]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/sh64-tdep.c
Clear GDB internal state after each unit test
[thirdparty/binutils-gdb.git] / gdb / sh64-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
cf5b2f1b 2
61baf725 3 Copyright (C) 1993-2017 Free Software Foundation, Inc.
55ff77ac
CV
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
55ff77ac
CV
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
55ff77ac 19
c378eb4e
MS
20/* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
55ff77ac
CV
22
23#include "defs.h"
24#include "frame.h"
c30dc700
CV
25#include "frame-base.h"
26#include "frame-unwind.h"
27#include "dwarf2-frame.h"
55ff77ac 28#include "symtab.h"
55ff77ac
CV
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "value.h"
33#include "dis-asm.h"
34#include "inferior.h"
55ff77ac 35#include "arch-utils.h"
55ff77ac 36#include "regcache.h"
55ff77ac 37#include "osabi.h"
79a45b7d 38#include "valprint.h"
55ff77ac
CV
39
40#include "elf-bfd.h"
55ff77ac
CV
41
42/* sh flags */
43#include "elf/sh.h"
c378eb4e 44/* Register numbers shared with the simulator. */
55ff77ac 45#include "gdb/sim-sh.h"
d8ca156b 46#include "language.h"
04dcf5fa 47#include "sh64-tdep.h"
325fac50 48#include <algorithm>
55ff77ac 49
7bb11558 50/* Information that is dependent on the processor variant. */
55ff77ac
CV
51enum sh_abi
52 {
53 SH_ABI_UNKNOWN,
54 SH_ABI_32,
55 SH_ABI_64
56 };
57
58struct gdbarch_tdep
59 {
60 enum sh_abi sh_abi;
61 };
62
c30dc700
CV
63struct sh64_frame_cache
64{
65 /* Base address. */
66 CORE_ADDR base;
67 LONGEST sp_offset;
68 CORE_ADDR pc;
69
c378eb4e 70 /* Flag showing that a frame has been created in the prologue code. */
c30dc700
CV
71 int uses_fp;
72
73 int media_mode;
74
75 /* Saved registers. */
76 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
77 CORE_ADDR saved_sp;
78};
79
55ff77ac
CV
80/* Registers of SH5 */
81enum
82 {
83 R0_REGNUM = 0,
84 DEFAULT_RETURN_REGNUM = 2,
85 STRUCT_RETURN_REGNUM = 2,
86 ARG0_REGNUM = 2,
87 ARGLAST_REGNUM = 9,
88 FLOAT_ARGLAST_REGNUM = 11,
c30dc700 89 MEDIA_FP_REGNUM = 14,
55ff77ac
CV
90 PR_REGNUM = 18,
91 SR_REGNUM = 65,
92 DR0_REGNUM = 141,
93 DR_LAST_REGNUM = 172,
94 /* FPP stands for Floating Point Pair, to avoid confusion with
3e8c568d 95 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
c378eb4e 96 point register. Unfortunately on the sh5, the floating point
7bb11558 97 registers are called FR, and the floating point pairs are called FP. */
55ff77ac
CV
98 FPP0_REGNUM = 173,
99 FPP_LAST_REGNUM = 204,
100 FV0_REGNUM = 205,
101 FV_LAST_REGNUM = 220,
102 R0_C_REGNUM = 221,
103 R_LAST_C_REGNUM = 236,
104 PC_C_REGNUM = 237,
105 GBR_C_REGNUM = 238,
106 MACH_C_REGNUM = 239,
107 MACL_C_REGNUM = 240,
108 PR_C_REGNUM = 241,
109 T_C_REGNUM = 242,
110 FPSCR_C_REGNUM = 243,
111 FPUL_C_REGNUM = 244,
112 FP0_C_REGNUM = 245,
113 FP_LAST_C_REGNUM = 260,
114 DR0_C_REGNUM = 261,
115 DR_LAST_C_REGNUM = 268,
116 FV0_C_REGNUM = 269,
117 FV_LAST_C_REGNUM = 272,
118 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
119 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
120 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
121 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
122 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
123 };
124
55ff77ac 125static const char *
d93859e2 126sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 127{
a121b7c1 128 static const char *register_names[] =
55ff77ac
CV
129 {
130 /* SH MEDIA MODE (ISA 32) */
131 /* general registers (64-bit) 0-63 */
132 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
133 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
134 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
135 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
136 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
137 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
138 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
139 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
140
141 /* pc (64-bit) 64 */
142 "pc",
143
144 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
145 "sr", "ssr", "spc",
146
c378eb4e 147 /* target registers (64-bit) 68-75 */
55ff77ac
CV
148 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
149
150 /* floating point state control register (32-bit) 76 */
151 "fpscr",
152
c378eb4e 153 /* single precision floating point registers (32-bit) 77-140 */
55ff77ac
CV
154 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
155 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
156 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
157 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
158 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
159 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
160 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
161 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
162
163 /* double precision registers (pseudo) 141-172 */
164 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
165 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
166 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
167 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
168
c378eb4e 169 /* floating point pairs (pseudo) 173-204 */
55ff77ac
CV
170 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
171 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
172 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
173 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
174
c378eb4e 175 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
55ff77ac
CV
176 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
177 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
178
c378eb4e 179 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
55ff77ac
CV
180 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
181 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
182 "pc_c",
183 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
184 "fpscr_c", "fpul_c",
c378eb4e
MS
185 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
186 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
187 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
188 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
189 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
190 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
55ff77ac 191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
c378eb4e 192 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
55ff77ac
CV
193 };
194
195 if (reg_nr < 0)
196 return NULL;
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return NULL;
199 return register_names[reg_nr];
200}
201
202#define NUM_PSEUDO_REGS_SH_MEDIA 80
203#define NUM_PSEUDO_REGS_SH_COMPACT 51
204
205/* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
f594e5e9 207 symbol's "info" field is used for this purpose.
55ff77ac 208
95f1da47
UW
209 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
210 i.e. refers to a 32-bit function, and sets a "special" bit in a
55ff77ac 211 minimal symbol to mark it as a 32-bit function
f594e5e9 212 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
55ff77ac
CV
213
214#define MSYMBOL_IS_SPECIAL(msym) \
b887350f 215 MSYMBOL_TARGET_FLAG_1 (msym)
55ff77ac
CV
216
217static void
218sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
219{
220 if (msym == NULL)
221 return;
222
223 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
224 {
b887350f 225 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
77e371c0 226 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
55ff77ac
CV
227 }
228}
229
230/* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
231 are some macros to test, set, or clear bit 0 of addresses. */
232#define IS_ISA32_ADDR(addr) ((addr) & 1)
233#define MAKE_ISA32_ADDR(addr) ((addr) | 1)
234#define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
235
236static int
237pc_is_isa32 (bfd_vma memaddr)
238{
7cbd4a93 239 struct bound_minimal_symbol sym;
55ff77ac
CV
240
241 /* If bit 0 of the address is set, assume this is a
7bb11558 242 ISA32 (shmedia) address. */
55ff77ac
CV
243 if (IS_ISA32_ADDR (memaddr))
244 return 1;
245
246 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
247 the high bit of the info field. Use this to decide if the function is
248 ISA16 or ISA32. */
249 sym = lookup_minimal_symbol_by_pc (memaddr);
7cbd4a93
TT
250 if (sym.minsym)
251 return MSYMBOL_IS_SPECIAL (sym.minsym);
55ff77ac
CV
252 else
253 return 0;
254}
255
d19280ad
YQ
256static int
257sh64_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
55ff77ac 258{
d19280ad
YQ
259 if (pc_is_isa32 (*pcptr))
260 {
261 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
262 return 4;
263 }
264 else
265 return 2;
266}
267
268static const gdb_byte *
269sh64_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
270{
271 *size = kind;
272
273 /* The BRK instruction for shmedia is
55ff77ac
CV
274 01101111 11110101 11111111 11110000
275 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
276 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
277
278 /* The BRK instruction for shcompact is
279 00000000 00111011
280 which translates in big endian mode to 0x0, 0x3b
c378eb4e 281 and in little endian mode to 0x3b, 0x0 */
55ff77ac 282
d19280ad 283 if (kind == 4)
55ff77ac 284 {
d19280ad
YQ
285 static unsigned char big_breakpoint_media[] = {
286 0x6f, 0xf5, 0xff, 0xf0
287 };
288 static unsigned char little_breakpoint_media[] = {
289 0xf0, 0xff, 0xf5, 0x6f
290 };
291
292 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
293 return big_breakpoint_media;
55ff77ac 294 else
d19280ad 295 return little_breakpoint_media;
55ff77ac
CV
296 }
297 else
298 {
d19280ad
YQ
299 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
300 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
301
302 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
303 return big_breakpoint_compact;
55ff77ac 304 else
d19280ad 305 return little_breakpoint_compact;
55ff77ac
CV
306 }
307}
308
309/* Prologue looks like
310 [mov.l <regs>,@-r15]...
