]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-frv.c
xtensa error message
[thirdparty/binutils-gdb.git] / gdb / solib-frv.c
CommitLineData
c4d10515 1/* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
61baf725 2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
c4d10515
KB
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
c4d10515
KB
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c4d10515
KB
18
19
20#include "defs.h"
c4d10515
KB
21#include "inferior.h"
22#include "gdbcore.h"
cb5c8c39 23#include "solib.h"
c4d10515
KB
24#include "solist.h"
25#include "frv-tdep.h"
26#include "objfiles.h"
27#include "symtab.h"
28#include "language.h"
29#include "command.h"
30#include "gdbcmd.h"
31#include "elf/frv.h"
cbb099e8 32#include "gdb_bfd.h"
c4d10515
KB
33
34/* Flag which indicates whether internal debug messages should be printed. */
ccce17b0 35static unsigned int solib_frv_debug;
c4d10515
KB
36
37/* FR-V pointers are four bytes wide. */
38enum { FRV_PTR_SIZE = 4 };
39
40/* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
41
42/* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
e2b7c966
KB
45typedef gdb_byte ext_Elf32_Half[2];
46typedef gdb_byte ext_Elf32_Addr[4];
47typedef gdb_byte ext_Elf32_Word[4];
c4d10515
KB
48
49struct ext_elf32_fdpic_loadseg
50{
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
57};
58
59struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
66};
67
68/* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71struct int_elf32_fdpic_loadseg
72{
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
79};
80
81struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
88};
89
90/* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
95
96static struct int_elf32_fdpic_loadmap *
97fetch_loadmap (CORE_ADDR ldmaddr)
98{
f5656ead 99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
105
106 /* Fetch initial portion of the loadmap. */
e2b7c966 107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
c4d10515
KB
108 sizeof ext_ldmbuf_partial))
109 {
110 /* Problem reading the target's memory. */
111 return NULL;
112 }
113
114 /* Extract the version. */
e2b7c966 115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
e17a4113
UW
116 sizeof ext_ldmbuf_partial.version,
117 byte_order);
c4d10515
KB
118 if (version != 0)
119 {
120 /* We only handle version 0. */
121 return NULL;
122 }
123
124 /* Extract the number of segments. */
e2b7c966 125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
e17a4113
UW
126 sizeof ext_ldmbuf_partial.nsegs,
127 byte_order);
c4d10515 128
9bc7b6c6
KB
129 if (nsegs <= 0)
130 return NULL;
131
c4d10515
KB
132 /* Allocate space for the complete (external) loadmap. */
133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
224c3ddb 135 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size);
c4d10515
KB
136
137 /* Copy over the portion of the loadmap that's already been read. */
138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
139
140 /* Read the rest of the loadmap from the target. */
141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
e2b7c966 142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
c4d10515
KB
143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
144 {
145 /* Couldn't read rest of the loadmap. */
146 xfree (ext_ldmbuf);
147 return NULL;
148 }
149
150 /* Allocate space into which to put information extract from the
151 external loadsegs. I.e, allocate the internal loadsegs. */
152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
224c3ddb 154 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size);
c4d10515
KB
155
156 /* Place extracted information in internal structs. */
157 int_ldmbuf->version = version;
158 int_ldmbuf->nsegs = nsegs;
159 for (seg = 0; seg < nsegs; seg++)
160 {
161 int_ldmbuf->segs[seg].addr
e2b7c966 162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
e17a4113
UW
163 sizeof (ext_ldmbuf->segs[seg].addr),
164 byte_order);
c4d10515 165 int_ldmbuf->segs[seg].p_vaddr
e2b7c966 166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
e17a4113
UW
167 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
168 byte_order);
c4d10515 169 int_ldmbuf->segs[seg].p_memsz
e2b7c966 170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
e17a4113
UW
171 sizeof (ext_ldmbuf->segs[seg].p_memsz),
172 byte_order);
c4d10515
KB
173 }
174
d5c560f7 175 xfree (ext_ldmbuf);
c4d10515
KB
176 return int_ldmbuf;
177}
178
179/* External link_map and elf32_fdpic_loadaddr struct definitions. */
180
e2b7c966 181typedef gdb_byte ext_ptr[4];
c4d10515
KB
182
183struct ext_elf32_fdpic_loadaddr
184{
185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
186 ext_ptr got_value; /* void *got_value; */
187};
188
189struct ext_link_map
190{
191 struct ext_elf32_fdpic_loadaddr l_addr;
192
193 /* Absolute file name object was found in. */
194 ext_ptr l_name; /* char *l_name; */
195
196 /* Dynamic section of the shared object. */
197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
198
199 /* Chain of loaded objects. */
200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
201};
202
c378eb4e 203/* Link map info to include in an allocated so_list entry. */
c4d10515 204
d0e449a1 205struct lm_info_frv : public lm_info_base
af43057b 206{
4023ae76
SM
207 ~lm_info_frv ()
208 {
209 xfree (this->map);
210 xfree (this->dyn_syms);
211 xfree (this->dyn_relocs);
212 }
af43057b
SM
213
214 /* The loadmap, digested into an easier to use form. */
4023ae76 215 int_elf32_fdpic_loadmap *map = NULL;
af43057b 216 /* The GOT address for this link map entry. */
4023ae76 217 CORE_ADDR got_value = 0;
af43057b 218 /* The link map address, needed for frv_fetch_objfile_link_map(). */
4023ae76 219 CORE_ADDR lm_addr = 0;
af43057b
SM
220
221 /* Cached dynamic symbol table and dynamic relocs initialized and
222 used only by find_canonical_descriptor_in_load_object().
