]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-frv.c
* frv-tdep.c: Include "solib.h".
[thirdparty/binutils-gdb.git] / gdb / solib-frv.c
CommitLineData
c4d10515 1/* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
6aba47ca 2 Copyright (C) 2004, 2007 Free Software Foundation, Inc.
c4d10515
KB
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
c4d10515
KB
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c4d10515
KB
18
19
20#include "defs.h"
21#include "gdb_string.h"
22#include "inferior.h"
23#include "gdbcore.h"
cb5c8c39 24#include "solib.h"
c4d10515
KB
25#include "solist.h"
26#include "frv-tdep.h"
27#include "objfiles.h"
28#include "symtab.h"
29#include "language.h"
30#include "command.h"
31#include "gdbcmd.h"
32#include "elf/frv.h"
33
34/* Flag which indicates whether internal debug messages should be printed. */
35static int solib_frv_debug;
36
37/* FR-V pointers are four bytes wide. */
38enum { FRV_PTR_SIZE = 4 };
39
40/* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
41
42/* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
e2b7c966
KB
45typedef gdb_byte ext_Elf32_Half[2];
46typedef gdb_byte ext_Elf32_Addr[4];
47typedef gdb_byte ext_Elf32_Word[4];
c4d10515
KB
48
49struct ext_elf32_fdpic_loadseg
50{
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
57};
58
59struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
66};
67
68/* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71struct int_elf32_fdpic_loadseg
72{
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
79};
80
81struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
88};
89
90/* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
95
96static struct int_elf32_fdpic_loadmap *
97fetch_loadmap (CORE_ADDR ldmaddr)
98{
99 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
100 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
101 struct int_elf32_fdpic_loadmap *int_ldmbuf;
102 int ext_ldmbuf_size, int_ldmbuf_size;
103 int version, seg, nsegs;
104
105 /* Fetch initial portion of the loadmap. */
e2b7c966 106 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
c4d10515
KB
107 sizeof ext_ldmbuf_partial))
108 {
109 /* Problem reading the target's memory. */
110 return NULL;
111 }
112
113 /* Extract the version. */
e2b7c966 114 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
c4d10515
KB
115 sizeof ext_ldmbuf_partial.version);
116 if (version != 0)
117 {
118 /* We only handle version 0. */
119 return NULL;
120 }
121
122 /* Extract the number of segments. */
e2b7c966 123 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
c4d10515
KB
124 sizeof ext_ldmbuf_partial.nsegs);
125
126 /* Allocate space for the complete (external) loadmap. */
127 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
128 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
129 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
130
131 /* Copy over the portion of the loadmap that's already been read. */
132 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
133
134 /* Read the rest of the loadmap from the target. */
135 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
e2b7c966 136 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
c4d10515
KB
137 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
138 {
139 /* Couldn't read rest of the loadmap. */
140 xfree (ext_ldmbuf);
141 return NULL;
142 }
143
144 /* Allocate space into which to put information extract from the
145 external loadsegs. I.e, allocate the internal loadsegs. */
146 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
147 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
148 int_ldmbuf = xmalloc (int_ldmbuf_size);
149
150 /* Place extracted information in internal structs. */
151 int_ldmbuf->version = version;
152 int_ldmbuf->nsegs = nsegs;
153 for (seg = 0; seg < nsegs; seg++)
154 {
155 int_ldmbuf->segs[seg].addr
e2b7c966 156 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
c4d10515
KB
157 sizeof (ext_ldmbuf->segs[seg].addr));
158 int_ldmbuf->segs[seg].p_vaddr
e2b7c966 159 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
c4d10515
KB
160 sizeof (ext_ldmbuf->segs[seg].p_vaddr));
161 int_ldmbuf->segs[seg].p_memsz
e2b7c966 162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
c4d10515
KB
163 sizeof (ext_ldmbuf->segs[seg].p_memsz));
164 }
165
d5c560f7 166 xfree (ext_ldmbuf);
c4d10515
KB
167 return int_ldmbuf;
168}
169
170/* External link_map and elf32_fdpic_loadaddr struct definitions. */
171
e2b7c966 172typedef gdb_byte ext_ptr[4];
c4d10515
KB
173
174struct ext_elf32_fdpic_loadaddr
175{
176 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
177 ext_ptr got_value; /* void *got_value; */
178};
179
180struct ext_link_map
181{
182 struct ext_elf32_fdpic_loadaddr l_addr;
183
184 /* Absolute file name object was found in. */
185 ext_ptr l_name; /* char *l_name; */
186
187 /* Dynamic section of the shared object. */
188 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
189
190 /* Chain of loaded objects. */
191 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
192};
193
194/* Link map info to include in an allocated so_list entry */
195
196struct lm_info
197 {
198 /* The loadmap, digested into an easier to use form. */
199 struct int_elf32_fdpic_loadmap *map;
200 /* The GOT address for this link map entry. */
201 CORE_ADDR got_value;
186993b4
KB
202 /* The link map address, needed for frv_fetch_objfile_link_map(). */
203 CORE_ADDR lm_addr;
c4d10515
KB
204
205 /* Cached dynamic symbol table and dynamic relocs initialized and
206 used only by find_canonical_descriptor_in_load_object().
