno == S390_SP_REGNUM)
1064 prev_fp = thisframe->saved_regs[regno];
1065 else
1066 prev_fp =
1067 read_memory_integer (thisframe->saved_regs[regno],
1068 S390_GPR_SIZE);
1069 }
5769d3cd
AC
1070 }
1071 }
1072 }
1073 return ADDR_BITS_REMOVE (prev_fp);
1074}
1075
1076/*
1077 Whether struct frame_extra_info is actually needed I'll have to figure
1078 out as our frames are similar to rs6000 there is a possibility
1079 i386 dosen't need it. */
1080
1081
1082
1083/* a given return value in `regbuf' with a type `valtype', extract and copy its
1084 value into `valbuf' */
1085void
1086s390_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1087{
1088 /* floats and doubles are returned in fpr0. fpr's have a size of 8 bytes.
1089 We need to truncate the return value into float size (4 byte) if
1090 necessary. */
1091 int len = TYPE_LENGTH (valtype);
1092
1093 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
f2c6cfba 1094 memcpy (valbuf, &regbuf[REGISTER_BYTE (S390_FP0_REGNUM)], len);
5769d3cd
AC
1095 else
1096 {
1097 int offset = 0;
1098 /* return value is copied starting from r2. */
1099 if (TYPE_LENGTH (valtype) < S390_GPR_SIZE)
1100 offset = S390_GPR_SIZE - TYPE_LENGTH (valtype);
1101 memcpy (valbuf,
1102 regbuf + REGISTER_BYTE (S390_GP0_REGNUM + 2) + offset,
1103 TYPE_LENGTH (valtype));
1104 }
1105}
1106
1107
1108static char *
1109s390_promote_integer_argument (struct type *valtype, char *valbuf,
1110 char *reg_buff, int *arglen)
1111{
1112 char *value = valbuf;
1113 int len = TYPE_LENGTH (valtype);
1114
1115 if (len < S390_GPR_SIZE)
1116 {
1117 /* We need to upgrade this value to a register to pass it correctly */
1118 int idx, diff = S390_GPR_SIZE - len, negative =
1119 (!TYPE_UNSIGNED (valtype) && value[0] & 0x80);
1120 for (idx = 0; idx < S390_GPR_SIZE; idx++)
1121 {
1122 reg_buff[idx] = (idx < diff ? (negative ? 0xff : 0x0) :
1123 value[idx - diff]);
1124 }
1125 value = reg_buff;
1126 *arglen = S390_GPR_SIZE;
1127 }
1128 else
1129 {
1130 if (len & (S390_GPR_SIZE - 1))
1131 {
1132 fprintf_unfiltered (gdb_stderr,
1133 "s390_promote_integer_argument detected an argument not "
1134 "a multiple of S390_GPR_SIZE & greater than S390_GPR_SIZE "
1135 "we might not deal with this correctly.\n");
1136 }
1137 *arglen = len;
1138 }
1139
1140 return (value);
1141}
1142
1143void
1144s390_store_return_value (struct type *valtype, char *valbuf)
1145{
1146 int arglen;
1147 char *reg_buff = alloca (max (S390_FPR_SIZE, REGISTER_SIZE)), *value;
1148
1149 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1150 {
03a013f4
JB
1151 if (TYPE_LENGTH (valtype) == 4
1152 || TYPE_LENGTH (valtype) == 8)
73937e03
AC
1153 deprecated_write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM),
1154 valbuf, TYPE_LENGTH (valtype));
03a013f4
JB
1155 else
1156 error ("GDB is unable to return `long double' values "
1157 "on this architecture.");
5769d3cd
AC
1158 }
1159 else
1160 {
1161 value =
1162 s390_promote_integer_argument (valtype, valbuf, reg_buff, &arglen);
1163 /* Everything else is returned in GPR2 and up. */
73937e03
AC
1164 deprecated_write_register_bytes (REGISTER_BYTE (S390_GP0_REGNUM + 2),
1165 value, arglen);
5769d3cd
AC
1166 }
1167}
1168static int
1169gdb_print_insn_s390 (bfd_vma memaddr, disassemble_info * info)