223
224 Note: kevinb/2004-02-26: It appears that calls to
225 bfd_canonicalize_dynamic_reloc() will use the same symbols as
226 those supplied to the first call to this function. Therefore,
227 it's important to NOT free the asymbol ** data structure
228 supplied to the first call. Thus the caching of the dynamic
229 symbols (dyn_syms) is critical for correct operation. The
230 caching of the dynamic relocations could be dispensed with. */
4023ae76
SM
231 asymbol **dyn_syms = NULL;
232 arelent **dyn_relocs = NULL;
233 int dyn_reloc_count = 0; /* Number of dynamic relocs. */
af43057b 234};
c4d10515
KB
235
236/* The load map, got value, etc. are not available from the chain
237 of loaded shared objects. ``main_executable_lm_info'' provides
238 a way to get at this information so that it doesn't need to be
239 frequently recomputed. Initialized by frv_relocate_main_executable(). */
d0e449a1 240static lm_info_frv *main_executable_lm_info;
c4d10515
KB
241
242static void frv_relocate_main_executable (void);
243static CORE_ADDR main_got (void);
244static int enable_break2 (void);
245
7f86f058 246/* Implement the "open_symbol_file_object" target_so_ops method. */
c4d10515
KB
247
248static int
bf469271 249open_symbol_file_object (int from_tty)
c4d10515
KB
250{
251 /* Unimplemented. */
252 return 0;
253}
254
255/* Cached value for lm_base(), below. */
256static CORE_ADDR lm_base_cache = 0;
257
186993b4
KB
258/* Link map address for main module. */
259static CORE_ADDR main_lm_addr = 0;
260
c4d10515
KB
261/* Return the address from which the link map chain may be found. On
262 the FR-V, this may be found in a number of ways. Assuming that the
263 main executable has already been relocated, the easiest way to find
264 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
265 pointer to the start of the link map will be located at the word found
266 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
267 reserve area mandated by the ABI.) */
268
269static CORE_ADDR
270lm_base (void)
271{
f5656ead 272 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3b7344d5 273 struct bound_minimal_symbol got_sym;
c4d10515 274 CORE_ADDR addr;
e2b7c966 275 gdb_byte buf[FRV_PTR_SIZE];
c4d10515 276
89a7ee67
KB
277 /* One of our assumptions is that the main executable has been relocated.
278 Bail out if this has not happened. (Note that post_create_inferior()
279 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
280 If we allow this to happen, lm_base_cache will be initialized with
281 a bogus value. */
282 if (main_executable_lm_info == 0)
283 return 0;
284
c4d10515
KB
285 /* If we already have a cached value, return it. */
286 if (lm_base_cache)
287 return lm_base_cache;
288
289 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
290 symfile_objfile);
3b7344d5 291 if (got_sym.minsym == 0)
c4d10515
KB
292 {
293 if (solib_frv_debug)
294 fprintf_unfiltered (gdb_stdlog,
295 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
296 return 0;
297 }
298
77e371c0 299 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;
c4d10515
KB
300
301 if (solib_frv_debug)
302 fprintf_unfiltered (gdb_stdlog,
303 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
bb599908 304 hex_string_custom (addr, 8));
c4d10515
KB
305
306 if (target_read_memory (addr, buf, sizeof buf) != 0)
307 return 0;
e17a4113 308 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
309
310 if (solib_frv_debug)
311 fprintf_unfiltered (gdb_stdlog,
312 "lm_base: lm_base_cache = %s\n",
bb599908 313 hex_string_custom (lm_base_cache, 8));
c4d10515
KB
314
315 return lm_base_cache;
316}
317
318
7f86f058 319/* Implement the "current_sos" target_so_ops method. */
c4d10515
KB
320
321static struct so_list *
322frv_current_sos (void)
323{
f5656ead 324 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
325 CORE_ADDR lm_addr, mgot;
326 struct so_list *sos_head = NULL;
327 struct so_list **sos_next_ptr = &sos_head;
328
7c699b81
KB
329 /* Make sure that the main executable has been relocated. This is
330 required in order to find the address of the global offset table,
331 which in turn is used to find the link map info. (See lm_base()
332 for details.)