207
208 Note: kevinb/2004-02-26: It appears that calls to
209 bfd_canonicalize_dynamic_reloc() will use the same symbols as
210 those supplied to the first call to this function. Therefore,
211 it's important to NOT free the asymbol ** data structure
212 supplied to the first call. Thus the caching of the dynamic
213 symbols (dyn_syms) is critical for correct operation. The
214 caching of the dynamic relocations could be dispensed with. */
215 asymbol **dyn_syms;
216 arelent **dyn_relocs;
217 int dyn_reloc_count; /* number of dynamic relocs. */
218
219 };
220
221/* The load map, got value, etc. are not available from the chain
222 of loaded shared objects. ``main_executable_lm_info'' provides
223 a way to get at this information so that it doesn't need to be
224 frequently recomputed. Initialized by frv_relocate_main_executable(). */
225static struct lm_info *main_executable_lm_info;
226
227static void frv_relocate_main_executable (void);
228static CORE_ADDR main_got (void);
229static int enable_break2 (void);
230
231/*
232
233 LOCAL FUNCTION
234
235 bfd_lookup_symbol -- lookup the value for a specific symbol
236
237 SYNOPSIS
238
239 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
240
241 DESCRIPTION
242
243 An expensive way to lookup the value of a single symbol for
244 bfd's that are only temporary anyway. This is used by the
245 shared library support to find the address of the debugger
246 interface structures in the shared library.
247
248 Note that 0 is specifically allowed as an error return (no
249 such symbol).
250 */
251
252static CORE_ADDR
253bfd_lookup_symbol (bfd *abfd, char *symname)
254{
255 long storage_needed;
256 asymbol *sym;
257 asymbol **symbol_table;
258 unsigned int number_of_symbols;
259 unsigned int i;
260 struct cleanup *back_to;
261 CORE_ADDR symaddr = 0;
262
263 storage_needed = bfd_get_symtab_upper_bound (abfd);
264
265 if (storage_needed > 0)
266 {
267 symbol_table = (asymbol **) xmalloc (storage_needed);
268 back_to = make_cleanup (xfree, symbol_table);
269 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
270
271 for (i = 0; i < number_of_symbols; i++)
272 {
273 sym = *symbol_table++;
274 if (strcmp (sym->name, symname) == 0)
275 {
276 /* Bfd symbols are section relative. */
277 symaddr = sym->value + sym->section->vma;
278 break;
279 }
280 }
281 do_cleanups (back_to);
282 }
283
284 if (symaddr)
285 return symaddr;
286
287 /* Look for the symbol in the dynamic string table too. */
288
289 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
290
291 if (storage_needed > 0)
292 {
293 symbol_table = (asymbol **) xmalloc (storage_needed);
294 back_to = make_cleanup (xfree, symbol_table);
295 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
296
297 for (i = 0; i < number_of_symbols; i++)
298 {
299 sym = *symbol_table++;
300 if (strcmp (sym->name, symname) == 0)
301 {
302 /* Bfd symbols are section relative. */
303 symaddr = sym->value + sym->section->vma;
304 break;
305 }
306 }
307 do_cleanups (back_to);
308 }
309
310 return symaddr;
311}
312
313
314/*
315
316 LOCAL FUNCTION
317
318 open_symbol_file_object
319
320 SYNOPSIS
321
322 void open_symbol_file_object (void *from_tty)
323
324 DESCRIPTION
325
326 If no open symbol file, attempt to locate and open the main symbol
327 file.
328
329 If FROM_TTYP dereferences to a non-zero integer, allow messages to
330 be printed. This parameter is a pointer rather than an int because
331 open_symbol_file_object() is called via catch_errors() and
332 catch_errors() requires a pointer argument. */
333
334static int
335open_symbol_file_object (void *from_ttyp)
336{
337 /* Unimplemented. */
338 return 0;
339}
340
341/* Cached value for lm_base(), below. */
342static CORE_ADDR lm_base_cache = 0;
343
186993b4
KB
344/* Link map address for main module. */
345static CORE_ADDR main_lm_addr = 0;
346
c4d10515
KB
347/* Return the address from which the link map chain may be found. On
348 the FR-V, this may be found in a number of ways. Assuming that the
349 main executable has already been relocated, the easiest way to find
350 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
351 pointer to the start of the link map will be located at the word found
352 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
353 reserve area mandated by the ABI.) */
354
355static CORE_ADDR
356lm_base (void)
357{
358 struct minimal_symbol *got_sym;
359 CORE_ADDR addr;
e2b7c966 360 gdb_byte buf[FRV_PTR_SIZE];
c4d10515 361
89a7ee67
KB
362 /* One of our assumptions is that the main executable has been relocated.