1170{
1171 bfd_byte instrbuff[S390_MAX_INSTR_SIZE];
1172 int instrlen, cnt;
1173
1174 instrlen = s390_readinstruction (instrbuff, (CORE_ADDR) memaddr, info);
1175 if (instrlen < 0)
1176 {
1177 (*info->memory_error_func) (instrlen, memaddr, info);
1178 return -1;
1179 }
1180 for (cnt = 0; cnt < instrlen; cnt++)
1181 info->fprintf_func (info->stream, "%02X ", instrbuff[cnt]);
1182 for (cnt = instrlen; cnt < S390_MAX_INSTR_SIZE; cnt++)
1183 info->fprintf_func (info->stream, " ");
1184 instrlen = print_insn_s390 (memaddr, info);
1185 return instrlen;
1186}
1187
1188
1189
1190/* Not the most efficent code in the world */
1191int
5ae5f592 1192s390_fp_regnum (void)
5769d3cd
AC
1193{
1194 int regno = S390_SP_REGNUM;
1195 struct frame_extra_info fextra_info;
1196
1197 CORE_ADDR pc = ADDR_BITS_REMOVE (read_register (S390_PC_REGNUM));
1198
1199 s390_get_frame_info (s390_sniff_pc_function_start (pc, NULL), &fextra_info,
1200 NULL, 1);
1201 if (fextra_info.frame_pointer_saved_pc)
1202 regno = S390_FRAME_REGNUM;
1203 return regno;
1204}
1205
1206CORE_ADDR
5ae5f592 1207s390_read_fp (void)
5769d3cd
AC
1208{
1209 return read_register (s390_fp_regnum ());
1210}
1211
1212
4c8287ac
JB
1213static void
1214s390_pop_frame_regular (struct frame_info *frame)
5769d3cd 1215{
4c8287ac
JB
1216 int regnum;
1217
1218 write_register (S390_PC_REGNUM, FRAME_SAVED_PC (frame));
1219
1220 /* Restore any saved registers. */
1a889ea5
JB
1221 if (frame->saved_regs)
1222 {
1223 for (regnum = 0; regnum < NUM_REGS; regnum++)
1224 if (frame->saved_regs[regnum] != 0)
1225 {
1226 ULONGEST value;
1227
1228 value = read_memory_unsigned_integer (frame->saved_regs[regnum],
1229 REGISTER_RAW_SIZE (regnum));
1230 write_register (regnum, value);
1231 }
1232
1233 /* Actually cut back the stack. Remember that the SP's element of
1234 saved_regs is the old SP itself, not the address at which it is
1235 saved. */
1236 write_register (S390_SP_REGNUM, frame->saved_regs[S390_SP_REGNUM]);
1237 }
5769d3cd 1238
4c8287ac
JB
1239 /* Throw away any cached frame information. */
1240 flush_cached_frames ();
5769d3cd
AC
1241}
1242
4c8287ac
JB
1243
1244/* Destroy the innermost (Top-Of-Stack) stack frame, restoring the
1245 machine state that was in effect before the frame was created.
1246 Used in the contexts of the "return" command, and of
1247 target function calls from the debugger. */
1248void
5ae5f592 1249s390_pop_frame (void)
4c8287ac
JB
1250{
1251 /* This function checks for and handles generic dummy frames, and
1252 calls back to our function for ordinary frames. */
1253 generic_pop_current_frame (s390_pop_frame_regular);
1254}
1255
1256
78f8b424
JB
1257/* Return non-zero if TYPE is an integer-like type, zero otherwise.
1258 "Integer-like" types are those that should be passed the way
1259 integers are: integers, enums, ranges, characters, and booleans. */
1260static int
1261is_integer_like (struct type *type)
1262{
1263 enum type_code code = TYPE_CODE (type);
1264
1265 return (code == TYPE_CODE_INT
1266 || code == TYPE_CODE_ENUM
1267 || code == TYPE_CODE_RANGE
1268 || code == TYPE_CODE_CHAR
1269 || code == TYPE_CODE_BOOL);
1270}
1271
1272
1273/* Return non-zero if TYPE is a pointer-like type, zero otherwise.
