]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/sh64-tdep.c
Target FP: Introduce target-float.{c,h}
[thirdparty/binutils-gdb.git] / gdb / sh64-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
cf5b2f1b 2
61baf725 3 Copyright (C) 1993-2017 Free Software Foundation, Inc.
55ff77ac
CV
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
55ff77ac
CV
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
55ff77ac 19
c378eb4e
MS
20/* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
55ff77ac
CV
22
23#include "defs.h"
24#include "frame.h"
c30dc700
CV
25#include "frame-base.h"
26#include "frame-unwind.h"
27#include "dwarf2-frame.h"
55ff77ac 28#include "symtab.h"
55ff77ac
CV
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "value.h"
33#include "dis-asm.h"
34#include "inferior.h"
55ff77ac 35#include "arch-utils.h"
55ff77ac 36#include "regcache.h"
55ff77ac 37#include "osabi.h"
79a45b7d 38#include "valprint.h"
55ff77ac
CV
39
40#include "elf-bfd.h"
55ff77ac
CV
41
42/* sh flags */
43#include "elf/sh.h"
c378eb4e 44/* Register numbers shared with the simulator. */
55ff77ac 45#include "gdb/sim-sh.h"
d8ca156b 46#include "language.h"
04dcf5fa 47#include "sh64-tdep.h"
325fac50 48#include <algorithm>
55ff77ac 49
7bb11558 50/* Information that is dependent on the processor variant. */
55ff77ac
CV
51enum sh_abi
52 {
53 SH_ABI_UNKNOWN,
54 SH_ABI_32,
55 SH_ABI_64
56 };
57
58struct gdbarch_tdep
59 {
60 enum sh_abi sh_abi;
96a5a1d3
UW
61 /* ISA-specific data types. */
62 struct type *sh_littlebyte_bigword_type;
55ff77ac
CV
63 };
64
96a5a1d3
UW
65struct type *
66sh64_littlebyte_bigword_type (struct gdbarch *gdbarch)
67{
68 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
69
70 if (tdep->sh_littlebyte_bigword_type == NULL)
71 tdep->sh_littlebyte_bigword_type
72 = arch_float_type (gdbarch, -1, "builtin_type_sh_littlebyte_bigword",
73 floatformats_ieee_double_littlebyte_bigword);
74
75 return tdep->sh_littlebyte_bigword_type;
76}
77
c30dc700
CV
78struct sh64_frame_cache
79{
80 /* Base address. */
81 CORE_ADDR base;
82 LONGEST sp_offset;
83 CORE_ADDR pc;
84
c378eb4e 85 /* Flag showing that a frame has been created in the prologue code. */
c30dc700
CV
86 int uses_fp;
87
88 int media_mode;
89
90 /* Saved registers. */
91 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
92 CORE_ADDR saved_sp;
93};
94
55ff77ac
CV
95/* Registers of SH5 */
96enum
97 {
98 R0_REGNUM = 0,
99 DEFAULT_RETURN_REGNUM = 2,
100 STRUCT_RETURN_REGNUM = 2,
101 ARG0_REGNUM = 2,
102 ARGLAST_REGNUM = 9,
103 FLOAT_ARGLAST_REGNUM = 11,
c30dc700 104 MEDIA_FP_REGNUM = 14,
55ff77ac
CV
105 PR_REGNUM = 18,
106 SR_REGNUM = 65,
107 DR0_REGNUM = 141,
108 DR_LAST_REGNUM = 172,
109 /* FPP stands for Floating Point Pair, to avoid confusion with
3e8c568d 110 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
c378eb4e 111 point register. Unfortunately on the sh5, the floating point
7bb11558 112 registers are called FR, and the floating point pairs are called FP. */
55ff77ac
CV
113 FPP0_REGNUM = 173,
114 FPP_LAST_REGNUM = 204,
115 FV0_REGNUM = 205,
116 FV_LAST_REGNUM = 220,
117 R0_C_REGNUM = 221,
118 R_LAST_C_REGNUM = 236,
119 PC_C_REGNUM = 237,
120 GBR_C_REGNUM = 238,
121 MACH_C_REGNUM = 239,
122 MACL_C_REGNUM = 240,
123 PR_C_REGNUM = 241,
124 T_C_REGNUM = 242,
125 FPSCR_C_REGNUM = 243,
126 FPUL_C_REGNUM = 244,
127 FP0_C_REGNUM = 245,
128 FP_LAST_C_REGNUM = 260,
129 DR0_C_REGNUM = 261,
130 DR_LAST_C_REGNUM = 268,
131 FV0_C_REGNUM = 269,
132 FV_LAST_C_REGNUM = 272,
133 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
134 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
135 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
136 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
137 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
138 };
139
55ff77ac 140static const char *
d93859e2 141sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 142{
a121b7c1 143 static const char *register_names[] =
55ff77ac
CV
144 {
145 /* SH MEDIA MODE (ISA 32) */
146 /* general registers (64-bit) 0-63 */
147 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
148 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
149 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
150 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
151 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
152 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
153 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
154 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
155
156 /* pc (64-bit) 64 */
157 "pc",
158
159 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
160 "sr", "ssr", "spc",
161
c378eb4e 162 /* target registers (64-bit) 68-75 */
55ff77ac
CV
163 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
164
165 /* floating point state control register (32-bit) 76 */
166 "fpscr",
167
c378eb4e 168 /* single precision floating point registers (32-bit) 77-140 */
55ff77ac
CV
169 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
170 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
171 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
172 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
173 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
174 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
175 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
176 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
177
178 /* double precision registers (pseudo) 141-172 */
179 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
180 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
181 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
182 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
183
c378eb4e 184 /* floating point pairs (pseudo) 173-204 */
55ff77ac
CV
185 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
186 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
187 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
188 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
189
c378eb4e 190 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
55ff77ac
CV
191 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
192 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
193
c378eb4e 194 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
55ff77ac
CV
195 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
196 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
197 "pc_c",
198 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
199 "fpscr_c", "fpul_c",
c378eb4e
MS
200 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
201 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
202 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
203 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
204 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
205 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
55ff77ac 206 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
c378eb4e 207 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
55ff77ac
CV
208 };
209
210 if (reg_nr < 0)
211 return NULL;
212 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
213 return NULL;
214 return register_names[reg_nr];
215}
216
217#define NUM_PSEUDO_REGS_SH_MEDIA 80
218#define NUM_PSEUDO_REGS_SH_COMPACT 51
219
220/* Macros and functions for setting and testing a bit in a minimal
221 symbol that marks it as 32-bit function. The MSB of the minimal
f594e5e9 222 symbol's "info" field is used for this purpose.
55ff77ac 223
95f1da47
UW
224 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
225 i.e. refers to a 32-bit function, and sets a "special" bit in a
55ff77ac 226 minimal symbol to mark it as a 32-bit function
f594e5e9 227 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
55ff77ac
CV
228
229#define MSYMBOL_IS_SPECIAL(msym) \
b887350f 230 MSYMBOL_TARGET_FLAG_1 (msym)
55ff77ac
CV
231
232static void
233sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
234{
235 if (msym == NULL)
236 return;
237
238 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
239 {
b887350f 240 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
77e371c0 241 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
55ff77ac
CV
242 }
243}
244
245/* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
246 are some macros to test, set, or clear bit 0 of addresses. */
247#define IS_ISA32_ADDR(addr) ((addr) & 1)
248#define MAKE_ISA32_ADDR(addr) ((addr) | 1)
249#define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
250
251static int
252pc_is_isa32 (bfd_vma memaddr)
253{
7cbd4a93 254 struct bound_minimal_symbol sym;
55ff77ac
CV
255
256 /* If bit 0 of the address is set, assume this is a
7bb11558 257 ISA32 (shmedia) address. */
55ff77ac
CV
258 if (IS_ISA32_ADDR (memaddr))
259 return 1;
260
261 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
262 the high bit of the info field. Use this to decide if the function is
263 ISA16 or ISA32. */
264 sym = lookup_minimal_symbol_by_pc (memaddr);
7cbd4a93
TT
265 if (sym.minsym)
266 return MSYMBOL_IS_SPECIAL (sym.minsym);
55ff77ac
CV
267 else
268 return 0;
269}
270
d19280ad
YQ
271static int
272sh64_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
55ff77ac 273{
d19280ad
YQ
274 if (pc_is_isa32 (*pcptr))
275 {
276 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
277 return 4;
278 }
279 else
280 return 2;
281}
282
283static const gdb_byte *
284sh64_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
285{
286 *size = kind;
287
288 /* The BRK instruction for shmedia is
55ff77ac
CV
289 01101111 11110101 11111111 11110000
290 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
291 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
292
293 /* The BRK instruction for shcompact is
294 00000000 00111011
295 which translates in big endian mode to 0x0, 0x3b
c378eb4e 296 and in little endian mode to 0x3b, 0x0 */
55ff77ac 297
d19280ad 298 if (kind == 4)
55ff77ac 299 {
d19280ad
YQ
300 static unsigned char big_breakpoint_media[] = {
301 0x6f, 0xf5, 0xff, 0xf0
302 };
303 static unsigned char little_breakpoint_media[] = {
304 0xf0, 0xff, 0xf5, 0x6f
305 };
306
307 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
308 return big_breakpoint_media;
55ff77ac 309 else
d19280ad 310 return little_breakpoint_media;
55ff77ac
CV
311 }
312 else
313 {
d19280ad
YQ
314 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
315 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
316
317 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
318 return big_breakpoint_compact;
55ff77ac 319 else
d19280ad 320 return little_breakpoint_compact;
55ff77ac
CV
321 }
322}
323
324/* Prologue looks like
325 [mov.l <regs>,@-r15]...
