]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-svr4.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
42a4f53d 3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
76727919 36#include "observable.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
1c4dcb57 53
13437d4b
KB
54/* On SVR4 systems, a list of symbols in the dynamic linker where
55 GDB can try to place a breakpoint to monitor shared library
56 events.
57
58 If none of these symbols are found, or other errors occur, then
59 SVR4 systems will fall back to using a symbol as the "startup
60 mapping complete" breakpoint address. */
61
bc043ef3 62static const char * const solib_break_names[] =
13437d4b
KB
63{
64 "r_debug_state",
65 "_r_debug_state",
66 "_dl_debug_state",
67 "rtld_db_dlactivity",
4c7dcb84 68 "__dl_rtld_db_dlactivity",
1f72e589 69 "_rtld_debug_state",
4c0122c8 70
13437d4b
KB
71 NULL
72};
13437d4b 73
bc043ef3 74static const char * const bkpt_names[] =
13437d4b 75{
13437d4b 76 "_start",
ad3dcc5c 77 "__start",
13437d4b
KB
78 "main",
79 NULL
80};
13437d4b 81
bc043ef3 82static const char * const main_name_list[] =
13437d4b
KB
83{
84 "main_$main",
85 NULL
86};
87
f9e14852
GB
88/* What to do when a probe stop occurs. */
89
90enum probe_action
91{
92 /* Something went seriously wrong. Stop using probes and
93 revert to using the older interface. */
94 PROBES_INTERFACE_FAILED,
95
96 /* No action is required. The shared object list is still
97 valid. */
98 DO_NOTHING,
99
100 /* The shared object list should be reloaded entirely. */
101 FULL_RELOAD,
102
103 /* Attempt to incrementally update the shared object list. If
104 the update fails or is not possible, fall back to reloading
105 the list in full. */
106 UPDATE_OR_RELOAD,
107};
108
109/* A probe's name and its associated action. */
110
111struct probe_info
112{
113 /* The name of the probe. */
114 const char *name;
115
116 /* What to do when a probe stop occurs. */
117 enum probe_action action;
118};
119
120/* A list of named probes and their associated actions. If all
121 probes are present in the dynamic linker then the probes-based
122 interface will be used. */
123
124static const struct probe_info probe_info[] =
125{
126 { "init_start", DO_NOTHING },
127 { "init_complete", FULL_RELOAD },
128 { "map_start", DO_NOTHING },
129 { "map_failed", DO_NOTHING },
130 { "reloc_complete", UPDATE_OR_RELOAD },
131 { "unmap_start", DO_NOTHING },
132 { "unmap_complete", FULL_RELOAD },
133};
134
135#define NUM_PROBES ARRAY_SIZE (probe_info)
136
4d7b2d5b
JB
137/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
138 the same shared library. */
139
140static int
141svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
142{
143 if (strcmp (gdb_so_name, inferior_so_name) == 0)
144 return 1;
145
146 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
147 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
148 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
149 sometimes they have identical content, but are not linked to each
150 other. We don't restrict this check for Solaris, but the chances
151 of running into this situation elsewhere are very low. */
152 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
153 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
154 return 1;
155
7307a73a 156 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
4d7b2d5b 157 different locations. */
7307a73a
RO
158 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
159 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
160 return 1;
161
4d7b2d5b
JB
162 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
163 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
164 return 1;
165
166 return 0;
167}
168
169static int
170svr4_same (struct so_list *gdb, struct so_list *inferior)
171{
172 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
173}
174
a7961323 175static std::unique_ptr<lm_info_svr4>
3957565a 176lm_info_read (CORE_ADDR lm_addr)
13437d4b 177{
4b188b9f 178 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
a7961323 179 std::unique_ptr<lm_info_svr4> lm_info;
3957565a 180
a7961323 181 gdb::byte_vector lm (lmo->link_map_size);
3957565a 182
a7961323
TT
183 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
184 warning (_("Error reading shared library list entry at %s"),
185 paddress (target_gdbarch (), lm_addr));
3957565a
JK
186 else
187 {
f5656ead 188 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 189
a7961323 190 lm_info.reset (new lm_info_svr4);
3957565a
JK
191 lm_info->lm_addr = lm_addr;
192
193 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
194 ptr_type);
195 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
196 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
197 ptr_type);
198 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
199 ptr_type);
200 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
201 ptr_type);
202 }
203
3957565a 204 return lm_info;
13437d4b
KB
205}
206
cc10cae3 207static int
b23518f0 208has_lm_dynamic_from_link_map (void)
cc10cae3
AO
209{
210 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
211
cfaefc65 212 return lmo->l_ld_offset >= 0;
cc10cae3
AO
213}
214
cc10cae3 215static CORE_ADDR
f65ce5fb 216lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 217{
d0e449a1
SM
218 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
219
220 if (!li->l_addr_p)
cc10cae3
AO
221 {
222 struct bfd_section *dyninfo_sect;
28f34a8f 223 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 224
d0e449a1 225 l_addr = li->l_addr_inferior;
cc10cae3 226
b23518f0 227 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
228 goto set_addr;
229
d0e449a1 230 l_dynaddr = li->l_ld;
cc10cae3
AO
231
232 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
233 if (dyninfo_sect == NULL)
234 goto set_addr;
235
236 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
237
238 if (dynaddr + l_addr != l_dynaddr)
239 {
28f34a8f 240 CORE_ADDR align = 0x1000;
4e1fc9c9 241 CORE_ADDR minpagesize = align;
28f34a8f 242
cc10cae3
AO
243 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
244 {
245 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
246 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
247 int i;
248
249 align = 1;
250
251 for (i = 0; i < ehdr->e_phnum; i++)
252 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
253 align = phdr[i].p_align;
4e1fc9c9
JK
254
255 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
256 }
257
258 /* Turn it into a mask. */
259 align--;
260
261 /* If the changes match the alignment requirements, we
262 assume we're using a core file that was generated by the
263 same binary, just prelinked with a different base offset.
264 If it doesn't match, we may have a different binary, the
265 same binary with the dynamic table loaded at an unrelated
266 location, or anything, really. To avoid regressions,
267 don't adjust the base offset in the latter case, although
268 odds are that, if things really changed, debugging won't
5c0d192f
JK
269 quite work.
270
271 One could expect more the condition
272 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
273 but the one below is relaxed for PPC. The PPC kernel supports
274 either 4k or 64k page sizes. To be prepared for 64k pages,
275 PPC ELF files are built using an alignment requirement of 64k.
276 However, when running on a kernel supporting 4k pages, the memory
277 mapping of the library may not actually happen on a 64k boundary!
278
279 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
280 equivalent to the possibly expected check above.)
281
282 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 283
02835898
JK
284 l_addr = l_dynaddr - dynaddr;
285
4e1fc9c9
JK
286 if ((l_addr & (minpagesize - 1)) == 0
287 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 288 {
701ed6dc 289 if (info_verbose)
ccf26247
JK
290 printf_unfiltered (_("Using PIC (Position Independent Code) "
291 "prelink displacement %s for \"%s\".\n"),
f5656ead 292 paddress (target_gdbarch (), l_addr),
ccf26247 293 so->so_name);
cc10cae3 294 }
79d4c408 295 else
02835898
JK
296 {
297 /* There is no way to verify the library file matches. prelink
298 can during prelinking of an unprelinked file (or unprelinking
299 of a prelinked file) shift the DYNAMIC segment by arbitrary
300 offset without any page size alignment. There is no way to
301 find out the ELF header and/or Program Headers for a limited
302 verification if it they match. One could do a verification
303 of the DYNAMIC segment. Still the found address is the best
304 one GDB could find. */
305
306 warning (_(".dynamic section for \"%s\" "
307 "is not at the expected address "
308 "(wrong library or version mismatch?)"), so->so_name);
309 }
cc10cae3
AO
310 }
311
312 set_addr:
d0e449a1
SM
313 li->l_addr = l_addr;
314 li->l_addr_p = 1;
cc10cae3
AO
315 }
316
d0e449a1 317 return li->l_addr;
cc10cae3
AO
318}
319
6c95b8df 320/* Per pspace SVR4 specific data. */
13437d4b 321
1a816a87
PA
322struct svr4_info
323{
c378eb4e 324 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
325
326 /* Validity flag for debug_loader_offset. */
327 int debug_loader_offset_p;
328
329 /* Load address for the dynamic linker, inferred. */
330 CORE_ADDR debug_loader_offset;
331
332 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
333 char *debug_loader_name;
334
335 /* Load map address for the main executable. */
336 CORE_ADDR main_lm_addr;
1a816a87 337
6c95b8df
PA
338 CORE_ADDR interp_text_sect_low;
339 CORE_ADDR interp_text_sect_high;
340 CORE_ADDR interp_plt_sect_low;
341 CORE_ADDR interp_plt_sect_high;
f9e14852
GB
342
343 /* Nonzero if the list of objects was last obtained from the target
344 via qXfer:libraries-svr4:read. */
345 int using_xfer;
346
347 /* Table of struct probe_and_action instances, used by the
348 probes-based interface to map breakpoint addresses to probes
349 and their associated actions. Lookup is performed using
935676c9 350 probe_and_action->prob->address. */
f9e14852
GB
351 htab_t probes_table;
352
353 /* List of objects loaded into the inferior, used by the probes-
354 based interface. */
355 struct so_list *solib_list;
6c95b8df 356};
1a816a87 357
6c95b8df
PA
358/* Per-program-space data key. */
359static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 360
f9e14852
GB
361/* Free the probes table. */
362
363static void
364free_probes_table (struct svr4_info *info)
365{
366 if (info->probes_table == NULL)
367 return;
368
369 htab_delete (info->probes_table);
370 info->probes_table = NULL;
371}
372
373/* Free the solib list. */
374
375static void
376free_solib_list (struct svr4_info *info)
377{
378 svr4_free_library_list (&info->solib_list);
379 info->solib_list = NULL;
380}
381
6c95b8df
PA
382static void
383svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 384{
19ba03f4 385 struct svr4_info *info = (struct svr4_info *) arg;
f9e14852
GB
386
387 free_probes_table (info);
388 free_solib_list (info);
389
6c95b8df 390 xfree (info);
1a816a87
PA
391}
392
6c95b8df
PA
393/* Get the current svr4 data. If none is found yet, add it now. This
394 function always returns a valid object. */
34439770 395
6c95b8df
PA
396static struct svr4_info *
397get_svr4_info (void)
1a816a87 398{
6c95b8df 399 struct svr4_info *info;
1a816a87 400
19ba03f4
SM
401 info = (struct svr4_info *) program_space_data (current_program_space,
402 solib_svr4_pspace_data);
6c95b8df
PA
403 if (info != NULL)
404 return info;
34439770 405
41bf6aca 406 info = XCNEW (struct svr4_info);
6c95b8df
PA
407 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
408 return info;
1a816a87 409}
93a57060 410
13437d4b
KB
411/* Local function prototypes */
412
bc043ef3 413static int match_main (const char *);
13437d4b 414
97ec2c2f 415/* Read program header TYPE from inferior memory. The header is found
17658d46 416 by scanning the OS auxiliary vector.
