]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/sh64-tdep.c
Fix the x87 FP register printout when issuing the “info float” command.
[thirdparty/binutils-gdb.git] / gdb / sh64-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
cf5b2f1b 2
28e7fd62 3 Copyright (C) 1993-2013 Free Software Foundation, Inc.
55ff77ac
CV
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
55ff77ac
CV
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
55ff77ac 19
c378eb4e
MS
20/* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
55ff77ac
CV
22
23#include "defs.h"
24#include "frame.h"
c30dc700
CV
25#include "frame-base.h"
26#include "frame-unwind.h"
27#include "dwarf2-frame.h"
55ff77ac 28#include "symtab.h"
55ff77ac
CV
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "value.h"
33#include "dis-asm.h"
34#include "inferior.h"
35#include "gdb_string.h"
c30dc700 36#include "gdb_assert.h"
55ff77ac 37#include "arch-utils.h"
55ff77ac 38#include "regcache.h"
55ff77ac 39#include "osabi.h"
79a45b7d 40#include "valprint.h"
55ff77ac
CV
41
42#include "elf-bfd.h"
55ff77ac
CV
43
44/* sh flags */
45#include "elf/sh.h"
c378eb4e 46/* Register numbers shared with the simulator. */
55ff77ac 47#include "gdb/sim-sh.h"
d8ca156b 48#include "language.h"
04dcf5fa 49#include "sh64-tdep.h"
55ff77ac 50
7bb11558 51/* Information that is dependent on the processor variant. */
55ff77ac
CV
52enum sh_abi
53 {
54 SH_ABI_UNKNOWN,
55 SH_ABI_32,
56 SH_ABI_64
57 };
58
59struct gdbarch_tdep
60 {
61 enum sh_abi sh_abi;
62 };
63
c30dc700
CV
64struct sh64_frame_cache
65{
66 /* Base address. */
67 CORE_ADDR base;
68 LONGEST sp_offset;
69 CORE_ADDR pc;
70
c378eb4e 71 /* Flag showing that a frame has been created in the prologue code. */
c30dc700
CV
72 int uses_fp;
73
74 int media_mode;
75
76 /* Saved registers. */
77 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
78 CORE_ADDR saved_sp;
79};
80
55ff77ac
CV
81/* Registers of SH5 */
82enum
83 {
84 R0_REGNUM = 0,
85 DEFAULT_RETURN_REGNUM = 2,
86 STRUCT_RETURN_REGNUM = 2,
87 ARG0_REGNUM = 2,
88 ARGLAST_REGNUM = 9,
89 FLOAT_ARGLAST_REGNUM = 11,
c30dc700 90 MEDIA_FP_REGNUM = 14,
55ff77ac
CV
91 PR_REGNUM = 18,
92 SR_REGNUM = 65,
93 DR0_REGNUM = 141,
94 DR_LAST_REGNUM = 172,
95 /* FPP stands for Floating Point Pair, to avoid confusion with
3e8c568d 96 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
c378eb4e 97 point register. Unfortunately on the sh5, the floating point
7bb11558 98 registers are called FR, and the floating point pairs are called FP. */
55ff77ac
CV
99 FPP0_REGNUM = 173,
100 FPP_LAST_REGNUM = 204,
101 FV0_REGNUM = 205,
102 FV_LAST_REGNUM = 220,
103 R0_C_REGNUM = 221,
104 R_LAST_C_REGNUM = 236,
105 PC_C_REGNUM = 237,
106 GBR_C_REGNUM = 238,
107 MACH_C_REGNUM = 239,
108 MACL_C_REGNUM = 240,
109 PR_C_REGNUM = 241,
110 T_C_REGNUM = 242,
111 FPSCR_C_REGNUM = 243,
112 FPUL_C_REGNUM = 244,
113 FP0_C_REGNUM = 245,
114 FP_LAST_C_REGNUM = 260,
115 DR0_C_REGNUM = 261,
116 DR_LAST_C_REGNUM = 268,
117 FV0_C_REGNUM = 269,
118 FV_LAST_C_REGNUM = 272,
119 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
120 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
121 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
122 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
123 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
124 };
125
55ff77ac 126static const char *
d93859e2 127sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
55ff77ac
CV
128{
129 static char *register_names[] =
130 {
131 /* SH MEDIA MODE (ISA 32) */
132 /* general registers (64-bit) 0-63 */
133 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
134 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
135 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
136 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
137 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
138 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
139 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
140 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
141
142 /* pc (64-bit) 64 */
143 "pc",
144
145 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
146 "sr", "ssr", "spc",
147
c378eb4e 148 /* target registers (64-bit) 68-75 */
55ff77ac
CV
149 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
150
151 /* floating point state control register (32-bit) 76 */
152 "fpscr",
153
c378eb4e 154 /* single precision floating point registers (32-bit) 77-140 */
55ff77ac
CV
155 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
156 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
157 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
158 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
159 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
160 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
161 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
162 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
163
164 /* double precision registers (pseudo) 141-172 */
165 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
166 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
167 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
168 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
169
c378eb4e 170 /* floating point pairs (pseudo) 173-204 */
55ff77ac
CV
171 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
172 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
173 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
174 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
175
c378eb4e 176 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
55ff77ac
CV
177 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
178 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
179
c378eb4e 180 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
55ff77ac
CV
181 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
182 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
183 "pc_c",
184 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
185 "fpscr_c", "fpul_c",
c378eb4e
MS
186 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
187 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
188 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
189 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
190 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
191 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
55ff77ac 192 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
c378eb4e 193 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
55ff77ac
CV
194 };
195
196 if (reg_nr < 0)
197 return NULL;
198 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
199 return NULL;
200 return register_names[reg_nr];
201}
202
203#define NUM_PSEUDO_REGS_SH_MEDIA 80
204#define NUM_PSEUDO_REGS_SH_COMPACT 51
205
206/* Macros and functions for setting and testing a bit in a minimal
207 symbol that marks it as 32-bit function. The MSB of the minimal
f594e5e9 208 symbol's "info" field is used for this purpose.
55ff77ac 209
95f1da47
UW
210 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
211 i.e. refers to a 32-bit function, and sets a "special" bit in a
55ff77ac 212 minimal symbol to mark it as a 32-bit function
f594e5e9 213 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
55ff77ac
CV
214
215#define MSYMBOL_IS_SPECIAL(msym) \
b887350f 216 MSYMBOL_TARGET_FLAG_1 (msym)
55ff77ac
CV
217
218static void
219sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
220{
221 if (msym == NULL)
222 return;
223
224 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
225 {
b887350f 226 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
55ff77ac
CV
227 SYMBOL_VALUE_ADDRESS (msym) |= 1;
228 }
229}
230
231/* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
232 are some macros to test, set, or clear bit 0 of addresses. */
233#define IS_ISA32_ADDR(addr) ((addr) & 1)
234#define MAKE_ISA32_ADDR(addr) ((addr) | 1)
235#define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
236
237static int
238pc_is_isa32 (bfd_vma memaddr)
239{
7cbd4a93 240 struct bound_minimal_symbol sym;
55ff77ac
CV
241
242 /* If bit 0 of the address is set, assume this is a
7bb11558 243 ISA32 (shmedia) address. */
55ff77ac
CV
244 if (IS_ISA32_ADDR (memaddr))
245 return 1;
246
247 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
248 the high bit of the info field. Use this to decide if the function is
249 ISA16 or ISA32. */
250 sym = lookup_minimal_symbol_by_pc (memaddr);
7cbd4a93
TT
251 if (sym.minsym)
252 return MSYMBOL_IS_SPECIAL (sym.minsym);
55ff77ac
CV
253 else
254 return 0;
255}
256
257static const unsigned char *
c378eb4e
MS
258sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
259 CORE_ADDR *pcptr, int *lenptr)
55ff77ac
CV
260{
261 /* The BRK instruction for shmedia is
262 01101111 11110101 11111111 11110000
263 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
264 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
265
266 /* The BRK instruction for shcompact is
267 00000000 00111011
268 which translates in big endian mode to 0x0, 0x3b
c378eb4e 269 and in little endian mode to 0x3b, 0x0 */
55ff77ac 270
67d57894 271 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
272 {
273 if (pc_is_isa32 (*pcptr))
274 {
c378eb4e
MS
275 static unsigned char big_breakpoint_media[] = {
276 0x6f, 0xf5, 0xff, 0xf0
277 };
55ff77ac
CV
278 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
279 *lenptr = sizeof (big_breakpoint_media);
280 return big_breakpoint_media;
281 }
282 else
283 {
284 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
285 *lenptr = sizeof (big_breakpoint_compact);
286 return big_breakpoint_compact;
287 }
288 }
289 else
290 {
291 if (pc_is_isa32 (*pcptr))
292 {
c378eb4e
MS
293 static unsigned char little_breakpoint_media[] = {
294 0xf0, 0xff, 0xf5, 0x6f
295 };
55ff77ac
CV
296 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
297 *lenptr = sizeof (little_breakpoint_media);
298 return little_breakpoint_media;
299 }
300 else
301 {
302 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
303 *lenptr = sizeof (little_breakpoint_compact);
304 return little_breakpoint_compact;
305 }
306 }
307}
308
309/* Prologue looks like
310 [mov.l <regs>,@-r15]...