311 [sts.l pr,@-r15]
312 [mov.l r14,@-r15]
313 [mov r15,r14]
314
315 Actually it can be more complicated than this. For instance, with
316 newer gcc's:
317
318 mov.l r14,@-r15
319 add #-12,r15
320 mov r15,r14
321 mov r4,r1
322 mov r5,r2
323 mov.l r6,@(4,r14)
324 mov.l r7,@(8,r14)
325 mov.b r1,@r14
326 mov r14,r1
327 mov r14,r1
328 add #2,r1
329 mov.w r2,@r1
330
331 */
332
333/* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
334 with l=1 and n = 18 0110101111110001010010100aaa0000 */
335#define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
336
337/* STS.L PR,@-r0 0100000000100010
338 r0-4-->r0, PR-->(r0) */
339#define IS_STS_R0(x) ((x) == 0x4022)
340
341/* STS PR, Rm 0000mmmm00101010
342 PR-->Rm */
343#define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
344
345/* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
346 Rm-->(dispx4+r15) */
347#define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
348
349/* MOV.L R14,@(disp,r15) 000111111110dddd
350 R14-->(dispx4+r15) */
351#define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
352
353/* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
354 R18-->(dispx8+R14) */
355#define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
356
357/* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
358 R18-->(dispx8+R15) */
359#define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
360
361/* ST.L R15, disp, R18 101010001111dddddddddd0100100000
362 R18-->(dispx4+R15) */
363#define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
364
365/* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
366 R14-->(dispx8+R15) */
367#define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
368
369/* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
370 R14-->(dispx4+R15) */
371#define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
372
373/* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
374 R15 + imm --> R15 */
375#define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
376
377/* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
378 R15 + imm --> R15 */
379#define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
380
381/* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
382 R15 + R63 --> R14 */
383#define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
384
385/* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
386 R15 + R63 --> R14 */
387#define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
388
c378eb4e
MS
389#define IS_MOV_SP_FP_MEDIA(x) \
390 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
55ff77ac
CV
391
392/* MOV #imm, R0 1110 0000 ssss ssss
393 #imm-->R0 */
394#define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
395
396/* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
397#define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
398
399/* ADD r15,r0 0011 0000 1111 1100
400 r15+r0-->r0 */
401#define IS_ADD_SP_R0(x) ((x) == 0x30fc)
402
403/* MOV.L R14 @-R0 0010 0000 1110 0110
404 R14-->(R0-4), R0-4-->R0 */
405#define IS_MOV_R14_R0(x) ((x) == 0x20e6)
406
407/* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
7bb11558 408 where Rm is one of r2-r9 which are the argument registers. */
c378eb4e 409/* FIXME: Recognize the float and double register moves too! */
55ff77ac 410#define IS_MEDIA_IND_ARG_MOV(x) \
c378eb4e
MS
411 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
412 && (((x) & 0x03f00000) >= 0x00200000 \
413 && ((x) & 0x03f00000) <= 0x00900000))
55ff77ac
CV
414
415/* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
416 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
7bb11558 417 where Rm is one of r2-r9 which are the argument registers. */
55ff77ac
CV
418#define IS_MEDIA_ARG_MOV(x) \
419(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
420 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
421
c378eb4e
MS
422/* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
423/* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
424/* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
425/* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
426/* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
55ff77ac
CV
427#define IS_MEDIA_MOV_TO_R14(x) \
428((((x) & 0xfffffc0f) == 0xa0e00000) \
429|| (((x) & 0xfffffc0f) == 0xa4e00000) \
430|| (((x) & 0xfffffc0f) == 0xa8e00000) \
431|| (((x) & 0xfffffc0f) == 0xb4e00000) \
432|| (((x) & 0xfffffc0f) == 0xbce00000))
433
434/* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
435 where Rm is r2-r9 */
436#define IS_COMPACT_IND_ARG_MOV(x) \
c378eb4e
MS
437 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
438 && (((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
439
440/* compact direct arg move!
441 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
442#define IS_COMPACT_ARG_MOV(x) \
c378eb4e
MS
443 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
444 && ((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
445
446/* MOV.B Rm, @R14 0010 1110 mmmm 0000
447 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
448#define IS_COMPACT_MOV_TO_R14(x) \
449((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
450
451#define IS_JSR_R0(x) ((x) == 0x400b)
452#define IS_NOP(x) ((x) == 0x0009)
453
454
455/* MOV r15,r14 0110111011110011
456 r15-->r14 */
457#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
458
459/* ADD #imm,r15 01111111iiiiiiii
460 r15+imm-->r15 */
461#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
462
c378eb4e 463/* Skip any prologue before the guts of a function. */
55ff77ac 464
7bb11558
MS
465/* Skip the prologue using the debug information. If this fails we'll
466 fall back on the 'guess' method below. */
55ff77ac
CV
467static CORE_ADDR
468after_prologue (CORE_ADDR pc)
469{
470 struct symtab_and_line sal;
471 CORE_ADDR func_addr, func_end;
472
473 /* If we can not find the symbol in the partial symbol table, then
474 there is no hope we can determine the function's start address
475 with this code. */
476 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
477 return 0;
478
c30dc700 479
55ff77ac
CV
480 /* Get the line associated with FUNC_ADDR. */
481 sal = find_pc_line (func_addr, 0);
482
483 /* There are only two cases to consider. First, the end of the source line
484 is within the function bounds. In that case we return the end of the
485 source line. Second is the end of the source line extends beyond the
486 bounds of the current function. We need to use the slow code to
487 examine instructions in that case. */
488 if (sal.end < func_end)
489 return sal.end;
490 else
491 return 0;
492}
493
494static CORE_ADDR
e17a4113
UW
495look_for_args_moves (struct gdbarch *gdbarch,
496 CORE_ADDR start_pc, int media_mode)
55ff77ac 497{
e17a4113 498 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
499 CORE_ADDR here, end;
500 int w;
501 int insn_size = (media_mode ? 4 : 2);
502
503 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
504 {
505 if (media_mode)
506 {
e17a4113
UW
507 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
508 insn_size, byte_order);
55ff77ac
CV
509 here += insn_size;
510 if (IS_MEDIA_IND_ARG_MOV (w))
511 {
512 /* This must be followed by a store to r14, so the argument
c378eb4e 513 is where the debug info says it is. This can happen after
7bb11558 514 the SP has been saved, unfortunately. */
55ff77ac
CV
515
516 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
e17a4113 517 insn_size, byte_order);
55ff77ac
CV
518 here += insn_size;
519 if (IS_MEDIA_MOV_TO_R14 (next_insn))
520 start_pc = here;
521 }
522 else if (IS_MEDIA_ARG_MOV (w))
523 {
7bb11558 524 /* These instructions store directly the argument in r14. */
55ff77ac
CV
525 start_pc = here;
526 }
527 else
528 break;
529 }
530 else
531 {
e17a4113 532 w = read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
533 w = w & 0xffff;
534 here += insn_size;
535 if (IS_COMPACT_IND_ARG_MOV (w))
536 {
537 /* This must be followed by a store to r14, so the argument
c378eb4e 538 is where the debug info says it is. This can happen after
7bb11558 539 the SP has been saved, unfortunately. */
55ff77ac 540
e17a4113
UW
541 int next_insn = 0xffff & read_memory_integer (here, insn_size,
542 byte_order);
55ff77ac
CV
543 here += insn_size;
544 if (IS_COMPACT_MOV_TO_R14 (next_insn))
545 start_pc = here;
546 }
547 else if (IS_COMPACT_ARG_MOV (w))
548 {
7bb11558 549 /* These instructions store directly the argument in r14. */
55ff77ac
CV
550 start_pc = here;
551 }
552 else if (IS_MOVL_R0 (w))
553 {
554 /* There is a function that gcc calls to get the arguments
c378eb4e 555 passed correctly to the function. Only after this
55ff77ac 556 function call the arguments will be found at the place
c378eb4e 557 where they are supposed to be. This happens in case the
55ff77ac
CV
558 argument has to be stored into a 64-bit register (for
559 instance doubles, long longs). SHcompact doesn't have
560 access to the full 64-bits, so we store the register in
561 stack slot and store the address of the stack slot in
562 the register, then do a call through a wrapper that
563 loads the memory value into the register. A SHcompact
564 callee calls an argument decoder
565 (GCC_shcompact_incoming_args) that stores the 64-bit
566 value in a stack slot and stores the address of the
567 stack slot in the register. GCC thinks the argument is
568 just passed by transparent reference, but this is only
c378eb4e 569 true after the argument decoder is called. Such a call
7bb11558 570 needs to be considered part of the prologue. */
55ff77ac
CV
571
572 /* This must be followed by a JSR @r0 instruction and by
c378eb4e 573 a NOP instruction. After these, the prologue is over! */
55ff77ac 574
e17a4113
UW
575 int next_insn = 0xffff & read_memory_integer (here, insn_size,
576 byte_order);
55ff77ac
CV
577 here += insn_size;
578 if (IS_JSR_R0 (next_insn))
579 {
e17a4113
UW
580 next_insn = 0xffff & read_memory_integer (here, insn_size,
581 byte_order);
55ff77ac
CV
582 here += insn_size;
583
584 if (IS_NOP (next_insn))
585 start_pc = here;
586 }
587 }
588 else
589 break;
590 }
591 }
592
593 return start_pc;
594}
595
596static CORE_ADDR
e17a4113 597sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
55ff77ac 598{
e17a4113 599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
600 CORE_ADDR here, end;
601 int updated_fp = 0;
602 int insn_size = 4;
603 int media_mode = 1;
604
605 if (!start_pc)
606 return 0;
607
608 if (pc_is_isa32 (start_pc) == 0)
609 {
610 insn_size = 2;
611 media_mode = 0;
612 }
613
614 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
615 {
616
617 if (media_mode)
618 {
e17a4113
UW
619 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
620 insn_size, byte_order);
55ff77ac
CV
621 here += insn_size;
622 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
623 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
c378eb4e
MS
624 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
625 || IS_PTABSL_R18 (w))
55ff77ac
CV
626 {
627 start_pc = here;
628 }
629 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
630 {
631 start_pc = here;
632 updated_fp = 1;
633 }
634 else
635 if (updated_fp)
636 {
637 /* Don't bail out yet, we may have arguments stored in
638 registers here, according to the debug info, so that
7bb11558 639 gdb can print the frames correctly. */
e17a4113
UW
640 start_pc = look_for_args_moves (gdbarch,
641 here - insn_size, media_mode);
55ff77ac
CV
642 break;
643 }
644 }
645 else
646 {
e17a4113 647 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
648 here += insn_size;
649
650 if (IS_STS_R0 (w) || IS_STS_PR (w)
651 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
652 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
653 {
654 start_pc = here;
655 }
656 else if (IS_MOV_SP_FP (w))
657 {
658 start_pc = here;
659 updated_fp = 1;
660 }
661 else
662 if (updated_fp)
663 {
664 /* Don't bail out yet, we may have arguments stored in
665 registers here, according to the debug info, so that
7bb11558 666 gdb can print the frames correctly. */
e17a4113
UW
667 start_pc = look_for_args_moves (gdbarch,
668 here - insn_size, media_mode);
55ff77ac
CV
669 break;
670 }
671 }
672 }
673
674 return start_pc;
675}
676
677static CORE_ADDR
6093d2eb 678sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
55ff77ac
CV
679{
680 CORE_ADDR post_prologue_pc;
681
682 /* See if we can determine the end of the prologue via the symbol table.