97ec2c2f 417
09919ac2
JK
418 If TYPE == -1, return the program headers instead of the contents of
419 one program header.
420
17658d46
SM
421 Return vector of bytes holding the program header contents, or an empty
422 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
423 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
424 the base address of the section is returned in *BASE_ADDR. */
97ec2c2f 425
17658d46
SM
426static gdb::optional<gdb::byte_vector>
427read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
97ec2c2f 428{
f5656ead 429 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 430 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
431 int arch_size, sect_size;
432 CORE_ADDR sect_addr;
43136979 433 int pt_phdr_p = 0;
97ec2c2f
UW
434
435 /* Get required auxv elements from target. */
8b88a78e 436 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
17658d46 437 return {};
8b88a78e 438 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
17658d46 439 return {};
8b88a78e 440 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
17658d46 441 return {};
97ec2c2f 442 if (!at_phdr || !at_phnum)
17658d46 443 return {};
97ec2c2f
UW
444
445 /* Determine ELF architecture type. */
446 if (at_phent == sizeof (Elf32_External_Phdr))
447 arch_size = 32;
448 else if (at_phent == sizeof (Elf64_External_Phdr))
449 arch_size = 64;
450 else
17658d46 451 return {};
97ec2c2f 452
09919ac2
JK
453 /* Find the requested segment. */
454 if (type == -1)
455 {
456 sect_addr = at_phdr;
457 sect_size = at_phent * at_phnum;
458 }
459 else if (arch_size == 32)
97ec2c2f
UW
460 {
461 Elf32_External_Phdr phdr;
462 int i;
463
464 /* Search for requested PHDR. */
465 for (i = 0; i < at_phnum; i++)
466 {
43136979
AR
467 int p_type;
468
97ec2c2f
UW
469 if (target_read_memory (at_phdr + i * sizeof (phdr),
470 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 471 return {};
97ec2c2f 472
43136979
AR
473 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
474 4, byte_order);
475
476 if (p_type == PT_PHDR)
477 {
478 pt_phdr_p = 1;
479 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
480 4, byte_order);
481 }
482
483 if (p_type == type)
97ec2c2f
UW
484 break;
485 }
486
487 if (i == at_phnum)
17658d46 488 return {};
97ec2c2f
UW
489
490 /* Retrieve address and size. */
e17a4113
UW
491 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
492 4, byte_order);
493 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
494 4, byte_order);
97ec2c2f
UW
495 }
496 else
497 {
498 Elf64_External_Phdr phdr;
499 int i;
500
501 /* Search for requested PHDR. */
502 for (i = 0; i < at_phnum; i++)
503 {
43136979
AR
504 int p_type;
505
97ec2c2f
UW
506 if (target_read_memory (at_phdr + i * sizeof (phdr),
507 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 508 return {};
97ec2c2f 509
43136979
AR
510 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
511 4, byte_order);
512
513 if (p_type == PT_PHDR)
514 {
515 pt_phdr_p = 1;
516 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
517 8, byte_order);
518 }
519
520 if (p_type == type)
97ec2c2f
UW
521 break;
522 }
523
524 if (i == at_phnum)
17658d46 525 return {};
97ec2c2f
UW
526
527 /* Retrieve address and size. */
e17a4113
UW
528 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
529 8, byte_order);
530 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
531 8, byte_order);
97ec2c2f
UW
532 }
533
43136979
AR
534 /* PT_PHDR is optional, but we really need it
535 for PIE to make this work in general. */
536
537 if (pt_phdr_p)
538 {
539 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
540 Relocation offset is the difference between the two. */
541 sect_addr = sect_addr + (at_phdr - pt_phdr);
542 }
543
97ec2c2f 544 /* Read in requested program header. */
17658d46
SM
545 gdb::byte_vector buf (sect_size);
546 if (target_read_memory (sect_addr, buf.data (), sect_size))
547 return {};
97ec2c2f
UW
548
549 if (p_arch_size)
550 *p_arch_size = arch_size;
a738da3a
MF
551 if (base_addr)
552 *base_addr = sect_addr;
97ec2c2f
UW
553
554 return buf;
555}
556
557
558/* Return program interpreter string. */
17658d46 559static gdb::optional<gdb::byte_vector>
97ec2c2f
UW
560find_program_interpreter (void)
561{
97ec2c2f
UW
562 /* If we have an exec_bfd, use its section table. */
563 if (exec_bfd
564 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
565 {
566 struct bfd_section *interp_sect;
567
568 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
569 if (interp_sect != NULL)
570 {
97ec2c2f
UW
571 int sect_size = bfd_section_size (exec_bfd, interp_sect);
572
17658d46
SM
573 gdb::byte_vector buf (sect_size);
574 bfd_get_section_contents (exec_bfd, interp_sect, buf.data (), 0,
575 sect_size);
576 return buf;
97ec2c2f
UW
577 }
578 }
579
17658d46
SM
580 /* If we didn't find it, use the target auxiliary vector. */
581 return read_program_header (PT_INTERP, NULL, NULL);
97ec2c2f
UW
582}
583
584
b6d7a4bf
SM
585/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
586 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
587
588static int
a738da3a
MF
589scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
590 CORE_ADDR *ptr_addr)
3a40aaa0
UW
591{
592 int arch_size, step, sect_size;
b6d7a4bf 593 long current_dyntag;
b381ea14 594 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 595 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
596 Elf32_External_Dyn *x_dynp_32;
597 Elf64_External_Dyn *x_dynp_64;
598 struct bfd_section *sect;
61f0d762 599 struct target_section *target_section;
3a40aaa0
UW
600
601 if (abfd == NULL)
602 return 0;
0763ab81
PA
603
604 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
605 return 0;
606
3a40aaa0
UW
607 arch_size = bfd_get_arch_size (abfd);
608 if (arch_size == -1)
0763ab81 609 return 0;
3a40aaa0
UW
610
611 /* Find the start address of the .dynamic section. */
612 sect = bfd_get_section_by_name (abfd, ".dynamic");
613 if (sect == NULL)
614 return 0;
61f0d762
JK
615
616 for (target_section = current_target_sections->sections;
617 target_section < current_target_sections->sections_end;
618 target_section++)
619 if (sect == target_section->the_bfd_section)
620 break;
b381ea14
JK
621 if (target_section < current_target_sections->sections_end)
622 dyn_addr = target_section->addr;
623 else
624 {
625 /* ABFD may come from OBJFILE acting only as a symbol file without being
626 loaded into the target (see add_symbol_file_command). This case is
627 such fallback to the file VMA address without the possibility of
628 having the section relocated to its actual in-memory address. */
629
630 dyn_addr = bfd_section_vma (abfd, sect);
631 }
3a40aaa0 632
65728c26
DJ
633 /* Read in .dynamic from the BFD. We will get the actual value
634 from memory later. */
3a40aaa0 635 sect_size = bfd_section_size (abfd, sect);
224c3ddb 636 buf = bufstart = (gdb_byte *) alloca (sect_size);
65728c26
DJ
637 if (!bfd_get_section_contents (abfd, sect,
638 buf, 0, sect_size))
639 return 0;
3a40aaa0
UW
640
641 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
642 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
643 : sizeof (Elf64_External_Dyn);
644 for (bufend = buf + sect_size;
645 buf < bufend;
646 buf += step)
647 {
648 if (arch_size == 32)
649 {
650 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 651 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
652 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
653 }
65728c26 654 else
3a40aaa0
UW
655 {
656 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 657 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
658 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
659 }
b6d7a4bf 660 if (current_dyntag == DT_NULL)
3a40aaa0 661 return 0;
b6d7a4bf 662 if (current_dyntag == desired_dyntag)
3a40aaa0 663 {
65728c26
DJ
664 /* If requested, try to read the runtime value of this .dynamic
665 entry. */
3a40aaa0 666 if (ptr)
65728c26 667 {
b6da22b0 668 struct type *ptr_type;
65728c26 669 gdb_byte ptr_buf[8];
a738da3a 670 CORE_ADDR ptr_addr_1;
65728c26 671
f5656ead 672 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
a738da3a
MF
673 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
674 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
b6da22b0 675 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26 676 *ptr = dyn_ptr;
a738da3a
MF
677 if (ptr_addr)
678 *ptr_addr = dyn_addr + (buf - bufstart);
65728c26
DJ
679 }
680 return 1;
3a40aaa0
UW
681 }
682 }
683
684 return 0;
685}
686
b6d7a4bf
SM
687/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
688 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
689 is returned and the corresponding PTR is set. */
97ec2c2f
UW
690
691static int
a738da3a
MF
692scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
693 CORE_ADDR *ptr_addr)
97ec2c2f 694{
f5656ead 695 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
17658d46 696 int arch_size, step;
b6d7a4bf 697 long current_dyntag;
97ec2c2f 698 CORE_ADDR dyn_ptr;
a738da3a 699 CORE_ADDR base_addr;
97ec2c2f
UW
700
701 /* Read in .dynamic section. */
17658d46
SM
702 gdb::optional<gdb::byte_vector> ph_data
703 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
704 if (!ph_data)
97ec2c2f
UW
705 return 0;
706
707 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
708 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
709 : sizeof (Elf64_External_Dyn);
17658d46
SM
710 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
711 buf < bufend; buf += step)
97ec2c2f
UW
712 {
713 if (arch_size == 32)
714 {
715 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 716
b6d7a4bf 717 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
718 4, byte_order);
719 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
720 4, byte_order);
97ec2c2f
UW
721 }
722 else
723 {
724 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 725
b6d7a4bf 726 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
727 8, byte_order);
728 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
729 8, byte_order);
97ec2c2f 730 }
b6d7a4bf 731 if (current_dyntag == DT_NULL)
97ec2c2f
UW
732 break;
733
b6d7a4bf 734 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
735 {
736 if (ptr)
737 *ptr = dyn_ptr;
738
a738da3a 739 if (ptr_addr)
17658d46 740 *ptr_addr = base_addr + buf - ph_data->data ();
a738da3a 741
97ec2c2f
UW
742 return 1;
743 }
744 }
745
97ec2c2f
UW
746 return 0;
747}
748
7f86f058
PA
749/* Locate the base address of dynamic linker structs for SVR4 elf
750 targets.