333
334 Note that the relocation of the main executable is also performed
4d1eb6b4 335 by solib_create_inferior_hook(), however, in the case of core
7c699b81 336 files, this hook is called too late in order to be of benefit to
4d1eb6b4 337 solib_add. solib_add eventually calls this this function,
7c699b81 338 frv_current_sos, and also precedes the call to
4d1eb6b4 339 solib_create_inferior_hook(). (See post_create_inferior() in
7c699b81
KB
340 infcmd.c.) */
341 if (main_executable_lm_info == 0 && core_bfd != NULL)
342 frv_relocate_main_executable ();
343
344 /* Fetch the GOT corresponding to the main executable. */
c4d10515
KB
345 mgot = main_got ();
346
347 /* Locate the address of the first link map struct. */
348 lm_addr = lm_base ();
349
b021a221 350 /* We have at least one link map entry. Fetch the lot of them,
c4d10515
KB
351 building the solist chain. */
352 while (lm_addr)
353 {
354 struct ext_link_map lm_buf;
355 CORE_ADDR got_addr;
356
357 if (solib_frv_debug)
358 fprintf_unfiltered (gdb_stdlog,
359 "current_sos: reading link_map entry at %s\n",
bb599908 360 hex_string_custom (lm_addr, 8));
c4d10515 361
3e43a32a
MS
362 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
363 sizeof (lm_buf)) != 0)
c4d10515 364 {
3e43a32a
MS
365 warning (_("frv_current_sos: Unable to read link map entry. "
366 "Shared object chain may be incomplete."));
c4d10515
KB
367 break;
368 }
369
370 got_addr
e2b7c966 371 = extract_unsigned_integer (lm_buf.l_addr.got_value,
e17a4113
UW
372 sizeof (lm_buf.l_addr.got_value),
373 byte_order);
c4d10515
KB
374 /* If the got_addr is the same as mgotr, then we're looking at the
375 entry for the main executable. By convention, we don't include
376 this in the list of shared objects. */
377 if (got_addr != mgot)
378 {
379 int errcode;
380 char *name_buf;
381 struct int_elf32_fdpic_loadmap *loadmap;
382 struct so_list *sop;
383 CORE_ADDR addr;
384
385 /* Fetch the load map address. */
e2b7c966 386 addr = extract_unsigned_integer (lm_buf.l_addr.map,
e17a4113
UW
387 sizeof lm_buf.l_addr.map,
388 byte_order);
c4d10515
KB
389 loadmap = fetch_loadmap (addr);
390 if (loadmap == NULL)
391 {
3e43a32a
MS
392 warning (_("frv_current_sos: Unable to fetch load map. "
393 "Shared object chain may be incomplete."));
c4d10515
KB
394 break;
395 }
396
8d749320 397 sop = XCNEW (struct so_list);
4023ae76 398 lm_info_frv *li = new lm_info_frv;
d0e449a1
SM
399 sop->lm_info = li;
400 li->map = loadmap;
401 li->got_value = got_addr;
402 li->lm_addr = lm_addr;
c4d10515 403 /* Fetch the name. */
e2b7c966 404 addr = extract_unsigned_integer (lm_buf.l_name,
e17a4113
UW
405 sizeof (lm_buf.l_name),
406 byte_order);
c4d10515
KB
407 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
408 &errcode);
409
410 if (solib_frv_debug)
411 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
412 name_buf);
413
414 if (errcode != 0)
8a3fe4f8
AC
415 warning (_("Can't read pathname for link map entry: %s."),
416 safe_strerror (errcode));
c4d10515
KB
417 else
418 {
419 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
420 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
421 xfree (name_buf);
422 strcpy (sop->so_original_name, sop->so_name);
423 }
424
425 *sos_next_ptr = sop;
426 sos_next_ptr = &sop->next;
427 }
186993b4
KB
428 else
429 {
430 main_lm_addr = lm_addr;
431 }
c4d10515 432
e17a4113
UW
433 lm_addr = extract_unsigned_integer (lm_buf.l_next,
434 sizeof (lm_buf.l_next), byte_order);
c4d10515
KB
435 }
436
437 enable_break2 ();
438
439 return sos_head;
440}
441
442
443/* Return 1 if PC lies in the dynamic symbol resolution code of the
444 run time loader. */
445
446static CORE_ADDR interp_text_sect_low;
447static CORE_ADDR interp_text_sect_high;
448static CORE_ADDR interp_plt_sect_low;
449static CORE_ADDR interp_plt_sect_high;
450
451static int
452frv_in_dynsym_resolve_code (CORE_ADDR pc)
453{
454 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
455 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
3e5d3a5a 456 || in_plt_section (pc));
c4d10515
KB
457}
458
459/* Given a loadmap and an address, return the displacement needed
460 to relocate the address. */
461
63807e1d 462static CORE_ADDR
c4d10515
KB
463displacement_from_map (struct int_elf32_fdpic_loadmap *map,
464 CORE_ADDR addr)
465{
466 int seg;
467
468 for (seg = 0; seg < map->nsegs; seg++)
469 {
470 if (map->segs[seg].p_vaddr <= addr
471 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
472 {
473 return map->segs[seg].addr - map->segs[seg].p_vaddr;
474 }
475 }
476
477 return 0;
478}
479
480/* Print a warning about being unable to set the dynamic linker
481 breakpoint. */
482
483static void
484enable_break_failure_warning (void)
485{
8a3fe4f8 486 warning (_("Unable to find dynamic linker breakpoint function.\n"
c4d10515 487 "GDB will be unable to debug shared library initializers\n"
8a3fe4f8 488 "and track explicitly loaded dynamic code."));
c4d10515
KB
489}
490
cb457ae2
YQ
491/* Helper function for gdb_bfd_lookup_symbol. */
492
493static int
3953f15c 494cmp_name (const asymbol *sym, const void *data)
cb457ae2
YQ
495{
496 return (strcmp (sym->name, (const char *) data) == 0);
497}
498
7f86f058 499/* Arrange for dynamic linker to hit breakpoint.