326 [sts.l pr,@-r15]
327 [mov.l r14,@-r15]
328 [mov r15,r14]
329
330 Actually it can be more complicated than this. For instance, with
331 newer gcc's:
332
333 mov.l r14,@-r15
334 add #-12,r15
335 mov r15,r14
336 mov r4,r1
337 mov r5,r2
338 mov.l r6,@(4,r14)
339 mov.l r7,@(8,r14)
340 mov.b r1,@r14
341 mov r14,r1
342 mov r14,r1
343 add #2,r1
344 mov.w r2,@r1
345
346 */
347
348/* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
349 with l=1 and n = 18 0110101111110001010010100aaa0000 */
350#define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
351
352/* STS.L PR,@-r0 0100000000100010
353 r0-4-->r0, PR-->(r0) */
354#define IS_STS_R0(x) ((x) == 0x4022)
355
356/* STS PR, Rm 0000mmmm00101010
357 PR-->Rm */
358#define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
359
360/* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
361 Rm-->(dispx4+r15) */
362#define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
363
364/* MOV.L R14,@(disp,r15) 000111111110dddd
365 R14-->(dispx4+r15) */
366#define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
367
368/* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
369 R18-->(dispx8+R14) */
370#define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
371
372/* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
373 R18-->(dispx8+R15) */
374#define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
375
376/* ST.L R15, disp, R18 101010001111dddddddddd0100100000
377 R18-->(dispx4+R15) */
378#define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
379
380/* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
381 R14-->(dispx8+R15) */
382#define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
383
384/* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
385 R14-->(dispx4+R15) */
386#define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
387
388/* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
389 R15 + imm --> R15 */
390#define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
391
392/* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
393 R15 + imm --> R15 */
394#define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
395
396/* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
397 R15 + R63 --> R14 */
398#define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
399
400/* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
401 R15 + R63 --> R14 */
402#define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
403
c378eb4e
MS
404#define IS_MOV_SP_FP_MEDIA(x) \
405 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
55ff77ac
CV
406
407/* MOV #imm, R0 1110 0000 ssss ssss
408 #imm-->R0 */
409#define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
410
411/* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
412#define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
413
414/* ADD r15,r0 0011 0000 1111 1100
415 r15+r0-->r0 */
416#define IS_ADD_SP_R0(x) ((x) == 0x30fc)
417
418/* MOV.L R14 @-R0 0010 0000 1110 0110
419 R14-->(R0-4), R0-4-->R0 */
420#define IS_MOV_R14_R0(x) ((x) == 0x20e6)
421
422/* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
7bb11558 423 where Rm is one of r2-r9 which are the argument registers. */
c378eb4e 424/* FIXME: Recognize the float and double register moves too! */
55ff77ac 425#define IS_MEDIA_IND_ARG_MOV(x) \
c378eb4e
MS
426 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
427 && (((x) & 0x03f00000) >= 0x00200000 \
428 && ((x) & 0x03f00000) <= 0x00900000))
55ff77ac
CV
429
430/* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
431 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
7bb11558 432 where Rm is one of r2-r9 which are the argument registers. */
55ff77ac
CV
433#define IS_MEDIA_ARG_MOV(x) \
434(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
435 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
436
c378eb4e
MS
437/* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
438/* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
439/* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
440/* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
441/* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
55ff77ac
CV
442#define IS_MEDIA_MOV_TO_R14(x) \
443((((x) & 0xfffffc0f) == 0xa0e00000) \
444|| (((x) & 0xfffffc0f) == 0xa4e00000) \
445|| (((x) & 0xfffffc0f) == 0xa8e00000) \
446|| (((x) & 0xfffffc0f) == 0xb4e00000) \
447|| (((x) & 0xfffffc0f) == 0xbce00000))
448
449/* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
450 where Rm is r2-r9 */
451#define IS_COMPACT_IND_ARG_MOV(x) \
c378eb4e
MS
452 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
453 && (((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
454
455/* compact direct arg move!
456 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
457#define IS_COMPACT_ARG_MOV(x) \
c378eb4e
MS
458 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
459 && ((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
460
461/* MOV.B Rm, @R14 0010 1110 mmmm 0000
462 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
463#define IS_COMPACT_MOV_TO_R14(x) \
464((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
465
466#define IS_JSR_R0(x) ((x) == 0x400b)
467#define IS_NOP(x) ((x) == 0x0009)
468
469
470/* MOV r15,r14 0110111011110011
471 r15-->r14 */
472#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
473
474/* ADD #imm,r15 01111111iiiiiiii
475 r15+imm-->r15 */
476#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
477
c378eb4e 478/* Skip any prologue before the guts of a function. */
55ff77ac 479
7bb11558
MS
480/* Skip the prologue using the debug information. If this fails we'll
481 fall back on the 'guess' method below. */
55ff77ac
CV
482static CORE_ADDR
483after_prologue (CORE_ADDR pc)
484{
485 struct symtab_and_line sal;
486 CORE_ADDR func_addr, func_end;
487
488 /* If we can not find the symbol in the partial symbol table, then
489 there is no hope we can determine the function's start address
490 with this code. */
491 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
492 return 0;
493
c30dc700 494
55ff77ac
CV
495 /* Get the line associated with FUNC_ADDR. */
496 sal = find_pc_line (func_addr, 0);
497
498 /* There are only two cases to consider. First, the end of the source line
499 is within the function bounds. In that case we return the end of the
500 source line. Second is the end of the source line extends beyond the
501 bounds of the current function. We need to use the slow code to
502 examine instructions in that case. */
503 if (sal.end < func_end)
504 return sal.end;
505 else
506 return 0;
507}
508
509static CORE_ADDR
e17a4113
UW
510look_for_args_moves (struct gdbarch *gdbarch,
511 CORE_ADDR start_pc, int media_mode)
55ff77ac 512{
e17a4113 513 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
514 CORE_ADDR here, end;
515 int w;
516 int insn_size = (media_mode ? 4 : 2);
517
518 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
519 {
520 if (media_mode)
521 {
e17a4113
UW
522 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
523 insn_size, byte_order);
55ff77ac
CV
524 here += insn_size;
525 if (IS_MEDIA_IND_ARG_MOV (w))
526 {
527 /* This must be followed by a store to r14, so the argument
c378eb4e 528 is where the debug info says it is. This can happen after
7bb11558 529 the SP has been saved, unfortunately. */
55ff77ac
CV
530
531 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
e17a4113 532 insn_size, byte_order);
55ff77ac
CV
533 here += insn_size;
534 if (IS_MEDIA_MOV_TO_R14 (next_insn))
535 start_pc = here;
536 }
537 else if (IS_MEDIA_ARG_MOV (w))
538 {
7bb11558 539 /* These instructions store directly the argument in r14. */
55ff77ac
CV
540 start_pc = here;
541 }
542 else
543 break;
544 }
545 else
546 {
e17a4113 547 w = read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
548 w = w & 0xffff;
549 here += insn_size;
550 if (IS_COMPACT_IND_ARG_MOV (w))
551 {
552 /* This must be followed by a store to r14, so the argument
c378eb4e 553 is where the debug info says it is. This can happen after
7bb11558 554 the SP has been saved, unfortunately. */
55ff77ac 555
e17a4113
UW
556 int next_insn = 0xffff & read_memory_integer (here, insn_size,
557 byte_order);
55ff77ac
CV
558 here += insn_size;
559 if (IS_COMPACT_MOV_TO_R14 (next_insn))
560 start_pc = here;
561 }
562 else if (IS_COMPACT_ARG_MOV (w))
563 {
7bb11558 564 /* These instructions store directly the argument in r14. */
55ff77ac
CV
565 start_pc = here;
566 }
567 else if (IS_MOVL_R0 (w))
568 {
569 /* There is a function that gcc calls to get the arguments
c378eb4e 570 passed correctly to the function. Only after this
55ff77ac 571 function call the arguments will be found at the place
c378eb4e 572 where they are supposed to be. This happens in case the
55ff77ac
CV
573 argument has to be stored into a 64-bit register (for
574 instance doubles, long longs). SHcompact doesn't have
575 access to the full 64-bits, so we store the register in
576 stack slot and store the address of the stack slot in
577 the register, then do a call through a wrapper that
578 loads the memory value into the register. A SHcompact
579 callee calls an argument decoder
580 (GCC_shcompact_incoming_args) that stores the 64-bit
581 value in a stack slot and stores the address of the
582 stack slot in the register. GCC thinks the argument is
583 just passed by transparent reference, but this is only
c378eb4e 584 true after the argument decoder is called. Such a call
7bb11558 585 needs to be considered part of the prologue. */
55ff77ac
CV
586
587 /* This must be followed by a JSR @r0 instruction and by
c378eb4e 588 a NOP instruction. After these, the prologue is over! */
55ff77ac 589
e17a4113
UW
590 int next_insn = 0xffff & read_memory_integer (here, insn_size,
591 byte_order);
55ff77ac
CV
592 here += insn_size;
593 if (IS_JSR_R0 (next_insn))
594 {
e17a4113
UW
595 next_insn = 0xffff & read_memory_integer (here, insn_size,
596 byte_order);
55ff77ac
CV
597 here += insn_size;
598
599 if (IS_NOP (next_insn))
600 start_pc = here;
601 }
602 }
603 else
604 break;
605 }
606 }
607
608 return start_pc;
609}
610
611static CORE_ADDR
e17a4113 612sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
55ff77ac 613{
e17a4113 614 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
615 CORE_ADDR here, end;
616 int updated_fp = 0;
617 int insn_size = 4;
618 int media_mode = 1;
619
620 if (!start_pc)
621 return 0;
622
623 if (pc_is_isa32 (start_pc) == 0)
624 {
625 insn_size = 2;
626 media_mode = 0;
627 }
628
629 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
630 {
631
632 if (media_mode)
633 {
e17a4113
UW
634 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
635 insn_size, byte_order);
55ff77ac
CV
636 here += insn_size;
637 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
638 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
c378eb4e
MS
639 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
640 || IS_PTABSL_R18 (w))
55ff77ac
CV
641 {
642 start_pc = here;
643 }
644 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
645 {
646 start_pc = here;
647 updated_fp = 1;
648 }
649 else
650 if (updated_fp)
651 {
652 /* Don't bail out yet, we may have arguments stored in
653 registers here, according to the debug info, so that
7bb11558 654 gdb can print the frames correctly. */
e17a4113
UW
655 start_pc = look_for_args_moves (gdbarch,
656 here - insn_size, media_mode);
55ff77ac
CV
657 break;
658 }
659 }
660 else
661 {
e17a4113 662 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
663 here += insn_size;
664
665 if (IS_STS_R0 (w) || IS_STS_PR (w)
666 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
667 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
668 {
669 start_pc = here;
670 }
671 else if (IS_MOV_SP_FP (w))
672 {
673 start_pc = here;
674 updated_fp = 1;
675 }
676 else
677 if (updated_fp)
678 {
679 /* Don't bail out yet, we may have arguments stored in
680 registers here, according to the debug info, so that
7bb11558 681 gdb can print the frames correctly. */
e17a4113
UW
682 start_pc = look_for_args_moves (gdbarch,
683 here - insn_size, media_mode);
55ff77ac
CV
684 break;
685 }
686 }
687 }
688
689 return start_pc;
690}
691
692static CORE_ADDR
6093d2eb 693sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
55ff77ac
CV
694{
695 CORE_ADDR post_prologue_pc;
696
697 /* See if we can determine the end of the prologue via the symbol table.