311 [sts.l pr,@-r15]
312 [mov.l r14,@-r15]
313 [mov r15,r14]
314
315 Actually it can be more complicated than this. For instance, with
316 newer gcc's:
317
318 mov.l r14,@-r15
319 add #-12,r15
320 mov r15,r14
321 mov r4,r1
322 mov r5,r2
323 mov.l r6,@(4,r14)
324 mov.l r7,@(8,r14)
325 mov.b r1,@r14
326 mov r14,r1
327 mov r14,r1
328 add #2,r1
329 mov.w r2,@r1
330
331 */
332
333/* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
334 with l=1 and n = 18 0110101111110001010010100aaa0000 */
335#define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
336
337/* STS.L PR,@-r0 0100000000100010
338 r0-4-->r0, PR-->(r0) */
339#define IS_STS_R0(x) ((x) == 0x4022)
340
341/* STS PR, Rm 0000mmmm00101010
342 PR-->Rm */
343#define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
344
345/* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
346 Rm-->(dispx4+r15) */
347#define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
348
349/* MOV.L R14,@(disp,r15) 000111111110dddd
350 R14-->(dispx4+r15) */
351#define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
352
353/* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
354 R18-->(dispx8+R14) */
355#define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
356
357/* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
358 R18-->(dispx8+R15) */
359#define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
360
361/* ST.L R15, disp, R18 101010001111dddddddddd0100100000
362 R18-->(dispx4+R15) */
363#define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
364
365/* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
366 R14-->(dispx8+R15) */
367#define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
368
369/* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
370 R14-->(dispx4+R15) */
371#define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
372
373/* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
374 R15 + imm --> R15 */
375#define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
376
377/* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
378 R15 + imm --> R15 */
379#define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
380
381/* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
382 R15 + R63 --> R14 */
383#define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
384
385/* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
386 R15 + R63 --> R14 */
387#define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
388
c378eb4e
MS
389#define IS_MOV_SP_FP_MEDIA(x) \
390 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
55ff77ac
CV
391
392/* MOV #imm, R0 1110 0000 ssss ssss
393 #imm-->R0 */
394#define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
395
396/* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
397#define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
398
399/* ADD r15,r0 0011 0000 1111 1100
400 r15+r0-->r0 */
401#define IS_ADD_SP_R0(x) ((x) == 0x30fc)
402
403/* MOV.L R14 @-R0 0010 0000 1110 0110
404 R14-->(R0-4), R0-4-->R0 */
405#define IS_MOV_R14_R0(x) ((x) == 0x20e6)
406
407/* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
7bb11558 408 where Rm is one of r2-r9 which are the argument registers. */
c378eb4e 409/* FIXME: Recognize the float and double register moves too! */
55ff77ac 410#define IS_MEDIA_IND_ARG_MOV(x) \
c378eb4e
MS
411 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
412 && (((x) & 0x03f00000) >= 0x00200000 \
413 && ((x) & 0x03f00000) <= 0x00900000))
55ff77ac
CV
414
415/* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
416 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
7bb11558 417 where Rm is one of r2-r9 which are the argument registers. */
55ff77ac
CV
418#define IS_MEDIA_ARG_MOV(x) \
419(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
420 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
421
c378eb4e
MS
422/* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
423/* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
424/* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
425/* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
426/* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
55ff77ac
CV
427#define IS_MEDIA_MOV_TO_R14(x) \
428((((x) & 0xfffffc0f) == 0xa0e00000) \
429|| (((x) & 0xfffffc0f) == 0xa4e00000) \
430|| (((x) & 0xfffffc0f) == 0xa8e00000) \
431|| (((x) & 0xfffffc0f) == 0xb4e00000) \
432|| (((x) & 0xfffffc0f) == 0xbce00000))
433
434/* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
435 where Rm is r2-r9 */
436#define IS_COMPACT_IND_ARG_MOV(x) \
c378eb4e
MS
437 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
438 && (((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
439
440/* compact direct arg move!
441 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
442#define IS_COMPACT_ARG_MOV(x) \
c378eb4e
MS
443 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
444 && ((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
445
446/* MOV.B Rm, @R14 0010 1110 mmmm 0000
447 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
448#define IS_COMPACT_MOV_TO_R14(x) \
449((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
450
451#define IS_JSR_R0(x) ((x) == 0x400b)
452#define IS_NOP(x) ((x) == 0x0009)
453
454
455/* MOV r15,r14 0110111011110011
456 r15-->r14 */
457#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
458
459/* ADD #imm,r15 01111111iiiiiiii
460 r15+imm-->r15 */
461#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
462
c378eb4e 463/* Skip any prologue before the guts of a function. */
55ff77ac 464
7bb11558
MS
465/* Skip the prologue using the debug information. If this fails we'll
466 fall back on the 'guess' method below. */
55ff77ac
CV
467static CORE_ADDR
468after_prologue (CORE_ADDR pc)
469{
470 struct symtab_and_line sal;
471 CORE_ADDR func_addr, func_end;
472
473 /* If we can not find the symbol in the partial symbol table, then
474 there is no hope we can determine the function's start address
475 with this code. */
476 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
477 return 0;
478
c30dc700 479
55ff77ac
CV
480 /* Get the line associated with FUNC_ADDR. */
481 sal = find_pc_line (func_addr, 0);
482
483 /* There are only two cases to consider. First, the end of the source line
484 is within the function bounds. In that case we return the end of the
485 source line. Second is the end of the source line extends beyond the
486 bounds of the current function. We need to use the slow code to
487 examine instructions in that case. */
488 if (sal.end < func_end)
489 return sal.end;
490 else
491 return 0;
492}
493
494static CORE_ADDR
e17a4113
UW
495look_for_args_moves (struct gdbarch *gdbarch,
496 CORE_ADDR start_pc, int media_mode)
55ff77ac 497{
e17a4113 498 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
499 CORE_ADDR here, end;
500 int w;
501 int insn_size = (media_mode ? 4 : 2);
502
503 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
504 {
505 if (media_mode)
506 {
e17a4113
UW
507 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
508 insn_size, byte_order);
55ff77ac
CV
509 here += insn_size;
510 if (IS_MEDIA_IND_ARG_MOV (w))
511 {
512 /* This must be followed by a store to r14, so the argument
c378eb4e 513 is where the debug info says it is. This can happen after
7bb11558 514 the SP has been saved, unfortunately. */
55ff77ac
CV
515
516 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
e17a4113 517 insn_size, byte_order);
55ff77ac
CV
518 here += insn_size;
519 if (IS_MEDIA_MOV_TO_R14 (next_insn))
520 start_pc = here;
521 }
522 else if (IS_MEDIA_ARG_MOV (w))
523 {
7bb11558 524 /* These instructions store directly the argument in r14. */
55ff77ac
CV
525 start_pc = here;
526 }
527 else
528 break;
529 }
530 else
531 {
e17a4113 532 w = read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
533 w = w & 0xffff;
534 here += insn_size;
535 if (IS_COMPACT_IND_ARG_MOV (w))
536 {
537 /* This must be followed by a store to r14, so the argument
c378eb4e 538 is where the debug info says it is. This can happen after
7bb11558 539 the SP has been saved, unfortunately. */
55ff77ac 540
e17a4113
UW
541 int next_insn = 0xffff & read_memory_integer (here, insn_size,
542 byte_order);
55ff77ac
CV
543 here += insn_size;
544 if (IS_COMPACT_MOV_TO_R14 (next_insn))
545 start_pc = here;
546 }
547 else if (IS_COMPACT_ARG_MOV (w))
548 {
7bb11558 549 /* These instructions store directly the argument in r14. */
55ff77ac
CV
550 start_pc = here;
551 }
552 else if (IS_MOVL_R0 (w))
553 {
554 /* There is a function that gcc calls to get the arguments
c378eb4e 555 passed correctly to the function. Only after this
55ff77ac 556 function call the arguments will be found at the place
c378eb4e 557 where they are supposed to be. This happens in case the
55ff77ac
CV
558 argument has to be stored into a 64-bit register (for
559 instance doubles, long longs). SHcompact doesn't have
560 access to the full 64-bits, so we store the register in
561 stack slot and store the address of the stack slot in
562 the register, then do a call through a wrapper that
563 loads the memory value into the register. A SHcompact
564 callee calls an argument decoder
565 (GCC_shcompact_incoming_args) that stores the 64-bit
566 value in a stack slot and stores the address of the
567 stack slot in the register. GCC thinks the argument is
568 just passed by transparent reference, but this is only
c378eb4e 569 true after the argument decoder is called. Such a call
7bb11558 570 needs to be considered part of the prologue. */
55ff77ac
CV
571
572 /* This must be followed by a JSR @r0 instruction and by
c378eb4e 573 a NOP instruction. After these, the prologue is over! */
55ff77ac 574
e17a4113
UW
575 int next_insn = 0xffff & read_memory_integer (here, insn_size,
576 byte_order);
55ff77ac
CV
577 here += insn_size;
578 if (IS_JSR_R0 (next_insn))
579 {
e17a4113
UW
580 next_insn = 0xffff & read_memory_integer (here, insn_size,
581 byte_order);
55ff77ac
CV
582 here += insn_size;
583
584 if (IS_NOP (next_insn))
585 start_pc = here;
586 }
587 }
588 else
589 break;
590 }
591 }
592
593 return start_pc;
594}
595
596static CORE_ADDR
e17a4113 597sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
55ff77ac 598{
e17a4113 599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
600 CORE_ADDR here, end;
601 int updated_fp = 0;
602 int insn_size = 4;
603 int media_mode = 1;
604
605 if (!start_pc)
606 return 0;
607
608 if (pc_is_isa32 (start_pc) == 0)
609 {
610 insn_size = 2;
611 media_mode = 0;
612 }
613
614 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
615 {
616
617 if (media_mode)
618 {
e17a4113
UW
619 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
620 insn_size, byte_order);
55ff77ac
CV
621 here += insn_size;
622 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
623 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
c378eb4e
MS
624 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
625 || IS_PTABSL_R18 (w))
55ff77ac
CV
626 {
627 start_pc = here;
628 }
629 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
630 {
631 start_pc = here;
632 updated_fp = 1;
633 }
634 else
635 if (updated_fp)
636 {
637 /* Don't bail out yet, we may have arguments stored in
638 registers here, according to the debug info, so that
7bb11558 639 gdb can print the frames correctly. */
e17a4113
UW
640 start_pc = look_for_args_moves (gdbarch,
641 here - insn_size, media_mode);
55ff77ac
CV
642 break;
643 }
644 }
645 else
646 {
e17a4113 647 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
648 here += insn_size;
649
650 if (IS_STS_R0 (w) || IS_STS_PR (w)
651 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
652 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
653 {
654 start_pc = here;
655 }
656 else if (IS_MOV_SP_FP (w))
657 {
658 start_pc = here;
659 updated_fp = 1;
660 }
661 else
662 if (updated_fp)
663 {
664 /* Don't bail out yet, we may have arguments stored in
665 registers here, according to the debug info, so that
7bb11558 666 gdb can print the frames correctly. */
e17a4113
UW
667 start_pc = look_for_args_moves (gdbarch,
668 here - insn_size, media_mode);
55ff77ac
CV
669 break;
670 }
671 }
672 }
673
674 return start_pc;
675}
676
677static CORE_ADDR
6093d2eb 678sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
55ff77ac
CV
679{
680 CORE_ADDR post_prologue_pc;
681
682 /* See if we can determine the end of the prologue via the symbol table.