c4d10515
KB
500
501 The dynamic linkers has, as part of its debugger interface, support
502 for arranging for the inferior to hit a breakpoint after mapping in
503 the shared libraries. This function enables that breakpoint.
504
505 On the FR-V, using the shared library (FDPIC) ABI, the symbol
506 _dl_debug_addr points to the r_debug struct which contains
507 a field called r_brk. r_brk is the address of the function
508 descriptor upon which a breakpoint must be placed. Being a
509 function descriptor, we must extract the entry point in order
510 to set the breakpoint.
511
512 Our strategy will be to get the .interp section from the
513 executable. This section will provide us with the name of the
514 interpreter. We'll open the interpreter and then look up
515 the address of _dl_debug_addr. We then relocate this address
516 using the interpreter's loadmap. Once the relocated address
517 is known, we fetch the value (address) corresponding to r_brk
518 and then use that value to fetch the entry point of the function
7f86f058 519 we're interested in. */
c4d10515 520
c4d10515
KB
521static int enable_break2_done = 0;
522
523static int
524enable_break2 (void)
525{
f5656ead 526 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
527 asection *interp_sect;
528
cb7db0f2 529 if (enable_break2_done)
c4d10515
KB
530 return 1;
531
c4d10515
KB
532 interp_text_sect_low = interp_text_sect_high = 0;
533 interp_plt_sect_low = interp_plt_sect_high = 0;
534
535 /* Find the .interp section; if not found, warn the user and drop
536 into the old breakpoint at symbol code. */
537 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
538 if (interp_sect)
539 {
540 unsigned int interp_sect_size;
001f13d8 541 char *buf;
c4d10515
KB
542 int status;
543 CORE_ADDR addr, interp_loadmap_addr;
e2b7c966 544 gdb_byte addr_buf[FRV_PTR_SIZE];
c4d10515
KB
545 struct int_elf32_fdpic_loadmap *ldm;
546
547 /* Read the contents of the .interp section into a local buffer;
548 the contents specify the dynamic linker this program uses. */
549 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
224c3ddb 550 buf = (char *) alloca (interp_sect_size);
c4d10515
KB
551 bfd_get_section_contents (exec_bfd, interp_sect,
552 buf, 0, interp_sect_size);
553
554 /* Now we need to figure out where the dynamic linker was
555 loaded so that we can load its symbols and place a breakpoint
556 in the dynamic linker itself.
557
558 This address is stored on the stack. However, I've been unable
559 to find any magic formula to find it for Solaris (appears to
560 be trivial on GNU/Linux). Therefore, we have to try an alternate
561 mechanism to find the dynamic linker's base address. */
562
192b62ce 563 gdb_bfd_ref_ptr tmp_bfd;
492d29ea 564 TRY
f1838a98
UW
565 {
566 tmp_bfd = solib_bfd_open (buf);
567 }
492d29ea
PA
568 CATCH (ex, RETURN_MASK_ALL)
569 {
570 }
571 END_CATCH
572
c4d10515
KB
573 if (tmp_bfd == NULL)
574 {
575 enable_break_failure_warning ();
576 return 0;
577 }
578
f5656ead 579 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
c4d10515
KB
580 &interp_loadmap_addr, 0);
581 if (status < 0)
582 {
8a3fe4f8 583 warning (_("Unable to determine dynamic linker loadmap address."));
c4d10515 584 enable_break_failure_warning ();
c4d10515
KB
585 return 0;
586 }
587
588 if (solib_frv_debug)
589 fprintf_unfiltered (gdb_stdlog,
590 "enable_break: interp_loadmap_addr = %s\n",
bb599908 591 hex_string_custom (interp_loadmap_addr, 8));
c4d10515
KB
592
593 ldm = fetch_loadmap (interp_loadmap_addr);
594 if (ldm == NULL)
595 {
8a3fe4f8 596 warning (_("Unable to load dynamic linker loadmap at address %s."),
bb599908 597 hex_string_custom (interp_loadmap_addr, 8));
c4d10515 598 enable_break_failure_warning ();
c4d10515
KB
599 return 0;
600 }
601
602 /* Record the relocated start and end address of the dynamic linker