1274 "Pointer-like" types are those that should be passed the way
1275 pointers are: pointers and references. */
1276static int
1277is_pointer_like (struct type *type)
1278{
1279 enum type_code code = TYPE_CODE (type);
1280
1281 return (code == TYPE_CODE_PTR
1282 || code == TYPE_CODE_REF);
1283}
1284
1285
20a940cc
JB
1286/* Return non-zero if TYPE is a `float singleton' or `double
1287 singleton', zero otherwise.
1288
1289 A `T singleton' is a struct type with one member, whose type is
1290 either T or a `T singleton'. So, the following are all float
1291 singletons:
1292
1293 struct { float x };
1294 struct { struct { float x; } x; };
1295 struct { struct { struct { float x; } x; } x; };
1296
1297 ... and so on.
1298
1299 WHY THE HECK DO WE CARE ABOUT THIS??? Well, it turns out that GCC
1300 passes all float singletons and double singletons as if they were
1301 simply floats or doubles. This is *not* what the ABI says it
1302 should do. */
1303static int
1304is_float_singleton (struct type *type)
1305{
1306 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
1307 && TYPE_NFIELDS (type) == 1
1308 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT
1309 || is_float_singleton (TYPE_FIELD_TYPE (type, 0))));
1310}
1311
1312
1313/* Return non-zero if TYPE is a struct-like type, zero otherwise.
1314 "Struct-like" types are those that should be passed as structs are:
1315 structs and unions.
1316
1317 As an odd quirk, not mentioned in the ABI, GCC passes float and
1318 double singletons as if they were a plain float, double, etc. (The
1319 corresponding union types are handled normally.) So we exclude
1320 those types here. *shrug* */
1321static int
1322is_struct_like (struct type *type)
1323{
1324 enum type_code code = TYPE_CODE (type);
1325
1326 return (code == TYPE_CODE_UNION
1327 || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
1328}
1329
1330
1331/* Return non-zero if TYPE is a float-like type, zero otherwise.
1332 "Float-like" types are those that should be passed as
1333 floating-point values are.
1334
1335 You'd think this would just be floats, doubles, long doubles, etc.
1336 But as an odd quirk, not mentioned in the ABI, GCC passes float and
1337 double singletons as if they were a plain float, double, etc. (The
1338 corresponding union types are handled normally.) So we exclude
1339 those types here. *shrug* */
1340static int
1341is_float_like (struct type *type)
1342{
1343 return (TYPE_CODE (type) == TYPE_CODE_FLT
1344 || is_float_singleton (type));
1345}
1346
1347
78f8b424
JB
1348/* Return non-zero if TYPE is considered a `DOUBLE_OR_FLOAT', as
1349 defined by the parameter passing conventions described in the
ca557f44 1350 "GNU/Linux for S/390 ELF Application Binary Interface Supplement".
78f8b424
JB
1351 Otherwise, return zero. */
1352static int
1353is_double_or_float (struct type *type)
1354{
20a940cc 1355 return (is_float_like (type)
78f8b424
JB
1356 && (TYPE_LENGTH (type) == 4
1357 || TYPE_LENGTH (type) == 8));
1358}
1359
5769d3cd 1360
78f8b424 1361/* Return non-zero if TYPE is considered a `SIMPLE_ARG', as defined by
ca557f44
AC
1362 the parameter passing conventions described in the "GNU/Linux for
1363 S/390 ELF Application Binary Interface Supplement". Return zero
1364 otherwise. */
78f8b424
JB
1365static int
1366is_simple_arg (struct type *type)
1367{
78f8b424
JB
1368 unsigned length = TYPE_LENGTH (type);
1369
a1677dfb
JB
1370 /* This is almost a direct translation of the ABI's language, except
1371 that we have to exclude 8-byte structs; those are DOUBLE_ARGs. */
78f8b424
JB
1372 return ((is_integer_like (type) && length <= 4)
1373 || is_pointer_like (type)
20a940cc
JB
1374 || (is_struct_like (type) && length != 8)