13437d4b
KB
751
752 For SVR4 elf targets the address of the dynamic linker's runtime
753 structure is contained within the dynamic info section in the
754 executable file. The dynamic section is also mapped into the
755 inferior address space. Because the runtime loader fills in the
756 real address before starting the inferior, we have to read in the
757 dynamic info section from the inferior address space.
758 If there are any errors while trying to find the address, we
7f86f058 759 silently return 0, otherwise the found address is returned. */
13437d4b
KB
760
761static CORE_ADDR
762elf_locate_base (void)
763{
3b7344d5 764 struct bound_minimal_symbol msymbol;
a738da3a 765 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 766
65728c26
DJ
767 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
768 instead of DT_DEBUG, although they sometimes contain an unused
769 DT_DEBUG. */
a738da3a
MF
770 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
771 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 772 {
f5656ead 773 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 774 gdb_byte *pbuf;
b6da22b0 775 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 776
224c3ddb 777 pbuf = (gdb_byte *) alloca (pbuf_size);
3a40aaa0
UW
778 /* DT_MIPS_RLD_MAP contains a pointer to the address
779 of the dynamic link structure. */
780 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 781 return 0;
b6da22b0 782 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
783 }
784
a738da3a
MF
785 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
786 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
787 in non-PIE. */
788 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
789 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
790 {
791 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
792 gdb_byte *pbuf;
793 int pbuf_size = TYPE_LENGTH (ptr_type);
794
224c3ddb 795 pbuf = (gdb_byte *) alloca (pbuf_size);
a738da3a
MF
796 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
797 DT slot to the address of the dynamic link structure. */
798 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
799 return 0;
800 return extract_typed_address (pbuf, ptr_type);
801 }
802
65728c26 803 /* Find DT_DEBUG. */
a738da3a
MF
804 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
805 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
806 return dyn_ptr;
807
3a40aaa0
UW
808 /* This may be a static executable. Look for the symbol
809 conventionally named _r_debug, as a last resort. */
810 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 811 if (msymbol.minsym != NULL)
77e371c0 812 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
813
814 /* DT_DEBUG entry not found. */
815 return 0;
816}
817
7f86f058 818/* Locate the base address of dynamic linker structs.
13437d4b
KB
819
820 For both the SunOS and SVR4 shared library implementations, if the
821 inferior executable has been linked dynamically, there is a single
822 address somewhere in the inferior's data space which is the key to
823 locating all of the dynamic linker's runtime structures. This
824 address is the value of the debug base symbol. The job of this
825 function is to find and return that address, or to return 0 if there
826 is no such address (the executable is statically linked for example).
827
828 For SunOS, the job is almost trivial, since the dynamic linker and
829 all of it's structures are statically linked to the executable at
830 link time. Thus the symbol for the address we are looking for has
831 already been added to the minimal symbol table for the executable's
832 objfile at the time the symbol file's symbols were read, and all we
833 have to do is look it up there. Note that we explicitly do NOT want
834 to find the copies in the shared library.
835
836 The SVR4 version is a bit more complicated because the address
837 is contained somewhere in the dynamic info section. We have to go
838 to a lot more work to discover the address of the debug base symbol.
839 Because of this complexity, we cache the value we find and return that
840 value on subsequent invocations. Note there is no copy in the
7f86f058 841 executable symbol tables. */
13437d4b
KB
842
843static CORE_ADDR
1a816a87 844locate_base (struct svr4_info *info)
13437d4b 845{
13437d4b
KB
846 /* Check to see if we have a currently valid address, and if so, avoid
847 doing all this work again and just return the cached address. If
848 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
849 section for ELF executables. There's no point in doing any of this
850 though if we don't have some link map offsets to work with. */
13437d4b 851
1a816a87 852 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 853 info->debug_base = elf_locate_base ();
1a816a87 854 return info->debug_base;
13437d4b
KB
855}
856
e4cd0d6a 857/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
858 return its address in the inferior. Return zero if the address
859 could not be determined.
13437d4b 860
e4cd0d6a
MK
861 FIXME: Perhaps we should validate the info somehow, perhaps by
862 checking r_version for a known version number, or r_state for
863 RT_CONSISTENT. */
13437d4b
KB
864
865static CORE_ADDR
1a816a87 866solib_svr4_r_map (struct svr4_info *info)
13437d4b 867{
4b188b9f 868 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 869 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 870 CORE_ADDR addr = 0;
13437d4b 871
492d29ea 872 TRY
08597104
JB
873 {
874 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
875 ptr_type);
876 }
492d29ea
PA
877 CATCH (ex, RETURN_MASK_ERROR)
878 {
879 exception_print (gdb_stderr, ex);
880 }
881 END_CATCH
882
08597104 883 return addr;
e4cd0d6a 884}
13437d4b 885
7cd25cfc
DJ
886/* Find r_brk from the inferior's debug base. */
887
888static CORE_ADDR
1a816a87 889solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
890{
891 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 892 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 893
1a816a87
PA
894 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
895 ptr_type);
7cd25cfc
DJ
896}
897
e4cd0d6a
MK
898/* Find the link map for the dynamic linker (if it is not in the
899 normal list of loaded shared objects). */
13437d4b 900
e4cd0d6a 901static CORE_ADDR
1a816a87 902solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
903{
904 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
905 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
906 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
416f679e
SDJ
907 ULONGEST version = 0;
908
909 TRY
910 {
911 /* Check version, and return zero if `struct r_debug' doesn't have
912 the r_ldsomap member. */
913 version
914 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
915 lmo->r_version_size, byte_order);
916 }
917 CATCH (ex, RETURN_MASK_ERROR)
918 {
919 exception_print (gdb_stderr, ex);
920 }
921 END_CATCH
13437d4b 922
e4cd0d6a
MK
923 if (version < 2 || lmo->r_ldsomap_offset == -1)
924 return 0;
13437d4b 925
1a816a87 926 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 927 ptr_type);
13437d4b
KB
928}
929
de18c1d8
JM
930/* On Solaris systems with some versions of the dynamic linker,
931 ld.so's l_name pointer points to the SONAME in the string table
932 rather than into writable memory. So that GDB can find shared
933 libraries when loading a core file generated by gcore, ensure that
934 memory areas containing the l_name string are saved in the core
935 file. */
936
937static int
938svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
939{
940 struct svr4_info *info;
941 CORE_ADDR ldsomap;
74de0234 942 CORE_ADDR name_lm;
de18c1d8
JM
943
944 info = get_svr4_info ();
945
946 info->debug_base = 0;
947 locate_base (info);
948 if (!info->debug_base)
949 return 0;
950
951 ldsomap = solib_svr4_r_ldsomap (info);
952 if (!ldsomap)
953 return 0;
954
a7961323 955 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
d0e449a1 956 name_lm = li != NULL ? li->l_name : 0;
de18c1d8 957
74de0234 958 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
959}
960
bf469271 961/* See solist.h. */
13437d4b
KB
962
963static int
bf469271 964open_symbol_file_object (int from_tty)
13437d4b
KB
965{
966 CORE_ADDR lm, l_name;
e83e4e24 967 gdb::unique_xmalloc_ptr<char> filename;
13437d4b 968 int errcode;
4b188b9f 969 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 970 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 971 int l_name_size = TYPE_LENGTH (ptr_type);
a7961323 972 gdb::byte_vector l_name_buf (l_name_size);
6c95b8df 973 struct svr4_info *info = get_svr4_info ();
ecf45d2c
SL
974 symfile_add_flags add_flags = 0;
975
976 if (from_tty)
977 add_flags |= SYMFILE_VERBOSE;
13437d4b
KB
978
979 if (symfile_objfile)
9e2f0ad4 980 if (!query (_("Attempt to reload symbols from process? ")))
a7961323 981 return 0;
13437d4b 982
7cd25cfc 983 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
984 info->debug_base = 0;
985 if (locate_base (info) == 0)
a7961323 986 return 0; /* failed somehow... */
13437d4b
KB
987
988 /* First link map member should be the executable. */
1a816a87 989 lm = solib_svr4_r_map (info);
e4cd0d6a 990 if (lm == 0)
a7961323 991 return 0; /* failed somehow... */
13437d4b
KB
992
993 /* Read address of name from target memory to GDB. */
a7961323 994 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
13437d4b 995
cfaefc65 996 /* Convert the address to host format. */
a7961323 997 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
13437d4b 998
13437d4b 999 if (l_name == 0)
a7961323 1000 return 0; /* No filename. */
13437d4b
KB
1001
1002 /* Now fetch the filename from target memory. */
1003 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1004
1005 if (errcode)
1006 {
8a3fe4f8 1007 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
1008 safe_strerror (errcode));
1009 return 0;
1010 }
1011
13437d4b 1012 /* Have a pathname: read the symbol file. */
e83e4e24 1013 symbol_file_add_main (filename.get (), add_flags);
13437d4b
KB
1014
1015 return 1;
1016}
13437d4b 1017
2268b414
JK
1018/* Data exchange structure for the XML parser as returned by
1019 svr4_current_sos_via_xfer_libraries. */
1020
1021struct svr4_library_list
1022{
1023 struct so_list *head, **tailp;
1024
1025 /* Inferior address of struct link_map used for the main executable. It is
1026 NULL if not known. */
1027 CORE_ADDR main_lm;
1028};
1029
93f2a35e
JK
1030/* Implementation for target_so_ops.free_so. */
1031
1032static void
1033svr4_free_so (struct so_list *so)
1034{
76e75227
SM
1035 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1036
1037 delete li;
93f2a35e
JK
1038}
1039
0892cb63
DE
1040/* Implement target_so_ops.clear_so. */
1041
1042static void
1043svr4_clear_so (struct so_list *so)
1044{
d0e449a1
SM
1045 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1046
1047 if (li != NULL)
1048 li->l_addr_p = 0;
0892cb63
DE
1049}
1050
93f2a35e
JK
1051/* Free so_list built so far (called via cleanup). */
1052
1053static void
1054svr4_free_library_list (void *p_list)
1055{
1056 struct so_list *list = *(struct so_list **) p_list;
1057
1058 while (list != NULL)
1059 {
1060 struct so_list *next = list->next;
1061
3756ef7e 1062 free_so (list);
93f2a35e
JK
1063 list = next;
1064 }
1065}
1066
f9e14852
GB
1067/* Copy library list. */
1068
1069static struct so_list *