683 If so, then return either PC, or the PC after the prologue, whichever
684 is greater. */
685 post_prologue_pc = after_prologue (pc);
686
687 /* If after_prologue returned a useful address, then use it. Else
7bb11558 688 fall back on the instruction skipping code. */
55ff77ac
CV
689 if (post_prologue_pc != 0)
690 return max (pc, post_prologue_pc);
691 else
e17a4113 692 return sh64_skip_prologue_hard_way (gdbarch, pc);
55ff77ac
CV
693}
694
55ff77ac
CV
695/* Should call_function allocate stack space for a struct return? */
696static int
c30dc700 697sh64_use_struct_convention (struct type *type)
55ff77ac
CV
698{
699 return (TYPE_LENGTH (type) > 8);
700}
701
7bb11558 702/* For vectors of 4 floating point registers. */
55ff77ac 703static int
d93859e2 704sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
55ff77ac
CV
705{
706 int fp_regnum;
707
d93859e2 708 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
55ff77ac
CV
709 return fp_regnum;
710}
711
c378eb4e 712/* For double precision floating point registers, i.e 2 fp regs. */
55ff77ac 713static int
d93859e2 714sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
55ff77ac
CV
715{
716 int fp_regnum;
717
d93859e2 718 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
55ff77ac
CV
719 return fp_regnum;
720}
721
c378eb4e 722/* For pairs of floating point registers. */
55ff77ac 723static int
d93859e2 724sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
55ff77ac
CV
725{
726 int fp_regnum;
727
d93859e2 728 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
55ff77ac
CV
729 return fp_regnum;
730}
731
55ff77ac
CV
732/* *INDENT-OFF* */
733/*
734 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
735 GDB_REGNUM BASE_REGNUM
736 r0_c 221 0
737 r1_c 222 1
738 r2_c 223 2
739 r3_c 224 3
740 r4_c 225 4
741 r5_c 226 5
742 r6_c 227 6
743 r7_c 228 7
744 r8_c 229 8
745 r9_c 230 9
746 r10_c 231 10
747 r11_c 232 11
748 r12_c 233 12
749 r13_c 234 13
750 r14_c 235 14
751 r15_c 236 15
752
753 pc_c 237 64
754 gbr_c 238 16
755 mach_c 239 17
756 macl_c 240 17
757 pr_c 241 18
758 t_c 242 19
759 fpscr_c 243 76
760 fpul_c 244 109
761
762 fr0_c 245 77
763 fr1_c 246 78
764 fr2_c 247 79
765 fr3_c 248 80
766 fr4_c 249 81
767 fr5_c 250 82
768 fr6_c 251 83
769 fr7_c 252 84
770 fr8_c 253 85
771 fr9_c 254 86
772 fr10_c 255 87
773 fr11_c 256 88
774 fr12_c 257 89
775 fr13_c 258 90
776 fr14_c 259 91
777 fr15_c 260 92
778
779 dr0_c 261 77
780 dr2_c 262 79
781 dr4_c 263 81
782 dr6_c 264 83
783 dr8_c 265 85
784 dr10_c 266 87
785 dr12_c 267 89
786 dr14_c 268 91
787
788 fv0_c 269 77
789 fv4_c 270 81
790 fv8_c 271 85
791 fv12_c 272 91
792*/
793/* *INDENT-ON* */
794static int
d93859e2 795sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 796{
c30dc700 797 int base_regnum = reg_nr;
55ff77ac
CV
798
799 /* general register N maps to general register N */
800 if (reg_nr >= R0_C_REGNUM
801 && reg_nr <= R_LAST_C_REGNUM)
802 base_regnum = reg_nr - R0_C_REGNUM;
803
804 /* floating point register N maps to floating point register N */
805 else if (reg_nr >= FP0_C_REGNUM
806 && reg_nr <= FP_LAST_C_REGNUM)
d93859e2 807 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
55ff77ac
CV
808
809 /* double prec register N maps to base regnum for double prec register N */
810 else if (reg_nr >= DR0_C_REGNUM
811 && reg_nr <= DR_LAST_C_REGNUM)
d93859e2
UW
812 base_regnum = sh64_dr_reg_base_num (gdbarch,
813 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
55ff77ac
CV
814
815 /* vector N maps to base regnum for vector register N */
816 else if (reg_nr >= FV0_C_REGNUM
817 && reg_nr <= FV_LAST_C_REGNUM)
d93859e2
UW
818 base_regnum = sh64_fv_reg_base_num (gdbarch,
819 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
55ff77ac
CV
820
821 else if (reg_nr == PC_C_REGNUM)
d93859e2 822 base_regnum = gdbarch_pc_regnum (gdbarch);
55ff77ac
CV
823
824 else if (reg_nr == GBR_C_REGNUM)
825 base_regnum = 16;
826
827 else if (reg_nr == MACH_C_REGNUM
828 || reg_nr == MACL_C_REGNUM)
829 base_regnum = 17;
830
831 else if (reg_nr == PR_C_REGNUM)
c30dc700 832 base_regnum = PR_REGNUM;
55ff77ac
CV
833
834 else if (reg_nr == T_C_REGNUM)
835 base_regnum = 19;
836
837 else if (reg_nr == FPSCR_C_REGNUM)
7bb11558 838 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
55ff77ac
CV
839
840 else if (reg_nr == FPUL_C_REGNUM)
d93859e2 841 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
55ff77ac
CV
842
843 return base_regnum;
844}
845
55ff77ac
CV
846static int
847sign_extend (int value, int bits)
848{
849 value = value & ((1 << bits) - 1);
850 return (value & (1 << (bits - 1))
851 ? value | (~((1 << bits) - 1))
852 : value);
853}
854
855static void
c30dc700
CV
856sh64_analyze_prologue (struct gdbarch *gdbarch,
857 struct sh64_frame_cache *cache,
858 CORE_ADDR func_pc,
859 CORE_ADDR current_pc)
55ff77ac 860{
55ff77ac
CV
861 int pc;
862 int opc;
863 int insn;
864 int r0_val = 0;
55ff77ac
CV
865 int insn_size;
866 int gdb_register_number;
867 int register_number;
c30dc700 868 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 869 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 870
c30dc700 871 cache->sp_offset = 0;
55ff77ac
CV
872
873 /* Loop around examining the prologue insns until we find something
874 that does not appear to be part of the prologue. But give up
7bb11558 875 after 20 of them, since we're getting silly then. */
55ff77ac 876
c30dc700 877 pc = func_pc;
55ff77ac 878
c30dc700
CV
879 if (cache->media_mode)
880 insn_size = 4;
55ff77ac 881 else
c30dc700 882 insn_size = 2;
55ff77ac 883
c30dc700
CV
884 opc = pc + (insn_size * 28);
885 if (opc > current_pc)
886 opc = current_pc;
887 for ( ; pc <= opc; pc += insn_size)
55ff77ac 888 {
c30dc700
CV
889 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
890 : pc,
e17a4113 891 insn_size, byte_order);
55ff77ac 892
c30dc700 893 if (!cache->media_mode)
55ff77ac
CV
894 {
895 if (IS_STS_PR (insn))
896 {
e17a4113
UW
897 int next_insn = read_memory_integer (pc + insn_size,
898 insn_size, byte_order);
55ff77ac
CV
899 if (IS_MOV_TO_R15 (next_insn))
900 {
c378eb4e
MS
901 cache->saved_regs[PR_REGNUM]
902 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
903 - 0x8) << 2);
55ff77ac
CV
904 pc += insn_size;
905 }
906 }
c30dc700 907
55ff77ac 908 else if (IS_MOV_R14 (insn))
c30dc700
CV
909 cache->saved_regs[MEDIA_FP_REGNUM] =
910 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
55ff77ac
CV
911
912 else if (IS_MOV_R0 (insn))
913 {
914 /* Put in R0 the offset from SP at which to store some
c378eb4e 915 registers. We are interested in this value, because it
55ff77ac
CV
916 will tell us where the given registers are stored within
917 the frame. */
918 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
919 }
c30dc700 920
55ff77ac
CV
921 else if (IS_ADD_SP_R0 (insn))
922 {
923 /* This instruction still prepares r0, but we don't care.
7bb11558 924 We already have the offset in r0_val. */
55ff77ac 925 }
c30dc700 926
55ff77ac
CV
927 else if (IS_STS_R0 (insn))
928 {
c378eb4e 929 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700 930 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
55ff77ac 931 r0_val -= 4;
55ff77ac 932 }
c30dc700 933
55ff77ac
CV
934 else if (IS_MOV_R14_R0 (insn))
935 {
c378eb4e 936 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700
CV
937 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
938 - (r0_val - 4);
55ff77ac
CV
939 r0_val -= 4;
940 }
941
942 else if (IS_ADD_SP (insn))
c30dc700
CV
943 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
944
55ff77ac
CV
945 else if (IS_MOV_SP_FP (insn))
946 break;
947 }
948 else
949 {
c30dc700
CV
950 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
951 cache->sp_offset -=
952 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
55ff77ac
CV
953
954 else if (IS_STQ_R18_R15 (insn))
c378eb4e
MS
955 cache->saved_regs[PR_REGNUM]
956 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
957 9) << 3);
55ff77ac
CV
958
959 else if (IS_STL_R18_R15 (insn))
c378eb4e
MS
960 cache->saved_regs[PR_REGNUM]
961 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
962 9) << 2);
55ff77ac
CV
963
964 else if (IS_STQ_R14_R15 (insn))
c378eb4e
MS
965 cache->saved_regs[MEDIA_FP_REGNUM]
966 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
967 9) << 3);
55ff77ac
CV
968
969 else if (IS_STL_R14_R15 (insn))
c378eb4e
MS
970 cache->saved_regs[MEDIA_FP_REGNUM]
971 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
972 9) << 2);
55ff77ac
CV
973
974 else if (IS_MOV_SP_FP_MEDIA (insn))
975 break;
976 }
977 }
978
c30dc700
CV
979 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
980 cache->uses_fp = 1;
55ff77ac
CV
981}
982
55ff77ac 983static CORE_ADDR
c30dc700 984sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
55ff77ac 985{
c30dc700 986 return sp & ~7;
55ff77ac
CV
987}
988
c30dc700 989/* Function: push_dummy_call
55ff77ac
CV
990 Setup the function arguments for calling a function in the inferior.
991
85a453d5 992 On the Renesas SH architecture, there are four registers (R4 to R7)
55ff77ac
CV
993 which are dedicated for passing function arguments. Up to the first
994 four arguments (depending on size) may go into these registers.
995 The rest go on the stack.
996
997 Arguments that are smaller than 4 bytes will still take up a whole
998 register or a whole 32-bit word on the stack, and will be
999 right-justified in the register or the stack word. This includes
1000 chars, shorts, and small aggregate types.
1001
1002 Arguments that are larger than 4 bytes may be split between two or
1003 more registers. If there are not enough registers free, an argument
1004 may be passed partly in a register (or registers), and partly on the
c378eb4e 1005 stack. This includes doubles, long longs, and larger aggregates.
55ff77ac
CV
1006 As far as I know, there is no upper limit to the size of aggregates
1007 that will be passed in this way; in other words, the convention of
1008 passing a pointer to a large aggregate instead of a copy is not used.