683 If so, then return either PC, or the PC after the prologue, whichever
684 is greater. */
685 post_prologue_pc = after_prologue (pc);
686
687 /* If after_prologue returned a useful address, then use it. Else
7bb11558 688 fall back on the instruction skipping code. */
55ff77ac 689 if (post_prologue_pc != 0)
325fac50 690 return std::max (pc, post_prologue_pc);
55ff77ac 691 else
e17a4113 692 return sh64_skip_prologue_hard_way (gdbarch, pc);
55ff77ac
CV
693}
694
55ff77ac
CV
695/* Should call_function allocate stack space for a struct return? */
696static int
c30dc700 697sh64_use_struct_convention (struct type *type)
55ff77ac
CV
698{
699 return (TYPE_LENGTH (type) > 8);
700}
701
7bb11558 702/* For vectors of 4 floating point registers. */
55ff77ac 703static int
d93859e2 704sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
55ff77ac
CV
705{
706 int fp_regnum;
707
d93859e2 708 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
55ff77ac
CV
709 return fp_regnum;
710}
711
c378eb4e 712/* For double precision floating point registers, i.e 2 fp regs. */
55ff77ac 713static int
d93859e2 714sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
55ff77ac
CV
715{
716 int fp_regnum;
717
d93859e2 718 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
55ff77ac
CV
719 return fp_regnum;
720}
721
c378eb4e 722/* For pairs of floating point registers. */
55ff77ac 723static int
d93859e2 724sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
55ff77ac
CV
725{
726 int fp_regnum;
727
d93859e2 728 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
55ff77ac
CV
729 return fp_regnum;
730}
731
55ff77ac
CV
732/* *INDENT-OFF* */
733/*
734 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
735 GDB_REGNUM BASE_REGNUM
736 r0_c 221 0
737 r1_c 222 1
738 r2_c 223 2
739 r3_c 224 3
740 r4_c 225 4
741 r5_c 226 5
742 r6_c 227 6
743 r7_c 228 7
744 r8_c 229 8
745 r9_c 230 9
746 r10_c 231 10
747 r11_c 232 11
748 r12_c 233 12
749 r13_c 234 13
750 r14_c 235 14
751 r15_c 236 15
752
753 pc_c 237 64
754 gbr_c 238 16
755 mach_c 239 17
756 macl_c 240 17
757 pr_c 241 18
758 t_c 242 19
759 fpscr_c 243 76
760 fpul_c 244 109
761
762 fr0_c 245 77
763 fr1_c 246 78
764 fr2_c 247 79
765 fr3_c 248 80
766 fr4_c 249 81
767 fr5_c 250 82
768 fr6_c 251 83
769 fr7_c 252 84
770 fr8_c 253 85
771 fr9_c 254 86
772 fr10_c 255 87
773 fr11_c 256 88
774 fr12_c 257 89
775 fr13_c 258 90
776 fr14_c 259 91
777 fr15_c 260 92
778
779 dr0_c 261 77
780 dr2_c 262 79
781 dr4_c 263 81
782 dr6_c 264 83
783 dr8_c 265 85
784 dr10_c 266 87
785 dr12_c 267 89
786 dr14_c 268 91
787
788 fv0_c 269 77
789 fv4_c 270 81
790 fv8_c 271 85
791 fv12_c 272 91
792*/
793/* *INDENT-ON* */
794static int
d93859e2 795sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 796{
c30dc700 797 int base_regnum = reg_nr;
55ff77ac
CV
798
799 /* general register N maps to general register N */
800 if (reg_nr >= R0_C_REGNUM
801 && reg_nr <= R_LAST_C_REGNUM)
802 base_regnum = reg_nr - R0_C_REGNUM;
803
804 /* floating point register N maps to floating point register N */
805 else if (reg_nr >= FP0_C_REGNUM
806 && reg_nr <= FP_LAST_C_REGNUM)
d93859e2 807 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
55ff77ac
CV
808
809 /* double prec register N maps to base regnum for double prec register N */
810 else if (reg_nr >= DR0_C_REGNUM
811 && reg_nr <= DR_LAST_C_REGNUM)
d93859e2
UW
812 base_regnum = sh64_dr_reg_base_num (gdbarch,
813 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
55ff77ac
CV
814
815 /* vector N maps to base regnum for vector register N */
816 else if (reg_nr >= FV0_C_REGNUM
817 && reg_nr <= FV_LAST_C_REGNUM)
d93859e2
UW
818 base_regnum = sh64_fv_reg_base_num (gdbarch,
819 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
55ff77ac
CV
820
821 else if (reg_nr == PC_C_REGNUM)
d93859e2 822 base_regnum = gdbarch_pc_regnum (gdbarch);
55ff77ac
CV
823
824 else if (reg_nr == GBR_C_REGNUM)
825 base_regnum = 16;
826
827 else if (reg_nr == MACH_C_REGNUM
828 || reg_nr == MACL_C_REGNUM)
829 base_regnum = 17;
830
831 else if (reg_nr == PR_C_REGNUM)
c30dc700 832 base_regnum = PR_REGNUM;
55ff77ac
CV
833
834 else if (reg_nr == T_C_REGNUM)
835 base_regnum = 19;
836
837 else if (reg_nr == FPSCR_C_REGNUM)
7bb11558 838 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
55ff77ac
CV
839
840 else if (reg_nr == FPUL_C_REGNUM)
d93859e2 841 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
55ff77ac
CV
842
843 return base_regnum;
844}
845
55ff77ac
CV
846static int
847sign_extend (int value, int bits)
848{
849 value = value & ((1 << bits) - 1);
850 return (value & (1 << (bits - 1))
851 ? value | (~((1 << bits) - 1))
852 : value);
853}
854
855static void
c30dc700
CV
856sh64_analyze_prologue (struct gdbarch *gdbarch,
857 struct sh64_frame_cache *cache,
858 CORE_ADDR func_pc,
859 CORE_ADDR current_pc)
55ff77ac 860{
55ff77ac
CV
861 int pc;
862 int opc;
863 int insn;
864 int r0_val = 0;
55ff77ac 865 int insn_size;
e17a4113 866 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 867
c30dc700 868 cache->sp_offset = 0;
55ff77ac
CV
869
870 /* Loop around examining the prologue insns until we find something
871 that does not appear to be part of the prologue. But give up
7bb11558 872 after 20 of them, since we're getting silly then. */
55ff77ac 873
c30dc700 874 pc = func_pc;
55ff77ac 875
c30dc700
CV
876 if (cache->media_mode)
877 insn_size = 4;
55ff77ac 878 else
c30dc700 879 insn_size = 2;
55ff77ac 880
c30dc700
CV
881 opc = pc + (insn_size * 28);
882 if (opc > current_pc)
883 opc = current_pc;
884 for ( ; pc <= opc; pc += insn_size)
55ff77ac 885 {
c30dc700
CV
886 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
887 : pc,
e17a4113 888 insn_size, byte_order);
55ff77ac 889
c30dc700 890 if (!cache->media_mode)
55ff77ac
CV
891 {
892 if (IS_STS_PR (insn))
893 {
e17a4113
UW
894 int next_insn = read_memory_integer (pc + insn_size,
895 insn_size, byte_order);
55ff77ac
CV
896 if (IS_MOV_TO_R15 (next_insn))
897 {
c378eb4e
MS
898 cache->saved_regs[PR_REGNUM]
899 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
900 - 0x8) << 2);
55ff77ac
CV
901 pc += insn_size;
902 }
903 }
c30dc700 904
55ff77ac 905 else if (IS_MOV_R14 (insn))
9ca10714
JB
906 {
907 cache->saved_regs[MEDIA_FP_REGNUM] =
908 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
909 cache->uses_fp = 1;
910 }
55ff77ac
CV
911
912 else if (IS_MOV_R0 (insn))
913 {
914 /* Put in R0 the offset from SP at which to store some
c378eb4e 915 registers. We are interested in this value, because it
55ff77ac
CV
916 will tell us where the given registers are stored within
917 the frame. */
918 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
919 }
c30dc700 920
55ff77ac
CV
921 else if (IS_ADD_SP_R0 (insn))
922 {
923 /* This instruction still prepares r0, but we don't care.
7bb11558 924 We already have the offset in r0_val. */
55ff77ac 925 }
c30dc700 926
55ff77ac
CV
927 else if (IS_STS_R0 (insn))
928 {
c378eb4e 929 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700 930 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
55ff77ac 931 r0_val -= 4;
55ff77ac 932 }
c30dc700 933
55ff77ac
CV
934 else if (IS_MOV_R14_R0 (insn))
935 {
c378eb4e 936 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700
CV
937 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
938 - (r0_val - 4);
9ca10714 939 cache->uses_fp = 1;
55ff77ac
CV
940 r0_val -= 4;
941 }
942
943 else if (IS_ADD_SP (insn))
c30dc700
CV
944 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
945
55ff77ac
CV
946 else if (IS_MOV_SP_FP (insn))
947 break;
948 }
949 else
950 {
c30dc700
CV
951 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
952 cache->sp_offset -=
953 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
55ff77ac
CV
954
955 else if (IS_STQ_R18_R15 (insn))
c378eb4e
MS
956 cache->saved_regs[PR_REGNUM]
957 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
958 9) << 3);
55ff77ac
CV
959
960 else if (IS_STL_R18_R15 (insn))
c378eb4e
MS
961 cache->saved_regs[PR_REGNUM]
962 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
963 9) << 2);
55ff77ac
CV
964
965 else if (IS_STQ_R14_R15 (insn))
9ca10714
JB
966 {
967 cache->saved_regs[MEDIA_FP_REGNUM]
968 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
969 9) << 3);
970 cache->uses_fp = 1;
971 }
55ff77ac
CV
972
973 else if (IS_STL_R14_R15 (insn))
9ca10714
JB
974 {
975 cache->saved_regs[MEDIA_FP_REGNUM]
976 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
977 9) << 2);
978 cache->uses_fp = 1;
979 }
55ff77ac
CV
980
981 else if (IS_MOV_SP_FP_MEDIA (insn))
982 break;
983 }
984 }
55ff77ac
CV
985}
986
55ff77ac 987static CORE_ADDR
c30dc700 988sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
55ff77ac 989{
c30dc700 990 return sp & ~7;
55ff77ac
CV
991}
992
c30dc700 993/* Function: push_dummy_call
55ff77ac
CV
994 Setup the function arguments for calling a function in the inferior.
995
85a453d5 996 On the Renesas SH architecture, there are four registers (R4 to R7)
55ff77ac
CV
997 which are dedicated for passing function arguments. Up to the first
998 four arguments (depending on size) may go into these registers.
999 The rest go on the stack.
1000
1001 Arguments that are smaller than 4 bytes will still take up a whole
1002 register or a whole 32-bit word on the stack, and will be
1003 right-justified in the register or the stack word. This includes
1004 chars, shorts, and small aggregate types.
1005
1006 Arguments that are larger than 4 bytes may be split between two or
1007 more registers. If there are not enough registers free, an argument
1008 may be passed partly in a register (or registers), and partly on the
c378eb4e 1009 stack. This includes doubles, long longs, and larger aggregates.
55ff77ac
CV
1010 As far as I know, there is no upper limit to the size of aggregates
1011 that will be passed in this way; in other words, the convention of
1012 passing a pointer to a large aggregate instead of a copy is not used.
1013
1014 An exceptional case exists for struct arguments (and possibly other
1015 aggregates such as arrays) if the size is larger than 4 bytes but
1016 not a multiple of 4 bytes. In this case the argument is never split
1017 between the registers and the stack, but instead is copied in its
1018 entirety onto the stack, AND also copied into as many registers as
1019 there is room for. In other words, space in registers permitting,
1020 two copies of the same argument are passed in. As far as I can tell,
1021 only the one on the stack is used, although that may be a function
1022 of the level of compiler optimization. I suspect this is a compiler
1023 bug. Arguments of these odd sizes are left-justified within the
1024 word (as opposed to arguments smaller than 4 bytes, which are
1025 right-justified).