363 Bail out if this has not happened. (Note that post_create_inferior()
364 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
365 If we allow this to happen, lm_base_cache will be initialized with
366 a bogus value. */
367 if (main_executable_lm_info == 0)
368 return 0;
369
c4d10515
KB
370 /* If we already have a cached value, return it. */
371 if (lm_base_cache)
372 return lm_base_cache;
373
374 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
375 symfile_objfile);
376 if (got_sym == 0)
377 {
378 if (solib_frv_debug)
379 fprintf_unfiltered (gdb_stdlog,
380 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
381 return 0;
382 }
383
384 addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
385
386 if (solib_frv_debug)
387 fprintf_unfiltered (gdb_stdlog,
388 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
bb599908 389 hex_string_custom (addr, 8));
c4d10515
KB
390
391 if (target_read_memory (addr, buf, sizeof buf) != 0)
392 return 0;
393 lm_base_cache = extract_unsigned_integer (buf, sizeof buf);
394
395 if (solib_frv_debug)
396 fprintf_unfiltered (gdb_stdlog,
397 "lm_base: lm_base_cache = %s\n",
bb599908 398 hex_string_custom (lm_base_cache, 8));
c4d10515
KB
399
400 return lm_base_cache;
401}
402
403
404/* LOCAL FUNCTION
405
406 frv_current_sos -- build a list of currently loaded shared objects
407
408 SYNOPSIS
409
410 struct so_list *frv_current_sos ()
411
412 DESCRIPTION
413
414 Build a list of `struct so_list' objects describing the shared
415 objects currently loaded in the inferior. This list does not
416 include an entry for the main executable file.
417
418 Note that we only gather information directly available from the
419 inferior --- we don't examine any of the shared library files
420 themselves. The declaration of `struct so_list' says which fields
421 we provide values for. */
422
423static struct so_list *
424frv_current_sos (void)
425{
426 CORE_ADDR lm_addr, mgot;
427 struct so_list *sos_head = NULL;
428 struct so_list **sos_next_ptr = &sos_head;
429
7c699b81
KB
430 /* Make sure that the main executable has been relocated. This is
431 required in order to find the address of the global offset table,
432 which in turn is used to find the link map info. (See lm_base()
433 for details.)
434
435 Note that the relocation of the main executable is also performed
436 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
437 files, this hook is called too late in order to be of benefit to
438 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
439 frv_current_sos, and also precedes the call to
440 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
441 infcmd.c.) */
442 if (main_executable_lm_info == 0 && core_bfd != NULL)
443 frv_relocate_main_executable ();
444
445 /* Fetch the GOT corresponding to the main executable. */
c4d10515
KB
446 mgot = main_got ();
447
448 /* Locate the address of the first link map struct. */
449 lm_addr = lm_base ();
450
451 /* We have at least one link map entry. Fetch the the lot of them,
452 building the solist chain. */
453 while (lm_addr)
454 {
455 struct ext_link_map lm_buf;
456 CORE_ADDR got_addr;
457
458 if (solib_frv_debug)
459 fprintf_unfiltered (gdb_stdlog,
460 "current_sos: reading link_map entry at %s\n",
bb599908 461 hex_string_custom (lm_addr, 8));
c4d10515 462
e2b7c966 463 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf, sizeof (lm_buf)) != 0)
c4d10515 464 {
8a3fe4f8 465 warning (_("frv_current_sos: Unable to read link map entry. Shared object chain may be incomplete."));
c4d10515
KB
466 break;
467 }
468
469 got_addr
e2b7c966 470 = extract_unsigned_integer (lm_buf.l_addr.got_value,
c4d10515
KB
471 sizeof (lm_buf.l_addr.got_value));
472 /* If the got_addr is the same as mgotr, then we're looking at the
473 entry for the main executable. By convention, we don't include
474 this in the list of shared objects. */
475 if (got_addr != mgot)
476 {
477 int errcode;
478 char *name_buf;
479 struct int_elf32_fdpic_loadmap *loadmap;
480 struct so_list *sop;
481 CORE_ADDR addr;
482
483 /* Fetch the load map address. */
e2b7c966 484 addr = extract_unsigned_integer (lm_buf.l_addr.map,
c4d10515
KB
485 sizeof lm_buf.l_addr.map);
486 loadmap = fetch_loadmap (addr);
487 if (loadmap == NULL)
488 {
8a3fe4f8 489 warning (_("frv_current_sos: Unable to fetch load map. Shared object chain may be incomplete."));
c4d10515
KB
490 break;
491 }
492
493 sop = xcalloc (1, sizeof (struct so_list));
494 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
495 sop->lm_info->map = loadmap;
496 sop->lm_info->got_value = got_addr;
186993b4 497 sop->lm_info->lm_addr = lm_addr;
c4d10515 498 /* Fetch the name. */
e2b7c966 499 addr = extract_unsigned_integer (lm_buf.l_name,
c4d10515
KB
500 sizeof (lm_buf.l_name));
501 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
502 &errcode);
503
504 if (solib_frv_debug)