1009
1010 An exceptional case exists for struct arguments (and possibly other
1011 aggregates such as arrays) if the size is larger than 4 bytes but
1012 not a multiple of 4 bytes. In this case the argument is never split
1013 between the registers and the stack, but instead is copied in its
1014 entirety onto the stack, AND also copied into as many registers as
1015 there is room for. In other words, space in registers permitting,
1016 two copies of the same argument are passed in. As far as I can tell,
1017 only the one on the stack is used, although that may be a function
1018 of the level of compiler optimization. I suspect this is a compiler
1019 bug. Arguments of these odd sizes are left-justified within the
1020 word (as opposed to arguments smaller than 4 bytes, which are
1021 right-justified).
1022
1023 If the function is to return an aggregate type such as a struct, it
1024 is either returned in the normal return value register R0 (if its
1025 size is no greater than one byte), or else the caller must allocate
1026 space into which the callee will copy the return value (if the size
1027 is greater than one byte). In this case, a pointer to the return
1028 value location is passed into the callee in register R2, which does
1029 not displace any of the other arguments passed in via registers R4
c378eb4e 1030 to R7. */
55ff77ac
CV
1031
1032/* R2-R9 for integer types and integer equivalent (char, pointers) and
1033 non-scalar (struct, union) elements (even if the elements are
1034 floats).
1035 FR0-FR11 for single precision floating point (float)
1036 DR0-DR10 for double precision floating point (double)
1037
1038 If a float is argument number 3 (for instance) and arguments number
1039 1,2, and 4 are integer, the mapping will be:
c378eb4e 1040 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
55ff77ac
CV
1041
1042 If a float is argument number 10 (for instance) and arguments number
1043 1 through 10 are integer, the mapping will be:
1044 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
c378eb4e
MS
1045 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1046 arg11->stack(16,SP). I.e. there is hole in the stack.
55ff77ac
CV
1047
1048 Different rules apply for variable arguments functions, and for functions
7bb11558 1049 for which the prototype is not known. */
55ff77ac
CV
1050
1051static CORE_ADDR
c30dc700
CV
1052sh64_push_dummy_call (struct gdbarch *gdbarch,
1053 struct value *function,
1054 struct regcache *regcache,
1055 CORE_ADDR bp_addr,
1056 int nargs, struct value **args,
1057 CORE_ADDR sp, int struct_return,
1058 CORE_ADDR struct_addr)
55ff77ac 1059{
e17a4113 1060 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1061 int stack_offset, stack_alloc;
1062 int int_argreg;
1063 int float_argreg;
1064 int double_argreg;
1065 int float_arg_index = 0;
1066 int double_arg_index = 0;
1067 int argnum;
1068 struct type *type;
1069 CORE_ADDR regval;
1070 char *val;
1071 char valbuf[8];
55ff77ac
CV
1072 int len;
1073 int argreg_size;
1074 int fp_args[12];
55ff77ac
CV
1075
1076 memset (fp_args, 0, sizeof (fp_args));
1077
c378eb4e 1078 /* First force sp to a 8-byte alignment. */
c30dc700 1079 sp = sh64_frame_align (gdbarch, sp);
55ff77ac
CV
1080
1081 /* The "struct return pointer" pseudo-argument has its own dedicated
c378eb4e 1082 register. */
55ff77ac
CV
1083
1084 if (struct_return)
c30dc700
CV
1085 regcache_cooked_write_unsigned (regcache,
1086 STRUCT_RETURN_REGNUM, struct_addr);
55ff77ac 1087
c378eb4e 1088 /* Now make sure there's space on the stack. */
55ff77ac 1089 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
4991999e 1090 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
c378eb4e 1091 sp -= stack_alloc; /* Make room on stack for args. */
55ff77ac
CV
1092
1093 /* Now load as many as possible of the first arguments into
1094 registers, and push the rest onto the stack. There are 64 bytes
1095 in eight registers available. Loop thru args from first to last. */
1096
1097 int_argreg = ARG0_REGNUM;
58643501 1098 float_argreg = gdbarch_fp0_regnum (gdbarch);
55ff77ac
CV
1099 double_argreg = DR0_REGNUM;
1100
1101 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1102 {
4991999e 1103 type = value_type (args[argnum]);
55ff77ac
CV
1104 len = TYPE_LENGTH (type);
1105 memset (valbuf, 0, sizeof (valbuf));
1106
1107 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1108 {
58643501 1109 argreg_size = register_size (gdbarch, int_argreg);
55ff77ac
CV
1110
1111 if (len < argreg_size)
1112 {
c378eb4e 1113 /* value gets right-justified in the register or stack word. */
58643501 1114 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1115 memcpy (valbuf + argreg_size - len,
0fd88904 1116 (char *) value_contents (args[argnum]), len);
55ff77ac 1117 else
0fd88904 1118 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
55ff77ac
CV
1119
1120 val = valbuf;
1121 }
1122 else
0fd88904 1123 val = (char *) value_contents (args[argnum]);
55ff77ac
CV
1124
1125 while (len > 0)
1126 {
1127 if (int_argreg > ARGLAST_REGNUM)
1128 {
c378eb4e 1129 /* Must go on the stack. */
079c8cd0
CV
1130 write_memory (sp + stack_offset, (const bfd_byte *) val,
1131 argreg_size);
55ff77ac
CV
1132 stack_offset += 8;/*argreg_size;*/
1133 }
1134 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1135 That's because some *&^%$ things get passed on the stack
1136 AND in the registers! */
1137 if (int_argreg <= ARGLAST_REGNUM)
1138 {
c378eb4e 1139 /* There's room in a register. */
e17a4113
UW
1140 regval = extract_unsigned_integer (val, argreg_size,
1141 byte_order);
c378eb4e
MS
1142 regcache_cooked_write_unsigned (regcache,
1143 int_argreg, regval);
55ff77ac
CV
1144 }
1145 /* Store the value 8 bytes at a time. This means that
1146 things larger than 8 bytes may go partly in registers
c378eb4e 1147 and partly on the stack. FIXME: argreg is incremented
7bb11558 1148 before we use its size. */
55ff77ac
CV
1149 len -= argreg_size;
1150 val += argreg_size;
1151 int_argreg++;
1152 }
1153 }
1154 else
1155 {
0fd88904 1156 val = (char *) value_contents (args[argnum]);
55ff77ac
CV
1157 if (len == 4)
1158 {
c378eb4e 1159 /* Where is it going to be stored? */
55ff77ac
CV
1160 while (fp_args[float_arg_index])
1161 float_arg_index ++;
1162
1163 /* Now float_argreg points to the register where it
1164 should be stored. Are we still within the allowed
c378eb4e 1165 register set? */
55ff77ac
CV
1166 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1167 {
1168 /* Goes in FR0...FR11 */
c30dc700 1169 regcache_cooked_write (regcache,
58643501 1170 gdbarch_fp0_regnum (gdbarch)
3e8c568d 1171 + float_arg_index,
c30dc700 1172 val);
55ff77ac 1173 fp_args[float_arg_index] = 1;
7bb11558 1174 /* Skip the corresponding general argument register. */
55ff77ac
CV
1175 int_argreg ++;
1176 }
1177 else
d4fb63e1
TT
1178 {
1179 /* Store it as the integers, 8 bytes at the time, if
1180 necessary spilling on the stack. */
1181 }
55ff77ac
CV
1182 }
1183 else if (len == 8)
1184 {
c378eb4e 1185 /* Where is it going to be stored? */
55ff77ac
CV
1186 while (fp_args[double_arg_index])
1187 double_arg_index += 2;
1188 /* Now double_argreg points to the register
1189 where it should be stored.
c378eb4e 1190 Are we still within the allowed register set? */
55ff77ac
CV
1191 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1192 {
1193 /* Goes in DR0...DR10 */
1194 /* The numbering of the DRi registers is consecutive,
7bb11558 1195 i.e. includes odd numbers. */
55ff77ac 1196 int double_register_offset = double_arg_index / 2;
c30dc700
CV
1197 int regnum = DR0_REGNUM + double_register_offset;
1198 regcache_cooked_write (regcache, regnum, val);
55ff77ac
CV
1199 fp_args[double_arg_index] = 1;
1200 fp_args[double_arg_index + 1] = 1;
7bb11558 1201 /* Skip the corresponding general argument register. */
55ff77ac
CV
1202 int_argreg ++;
1203 }
1204 else
d4fb63e1
TT
1205 {
1206 /* Store it as the integers, 8 bytes at the time, if
1207 necessary spilling on the stack. */
1208 }
55ff77ac
CV
1209 }
1210 }
1211 }
c378eb4e 1212 /* Store return address. */
c30dc700 1213 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
55ff77ac 1214
c30dc700 1215 /* Update stack pointer. */
3e8c568d 1216 regcache_cooked_write_unsigned (regcache,
58643501 1217 gdbarch_sp_regnum (gdbarch), sp);
55ff77ac 1218
55ff77ac
CV
1219 return sp;
1220}
1221
1222/* Find a function's return value in the appropriate registers (in
1223 regbuf), and copy it into valbuf. Extract from an array REGBUF
1224 containing the (raw) register state a function return value of type
1225 TYPE, and copy that, in virtual format, into VALBUF. */
1226static void
c30dc700
CV
1227sh64_extract_return_value (struct type *type, struct regcache *regcache,
1228 void *valbuf)
55ff77ac 1229{
d93859e2 1230 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 1231 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 1232 int len = TYPE_LENGTH (type);
d93859e2 1233
55ff77ac
CV
1234 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1235 {
1236 if (len == 4)
1237 {
c378eb4e 1238 /* Return value stored in gdbarch_fp0_regnum. */
3e8c568d 1239 regcache_raw_read (regcache,
d93859e2 1240 gdbarch_fp0_regnum (gdbarch), valbuf);
55ff77ac
CV
1241 }
1242 else if (len == 8)
1243 {
c378eb4e 1244 /* return value stored in DR0_REGNUM. */
55ff77ac 1245 DOUBLEST val;
18cf8b5b 1246 gdb_byte buf[8];
55ff77ac 1247
18cf8b5b 1248 regcache_cooked_read (regcache, DR0_REGNUM, buf);
55ff77ac 1249
d93859e2 1250 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
55ff77ac 1251 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
c30dc700 1252 buf, &val);
55ff77ac
CV
1253 else
1254 floatformat_to_doublest (&floatformat_ieee_double_big,
c30dc700 1255 buf, &val);
7bb11558 1256 store_typed_floating (valbuf, type, val);
55ff77ac
CV
1257 }
1258 }
1259 else
1260 {
1261 if (len <= 8)
1262 {
c30dc700 1263 int offset;
e362b510 1264 gdb_byte buf[8];
c378eb4e 1265 /* Result is in register 2. If smaller than 8 bytes, it is padded
7bb11558 1266 at the most significant end. */
c30dc700
CV
1267 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1268
d93859e2
UW
1269 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1270 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
c30dc700 1271 - len;
55ff77ac 1272 else
c30dc700
CV
1273 offset = 0;
1274 memcpy (valbuf, buf + offset, len);
55ff77ac
CV
1275 }
1276 else
a73c6dcd 1277 error (_("bad size for return value"));
55ff77ac
CV
1278 }
1279}
1280
1281/* Write into appropriate registers a function return value
1282 of type TYPE, given in virtual format.