1026
1027 If the function is to return an aggregate type such as a struct, it
1028 is either returned in the normal return value register R0 (if its
1029 size is no greater than one byte), or else the caller must allocate
1030 space into which the callee will copy the return value (if the size
1031 is greater than one byte). In this case, a pointer to the return
1032 value location is passed into the callee in register R2, which does
1033 not displace any of the other arguments passed in via registers R4
c378eb4e 1034 to R7. */
55ff77ac
CV
1035
1036/* R2-R9 for integer types and integer equivalent (char, pointers) and
1037 non-scalar (struct, union) elements (even if the elements are
1038 floats).
1039 FR0-FR11 for single precision floating point (float)
1040 DR0-DR10 for double precision floating point (double)
1041
1042 If a float is argument number 3 (for instance) and arguments number
1043 1,2, and 4 are integer, the mapping will be:
c378eb4e 1044 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
55ff77ac
CV
1045
1046 If a float is argument number 10 (for instance) and arguments number
1047 1 through 10 are integer, the mapping will be:
1048 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
c378eb4e
MS
1049 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1050 arg11->stack(16,SP). I.e. there is hole in the stack.
55ff77ac
CV
1051
1052 Different rules apply for variable arguments functions, and for functions
7bb11558 1053 for which the prototype is not known. */
55ff77ac
CV
1054
1055static CORE_ADDR
c30dc700
CV
1056sh64_push_dummy_call (struct gdbarch *gdbarch,
1057 struct value *function,
1058 struct regcache *regcache,
1059 CORE_ADDR bp_addr,
1060 int nargs, struct value **args,
1061 CORE_ADDR sp, int struct_return,
1062 CORE_ADDR struct_addr)
55ff77ac 1063{
e17a4113 1064 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1065 int stack_offset, stack_alloc;
1066 int int_argreg;
55ff77ac
CV
1067 int float_arg_index = 0;
1068 int double_arg_index = 0;
1069 int argnum;
1070 struct type *type;
1071 CORE_ADDR regval;
948f8e3d
PA
1072 const gdb_byte *val;
1073 gdb_byte valbuf[8];
55ff77ac
CV
1074 int len;
1075 int argreg_size;
1076 int fp_args[12];
55ff77ac
CV
1077
1078 memset (fp_args, 0, sizeof (fp_args));
1079
c378eb4e 1080 /* First force sp to a 8-byte alignment. */
c30dc700 1081 sp = sh64_frame_align (gdbarch, sp);
55ff77ac
CV
1082
1083 /* The "struct return pointer" pseudo-argument has its own dedicated
c378eb4e 1084 register. */
55ff77ac
CV
1085
1086 if (struct_return)
c30dc700
CV
1087 regcache_cooked_write_unsigned (regcache,
1088 STRUCT_RETURN_REGNUM, struct_addr);
55ff77ac 1089
c378eb4e 1090 /* Now make sure there's space on the stack. */
55ff77ac 1091 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
4991999e 1092 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
c378eb4e 1093 sp -= stack_alloc; /* Make room on stack for args. */
55ff77ac
CV
1094
1095 /* Now load as many as possible of the first arguments into
1096 registers, and push the rest onto the stack. There are 64 bytes
1097 in eight registers available. Loop thru args from first to last. */
1098
1099 int_argreg = ARG0_REGNUM;
55ff77ac
CV
1100
1101 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1102 {
4991999e 1103 type = value_type (args[argnum]);
55ff77ac
CV
1104 len = TYPE_LENGTH (type);
1105 memset (valbuf, 0, sizeof (valbuf));
1106
1107 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1108 {
58643501 1109 argreg_size = register_size (gdbarch, int_argreg);
55ff77ac
CV
1110
1111 if (len < argreg_size)
1112 {
c378eb4e 1113 /* value gets right-justified in the register or stack word. */
58643501 1114 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1115 memcpy (valbuf + argreg_size - len,
948f8e3d 1116 value_contents (args[argnum]), len);
55ff77ac 1117 else
948f8e3d 1118 memcpy (valbuf, value_contents (args[argnum]), len);
55ff77ac
CV
1119
1120 val = valbuf;
1121 }
1122 else
948f8e3d 1123 val = value_contents (args[argnum]);
55ff77ac
CV
1124
1125 while (len > 0)
1126 {
1127 if (int_argreg > ARGLAST_REGNUM)
1128 {
c378eb4e 1129 /* Must go on the stack. */
948f8e3d 1130 write_memory (sp + stack_offset, val, argreg_size);
55ff77ac
CV
1131 stack_offset += 8;/*argreg_size;*/
1132 }
1133 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1134 That's because some *&^%$ things get passed on the stack
1135 AND in the registers! */
1136 if (int_argreg <= ARGLAST_REGNUM)
1137 {
c378eb4e 1138 /* There's room in a register. */
e17a4113
UW
1139 regval = extract_unsigned_integer (val, argreg_size,
1140 byte_order);
c378eb4e
MS
1141 regcache_cooked_write_unsigned (regcache,
1142 int_argreg, regval);
55ff77ac
CV
1143 }
1144 /* Store the value 8 bytes at a time. This means that
1145 things larger than 8 bytes may go partly in registers
c378eb4e 1146 and partly on the stack. FIXME: argreg is incremented
7bb11558 1147 before we use its size. */
55ff77ac
CV
1148 len -= argreg_size;
1149 val += argreg_size;
1150 int_argreg++;
1151 }
1152 }
1153 else
1154 {
948f8e3d 1155 val = value_contents (args[argnum]);
55ff77ac
CV
1156 if (len == 4)
1157 {
c378eb4e 1158 /* Where is it going to be stored? */
55ff77ac
CV
1159 while (fp_args[float_arg_index])
1160 float_arg_index ++;
1161
1162 /* Now float_argreg points to the register where it
1163 should be stored. Are we still within the allowed
c378eb4e 1164 register set? */
55ff77ac
CV
1165 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1166 {
1167 /* Goes in FR0...FR11 */
c30dc700 1168 regcache_cooked_write (regcache,
58643501 1169 gdbarch_fp0_regnum (gdbarch)
3e8c568d 1170 + float_arg_index,
c30dc700 1171 val);
55ff77ac 1172 fp_args[float_arg_index] = 1;
7bb11558 1173 /* Skip the corresponding general argument register. */
55ff77ac
CV
1174 int_argreg ++;
1175 }
1176 else
d4fb63e1
TT
1177 {
1178 /* Store it as the integers, 8 bytes at the time, if
1179 necessary spilling on the stack. */
1180 }
55ff77ac
CV
1181 }
1182 else if (len == 8)
1183 {
c378eb4e 1184 /* Where is it going to be stored? */
55ff77ac
CV
1185 while (fp_args[double_arg_index])
1186 double_arg_index += 2;
1187 /* Now double_argreg points to the register
1188 where it should be stored.
c378eb4e 1189 Are we still within the allowed register set? */
55ff77ac
CV
1190 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1191 {
1192 /* Goes in DR0...DR10 */
1193 /* The numbering of the DRi registers is consecutive,
7bb11558 1194 i.e. includes odd numbers. */
55ff77ac 1195 int double_register_offset = double_arg_index / 2;
c30dc700
CV
1196 int regnum = DR0_REGNUM + double_register_offset;
1197 regcache_cooked_write (regcache, regnum, val);
55ff77ac
CV
1198 fp_args[double_arg_index] = 1;
1199 fp_args[double_arg_index + 1] = 1;
7bb11558 1200 /* Skip the corresponding general argument register. */
55ff77ac
CV
1201 int_argreg ++;
1202 }
1203 else
d4fb63e1
TT
1204 {
1205 /* Store it as the integers, 8 bytes at the time, if
1206 necessary spilling on the stack. */
1207 }
55ff77ac
CV
1208 }
1209 }
1210 }
c378eb4e 1211 /* Store return address. */
c30dc700 1212 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
55ff77ac 1213
c30dc700 1214 /* Update stack pointer. */
3e8c568d 1215 regcache_cooked_write_unsigned (regcache,
58643501 1216 gdbarch_sp_regnum (gdbarch), sp);
55ff77ac 1217
55ff77ac
CV
1218 return sp;
1219}
1220
1221/* Find a function's return value in the appropriate registers (in
1222 regbuf), and copy it into valbuf. Extract from an array REGBUF
1223 containing the (raw) register state a function return value of type
1224 TYPE, and copy that, in virtual format, into VALBUF. */
1225static void
c30dc700 1226sh64_extract_return_value (struct type *type, struct regcache *regcache,
7c543f7b 1227 gdb_byte *valbuf)
55ff77ac 1228{
d93859e2 1229 struct gdbarch *gdbarch = get_regcache_arch (regcache);
55ff77ac 1230 int len = TYPE_LENGTH (type);
d93859e2 1231
55ff77ac
CV
1232 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1233 {
1234 if (len == 4)
1235 {
c378eb4e 1236 /* Return value stored in gdbarch_fp0_regnum. */
3e8c568d 1237 regcache_raw_read (regcache,
d93859e2 1238 gdbarch_fp0_regnum (gdbarch), valbuf);
55ff77ac
CV
1239 }
1240 else if (len == 8)
1241 {
c378eb4e 1242 /* return value stored in DR0_REGNUM. */
55ff77ac 1243 DOUBLEST val;
18cf8b5b 1244 gdb_byte buf[8];
55ff77ac 1245
18cf8b5b 1246 regcache_cooked_read (regcache, DR0_REGNUM, buf);
55ff77ac 1247
d93859e2 1248 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
55ff77ac 1249 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
c30dc700 1250 buf, &val);
55ff77ac
CV
1251 else
1252 floatformat_to_doublest (&floatformat_ieee_double_big,
c30dc700 1253 buf, &val);
7bb11558 1254 store_typed_floating (valbuf, type, val);
55ff77ac
CV
1255 }
1256 }
1257 else
1258 {
1259 if (len <= 8)
1260 {
c30dc700 1261 int offset;
e362b510 1262 gdb_byte buf[8];
c378eb4e 1263 /* Result is in register 2. If smaller than 8 bytes, it is padded
7bb11558 1264 at the most significant end. */
c30dc700
CV
1265 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1266
d93859e2
UW
1267 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1268 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
c30dc700 1269 - len;
55ff77ac 1270 else
c30dc700
CV
1271 offset = 0;
1272 memcpy (valbuf, buf + offset, len);
55ff77ac
CV
1273 }
1274 else
a73c6dcd 1275 error (_("bad size for return value"));
55ff77ac
CV
1276 }
1277}
1278
1279/* Write into appropriate registers a function return value
1280 of type TYPE, given in virtual format.