1375 || (is_float_like (type) && length == 16));
78f8b424
JB
1376}
1377
1378
1379/* Return non-zero if TYPE should be passed as a pointer to a copy,
1380 zero otherwise. TYPE must be a SIMPLE_ARG, as recognized by
1381 `is_simple_arg'. */
1382static int
1383pass_by_copy_ref (struct type *type)
1384{
78f8b424
JB
1385 unsigned length = TYPE_LENGTH (type);
1386
20a940cc
JB
1387 return ((is_struct_like (type) && length != 1 && length != 2 && length != 4)
1388 || (is_float_like (type) && length == 16));
78f8b424
JB
1389}
1390
1391
1392/* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
1393 word as required for the ABI. */
1394static LONGEST
1395extend_simple_arg (struct value *arg)
1396{
1397 struct type *type = VALUE_TYPE (arg);
1398
1399 /* Even structs get passed in the least significant bits of the
1400 register / memory word. It's not really right to extract them as
1401 an integer, but it does take care of the extension. */
1402 if (TYPE_UNSIGNED (type))
1403 return extract_unsigned_integer (VALUE_CONTENTS (arg),
1404 TYPE_LENGTH (type));
1405 else
1406 return extract_signed_integer (VALUE_CONTENTS (arg),
1407 TYPE_LENGTH (type));
1408}
1409
1410
1411/* Return non-zero if TYPE is a `DOUBLE_ARG', as defined by the
ca557f44
AC
1412 parameter passing conventions described in the "GNU/Linux for S/390
1413 ELF Application Binary Interface Supplement". Return zero
1414 otherwise. */
78f8b424
JB
1415static int
1416is_double_arg (struct type *type)
1417{
78f8b424
JB
1418 unsigned length = TYPE_LENGTH (type);
1419
1420 return ((is_integer_like (type)
20a940cc 1421 || is_struct_like (type))
78f8b424
JB
1422 && length == 8);
1423}
1424
1425
1426/* Round ADDR up to the next N-byte boundary. N must be a power of
1427 two. */
1428static CORE_ADDR
1429round_up (CORE_ADDR addr, int n)
1430{
1431 /* Check that N is really a power of two. */
1432 gdb_assert (n && (n & (n-1)) == 0);
1433 return ((addr + n - 1) & -n);
1434}
1435
1436
1437/* Round ADDR down to the next N-byte boundary. N must be a power of
1438 two. */
1439static CORE_ADDR
1440round_down (CORE_ADDR addr, int n)
1441{
1442 /* Check that N is really a power of two. */
1443 gdb_assert (n && (n & (n-1)) == 0);
1444 return (addr & -n);
1445}
1446
1447
1448/* Return the alignment required by TYPE. */
1449static int
1450alignment_of (struct type *type)
1451{
1452 int alignment;
1453
1454 if (is_integer_like (type)
1455 || is_pointer_like (type)
1456 || TYPE_CODE (type) == TYPE_CODE_FLT)
1457 alignment = TYPE_LENGTH (type);
1458 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1459 || TYPE_CODE (type) == TYPE_CODE_UNION)
1460 {
1461 int i;
1462
1463 alignment = 1;
1464 for (i = 0; i < TYPE_NFIELDS (type); i++)
1465 {
1466 int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));
1467
1468 if (field_alignment > alignment)
1469 alignment = field_alignment;
1470 }
1471 }
1472 else
1473 alignment = 1;
1474
1475 /* Check that everything we ever return is a power of two. Lots of
1476 code doesn't want to deal with aligning things to arbitrary
1477 boundaries. */
1478 gdb_assert ((alignment & (alignment - 1)) == 0);
1479
1480 return alignment;
1481}
1482
1483
1484/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
ca557f44
AC
1485 place to be passed to a function, as specified by the "GNU/Linux
1486 for S/390 ELF Application Binary Interface Supplement".
78f8b424
JB
1487
1488 SP is the current stack pointer. We must put arguments, links,
1489 padding, etc. whereever they belong, and return the new stack
1490 pointer value.
1491
1492 If STRUCT_RETURN is non-zero, then the function we're calling is
1493 going to return a structure by value; STRUCT_ADDR is the address of
1494 a block we've allocated for it on the stack.