1283 If the architecture is sh4 or sh3e, store a function's return value
1284 in the R0 general register or in the FP0 floating point register,
c378eb4e 1285 depending on the type of the return value. In all the other cases
7bb11558 1286 the result is stored in r0, left-justified. */
55ff77ac
CV
1287
1288static void
c30dc700
CV
1289sh64_store_return_value (struct type *type, struct regcache *regcache,
1290 const void *valbuf)
55ff77ac 1291{
d93859e2 1292 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e362b510 1293 gdb_byte buf[64]; /* more than enough... */
55ff77ac
CV
1294 int len = TYPE_LENGTH (type);
1295
1296 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1297 {
d93859e2 1298 int i, regnum = gdbarch_fp0_regnum (gdbarch);
c30dc700 1299 for (i = 0; i < len; i += 4)
d93859e2 1300 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c30dc700
CV
1301 regcache_raw_write (regcache, regnum++,
1302 (char *) valbuf + len - 4 - i);
1303 else
1304 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
55ff77ac
CV
1305 }
1306 else
1307 {
1308 int return_register = DEFAULT_RETURN_REGNUM;
1309 int offset = 0;
1310
d93859e2 1311 if (len <= register_size (gdbarch, return_register))
55ff77ac 1312 {
7bb11558 1313 /* Pad with zeros. */
d93859e2
UW
1314 memset (buf, 0, register_size (gdbarch, return_register));
1315 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1316 offset = 0; /*register_size (gdbarch,
7bb11558 1317 return_register) - len;*/
55ff77ac 1318 else
d93859e2 1319 offset = register_size (gdbarch, return_register) - len;
55ff77ac
CV
1320
1321 memcpy (buf + offset, valbuf, len);
c30dc700 1322 regcache_raw_write (regcache, return_register, buf);
55ff77ac
CV
1323 }
1324 else
c30dc700 1325 regcache_raw_write (regcache, return_register, valbuf);
55ff77ac
CV
1326 }
1327}
1328
c30dc700 1329static enum return_value_convention
6a3a010b 1330sh64_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 1331 struct type *type, struct regcache *regcache,
18cf8b5b 1332 gdb_byte *readbuf, const gdb_byte *writebuf)
c30dc700
CV
1333{
1334 if (sh64_use_struct_convention (type))
1335 return RETURN_VALUE_STRUCT_CONVENTION;
1336 if (writebuf)
1337 sh64_store_return_value (type, regcache, writebuf);
1338 else if (readbuf)
1339 sh64_extract_return_value (type, regcache, readbuf);
1340 return RETURN_VALUE_REGISTER_CONVENTION;
1341}
1342
55ff77ac
CV
1343/* *INDENT-OFF* */
1344/*
1345 SH MEDIA MODE (ISA 32)
1346 general registers (64-bit) 0-63
13470 r0, r1, r2, r3, r4, r5, r6, r7,
134864 r8, r9, r10, r11, r12, r13, r14, r15,
1349128 r16, r17, r18, r19, r20, r21, r22, r23,
1350192 r24, r25, r26, r27, r28, r29, r30, r31,
1351256 r32, r33, r34, r35, r36, r37, r38, r39,
1352320 r40, r41, r42, r43, r44, r45, r46, r47,
1353384 r48, r49, r50, r51, r52, r53, r54, r55,
1354448 r56, r57, r58, r59, r60, r61, r62, r63,
1355
1356 pc (64-bit) 64
1357512 pc,
1358
1359 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1360520 sr, ssr, spc,
1361
1362 target registers (64-bit) 68-75
1363544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1364
1365 floating point state control register (32-bit) 76
1366608 fpscr,
1367
1368 single precision floating point registers (32-bit) 77-140
1369612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1370644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1371676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1372708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1373740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1374772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1375804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1376836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1377
1378TOTAL SPACE FOR REGISTERS: 868 bytes
1379
1380From here on they are all pseudo registers: no memory allocated.
1381REGISTER_BYTE returns the register byte for the base register.
1382
1383 double precision registers (pseudo) 141-172
1384 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1385 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1386 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1387 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1388
1389 floating point pairs (pseudo) 173-204
1390 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1391 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1392 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1393 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1394
1395 floating point vectors (4 floating point regs) (pseudo) 205-220
1396 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1397 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1398
1399 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1400 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1401 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1402 pc_c,
1403 gbr_c, mach_c, macl_c, pr_c, t_c,
1404 fpscr_c, fpul_c,
1405 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1406 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1407 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1408 fv0_c, fv4_c, fv8_c, fv12_c
1409*/
55ff77ac 1410
55ff77ac 1411static struct type *
0dfff4cb 1412sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
55ff77ac 1413{
e3506a9f
UW
1414 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1415 0, high);
55ff77ac
CV
1416}
1417
7bb11558
MS
1418/* Return the GDB type object for the "standard" data type
1419 of data in register REG_NR. */
55ff77ac 1420static struct type *
7bb11558 1421sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 1422{
58643501 1423 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
55ff77ac
CV
1424 && reg_nr <= FP_LAST_REGNUM)
1425 || (reg_nr >= FP0_C_REGNUM
1426 && reg_nr <= FP_LAST_C_REGNUM))
0dfff4cb 1427 return builtin_type (gdbarch)->builtin_float;
55ff77ac
CV
1428 else if ((reg_nr >= DR0_REGNUM
1429 && reg_nr <= DR_LAST_REGNUM)
1430 || (reg_nr >= DR0_C_REGNUM
1431 && reg_nr <= DR_LAST_C_REGNUM))
0dfff4cb 1432 return builtin_type (gdbarch)->builtin_double;
55ff77ac
CV
1433 else if (reg_nr >= FPP0_REGNUM
1434 && reg_nr <= FPP_LAST_REGNUM)
0dfff4cb 1435 return sh64_build_float_register_type (gdbarch, 1);
55ff77ac
CV
1436 else if ((reg_nr >= FV0_REGNUM
1437 && reg_nr <= FV_LAST_REGNUM)
1438 ||(reg_nr >= FV0_C_REGNUM
1439 && reg_nr <= FV_LAST_C_REGNUM))
0dfff4cb 1440 return sh64_build_float_register_type (gdbarch, 3);
55ff77ac 1441 else if (reg_nr == FPSCR_REGNUM)
0dfff4cb 1442 return builtin_type (gdbarch)->builtin_int;
55ff77ac
CV
1443 else if (reg_nr >= R0_C_REGNUM
1444 && reg_nr < FP0_C_REGNUM)
0dfff4cb 1445 return builtin_type (gdbarch)->builtin_int;
55ff77ac 1446 else
0dfff4cb 1447 return builtin_type (gdbarch)->builtin_long_long;
55ff77ac
CV
1448}
1449
1450static void
d93859e2
UW
1451sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1452 struct type *type, char *from, char *to)
55ff77ac 1453{
d93859e2 1454 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1455 {
7bb11558 1456 /* It is a no-op. */
d93859e2 1457 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1458 return;
1459 }
1460
1461 if ((regnum >= DR0_REGNUM
1462 && regnum <= DR_LAST_REGNUM)
1463 || (regnum >= DR0_C_REGNUM
1464 && regnum <= DR_LAST_C_REGNUM))
1465 {
1466 DOUBLEST val;
7bb11558
MS
1467 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1468 from, &val);
39add00a 1469 store_typed_floating (to, type, val);
55ff77ac
CV
1470 }
1471 else
a73c6dcd
MS
1472 error (_("sh64_register_convert_to_virtual "
1473 "called with non DR register number"));
55ff77ac
CV
1474}
1475
1476static void
d93859e2
UW
1477sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1478 int regnum, const void *from, void *to)
55ff77ac 1479{
d93859e2 1480 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1481 {
7bb11558 1482 /* It is a no-op. */
d93859e2 1483 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1484 return;
1485 }
1486
1487 if ((regnum >= DR0_REGNUM
1488 && regnum <= DR_LAST_REGNUM)
1489 || (regnum >= DR0_C_REGNUM
1490 && regnum <= DR_LAST_C_REGNUM))
1491 {
e035e373 1492 DOUBLEST val = extract_typed_floating (from, type);
7bb11558
MS
1493 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1494 &val, to);
55ff77ac
CV
1495 }
1496 else
a73c6dcd
MS
1497 error (_("sh64_register_convert_to_raw called "
1498 "with non DR register number"));
55ff77ac
CV
1499}
1500
05d1431c
PA
1501/* Concatenate PORTIONS contiguous raw registers starting at
1502 BASE_REGNUM into BUFFER. */
1503
1504static enum register_status
1505pseudo_register_read_portions (struct gdbarch *gdbarch,
1506 struct regcache *regcache,
1507 int portions,
1508 int base_regnum, gdb_byte *buffer)
1509{
1510 int portion;
1511
1512 for (portion = 0; portion < portions; portion++)
1513 {
1514 enum register_status status;
1515 gdb_byte *b;
1516
1517 b = buffer + register_size (gdbarch, base_regnum) * portion;
1518 status = regcache_raw_read (regcache, base_regnum + portion, b);
1519 if (status != REG_VALID)
1520 return status;
1521 }
1522
1523 return REG_VALID;
1524}
1525
1526static enum register_status
55ff77ac 1527sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1528 int reg_nr, gdb_byte *buffer)
55ff77ac 1529{
e17a4113 1530 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 1531 int base_regnum;
55ff77ac
CV
1532 int offset = 0;
1533 char temp_buffer[MAX_REGISTER_SIZE];
05d1431c 1534 enum register_status status;
55ff77ac
CV
1535
1536 if (reg_nr >= DR0_REGNUM
1537 && reg_nr <= DR_LAST_REGNUM)
1538 {
d93859e2 1539 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
55ff77ac 1540
7bb11558 1541 /* Build the value in the provided buffer. */
55ff77ac 1542 /* DR regs are double precision registers obtained by
7bb11558 1543 concatenating 2 single precision floating point registers. */
05d1431c
PA
1544 status = pseudo_register_read_portions (gdbarch, regcache,
1545 2, base_regnum, temp_buffer);
1546 if (status == REG_VALID)
1547 {
1548 /* We must pay attention to the endianness. */
1549 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1550 register_type (gdbarch, reg_nr),
1551 temp_buffer, buffer);
1552 }
55ff77ac 1553