1070svr4_copy_library_list (struct so_list *src)
1071{
1072 struct so_list *dst = NULL;
1073 struct so_list **link = &dst;
1074
1075 while (src != NULL)
1076 {
fe978cb0 1077 struct so_list *newobj;
f9e14852 1078
8d749320 1079 newobj = XNEW (struct so_list);
fe978cb0 1080 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1081
76e75227
SM
1082 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1083 newobj->lm_info = new lm_info_svr4 (*src_li);
f9e14852 1084
fe978cb0
PA
1085 newobj->next = NULL;
1086 *link = newobj;
1087 link = &newobj->next;
f9e14852
GB
1088
1089 src = src->next;
1090 }
1091
1092 return dst;
1093}
1094
2268b414
JK
1095#ifdef HAVE_LIBEXPAT
1096
1097#include "xml-support.h"
1098
1099/* Handle the start of a <library> element. Note: new elements are added
1100 at the tail of the list, keeping the list in order. */
1101
1102static void
1103library_list_start_library (struct gdb_xml_parser *parser,
1104 const struct gdb_xml_element *element,
4d0fdd9b
SM
1105 void *user_data,
1106 std::vector<gdb_xml_value> &attributes)
2268b414 1107{
19ba03f4
SM
1108 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1109 const char *name
4d0fdd9b 1110 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
19ba03f4 1111 ULONGEST *lmp
4d0fdd9b 1112 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
19ba03f4 1113 ULONGEST *l_addrp
4d0fdd9b 1114 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
19ba03f4 1115 ULONGEST *l_ldp
4d0fdd9b 1116 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
2268b414
JK
1117 struct so_list *new_elem;
1118
41bf6aca 1119 new_elem = XCNEW (struct so_list);
76e75227 1120 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1
SM
1121 new_elem->lm_info = li;
1122 li->lm_addr = *lmp;
1123 li->l_addr_inferior = *l_addrp;
1124 li->l_ld = *l_ldp;
2268b414
JK
1125
1126 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1127 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1128 strcpy (new_elem->so_original_name, new_elem->so_name);
1129
1130 *list->tailp = new_elem;
1131 list->tailp = &new_elem->next;
1132}
1133
1134/* Handle the start of a <library-list-svr4> element. */
1135
1136static void
1137svr4_library_list_start_list (struct gdb_xml_parser *parser,
1138 const struct gdb_xml_element *element,
4d0fdd9b
SM
1139 void *user_data,
1140 std::vector<gdb_xml_value> &attributes)
2268b414 1141{
19ba03f4
SM
1142 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1143 const char *version
4d0fdd9b 1144 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
2268b414
JK
1145 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1146
1147 if (strcmp (version, "1.0") != 0)
1148 gdb_xml_error (parser,
1149 _("SVR4 Library list has unsupported version \"%s\""),
1150 version);
1151
1152 if (main_lm)
4d0fdd9b 1153 list->main_lm = *(ULONGEST *) main_lm->value.get ();
2268b414
JK
1154}
1155
1156/* The allowed elements and attributes for an XML library list.
1157 The root element is a <library-list>. */
1158
1159static const struct gdb_xml_attribute svr4_library_attributes[] =
1160{
1161 { "name", GDB_XML_AF_NONE, NULL, NULL },
1162 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1163 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1164 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1165 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1166};
1167
1168static const struct gdb_xml_element svr4_library_list_children[] =
1169{
1170 {
1171 "library", svr4_library_attributes, NULL,
1172 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1173 library_list_start_library, NULL
1174 },
1175 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1176};
1177
1178static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1179{
1180 { "version", GDB_XML_AF_NONE, NULL, NULL },
1181 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1182 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1183};
1184
1185static const struct gdb_xml_element svr4_library_list_elements[] =
1186{
1187 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1188 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1189 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1190};
1191
2268b414
JK
1192/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1193
1194 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1195 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1196 empty, caller is responsible for freeing all its entries. */
1197
1198static int
1199svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1200{
1201 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1202 &list->head);
1203
1204 memset (list, 0, sizeof (*list));
1205 list->tailp = &list->head;
2eca4a8d 1206 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1207 svr4_library_list_elements, document, list) == 0)
1208 {
1209 /* Parsed successfully, keep the result. */
1210 discard_cleanups (back_to);
1211 return 1;
1212 }
1213
1214 do_cleanups (back_to);
1215 return 0;
1216}
1217
f9e14852 1218/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1219
1220 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1221 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1222 empty, caller is responsible for freeing all its entries.
1223
1224 Note that ANNEX must be NULL if the remote does not explicitly allow
1225 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1226 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1227
1228static int
f9e14852
GB
1229svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1230 const char *annex)
2268b414 1231{
f9e14852
GB
1232 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1233
2268b414 1234 /* Fetch the list of shared libraries. */
9018be22 1235 gdb::optional<gdb::char_vector> svr4_library_document
8b88a78e 1236 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
b7b030ad 1237 annex);
9018be22 1238 if (!svr4_library_document)
2268b414
JK
1239 return 0;
1240
9018be22 1241 return svr4_parse_libraries (svr4_library_document->data (), list);
2268b414
JK
1242}
1243
1244#else
1245
1246static int
f9e14852
GB
1247svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1248 const char *annex)
2268b414
JK
1249{
1250 return 0;
1251}
1252
1253#endif
1254
34439770
DJ
1255/* If no shared library information is available from the dynamic
1256 linker, build a fallback list from other sources. */
1257
1258static struct so_list *
1259svr4_default_sos (void)
1260{
6c95b8df 1261 struct svr4_info *info = get_svr4_info ();
fe978cb0 1262 struct so_list *newobj;
1a816a87 1263
8e5c319d
JK
1264 if (!info->debug_loader_offset_p)
1265 return NULL;
34439770 1266
fe978cb0 1267 newobj = XCNEW (struct so_list);
76e75227 1268 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1 1269 newobj->lm_info = li;
34439770 1270
3957565a 1271 /* Nothing will ever check the other fields if we set l_addr_p. */
d0e449a1
SM
1272 li->l_addr = info->debug_loader_offset;
1273 li->l_addr_p = 1;
34439770 1274
fe978cb0
PA
1275 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1276 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1277 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1278
fe978cb0 1279 return newobj;
34439770
DJ
1280}
1281
f9e14852
GB
1282/* Read the whole inferior libraries chain starting at address LM.
1283 Expect the first entry in the chain's previous entry to be PREV_LM.
1284 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1285 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1286 to it. Returns nonzero upon success. If zero is returned the
1287 entries stored to LINK_PTR_PTR are still valid although they may
1288 represent only part of the inferior library list. */
13437d4b 1289
f9e14852
GB
1290static int
1291svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1292 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1293{
c725e7b6 1294 CORE_ADDR first_l_name = 0;
f9e14852 1295 CORE_ADDR next_lm;
13437d4b 1296
cb08cc53 1297 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1298 {
cb08cc53 1299 int errcode;
e83e4e24 1300 gdb::unique_xmalloc_ptr<char> buffer;
13437d4b 1301
b3bc8453 1302 so_list_up newobj (XCNEW (struct so_list));
13437d4b 1303
a7961323 1304 lm_info_svr4 *li = lm_info_read (lm).release ();
d0e449a1
SM
1305 newobj->lm_info = li;
1306 if (li == NULL)
b3bc8453 1307 return 0;
13437d4b 1308
d0e449a1 1309 next_lm = li->l_next;
492928e4 1310
d0e449a1 1311 if (li->l_prev != prev_lm)
492928e4 1312 {
2268b414 1313 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1314 paddress (target_gdbarch (), prev_lm),
d0e449a1 1315 paddress (target_gdbarch (), li->l_prev));
f9e14852 1316 return 0;
492928e4 1317 }
13437d4b
KB
1318
1319 /* For SVR4 versions, the first entry in the link map is for the
1320 inferior executable, so we must ignore it. For some versions of
1321 SVR4, it has no name. For others (Solaris 2.3 for example), it
1322 does have a name, so we can no longer use a missing name to
c378eb4e 1323 decide when to ignore it. */
d0e449a1 1324 if (ignore_first && li->l_prev == 0)
93a57060 1325 {
cb08cc53
JK
1326 struct svr4_info *info = get_svr4_info ();
1327
d0e449a1
SM
1328 first_l_name = li->l_name;
1329 info->main_lm_addr = li->lm_addr;
cb08cc53 1330 continue;
93a57060 1331 }
13437d4b 1332
cb08cc53 1333 /* Extract this shared object's name. */
d0e449a1
SM
1334 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1335 &errcode);
cb08cc53
JK
1336 if (errcode != 0)
1337 {
7d760051
UW
1338 /* If this entry's l_name address matches that of the
1339 inferior executable, then this is not a normal shared
1340 object, but (most likely) a vDSO. In this case, silently
1341 skip it; otherwise emit a warning. */
d0e449a1 1342 if (first_l_name == 0 || li->l_name != first_l_name)
7d760051
UW
1343 warning (_("Can't read pathname for load map: %s."),
1344 safe_strerror (errcode));
cb08cc53 1345 continue;
13437d4b
KB
1346 }
1347
e83e4e24 1348 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
fe978cb0
PA
1349 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1350 strcpy (newobj->so_original_name, newobj->so_name);
492928e4 1351
cb08cc53
JK
1352 /* If this entry has no name, or its name matches the name
1353 for the main executable, don't include it in the list. */
fe978cb0 1354 if (! newobj->so_name[0] || match_main (newobj->so_name))
b3bc8453 1355 continue;
e4cd0d6a 1356
fe978cb0 1357 newobj->next = 0;
b3bc8453
TT
1358 /* Don't free it now. */
1359 **link_ptr_ptr = newobj.release ();
1360 *link_ptr_ptr = &(**link_ptr_ptr)->next;
13437d4b 1361 }
f9e14852
GB
1362
1363 return 1;
cb08cc53
JK
1364}
1365
f9e14852
GB
1366/* Read the full list of currently loaded shared objects directly
1367 from the inferior, without referring to any libraries read and
1368 stored by the probes interface. Handle special cases relating
1369 to the first elements of the list. */
cb08cc53
JK
1370
1371static struct so_list *
f9e14852 1372svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1373{
1374 CORE_ADDR lm;
1375 struct so_list *head = NULL;
1376 struct so_list **link_ptr = &head;
cb08cc53
JK
1377 struct cleanup *back_to;
1378 int ignore_first;
2268b414
JK
1379 struct svr4_library_list library_list;
1380
0c5bf5a9
JK
1381 /* Fall back to manual examination of the target if the packet is not
1382 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1383 tests a case where gdbserver cannot find the shared libraries list while