505 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
506 name_buf);
507
508 if (errcode != 0)
8a3fe4f8
AC
509 warning (_("Can't read pathname for link map entry: %s."),
510 safe_strerror (errcode));
c4d10515
KB
511 else
512 {
513 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
514 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
515 xfree (name_buf);
516 strcpy (sop->so_original_name, sop->so_name);
517 }
518
519 *sos_next_ptr = sop;
520 sos_next_ptr = &sop->next;
521 }
186993b4
KB
522 else
523 {
524 main_lm_addr = lm_addr;
525 }
c4d10515 526
e2b7c966 527 lm_addr = extract_unsigned_integer (lm_buf.l_next, sizeof (lm_buf.l_next));
c4d10515
KB
528 }
529
530 enable_break2 ();
531
532 return sos_head;
533}
534
535
536/* Return 1 if PC lies in the dynamic symbol resolution code of the
537 run time loader. */
538
539static CORE_ADDR interp_text_sect_low;
540static CORE_ADDR interp_text_sect_high;
541static CORE_ADDR interp_plt_sect_low;
542static CORE_ADDR interp_plt_sect_high;
543
544static int
545frv_in_dynsym_resolve_code (CORE_ADDR pc)
546{
547 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
548 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
549 || in_plt_section (pc, NULL));
550}
551
552/* Given a loadmap and an address, return the displacement needed
553 to relocate the address. */
554
555CORE_ADDR
556displacement_from_map (struct int_elf32_fdpic_loadmap *map,
557 CORE_ADDR addr)
558{
559 int seg;
560
561 for (seg = 0; seg < map->nsegs; seg++)
562 {
563 if (map->segs[seg].p_vaddr <= addr
564 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
565 {
566 return map->segs[seg].addr - map->segs[seg].p_vaddr;
567 }
568 }
569
570 return 0;
571}
572
573/* Print a warning about being unable to set the dynamic linker
574 breakpoint. */
575
576static void
577enable_break_failure_warning (void)
578{
8a3fe4f8 579 warning (_("Unable to find dynamic linker breakpoint function.\n"
c4d10515 580 "GDB will be unable to debug shared library initializers\n"
8a3fe4f8 581 "and track explicitly loaded dynamic code."));
c4d10515
KB
582}
583
584/*
585
586 LOCAL FUNCTION
587
588 enable_break -- arrange for dynamic linker to hit breakpoint
589
590 SYNOPSIS
591
592 int enable_break (void)
593
594 DESCRIPTION
595
596 The dynamic linkers has, as part of its debugger interface, support
597 for arranging for the inferior to hit a breakpoint after mapping in
598 the shared libraries. This function enables that breakpoint.
599
600 On the FR-V, using the shared library (FDPIC) ABI, the symbol
601 _dl_debug_addr points to the r_debug struct which contains
602 a field called r_brk. r_brk is the address of the function
603 descriptor upon which a breakpoint must be placed. Being a
604 function descriptor, we must extract the entry point in order
605 to set the breakpoint.
606
607 Our strategy will be to get the .interp section from the
608 executable. This section will provide us with the name of the
609 interpreter. We'll open the interpreter and then look up
610 the address of _dl_debug_addr. We then relocate this address
611 using the interpreter's loadmap. Once the relocated address
612 is known, we fetch the value (address) corresponding to r_brk
613 and then use that value to fetch the entry point of the function
614 we're interested in.
615
616 */
617
618static int enable_break1_done = 0;
619static int enable_break2_done = 0;
620
621static int
622enable_break2 (void)
623{
624 int success = 0;
625 char **bkpt_namep;
626 asection *interp_sect;
627
628 if (!enable_break1_done || enable_break2_done)
629 return 1;
630
631 enable_break2_done = 1;
632
633 /* First, remove all the solib event breakpoints. Their addresses
634 may have changed since the last time we ran the program. */
635 remove_solib_event_breakpoints ();
636
637 interp_text_sect_low = interp_text_sect_high = 0;
638 interp_plt_sect_low = interp_plt_sect_high = 0;
639
640 /* Find the .interp section; if not found, warn the user and drop
641 into the old breakpoint at symbol code. */
642 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
643 if (interp_sect)
644 {
645 unsigned int interp_sect_size;
e2b7c966 646 gdb_byte *buf;
c4d10515
KB
647 bfd *tmp_bfd = NULL;
648 int tmp_fd = -1;
649 char *tmp_pathname = NULL;
650 int status;
651 CORE_ADDR addr, interp_loadmap_addr;
e2b7c966 652 gdb_byte addr_buf[FRV_PTR_SIZE];
c4d10515
KB
653 struct int_elf32_fdpic_loadmap *ldm;
654
655 /* Read the contents of the .interp section into a local buffer;
656 the contents specify the dynamic linker this program uses. */
657 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
658 buf = alloca (interp_sect_size);
659 bfd_get_section_contents (exec_bfd, interp_sect,
660 buf, 0, interp_sect_size);
661
662 /* Now we need to figure out where the dynamic linker was
663 loaded so that we can load its symbols and place a breakpoint
664 in the dynamic linker itself.