1281 If the architecture is sh4 or sh3e, store a function's return value
1282 in the R0 general register or in the FP0 floating point register,
c378eb4e 1283 depending on the type of the return value. In all the other cases
7bb11558 1284 the result is stored in r0, left-justified. */
55ff77ac
CV
1285
1286static void
c30dc700 1287sh64_store_return_value (struct type *type, struct regcache *regcache,
948f8e3d 1288 const gdb_byte *valbuf)
55ff77ac 1289{
d93859e2 1290 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e362b510 1291 gdb_byte buf[64]; /* more than enough... */
55ff77ac
CV
1292 int len = TYPE_LENGTH (type);
1293
1294 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1295 {
d93859e2 1296 int i, regnum = gdbarch_fp0_regnum (gdbarch);
c30dc700 1297 for (i = 0; i < len; i += 4)
d93859e2 1298 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c30dc700 1299 regcache_raw_write (regcache, regnum++,
948f8e3d 1300 valbuf + len - 4 - i);
c30dc700 1301 else
948f8e3d 1302 regcache_raw_write (regcache, regnum++, valbuf + i);
55ff77ac
CV
1303 }
1304 else
1305 {
1306 int return_register = DEFAULT_RETURN_REGNUM;
1307 int offset = 0;
1308
d93859e2 1309 if (len <= register_size (gdbarch, return_register))
55ff77ac 1310 {
7bb11558 1311 /* Pad with zeros. */
d93859e2
UW
1312 memset (buf, 0, register_size (gdbarch, return_register));
1313 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1314 offset = 0; /*register_size (gdbarch,
7bb11558 1315 return_register) - len;*/
55ff77ac 1316 else
d93859e2 1317 offset = register_size (gdbarch, return_register) - len;
55ff77ac
CV
1318
1319 memcpy (buf + offset, valbuf, len);
c30dc700 1320 regcache_raw_write (regcache, return_register, buf);
55ff77ac
CV
1321 }
1322 else
c30dc700 1323 regcache_raw_write (regcache, return_register, valbuf);
55ff77ac
CV
1324 }
1325}
1326
c30dc700 1327static enum return_value_convention
6a3a010b 1328sh64_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 1329 struct type *type, struct regcache *regcache,
18cf8b5b 1330 gdb_byte *readbuf, const gdb_byte *writebuf)
c30dc700
CV
1331{
1332 if (sh64_use_struct_convention (type))
1333 return RETURN_VALUE_STRUCT_CONVENTION;
1334 if (writebuf)
1335 sh64_store_return_value (type, regcache, writebuf);
1336 else if (readbuf)
1337 sh64_extract_return_value (type, regcache, readbuf);
1338 return RETURN_VALUE_REGISTER_CONVENTION;
1339}
1340
55ff77ac
CV
1341/* *INDENT-OFF* */
1342/*
1343 SH MEDIA MODE (ISA 32)
1344 general registers (64-bit) 0-63
13450 r0, r1, r2, r3, r4, r5, r6, r7,
134664 r8, r9, r10, r11, r12, r13, r14, r15,
1347128 r16, r17, r18, r19, r20, r21, r22, r23,
1348192 r24, r25, r26, r27, r28, r29, r30, r31,
1349256 r32, r33, r34, r35, r36, r37, r38, r39,
1350320 r40, r41, r42, r43, r44, r45, r46, r47,
1351384 r48, r49, r50, r51, r52, r53, r54, r55,
1352448 r56, r57, r58, r59, r60, r61, r62, r63,
1353
1354 pc (64-bit) 64
1355512 pc,
1356
1357 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1358520 sr, ssr, spc,
1359
1360 target registers (64-bit) 68-75
1361544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1362
1363 floating point state control register (32-bit) 76
1364608 fpscr,
1365
1366 single precision floating point registers (32-bit) 77-140
1367612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1368644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1369676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1370708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1371740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1372772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1373804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1374836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1375
1376TOTAL SPACE FOR REGISTERS: 868 bytes
1377
1378From here on they are all pseudo registers: no memory allocated.
1379REGISTER_BYTE returns the register byte for the base register.
1380
1381 double precision registers (pseudo) 141-172
1382 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1383 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1384 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1385 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1386
1387 floating point pairs (pseudo) 173-204
1388 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1389 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1390 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1391 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1392
1393 floating point vectors (4 floating point regs) (pseudo) 205-220
1394 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1395 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1396
1397 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1398 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1399 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1400 pc_c,
1401 gbr_c, mach_c, macl_c, pr_c, t_c,
1402 fpscr_c, fpul_c,
1403 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1404 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1405 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1406 fv0_c, fv4_c, fv8_c, fv12_c
1407*/
55ff77ac 1408
55ff77ac 1409static struct type *
0dfff4cb 1410sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
55ff77ac 1411{
e3506a9f
UW
1412 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1413 0, high);
55ff77ac
CV
1414}
1415
7bb11558
MS
1416/* Return the GDB type object for the "standard" data type
1417 of data in register REG_NR. */
55ff77ac 1418static struct type *
7bb11558 1419sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 1420{
58643501 1421 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
55ff77ac
CV
1422 && reg_nr <= FP_LAST_REGNUM)
1423 || (reg_nr >= FP0_C_REGNUM
1424 && reg_nr <= FP_LAST_C_REGNUM))
0dfff4cb 1425 return builtin_type (gdbarch)->builtin_float;
55ff77ac
CV
1426 else if ((reg_nr >= DR0_REGNUM
1427 && reg_nr <= DR_LAST_REGNUM)
1428 || (reg_nr >= DR0_C_REGNUM
1429 && reg_nr <= DR_LAST_C_REGNUM))
0dfff4cb 1430 return builtin_type (gdbarch)->builtin_double;
55ff77ac
CV
1431 else if (reg_nr >= FPP0_REGNUM
1432 && reg_nr <= FPP_LAST_REGNUM)
0dfff4cb 1433 return sh64_build_float_register_type (gdbarch, 1);
55ff77ac
CV
1434 else if ((reg_nr >= FV0_REGNUM
1435 && reg_nr <= FV_LAST_REGNUM)
1436 ||(reg_nr >= FV0_C_REGNUM
1437 && reg_nr <= FV_LAST_C_REGNUM))
0dfff4cb 1438 return sh64_build_float_register_type (gdbarch, 3);
55ff77ac 1439 else if (reg_nr == FPSCR_REGNUM)
0dfff4cb 1440 return builtin_type (gdbarch)->builtin_int;
55ff77ac
CV
1441 else if (reg_nr >= R0_C_REGNUM
1442 && reg_nr < FP0_C_REGNUM)
0dfff4cb 1443 return builtin_type (gdbarch)->builtin_int;
55ff77ac 1444 else
0dfff4cb 1445 return builtin_type (gdbarch)->builtin_long_long;
55ff77ac
CV
1446}
1447
1448static void
d93859e2 1449sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
948f8e3d 1450 struct type *type, gdb_byte *from, gdb_byte *to)
55ff77ac 1451{
d93859e2 1452 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1453 {
7bb11558 1454 /* It is a no-op. */
d93859e2 1455 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1456 return;
1457 }
1458
1459 if ((regnum >= DR0_REGNUM
1460 && regnum <= DR_LAST_REGNUM)
1461 || (regnum >= DR0_C_REGNUM
1462 && regnum <= DR_LAST_C_REGNUM))
1463 {
1464 DOUBLEST val;
7bb11558
MS
1465 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1466 from, &val);
39add00a 1467 store_typed_floating (to, type, val);
55ff77ac
CV
1468 }
1469 else
a73c6dcd
MS
1470 error (_("sh64_register_convert_to_virtual "
1471 "called with non DR register number"));
55ff77ac
CV
1472}
1473
1474static void
d93859e2
UW
1475sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1476 int regnum, const void *from, void *to)
55ff77ac 1477{
d93859e2 1478 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1479 {
7bb11558 1480 /* It is a no-op. */
d93859e2 1481 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1482 return;
1483 }
1484
1485 if ((regnum >= DR0_REGNUM
1486 && regnum <= DR_LAST_REGNUM)
1487 || (regnum >= DR0_C_REGNUM
1488 && regnum <= DR_LAST_C_REGNUM))
1489 {
e035e373 1490 DOUBLEST val = extract_typed_floating (from, type);
7bb11558
MS
1491 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1492 &val, to);
55ff77ac
CV
1493 }
1494 else
a73c6dcd
MS
1495 error (_("sh64_register_convert_to_raw called "
1496 "with non DR register number"));
55ff77ac
CV
1497}
1498
05d1431c
PA
1499/* Concatenate PORTIONS contiguous raw registers starting at
1500 BASE_REGNUM into BUFFER. */
1501
1502static enum register_status
1503pseudo_register_read_portions (struct gdbarch *gdbarch,
1504 struct regcache *regcache,
1505 int portions,
1506 int base_regnum, gdb_byte *buffer)
1507{
1508 int portion;
1509
1510 for (portion = 0; portion < portions; portion++)
1511 {
1512 enum register_status status;
1513 gdb_byte *b;
1514
1515 b = buffer + register_size (gdbarch, base_regnum) * portion;
1516 status = regcache_raw_read (regcache, base_regnum + portion, b);
1517 if (status != REG_VALID)
1518 return status;
1519 }
1520
1521 return REG_VALID;
1522}
1523
1524static enum register_status
55ff77ac 1525sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1526 int reg_nr, gdb_byte *buffer)
55ff77ac 1527{
e17a4113 1528 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 1529 int base_regnum;
55ff77ac 1530 int offset = 0;
948f8e3d 1531 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
05d1431c 1532 enum register_status status;
55ff77ac
CV
1533
1534 if (reg_nr >= DR0_REGNUM
1535 && reg_nr <= DR_LAST_REGNUM)
1536 {
d93859e2 1537 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
55ff77ac 1538
7bb11558 1539 /* Build the value in the provided buffer. */
55ff77ac 1540 /* DR regs are double precision registers obtained by
7bb11558 1541 concatenating 2 single precision floating point registers. */
05d1431c
PA
1542 status = pseudo_register_read_portions (gdbarch, regcache,
1543 2, base_regnum, temp_buffer);
1544 if (status == REG_VALID)
1545 {
1546 /* We must pay attention to the endianness. */
1547 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1548 register_type (gdbarch, reg_nr),