05d1431c 1554 return status;
55ff77ac
CV
1555 }
1556
05d1431c 1557 else if (reg_nr >= FPP0_REGNUM
55ff77ac
CV
1558 && reg_nr <= FPP_LAST_REGNUM)
1559 {
d93859e2 1560 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac 1561
7bb11558 1562 /* Build the value in the provided buffer. */
55ff77ac 1563 /* FPP regs are pairs of single precision registers obtained by
7bb11558 1564 concatenating 2 single precision floating point registers. */
05d1431c
PA
1565 return pseudo_register_read_portions (gdbarch, regcache,
1566 2, base_regnum, buffer);
55ff77ac
CV
1567 }
1568
1569 else if (reg_nr >= FV0_REGNUM
1570 && reg_nr <= FV_LAST_REGNUM)
1571 {
d93859e2 1572 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac 1573
7bb11558 1574 /* Build the value in the provided buffer. */
55ff77ac 1575 /* FV regs are vectors of single precision registers obtained by
7bb11558 1576 concatenating 4 single precision floating point registers. */
05d1431c
PA
1577 return pseudo_register_read_portions (gdbarch, regcache,
1578 4, base_regnum, buffer);
55ff77ac
CV
1579 }
1580
c378eb4e 1581 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
55ff77ac
CV
1582 else if (reg_nr >= R0_C_REGNUM
1583 && reg_nr <= T_C_REGNUM)
1584 {
d93859e2 1585 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1586
7bb11558 1587 /* Build the value in the provided buffer. */
05d1431c
PA
1588 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1589 if (status != REG_VALID)
1590 return status;
58643501 1591 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1592 offset = 4;
c378eb4e
MS
1593 memcpy (buffer,
1594 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
05d1431c 1595 return REG_VALID;
55ff77ac
CV
1596 }
1597
1598 else if (reg_nr >= FP0_C_REGNUM
1599 && reg_nr <= FP_LAST_C_REGNUM)
1600 {
d93859e2 1601 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1602
7bb11558 1603 /* Build the value in the provided buffer. */
55ff77ac 1604 /* Floating point registers map 1-1 to the media fp regs,
7bb11558 1605 they have the same size and endianness. */
05d1431c 1606 return regcache_raw_read (regcache, base_regnum, buffer);
55ff77ac
CV
1607 }
1608
1609 else if (reg_nr >= DR0_C_REGNUM
1610 && reg_nr <= DR_LAST_C_REGNUM)
1611 {
d93859e2 1612 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1613
1614 /* DR_C regs are double precision registers obtained by
7bb11558 1615 concatenating 2 single precision floating point registers. */
05d1431c
PA
1616 status = pseudo_register_read_portions (gdbarch, regcache,
1617 2, base_regnum, temp_buffer);
1618 if (status == REG_VALID)
1619 {
1620 /* We must pay attention to the endianness. */
1621 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1622 register_type (gdbarch, reg_nr),
1623 temp_buffer, buffer);
1624 }
1625 return status;
55ff77ac
CV
1626 }
1627
1628 else if (reg_nr >= FV0_C_REGNUM
1629 && reg_nr <= FV_LAST_C_REGNUM)
1630 {
d93859e2 1631 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1632
7bb11558 1633 /* Build the value in the provided buffer. */
55ff77ac 1634 /* FV_C regs are vectors of single precision registers obtained by
7bb11558 1635 concatenating 4 single precision floating point registers. */
05d1431c
PA
1636 return pseudo_register_read_portions (gdbarch, regcache,
1637 4, base_regnum, buffer);
55ff77ac
CV
1638 }
1639
1640 else if (reg_nr == FPSCR_C_REGNUM)
1641 {
1642 int fpscr_base_regnum;
1643 int sr_base_regnum;
1644 unsigned int fpscr_value;
1645 unsigned int sr_value;
1646 unsigned int fpscr_c_value;
1647 unsigned int fpscr_c_part1_value;
1648 unsigned int fpscr_c_part2_value;
1649
1650 fpscr_base_regnum = FPSCR_REGNUM;
1651 sr_base_regnum = SR_REGNUM;
1652
7bb11558 1653 /* Build the value in the provided buffer. */
55ff77ac
CV
1654 /* FPSCR_C is a very weird register that contains sparse bits
1655 from the FPSCR and the SR architectural registers.
1656 Specifically: */
1657 /* *INDENT-OFF* */
1658 /*
1659 FPSRC_C bit
1660 0 Bit 0 of FPSCR
1661 1 reserved
1662 2-17 Bit 2-18 of FPSCR
1663 18-20 Bits 12,13,14 of SR
1664 21-31 reserved
1665 */
1666 /* *INDENT-ON* */
c378eb4e 1667 /* Get FPSCR into a local buffer. */
05d1431c
PA
1668 status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1669 if (status != REG_VALID)
1670 return status;
7bb11558 1671 /* Get value as an int. */
e17a4113 1672 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac 1673 /* Get SR into a local buffer */
05d1431c
PA
1674 status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1675 if (status != REG_VALID)
1676 return status;
7bb11558 1677 /* Get value as an int. */
e17a4113 1678 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
7bb11558 1679 /* Build the new value. */
55ff77ac
CV
1680 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1681 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1682 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
c378eb4e 1683 /* Store that in out buffer!!! */
e17a4113 1684 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
7bb11558 1685 /* FIXME There is surely an endianness gotcha here. */
05d1431c
PA
1686
1687 return REG_VALID;
55ff77ac
CV
1688 }
1689
1690 else if (reg_nr == FPUL_C_REGNUM)
1691 {
d93859e2 1692 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1693
1694 /* FPUL_C register is floating point register 32,
7bb11558 1695 same size, same endianness. */
05d1431c 1696 return regcache_raw_read (regcache, base_regnum, buffer);
55ff77ac 1697 }
05d1431c
PA
1698 else
1699 gdb_assert_not_reached ("invalid pseudo register number");
55ff77ac
CV
1700}
1701
1702static void
1703sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1704 int reg_nr, const gdb_byte *buffer)
55ff77ac 1705{
e17a4113 1706 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1707 int base_regnum, portion;
1708 int offset;
1709 char temp_buffer[MAX_REGISTER_SIZE];
55ff77ac
CV
1710
1711 if (reg_nr >= DR0_REGNUM
1712 && reg_nr <= DR_LAST_REGNUM)
1713 {
d93859e2 1714 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
7bb11558 1715 /* We must pay attention to the endianness. */
d93859e2 1716 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
39add00a
MS
1717 reg_nr,
1718 buffer, temp_buffer);
55ff77ac
CV
1719
1720 /* Write the real regs for which this one is an alias. */
1721 for (portion = 0; portion < 2; portion++)
1722 regcache_raw_write (regcache, base_regnum + portion,
1723 (temp_buffer
7bb11558
MS
1724 + register_size (gdbarch,
1725 base_regnum) * portion));
55ff77ac
CV
1726 }
1727
1728 else if (reg_nr >= FPP0_REGNUM
1729 && reg_nr <= FPP_LAST_REGNUM)
1730 {
d93859e2 1731 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1732
1733 /* Write the real regs for which this one is an alias. */
1734 for (portion = 0; portion < 2; portion++)
1735 regcache_raw_write (regcache, base_regnum + portion,
1736 ((char *) buffer
7bb11558
MS
1737 + register_size (gdbarch,
1738 base_regnum) * portion));
55ff77ac
CV
1739 }
1740
1741 else if (reg_nr >= FV0_REGNUM
1742 && reg_nr <= FV_LAST_REGNUM)
1743 {
d93859e2 1744 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1745
1746 /* Write the real regs for which this one is an alias. */
1747 for (portion = 0; portion < 4; portion++)
1748 regcache_raw_write (regcache, base_regnum + portion,
1749 ((char *) buffer
7bb11558
MS
1750 + register_size (gdbarch,
1751 base_regnum) * portion));
55ff77ac
CV
1752 }
1753
c378eb4e 1754 /* sh compact general pseudo registers. 1-to-1 with a shmedia
55ff77ac
CV
1755 register but only 4 bytes of it. */
1756 else if (reg_nr >= R0_C_REGNUM
1757 && reg_nr <= T_C_REGNUM)
1758 {
d93859e2 1759 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
7bb11558 1760 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
58643501 1761 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
1762 offset = 4;
1763 else
1764 offset = 0;
1765 /* Let's read the value of the base register into a temporary
1766 buffer, so that overwriting the last four bytes with the new
7bb11558 1767 value of the pseudo will leave the upper 4 bytes unchanged. */
55ff77ac 1768 regcache_raw_read (regcache, base_regnum, temp_buffer);
c378eb4e 1769 /* Write as an 8 byte quantity. */
55ff77ac
CV
1770 memcpy (temp_buffer + offset, buffer, 4);
1771 regcache_raw_write (regcache, base_regnum, temp_buffer);
1772 }
1773
c378eb4e
MS
1774 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1775 registers. Both are 4 bytes. */
55ff77ac
CV
1776 else if (reg_nr >= FP0_C_REGNUM
1777 && reg_nr <= FP_LAST_C_REGNUM)
1778 {
d93859e2 1779 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1780 regcache_raw_write (regcache, base_regnum, buffer);
1781 }
1782
1783 else if (reg_nr >= DR0_C_REGNUM
1784 && reg_nr <= DR_LAST_C_REGNUM)
1785 {
d93859e2 1786 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1787 for (portion = 0; portion < 2; portion++)
1788 {
7bb11558 1789 /* We must pay attention to the endianness. */
d93859e2
UW
1790 sh64_register_convert_to_raw (gdbarch,
1791 register_type (gdbarch, reg_nr),
39add00a
MS
1792 reg_nr,
1793 buffer, temp_buffer);
55ff77ac
CV
1794
1795 regcache_raw_write (regcache, base_regnum + portion,
1796 (temp_buffer
7bb11558
MS
1797 + register_size (gdbarch,
1798 base_regnum) * portion));
55ff77ac
CV
1799 }
1800 }
1801
1802 else if (reg_nr >= FV0_C_REGNUM
1803 && reg_nr <= FV_LAST_C_REGNUM)
1804 {
d93859e2 1805 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1806
1807 for (portion = 0; portion < 4; portion++)
1808 {
1809 regcache_raw_write (regcache, base_regnum + portion,
1810 ((char *) buffer
7bb11558
MS
1811 + register_size (gdbarch,
1812 base_regnum) * portion));
55ff77ac
CV
1813 }
1814 }
1815
1816 else if (reg_nr == FPSCR_C_REGNUM)
1817 {
1818 int fpscr_base_regnum;
1819 int sr_base_regnum;
1820 unsigned int fpscr_value;
1821 unsigned int sr_value;
1822 unsigned int old_fpscr_value;
1823 unsigned int old_sr_value;
1824 unsigned int fpscr_c_value;
1825 unsigned int fpscr_mask;
1826 unsigned int sr_mask;
1827
1828 fpscr_base_regnum = FPSCR_REGNUM;
1829 sr_base_regnum = SR_REGNUM;
1830
1831 /* FPSCR_C is a very weird register that contains sparse bits
1832 from the FPSCR and the SR architectural registers.