1384 GDB itself is able to find it via SYMFILE_OBJFILE.
1385
1386 Unfortunately statically linked inferiors will also fall back through this
1387 suboptimal code path. */
1388
f9e14852
GB
1389 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1390 NULL);
1391 if (info->using_xfer)
2268b414
JK
1392 {
1393 if (library_list.main_lm)
f9e14852 1394 info->main_lm_addr = library_list.main_lm;
2268b414
JK
1395
1396 return library_list.head ? library_list.head : svr4_default_sos ();
1397 }
cb08cc53 1398
cb08cc53
JK
1399 /* Always locate the debug struct, in case it has moved. */
1400 info->debug_base = 0;
1401 locate_base (info);
1402
1403 /* If we can't find the dynamic linker's base structure, this
1404 must not be a dynamically linked executable. Hmm. */
1405 if (! info->debug_base)
1406 return svr4_default_sos ();
1407
1408 /* Assume that everything is a library if the dynamic loader was loaded
1409 late by a static executable. */
1410 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1411 ignore_first = 0;
1412 else
1413 ignore_first = 1;
1414
1415 back_to = make_cleanup (svr4_free_library_list, &head);
1416
1417 /* Walk the inferior's link map list, and build our list of
1418 `struct so_list' nodes. */
1419 lm = solib_svr4_r_map (info);
1420 if (lm)
f9e14852 1421 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1422
1423 /* On Solaris, the dynamic linker is not in the normal list of
1424 shared objects, so make sure we pick it up too. Having
1425 symbol information for the dynamic linker is quite crucial
1426 for skipping dynamic linker resolver code. */
1427 lm = solib_svr4_r_ldsomap (info);
1428 if (lm)
f9e14852 1429 svr4_read_so_list (lm, 0, &link_ptr, 0);
cb08cc53
JK
1430
1431 discard_cleanups (back_to);
13437d4b 1432
34439770
DJ
1433 if (head == NULL)
1434 return svr4_default_sos ();
1435
13437d4b
KB
1436 return head;
1437}
1438
8b9a549d
PA
1439/* Implement the main part of the "current_sos" target_so_ops
1440 method. */
f9e14852
GB
1441
1442static struct so_list *
8b9a549d 1443svr4_current_sos_1 (void)
f9e14852
GB
1444{
1445 struct svr4_info *info = get_svr4_info ();
1446
1447 /* If the solib list has been read and stored by the probes
1448 interface then we return a copy of the stored list. */
1449 if (info->solib_list != NULL)
1450 return svr4_copy_library_list (info->solib_list);
1451
1452 /* Otherwise obtain the solib list directly from the inferior. */
1453 return svr4_current_sos_direct (info);
1454}
1455
8b9a549d
PA
1456/* Implement the "current_sos" target_so_ops method. */
1457
1458static struct so_list *
1459svr4_current_sos (void)
1460{
1461 struct so_list *so_head = svr4_current_sos_1 ();
1462 struct mem_range vsyscall_range;
1463
1464 /* Filter out the vDSO module, if present. Its symbol file would
1465 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1466 managed by symfile-mem.c:add_vsyscall_page. */
1467 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1468 && vsyscall_range.length != 0)
1469 {
1470 struct so_list **sop;
1471
1472 sop = &so_head;
1473 while (*sop != NULL)
1474 {
1475 struct so_list *so = *sop;
1476
1477 /* We can't simply match the vDSO by starting address alone,
1478 because lm_info->l_addr_inferior (and also l_addr) do not
1479 necessarily represent the real starting address of the
1480 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1481 field (the ".dynamic" section of the shared object)
1482 always points at the absolute/resolved address though.
1483 So check whether that address is inside the vDSO's
1484 mapping instead.
1485
1486 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1487 0-based ELF, and we see:
1488
1489 (gdb) info auxv
1490 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1491 (gdb) p/x *_r_debug.r_map.l_next
1492 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1493
1494 And on Linux 2.6.32 (x86_64) we see:
1495
1496 (gdb) info auxv
1497 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1498 (gdb) p/x *_r_debug.r_map.l_next
1499 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1500
1501 Dumping that vDSO shows:
1502
1503 (gdb) info proc mappings
1504 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1505 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1506 # readelf -Wa vdso.bin
1507 [...]
1508 Entry point address: 0xffffffffff700700
1509 [...]
1510 Section Headers:
1511 [Nr] Name Type Address Off Size
1512 [ 0] NULL 0000000000000000 000000 000000
1513 [ 1] .hash HASH ffffffffff700120 000120 000038
1514 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1515 [...]
1516 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1517 */
d0e449a1
SM
1518
1519 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1520
1521 if (address_in_mem_range (li->l_ld, &vsyscall_range))
8b9a549d
PA
1522 {
1523 *sop = so->next;
1524 free_so (so);
1525 break;
1526 }
1527
1528 sop = &so->next;
1529 }
1530 }
1531
1532 return so_head;
1533}
1534
93a57060 1535/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1536
1537CORE_ADDR
1538svr4_fetch_objfile_link_map (struct objfile *objfile)
1539{
93a57060 1540 struct so_list *so;
6c95b8df 1541 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1542
93a57060 1543 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1544 if (info->main_lm_addr == 0)
e696b3ad 1545 solib_add (NULL, 0, auto_solib_add);
bc4a16ae 1546
93a57060
DJ
1547 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1548 if (objfile == symfile_objfile)
1a816a87 1549 return info->main_lm_addr;
93a57060
DJ
1550
1551 /* The other link map addresses may be found by examining the list
1552 of shared libraries. */
1553 for (so = master_so_list (); so; so = so->next)
1554 if (so->objfile == objfile)
d0e449a1
SM
1555 {
1556 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1557
1558 return li->lm_addr;
1559 }
93a57060
DJ
1560
1561 /* Not found! */
bc4a16ae
EZ
1562 return 0;
1563}
13437d4b
KB
1564
1565/* On some systems, the only way to recognize the link map entry for
1566 the main executable file is by looking at its name. Return
1567 non-zero iff SONAME matches one of the known main executable names. */
1568
1569static int
bc043ef3 1570match_main (const char *soname)
13437d4b 1571{
bc043ef3 1572 const char * const *mainp;
13437d4b
KB
1573
1574 for (mainp = main_name_list; *mainp != NULL; mainp++)
1575 {
1576 if (strcmp (soname, *mainp) == 0)
1577 return (1);
1578 }
1579
1580 return (0);
1581}
1582
13437d4b
KB
1583/* Return 1 if PC lies in the dynamic symbol resolution code of the
1584 SVR4 run time loader. */
13437d4b 1585
7d522c90 1586int
d7fa2ae2 1587svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1588{
6c95b8df
PA
1589 struct svr4_info *info = get_svr4_info ();
1590
1591 return ((pc >= info->interp_text_sect_low
1592 && pc < info->interp_text_sect_high)
1593 || (pc >= info->interp_plt_sect_low
1594 && pc < info->interp_plt_sect_high)
3e5d3a5a 1595 || in_plt_section (pc)
0875794a 1596 || in_gnu_ifunc_stub (pc));
13437d4b 1597}
13437d4b 1598
2f4950cd
AC
1599/* Given an executable's ABFD and target, compute the entry-point
1600 address. */
1601
1602static CORE_ADDR
1603exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1604{
8c2b9656
YQ
1605 CORE_ADDR addr;
1606
2f4950cd
AC
1607 /* KevinB wrote ... for most targets, the address returned by
1608 bfd_get_start_address() is the entry point for the start
1609 function. But, for some targets, bfd_get_start_address() returns
1610 the address of a function descriptor from which the entry point
1611 address may be extracted. This address is extracted by
1612 gdbarch_convert_from_func_ptr_addr(). The method
1613 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1614 function for targets which don't use function descriptors. */
8c2b9656 1615 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1616 bfd_get_start_address (abfd),
1617 targ);
8c2b9656 1618 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1619}
13437d4b 1620
f9e14852
GB
1621/* A probe and its associated action. */
1622
1623struct probe_and_action
1624{
1625 /* The probe. */
935676c9 1626 probe *prob;
f9e14852 1627
729662a5
TT
1628 /* The relocated address of the probe. */
1629 CORE_ADDR address;
1630
f9e14852
GB
1631 /* The action. */
1632 enum probe_action action;
1633};
1634
1635/* Returns a hash code for the probe_and_action referenced by p. */
1636
1637static hashval_t
1638hash_probe_and_action (const void *p)
1639{
19ba03f4 1640 const struct probe_and_action *pa = (const struct probe_and_action *) p;
f9e14852 1641
729662a5 1642 return (hashval_t) pa->address;
f9e14852
GB
1643}
1644
1645/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1646 are equal. */
1647
1648static int
1649equal_probe_and_action (const void *p1, const void *p2)
1650{
19ba03f4
SM
1651 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1652 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
f9e14852 1653
729662a5 1654 return pa1->address == pa2->address;
f9e14852
GB
1655}
1656
1657/* Register a solib event probe and its associated action in the
1658 probes table. */
1659
1660static void
935676c9 1661register_solib_event_probe (probe *prob, CORE_ADDR address,
729662a5 1662 enum probe_action action)
f9e14852
GB
1663{
1664 struct svr4_info *info = get_svr4_info ();
1665 struct probe_and_action lookup, *pa;
1666 void **slot;
1667
1668 /* Create the probes table, if necessary. */
1669 if (info->probes_table == NULL)
1670 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1671 equal_probe_and_action,
1672 xfree, xcalloc, xfree);
1673
935676c9 1674 lookup.prob = prob;
729662a5 1675 lookup.address = address;
f9e14852
GB
1676 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1677 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1678
1679 pa = XCNEW (struct probe_and_action);
935676c9 1680 pa->prob = prob;
729662a5 1681 pa->address = address;
f9e14852
GB
1682 pa->action = action;
1683
1684 *slot = pa;
1685}
1686
1687/* Get the solib event probe at the specified location, and the
1688 action associated with it. Returns NULL if no solib event probe
1689 was found. */
1690
1691static struct probe_and_action *
1692solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1693{
f9e14852
GB
1694 struct probe_and_action lookup;
1695 void **slot;
1696
729662a5 1697 lookup.address = address;
f9e14852
GB
1698 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1699
1700 if (slot == NULL)
1701 return NULL;
1702
1703 return (struct probe_and_action *) *slot;
1704}
1705
1706/* Decide what action to take when the specified solib event probe is
1707 hit. */
1708
1709static enum probe_action
1710solib_event_probe_action (struct probe_and_action *pa)
1711{
1712 enum probe_action action;
73c6b475 1713 unsigned probe_argc = 0;
08a6411c 1714 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1715
1716 action = pa->action;
1717 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1718 return action;
1719
1720 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1721
1722 /* Check that an appropriate number of arguments has been supplied.