1549 temp_buffer, buffer);
1550 }
55ff77ac 1551
05d1431c 1552 return status;
55ff77ac
CV
1553 }
1554
05d1431c 1555 else if (reg_nr >= FPP0_REGNUM
55ff77ac
CV
1556 && reg_nr <= FPP_LAST_REGNUM)
1557 {
d93859e2 1558 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac 1559
7bb11558 1560 /* Build the value in the provided buffer. */
55ff77ac 1561 /* FPP regs are pairs of single precision registers obtained by
7bb11558 1562 concatenating 2 single precision floating point registers. */
05d1431c
PA
1563 return pseudo_register_read_portions (gdbarch, regcache,
1564 2, base_regnum, buffer);
55ff77ac
CV
1565 }
1566
1567 else if (reg_nr >= FV0_REGNUM
1568 && reg_nr <= FV_LAST_REGNUM)
1569 {
d93859e2 1570 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac 1571
7bb11558 1572 /* Build the value in the provided buffer. */
55ff77ac 1573 /* FV regs are vectors of single precision registers obtained by
7bb11558 1574 concatenating 4 single precision floating point registers. */
05d1431c
PA
1575 return pseudo_register_read_portions (gdbarch, regcache,
1576 4, base_regnum, buffer);
55ff77ac
CV
1577 }
1578
c378eb4e 1579 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
55ff77ac
CV
1580 else if (reg_nr >= R0_C_REGNUM
1581 && reg_nr <= T_C_REGNUM)
1582 {
d93859e2 1583 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1584
7bb11558 1585 /* Build the value in the provided buffer. */
05d1431c
PA
1586 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1587 if (status != REG_VALID)
1588 return status;
58643501 1589 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1590 offset = 4;
c378eb4e
MS
1591 memcpy (buffer,
1592 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
05d1431c 1593 return REG_VALID;
55ff77ac
CV
1594 }
1595
1596 else if (reg_nr >= FP0_C_REGNUM
1597 && reg_nr <= FP_LAST_C_REGNUM)
1598 {
d93859e2 1599 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1600
7bb11558 1601 /* Build the value in the provided buffer. */
55ff77ac 1602 /* Floating point registers map 1-1 to the media fp regs,
7bb11558 1603 they have the same size and endianness. */
05d1431c 1604 return regcache_raw_read (regcache, base_regnum, buffer);
55ff77ac
CV
1605 }
1606
1607 else if (reg_nr >= DR0_C_REGNUM
1608 && reg_nr <= DR_LAST_C_REGNUM)
1609 {
d93859e2 1610 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1611
1612 /* DR_C regs are double precision registers obtained by
7bb11558 1613 concatenating 2 single precision floating point registers. */
05d1431c
PA
1614 status = pseudo_register_read_portions (gdbarch, regcache,
1615 2, base_regnum, temp_buffer);
1616 if (status == REG_VALID)
1617 {
1618 /* We must pay attention to the endianness. */
1619 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1620 register_type (gdbarch, reg_nr),
1621 temp_buffer, buffer);
1622 }
1623 return status;
55ff77ac
CV
1624 }
1625
1626 else if (reg_nr >= FV0_C_REGNUM
1627 && reg_nr <= FV_LAST_C_REGNUM)
1628 {
d93859e2 1629 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1630
7bb11558 1631 /* Build the value in the provided buffer. */
55ff77ac 1632 /* FV_C regs are vectors of single precision registers obtained by
7bb11558 1633 concatenating 4 single precision floating point registers. */
05d1431c
PA
1634 return pseudo_register_read_portions (gdbarch, regcache,
1635 4, base_regnum, buffer);
55ff77ac
CV
1636 }
1637
1638 else if (reg_nr == FPSCR_C_REGNUM)
1639 {
1640 int fpscr_base_regnum;
1641 int sr_base_regnum;
1642 unsigned int fpscr_value;
1643 unsigned int sr_value;
1644 unsigned int fpscr_c_value;
1645 unsigned int fpscr_c_part1_value;
1646 unsigned int fpscr_c_part2_value;
1647
1648 fpscr_base_regnum = FPSCR_REGNUM;
1649 sr_base_regnum = SR_REGNUM;
1650
7bb11558 1651 /* Build the value in the provided buffer. */
55ff77ac
CV
1652 /* FPSCR_C is a very weird register that contains sparse bits
1653 from the FPSCR and the SR architectural registers.
1654 Specifically: */
1655 /* *INDENT-OFF* */
1656 /*
1657 FPSRC_C bit
1658 0 Bit 0 of FPSCR
1659 1 reserved
1660 2-17 Bit 2-18 of FPSCR
1661 18-20 Bits 12,13,14 of SR
1662 21-31 reserved
1663 */
1664 /* *INDENT-ON* */
c378eb4e 1665 /* Get FPSCR into a local buffer. */
05d1431c
PA
1666 status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1667 if (status != REG_VALID)
1668 return status;
7bb11558 1669 /* Get value as an int. */
e17a4113 1670 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac 1671 /* Get SR into a local buffer */
05d1431c
PA
1672 status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1673 if (status != REG_VALID)
1674 return status;
7bb11558 1675 /* Get value as an int. */
e17a4113 1676 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
7bb11558 1677 /* Build the new value. */
55ff77ac
CV
1678 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1679 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1680 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
c378eb4e 1681 /* Store that in out buffer!!! */
e17a4113 1682 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
7bb11558 1683 /* FIXME There is surely an endianness gotcha here. */
05d1431c
PA
1684
1685 return REG_VALID;
55ff77ac
CV
1686 }
1687
1688 else if (reg_nr == FPUL_C_REGNUM)
1689 {
d93859e2 1690 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1691
1692 /* FPUL_C register is floating point register 32,
7bb11558 1693 same size, same endianness. */
05d1431c 1694 return regcache_raw_read (regcache, base_regnum, buffer);
55ff77ac 1695 }
05d1431c
PA
1696 else
1697 gdb_assert_not_reached ("invalid pseudo register number");
55ff77ac
CV
1698}
1699
1700static void
1701sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1702 int reg_nr, const gdb_byte *buffer)
55ff77ac 1703{
e17a4113 1704 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1705 int base_regnum, portion;
1706 int offset;
948f8e3d 1707 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
55ff77ac
CV
1708
1709 if (reg_nr >= DR0_REGNUM
1710 && reg_nr <= DR_LAST_REGNUM)
1711 {
d93859e2 1712 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
7bb11558 1713 /* We must pay attention to the endianness. */
d93859e2 1714 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
39add00a
MS
1715 reg_nr,
1716 buffer, temp_buffer);
55ff77ac
CV
1717
1718 /* Write the real regs for which this one is an alias. */
1719 for (portion = 0; portion < 2; portion++)
1720 regcache_raw_write (regcache, base_regnum + portion,
1721 (temp_buffer
948f8e3d 1722 + register_size (gdbarch,
7bb11558 1723 base_regnum) * portion));
55ff77ac
CV
1724 }
1725
1726 else if (reg_nr >= FPP0_REGNUM
1727 && reg_nr <= FPP_LAST_REGNUM)
1728 {
d93859e2 1729 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1730
1731 /* Write the real regs for which this one is an alias. */
1732 for (portion = 0; portion < 2; portion++)
1733 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d
PA
1734 (buffer + register_size (gdbarch,
1735 base_regnum) * portion));
55ff77ac
CV
1736 }
1737
1738 else if (reg_nr >= FV0_REGNUM
1739 && reg_nr <= FV_LAST_REGNUM)
1740 {
d93859e2 1741 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1742
1743 /* Write the real regs for which this one is an alias. */
1744 for (portion = 0; portion < 4; portion++)
1745 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d
PA
1746 (buffer + register_size (gdbarch,
1747 base_regnum) * portion));
55ff77ac
CV
1748 }
1749
c378eb4e 1750 /* sh compact general pseudo registers. 1-to-1 with a shmedia
55ff77ac
CV
1751 register but only 4 bytes of it. */
1752 else if (reg_nr >= R0_C_REGNUM
1753 && reg_nr <= T_C_REGNUM)
1754 {
d93859e2 1755 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
7bb11558 1756 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
58643501 1757 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
1758 offset = 4;
1759 else
1760 offset = 0;
1761 /* Let's read the value of the base register into a temporary
1762 buffer, so that overwriting the last four bytes with the new
7bb11558 1763 value of the pseudo will leave the upper 4 bytes unchanged. */
55ff77ac 1764 regcache_raw_read (regcache, base_regnum, temp_buffer);
c378eb4e 1765 /* Write as an 8 byte quantity. */
55ff77ac
CV
1766 memcpy (temp_buffer + offset, buffer, 4);
1767 regcache_raw_write (regcache, base_regnum, temp_buffer);
1768 }
1769
c378eb4e
MS
1770 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1771 registers. Both are 4 bytes. */
55ff77ac
CV
1772 else if (reg_nr >= FP0_C_REGNUM
1773 && reg_nr <= FP_LAST_C_REGNUM)
1774 {
d93859e2 1775 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1776 regcache_raw_write (regcache, base_regnum, buffer);
1777 }
1778
1779 else if (reg_nr >= DR0_C_REGNUM
1780 && reg_nr <= DR_LAST_C_REGNUM)
1781 {
d93859e2 1782 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1783 for (portion = 0; portion < 2; portion++)
1784 {
7bb11558 1785 /* We must pay attention to the endianness. */
d93859e2
UW
1786 sh64_register_convert_to_raw (gdbarch,
1787 register_type (gdbarch, reg_nr),
39add00a
MS
1788 reg_nr,
1789 buffer, temp_buffer);
55ff77ac
CV
1790
1791 regcache_raw_write (regcache, base_regnum + portion,
1792 (temp_buffer
7bb11558
MS
1793 + register_size (gdbarch,
1794 base_regnum) * portion));
55ff77ac
CV
1795 }
1796 }
1797
1798 else if (reg_nr >= FV0_C_REGNUM
1799 && reg_nr <= FV_LAST_C_REGNUM)
1800 {
d93859e2 1801 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1802
1803 for (portion = 0; portion < 4; portion++)
1804 {
1805 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d 1806 (buffer
7bb11558
MS
1807 + register_size (gdbarch,
1808 base_regnum) * portion));
55ff77ac
CV
1809 }
1810 }
1811
1812 else if (reg_nr == FPSCR_C_REGNUM)
1813 {
1814 int fpscr_base_regnum;
1815 int sr_base_regnum;
1816 unsigned int fpscr_value;
1817 unsigned int sr_value;
1818 unsigned int old_fpscr_value;
1819 unsigned int old_sr_value;
1820 unsigned int fpscr_c_value;
1821 unsigned int fpscr_mask;
1822 unsigned int sr_mask;
1823
1824 fpscr_base_regnum = FPSCR_REGNUM;
1825 sr_base_regnum = SR_REGNUM;
1826
1827 /* FPSCR_C is a very weird register that contains sparse bits
1828 from the FPSCR and the SR architectural registers.