698 If so, then return either PC, or the PC after the prologue, whichever
699 is greater. */
700 post_prologue_pc = after_prologue (pc);
701
702 /* If after_prologue returned a useful address, then use it. Else
7bb11558 703 fall back on the instruction skipping code. */
55ff77ac 704 if (post_prologue_pc != 0)
325fac50 705 return std::max (pc, post_prologue_pc);
55ff77ac 706 else
e17a4113 707 return sh64_skip_prologue_hard_way (gdbarch, pc);
55ff77ac
CV
708}
709
55ff77ac
CV
710/* Should call_function allocate stack space for a struct return? */
711static int
c30dc700 712sh64_use_struct_convention (struct type *type)
55ff77ac
CV
713{
714 return (TYPE_LENGTH (type) > 8);
715}
716
7bb11558 717/* For vectors of 4 floating point registers. */
55ff77ac 718static int
d93859e2 719sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
55ff77ac
CV
720{
721 int fp_regnum;
722
d93859e2 723 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
55ff77ac
CV
724 return fp_regnum;
725}
726
c378eb4e 727/* For double precision floating point registers, i.e 2 fp regs. */
55ff77ac 728static int
d93859e2 729sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
55ff77ac
CV
730{
731 int fp_regnum;
732
d93859e2 733 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
55ff77ac
CV
734 return fp_regnum;
735}
736
c378eb4e 737/* For pairs of floating point registers. */
55ff77ac 738static int
d93859e2 739sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
55ff77ac
CV
740{
741 int fp_regnum;
742
d93859e2 743 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
55ff77ac
CV
744 return fp_regnum;
745}
746
55ff77ac
CV
747/* *INDENT-OFF* */
748/*
749 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
750 GDB_REGNUM BASE_REGNUM
751 r0_c 221 0
752 r1_c 222 1
753 r2_c 223 2
754 r3_c 224 3
755 r4_c 225 4
756 r5_c 226 5
757 r6_c 227 6
758 r7_c 228 7
759 r8_c 229 8
760 r9_c 230 9
761 r10_c 231 10
762 r11_c 232 11
763 r12_c 233 12
764 r13_c 234 13
765 r14_c 235 14
766 r15_c 236 15
767
768 pc_c 237 64
769 gbr_c 238 16
770 mach_c 239 17
771 macl_c 240 17
772 pr_c 241 18
773 t_c 242 19
774 fpscr_c 243 76
775 fpul_c 244 109
776
777 fr0_c 245 77
778 fr1_c 246 78
779 fr2_c 247 79
780 fr3_c 248 80
781 fr4_c 249 81
782 fr5_c 250 82
783 fr6_c 251 83
784 fr7_c 252 84
785 fr8_c 253 85
786 fr9_c 254 86
787 fr10_c 255 87
788 fr11_c 256 88
789 fr12_c 257 89
790 fr13_c 258 90
791 fr14_c 259 91
792 fr15_c 260 92
793
794 dr0_c 261 77
795 dr2_c 262 79
796 dr4_c 263 81
797 dr6_c 264 83
798 dr8_c 265 85
799 dr10_c 266 87
800 dr12_c 267 89
801 dr14_c 268 91
802
803 fv0_c 269 77
804 fv4_c 270 81
805 fv8_c 271 85
806 fv12_c 272 91
807*/
808/* *INDENT-ON* */
809static int
d93859e2 810sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 811{
c30dc700 812 int base_regnum = reg_nr;
55ff77ac
CV
813
814 /* general register N maps to general register N */
815 if (reg_nr >= R0_C_REGNUM
816 && reg_nr <= R_LAST_C_REGNUM)
817 base_regnum = reg_nr - R0_C_REGNUM;
818
819 /* floating point register N maps to floating point register N */
820 else if (reg_nr >= FP0_C_REGNUM
821 && reg_nr <= FP_LAST_C_REGNUM)
d93859e2 822 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
55ff77ac
CV
823
824 /* double prec register N maps to base regnum for double prec register N */
825 else if (reg_nr >= DR0_C_REGNUM
826 && reg_nr <= DR_LAST_C_REGNUM)
d93859e2
UW
827 base_regnum = sh64_dr_reg_base_num (gdbarch,
828 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
55ff77ac
CV
829
830 /* vector N maps to base regnum for vector register N */
831 else if (reg_nr >= FV0_C_REGNUM
832 && reg_nr <= FV_LAST_C_REGNUM)
d93859e2
UW
833 base_regnum = sh64_fv_reg_base_num (gdbarch,
834 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
55ff77ac
CV
835
836 else if (reg_nr == PC_C_REGNUM)
d93859e2 837 base_regnum = gdbarch_pc_regnum (gdbarch);
55ff77ac
CV
838
839 else if (reg_nr == GBR_C_REGNUM)
840 base_regnum = 16;
841
842 else if (reg_nr == MACH_C_REGNUM
843 || reg_nr == MACL_C_REGNUM)
844 base_regnum = 17;
845
846 else if (reg_nr == PR_C_REGNUM)
c30dc700 847 base_regnum = PR_REGNUM;
55ff77ac
CV
848
849 else if (reg_nr == T_C_REGNUM)
850 base_regnum = 19;
851
852 else if (reg_nr == FPSCR_C_REGNUM)
7bb11558 853 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
55ff77ac
CV
854
855 else if (reg_nr == FPUL_C_REGNUM)
d93859e2 856 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
55ff77ac
CV
857
858 return base_regnum;
859}
860
55ff77ac
CV
861static int
862sign_extend (int value, int bits)
863{
864 value = value & ((1 << bits) - 1);
865 return (value & (1 << (bits - 1))
866 ? value | (~((1 << bits) - 1))
867 : value);
868}
869
870static void
c30dc700
CV
871sh64_analyze_prologue (struct gdbarch *gdbarch,
872 struct sh64_frame_cache *cache,
873 CORE_ADDR func_pc,
874 CORE_ADDR current_pc)
55ff77ac 875{
55ff77ac
CV
876 int pc;
877 int opc;
878 int insn;
879 int r0_val = 0;
55ff77ac 880 int insn_size;
e17a4113 881 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 882
c30dc700 883 cache->sp_offset = 0;
55ff77ac
CV
884
885 /* Loop around examining the prologue insns until we find something
886 that does not appear to be part of the prologue. But give up
7bb11558 887 after 20 of them, since we're getting silly then. */
55ff77ac 888
c30dc700 889 pc = func_pc;
55ff77ac 890
c30dc700
CV
891 if (cache->media_mode)
892 insn_size = 4;
55ff77ac 893 else
c30dc700 894 insn_size = 2;
55ff77ac 895
c30dc700
CV
896 opc = pc + (insn_size * 28);
897 if (opc > current_pc)
898 opc = current_pc;
899 for ( ; pc <= opc; pc += insn_size)
55ff77ac 900 {
c30dc700
CV
901 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
902 : pc,
e17a4113 903 insn_size, byte_order);
55ff77ac 904
c30dc700 905 if (!cache->media_mode)
55ff77ac
CV
906 {
907 if (IS_STS_PR (insn))
908 {
e17a4113
UW
909 int next_insn = read_memory_integer (pc + insn_size,
910 insn_size, byte_order);
55ff77ac
CV
911 if (IS_MOV_TO_R15 (next_insn))
912 {
c378eb4e
MS
913 cache->saved_regs[PR_REGNUM]
914 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
915 - 0x8) << 2);
55ff77ac
CV
916 pc += insn_size;
917 }
918 }
c30dc700 919
55ff77ac 920 else if (IS_MOV_R14 (insn))
9ca10714
JB
921 {
922 cache->saved_regs[MEDIA_FP_REGNUM] =
923 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
924 cache->uses_fp = 1;
925 }
55ff77ac
CV
926
927 else if (IS_MOV_R0 (insn))
928 {
929 /* Put in R0 the offset from SP at which to store some
c378eb4e 930 registers. We are interested in this value, because it
55ff77ac
CV
931 will tell us where the given registers are stored within
932 the frame. */
933 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
934 }
c30dc700 935
55ff77ac
CV
936 else if (IS_ADD_SP_R0 (insn))
937 {
938 /* This instruction still prepares r0, but we don't care.
7bb11558 939 We already have the offset in r0_val. */
55ff77ac 940 }
c30dc700 941
55ff77ac
CV
942 else if (IS_STS_R0 (insn))
943 {
c378eb4e 944 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700 945 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
55ff77ac 946 r0_val -= 4;
55ff77ac 947 }
c30dc700 948
55ff77ac
CV
949 else if (IS_MOV_R14_R0 (insn))
950 {
c378eb4e 951 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700
CV
952 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
953 - (r0_val - 4);
9ca10714 954 cache->uses_fp = 1;
55ff77ac
CV
955 r0_val -= 4;
956 }
957
958 else if (IS_ADD_SP (insn))
c30dc700
CV
959 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
960
55ff77ac
CV
961 else if (IS_MOV_SP_FP (insn))
962 break;
963 }
964 else
965 {
c30dc700
CV
966 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
967 cache->sp_offset -=
968 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
55ff77ac
CV
969
970 else if (IS_STQ_R18_R15 (insn))
c378eb4e
MS
971 cache->saved_regs[PR_REGNUM]
972 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
973 9) << 3);
55ff77ac
CV
974
975 else if (IS_STL_R18_R15 (insn))
c378eb4e
MS
976 cache->saved_regs[PR_REGNUM]
977 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
978 9) << 2);
55ff77ac
CV
979
980 else if (IS_STQ_R14_R15 (insn))
9ca10714
JB
981 {
982 cache->saved_regs[MEDIA_FP_REGNUM]
983 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
984 9) << 3);
985 cache->uses_fp = 1;
986 }
55ff77ac
CV
987
988 else if (IS_STL_R14_R15 (insn))
9ca10714
JB
989 {
990 cache->saved_regs[MEDIA_FP_REGNUM]
991 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
992 9) << 2);
993 cache->uses_fp = 1;
994 }
55ff77ac
CV
995
996 else if (IS_MOV_SP_FP_MEDIA (insn))
997 break;
998 }
999 }
55ff77ac
CV
1000}
1001
55ff77ac 1002static CORE_ADDR
c30dc700 1003sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
55ff77ac 1004{
c30dc700 1005 return sp & ~7;
55ff77ac
CV
1006}
1007
c30dc700 1008/* Function: push_dummy_call
55ff77ac
CV
1009 Setup the function arguments for calling a function in the inferior.
1010
85a453d5 1011 On the Renesas SH architecture, there are four registers (R4 to R7)
55ff77ac
CV
1012 which are dedicated for passing function arguments. Up to the first
1013 four arguments (depending on size) may go into these registers.
1014 The rest go on the stack.
1015
1016 Arguments that are smaller than 4 bytes will still take up a whole
1017 register or a whole 32-bit word on the stack, and will be
1018 right-justified in the register or the stack word. This includes
1019 chars, shorts, and small aggregate types.
1020
1021 Arguments that are larger than 4 bytes may be split between two or
1022 more registers. If there are not enough registers free, an argument
1023 may be passed partly in a register (or registers), and partly on the
c378eb4e 1024 stack. This includes doubles, long longs, and larger aggregates.
55ff77ac
CV
1025 As far as I know, there is no upper limit to the size of aggregates
1026 that will be passed in this way; in other words, the convention of
1027 passing a pointer to a large aggregate instead of a copy is not used.