603 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 604 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
c4d10515
KB
605 if (interp_sect)
606 {
607 interp_text_sect_low
192b62ce 608 = bfd_section_vma (tmp_bfd.get (), interp_sect);
c4d10515
KB
609 interp_text_sect_low
610 += displacement_from_map (ldm, interp_text_sect_low);
611 interp_text_sect_high
192b62ce
TT
612 = interp_text_sect_low + bfd_section_size (tmp_bfd.get (),
613 interp_sect);
c4d10515 614 }
192b62ce 615 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
c4d10515
KB
616 if (interp_sect)
617 {
618 interp_plt_sect_low =
192b62ce 619 bfd_section_vma (tmp_bfd.get (), interp_sect);
c4d10515
KB
620 interp_plt_sect_low
621 += displacement_from_map (ldm, interp_plt_sect_low);
622 interp_plt_sect_high =
192b62ce
TT
623 interp_plt_sect_low + bfd_section_size (tmp_bfd.get (),
624 interp_sect);
c4d10515
KB
625 }
626
192b62ce 627 addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), cmp_name, "_dl_debug_addr");
cb457ae2 628
c4d10515
KB
629 if (addr == 0)
630 {
3e43a32a
MS
631 warning (_("Could not find symbol _dl_debug_addr "
632 "in dynamic linker"));
c4d10515 633 enable_break_failure_warning ();
c4d10515
KB
634 return 0;
635 }
636
637 if (solib_frv_debug)
638 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
639 "enable_break: _dl_debug_addr "
640 "(prior to relocation) = %s\n",
bb599908 641 hex_string_custom (addr, 8));
c4d10515
KB
642
643 addr += displacement_from_map (ldm, addr);
644
645 if (solib_frv_debug)
646 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
647 "enable_break: _dl_debug_addr "
648 "(after relocation) = %s\n",
bb599908 649 hex_string_custom (addr, 8));
c4d10515
KB
650
651 /* Fetch the address of the r_debug struct. */
652 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
653 {
3e43a32a
MS
654 warning (_("Unable to fetch contents of _dl_debug_addr "
655 "(at address %s) from dynamic linker"),
bb599908 656 hex_string_custom (addr, 8));
c4d10515 657 }
e17a4113 658 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515 659
cb7db0f2
MF
660 if (solib_frv_debug)
661 fprintf_unfiltered (gdb_stdlog,
662 "enable_break: _dl_debug_addr[0..3] = %s\n",
663 hex_string_custom (addr, 8));
664
665 /* If it's zero, then the ldso hasn't initialized yet, and so
666 there are no shared libs yet loaded. */
667 if (addr == 0)
668 {
669 if (solib_frv_debug)
670 fprintf_unfiltered (gdb_stdlog,
671 "enable_break: ldso not yet initialized\n");
672 /* Do not warn, but mark to run again. */
673 return 0;
674 }
675
c4d10515
KB
676 /* Fetch the r_brk field. It's 8 bytes from the start of
677 _dl_debug_addr. */
678 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
679 {
3e43a32a
MS
680 warning (_("Unable to fetch _dl_debug_addr->r_brk "
681 "(at address %s) from dynamic linker"),
bb599908 682 hex_string_custom (addr + 8, 8));
c4d10515 683 enable_break_failure_warning ();
c4d10515
KB
684 return 0;
685 }
e17a4113 686 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515
KB
687
688 /* Now fetch the function entry point. */
689 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
690 {
3e43a32a
MS
691 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
692 "(at address %s) from dynamic linker"),
bb599908 693 hex_string_custom (addr, 8));
c4d10515 694 enable_break_failure_warning ();
c4d10515
KB
695 return 0;
696 }
e17a4113 697 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515 698
192b62ce 699 /* We're done with the loadmap. */
c4d10515
KB
700 xfree (ldm);
701
cb7db0f2
MF
702 /* Remove all the solib event breakpoints. Their addresses
703 may have changed since the last time we ran the program. */
704 remove_solib_event_breakpoints ();
705
c4d10515 706 /* Now (finally!) create the solib breakpoint. */
f5656ead 707 create_solib_event_breakpoint (target_gdbarch (), addr);
c4d10515 708
cb7db0f2
MF
709 enable_break2_done = 1;
710
c4d10515
KB