1723 We expect:
1724 arg0: Lmid_t lmid (mandatory)
1725 arg1: struct r_debug *debug_base (mandatory)
1726 arg2: struct link_map *new (optional, for incremental updates) */
3bd7e5b7
SDJ
1727 TRY
1728 {
935676c9 1729 probe_argc = pa->prob->get_argument_count (frame);
3bd7e5b7
SDJ
1730 }
1731 CATCH (ex, RETURN_MASK_ERROR)
1732 {
1733 exception_print (gdb_stderr, ex);
1734 probe_argc = 0;
1735 }
1736 END_CATCH
1737
935676c9
SDJ
1738 /* If get_argument_count throws an exception, probe_argc will be set
1739 to zero. However, if pa->prob does not have arguments, then
1740 get_argument_count will succeed but probe_argc will also be zero.
1741 Both cases happen because of different things, but they are
1742 treated equally here: action will be set to
3bd7e5b7 1743 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1744 if (probe_argc == 2)
1745 action = FULL_RELOAD;
1746 else if (probe_argc < 2)
1747 action = PROBES_INTERFACE_FAILED;
1748
1749 return action;
1750}
1751
1752/* Populate the shared object list by reading the entire list of
1753 shared objects from the inferior. Handle special cases relating
1754 to the first elements of the list. Returns nonzero on success. */
1755
1756static int
1757solist_update_full (struct svr4_info *info)
1758{
1759 free_solib_list (info);
1760 info->solib_list = svr4_current_sos_direct (info);
1761
1762 return 1;
1763}
1764
1765/* Update the shared object list starting from the link-map entry
1766 passed by the linker in the probe's third argument. Returns
1767 nonzero if the list was successfully updated, or zero to indicate
1768 failure. */
1769
1770static int
1771solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1772{
1773 struct so_list *tail;
1774 CORE_ADDR prev_lm;
1775
1776 /* svr4_current_sos_direct contains logic to handle a number of
1777 special cases relating to the first elements of the list. To
1778 avoid duplicating this logic we defer to solist_update_full
1779 if the list is empty. */
1780 if (info->solib_list == NULL)
1781 return 0;
1782
1783 /* Fall back to a full update if we are using a remote target
1784 that does not support incremental transfers. */
1785 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1786 return 0;
1787
1788 /* Walk to the end of the list. */
1789 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1790 /* Nothing. */;
d0e449a1
SM
1791
1792 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1793 prev_lm = li->lm_addr;
f9e14852
GB
1794
1795 /* Read the new objects. */
1796 if (info->using_xfer)
1797 {
1798 struct svr4_library_list library_list;
1799 char annex[64];
1800
1801 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1802 phex_nz (lm, sizeof (lm)),
1803 phex_nz (prev_lm, sizeof (prev_lm)));
1804 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1805 return 0;
1806
1807 tail->next = library_list.head;
1808 }
1809 else
1810 {
1811 struct so_list **link = &tail->next;
1812
1813 /* IGNORE_FIRST may safely be set to zero here because the
1814 above check and deferral to solist_update_full ensures
1815 that this call to svr4_read_so_list will never see the
1816 first element. */
1817 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1818 return 0;
1819 }
1820
1821 return 1;
1822}
1823
1824/* Disable the probes-based linker interface and revert to the
1825 original interface. We don't reset the breakpoints as the
1826 ones set up for the probes-based interface are adequate. */
1827
1828static void
1829disable_probes_interface_cleanup (void *arg)
1830{
1831 struct svr4_info *info = get_svr4_info ();
1832
1833 warning (_("Probes-based dynamic linker interface failed.\n"
1834 "Reverting to original interface.\n"));
1835
1836 free_probes_table (info);
1837 free_solib_list (info);
1838}
1839
1840/* Update the solib list as appropriate when using the
1841 probes-based linker interface. Do nothing if using the
1842 standard interface. */
1843
1844static void
1845svr4_handle_solib_event (void)
1846{
1847 struct svr4_info *info = get_svr4_info ();
1848 struct probe_and_action *pa;
1849 enum probe_action action;
06424eac 1850 struct cleanup *old_chain;
ad1c917a 1851 struct value *val = NULL;
f9e14852 1852 CORE_ADDR pc, debug_base, lm = 0;
08a6411c 1853 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1854
1855 /* Do nothing if not using the probes interface. */
1856 if (info->probes_table == NULL)
1857 return;
1858
1859 /* If anything goes wrong we revert to the original linker
1860 interface. */
1861 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1862
1863 pc = regcache_read_pc (get_current_regcache ());
1864 pa = solib_event_probe_at (info, pc);
1865 if (pa == NULL)
1866 {
1867 do_cleanups (old_chain);
1868 return;
1869 }
1870
1871 action = solib_event_probe_action (pa);
1872 if (action == PROBES_INTERFACE_FAILED)
1873 {
1874 do_cleanups (old_chain);
1875 return;
1876 }
1877
1878 if (action == DO_NOTHING)
1879 {
1880 discard_cleanups (old_chain);
1881 return;
1882 }
1883
935676c9 1884 /* evaluate_argument looks up symbols in the dynamic linker
f9e14852
GB
1885 using find_pc_section. find_pc_section is accelerated by a cache
1886 called the section map. The section map is invalidated every
1887 time a shared library is loaded or unloaded, and if the inferior
1888 is generating a lot of shared library events then the section map
1889 will be updated every time svr4_handle_solib_event is called.
1890 We called find_pc_section in svr4_create_solib_event_breakpoints,
1891 so we can guarantee that the dynamic linker's sections are in the
1892 section map. We can therefore inhibit section map updates across
935676c9 1893 these calls to evaluate_argument and save a lot of time. */
06424eac
TT
1894 {
1895 scoped_restore inhibit_updates
1896 = inhibit_section_map_updates (current_program_space);
f9e14852 1897
06424eac
TT
1898 TRY
1899 {
1900 val = pa->prob->evaluate_argument (1, frame);
1901 }
1902 CATCH (ex, RETURN_MASK_ERROR)
1903 {
1904 exception_print (gdb_stderr, ex);
1905 val = NULL;
1906 }
1907 END_CATCH
f9e14852 1908
06424eac
TT
1909 if (val == NULL)
1910 {
1911 do_cleanups (old_chain);
1912 return;
1913 }
f9e14852 1914
06424eac
TT
1915 debug_base = value_as_address (val);
1916 if (debug_base == 0)
1917 {
1918 do_cleanups (old_chain);
1919 return;
1920 }
f9e14852 1921
06424eac
TT
1922 /* Always locate the debug struct, in case it moved. */
1923 info->debug_base = 0;
1924 if (locate_base (info) == 0)
1925 {
1926 do_cleanups (old_chain);
1927 return;
1928 }
3bd7e5b7 1929
06424eac
TT
1930 /* GDB does not currently support libraries loaded via dlmopen
1931 into namespaces other than the initial one. We must ignore
1932 any namespace other than the initial namespace here until
1933 support for this is added to GDB. */
1934 if (debug_base != info->debug_base)
1935 action = DO_NOTHING;
f9e14852 1936
06424eac
TT
1937 if (action == UPDATE_OR_RELOAD)
1938 {
1939 TRY
1940 {
1941 val = pa->prob->evaluate_argument (2, frame);
1942 }
1943 CATCH (ex, RETURN_MASK_ERROR)
1944 {
1945 exception_print (gdb_stderr, ex);
1946 do_cleanups (old_chain);
1947 return;
1948 }
1949 END_CATCH
1950
1951 if (val != NULL)
1952 lm = value_as_address (val);
1953
1954 if (lm == 0)
1955 action = FULL_RELOAD;
1956 }
f9e14852 1957
06424eac
TT
1958 /* Resume section map updates. Closing the scope is
1959 sufficient. */
1960 }
f9e14852
GB
1961
1962 if (action == UPDATE_OR_RELOAD)
1963 {
1964 if (!solist_update_incremental (info, lm))
1965 action = FULL_RELOAD;
1966 }
1967
1968 if (action == FULL_RELOAD)
1969 {
1970 if (!solist_update_full (info))
1971 {
1972 do_cleanups (old_chain);
1973 return;
1974 }
1975 }
1976
1977 discard_cleanups (old_chain);
1978}
1979
1980/* Helper function for svr4_update_solib_event_breakpoints. */
1981
1982static int
1983svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1984{
1985 struct bp_location *loc;
1986
1987 if (b->type != bp_shlib_event)
1988 {
1989 /* Continue iterating. */
1990 return 0;
1991 }
1992
1993 for (loc = b->loc; loc != NULL; loc = loc->next)
1994 {
1995 struct svr4_info *info;
1996 struct probe_and_action *pa;
1997
19ba03f4
SM
1998 info = ((struct svr4_info *)
1999 program_space_data (loc->pspace, solib_svr4_pspace_data));
f9e14852
GB
2000 if (info == NULL || info->probes_table == NULL)
2001 continue;
2002
2003 pa = solib_event_probe_at (info, loc->address);
2004 if (pa == NULL)
2005 continue;
2006
2007 if (pa->action == DO_NOTHING)
2008 {
2009 if (b->enable_state == bp_disabled && stop_on_solib_events)
2010 enable_breakpoint (b);
2011 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2012 disable_breakpoint (b);
2013 }
2014
2015 break;
2016 }
2017
2018 /* Continue iterating. */
2019 return 0;
2020}
2021
2022/* Enable or disable optional solib event breakpoints as appropriate.