1028
1029 An exceptional case exists for struct arguments (and possibly other
1030 aggregates such as arrays) if the size is larger than 4 bytes but
1031 not a multiple of 4 bytes. In this case the argument is never split
1032 between the registers and the stack, but instead is copied in its
1033 entirety onto the stack, AND also copied into as many registers as
1034 there is room for. In other words, space in registers permitting,
1035 two copies of the same argument are passed in. As far as I can tell,
1036 only the one on the stack is used, although that may be a function
1037 of the level of compiler optimization. I suspect this is a compiler
1038 bug. Arguments of these odd sizes are left-justified within the
1039 word (as opposed to arguments smaller than 4 bytes, which are
1040 right-justified).
1041
1042 If the function is to return an aggregate type such as a struct, it
1043 is either returned in the normal return value register R0 (if its
1044 size is no greater than one byte), or else the caller must allocate
1045 space into which the callee will copy the return value (if the size
1046 is greater than one byte). In this case, a pointer to the return
1047 value location is passed into the callee in register R2, which does
1048 not displace any of the other arguments passed in via registers R4
c378eb4e 1049 to R7. */
55ff77ac
CV
1050
1051/* R2-R9 for integer types and integer equivalent (char, pointers) and
1052 non-scalar (struct, union) elements (even if the elements are
1053 floats).
1054 FR0-FR11 for single precision floating point (float)
1055 DR0-DR10 for double precision floating point (double)
1056
1057 If a float is argument number 3 (for instance) and arguments number
1058 1,2, and 4 are integer, the mapping will be:
c378eb4e 1059 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
55ff77ac
CV
1060
1061 If a float is argument number 10 (for instance) and arguments number
1062 1 through 10 are integer, the mapping will be:
1063 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
c378eb4e
MS
1064 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1065 arg11->stack(16,SP). I.e. there is hole in the stack.
55ff77ac
CV
1066
1067 Different rules apply for variable arguments functions, and for functions
7bb11558 1068 for which the prototype is not known. */
55ff77ac
CV
1069
1070static CORE_ADDR
c30dc700
CV
1071sh64_push_dummy_call (struct gdbarch *gdbarch,
1072 struct value *function,
1073 struct regcache *regcache,
1074 CORE_ADDR bp_addr,
1075 int nargs, struct value **args,
1076 CORE_ADDR sp, int struct_return,
1077 CORE_ADDR struct_addr)
55ff77ac 1078{
e17a4113 1079 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1080 int stack_offset, stack_alloc;
1081 int int_argreg;
55ff77ac
CV
1082 int float_arg_index = 0;
1083 int double_arg_index = 0;
1084 int argnum;
1085 struct type *type;
1086 CORE_ADDR regval;
948f8e3d
PA
1087 const gdb_byte *val;
1088 gdb_byte valbuf[8];
55ff77ac
CV
1089 int len;
1090 int argreg_size;
1091 int fp_args[12];
55ff77ac
CV
1092
1093 memset (fp_args, 0, sizeof (fp_args));
1094
c378eb4e 1095 /* First force sp to a 8-byte alignment. */
c30dc700 1096 sp = sh64_frame_align (gdbarch, sp);
55ff77ac
CV
1097
1098 /* The "struct return pointer" pseudo-argument has its own dedicated
c378eb4e 1099 register. */
55ff77ac
CV
1100
1101 if (struct_return)
c30dc700
CV
1102 regcache_cooked_write_unsigned (regcache,
1103 STRUCT_RETURN_REGNUM, struct_addr);
55ff77ac 1104
c378eb4e 1105 /* Now make sure there's space on the stack. */
55ff77ac 1106 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
4991999e 1107 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
c378eb4e 1108 sp -= stack_alloc; /* Make room on stack for args. */
55ff77ac
CV
1109
1110 /* Now load as many as possible of the first arguments into
1111 registers, and push the rest onto the stack. There are 64 bytes
1112 in eight registers available. Loop thru args from first to last. */
1113
1114 int_argreg = ARG0_REGNUM;
55ff77ac
CV
1115
1116 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1117 {
4991999e 1118 type = value_type (args[argnum]);
55ff77ac
CV
1119 len = TYPE_LENGTH (type);
1120 memset (valbuf, 0, sizeof (valbuf));
1121
1122 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1123 {
58643501 1124 argreg_size = register_size (gdbarch, int_argreg);
55ff77ac
CV
1125
1126 if (len < argreg_size)
1127 {
c378eb4e 1128 /* value gets right-justified in the register or stack word. */
58643501 1129 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1130 memcpy (valbuf + argreg_size - len,
948f8e3d 1131 value_contents (args[argnum]), len);
55ff77ac 1132 else
948f8e3d 1133 memcpy (valbuf, value_contents (args[argnum]), len);
55ff77ac
CV
1134
1135 val = valbuf;
1136 }
1137 else
948f8e3d 1138 val = value_contents (args[argnum]);
55ff77ac
CV
1139
1140 while (len > 0)
1141 {
1142 if (int_argreg > ARGLAST_REGNUM)
1143 {
c378eb4e 1144 /* Must go on the stack. */
948f8e3d 1145 write_memory (sp + stack_offset, val, argreg_size);
55ff77ac
CV
1146 stack_offset += 8;/*argreg_size;*/
1147 }
1148 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1149 That's because some *&^%$ things get passed on the stack
1150 AND in the registers! */
1151 if (int_argreg <= ARGLAST_REGNUM)
1152 {
c378eb4e 1153 /* There's room in a register. */
e17a4113
UW
1154 regval = extract_unsigned_integer (val, argreg_size,
1155 byte_order);
c378eb4e
MS
1156 regcache_cooked_write_unsigned (regcache,
1157 int_argreg, regval);
55ff77ac
CV
1158 }
1159 /* Store the value 8 bytes at a time. This means that
1160 things larger than 8 bytes may go partly in registers
c378eb4e 1161 and partly on the stack. FIXME: argreg is incremented
7bb11558 1162 before we use its size. */
55ff77ac
CV
1163 len -= argreg_size;
1164 val += argreg_size;
1165 int_argreg++;
1166 }
1167 }
1168 else
1169 {
948f8e3d 1170 val = value_contents (args[argnum]);
55ff77ac
CV
1171 if (len == 4)
1172 {
c378eb4e 1173 /* Where is it going to be stored? */
55ff77ac
CV
1174 while (fp_args[float_arg_index])
1175 float_arg_index ++;
1176
1177 /* Now float_argreg points to the register where it
1178 should be stored. Are we still within the allowed
c378eb4e 1179 register set? */
55ff77ac
CV
1180 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1181 {
1182 /* Goes in FR0...FR11 */
c30dc700 1183 regcache_cooked_write (regcache,
58643501 1184 gdbarch_fp0_regnum (gdbarch)
3e8c568d 1185 + float_arg_index,
c30dc700 1186 val);
55ff77ac 1187 fp_args[float_arg_index] = 1;
7bb11558 1188 /* Skip the corresponding general argument register. */
55ff77ac
CV
1189 int_argreg ++;
1190 }
1191 else
d4fb63e1
TT
1192 {
1193 /* Store it as the integers, 8 bytes at the time, if
1194 necessary spilling on the stack. */
1195 }
55ff77ac
CV
1196 }
1197 else if (len == 8)
1198 {
c378eb4e 1199 /* Where is it going to be stored? */
55ff77ac
CV
1200 while (fp_args[double_arg_index])
1201 double_arg_index += 2;
1202 /* Now double_argreg points to the register
1203 where it should be stored.
c378eb4e 1204 Are we still within the allowed register set? */
55ff77ac
CV
1205 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1206 {
1207 /* Goes in DR0...DR10 */
1208 /* The numbering of the DRi registers is consecutive,
7bb11558 1209 i.e. includes odd numbers. */
55ff77ac 1210 int double_register_offset = double_arg_index / 2;
c30dc700
CV
1211 int regnum = DR0_REGNUM + double_register_offset;
1212 regcache_cooked_write (regcache, regnum, val);
55ff77ac
CV
1213 fp_args[double_arg_index] = 1;
1214 fp_args[double_arg_index + 1] = 1;
7bb11558 1215 /* Skip the corresponding general argument register. */
55ff77ac
CV
1216 int_argreg ++;
1217 }
1218 else
d4fb63e1
TT
1219 {
1220 /* Store it as the integers, 8 bytes at the time, if
1221 necessary spilling on the stack. */
1222 }
55ff77ac
CV
1223 }
1224 }
1225 }
c378eb4e 1226 /* Store return address. */
c30dc700 1227 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
55ff77ac 1228
c30dc700 1229 /* Update stack pointer. */
3e8c568d 1230 regcache_cooked_write_unsigned (regcache,
58643501 1231 gdbarch_sp_regnum (gdbarch), sp);
55ff77ac 1232
55ff77ac
CV
1233 return sp;
1234}
1235
1236/* Find a function's return value in the appropriate registers (in
1237 regbuf), and copy it into valbuf. Extract from an array REGBUF
1238 containing the (raw) register state a function return value of type
1239 TYPE, and copy that, in virtual format, into VALBUF. */
1240static void
c30dc700 1241sh64_extract_return_value (struct type *type, struct regcache *regcache,
7c543f7b 1242 gdb_byte *valbuf)
55ff77ac 1243{
ac7936df 1244 struct gdbarch *gdbarch = regcache->arch ();
55ff77ac 1245 int len = TYPE_LENGTH (type);
d93859e2 1246
55ff77ac
CV
1247 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1248 {
1249 if (len == 4)
1250 {
c378eb4e 1251 /* Return value stored in gdbarch_fp0_regnum. */
3e8c568d 1252 regcache_raw_read (regcache,
d93859e2 1253 gdbarch_fp0_regnum (gdbarch), valbuf);
55ff77ac
CV
1254 }
1255 else if (len == 8)
1256 {
c378eb4e 1257 /* return value stored in DR0_REGNUM. */
18cf8b5b 1258 gdb_byte buf[8];
18cf8b5b 1259 regcache_cooked_read (regcache, DR0_REGNUM, buf);
55ff77ac 1260
96a5a1d3
UW
1261 convert_typed_floating (buf, sh64_littlebyte_bigword_type (gdbarch),
1262 valbuf, type);
55ff77ac
CV
1263 }
1264 }
1265 else
1266 {
1267 if (len <= 8)
1268 {
c30dc700 1269 int offset;
e362b510 1270 gdb_byte buf[8];
c378eb4e 1271 /* Result is in register 2. If smaller than 8 bytes, it is padded
7bb11558 1272 at the most significant end. */
c30dc700
CV
1273 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1274
d93859e2
UW
1275 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1276 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
c30dc700 1277 - len;
55ff77ac 1278 else
c30dc700
CV
1279 offset = 0;
1280 memcpy (valbuf, buf + offset, len);
55ff77ac
CV
1281 }
1282 else
a73c6dcd 1283 error (_("bad size for return value"));
55ff77ac
CV
1284 }
1285}
1286
1287/* Write into appropriate registers a function return value
1288 of type TYPE, given in virtual format.