711 return 1;
712 }
713
714 /* Tell the user we couldn't set a dynamic linker breakpoint. */
715 enable_break_failure_warning ();
716
717 /* Failure return. */
718 return 0;
719}
720
721static int
722enable_break (void)
723{
724 asection *interp_sect;
d56e56aa 725 CORE_ADDR entry_point;
c4d10515 726
abd0a5fa 727 if (symfile_objfile == NULL)
c4d10515 728 {
abd0a5fa
JK
729 if (solib_frv_debug)
730 fprintf_unfiltered (gdb_stdlog,
731 "enable_break: No symbol file found.\n");
732 return 0;
733 }
c4d10515 734
d56e56aa 735 if (!entry_point_address_query (&entry_point))
abd0a5fa 736 {
c4d10515
KB
737 if (solib_frv_debug)
738 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
739 "enable_break: Symbol file has no entry point.\n");
740 return 0;
c4d10515 741 }
abd0a5fa
JK
742
743 /* Check for the presence of a .interp section. If there is no
744 such section, the executable is statically linked. */
745
746 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
747
748 if (interp_sect == NULL)
c4d10515
KB
749 {
750 if (solib_frv_debug)
751 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
752 "enable_break: No .interp section found.\n");
753 return 0;
c4d10515
KB
754 }
755
d56e56aa 756 create_solib_event_breakpoint (target_gdbarch (), entry_point);
abd0a5fa
JK
757
758 if (solib_frv_debug)
759 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
760 "enable_break: solib event breakpoint "
761 "placed at entry point: %s\n",
d56e56aa 762 hex_string_custom (entry_point, 8));
c4d10515
KB
763 return 1;
764}
765
c4d10515
KB
766static void
767frv_relocate_main_executable (void)
768{
769 int status;
9bc7b6c6 770 CORE_ADDR exec_addr, interp_addr;
c4d10515
KB
771 struct int_elf32_fdpic_loadmap *ldm;
772 struct cleanup *old_chain;
773 struct section_offsets *new_offsets;
774 int changed;
775 struct obj_section *osect;
776
f5656ead 777 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
9bc7b6c6 778 &interp_addr, &exec_addr);
c4d10515 779
9bc7b6c6 780 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
c4d10515
KB
781 {
782 /* Not using FDPIC ABI, so do nothing. */
783 return;
784 }
785
786 /* Fetch the loadmap located at ``exec_addr''. */
787 ldm = fetch_loadmap (exec_addr);
788 if (ldm == NULL)
8a3fe4f8 789 error (_("Unable to load the executable's loadmap."));
c4d10515 790
4023ae76
SM
791 delete main_executable_lm_info;
792 main_executable_lm_info = new lm_info_frv;
c4d10515
KB
793 main_executable_lm_info->map = ldm;
794
224c3ddb
SM
795 new_offsets = XCNEWVEC (struct section_offsets,
796 symfile_objfile->num_sections);
c4d10515
KB
797 old_chain = make_cleanup (xfree, new_offsets);
798 changed = 0;
799
800 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
801 {
802 CORE_ADDR orig_addr, addr, offset;
803 int osect_idx;
804 int seg;
805
65cf3563 806 osect_idx = osect - symfile_objfile->sections;
c4d10515
KB
807
808 /* Current address of section. */
aded6f54 809 addr = obj_section_addr (osect);
c4d10515
KB
810 /* Offset from where this section started. */
811 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
812 /* Original address prior to any past relocations. */
813 orig_addr = addr - offset;
814
815 for (seg = 0; seg < ldm->nsegs; seg++)
816 {
817 if (ldm->segs[seg].p_vaddr <= orig_addr
818 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
819 {
820 new_offsets->offsets[osect_idx]
821 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
822
823 if (new_offsets->offsets[osect_idx] != offset)
824 changed = 1;
825 break;
826 }
827 }
828 }
829
830 if (changed)
831 objfile_relocate (symfile_objfile, new_offsets);
832
833 do_cleanups (old_chain);
834
835 /* Now that symfile_objfile has been relocated, we can compute the
836 GOT value and stash it away. */
837 main_executable_lm_info->got_value = main_got ();
838}
839
7f86f058 840/* Implement the "create_inferior_hook" target_solib_ops method.