2023 Called whenever stop_on_solib_events is changed. */
2024
2025static void
2026svr4_update_solib_event_breakpoints (void)
2027{
2028 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2029}
2030
2031/* Create and register solib event breakpoints. PROBES is an array
2032 of NUM_PROBES elements, each of which is vector of probes. A
2033 solib event breakpoint will be created and registered for each
2034 probe. */
2035
2036static void
2037svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
45461e0d 2038 const std::vector<probe *> *probes,
729662a5 2039 struct objfile *objfile)
f9e14852 2040{
45461e0d 2041 for (int i = 0; i < NUM_PROBES; i++)
f9e14852
GB
2042 {
2043 enum probe_action action = probe_info[i].action;
f9e14852 2044
45461e0d 2045 for (probe *p : probes[i])
f9e14852 2046 {
935676c9 2047 CORE_ADDR address = p->get_relocated_address (objfile);
729662a5
TT
2048
2049 create_solib_event_breakpoint (gdbarch, address);
45461e0d 2050 register_solib_event_probe (p, address, action);
f9e14852
GB
2051 }
2052 }
2053
2054 svr4_update_solib_event_breakpoints ();
2055}
2056
2057/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2058 before and after mapping and unmapping shared libraries. The sole
2059 purpose of this method is to allow debuggers to set a breakpoint so
2060 they can track these changes.
2061
2062 Some versions of the glibc dynamic linker contain named probes
2063 to allow more fine grained stopping. Given the address of the
2064 original marker function, this function attempts to find these
2065 probes, and if found, sets breakpoints on those instead. If the
2066 probes aren't found, a single breakpoint is set on the original
2067 marker function. */
2068
2069static void
2070svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2071 CORE_ADDR address)
2072{
2073 struct obj_section *os;
2074
2075 os = find_pc_section (address);
2076 if (os != NULL)
2077 {
2078 int with_prefix;
2079
2080 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2081 {
45461e0d 2082 std::vector<probe *> probes[NUM_PROBES];
f9e14852 2083 int all_probes_found = 1;
25f9533e 2084 int checked_can_use_probe_arguments = 0;
f9e14852 2085
45461e0d 2086 for (int i = 0; i < NUM_PROBES; i++)
f9e14852
GB
2087 {
2088 const char *name = probe_info[i].name;
935676c9 2089 probe *p;
f9e14852
GB
2090 char buf[32];
2091
2092 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2093 shipped with an early version of the probes code in
2094 which the probes' names were prefixed with "rtld_"
2095 and the "map_failed" probe did not exist. The
2096 locations of the probes are otherwise the same, so
2097 we check for probes with prefixed names if probes
2098 with unprefixed names are not present. */
2099 if (with_prefix)
2100 {
2101 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2102 name = buf;
2103 }
2104
2105 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2106
2107 /* The "map_failed" probe did not exist in early
2108 versions of the probes code in which the probes'
2109 names were prefixed with "rtld_". */
2110 if (strcmp (name, "rtld_map_failed") == 0)
2111 continue;
2112
45461e0d 2113 if (probes[i].empty ())
f9e14852
GB
2114 {
2115 all_probes_found = 0;
2116 break;
2117 }
25f9533e
SDJ
2118
2119 /* Ensure probe arguments can be evaluated. */
2120 if (!checked_can_use_probe_arguments)
2121 {
45461e0d 2122 p = probes[i][0];
935676c9 2123 if (!p->can_evaluate_arguments ())
25f9533e
SDJ
2124 {
2125 all_probes_found = 0;
2126 break;
2127 }
2128 checked_can_use_probe_arguments = 1;
2129 }
f9e14852
GB
2130 }
2131
2132 if (all_probes_found)
729662a5 2133 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
f9e14852 2134
f9e14852
GB
2135 if (all_probes_found)
2136 return;
2137 }
2138 }
2139
2140 create_solib_event_breakpoint (gdbarch, address);
2141}
2142
cb457ae2
YQ
2143/* Helper function for gdb_bfd_lookup_symbol. */
2144
2145static int
3953f15c 2146cmp_name_and_sec_flags (const asymbol *sym, const void *data)
cb457ae2
YQ
2147{
2148 return (strcmp (sym->name, (const char *) data) == 0
2149 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2150}
7f86f058 2151/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2152
2153 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2154 debugger interface, support for arranging for the inferior to hit
2155 a breakpoint after mapping in the shared libraries. This function
2156 enables that breakpoint.
2157
2158 For SunOS, there is a special flag location (in_debugger) which we
2159 set to 1. When the dynamic linker sees this flag set, it will set
2160 a breakpoint at a location known only to itself, after saving the
2161 original contents of that place and the breakpoint address itself,
2162 in it's own internal structures. When we resume the inferior, it
2163 will eventually take a SIGTRAP when it runs into the breakpoint.
2164 We handle this (in a different place) by restoring the contents of
2165 the breakpointed location (which is only known after it stops),
2166 chasing around to locate the shared libraries that have been
2167 loaded, then resuming.
2168
2169 For SVR4, the debugger interface structure contains a member (r_brk)
2170 which is statically initialized at the time the shared library is
2171 built, to the offset of a function (_r_debug_state) which is guaran-
2172 teed to be called once before mapping in a library, and again when
2173 the mapping is complete. At the time we are examining this member,
2174 it contains only the unrelocated offset of the function, so we have
2175 to do our own relocation. Later, when the dynamic linker actually
2176 runs, it relocates r_brk to be the actual address of _r_debug_state().
2177
2178 The debugger interface structure also contains an enumeration which
2179 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2180 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2181 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2182
2183static int
268a4a75 2184enable_break (struct svr4_info *info, int from_tty)
13437d4b 2185{
3b7344d5 2186 struct bound_minimal_symbol msymbol;
bc043ef3 2187 const char * const *bkpt_namep;
13437d4b 2188 asection *interp_sect;
7cd25cfc 2189 CORE_ADDR sym_addr;
13437d4b 2190
6c95b8df
PA
2191 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2192 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2193
7cd25cfc
DJ
2194 /* If we already have a shared library list in the target, and
2195 r_debug contains r_brk, set the breakpoint there - this should
2196 mean r_brk has already been relocated. Assume the dynamic linker
2197 is the object containing r_brk. */
2198
e696b3ad 2199 solib_add (NULL, from_tty, auto_solib_add);
7cd25cfc 2200 sym_addr = 0;
1a816a87
PA
2201 if (info->debug_base && solib_svr4_r_map (info) != 0)
2202 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2203
2204 if (sym_addr != 0)
2205 {
2206 struct obj_section *os;
2207
b36ec657 2208 sym_addr = gdbarch_addr_bits_remove
8b88a78e
PA
2209 (target_gdbarch (),
2210 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2211 sym_addr,
2212 current_top_target ()));
b36ec657 2213
48379de6
DE
2214 /* On at least some versions of Solaris there's a dynamic relocation
2215 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2216 we get control before the dynamic linker has self-relocated.
2217 Check if SYM_ADDR is in a known section, if it is assume we can
2218 trust its value. This is just a heuristic though, it could go away
2219 or be replaced if it's getting in the way.
2220
2221 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2222 however it's spelled in your particular system) is ARM or Thumb.
2223 That knowledge is encoded in the address, if it's Thumb the low bit
2224 is 1. However, we've stripped that info above and it's not clear
2225 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2226 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2227 find_pc_section verifies we know about the address and have some
2228 hope of computing the right kind of breakpoint to use (via
2229 symbol info). It does mean that GDB needs to be pointed at a
2230 non-stripped version of the dynamic linker in order to obtain
2231 information it already knows about. Sigh. */
2232
7cd25cfc
DJ
2233 os = find_pc_section (sym_addr);
2234 if (os != NULL)
2235 {
2236 /* Record the relocated start and end address of the dynamic linker
2237 text and plt section for svr4_in_dynsym_resolve_code. */
2238 bfd *tmp_bfd;
2239 CORE_ADDR load_addr;
2240
2241 tmp_bfd = os->objfile->obfd;
2242 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 2243 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
2244
2245 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2246 if (interp_sect)
2247 {
6c95b8df 2248 info->interp_text_sect_low =
7cd25cfc 2249 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2250 info->interp_text_sect_high =
2251 info->interp_text_sect_low
2252 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2253 }
2254 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2255 if (interp_sect)
2256 {
6c95b8df 2257 info->interp_plt_sect_low =
7cd25cfc 2258 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2259 info->interp_plt_sect_high =
2260 info->interp_plt_sect_low
2261 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2262 }
2263
f9e14852 2264 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
7cd25cfc
DJ
2265 return 1;
2266 }
2267 }
2268
97ec2c2f 2269 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2270 into the old breakpoint at symbol code. */
17658d46
SM
2271 gdb::optional<gdb::byte_vector> interp_name_holder
2272 = find_program_interpreter ();
2273 if (interp_name_holder)
13437d4b 2274 {
17658d46 2275 const char *interp_name = (const char *) interp_name_holder->data ();
8ad2fcde
KB
2276 CORE_ADDR load_addr = 0;
2277 int load_addr_found = 0;
2ec9a4f8 2278 int loader_found_in_list = 0;
f8766ec1 2279 struct so_list *so;
2f4950cd 2280 struct target_ops *tmp_bfd_target;
13437d4b 2281
7cd25cfc 2282 sym_addr = 0;
13437d4b
KB
2283
2284 /* Now we need to figure out where the dynamic linker was
2285 loaded so that we can load its symbols and place a breakpoint
2286 in the dynamic linker itself.