1833 Specifically: */
1834 /* *INDENT-OFF* */
1835 /*
1836 FPSRC_C bit
1837 0 Bit 0 of FPSCR
1838 1 reserved
1839 2-17 Bit 2-18 of FPSCR
1840 18-20 Bits 12,13,14 of SR
1841 21-31 reserved
1842 */
1843 /* *INDENT-ON* */
7bb11558 1844 /* Get value as an int. */
e17a4113 1845 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
55ff77ac 1846
7bb11558 1847 /* Build the new values. */
55ff77ac
CV
1848 fpscr_mask = 0x0003fffd;
1849 sr_mask = 0x001c0000;
1850
1851 fpscr_value = fpscr_c_value & fpscr_mask;
1852 sr_value = (fpscr_value & sr_mask) >> 6;
1853
1854 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
e17a4113 1855 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1856 old_fpscr_value &= 0xfffc0002;
1857 fpscr_value |= old_fpscr_value;
e17a4113 1858 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
55ff77ac
CV
1859 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1860
1861 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
e17a4113 1862 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1863 old_sr_value &= 0xffff8fff;
1864 sr_value |= old_sr_value;
e17a4113 1865 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
55ff77ac
CV
1866 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1867 }
1868
1869 else if (reg_nr == FPUL_C_REGNUM)
1870 {
d93859e2 1871 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1872 regcache_raw_write (regcache, base_regnum, buffer);
1873 }
1874}
1875
55ff77ac 1876/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
7bb11558
MS
1877 shmedia REGISTERS. */
1878/* Control registers, compact mode. */
55ff77ac 1879static void
c30dc700
CV
1880sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1881 int cr_c_regnum)
55ff77ac
CV
1882{
1883 switch (cr_c_regnum)
1884 {
c30dc700
CV
1885 case PC_C_REGNUM:
1886 fprintf_filtered (file, "pc_c\t0x%08x\n",
1887 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1888 break;
c30dc700
CV
1889 case GBR_C_REGNUM:
1890 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1891 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1892 break;
c30dc700
CV
1893 case MACH_C_REGNUM:
1894 fprintf_filtered (file, "mach_c\t0x%08x\n",
1895 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1896 break;
c30dc700
CV
1897 case MACL_C_REGNUM:
1898 fprintf_filtered (file, "macl_c\t0x%08x\n",
1899 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1900 break;
c30dc700
CV
1901 case PR_C_REGNUM:
1902 fprintf_filtered (file, "pr_c\t0x%08x\n",
1903 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1904 break;
c30dc700
CV
1905 case T_C_REGNUM:
1906 fprintf_filtered (file, "t_c\t0x%08x\n",
1907 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1908 break;
c30dc700
CV
1909 case FPSCR_C_REGNUM:
1910 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1911 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1912 break;
c30dc700
CV
1913 case FPUL_C_REGNUM:
1914 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1915 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac
CV
1916 break;
1917 }
1918}
1919
1920static void
c30dc700
CV
1921sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1922 struct frame_info *frame, int regnum)
c378eb4e 1923{ /* Do values for FP (float) regs. */
079c8cd0 1924 unsigned char *raw_buffer;
c378eb4e 1925 double flt; /* Double extracted from raw hex data. */
55ff77ac
CV
1926 int inv;
1927 int j;
1928
7bb11558 1929 /* Allocate space for the float. */
c378eb4e
MS
1930 raw_buffer = (unsigned char *)
1931 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
55ff77ac
CV
1932
1933 /* Get the data in raw format. */
ca9d61b9 1934 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
a73c6dcd 1935 error (_("can't read register %d (%s)"),
58643501 1936 regnum, gdbarch_register_name (gdbarch, regnum));
55ff77ac 1937
c378eb4e
MS
1938 /* Get the register as a number. */
1939 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
1940 raw_buffer, &inv);
55ff77ac 1941
7bb11558 1942 /* Print the name and some spaces. */
58643501 1943 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 1944 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 1945 (gdbarch, regnum)), file);
55ff77ac 1946
7bb11558 1947 /* Print the value. */
55ff77ac
CV
1948 if (inv)
1949 fprintf_filtered (file, "<invalid float>");
1950 else
1951 fprintf_filtered (file, "%-10.9g", flt);
1952
7bb11558 1953 /* Print the fp register as hex. */
55ff77ac
CV
1954 fprintf_filtered (file, "\t(raw 0x");
1955 for (j = 0; j < register_size (gdbarch, regnum); j++)
1956 {
58643501 1957 int idx = gdbarch_byte_order (gdbarch)
4c6b5505
UW
1958 == BFD_ENDIAN_BIG ? j : register_size
1959 (gdbarch, regnum) - 1 - j;
079c8cd0 1960 fprintf_filtered (file, "%02x", raw_buffer[idx]);
55ff77ac
CV
1961 }
1962 fprintf_filtered (file, ")");
1963 fprintf_filtered (file, "\n");
1964}
1965
1966static void
c30dc700
CV
1967sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1968 struct frame_info *frame, int regnum)
55ff77ac 1969{
7bb11558 1970 /* All the sh64-compact mode registers are pseudo registers. */
55ff77ac 1971
58643501
UW
1972 if (regnum < gdbarch_num_regs (gdbarch)
1973 || regnum >= gdbarch_num_regs (gdbarch)
f57d151a
UW
1974 + NUM_PSEUDO_REGS_SH_MEDIA
1975 + NUM_PSEUDO_REGS_SH_COMPACT)
55ff77ac 1976 internal_error (__FILE__, __LINE__,
e2e0b3e5 1977 _("Invalid pseudo register number %d\n"), regnum);
55ff77ac 1978
c30dc700
CV
1979 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
1980 {
d93859e2 1981 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
c30dc700
CV
1982 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
1983 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1984 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1985 }
55ff77ac 1986
c30dc700
CV
1987 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
1988 {
d93859e2 1989 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
1990 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
1991 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1992 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1993 }
55ff77ac 1994
c30dc700
CV
1995 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
1996 {
d93859e2 1997 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
c30dc700
CV
1998 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1999 regnum - FV0_REGNUM,
2000 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2001 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2002 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2003 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2004 }
55ff77ac 2005
c30dc700
CV
2006 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2007 {
d93859e2 2008 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2009 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2010 regnum - FV0_C_REGNUM,
2011 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2012 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2013 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2014 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2015 }
2016
2017 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2018 {
d93859e2 2019 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
c30dc700
CV
2020 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2021 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2022 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2023 }
2024
2025 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2026 {
d93859e2 2027 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2028 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2029 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2030 }
2031 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
7bb11558 2032 /* This should work also for pseudoregs. */
c30dc700
CV
2033 sh64_do_fp_register (gdbarch, file, frame, regnum);
2034 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2035 sh64_do_cr_c_register_info (file, frame, regnum);
55ff77ac
CV
2036}
2037
2038static void
c30dc700
CV
2039sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2040 struct frame_info *frame, int regnum)
55ff77ac 2041{
079c8cd0 2042 unsigned char raw_buffer[MAX_REGISTER_SIZE];
79a45b7d 2043 struct value_print_options opts;
55ff77ac 2044
58643501 2045 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 2046 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 2047 (gdbarch, regnum)), file);
55ff77ac
CV
2048
2049 /* Get the data in raw format. */
ca9d61b9 2050 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
55ff77ac 2051 fprintf_filtered (file, "*value not available*\n");
79a45b7d
TT
2052
2053 get_formatted_print_options (&opts, 'x');
2054 opts.deref_ref = 1;
7b9ee6a8 2055 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
0e03807e 2056 file, 0, NULL, &opts, current_language);
55ff77ac 2057 fprintf_filtered (file, "\t");
79a45b7d
TT
2058 get_formatted_print_options (&opts, 0);
2059 opts.deref_ref = 1;
7b9ee6a8 2060 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
0e03807e 2061 file, 0, NULL, &opts, current_language);
55ff77ac
CV
2062 fprintf_filtered (file, "\n");
2063}
2064
2065static void
c30dc700
CV
2066sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2067 struct frame_info *frame, int regnum)
55ff77ac 2068{
58643501
UW
2069 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2070 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2071 internal_error (__FILE__, __LINE__,
e2e0b3e5 2072 _("Invalid register number %d\n"), regnum);
55ff77ac 2073
58643501 2074 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
55ff77ac 2075 {
7b9ee6a8 2076 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c30dc700 2077 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
55ff77ac 2078 else
c30dc700 2079 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2080 }
2081
58643501
UW
2082 else if (regnum < gdbarch_num_regs (gdbarch)
2083 + gdbarch_num_pseudo_regs (gdbarch))
c30dc700 2084 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2085}
2086
2087static void
c30dc700
CV
2088sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2089 struct frame_info *frame, int regnum,
2090 int fpregs)
55ff77ac 2091{
c378eb4e 2092 if (regnum != -1) /* Do one specified register. */
55ff77ac 2093 {
58643501 2094 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2095 error (_("Not a valid register for the current processor type"));
55ff77ac 2096
c30dc700 2097 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2098 }
2099 else
c378eb4e 2100 /* Do all (or most) registers. */
55ff77ac
CV
2101 {
2102 regnum = 0;
58643501 2103 while (regnum < gdbarch_num_regs (gdbarch))
55ff77ac
CV
2104 {
2105 /* If the register name is empty, it is undefined for this
2106 processor, so don't display anything. */
58643501
UW
2107 if (gdbarch_register_name (gdbarch, regnum) == NULL
2108 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
55ff77ac
CV
2109 {
2110 regnum++;
2111 continue;
2112 }
2113
7b9ee6a8 2114 if (TYPE_CODE (register_type (gdbarch, regnum))
c30dc700 2115 == TYPE_CODE_FLT)
55ff77ac
CV
2116 {
2117 if (fpregs)
2118 {
c378eb4e 2119 /* true for "INFO ALL-REGISTERS" command. */
c30dc700 2120 sh64_do_fp_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2121 regnum ++;
2122 }
2123 else
58643501 2124 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
3e8c568d 2125 /* skip FP regs */
55ff77ac
CV
2126 }
2127 else
2128 {
c30dc700 2129 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2130 regnum++;
2131 }
2132 }
2133
2134 if (fpregs)
58643501
UW
2135 while (regnum < gdbarch_num_regs (gdbarch)
2136 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2137 {
c30dc700 2138 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2139 regnum++;
2140 }
2141 }
2142}
2143
2144static void
c30dc700
CV
2145sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2146 struct ui_file *file,
2147 struct frame_info *frame, int regnum,
2148 int fpregs)
55ff77ac 2149{
c378eb4e 2150 if (regnum != -1) /* Do one specified register. */
55ff77ac 2151 {
58643501 2152 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2153 error (_("Not a valid register for the current processor type"));
55ff77ac
CV
2154
2155 if (regnum >= 0 && regnum < R0_C_REGNUM)
a73c6dcd 2156 error (_("Not a valid register for the current processor mode."));
55ff77ac 2157
c30dc700 2158 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2159 }
2160 else
c378eb4e 2161 /* Do all compact registers. */
55ff77ac
CV
2162 {
2163 regnum = R0_C_REGNUM;
58643501
UW
2164 while (regnum < gdbarch_num_regs (gdbarch)
2165 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2166 {
c30dc700 2167 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2168 regnum++;
2169 }
2170 }
2171}
2172
2173static void
c30dc700
CV
2174sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2175 struct frame_info *frame, int regnum, int fpregs)
55ff77ac 2176{
c30dc700
CV
2177 if (pc_is_isa32 (get_frame_pc (frame)))
2178 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac 2179 else
c30dc700 2180 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac
CV
2181}
2182
c30dc700
CV
2183static struct sh64_frame_cache *
2184sh64_alloc_frame_cache (void)
2185{
2186 struct sh64_frame_cache *cache;
2187 int i;
2188
2189 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2190
2191 /* Base address. */
2192 cache->base = 0;
2193 cache->saved_sp = 0;
2194 cache->sp_offset = 0;
2195 cache->pc = 0;
55ff77ac 2196
c30dc700
CV
2197 /* Frameless until proven otherwise. */
2198 cache->uses_fp = 0;
55ff77ac 2199
c30dc700
CV
2200 /* Saved registers. We initialize these to -1 since zero is a valid
2201 offset (that's where fp is supposed to be stored). */
2202 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2203 {
2204 cache->saved_regs[i] = -1;
2205 }
2206
2207 return cache;
2208}
2209
2210static struct sh64_frame_cache *
94afd7a6 2211sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
55ff77ac 2212{
58643501 2213 struct gdbarch *gdbarch;
c30dc700
CV
2214 struct sh64_frame_cache *cache;
2215 CORE_ADDR current_pc;
2216 int i;
55ff77ac 2217
c30dc700
CV
2218 if (*this_cache)
2219 return *this_cache;
2220
94afd7a6 2221 gdbarch = get_frame_arch (this_frame);
c30dc700
CV
2222 cache = sh64_alloc_frame_cache ();
2223 *this_cache = cache;
2224
94afd7a6 2225 current_pc = get_frame_pc (this_frame);
c30dc700
CV
2226 cache->media_mode = pc_is_isa32 (current_pc);
2227
2228 /* In principle, for normal frames, fp holds the frame pointer,
2229 which holds the base address for the current stack frame.