1289 If the architecture is sh4 or sh3e, store a function's return value
1290 in the R0 general register or in the FP0 floating point register,
c378eb4e 1291 depending on the type of the return value. In all the other cases
7bb11558 1292 the result is stored in r0, left-justified. */
55ff77ac
CV
1293
1294static void
c30dc700 1295sh64_store_return_value (struct type *type, struct regcache *regcache,
948f8e3d 1296 const gdb_byte *valbuf)
55ff77ac 1297{
ac7936df 1298 struct gdbarch *gdbarch = regcache->arch ();
e362b510 1299 gdb_byte buf[64]; /* more than enough... */
55ff77ac
CV
1300 int len = TYPE_LENGTH (type);
1301
1302 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1303 {
d93859e2 1304 int i, regnum = gdbarch_fp0_regnum (gdbarch);
c30dc700 1305 for (i = 0; i < len; i += 4)
d93859e2 1306 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c30dc700 1307 regcache_raw_write (regcache, regnum++,
948f8e3d 1308 valbuf + len - 4 - i);
c30dc700 1309 else
948f8e3d 1310 regcache_raw_write (regcache, regnum++, valbuf + i);
55ff77ac
CV
1311 }
1312 else
1313 {
1314 int return_register = DEFAULT_RETURN_REGNUM;
1315 int offset = 0;
1316
d93859e2 1317 if (len <= register_size (gdbarch, return_register))
55ff77ac 1318 {
7bb11558 1319 /* Pad with zeros. */
d93859e2
UW
1320 memset (buf, 0, register_size (gdbarch, return_register));
1321 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1322 offset = 0; /*register_size (gdbarch,
7bb11558 1323 return_register) - len;*/
55ff77ac 1324 else
d93859e2 1325 offset = register_size (gdbarch, return_register) - len;
55ff77ac
CV
1326
1327 memcpy (buf + offset, valbuf, len);
c30dc700 1328 regcache_raw_write (regcache, return_register, buf);
55ff77ac
CV
1329 }
1330 else
c30dc700 1331 regcache_raw_write (regcache, return_register, valbuf);
55ff77ac
CV
1332 }
1333}
1334
c30dc700 1335static enum return_value_convention
6a3a010b 1336sh64_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 1337 struct type *type, struct regcache *regcache,
18cf8b5b 1338 gdb_byte *readbuf, const gdb_byte *writebuf)
c30dc700
CV
1339{
1340 if (sh64_use_struct_convention (type))
1341 return RETURN_VALUE_STRUCT_CONVENTION;
1342 if (writebuf)
1343 sh64_store_return_value (type, regcache, writebuf);
1344 else if (readbuf)
1345 sh64_extract_return_value (type, regcache, readbuf);
1346 return RETURN_VALUE_REGISTER_CONVENTION;
1347}
1348
55ff77ac
CV
1349/* *INDENT-OFF* */
1350/*
1351 SH MEDIA MODE (ISA 32)
1352 general registers (64-bit) 0-63
13530 r0, r1, r2, r3, r4, r5, r6, r7,
135464 r8, r9, r10, r11, r12, r13, r14, r15,
1355128 r16, r17, r18, r19, r20, r21, r22, r23,
1356192 r24, r25, r26, r27, r28, r29, r30, r31,
1357256 r32, r33, r34, r35, r36, r37, r38, r39,
1358320 r40, r41, r42, r43, r44, r45, r46, r47,
1359384 r48, r49, r50, r51, r52, r53, r54, r55,
1360448 r56, r57, r58, r59, r60, r61, r62, r63,
1361
1362 pc (64-bit) 64
1363512 pc,
1364
1365 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1366520 sr, ssr, spc,
1367
1368 target registers (64-bit) 68-75
1369544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1370
1371 floating point state control register (32-bit) 76
1372608 fpscr,
1373
1374 single precision floating point registers (32-bit) 77-140
1375612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1376644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1377676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1378708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1379740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1380772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1381804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1382836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1383
1384TOTAL SPACE FOR REGISTERS: 868 bytes
1385
1386From here on they are all pseudo registers: no memory allocated.
1387REGISTER_BYTE returns the register byte for the base register.
1388
1389 double precision registers (pseudo) 141-172
1390 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1391 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1392 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1393 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1394
1395 floating point pairs (pseudo) 173-204
1396 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1397 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1398 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1399 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1400
1401 floating point vectors (4 floating point regs) (pseudo) 205-220
1402 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1403 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1404
1405 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1406 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1407 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1408 pc_c,
1409 gbr_c, mach_c, macl_c, pr_c, t_c,
1410 fpscr_c, fpul_c,
1411 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1412 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1413 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1414 fv0_c, fv4_c, fv8_c, fv12_c
1415*/
55ff77ac 1416
55ff77ac 1417static struct type *
0dfff4cb 1418sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
55ff77ac 1419{
e3506a9f
UW
1420 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1421 0, high);
55ff77ac
CV
1422}
1423
7bb11558
MS
1424/* Return the GDB type object for the "standard" data type
1425 of data in register REG_NR. */
55ff77ac 1426static struct type *
7bb11558 1427sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 1428{
58643501 1429 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
55ff77ac
CV
1430 && reg_nr <= FP_LAST_REGNUM)
1431 || (reg_nr >= FP0_C_REGNUM
1432 && reg_nr <= FP_LAST_C_REGNUM))
0dfff4cb 1433 return builtin_type (gdbarch)->builtin_float;
55ff77ac
CV
1434 else if ((reg_nr >= DR0_REGNUM
1435 && reg_nr <= DR_LAST_REGNUM)
1436 || (reg_nr >= DR0_C_REGNUM
1437 && reg_nr <= DR_LAST_C_REGNUM))
0dfff4cb 1438 return builtin_type (gdbarch)->builtin_double;
55ff77ac
CV
1439 else if (reg_nr >= FPP0_REGNUM
1440 && reg_nr <= FPP_LAST_REGNUM)
0dfff4cb 1441 return sh64_build_float_register_type (gdbarch, 1);
55ff77ac
CV
1442 else if ((reg_nr >= FV0_REGNUM
1443 && reg_nr <= FV_LAST_REGNUM)
1444 ||(reg_nr >= FV0_C_REGNUM
1445 && reg_nr <= FV_LAST_C_REGNUM))
0dfff4cb 1446 return sh64_build_float_register_type (gdbarch, 3);
55ff77ac 1447 else if (reg_nr == FPSCR_REGNUM)
0dfff4cb 1448 return builtin_type (gdbarch)->builtin_int;
55ff77ac
CV
1449 else if (reg_nr >= R0_C_REGNUM
1450 && reg_nr < FP0_C_REGNUM)
0dfff4cb 1451 return builtin_type (gdbarch)->builtin_int;
55ff77ac 1452 else
0dfff4cb 1453 return builtin_type (gdbarch)->builtin_long_long;
55ff77ac
CV
1454}
1455
1456static void
d93859e2 1457sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
948f8e3d 1458 struct type *type, gdb_byte *from, gdb_byte *to)
55ff77ac 1459{
d93859e2 1460 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1461 {
7bb11558 1462 /* It is a no-op. */
d93859e2 1463 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1464 return;
1465 }
1466
1467 if ((regnum >= DR0_REGNUM
1468 && regnum <= DR_LAST_REGNUM)
1469 || (regnum >= DR0_C_REGNUM
1470 && regnum <= DR_LAST_C_REGNUM))
96a5a1d3
UW
1471 convert_typed_floating (from, sh64_littlebyte_bigword_type (gdbarch),
1472 to, type);
55ff77ac 1473 else
a73c6dcd
MS
1474 error (_("sh64_register_convert_to_virtual "
1475 "called with non DR register number"));
55ff77ac
CV
1476}
1477
1478static void
d93859e2
UW
1479sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1480 int regnum, const void *from, void *to)
55ff77ac 1481{
d93859e2 1482 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1483 {
7bb11558 1484 /* It is a no-op. */
d93859e2 1485 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1486 return;
1487 }
1488
1489 if ((regnum >= DR0_REGNUM
1490 && regnum <= DR_LAST_REGNUM)
1491 || (regnum >= DR0_C_REGNUM
1492 && regnum <= DR_LAST_C_REGNUM))
96a5a1d3
UW
1493 convert_typed_floating (from, type,
1494 to, sh64_littlebyte_bigword_type (gdbarch));
55ff77ac 1495 else
a73c6dcd
MS
1496 error (_("sh64_register_convert_to_raw called "
1497 "with non DR register number"));
55ff77ac
CV
1498}
1499
05d1431c
PA
1500/* Concatenate PORTIONS contiguous raw registers starting at
1501 BASE_REGNUM into BUFFER. */
1502
1503static enum register_status
1504pseudo_register_read_portions (struct gdbarch *gdbarch,
1505 struct regcache *regcache,
1506 int portions,
1507 int base_regnum, gdb_byte *buffer)
1508{
1509 int portion;
1510
1511 for (portion = 0; portion < portions; portion++)
1512 {
1513 enum register_status status;
1514 gdb_byte *b;
1515
1516 b = buffer + register_size (gdbarch, base_regnum) * portion;
1517 status = regcache_raw_read (regcache, base_regnum + portion, b);
1518 if (status != REG_VALID)
1519 return status;
1520 }
1521
1522 return REG_VALID;
1523}
1524
1525static enum register_status
55ff77ac 1526sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1527 int reg_nr, gdb_byte *buffer)
55ff77ac 1528{
e17a4113 1529 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 1530 int base_regnum;
55ff77ac 1531 int offset = 0;
05d1431c 1532 enum register_status status;
55ff77ac
CV
1533
1534 if (reg_nr >= DR0_REGNUM
1535 && reg_nr <= DR_LAST_REGNUM)
1536 {
4a8a33c8 1537 gdb_byte temp_buffer[8];
d93859e2 1538 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
55ff77ac 1539
7bb11558 1540 /* Build the value in the provided buffer. */
55ff77ac 1541 /* DR regs are double precision registers obtained by
7bb11558 1542 concatenating 2 single precision floating point registers. */
05d1431c
PA
1543 status = pseudo_register_read_portions (gdbarch, regcache,
1544 2, base_regnum, temp_buffer);
1545 if (status == REG_VALID)
1546 {
1547 /* We must pay attention to the endianness. */
1548 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1549 register_type (gdbarch, reg_nr),
1550 temp_buffer, buffer);
1551 }
55ff77ac 1552
05d1431c 1553 return status;