1829 Specifically: */
1830 /* *INDENT-OFF* */
1831 /*
1832 FPSRC_C bit
1833 0 Bit 0 of FPSCR
1834 1 reserved
1835 2-17 Bit 2-18 of FPSCR
1836 18-20 Bits 12,13,14 of SR
1837 21-31 reserved
1838 */
1839 /* *INDENT-ON* */
7bb11558 1840 /* Get value as an int. */
e17a4113 1841 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
55ff77ac 1842
7bb11558 1843 /* Build the new values. */
55ff77ac
CV
1844 fpscr_mask = 0x0003fffd;
1845 sr_mask = 0x001c0000;
1846
1847 fpscr_value = fpscr_c_value & fpscr_mask;
1848 sr_value = (fpscr_value & sr_mask) >> 6;
1849
1850 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
e17a4113 1851 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1852 old_fpscr_value &= 0xfffc0002;
1853 fpscr_value |= old_fpscr_value;
e17a4113 1854 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
55ff77ac
CV
1855 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1856
1857 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
e17a4113 1858 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1859 old_sr_value &= 0xffff8fff;
1860 sr_value |= old_sr_value;
e17a4113 1861 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
55ff77ac
CV
1862 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1863 }
1864
1865 else if (reg_nr == FPUL_C_REGNUM)
1866 {
d93859e2 1867 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1868 regcache_raw_write (regcache, base_regnum, buffer);
1869 }
1870}
1871
55ff77ac 1872/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
7bb11558
MS
1873 shmedia REGISTERS. */
1874/* Control registers, compact mode. */
55ff77ac 1875static void
c30dc700
CV
1876sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1877 int cr_c_regnum)
55ff77ac
CV
1878{
1879 switch (cr_c_regnum)
1880 {
c30dc700
CV
1881 case PC_C_REGNUM:
1882 fprintf_filtered (file, "pc_c\t0x%08x\n",
1883 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1884 break;
c30dc700
CV
1885 case GBR_C_REGNUM:
1886 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1887 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1888 break;
c30dc700
CV
1889 case MACH_C_REGNUM:
1890 fprintf_filtered (file, "mach_c\t0x%08x\n",
1891 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1892 break;
c30dc700
CV
1893 case MACL_C_REGNUM:
1894 fprintf_filtered (file, "macl_c\t0x%08x\n",
1895 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1896 break;
c30dc700
CV
1897 case PR_C_REGNUM:
1898 fprintf_filtered (file, "pr_c\t0x%08x\n",
1899 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1900 break;
c30dc700
CV
1901 case T_C_REGNUM:
1902 fprintf_filtered (file, "t_c\t0x%08x\n",
1903 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1904 break;
c30dc700
CV
1905 case FPSCR_C_REGNUM:
1906 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1907 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1908 break;
c30dc700
CV
1909 case FPUL_C_REGNUM:
1910 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1911 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac
CV
1912 break;
1913 }
1914}
1915
1916static void
c30dc700
CV
1917sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1918 struct frame_info *frame, int regnum)
c378eb4e 1919{ /* Do values for FP (float) regs. */
079c8cd0 1920 unsigned char *raw_buffer;
c378eb4e 1921 double flt; /* Double extracted from raw hex data. */
55ff77ac 1922 int inv;
55ff77ac 1923
7bb11558 1924 /* Allocate space for the float. */
c378eb4e
MS
1925 raw_buffer = (unsigned char *)
1926 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
55ff77ac
CV
1927
1928 /* Get the data in raw format. */
ca9d61b9 1929 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
a73c6dcd 1930 error (_("can't read register %d (%s)"),
58643501 1931 regnum, gdbarch_register_name (gdbarch, regnum));
55ff77ac 1932
c378eb4e
MS
1933 /* Get the register as a number. */
1934 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
1935 raw_buffer, &inv);
55ff77ac 1936
7bb11558 1937 /* Print the name and some spaces. */
58643501 1938 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 1939 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 1940 (gdbarch, regnum)), file);
55ff77ac 1941
7bb11558 1942 /* Print the value. */
55ff77ac
CV
1943 if (inv)
1944 fprintf_filtered (file, "<invalid float>");
1945 else
1946 fprintf_filtered (file, "%-10.9g", flt);
1947
7bb11558 1948 /* Print the fp register as hex. */
2cc762b5
AB
1949 fprintf_filtered (file, "\t(raw ");
1950 print_hex_chars (file, raw_buffer,
1951 register_size (gdbarch, regnum),
1952 gdbarch_byte_order (gdbarch));
55ff77ac
CV
1953 fprintf_filtered (file, ")");
1954 fprintf_filtered (file, "\n");
1955}
1956
1957static void
c30dc700
CV
1958sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1959 struct frame_info *frame, int regnum)
55ff77ac 1960{
7bb11558 1961 /* All the sh64-compact mode registers are pseudo registers. */
55ff77ac 1962
58643501
UW
1963 if (regnum < gdbarch_num_regs (gdbarch)
1964 || regnum >= gdbarch_num_regs (gdbarch)
f57d151a
UW
1965 + NUM_PSEUDO_REGS_SH_MEDIA
1966 + NUM_PSEUDO_REGS_SH_COMPACT)
55ff77ac 1967 internal_error (__FILE__, __LINE__,
e2e0b3e5 1968 _("Invalid pseudo register number %d\n"), regnum);
55ff77ac 1969
c30dc700
CV
1970 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
1971 {
d93859e2 1972 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
c30dc700
CV
1973 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
1974 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1975 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1976 }
55ff77ac 1977
c30dc700
CV
1978 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
1979 {
d93859e2 1980 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
1981 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
1982 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1983 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1984 }
55ff77ac 1985
c30dc700
CV
1986 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
1987 {
d93859e2 1988 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
c30dc700
CV
1989 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1990 regnum - FV0_REGNUM,
1991 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1992 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1993 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1994 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1995 }
55ff77ac 1996
c30dc700
CV
1997 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
1998 {
d93859e2 1999 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2000 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2001 regnum - FV0_C_REGNUM,
2002 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2003 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2004 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2005 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2006 }
2007
2008 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2009 {
d93859e2 2010 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
c30dc700
CV
2011 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2012 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2013 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2014 }
2015
2016 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2017 {
d93859e2 2018 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2019 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2020 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2021 }
2022 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
7bb11558 2023 /* This should work also for pseudoregs. */
c30dc700
CV
2024 sh64_do_fp_register (gdbarch, file, frame, regnum);
2025 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2026 sh64_do_cr_c_register_info (file, frame, regnum);
55ff77ac
CV
2027}
2028
2029static void
c30dc700
CV
2030sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2031 struct frame_info *frame, int regnum)
55ff77ac 2032{
79a45b7d 2033 struct value_print_options opts;
cc977dc7 2034 struct value *val;
55ff77ac 2035
58643501 2036 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 2037 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 2038 (gdbarch, regnum)), file);
55ff77ac
CV
2039
2040 /* Get the data in raw format. */
cc977dc7
YQ
2041 val = get_frame_register_value (frame, regnum);
2042 if (value_optimized_out (val) || !value_entirely_available (val))
47061676
AB
2043 {
2044 fprintf_filtered (file, "*value not available*\n");
2045 return;
2046 }
79a45b7d
TT
2047
2048 get_formatted_print_options (&opts, 'x');
2049 opts.deref_ref = 1;
cc977dc7 2050 val_print (register_type (gdbarch, regnum),
e8b24d9f 2051 0, 0,
cc977dc7 2052 file, 0, val, &opts, current_language);
55ff77ac 2053 fprintf_filtered (file, "\t");
79a45b7d
TT
2054 get_formatted_print_options (&opts, 0);
2055 opts.deref_ref = 1;
cc977dc7 2056 val_print (register_type (gdbarch, regnum),
e8b24d9f 2057 0, 0,
cc977dc7 2058 file, 0, val, &opts, current_language);
55ff77ac
CV
2059 fprintf_filtered (file, "\n");
2060}
2061
2062static void
c30dc700
CV
2063sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2064 struct frame_info *frame, int regnum)
55ff77ac 2065{
58643501
UW
2066 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2067 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2068 internal_error (__FILE__, __LINE__,
e2e0b3e5 2069 _("Invalid register number %d\n"), regnum);
55ff77ac 2070
58643501 2071 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
55ff77ac 2072 {
7b9ee6a8 2073 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c30dc700 2074 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
55ff77ac 2075 else
c30dc700 2076 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2077 }
2078
58643501
UW
2079 else if (regnum < gdbarch_num_regs (gdbarch)
2080 + gdbarch_num_pseudo_regs (gdbarch))
c30dc700 2081 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2082}
2083
2084static void
c30dc700
CV
2085sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2086 struct frame_info *frame, int regnum,
2087 int fpregs)
55ff77ac 2088{
c378eb4e 2089 if (regnum != -1) /* Do one specified register. */
55ff77ac 2090 {
58643501 2091 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2092 error (_("Not a valid register for the current processor type"));
55ff77ac 2093
c30dc700 2094 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2095 }
2096 else
c378eb4e 2097 /* Do all (or most) registers. */
55ff77ac
CV
2098 {
2099 regnum = 0;
58643501 2100 while (regnum < gdbarch_num_regs (gdbarch))
55ff77ac
CV
2101 {
2102 /* If the register name is empty, it is undefined for this
2103 processor, so don't display anything. */
58643501
UW
2104 if (gdbarch_register_name (gdbarch, regnum) == NULL
2105 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
55ff77ac
CV
2106 {
2107 regnum++;
2108 continue;
2109 }
2110
7b9ee6a8 2111 if (TYPE_CODE (register_type (gdbarch, regnum))
c30dc700 2112 == TYPE_CODE_FLT)
55ff77ac
CV
2113 {
2114 if (fpregs)
2115 {
c378eb4e 2116 /* true for "INFO ALL-REGISTERS" command. */
c30dc700 2117 sh64_do_fp_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2118 regnum ++;
2119 }
2120 else
58643501 2121 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
3e8c568d 2122 /* skip FP regs */
55ff77ac
CV
2123 }
2124 else
2125 {
c30dc700 2126 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2127 regnum++;
2128 }
2129 }
2130
2131 if (fpregs)
58643501
UW
2132 while (regnum < gdbarch_num_regs (gdbarch)
2133 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2134 {
c30dc700 2135 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2136 regnum++;
2137 }
2138 }
2139}
2140
2141static void
c30dc700
CV
2142sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2143 struct ui_file *file,
2144 struct frame_info *frame, int regnum,
2145 int fpregs)
55ff77ac 2146{
c378eb4e 2147 if (regnum != -1) /* Do one specified register. */
55ff77ac 2148 {
58643501 2149 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2150 error (_("Not a valid register for the current processor type"));
55ff77ac
CV
2151
2152 if (regnum >= 0 && regnum < R0_C_REGNUM)
a73c6dcd 2153 error (_("Not a valid register for the current processor mode."));
55ff77ac 2154
c30dc700 2155 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2156 }
2157 else
c378eb4e 2158 /* Do all compact registers. */
55ff77ac
CV
2159 {
2160 regnum = R0_C_REGNUM;
58643501
UW
2161 while (regnum < gdbarch_num_regs (gdbarch)
2162 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2163 {
c30dc700 2164 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2165 regnum++;
2166 }
2167 }
2168}
2169
2170static void
c30dc700
CV
2171sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2172 struct frame_info *frame, int regnum, int fpregs)
55ff77ac 2173{
c30dc700
CV
2174 if (pc_is_isa32 (get_frame_pc (frame)))
2175 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac 2176 else
c30dc700 2177 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac
CV
2178}
2179
c30dc700
CV
2180static struct sh64_frame_cache *
2181sh64_alloc_frame_cache (void)
2182{
2183 struct sh64_frame_cache *cache;
2184 int i;
2185
2186 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2187
2188 /* Base address. */
2189 cache->base = 0;
2190 cache->saved_sp = 0;
2191 cache->sp_offset = 0;
2192 cache->pc = 0;
55ff77ac 2193
c30dc700
CV
2194 /* Frameless until proven otherwise. */
2195 cache->uses_fp = 0;
55ff77ac 2196
c30dc700
CV
2197 /* Saved registers. We initialize these to -1 since zero is a valid
2198 offset (that's where fp is supposed to be stored). */
2199 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2200 {
2201 cache->saved_regs[i] = -1;
2202 }
2203
2204 return cache;
2205}
2206
2207static struct sh64_frame_cache *
94afd7a6 2208sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
55ff77ac 2209{
58643501 2210 struct gdbarch *gdbarch;
c30dc700
CV
2211 struct sh64_frame_cache *cache;
2212 CORE_ADDR current_pc;
2213 int i;
55ff77ac 2214
c30dc700 2215 if (*this_cache)
19ba03f4 2216 return (struct sh64_frame_cache *) *this_cache;
c30dc700 2217
94afd7a6 2218 gdbarch = get_frame_arch (this_frame);
c30dc700
CV
2219 cache = sh64_alloc_frame_cache ();
2220 *this_cache = cache;
2221
94afd7a6 2222 current_pc = get_frame_pc (this_frame);
c30dc700
CV
2223 cache->media_mode = pc_is_isa32 (current_pc);
2224
2225 /* In principle, for normal frames, fp holds the frame pointer,
2226 which holds the base address for the current stack frame.