1495
1496 Our caller has taken care of any type promotions needed to satisfy
1497 prototypes or the old K&R argument-passing rules. */
5769d3cd 1498CORE_ADDR
d45fc520 1499s390_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
5769d3cd
AC
1500 int struct_return, CORE_ADDR struct_addr)
1501{
78f8b424
JB
1502 int i;
1503 int pointer_size = (TARGET_PTR_BIT / TARGET_CHAR_BIT);
5769d3cd 1504
78f8b424
JB
1505 /* The number of arguments passed by reference-to-copy. */
1506 int num_copies;
5769d3cd 1507
78f8b424
JB
1508 /* If the i'th argument is passed as a reference to a copy, then
1509 copy_addr[i] is the address of the copy we made. */
1510 CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
5769d3cd 1511
78f8b424
JB
1512 /* Build the reference-to-copy area. */
1513 num_copies = 0;
1514 for (i = 0; i < nargs; i++)
1515 {
1516 struct value *arg = args[i];
1517 struct type *type = VALUE_TYPE (arg);
1518 unsigned length = TYPE_LENGTH (type);
5769d3cd 1519
78f8b424
JB
1520 if (is_simple_arg (type)
1521 && pass_by_copy_ref (type))
01c464e9 1522 {
78f8b424
JB
1523 sp -= length;
1524 sp = round_down (sp, alignment_of (type));
1525 write_memory (sp, VALUE_CONTENTS (arg), length);
1526 copy_addr[i] = sp;
1527 num_copies++;
01c464e9 1528 }
5769d3cd 1529 }
5769d3cd 1530
78f8b424
JB
1531 /* Reserve space for the parameter area. As a conservative
1532 simplification, we assume that everything will be passed on the
1533 stack. */
1534 {
1535 int i;
1536
1537 for (i = 0; i < nargs; i++)
1538 {
1539 struct value *arg = args[i];
1540 struct type *type = VALUE_TYPE (arg);
1541 int length = TYPE_LENGTH (type);
1542
1543 sp = round_down (sp, alignment_of (type));
1544
1545 /* SIMPLE_ARG values get extended to 32 bits. Assume every
1546 argument is. */
1547 if (length < 4) length = 4;
1548 sp -= length;
1549 }
1550 }
1551
1552 /* Include space for any reference-to-copy pointers. */
1553 sp = round_down (sp, pointer_size);
1554 sp -= num_copies * pointer_size;
1555
1556 /* After all that, make sure it's still aligned on an eight-byte
1557 boundary. */
1558 sp = round_down (sp, 8);
1559
1560 /* Finally, place the actual parameters, working from SP towards
1561 higher addresses. The code above is supposed to reserve enough
1562 space for this. */
1563 {
1564 int fr = 0;
1565 int gr = 2;
1566 CORE_ADDR starg = sp;
1567
1568 for (i = 0; i < nargs; i++)
1569 {
1570 struct value *arg = args[i];
1571 struct type *type = VALUE_TYPE (arg);
1572
1573 if (is_double_or_float (type)
1574 && fr <= 2)
1575 {
1576 /* When we store a single-precision value in an FP register,
1577 it occupies the leftmost bits. */
73937e03
AC
1578 deprecated_write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM + fr),
1579 VALUE_CONTENTS (arg),
1580 TYPE_LENGTH (type));
78f8b424
JB
1581 fr += 2;
1582 }
1583 else if (is_simple_arg (type)
1584 && gr <= 6)
1585 {
1586 /* Do we need to pass a pointer to our copy of this
1587 argument? */
1588 if (pass_by_copy_ref (type))
1589 write_register (S390_GP0_REGNUM + gr, copy_addr[i]);
1590 else
1591 write_register (S390_GP0_REGNUM + gr, extend_simple_arg (arg));
1592
1593 gr++;
1594 }
1595 else if (is_double_arg (type)
1596 && gr <= 5)
1597 {
4caf0990
AC
1598 deprecated_write_register_gen (S390_GP0_REGNUM + gr,
1599 VALUE_CONTENTS (arg));
1600 deprecated_write_register_gen (S390_GP0_REGNUM + gr + 1,
1601 VALUE_CONTENTS (arg) + 4);
78f8b424
JB
1602 gr += 2;