55ff77ac
CV
1554 }
1555
05d1431c 1556 else if (reg_nr >= FPP0_REGNUM
55ff77ac
CV
1557 && reg_nr <= FPP_LAST_REGNUM)
1558 {
d93859e2 1559 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac 1560
7bb11558 1561 /* Build the value in the provided buffer. */
55ff77ac 1562 /* FPP regs are pairs of single precision registers obtained by
7bb11558 1563 concatenating 2 single precision floating point registers. */
05d1431c
PA
1564 return pseudo_register_read_portions (gdbarch, regcache,
1565 2, base_regnum, buffer);
55ff77ac
CV
1566 }
1567
1568 else if (reg_nr >= FV0_REGNUM
1569 && reg_nr <= FV_LAST_REGNUM)
1570 {
d93859e2 1571 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac 1572
7bb11558 1573 /* Build the value in the provided buffer. */
55ff77ac 1574 /* FV regs are vectors of single precision registers obtained by
7bb11558 1575 concatenating 4 single precision floating point registers. */
05d1431c
PA
1576 return pseudo_register_read_portions (gdbarch, regcache,
1577 4, base_regnum, buffer);
55ff77ac
CV
1578 }
1579
c378eb4e 1580 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
55ff77ac
CV
1581 else if (reg_nr >= R0_C_REGNUM
1582 && reg_nr <= T_C_REGNUM)
1583 {
4a8a33c8 1584 gdb_byte temp_buffer[8];
d93859e2 1585 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1586
7bb11558 1587 /* Build the value in the provided buffer. */
05d1431c
PA
1588 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1589 if (status != REG_VALID)
1590 return status;
58643501 1591 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1592 offset = 4;
c378eb4e
MS
1593 memcpy (buffer,
1594 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
05d1431c 1595 return REG_VALID;
55ff77ac
CV
1596 }
1597
1598 else if (reg_nr >= FP0_C_REGNUM
1599 && reg_nr <= FP_LAST_C_REGNUM)
1600 {
d93859e2 1601 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1602
7bb11558 1603 /* Build the value in the provided buffer. */
55ff77ac 1604 /* Floating point registers map 1-1 to the media fp regs,
7bb11558 1605 they have the same size and endianness. */
05d1431c 1606 return regcache_raw_read (regcache, base_regnum, buffer);
55ff77ac
CV
1607 }
1608
1609 else if (reg_nr >= DR0_C_REGNUM
1610 && reg_nr <= DR_LAST_C_REGNUM)
1611 {
4a8a33c8 1612 gdb_byte temp_buffer[8];
d93859e2 1613 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1614
1615 /* DR_C regs are double precision registers obtained by
7bb11558 1616 concatenating 2 single precision floating point registers. */
05d1431c
PA
1617 status = pseudo_register_read_portions (gdbarch, regcache,
1618 2, base_regnum, temp_buffer);
1619 if (status == REG_VALID)
1620 {
1621 /* We must pay attention to the endianness. */
1622 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1623 register_type (gdbarch, reg_nr),
1624 temp_buffer, buffer);
1625 }
1626 return status;
55ff77ac
CV
1627 }
1628
1629 else if (reg_nr >= FV0_C_REGNUM
1630 && reg_nr <= FV_LAST_C_REGNUM)
1631 {
d93859e2 1632 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1633
7bb11558 1634 /* Build the value in the provided buffer. */
55ff77ac 1635 /* FV_C regs are vectors of single precision registers obtained by
7bb11558 1636 concatenating 4 single precision floating point registers. */
05d1431c
PA
1637 return pseudo_register_read_portions (gdbarch, regcache,
1638 4, base_regnum, buffer);
55ff77ac
CV
1639 }
1640
1641 else if (reg_nr == FPSCR_C_REGNUM)
1642 {
1643 int fpscr_base_regnum;
1644 int sr_base_regnum;
4a8a33c8
AH
1645 ULONGEST fpscr_value;
1646 ULONGEST sr_value;
55ff77ac
CV
1647 unsigned int fpscr_c_value;
1648 unsigned int fpscr_c_part1_value;
1649 unsigned int fpscr_c_part2_value;
1650
1651 fpscr_base_regnum = FPSCR_REGNUM;
1652 sr_base_regnum = SR_REGNUM;
1653
7bb11558 1654 /* Build the value in the provided buffer. */
55ff77ac
CV
1655 /* FPSCR_C is a very weird register that contains sparse bits
1656 from the FPSCR and the SR architectural registers.
1657 Specifically: */
1658 /* *INDENT-OFF* */
1659 /*
1660 FPSRC_C bit
1661 0 Bit 0 of FPSCR
1662 1 reserved
1663 2-17 Bit 2-18 of FPSCR
1664 18-20 Bits 12,13,14 of SR
1665 21-31 reserved
1666 */
1667 /* *INDENT-ON* */
4a8a33c8 1668 /* Get FPSCR as an int. */
6f98355c 1669 status = regcache->raw_read (fpscr_base_regnum, &fpscr_value);
05d1431c
PA
1670 if (status != REG_VALID)
1671 return status;
4a8a33c8 1672 /* Get SR as an int. */
6f98355c 1673 status = regcache->raw_read (sr_base_regnum, &sr_value);
05d1431c
PA
1674 if (status != REG_VALID)
1675 return status;
7bb11558 1676 /* Build the new value. */
55ff77ac
CV
1677 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1678 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1679 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
c378eb4e 1680 /* Store that in out buffer!!! */
e17a4113 1681 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
7bb11558 1682 /* FIXME There is surely an endianness gotcha here. */
05d1431c
PA
1683
1684 return REG_VALID;
55ff77ac
CV
1685 }
1686
1687 else if (reg_nr == FPUL_C_REGNUM)
1688 {
d93859e2 1689 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1690
1691 /* FPUL_C register is floating point register 32,
7bb11558 1692 same size, same endianness. */
05d1431c 1693 return regcache_raw_read (regcache, base_regnum, buffer);
55ff77ac 1694 }
05d1431c
PA
1695 else
1696 gdb_assert_not_reached ("invalid pseudo register number");
55ff77ac
CV
1697}
1698
1699static void
1700sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1701 int reg_nr, const gdb_byte *buffer)
55ff77ac 1702{
e17a4113 1703 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1704 int base_regnum, portion;
1705 int offset;
55ff77ac
CV
1706
1707 if (reg_nr >= DR0_REGNUM
1708 && reg_nr <= DR_LAST_REGNUM)
1709 {
4a8a33c8 1710 gdb_byte temp_buffer[8];
d93859e2 1711 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
7bb11558 1712 /* We must pay attention to the endianness. */
d93859e2 1713 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
39add00a
MS
1714 reg_nr,
1715 buffer, temp_buffer);
55ff77ac
CV
1716
1717 /* Write the real regs for which this one is an alias. */
1718 for (portion = 0; portion < 2; portion++)
1719 regcache_raw_write (regcache, base_regnum + portion,
1720 (temp_buffer
948f8e3d 1721 + register_size (gdbarch,
7bb11558 1722 base_regnum) * portion));
55ff77ac
CV
1723 }
1724
1725 else if (reg_nr >= FPP0_REGNUM
1726 && reg_nr <= FPP_LAST_REGNUM)
1727 {
d93859e2 1728 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1729
1730 /* Write the real regs for which this one is an alias. */
1731 for (portion = 0; portion < 2; portion++)
1732 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d
PA
1733 (buffer + register_size (gdbarch,
1734 base_regnum) * portion));
55ff77ac
CV
1735 }
1736
1737 else if (reg_nr >= FV0_REGNUM
1738 && reg_nr <= FV_LAST_REGNUM)
1739 {
d93859e2 1740 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1741
1742 /* Write the real regs for which this one is an alias. */
1743 for (portion = 0; portion < 4; portion++)
1744 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d
PA
1745 (buffer + register_size (gdbarch,
1746 base_regnum) * portion));
55ff77ac
CV
1747 }
1748
c378eb4e 1749 /* sh compact general pseudo registers. 1-to-1 with a shmedia
55ff77ac
CV
1750 register but only 4 bytes of it. */
1751 else if (reg_nr >= R0_C_REGNUM
1752 && reg_nr <= T_C_REGNUM)
1753 {
4a8a33c8 1754 gdb_byte temp_buffer[8];
d93859e2 1755 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
7bb11558 1756 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
58643501 1757 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
1758 offset = 4;
1759 else
1760 offset = 0;
1761 /* Let's read the value of the base register into a temporary
1762 buffer, so that overwriting the last four bytes with the new
7bb11558 1763 value of the pseudo will leave the upper 4 bytes unchanged. */
55ff77ac 1764 regcache_raw_read (regcache, base_regnum, temp_buffer);
c378eb4e 1765 /* Write as an 8 byte quantity. */
55ff77ac
CV
1766 memcpy (temp_buffer + offset, buffer, 4);
1767 regcache_raw_write (regcache, base_regnum, temp_buffer);
1768 }
1769
c378eb4e
MS
1770 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1771 registers. Both are 4 bytes. */
55ff77ac
CV
1772 else if (reg_nr >= FP0_C_REGNUM
1773 && reg_nr <= FP_LAST_C_REGNUM)
1774 {
d93859e2 1775 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1776 regcache_raw_write (regcache, base_regnum, buffer);
1777 }
1778
1779 else if (reg_nr >= DR0_C_REGNUM
1780 && reg_nr <= DR_LAST_C_REGNUM)
1781 {
4a8a33c8 1782 gdb_byte temp_buffer[8];
d93859e2 1783 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1784 for (portion = 0; portion < 2; portion++)
1785 {
7bb11558 1786 /* We must pay attention to the endianness. */
d93859e2
UW
1787 sh64_register_convert_to_raw (gdbarch,
1788 register_type (gdbarch, reg_nr),
39add00a
MS
1789 reg_nr,
1790 buffer, temp_buffer);
55ff77ac
CV
1791
1792 regcache_raw_write (regcache, base_regnum + portion,
1793 (temp_buffer
7bb11558
MS
1794 + register_size (gdbarch,
1795 base_regnum) * portion));
55ff77ac
CV
1796 }
1797 }
1798
1799 else if (reg_nr >= FV0_C_REGNUM
1800 && reg_nr <= FV_LAST_C_REGNUM)
1801 {
d93859e2 1802 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1803
1804 for (portion = 0; portion < 4; portion++)
1805 {
1806 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d 1807 (buffer
7bb11558
MS
1808 + register_size (gdbarch,
1809 base_regnum) * portion));
55ff77ac
CV
1810 }
1811 }
1812
1813 else if (reg_nr == FPSCR_C_REGNUM)
1814 {
1815 int fpscr_base_regnum;
1816 int sr_base_regnum;
4a8a33c8
AH
1817 ULONGEST fpscr_value;
1818 ULONGEST sr_value;
1819 ULONGEST old_fpscr_value;
1820 ULONGEST old_sr_value;
55ff77ac
CV
1821 unsigned int fpscr_c_value;
1822 unsigned int fpscr_mask;
1823 unsigned int sr_mask;
1824
1825 fpscr_base_regnum = FPSCR_REGNUM;
1826 sr_base_regnum = SR_REGNUM;
1827
1828 /* FPSCR_C is a very weird register that contains sparse bits
1829 from the FPSCR and the SR architectural registers.