c4d10515 841
7f86f058
PA
842 For the FR-V shared library ABI (FDPIC), the main executable needs
843 to be relocated. The shared library breakpoints also need to be
844 enabled. */
c4d10515
KB
845
846static void
268a4a75 847frv_solib_create_inferior_hook (int from_tty)
c4d10515
KB
848{
849 /* Relocate main executable. */
850 frv_relocate_main_executable ();
851
852 /* Enable shared library breakpoints. */
853 if (!enable_break ())
854 {
8a3fe4f8 855 warning (_("shared library handler failed to enable breakpoint"));
c4d10515
KB
856 return;
857 }
858}
859
860static void
861frv_clear_solib (void)
862{
863 lm_base_cache = 0;
c4d10515 864 enable_break2_done = 0;
186993b4 865 main_lm_addr = 0;
4023ae76
SM
866
867 delete main_executable_lm_info;
868 main_executable_lm_info = NULL;
c4d10515
KB
869}
870
871static void
872frv_free_so (struct so_list *so)
873{
d0e449a1
SM
874 lm_info_frv *li = (lm_info_frv *) so->lm_info;
875
4023ae76 876 delete li;
c4d10515
KB
877}
878
879static void
880frv_relocate_section_addresses (struct so_list *so,
0542c86d 881 struct target_section *sec)
c4d10515
KB
882{
883 int seg;
d0e449a1
SM
884 lm_info_frv *li = (lm_info_frv *) so->lm_info;
885 int_elf32_fdpic_loadmap *map = li->map;
c4d10515
KB
886
887 for (seg = 0; seg < map->nsegs; seg++)
888 {
889 if (map->segs[seg].p_vaddr <= sec->addr
890 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
891 {
892 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
433759f7 893
c4d10515
KB
894 sec->addr += displ;
895 sec->endaddr += displ;
896 break;
897 }
898 }
899}
900
901/* Return the GOT address associated with the main executable. Return
902 0 if it can't be found. */
903
904static CORE_ADDR
905main_got (void)
906{
3b7344d5 907 struct bound_minimal_symbol got_sym;
c4d10515 908
3e43a32a
MS
909 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
910 NULL, symfile_objfile);
3b7344d5 911 if (got_sym.minsym == 0)
c4d10515
KB
912 return 0;
913
77e371c0 914 return BMSYMBOL_VALUE_ADDRESS (got_sym);
c4d10515
KB
915}
916
917/* Find the global pointer for the given function address ADDR. */
918
919CORE_ADDR
920frv_fdpic_find_global_pointer (CORE_ADDR addr)
921{
922 struct so_list *so;
923
924 so = master_so_list ();
925 while (so)
926 {
927 int seg;
d0e449a1
SM
928 lm_info_frv *li = (lm_info_frv *) so->lm_info;
929 int_elf32_fdpic_loadmap *map = li->map;
c4d10515
KB
930
931 for (seg = 0; seg < map->nsegs; seg++)
932 {
933 if (map->segs[seg].addr <= addr
934 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
d0e449a1 935 return li->got_value;
c4d10515
KB
936 }
937
938 so = so->next;
939 }
940
7a9dd1b2 941 /* Didn't find it in any of the shared objects. So assume it's in the
c4d10515
KB
942 main executable. */
943 return main_got ();
944}
945
946/* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
947static CORE_ADDR find_canonical_descriptor_in_load_object
d0e449a1 948 (CORE_ADDR, CORE_ADDR, const char *, bfd *, lm_info_frv *);
c4d10515
KB
949
950/* Given a function entry point, attempt to find the canonical descriptor
951 associated with that entry point. Return 0 if no canonical descriptor
952 could be found. */
953
954CORE_ADDR
955frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
956{
0d5cff50 957 const char *name;
c4d10515
KB
958 CORE_ADDR addr;
959 CORE_ADDR got_value;
c4d10515 960 struct symbol *sym;
c4d10515
KB
961
962 /* Fetch the corresponding global pointer for the entry point. */
963 got_value = frv_fdpic_find_global_pointer (entry_point);
964
965 /* Attempt to find the name of the function. If the name is available,
966 it'll be used as an aid in finding matching functions in the dynamic
967 symbol table. */
968 sym = find_pc_function (entry_point);
969 if (sym == 0)
970 name = 0;
971 else
972 name = SYMBOL_LINKAGE_NAME (sym);
973
974 /* Check the main executable. */
975 addr = find_canonical_descriptor_in_load_object
976 (entry_point, got_value, name, symfile_objfile->obfd,
977 main_executable_lm_info);
978
979 /* If descriptor not found via main executable, check each load object
980 in list of shared objects. */
981 if (addr == 0)
982 {
983 struct so_list *so;
984
985 so = master_so_list ();
986 while (so)
987 {
d0e449a1
SM
988 lm_info_frv *li = (lm_info_frv *) so->lm_info;
989
c4d10515 990 addr = find_canonical_descriptor_in_load_object
d0e449a1 991 (entry_point, got_value, name, so->abfd, li);
c4d10515
KB
992
993 if (addr != 0)
994 break;
995
996 so = so->next;
997 }
998 }
999
1000 return addr;
1001}
1002
1003static CORE_ADDR
1004find_canonical_descriptor_in_load_object
0d5cff50 1005 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
d0e449a1 1006 lm_info_frv *lm)
c4d10515 1007{
f5656ead 1008 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
1009 arelent *rel;
1010 unsigned int i;
1011 CORE_ADDR addr = 0;
1012
1013 /* Nothing to do if no bfd. */
1014 if (abfd == 0)
1015 return 0;
1016
35e08e03
KB
1017 /* Nothing to do if no link map. */
1018 if (lm == 0)
1019 return 0;
1020
c4d10515
KB
1021 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1022 (More about this later.) But in order to fetch the relocs, we
1023 need to first fetch the dynamic symbols. These symbols need to
1024 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1025 works. (See the comments in the declaration of struct lm_info
1026 for more information.) */
1027 if (lm->dyn_syms == NULL)
1028 {
1029 long storage_needed;
1030 unsigned int number_of_symbols;
1031
1032 /* Determine amount of space needed to hold the dynamic symbol table. */
1033 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1034
1035 /* If there are no dynamic symbols, there's nothing to do. */
1036 if (storage_needed <= 0)
1037 return 0;
1038
1039 /* Allocate space for the dynamic symbol table. */
1040 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1041
1042 /* Fetch the dynamic symbol table. */
1043 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1044
1045 if (number_of_symbols == 0)
1046 return 0;
1047 }
1048
1049 /* Fetch the dynamic relocations if not already cached. */
1050 if (lm->dyn_relocs == NULL)
1051 {
1052 long storage_needed;
1053
1054 /* Determine amount of space needed to hold the dynamic relocs. */
1055 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1056
1057 /* Bail out if there are no dynamic relocs. */
1058 if (storage_needed <= 0)
1059 return 0;
1060
1061 /* Allocate space for the relocs. */
1062 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1063
1064 /* Fetch the dynamic relocs. */
1065 lm->dyn_reloc_count
1066 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1067 }
1068
1069 /* Search the dynamic relocs. */
1070 for (i = 0; i < lm->dyn_reloc_count; i++)
1071 {
1072 rel = lm->dyn_relocs[i];
1073
1074 /* Relocs of interest are those which meet the following
1075 criteria:
1076
1077 - the names match (assuming the caller could provide
1078 a name which matches ``entry_point'').