1603 }
1604 else
1605 {
1606 /* The `OTHER' case. */
1607 enum type_code code = TYPE_CODE (type);
1608 unsigned length = TYPE_LENGTH (type);
1609
1610 /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
1611 in it, then don't go back and use it again later. */
1612 if (is_double_arg (type) && gr == 6)
1613 gr = 7;
1614
1615 if (is_simple_arg (type))
1616 {
1617 /* Simple args are always either extended to 32 bits,
1618 or pointers. */
1619 starg = round_up (starg, 4);
1620
1621 /* Do we need to pass a pointer to our copy of this
1622 argument? */
1623 if (pass_by_copy_ref (type))
1624 write_memory_signed_integer (starg, pointer_size,
1625 copy_addr[i]);
1626 else
1627 /* Simple args are always extended to 32 bits. */
1628 write_memory_signed_integer (starg, 4,
1629 extend_simple_arg (arg));
1630 starg += 4;
1631 }
1632 else
1633 {
20a940cc
JB
1634 /* You'd think we should say:
1635 starg = round_up (starg, alignment_of (type));
1636 Unfortunately, GCC seems to simply align the stack on
1637 a four-byte boundary, even when passing doubles. */
1638 starg = round_up (starg, 4);
78f8b424
JB
1639 write_memory (starg, VALUE_CONTENTS (arg), length);
1640 starg += length;
1641 }
1642 }
1643 }
1644 }
1645
1646 /* Allocate the standard frame areas: the register save area, the
1647 word reserved for the compiler (which seems kind of meaningless),
1648 and the back chain pointer. */
1649 sp -= 96;
1650
1651 /* Write the back chain pointer into the first word of the stack
1652 frame. This will help us get backtraces from within functions
1653 called from GDB. */
1654 write_memory_unsigned_integer (sp, (TARGET_PTR_BIT / TARGET_CHAR_BIT),
1655 read_fp ());
1656
1657 return sp;
5769d3cd
AC
1658}
1659
c8f9d51c
JB
1660
1661static int
1662s390_use_struct_convention (int gcc_p, struct type *value_type)
1663{
1664 enum type_code code = TYPE_CODE (value_type);
1665
1666 return (code == TYPE_CODE_STRUCT
1667 || code == TYPE_CODE_UNION);
1668}
1669
1670
5769d3cd
AC
1671/* Return the GDB type object for the "standard" data type
1672 of data in register N. */
1673struct type *
1674s390_register_virtual_type (int regno)
1675{
b09677dc
JB
1676 if (S390_FP0_REGNUM <= regno && regno < S390_FP0_REGNUM + S390_NUM_FPRS)
1677 return builtin_type_double;
1678 else
1679 return builtin_type_int;
5769d3cd
AC
1680}
1681
1682
1683struct type *
1684s390x_register_virtual_type (int regno)
1685{
1686 return (regno == S390_FPC_REGNUM) ||
1687 (regno >= S390_FIRST_ACR && regno <= S390_LAST_ACR) ? builtin_type_int :
1688 (regno >= S390_FP0_REGNUM) ? builtin_type_double : builtin_type_long;
1689}
1690
1691
1692
1693void
1694s390_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1695{
1696 write_register (S390_GP0_REGNUM + 2, addr);
1697}
1698
1699
1700
f4f9705a 1701const static unsigned char *
5769d3cd
AC
1702s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1703{
1704 static unsigned char breakpoint[] = { 0x0, 0x1 };
1705
1706 *lenptr = sizeof (breakpoint);
1707 return breakpoint;
1708}
1709
1710/* Advance PC across any function entry prologue instructions to reach some
1711 "real" code. */
1712CORE_ADDR
1713s390_skip_prologue (CORE_ADDR pc)
1714{
1715 struct frame_extra_info fextra_info;
1716
1717 s390_get_frame_info (pc, &fextra_info, NULL, 1);
1718 return fextra_info.skip_prologue_function_start;
1719}
1720
5769d3cd
AC
1721/* Immediately after a function call, return the saved pc.