1830 Specifically: */
1831 /* *INDENT-OFF* */
1832 /*
1833 FPSRC_C bit
1834 0 Bit 0 of FPSCR
1835 1 reserved
1836 2-17 Bit 2-18 of FPSCR
1837 18-20 Bits 12,13,14 of SR
1838 21-31 reserved
1839 */
1840 /* *INDENT-ON* */
7bb11558 1841 /* Get value as an int. */
e17a4113 1842 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
55ff77ac 1843
7bb11558 1844 /* Build the new values. */
55ff77ac
CV
1845 fpscr_mask = 0x0003fffd;
1846 sr_mask = 0x001c0000;
1847
1848 fpscr_value = fpscr_c_value & fpscr_mask;
1849 sr_value = (fpscr_value & sr_mask) >> 6;
1850
6f98355c 1851 regcache->raw_read (fpscr_base_regnum, &old_fpscr_value);
55ff77ac
CV
1852 old_fpscr_value &= 0xfffc0002;
1853 fpscr_value |= old_fpscr_value;
6f98355c 1854 regcache->raw_write (fpscr_base_regnum, fpscr_value);
4a8a33c8 1855
6f98355c 1856 regcache->raw_read (sr_base_regnum, &old_sr_value);
55ff77ac
CV
1857 old_sr_value &= 0xffff8fff;
1858 sr_value |= old_sr_value;
6f98355c 1859 regcache->raw_write (sr_base_regnum, sr_value);
55ff77ac
CV
1860 }
1861
1862 else if (reg_nr == FPUL_C_REGNUM)
1863 {
d93859e2 1864 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1865 regcache_raw_write (regcache, base_regnum, buffer);
1866 }
1867}
1868
55ff77ac 1869/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
7bb11558
MS
1870 shmedia REGISTERS. */
1871/* Control registers, compact mode. */
55ff77ac 1872static void
c30dc700
CV
1873sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1874 int cr_c_regnum)
55ff77ac
CV
1875{
1876 switch (cr_c_regnum)
1877 {
c30dc700
CV
1878 case PC_C_REGNUM:
1879 fprintf_filtered (file, "pc_c\t0x%08x\n",
1880 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1881 break;
c30dc700
CV
1882 case GBR_C_REGNUM:
1883 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1884 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1885 break;
c30dc700
CV
1886 case MACH_C_REGNUM:
1887 fprintf_filtered (file, "mach_c\t0x%08x\n",
1888 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1889 break;
c30dc700
CV
1890 case MACL_C_REGNUM:
1891 fprintf_filtered (file, "macl_c\t0x%08x\n",
1892 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1893 break;
c30dc700
CV
1894 case PR_C_REGNUM:
1895 fprintf_filtered (file, "pr_c\t0x%08x\n",
1896 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1897 break;
c30dc700
CV
1898 case T_C_REGNUM:
1899 fprintf_filtered (file, "t_c\t0x%08x\n",
1900 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1901 break;
c30dc700
CV
1902 case FPSCR_C_REGNUM:
1903 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1904 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1905 break;
c30dc700
CV
1906 case FPUL_C_REGNUM:
1907 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1908 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac
CV
1909 break;
1910 }
1911}
1912
1913static void
c30dc700
CV
1914sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1915 struct frame_info *frame, int regnum)
c378eb4e 1916{ /* Do values for FP (float) regs. */
079c8cd0 1917 unsigned char *raw_buffer;
55ff77ac 1918
7bb11558 1919 /* Allocate space for the float. */
c378eb4e
MS
1920 raw_buffer = (unsigned char *)
1921 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
55ff77ac
CV
1922
1923 /* Get the data in raw format. */
ca9d61b9 1924 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
a73c6dcd 1925 error (_("can't read register %d (%s)"),
58643501 1926 regnum, gdbarch_register_name (gdbarch, regnum));
55ff77ac 1927
7bb11558 1928 /* Print the name and some spaces. */
58643501 1929 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 1930 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 1931 (gdbarch, regnum)), file);
55ff77ac 1932
7bb11558 1933 /* Print the value. */
8ba0dd51
UW
1934 const struct floatformat *fmt
1935 = floatformat_from_type (builtin_type (gdbarch)->builtin_float);
1936 std::string str = floatformat_to_string (fmt, raw_buffer, "%-10.9g");
1937 fprintf_filtered (file, "%s", str.c_str ());
55ff77ac 1938
7bb11558 1939 /* Print the fp register as hex. */
2cc762b5
AB
1940 fprintf_filtered (file, "\t(raw ");
1941 print_hex_chars (file, raw_buffer,
1942 register_size (gdbarch, regnum),
30a25466 1943 gdbarch_byte_order (gdbarch), true);
55ff77ac
CV
1944 fprintf_filtered (file, ")");
1945 fprintf_filtered (file, "\n");
1946}
1947
1948static void
c30dc700
CV
1949sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1950 struct frame_info *frame, int regnum)
55ff77ac 1951{
7bb11558 1952 /* All the sh64-compact mode registers are pseudo registers. */
55ff77ac 1953
58643501
UW
1954 if (regnum < gdbarch_num_regs (gdbarch)
1955 || regnum >= gdbarch_num_regs (gdbarch)
f57d151a
UW
1956 + NUM_PSEUDO_REGS_SH_MEDIA
1957 + NUM_PSEUDO_REGS_SH_COMPACT)
55ff77ac 1958 internal_error (__FILE__, __LINE__,
e2e0b3e5 1959 _("Invalid pseudo register number %d\n"), regnum);
55ff77ac 1960
c30dc700
CV
1961 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
1962 {
d93859e2 1963 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
c30dc700
CV
1964 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
1965 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1966 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1967 }
55ff77ac 1968
c30dc700
CV
1969 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
1970 {
d93859e2 1971 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
1972 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
1973 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1974 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1975 }
55ff77ac 1976
c30dc700
CV
1977 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
1978 {
d93859e2 1979 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
c30dc700
CV
1980 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1981 regnum - FV0_REGNUM,
1982 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1983 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1984 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1985 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1986 }
55ff77ac 1987
c30dc700
CV
1988 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
1989 {
d93859e2 1990 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
1991 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1992 regnum - FV0_C_REGNUM,
1993 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1994 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1995 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1996 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1997 }
1998
1999 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2000 {
d93859e2 2001 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
c30dc700
CV
2002 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2003 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2004 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2005 }
2006
2007 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2008 {
d93859e2 2009 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2010 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2011 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2012 }
2013 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
7bb11558 2014 /* This should work also for pseudoregs. */
c30dc700
CV
2015 sh64_do_fp_register (gdbarch, file, frame, regnum);
2016 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2017 sh64_do_cr_c_register_info (file, frame, regnum);
55ff77ac
CV
2018}
2019
2020static void
c30dc700
CV
2021sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2022 struct frame_info *frame, int regnum)
55ff77ac 2023{
79a45b7d 2024 struct value_print_options opts;
cc977dc7 2025 struct value *val;
55ff77ac 2026
58643501 2027 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 2028 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 2029 (gdbarch, regnum)), file);
55ff77ac
CV
2030
2031 /* Get the data in raw format. */
cc977dc7
YQ
2032 val = get_frame_register_value (frame, regnum);
2033 if (value_optimized_out (val) || !value_entirely_available (val))
47061676
AB
2034 {
2035 fprintf_filtered (file, "*value not available*\n");
2036 return;
2037 }
79a45b7d
TT
2038
2039 get_formatted_print_options (&opts, 'x');
2040 opts.deref_ref = 1;
cc977dc7 2041 val_print (register_type (gdbarch, regnum),
e8b24d9f 2042 0, 0,
cc977dc7 2043 file, 0, val, &opts, current_language);
55ff77ac 2044 fprintf_filtered (file, "\t");
79a45b7d
TT
2045 get_formatted_print_options (&opts, 0);
2046 opts.deref_ref = 1;
cc977dc7 2047 val_print (register_type (gdbarch, regnum),
e8b24d9f 2048 0, 0,
cc977dc7 2049 file, 0, val, &opts, current_language);
55ff77ac
CV
2050 fprintf_filtered (file, "\n");
2051}
2052
2053static void
c30dc700
CV
2054sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2055 struct frame_info *frame, int regnum)
55ff77ac 2056{
58643501
UW
2057 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2058 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2059 internal_error (__FILE__, __LINE__,
e2e0b3e5 2060 _("Invalid register number %d\n"), regnum);
55ff77ac 2061
58643501 2062 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
55ff77ac 2063 {
7b9ee6a8 2064 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c30dc700 2065 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
55ff77ac 2066 else
c30dc700 2067 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2068 }
2069
58643501
UW
2070 else if (regnum < gdbarch_num_regs (gdbarch)
2071 + gdbarch_num_pseudo_regs (gdbarch))
c30dc700 2072 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2073}
2074
2075static void
c30dc700
CV
2076sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2077 struct frame_info *frame, int regnum,
2078 int fpregs)
55ff77ac 2079{
c378eb4e 2080 if (regnum != -1) /* Do one specified register. */
55ff77ac 2081 {
58643501 2082 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2083 error (_("Not a valid register for the current processor type"));
55ff77ac 2084
c30dc700 2085 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2086 }
2087 else
c378eb4e 2088 /* Do all (or most) registers. */
55ff77ac
CV
2089 {
2090 regnum = 0;
58643501 2091 while (regnum < gdbarch_num_regs (gdbarch))
55ff77ac
CV
2092 {
2093 /* If the register name is empty, it is undefined for this
2094 processor, so don't display anything. */
58643501
UW
2095 if (gdbarch_register_name (gdbarch, regnum) == NULL
2096 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
55ff77ac
CV
2097 {
2098 regnum++;
2099 continue;
2100 }
2101
7b9ee6a8 2102 if (TYPE_CODE (register_type (gdbarch, regnum))
c30dc700 2103 == TYPE_CODE_FLT)
55ff77ac
CV
2104 {
2105 if (fpregs)
2106 {
c378eb4e 2107 /* true for "INFO ALL-REGISTERS" command. */
c30dc700 2108 sh64_do_fp_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2109 regnum ++;
2110 }
2111 else
58643501 2112 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
3e8c568d 2113 /* skip FP regs */
55ff77ac
CV
2114 }
2115 else
2116 {
c30dc700 2117 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2118 regnum++;
2119 }
2120 }
2121
2122 if (fpregs)
58643501
UW
2123 while (regnum < gdbarch_num_regs (gdbarch)
2124 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2125 {
c30dc700 2126 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2127 regnum++;
2128 }
2129 }
2130}
2131
2132static void
c30dc700
CV
2133sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2134 struct ui_file *file,
2135 struct frame_info *frame, int regnum,
2136 int fpregs)
55ff77ac 2137{
c378eb4e 2138 if (regnum != -1) /* Do one specified register. */
55ff77ac 2139 {
58643501 2140 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2141 error (_("Not a valid register for the current processor type"));
55ff77ac
CV
2142
2143 if (regnum >= 0 && regnum < R0_C_REGNUM)
a73c6dcd 2144 error (_("Not a valid register for the current processor mode."));
55ff77ac 2145
c30dc700 2146 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2147 }
2148 else
c378eb4e 2149 /* Do all compact registers. */
55ff77ac
CV
2150 {
2151 regnum = R0_C_REGNUM;
58643501
UW
2152 while (regnum < gdbarch_num_regs (gdbarch)
2153 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2154 {
c30dc700 2155 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2156 regnum++;
2157 }
2158 }
2159}
2160
2161static void
c30dc700
CV
2162sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2163 struct frame_info *frame, int regnum, int fpregs)
55ff77ac 2164{
c30dc700
CV
2165 if (pc_is_isa32 (get_frame_pc (frame)))
2166 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac 2167 else
c30dc700 2168 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac
CV
2169}
2170
c30dc700
CV
2171static struct sh64_frame_cache *
2172sh64_alloc_frame_cache (void)
2173{
2174 struct sh64_frame_cache *cache;
2175 int i;
2176
2177 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2178
2179 /* Base address. */
2180 cache->base = 0;
2181 cache->saved_sp = 0;
2182 cache->sp_offset = 0;
2183 cache->pc = 0;
55ff77ac 2184
c30dc700
CV
2185 /* Frameless until proven otherwise. */
2186 cache->uses_fp = 0;
55ff77ac 2187
c30dc700
CV
2188 /* Saved registers. We initialize these to -1 since zero is a valid
2189 offset (that's where fp is supposed to be stored). */
2190 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2191 {
2192 cache->saved_regs[i] = -1;
2193 }
2194
2195 return cache;
2196}
2197
2198static struct sh64_frame_cache *
94afd7a6 2199sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
55ff77ac 2200{
58643501 2201 struct gdbarch *gdbarch;
c30dc700
CV
2202 struct sh64_frame_cache *cache;
2203 CORE_ADDR current_pc;
2204 int i;
55ff77ac 2205
c30dc700 2206 if (*this_cache)
19ba03f4 2207 return (struct sh64_frame_cache *) *this_cache;
c30dc700 2208
94afd7a6 2209 gdbarch = get_frame_arch (this_frame);
c30dc700
CV
2210 cache = sh64_alloc_frame_cache ();
2211 *this_cache = cache;
2212
94afd7a6 2213 current_pc = get_frame_pc (this_frame);
c30dc700
CV
2214 cache->media_mode = pc_is_isa32 (current_pc);
2215
2216 /* In principle, for normal frames, fp holds the frame pointer,
2217 which holds the base address for the current stack frame.