1079 - the relocation type must be R_FRV_FUNCDESC. Relocs
1080 of this type are used (by the dynamic linker) to
1081 look up the address of a canonical descriptor (allocating
1082 it if need be) and initializing the GOT entry referred
1083 to by the offset to the address of the descriptor.
1084
1085 These relocs of interest may be used to obtain a
1086 candidate descriptor by first adjusting the reloc's
1087 address according to the link map and then dereferencing
1088 this address (which is a GOT entry) to obtain a descriptor
1089 address. */
1090 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1091 && rel->howto->type == R_FRV_FUNCDESC)
1092 {
e2b7c966 1093 gdb_byte buf [FRV_PTR_SIZE];
c4d10515
KB
1094
1095 /* Compute address of address of candidate descriptor. */
1096 addr = rel->address + displacement_from_map (lm->map, rel->address);
1097
1098 /* Fetch address of candidate descriptor. */
1099 if (target_read_memory (addr, buf, sizeof buf) != 0)
1100 continue;
e17a4113 1101 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
1102
1103 /* Check for matching entry point. */
1104 if (target_read_memory (addr, buf, sizeof buf) != 0)
1105 continue;
e17a4113
UW
1106 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1107 != entry_point)
c4d10515
KB
1108 continue;
1109
1110 /* Check for matching got value. */
1111 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1112 continue;
e17a4113
UW
1113 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1114 != got_value)
c4d10515
KB
1115 continue;
1116
1117 /* Match was successful! Exit loop. */
1118 break;
1119 }
1120 }
1121
1122 return addr;
1123}
1124
186993b4
KB
1125/* Given an objfile, return the address of its link map. This value is
1126 needed for TLS support. */
1127CORE_ADDR
1128frv_fetch_objfile_link_map (struct objfile *objfile)
1129{
1130 struct so_list *so;
1131
1132 /* Cause frv_current_sos() to be run if it hasn't been already. */
1133 if (main_lm_addr == 0)
e696b3ad 1134 solib_add (0, 0, 1);
186993b4
KB
1135
1136 /* frv_current_sos() will set main_lm_addr for the main executable. */
1137 if (objfile == symfile_objfile)
1138 return main_lm_addr;
1139
1140 /* The other link map addresses may be found by examining the list
1141 of shared libraries. */
1142 for (so = master_so_list (); so; so = so->next)
1143 {
d0e449a1
SM
1144 lm_info_frv *li = (lm_info_frv *) so->lm_info;
1145
186993b4 1146 if (so->objfile == objfile)
d0e449a1 1147 return li->lm_addr;
186993b4
KB
1148 }
1149
1150 /* Not found! */
1151 return 0;
1152}
1153
917630e4 1154struct target_so_ops frv_so_ops;
c4d10515
KB
1155
1156void
1157_initialize_frv_solib (void)
1158{
1159 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1160 frv_so_ops.free_so = frv_free_so;
1161 frv_so_ops.clear_solib = frv_clear_solib;
1162 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
c4d10515
KB
1163 frv_so_ops.current_sos = frv_current_sos;
1164 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1165 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
831a0c44 1166 frv_so_ops.bfd_open = solib_bfd_open;
c4d10515 1167
c4d10515 1168 /* Debug this file's internals. */
ccce17b0
YQ
1169 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1170 &solib_frv_debug, _("\
85c07804
AC
1171Set internal debugging of shared library code for FR-V."), _("\
1172Show internal debugging of shared library code for FR-V."), _("\
1173When non-zero, FR-V solib specific internal debugging is enabled."),
ccce17b0
YQ
1174 NULL,
1175 NULL, /* FIXME: i18n: */
1176 &setdebuglist, &showdebuglist);
c4d10515 1177}