1722 Can't go through the frames for this because on some machines
1723 the new frame is not set up until the new function executes
1724 some instructions. */
1725CORE_ADDR
1726s390_saved_pc_after_call (struct frame_info *frame)
1727{
1728 return ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
1729}
1730
1731static CORE_ADDR
1732s390_addr_bits_remove (CORE_ADDR addr)
1733{
1734 return (addr) & 0x7fffffff;
1735}
1736
1737
1738static CORE_ADDR
1739s390_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1740{
d4d0c21e 1741 write_register (S390_RETADDR_REGNUM, CALL_DUMMY_ADDRESS ());
5769d3cd
AC
1742 return sp;
1743}
1744
1745struct gdbarch *
1746s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1747{
d4d0c21e 1748 static LONGEST s390_call_dummy_words[] = { 0 };
5769d3cd
AC
1749 struct gdbarch *gdbarch;
1750 struct gdbarch_tdep *tdep;
1751 int elf_flags;
1752
1753 /* First see if there is already a gdbarch that can satisfy the request. */
1754 arches = gdbarch_list_lookup_by_info (arches, &info);
1755 if (arches != NULL)
1756 return arches->gdbarch;
1757
1758 /* None found: is the request for a s390 architecture? */
1759 if (info.bfd_arch_info->arch != bfd_arch_s390)
1760 return NULL; /* No; then it's not for us. */
1761
1762 /* Yes: create a new gdbarch for the specified machine type. */
1763 gdbarch = gdbarch_alloc (&info, NULL);
1764
1765 set_gdbarch_believe_pcc_promotion (gdbarch, 0);
4e409299 1766 set_gdbarch_char_signed (gdbarch, 0);
5769d3cd 1767
5769d3cd
AC
1768 set_gdbarch_frame_args_skip (gdbarch, 0);
1769 set_gdbarch_frame_args_address (gdbarch, s390_frame_args_address);
1770 set_gdbarch_frame_chain (gdbarch, s390_frame_chain);
1771 set_gdbarch_frame_init_saved_regs (gdbarch, s390_frame_init_saved_regs);
1772 set_gdbarch_frame_locals_address (gdbarch, s390_frame_args_address);
1773 /* We can't do this */
1774 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1775 set_gdbarch_store_struct_return (gdbarch, s390_store_struct_return);
26e9b323 1776 set_gdbarch_deprecated_extract_return_value (gdbarch, s390_extract_return_value);
ebba8386 1777 set_gdbarch_deprecated_store_return_value (gdbarch, s390_store_return_value);
5769d3cd
AC
1778 /* Amount PC must be decremented by after a breakpoint.
1779 This is often the number of bytes in BREAKPOINT
1780 but not always. */
1781 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1782 set_gdbarch_pop_frame (gdbarch, s390_pop_frame);
5769d3cd
AC
1783 /* Stack grows downward. */
1784 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1785 /* Offset from address of function to start of its code.