665
666 This address is stored on the stack. However, I've been unable
667 to find any magic formula to find it for Solaris (appears to
668 be trivial on GNU/Linux). Therefore, we have to try an alternate
669 mechanism to find the dynamic linker's base address. */
670
671 tmp_fd = solib_open (buf, &tmp_pathname);
672 if (tmp_fd >= 0)
9f76c2cd 673 tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
c4d10515
KB
674
675 if (tmp_bfd == NULL)
676 {
677 enable_break_failure_warning ();
678 return 0;
679 }
680
681 /* Make sure the dynamic linker is really a useful object. */
682 if (!bfd_check_format (tmp_bfd, bfd_object))
683 {
8a3fe4f8 684 warning (_("Unable to grok dynamic linker %s as an object file"), buf);
c4d10515
KB
685 enable_break_failure_warning ();
686 bfd_close (tmp_bfd);
687 return 0;
688 }
689
690 status = frv_fdpic_loadmap_addresses (current_gdbarch,
691 &interp_loadmap_addr, 0);
692 if (status < 0)
693 {
8a3fe4f8 694 warning (_("Unable to determine dynamic linker loadmap address."));
c4d10515
KB
695 enable_break_failure_warning ();
696 bfd_close (tmp_bfd);
697 return 0;
698 }
699
700 if (solib_frv_debug)
701 fprintf_unfiltered (gdb_stdlog,
702 "enable_break: interp_loadmap_addr = %s\n",
bb599908 703 hex_string_custom (interp_loadmap_addr, 8));
c4d10515
KB
704
705 ldm = fetch_loadmap (interp_loadmap_addr);
706 if (ldm == NULL)
707 {
8a3fe4f8 708 warning (_("Unable to load dynamic linker loadmap at address %s."),
bb599908 709 hex_string_custom (interp_loadmap_addr, 8));
c4d10515
KB
710 enable_break_failure_warning ();
711 bfd_close (tmp_bfd);
712 return 0;
713 }
714
715 /* Record the relocated start and end address of the dynamic linker
716 text and plt section for svr4_in_dynsym_resolve_code. */
717 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
718 if (interp_sect)
719 {
720 interp_text_sect_low
721 = bfd_section_vma (tmp_bfd, interp_sect);
722 interp_text_sect_low
723 += displacement_from_map (ldm, interp_text_sect_low);
724 interp_text_sect_high
725 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
726 }
727 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
728 if (interp_sect)
729 {
730 interp_plt_sect_low =
731 bfd_section_vma (tmp_bfd, interp_sect);
732 interp_plt_sect_low
733 += displacement_from_map (ldm, interp_plt_sect_low);
734 interp_plt_sect_high =
735 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
736 }
737
738 addr = bfd_lookup_symbol (tmp_bfd, "_dl_debug_addr");
739 if (addr == 0)
740 {
8a3fe4f8 741 warning (_("Could not find symbol _dl_debug_addr in dynamic linker"));
c4d10515
KB
742 enable_break_failure_warning ();
743 bfd_close (tmp_bfd);
744 return 0;
745 }
746
747 if (solib_frv_debug)
748 fprintf_unfiltered (gdb_stdlog,
749 "enable_break: _dl_debug_addr (prior to relocation) = %s\n",
bb599908 750 hex_string_custom (addr, 8));
c4d10515
KB
751
752 addr += displacement_from_map (ldm, addr);
753
754 if (solib_frv_debug)
755 fprintf_unfiltered (gdb_stdlog,
756 "enable_break: _dl_debug_addr (after relocation) = %s\n",
bb599908 757 hex_string_custom (addr, 8));
c4d10515
KB
758
759 /* Fetch the address of the r_debug struct. */
760 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
761 {
8a3fe4f8 762 warning (_("Unable to fetch contents of _dl_debug_addr (at address %s) from dynamic linker"),
bb599908 763 hex_string_custom (addr, 8));
c4d10515
KB
764 }
765 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
766
767 /* Fetch the r_brk field. It's 8 bytes from the start of
768 _dl_debug_addr. */
769 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
770 {
8a3fe4f8 771 warning (_("Unable to fetch _dl_debug_addr->r_brk (at address %s) from dynamic linker"),
bb599908 772 hex_string_custom (addr + 8, 8));
c4d10515
KB
773 enable_break_failure_warning ();
774 bfd_close (tmp_bfd);
775 return 0;
776 }
777 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
778
779 /* Now fetch the function entry point. */
780 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
781 {
8a3fe4f8 782 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point (at address %s) from dynamic linker"),
bb599908 783 hex_string_custom (addr, 8));
c4d10515
KB
784 enable_break_failure_warning ();
785 bfd_close (tmp_bfd);
786 return 0;
787 }
788 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
789
790 /* We're done with the temporary bfd. */
791 bfd_close (tmp_bfd);
792
793 /* We're also done with the loadmap. */