2227 However, for functions that don't need it, the frame pointer is
2228 optional. For these "frameless" functions the frame pointer is
c378eb4e 2229 actually the frame pointer of the calling frame. */
94afd7a6 2230 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
c30dc700
CV
2231 if (cache->base == 0)
2232 return cache;
2233
94afd7a6 2234 cache->pc = get_frame_func (this_frame);
c30dc700 2235 if (cache->pc != 0)
58643501 2236 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
c30dc700
CV
2237
2238 if (!cache->uses_fp)
55ff77ac 2239 {
c30dc700
CV
2240 /* We didn't find a valid frame, which means that CACHE->base
2241 currently holds the frame pointer for our calling frame. If
2242 we're at the start of a function, or somewhere half-way its
2243 prologue, the function's frame probably hasn't been fully
2244 setup yet. Try to reconstruct the base address for the stack
2245 frame by looking at the stack pointer. For truly "frameless"
2246 functions this might work too. */
94afd7a6
UW
2247 cache->base = get_frame_register_unsigned
2248 (this_frame, gdbarch_sp_regnum (gdbarch));
c30dc700 2249 }
55ff77ac 2250
c30dc700
CV
2251 /* Now that we have the base address for the stack frame we can
2252 calculate the value of sp in the calling frame. */
2253 cache->saved_sp = cache->base + cache->sp_offset;
55ff77ac 2254
c30dc700
CV
2255 /* Adjust all the saved registers such that they contain addresses
2256 instead of offsets. */
2257 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2258 if (cache->saved_regs[i] != -1)
2259 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
55ff77ac 2260
c30dc700
CV
2261 return cache;
2262}
55ff77ac 2263
94afd7a6
UW
2264static struct value *
2265sh64_frame_prev_register (struct frame_info *this_frame,
2266 void **this_cache, int regnum)
c30dc700 2267{
94afd7a6
UW
2268 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2269 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 2270 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 2271
c30dc700 2272 gdb_assert (regnum >= 0);
55ff77ac 2273
58643501 2274 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 2275 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
c30dc700
CV
2276
2277 /* The PC of the previous frame is stored in the PR register of
2278 the current frame. Frob regnum so that we pull the value from
2279 the correct place. */
58643501 2280 if (regnum == gdbarch_pc_regnum (gdbarch))
c30dc700
CV
2281 regnum = PR_REGNUM;
2282
2283 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2284 {
58643501 2285 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
c30dc700 2286 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
c30dc700 2287 {
94afd7a6 2288 CORE_ADDR val;
e17a4113
UW
2289 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2290 4, byte_order);
94afd7a6 2291 return frame_unwind_got_constant (this_frame, regnum, val);
c30dc700 2292 }
94afd7a6
UW
2293
2294 return frame_unwind_got_memory (this_frame, regnum,
2295 cache->saved_regs[regnum]);
55ff77ac
CV
2296 }
2297
94afd7a6 2298 return frame_unwind_got_register (this_frame, regnum, regnum);
55ff77ac 2299}
55ff77ac 2300
c30dc700 2301static void
94afd7a6 2302sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
c30dc700
CV
2303 struct frame_id *this_id)
2304{
94afd7a6 2305 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2306
2307 /* This marks the outermost frame. */
2308 if (cache->base == 0)
2309 return;
2310
2311 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2312}
2313
2314static const struct frame_unwind sh64_frame_unwind = {
2315 NORMAL_FRAME,
8fbca658 2316 default_frame_unwind_stop_reason,
c30dc700 2317 sh64_frame_this_id,
94afd7a6
UW
2318 sh64_frame_prev_register,
2319 NULL,
2320 default_frame_sniffer
c30dc700
CV
2321};
2322
c30dc700
CV
2323static CORE_ADDR
2324sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2325{
3e8c568d 2326 return frame_unwind_register_unsigned (next_frame,
58643501 2327 gdbarch_sp_regnum (gdbarch));
c30dc700
CV
2328}
2329
2330static CORE_ADDR
2331sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2332{
3e8c568d 2333 return frame_unwind_register_unsigned (next_frame,
58643501 2334 gdbarch_pc_regnum (gdbarch));
c30dc700
CV
2335}
2336
2337static struct frame_id
94afd7a6 2338sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c30dc700 2339{
94afd7a6
UW
2340 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2341 gdbarch_sp_regnum (gdbarch));
2342 return frame_id_build (sp, get_frame_pc (this_frame));
c30dc700
CV
2343}
2344
2345static CORE_ADDR
94afd7a6 2346sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
c30dc700 2347{
94afd7a6 2348 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2349
2350 return cache->base;
2351}
2352
2353static const struct frame_base sh64_frame_base = {
2354 &sh64_frame_unwind,
2355 sh64_frame_base_address,
2356 sh64_frame_base_address,
2357 sh64_frame_base_address
2358};
2359
55ff77ac
CV
2360
2361struct gdbarch *
2362sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2363{
55ff77ac
CV
2364 struct gdbarch *gdbarch;
2365 struct gdbarch_tdep *tdep;
2366
2367 /* If there is already a candidate, use it. */
2368 arches = gdbarch_list_lookup_by_info (arches, &info);
2369 if (arches != NULL)
2370 return arches->gdbarch;
2371
2372 /* None found, create a new architecture from the information
7bb11558 2373 provided. */
70ba0933 2374 tdep = XNEW (struct gdbarch_tdep);
55ff77ac
CV
2375 gdbarch = gdbarch_alloc (&info, tdep);
2376
55ff77ac
CV
2377 /* Determine the ABI */
2378 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2379 {
7bb11558 2380 /* If the ABI is the 64-bit one, it can only be sh-media. */
55ff77ac
CV
2381 tdep->sh_abi = SH_ABI_64;
2382 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2383 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2384 }
2385 else
2386 {
2387 /* If the ABI is the 32-bit one it could be either media or
7bb11558 2388 compact. */
55ff77ac
CV
2389 tdep->sh_abi = SH_ABI_32;
2390 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2391 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2392 }
2393
2394 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2395 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
c30dc700 2396 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
55ff77ac
CV
2397 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2398 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2399 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2400 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2401
c30dc700
CV
2402 /* The number of real registers is the same whether we are in
2403 ISA16(compact) or ISA32(media). */
2404 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
55ff77ac 2405 set_gdbarch_sp_regnum (gdbarch, 15);
c30dc700
CV
2406 set_gdbarch_pc_regnum (gdbarch, 64);
2407 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2408 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2409 + NUM_PSEUDO_REGS_SH_COMPACT);
55ff77ac 2410
c30dc700
CV
2411 set_gdbarch_register_name (gdbarch, sh64_register_name);
2412 set_gdbarch_register_type (gdbarch, sh64_register_type);
2413
2414 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2415 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2416
04180708
YQ
2417 set_gdbarch_breakpoint_kind_from_pc (gdbarch, sh64_breakpoint_kind_from_pc);
2418 set_gdbarch_sw_breakpoint_from_kind (gdbarch, sh64_sw_breakpoint_from_kind);
55ff77ac
CV
2419 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2420
c30dc700 2421 set_gdbarch_return_value (gdbarch, sh64_return_value);
55ff77ac 2422
c30dc700
CV
2423 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2424 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
55ff77ac 2425
c30dc700 2426 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
55ff77ac 2427
c30dc700 2428 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
55ff77ac 2429
c30dc700
CV
2430 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2431 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2432 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
94afd7a6 2433 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
c30dc700 2434 frame_base_set_default (gdbarch, &sh64_frame_base);
55ff77ac 2435
c30dc700 2436 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
55ff77ac 2437
55ff77ac
CV
2438 set_gdbarch_elf_make_msymbol_special (gdbarch,
2439 sh64_elf_make_msymbol_special);
2440
2441 /* Hook in ABI-specific overrides, if they have been registered. */
2442 gdbarch_init_osabi (info, gdbarch);
2443
94afd7a6
UW
2444 dwarf2_append_unwinders (gdbarch);
2445 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
c30dc700 2446
55ff77ac
CV
2447 return gdbarch;
2448}