1786 Zero on most machines. */
1787 set_gdbarch_function_start_offset (gdbarch, 0);
1788 set_gdbarch_max_register_raw_size (gdbarch, 8);
1789 set_gdbarch_max_register_virtual_size (gdbarch, 8);
1790 set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
1791 set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
1792 set_gdbarch_init_extra_frame_info (gdbarch, s390_init_extra_frame_info);
1793 set_gdbarch_init_frame_pc_first (gdbarch, s390_init_frame_pc_first);
1794 set_gdbarch_read_fp (gdbarch, s390_read_fp);
5769d3cd
AC
1795 /* This function that tells us whether the function invocation represented
1796 by FI does not have a frame on the stack associated with it. If it
1797 does not, FRAMELESS is set to 1, else 0. */
1798 set_gdbarch_frameless_function_invocation (gdbarch,
1799 s390_frameless_function_invocation);
1800 /* Return saved PC from a frame */
1801 set_gdbarch_frame_saved_pc (gdbarch, s390_frame_saved_pc);
1802 /* FRAME_CHAIN takes a frame's nominal address
1803 and produces the frame's chain-pointer. */
1804 set_gdbarch_frame_chain (gdbarch, s390_frame_chain);
1805 set_gdbarch_saved_pc_after_call (gdbarch, s390_saved_pc_after_call);
1806 set_gdbarch_register_byte (gdbarch, s390_register_byte);
1807 set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM);
1808 set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
1809 set_gdbarch_fp_regnum (gdbarch, S390_FP_REGNUM);
1810 set_gdbarch_fp0_regnum (gdbarch, S390_FP0_REGNUM);
1811 set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
1812 set_gdbarch_cannot_fetch_register (gdbarch, s390_cannot_fetch_register);
1813 set_gdbarch_cannot_store_register (gdbarch, s390_cannot_fetch_register);
c8f9d51c 1814 set_gdbarch_use_struct_convention (gdbarch, s390_use_struct_convention);
8001d1e4 1815 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
5769d3cd
AC
1816 set_gdbarch_register_name (gdbarch, s390_register_name);
1817 set_gdbarch_stab_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
1818 set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
1819 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
26e9b323 1820 set_gdbarch_deprecated_extract_struct_value_address
c8f9d51c 1821 (gdbarch, generic_cannot_extract_struct_value_address);
5769d3cd 1822
d4d0c21e 1823 /* Parameters for inferior function calls. */
5769d3cd 1824 set_gdbarch_call_dummy_p (gdbarch, 1);
d4d0c21e
JB
1825 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1826 set_gdbarch_call_dummy_length (gdbarch, 0);
1827 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1828 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1829 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1830 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1831 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1832 set_gdbarch_push_arguments (gdbarch, s390_push_arguments);
5c3cf190 1833 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
d4d0c21e
JB
1834 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1835 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
5769d3cd 1836 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
d4d0c21e 1837 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
5769d3cd 1838 set_gdbarch_push_return_address (gdbarch, s390_push_return_address);
d4d0c21e
JB
1839 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1840 sizeof (s390_call_dummy_words));
1841 set_gdbarch_call_dummy_words (gdbarch, s390_call_dummy_words);
0adb2aba
JB
1842 set_gdbarch_coerce_float_to_double (gdbarch,
1843 standard_coerce_float_to_double);
5769d3cd
AC
1844
1845 switch (info.bfd_arch_info->mach)
1846 {
b8b8b047 1847 case bfd_mach_s390_31:
5769d3cd 1848 set_gdbarch_register_size (gdbarch, 4);
5769d3cd
AC
1849 set_gdbarch_register_raw_size (gdbarch, s390_register_raw_size);
1850 set_gdbarch_register_virtual_size (gdbarch, s390_register_raw_size);
1851 set_gdbarch_register_virtual_type (gdbarch, s390_register_virtual_type);
1852
1853 set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
5769d3cd
AC
1854 set_gdbarch_register_bytes (gdbarch, S390_REGISTER_BYTES);
1855 break;
b8b8b047 1856 case bfd_mach_s390_64:
5769d3cd 1857 set_gdbarch_register_size (gdbarch, 8);
5769d3cd
AC
1858 set_gdbarch_register_raw_size (gdbarch, s390x_register_raw_size);
1859 set_gdbarch_register_virtual_size (gdbarch, s390x_register_raw_size);
1860 set_gdbarch_register_virtual_type (gdbarch,
1861 s390x_register_virtual_type);
1862
1863 set_gdbarch_long_bit (gdbarch, 64);
1864 set_gdbarch_long_long_bit (gdbarch, 64);
1865 set_gdbarch_ptr_bit (gdbarch, 64);
5769d3cd
AC
1866 set_gdbarch_register_bytes (gdbarch, S390X_REGISTER_BYTES);
1867 break;
1868 }
1869
1870 return gdbarch;
1871}
1872
1873
1874
1875void
5ae5f592 1876_initialize_s390_tdep (void)
5769d3cd
AC
1877{
1878
1879 /* Hook us into the gdbarch mechanism. */
1880 register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
1881 if (!tm_print_insn) /* Someone may have already set it */
1882 tm_print_insn = gdb_print_insn_s390;
1883}
1884
1885#endif /* GDBSERVER */