2218 However, for functions that don't need it, the frame pointer is
2219 optional. For these "frameless" functions the frame pointer is
c378eb4e 2220 actually the frame pointer of the calling frame. */
94afd7a6 2221 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
c30dc700
CV
2222 if (cache->base == 0)
2223 return cache;
2224
94afd7a6 2225 cache->pc = get_frame_func (this_frame);
c30dc700 2226 if (cache->pc != 0)
58643501 2227 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
c30dc700
CV
2228
2229 if (!cache->uses_fp)
55ff77ac 2230 {
c30dc700
CV
2231 /* We didn't find a valid frame, which means that CACHE->base
2232 currently holds the frame pointer for our calling frame. If
2233 we're at the start of a function, or somewhere half-way its
2234 prologue, the function's frame probably hasn't been fully
2235 setup yet. Try to reconstruct the base address for the stack
2236 frame by looking at the stack pointer. For truly "frameless"
2237 functions this might work too. */
94afd7a6
UW
2238 cache->base = get_frame_register_unsigned
2239 (this_frame, gdbarch_sp_regnum (gdbarch));
c30dc700 2240 }
55ff77ac 2241
c30dc700
CV
2242 /* Now that we have the base address for the stack frame we can
2243 calculate the value of sp in the calling frame. */
2244 cache->saved_sp = cache->base + cache->sp_offset;
55ff77ac 2245
c30dc700
CV
2246 /* Adjust all the saved registers such that they contain addresses
2247 instead of offsets. */
2248 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2249 if (cache->saved_regs[i] != -1)
2250 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
55ff77ac 2251
c30dc700
CV
2252 return cache;
2253}
55ff77ac 2254
94afd7a6
UW
2255static struct value *
2256sh64_frame_prev_register (struct frame_info *this_frame,
2257 void **this_cache, int regnum)
c30dc700 2258{
94afd7a6
UW
2259 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2260 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 2261 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 2262
c30dc700 2263 gdb_assert (regnum >= 0);
55ff77ac 2264
58643501 2265 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 2266 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
c30dc700
CV
2267
2268 /* The PC of the previous frame is stored in the PR register of
2269 the current frame. Frob regnum so that we pull the value from
2270 the correct place. */
58643501 2271 if (regnum == gdbarch_pc_regnum (gdbarch))
c30dc700
CV
2272 regnum = PR_REGNUM;
2273
2274 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2275 {
58643501 2276 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
c30dc700 2277 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
c30dc700 2278 {
94afd7a6 2279 CORE_ADDR val;
e17a4113
UW
2280 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2281 4, byte_order);
94afd7a6 2282 return frame_unwind_got_constant (this_frame, regnum, val);
c30dc700 2283 }
94afd7a6
UW
2284
2285 return frame_unwind_got_memory (this_frame, regnum,
2286 cache->saved_regs[regnum]);
55ff77ac
CV
2287 }
2288
94afd7a6 2289 return frame_unwind_got_register (this_frame, regnum, regnum);
55ff77ac 2290}
55ff77ac 2291
c30dc700 2292static void
94afd7a6 2293sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
c30dc700
CV
2294 struct frame_id *this_id)
2295{
94afd7a6 2296 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2297
2298 /* This marks the outermost frame. */
2299 if (cache->base == 0)
2300 return;
2301
2302 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2303}
2304
2305static const struct frame_unwind sh64_frame_unwind = {
2306 NORMAL_FRAME,
8fbca658 2307 default_frame_unwind_stop_reason,
c30dc700 2308 sh64_frame_this_id,
94afd7a6
UW
2309 sh64_frame_prev_register,
2310 NULL,
2311 default_frame_sniffer
c30dc700
CV
2312};
2313
c30dc700
CV
2314static CORE_ADDR
2315sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2316{
3e8c568d 2317 return frame_unwind_register_unsigned (next_frame,
58643501 2318 gdbarch_sp_regnum (gdbarch));
c30dc700
CV
2319}
2320
2321static CORE_ADDR
2322sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2323{
3e8c568d 2324 return frame_unwind_register_unsigned (next_frame,
58643501 2325 gdbarch_pc_regnum (gdbarch));
c30dc700
CV
2326}
2327
2328static struct frame_id
94afd7a6 2329sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c30dc700 2330{
94afd7a6
UW
2331 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2332 gdbarch_sp_regnum (gdbarch));
2333 return frame_id_build (sp, get_frame_pc (this_frame));
c30dc700
CV
2334}
2335
2336static CORE_ADDR
94afd7a6 2337sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
c30dc700 2338{
94afd7a6 2339 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2340
2341 return cache->base;
2342}
2343
2344static const struct frame_base sh64_frame_base = {
2345 &sh64_frame_unwind,
2346 sh64_frame_base_address,
2347 sh64_frame_base_address,
2348 sh64_frame_base_address
2349};
2350
55ff77ac
CV
2351
2352struct gdbarch *
2353sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2354{
55ff77ac
CV
2355 struct gdbarch *gdbarch;
2356 struct gdbarch_tdep *tdep;
2357
2358 /* If there is already a candidate, use it. */
2359 arches = gdbarch_list_lookup_by_info (arches, &info);
2360 if (arches != NULL)
2361 return arches->gdbarch;
2362
2363 /* None found, create a new architecture from the information
7bb11558 2364 provided. */
cdd238da 2365 tdep = XCNEW (struct gdbarch_tdep);
55ff77ac
CV
2366 gdbarch = gdbarch_alloc (&info, tdep);
2367
55ff77ac
CV
2368 /* Determine the ABI */
2369 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2370 {
7bb11558 2371 /* If the ABI is the 64-bit one, it can only be sh-media. */
55ff77ac
CV
2372 tdep->sh_abi = SH_ABI_64;
2373 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2374 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2375 }
2376 else
2377 {
2378 /* If the ABI is the 32-bit one it could be either media or
7bb11558 2379 compact. */
55ff77ac
CV
2380 tdep->sh_abi = SH_ABI_32;
2381 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2382 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2383 }
2384
2385 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2386 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
c30dc700 2387 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
55ff77ac
CV
2388 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2389 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2390 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2391 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2392
c30dc700
CV
2393 /* The number of real registers is the same whether we are in
2394 ISA16(compact) or ISA32(media). */
2395 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
55ff77ac 2396 set_gdbarch_sp_regnum (gdbarch, 15);
c30dc700
CV
2397 set_gdbarch_pc_regnum (gdbarch, 64);
2398 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2399 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2400 + NUM_PSEUDO_REGS_SH_COMPACT);
55ff77ac 2401
c30dc700
CV
2402 set_gdbarch_register_name (gdbarch, sh64_register_name);
2403 set_gdbarch_register_type (gdbarch, sh64_register_type);
2404
2405 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2406 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2407
04180708
YQ
2408 set_gdbarch_breakpoint_kind_from_pc (gdbarch, sh64_breakpoint_kind_from_pc);
2409 set_gdbarch_sw_breakpoint_from_kind (gdbarch, sh64_sw_breakpoint_from_kind);
55ff77ac
CV
2410 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2411
c30dc700 2412 set_gdbarch_return_value (gdbarch, sh64_return_value);
55ff77ac 2413
c30dc700
CV
2414 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2415 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
55ff77ac 2416
c30dc700 2417 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
55ff77ac 2418
c30dc700 2419 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
55ff77ac 2420
c30dc700
CV
2421 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2422 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2423 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
94afd7a6 2424 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
c30dc700 2425 frame_base_set_default (gdbarch, &sh64_frame_base);
55ff77ac 2426
c30dc700 2427 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
55ff77ac 2428
55ff77ac
CV
2429 set_gdbarch_elf_make_msymbol_special (gdbarch,
2430 sh64_elf_make_msymbol_special);
2431
2432 /* Hook in ABI-specific overrides, if they have been registered. */
2433 gdbarch_init_osabi (info, gdbarch);
2434
94afd7a6
UW
2435 dwarf2_append_unwinders (gdbarch);
2436 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
c30dc700 2437
55ff77ac
CV
2438 return gdbarch;
2439}