794 xfree (ldm);
795
796 /* Now (finally!) create the solib breakpoint. */
797 create_solib_event_breakpoint (addr);
798
799 return 1;
800 }
801
802 /* Tell the user we couldn't set a dynamic linker breakpoint. */
803 enable_break_failure_warning ();
804
805 /* Failure return. */
806 return 0;
807}
808
809static int
810enable_break (void)
811{
812 asection *interp_sect;
813
814 /* Remove all the solib event breakpoints. Their addresses
815 may have changed since the last time we ran the program. */
816 remove_solib_event_breakpoints ();
817
818 /* Check for the presence of a .interp section. If there is no
819 such section, the executable is statically linked. */
820
821 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
822
823 if (interp_sect)
824 {
825 enable_break1_done = 1;
826 create_solib_event_breakpoint (symfile_objfile->ei.entry_point);
827
828 if (solib_frv_debug)
829 fprintf_unfiltered (gdb_stdlog,
830 "enable_break: solib event breakpoint placed at entry point: %s\n",
bb599908
PH
831 hex_string_custom
832 (symfile_objfile->ei.entry_point, 8));
c4d10515
KB
833 }
834 else
835 {
836 if (solib_frv_debug)
837 fprintf_unfiltered (gdb_stdlog,
838 "enable_break: No .interp section found.\n");
839 }
840
841 return 1;
842}
843
844/*
845
846 LOCAL FUNCTION
847
848 special_symbol_handling -- additional shared library symbol handling
849
850 SYNOPSIS
851
852 void special_symbol_handling ()
853
854 DESCRIPTION
855
856 Once the symbols from a shared object have been loaded in the usual
857 way, we are called to do any system specific symbol handling that
858 is needed.
859
860 */
861
862static void
863frv_special_symbol_handling (void)
864{
865 /* Nothing needed (yet) for FRV. */
866}
867
868static void
869frv_relocate_main_executable (void)
870{
871 int status;
872 CORE_ADDR exec_addr;
873 struct int_elf32_fdpic_loadmap *ldm;
874 struct cleanup *old_chain;
875 struct section_offsets *new_offsets;
876 int changed;
877 struct obj_section *osect;
878
879 status = frv_fdpic_loadmap_addresses (current_gdbarch, 0, &exec_addr);
880
881 if (status < 0)
882 {
883 /* Not using FDPIC ABI, so do nothing. */
884 return;
885 }
886
887 /* Fetch the loadmap located at ``exec_addr''. */
888 ldm = fetch_loadmap (exec_addr);
889 if (ldm == NULL)
8a3fe4f8 890 error (_("Unable to load the executable's loadmap."));
c4d10515
KB
891
892 if (main_executable_lm_info)
893 xfree (main_executable_lm_info);
894 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
895 main_executable_lm_info->map = ldm;
896
897 new_offsets = xcalloc (symfile_objfile->num_sections,
898 sizeof (struct section_offsets));
899 old_chain = make_cleanup (xfree, new_offsets);
900 changed = 0;
901
902 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
903 {
904 CORE_ADDR orig_addr, addr, offset;
905 int osect_idx;
906 int seg;
907
908 osect_idx = osect->the_bfd_section->index;
909
910 /* Current address of section. */
911 addr = osect->addr;
912 /* Offset from where this section started. */
913 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
914 /* Original address prior to any past relocations. */
915 orig_addr = addr - offset;
916
917 for (seg = 0; seg < ldm->nsegs; seg++)
918 {
919 if (ldm->segs[seg].p_vaddr <= orig_addr
920 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
921 {
922 new_offsets->offsets[osect_idx]
923 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
924
925 if (new_offsets->offsets[osect_idx] != offset)
926 changed = 1;
927 break;
928 }
929 }
930 }
931
932 if (changed)
933 objfile_relocate (symfile_objfile, new_offsets);
934
935 do_cleanups (old_chain);
936
937 /* Now that symfile_objfile has been relocated, we can compute the
938 GOT value and stash it away. */
939 main_executable_lm_info->got_value = main_got ();
940}
941
942/*
943
944 GLOBAL FUNCTION
945
946 frv_solib_create_inferior_hook -- shared library startup support
947
948 SYNOPSIS
949
7095b863 950 void frv_solib_create_inferior_hook ()
c4d10515
KB
951
952 DESCRIPTION
953
954 When gdb starts up the inferior, it nurses it along (through the
955 shell) until it is ready to execute it's first instruction. At this
956 point, this function gets called via expansion of the macro
957 SOLIB_CREATE_INFERIOR_HOOK.
958
959 For the FR-V shared library ABI (FDPIC), the main executable
960 needs to be relocated. The shared library breakpoints also need
961 to be enabled.