2230 However, for functions that don't need it, the frame pointer is
2231 optional. For these "frameless" functions the frame pointer is
c378eb4e 2232 actually the frame pointer of the calling frame. */
94afd7a6 2233 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
c30dc700
CV
2234 if (cache->base == 0)
2235 return cache;
2236
94afd7a6 2237 cache->pc = get_frame_func (this_frame);
c30dc700 2238 if (cache->pc != 0)
58643501 2239 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
c30dc700
CV
2240
2241 if (!cache->uses_fp)
55ff77ac 2242 {
c30dc700
CV
2243 /* We didn't find a valid frame, which means that CACHE->base
2244 currently holds the frame pointer for our calling frame. If
2245 we're at the start of a function, or somewhere half-way its
2246 prologue, the function's frame probably hasn't been fully
2247 setup yet. Try to reconstruct the base address for the stack
2248 frame by looking at the stack pointer. For truly "frameless"
2249 functions this might work too. */
94afd7a6
UW
2250 cache->base = get_frame_register_unsigned
2251 (this_frame, gdbarch_sp_regnum (gdbarch));
c30dc700 2252 }
55ff77ac 2253
c30dc700
CV
2254 /* Now that we have the base address for the stack frame we can
2255 calculate the value of sp in the calling frame. */
2256 cache->saved_sp = cache->base + cache->sp_offset;
55ff77ac 2257
c30dc700
CV
2258 /* Adjust all the saved registers such that they contain addresses
2259 instead of offsets. */
2260 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2261 if (cache->saved_regs[i] != -1)
2262 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
55ff77ac 2263
c30dc700
CV
2264 return cache;
2265}
55ff77ac 2266
94afd7a6
UW
2267static struct value *
2268sh64_frame_prev_register (struct frame_info *this_frame,
2269 void **this_cache, int regnum)
c30dc700 2270{
94afd7a6
UW
2271 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2272 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 2273 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 2274
c30dc700 2275 gdb_assert (regnum >= 0);
55ff77ac 2276
58643501 2277 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 2278 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
c30dc700
CV
2279
2280 /* The PC of the previous frame is stored in the PR register of
2281 the current frame. Frob regnum so that we pull the value from
2282 the correct place. */
58643501 2283 if (regnum == gdbarch_pc_regnum (gdbarch))
c30dc700
CV
2284 regnum = PR_REGNUM;
2285
2286 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2287 {
58643501 2288 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
c30dc700 2289 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
c30dc700 2290 {
94afd7a6 2291 CORE_ADDR val;
e17a4113
UW
2292 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2293 4, byte_order);
94afd7a6 2294 return frame_unwind_got_constant (this_frame, regnum, val);
c30dc700 2295 }
94afd7a6
UW
2296
2297 return frame_unwind_got_memory (this_frame, regnum,
2298 cache->saved_regs[regnum]);
55ff77ac
CV
2299 }
2300
94afd7a6 2301 return frame_unwind_got_register (this_frame, regnum, regnum);
55ff77ac 2302}
55ff77ac 2303
c30dc700 2304static void
94afd7a6 2305sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
c30dc700
CV
2306 struct frame_id *this_id)
2307{
94afd7a6 2308 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2309
2310 /* This marks the outermost frame. */
2311 if (cache->base == 0)
2312 return;
2313
2314 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2315}
2316
2317static const struct frame_unwind sh64_frame_unwind = {
2318 NORMAL_FRAME,
8fbca658 2319 default_frame_unwind_stop_reason,
c30dc700 2320 sh64_frame_this_id,
94afd7a6
UW
2321 sh64_frame_prev_register,
2322 NULL,
2323 default_frame_sniffer
c30dc700
CV
2324};
2325
c30dc700
CV
2326static CORE_ADDR
2327sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2328{
3e8c568d 2329 return frame_unwind_register_unsigned (next_frame,
58643501 2330 gdbarch_sp_regnum (gdbarch));
c30dc700
CV
2331}
2332
2333static CORE_ADDR
2334sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2335{
3e8c568d 2336 return frame_unwind_register_unsigned (next_frame,
58643501 2337 gdbarch_pc_regnum (gdbarch));
c30dc700
CV
2338}
2339
2340static struct frame_id
94afd7a6 2341sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c30dc700 2342{
94afd7a6
UW
2343 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2344 gdbarch_sp_regnum (gdbarch));
2345 return frame_id_build (sp, get_frame_pc (this_frame));
c30dc700
CV
2346}
2347
2348static CORE_ADDR
94afd7a6 2349sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
c30dc700 2350{
94afd7a6 2351 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2352
2353 return cache->base;
2354}
2355
2356static const struct frame_base sh64_frame_base = {
2357 &sh64_frame_unwind,
2358 sh64_frame_base_address,
2359 sh64_frame_base_address,
2360 sh64_frame_base_address
2361};
2362
55ff77ac
CV
2363
2364struct gdbarch *
2365sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2366{
55ff77ac
CV
2367 struct gdbarch *gdbarch;
2368 struct gdbarch_tdep *tdep;
2369
2370 /* If there is already a candidate, use it. */
2371 arches = gdbarch_list_lookup_by_info (arches, &info);
2372 if (arches != NULL)
2373 return arches->gdbarch;
2374
2375 /* None found, create a new architecture from the information
7bb11558 2376 provided. */
55ff77ac
CV
2377 tdep = XMALLOC (struct gdbarch_tdep);
2378 gdbarch = gdbarch_alloc (&info, tdep);
2379
55ff77ac
CV
2380 /* Determine the ABI */
2381 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2382 {
7bb11558 2383 /* If the ABI is the 64-bit one, it can only be sh-media. */
55ff77ac
CV
2384 tdep->sh_abi = SH_ABI_64;
2385 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2386 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2387 }
2388 else
2389 {
2390 /* If the ABI is the 32-bit one it could be either media or
7bb11558 2391 compact. */
55ff77ac
CV
2392 tdep->sh_abi = SH_ABI_32;
2393 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2394 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2395 }
2396
2397 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2398 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
c30dc700 2399 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
55ff77ac
CV
2400 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2401 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2402 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2403 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2404
c30dc700
CV
2405 /* The number of real registers is the same whether we are in
2406 ISA16(compact) or ISA32(media). */
2407 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
55ff77ac 2408 set_gdbarch_sp_regnum (gdbarch, 15);
c30dc700
CV
2409 set_gdbarch_pc_regnum (gdbarch, 64);
2410 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2411 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2412 + NUM_PSEUDO_REGS_SH_COMPACT);
55ff77ac 2413
c30dc700
CV
2414 set_gdbarch_register_name (gdbarch, sh64_register_name);
2415 set_gdbarch_register_type (gdbarch, sh64_register_type);
2416
2417 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2418 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2419
2420 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2421
9dae60cc 2422 set_gdbarch_print_insn (gdbarch, print_insn_sh);
55ff77ac
CV
2423 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2424
c30dc700 2425 set_gdbarch_return_value (gdbarch, sh64_return_value);
55ff77ac 2426
c30dc700
CV
2427 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2428 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
55ff77ac 2429
c30dc700 2430 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
55ff77ac 2431
c30dc700 2432 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
55ff77ac 2433
c30dc700
CV
2434 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2435 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2436 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
94afd7a6 2437 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
c30dc700 2438 frame_base_set_default (gdbarch, &sh64_frame_base);
55ff77ac 2439
c30dc700 2440 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
55ff77ac 2441
55ff77ac
CV
2442 set_gdbarch_elf_make_msymbol_special (gdbarch,
2443 sh64_elf_make_msymbol_special);
2444
2445 /* Hook in ABI-specific overrides, if they have been registered. */
2446 gdbarch_init_osabi (info, gdbarch);
2447
94afd7a6
UW
2448 dwarf2_append_unwinders (gdbarch);
2449 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
c30dc700 2450
55ff77ac
CV
2451 return gdbarch;
2452}