962 */
963
964static void
965frv_solib_create_inferior_hook (void)
966{
967 /* Relocate main executable. */
968 frv_relocate_main_executable ();
969
970 /* Enable shared library breakpoints. */
971 if (!enable_break ())
972 {
8a3fe4f8 973 warning (_("shared library handler failed to enable breakpoint"));
c4d10515
KB
974 return;
975 }
976}
977
978static void
979frv_clear_solib (void)
980{
981 lm_base_cache = 0;
982 enable_break1_done = 0;
983 enable_break2_done = 0;
186993b4 984 main_lm_addr = 0;
7c699b81
KB
985 if (main_executable_lm_info != 0)
986 {
987 xfree (main_executable_lm_info->map);
988 xfree (main_executable_lm_info->dyn_syms);
989 xfree (main_executable_lm_info->dyn_relocs);
990 xfree (main_executable_lm_info);
991 main_executable_lm_info = 0;
992 }
c4d10515
KB
993}
994
995static void
996frv_free_so (struct so_list *so)
997{
998 xfree (so->lm_info->map);
999 xfree (so->lm_info->dyn_syms);
1000 xfree (so->lm_info->dyn_relocs);
1001 xfree (so->lm_info);
1002}
1003
1004static void
1005frv_relocate_section_addresses (struct so_list *so,
1006 struct section_table *sec)
1007{
1008 int seg;
1009 struct int_elf32_fdpic_loadmap *map;
1010
1011 map = so->lm_info->map;
1012
1013 for (seg = 0; seg < map->nsegs; seg++)
1014 {
1015 if (map->segs[seg].p_vaddr <= sec->addr
1016 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
1017 {
1018 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
1019 sec->addr += displ;
1020 sec->endaddr += displ;
1021 break;
1022 }
1023 }
1024}
1025
1026/* Return the GOT address associated with the main executable. Return
1027 0 if it can't be found. */
1028
1029static CORE_ADDR
1030main_got (void)
1031{
1032 struct minimal_symbol *got_sym;
1033
1034 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, symfile_objfile);
1035 if (got_sym == 0)
1036 return 0;
1037
1038 return SYMBOL_VALUE_ADDRESS (got_sym);
1039}
1040
1041/* Find the global pointer for the given function address ADDR. */
1042
1043CORE_ADDR
1044frv_fdpic_find_global_pointer (CORE_ADDR addr)
1045{
1046 struct so_list *so;
1047
1048 so = master_so_list ();
1049 while (so)
1050 {
1051 int seg;
1052 struct int_elf32_fdpic_loadmap *map;
1053
1054 map = so->lm_info->map;
1055
1056 for (seg = 0; seg < map->nsegs; seg++)
1057 {
1058 if (map->segs[seg].addr <= addr
1059 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
1060 return so->lm_info->got_value;
1061 }
1062
1063 so = so->next;
1064 }
1065
1066 /* Didn't find it it any of the shared objects. So assume it's in the
1067 main executable. */
1068 return main_got ();
1069}
1070
1071/* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
1072static CORE_ADDR find_canonical_descriptor_in_load_object
1073 (CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *);
1074
1075/* Given a function entry point, attempt to find the canonical descriptor
1076 associated with that entry point. Return 0 if no canonical descriptor
1077 could be found. */
1078
1079CORE_ADDR
1080frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
1081{
1082 char *name;
1083 CORE_ADDR addr;
1084 CORE_ADDR got_value;
1085 struct int_elf32_fdpic_loadmap *ldm = 0;
1086 struct symbol *sym;
1087 int status;
1088 CORE_ADDR exec_loadmap_addr;
1089
1090 /* Fetch the corresponding global pointer for the entry point. */
1091 got_value = frv_fdpic_find_global_pointer (entry_point);
1092
1093 /* Attempt to find the name of the function. If the name is available,
1094 it'll be used as an aid in finding matching functions in the dynamic
1095 symbol table. */
1096 sym = find_pc_function (entry_point);
1097 if (sym == 0)
1098 name = 0;
1099 else
1100 name = SYMBOL_LINKAGE_NAME (sym);
1101
1102 /* Check the main executable. */
1103 addr = find_canonical_descriptor_in_load_object
1104 (entry_point, got_value, name, symfile_objfile->obfd,
1105 main_executable_lm_info);
1106
1107 /* If descriptor not found via main executable, check each load object
1108 in list of shared objects. */
1109 if (addr == 0)
1110 {
1111 struct so_list *so;
1112
1113 so = master_so_list ();
1114 while (so)
1115 {
1116 addr = find_canonical_descriptor_in_load_object
1117 (entry_point, got_value, name, so->abfd, so->lm_info);
1118
1119 if (addr != 0)
1120 break;
1121
1122 so = so->next;
1123 }
1124 }
1125
1126 return addr;
1127}
1128
1129static CORE_ADDR
1130find_canonical_descriptor_in_load_object
1131 (CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd,
1132 struct lm_info *lm)
1133{
1134 arelent *rel;
1135 unsigned int i;
1136 CORE_ADDR addr = 0;
1137
1138 /* Nothing to do if no bfd. */
1139 if (abfd == 0)
1140 return 0;
1141
35e08e03
KB
1142 /* Nothing to do if no link map. */
1143 if (lm == 0)
1144 return 0;
1145
c4d10515
KB
1146 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1147 (More about this later.) But in order to fetch the relocs, we
1148 need to first fetch the dynamic symbols. These symbols need to
1149 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1150 works. (See the comments in the declaration of struct lm_info
1151 for more information.) */
1152 if (lm->dyn_syms == NULL)
1153 {
1154 long storage_needed;
1155 unsigned int number_of_symbols;
1156
1157 /* Determine amount of space needed to hold the dynamic symbol table. */
1158 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1159
1160 /* If there are no dynamic symbols, there's nothing to do. */
1161 if (storage_needed <= 0)
1162 return 0;
1163
1164 /* Allocate space for the dynamic symbol table. */
1165 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1166
1167 /* Fetch the dynamic symbol table. */
1168 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1169
1170 if (number_of_symbols == 0)
1171 return 0;
1172 }
1173
1174 /* Fetch the dynamic relocations if not already cached. */
1175 if (lm->dyn_relocs == NULL)
1176 {
1177 long storage_needed;
1178
1179 /* Determine amount of space needed to hold the dynamic relocs. */
1180 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1181
1182 /* Bail out if there are no dynamic relocs. */
1183 if (storage_needed <= 0)
1184 return 0;
1185
1186 /* Allocate space for the relocs. */
1187 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1188
1189 /* Fetch the dynamic relocs. */
1190 lm->dyn_reloc_count
1191 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1192 }
1193
1194 /* Search the dynamic relocs. */
1195 for (i = 0; i < lm->dyn_reloc_count; i++)
1196 {
1197 rel = lm->dyn_relocs[i];
1198
1199 /* Relocs of interest are those which meet the following
1200 criteria:
1201
1202 - the names match (assuming the caller could provide
1203 a name which matches ``entry_point'').
1204 - the relocation type must be R_FRV_FUNCDESC. Relocs
1205 of this type are used (by the dynamic linker) to
1206 look up the address of a canonical descriptor (allocating
1207 it if need be) and initializing the GOT entry referred
1208 to by the offset to the address of the descriptor.
1209
1210 These relocs of interest may be used to obtain a
1211 candidate descriptor by first adjusting the reloc's
1212 address according to the link map and then dereferencing
1213 this address (which is a GOT entry) to obtain a descriptor
1214 address. */
1215 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1216 && rel->howto->type == R_FRV_FUNCDESC)
1217 {
e2b7c966 1218 gdb_byte buf [FRV_PTR_SIZE];
c4d10515
KB
1219
1220 /* Compute address of address of candidate descriptor. */
1221 addr = rel->address + displacement_from_map (lm->map, rel->address);
1222
1223 /* Fetch address of candidate descriptor. */
1224 if (target_read_memory (addr, buf, sizeof buf) != 0)
1225 continue;
1226 addr = extract_unsigned_integer (buf, sizeof buf);
1227
1228 /* Check for matching entry point. */
1229 if (target_read_memory (addr, buf, sizeof buf) != 0)
1230 continue;
1231 if (extract_unsigned_integer (buf, sizeof buf) != entry_point)
1232 continue;
1233
1234 /* Check for matching got value. */
1235 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1236 continue;
1237 if (extract_unsigned_integer (buf, sizeof buf) != got_value)
1238 continue;
1239
1240 /* Match was successful! Exit loop. */
1241 break;
1242 }
1243 }
1244
1245 return addr;
1246}
1247
186993b4
KB
1248/* Given an objfile, return the address of its link map. This value is
1249 needed for TLS support. */
1250CORE_ADDR
1251frv_fetch_objfile_link_map (struct objfile *objfile)
1252{
1253 struct so_list *so;
1254
1255 /* Cause frv_current_sos() to be run if it hasn't been already. */
1256 if (main_lm_addr == 0)
1257 solib_add (0, 0, 0, 1);
1258
1259 /* frv_current_sos() will set main_lm_addr for the main executable. */
1260 if (objfile == symfile_objfile)
1261 return main_lm_addr;
1262
1263 /* The other link map addresses may be found by examining the list
1264 of shared libraries. */
1265 for (so = master_so_list (); so; so = so->next)
1266 {
1267 if (so->objfile == objfile)
1268 return so->lm_info->lm_addr;
1269 }
1270
1271 /* Not found! */
1272 return 0;
1273}
1274
917630e4 1275struct target_so_ops frv_so_ops;
c4d10515
KB
1276
1277void
1278_initialize_frv_solib (void)
1279{
1280 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1281 frv_so_ops.free_so = frv_free_so;
1282 frv_so_ops.clear_solib = frv_clear_solib;
1283 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1284 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1285 frv_so_ops.current_sos = frv_current_sos;
1286 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1287 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1288
c4d10515 1289 /* Debug this file's internals. */
85c07804
AC
1290 add_setshow_zinteger_cmd ("solib-frv", class_maintenance,
1291 &solib_frv_debug, _("\
1292Set internal debugging of shared library code for FR-V."), _("\
1293Show internal debugging of shared library code for FR-V."), _("\
1294When non-zero, FR-V solib specific internal debugging is enabled."),
1295 NULL,
1296 NULL, /* FIXME: i18n: */
1297 &setdebuglist, &showdebuglist);
c4d10515 1298}