2287
2288 This address is stored on the stack. However, I've been unable
2289 to find any magic formula to find it for Solaris (appears to
2290 be trivial on GNU/Linux). Therefore, we have to try an alternate
2291 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2292
192b62ce 2293 gdb_bfd_ref_ptr tmp_bfd;
492d29ea 2294 TRY
f1838a98 2295 {
97ec2c2f 2296 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2297 }
492d29ea
PA
2298 CATCH (ex, RETURN_MASK_ALL)
2299 {
2300 }
2301 END_CATCH
2302
13437d4b
KB
2303 if (tmp_bfd == NULL)
2304 goto bkpt_at_symbol;
2305
2f4950cd 2306 /* Now convert the TMP_BFD into a target. That way target, as
192b62ce
TT
2307 well as BFD operations can be used. target_bfd_reopen
2308 acquires its own reference. */
2309 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2f4950cd 2310
f8766ec1
KB
2311 /* On a running target, we can get the dynamic linker's base
2312 address from the shared library table. */
f8766ec1
KB
2313 so = master_so_list ();
2314 while (so)
8ad2fcde 2315 {
97ec2c2f 2316 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2317 {
2318 load_addr_found = 1;
2ec9a4f8 2319 loader_found_in_list = 1;
192b62ce 2320 load_addr = lm_addr_check (so, tmp_bfd.get ());
8ad2fcde
KB
2321 break;
2322 }
f8766ec1 2323 so = so->next;
8ad2fcde
KB
2324 }
2325
8d4e36ba
JB
2326 /* If we were not able to find the base address of the loader
2327 from our so_list, then try using the AT_BASE auxilliary entry. */
2328 if (!load_addr_found)
8b88a78e 2329 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
ad3a0e5b 2330 {
f5656ead 2331 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2332
2333 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2334 that `+ load_addr' will overflow CORE_ADDR width not creating
2335 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2336 GDB. */
2337
d182d057 2338 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2339 {
d182d057 2340 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
192b62ce 2341 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
ad3a0e5b
JK
2342 tmp_bfd_target);
2343
2344 gdb_assert (load_addr < space_size);
2345
2346 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2347 64bit ld.so with 32bit executable, it should not happen. */
2348
2349 if (tmp_entry_point < space_size
2350 && tmp_entry_point + load_addr >= space_size)
2351 load_addr -= space_size;
2352 }
2353
2354 load_addr_found = 1;
2355 }
8d4e36ba 2356
8ad2fcde
KB
2357 /* Otherwise we find the dynamic linker's base address by examining
2358 the current pc (which should point at the entry point for the
8d4e36ba
JB
2359 dynamic linker) and subtracting the offset of the entry point.
2360
2361 This is more fragile than the previous approaches, but is a good
2362 fallback method because it has actually been working well in
2363 most cases. */
8ad2fcde 2364 if (!load_addr_found)
fb14de7b 2365 {
c2250ad1 2366 struct regcache *regcache
f5656ead 2367 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 2368
fb14de7b 2369 load_addr = (regcache_read_pc (regcache)
192b62ce 2370 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
fb14de7b 2371 }
2ec9a4f8
DJ
2372
2373 if (!loader_found_in_list)
34439770 2374 {
1a816a87
PA
2375 info->debug_loader_name = xstrdup (interp_name);
2376 info->debug_loader_offset_p = 1;
2377 info->debug_loader_offset = load_addr;
e696b3ad 2378 solib_add (NULL, from_tty, auto_solib_add);
34439770 2379 }
13437d4b
KB
2380
2381 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2382 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 2383 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
13437d4b
KB
2384 if (interp_sect)
2385 {
6c95b8df 2386 info->interp_text_sect_low =
192b62ce 2387 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
6c95b8df
PA
2388 info->interp_text_sect_high =
2389 info->interp_text_sect_low
192b62ce 2390 + bfd_section_size (tmp_bfd.get (), interp_sect);
13437d4b 2391 }
192b62ce 2392 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
13437d4b
KB
2393 if (interp_sect)
2394 {
6c95b8df 2395 info->interp_plt_sect_low =
192b62ce 2396 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
6c95b8df
PA
2397 info->interp_plt_sect_high =
2398 info->interp_plt_sect_low
192b62ce 2399 + bfd_section_size (tmp_bfd.get (), interp_sect);
13437d4b
KB
2400 }
2401
2402 /* Now try to set a breakpoint in the dynamic linker. */
2403 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2404 {
192b62ce
TT
2405 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2406 cmp_name_and_sec_flags,
3953f15c 2407 *bkpt_namep);
13437d4b
KB
2408 if (sym_addr != 0)
2409 break;
2410 }
2411
2bbe3cc1
DJ
2412 if (sym_addr != 0)
2413 /* Convert 'sym_addr' from a function pointer to an address.
2414 Because we pass tmp_bfd_target instead of the current
2415 target, this will always produce an unrelocated value. */
f5656ead 2416 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2417 sym_addr,
2418 tmp_bfd_target);
2419
695c3173
TT
2420 /* We're done with both the temporary bfd and target. Closing
2421 the target closes the underlying bfd, because it holds the
2422 only remaining reference. */
460014f5 2423 target_close (tmp_bfd_target);
13437d4b
KB
2424
2425 if (sym_addr != 0)
2426 {
f9e14852
GB
2427 svr4_create_solib_event_breakpoints (target_gdbarch (),
2428 load_addr + sym_addr);
13437d4b
KB
2429 return 1;
2430 }
2431
2432 /* For whatever reason we couldn't set a breakpoint in the dynamic
2433 linker. Warn and drop into the old code. */
2434 bkpt_at_symbol:
82d03102
PG
2435 warning (_("Unable to find dynamic linker breakpoint function.\n"
2436 "GDB will be unable to debug shared library initializers\n"
2437 "and track explicitly loaded dynamic code."));
13437d4b 2438 }
13437d4b 2439
e499d0f1
DJ
2440 /* Scan through the lists of symbols, trying to look up the symbol and
2441 set a breakpoint there. Terminate loop when we/if we succeed. */
2442
2443 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2444 {
2445 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2446 if ((msymbol.minsym != NULL)
77e371c0 2447 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2448 {
77e371c0 2449 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2450 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac 2451 sym_addr,
8b88a78e 2452 current_top_target ());
f9e14852 2453 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
e499d0f1
DJ
2454 return 1;
2455 }
2456 }
13437d4b 2457
17658d46 2458 if (interp_name_holder && !current_inferior ()->attach_flag)
13437d4b 2459 {
c6490bf2 2460 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2461 {
c6490bf2 2462 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2463 if ((msymbol.minsym != NULL)
77e371c0 2464 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2465 {
77e371c0 2466 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2467 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2 2468 sym_addr,
8b88a78e 2469 current_top_target ());
f9e14852 2470 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
c6490bf2
KB
2471 return 1;
2472 }
13437d4b
KB
2473 }
2474 }
542c95c2 2475 return 0;
13437d4b
KB
2476}
2477
d1012b8e 2478/* Read the ELF program headers from ABFD. */
e2a44558 2479
d1012b8e
SM
2480static gdb::optional<gdb::byte_vector>
2481read_program_headers_from_bfd (bfd *abfd)
e2a44558 2482{
d1012b8e
SM
2483 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2484 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2485 if (phdrs_size == 0)
2486 return {};
09919ac2 2487
d1012b8e 2488 gdb::byte_vector buf (phdrs_size);
09919ac2 2489 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
d1012b8e
SM
2490 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2491 return {};
09919ac2
JK
2492
2493 return buf;
b8040f19
JK
2494}
2495
01c30d6e
JK
2496/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2497 exec_bfd. Otherwise return 0.
2498
2499 We relocate all of the sections by the same amount. This
c378eb4e 2500 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2501 According to the System V Application Binary Interface,
2502 Edition 4.1, page 5-5:
2503
2504 ... Though the system chooses virtual addresses for
2505 individual processes, it maintains the segments' relative
2506 positions. Because position-independent code uses relative
2507 addressesing between segments, the difference between
2508 virtual addresses in memory must match the difference
2509 between virtual addresses in the file. The difference
2510 between the virtual address of any segment in memory and
2511 the corresponding virtual address in the file is thus a
2512 single constant value for any one executable or shared
2513 object in a given process. This difference is the base
2514 address. One use of the base address is to relocate the
2515 memory image of the program during dynamic linking.
2516
2517 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2518 ABI and is left unspecified in some of the earlier editions.
2519
2520 Decide if the objfile needs to be relocated. As indicated above, we will
2521 only be here when execution is stopped. But during attachment PC can be at
2522 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2523 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2524 regcache_read_pc would point to the interpreter and not the main executable.
2525
2526 So, to summarize, relocations are necessary when the start address obtained
2527 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2528
09919ac2
JK
2529 [ The astute reader will note that we also test to make sure that
2530 the executable in question has the DYNAMIC flag set. It is my
2531 opinion that this test is unnecessary (undesirable even). It
2532 was added to avoid inadvertent relocation of an executable
2533 whose e_type member in the ELF header is not ET_DYN. There may
2534 be a time in the future when it is desirable to do relocations
2535 on other types of files as well in which case this condition
2536 should either be removed or modified to accomodate the new file
2537 type. - Kevin, Nov 2000. ] */
b8040f19 2538
01c30d6e
JK
2539static int
2540svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2541{
41752192
JK
2542 /* ENTRY_POINT is a possible function descriptor - before
2543 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2544 CORE_ADDR entry_point, exec_displacement;
b8040f19
JK
2545
2546 if (exec_bfd == NULL)
2547 return 0;
2548
09919ac2
JK
2549 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2550 being executed themselves and PIE (Position Independent Executable)
2551 executables are ET_DYN. */
2552
2553 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2554 return 0;
2555
8b88a78e 2556 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
09919ac2
JK
2557 return 0;
2558
8f61baf8 2559 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
09919ac2 2560
8f61baf8 2561 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2562 alignment. It is cheaper than the program headers comparison below. */
2563
2564 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2565 {
2566 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2567
2568 /* p_align of PT_LOAD segments does not specify any alignment but
2569 only congruency of addresses:
2570 p_offset % p_align == p_vaddr % p_align
2571 Kernel is free to load the executable with lower alignment. */
2572
8f61baf8 2573 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2574 return 0;
2575 }
2576
2577 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2578 comparing their program headers. If the program headers in the auxilliary
2579 vector do not match the program headers in the executable, then we are
2580 looking at a different file than the one used by the kernel - for
2581 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2582
2583 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2584 {
d1012b8e 2585 /* Be optimistic and return 0 only if GDB was able to verify the headers
09919ac2 2586 really do not match. */
0a1e94c7 2587 int arch_size;
09919ac2 2588
17658d46
SM
2589 gdb::optional<gdb::byte_vector> phdrs_target
2590 = read_program_header (-1, &arch_size, NULL);
d1012b8e
SM
2591 gdb::optional<gdb::byte_vector> phdrs_binary
2592 = read_program_headers_from_bfd (exec_bfd);
2593 if (phdrs_target && phdrs_binary)
0a1e94c7 2594 {
f5656ead 2595 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2596
2597 /* We are dealing with three different addresses. EXEC_BFD
2598 represents current address in on-disk file. target memory content
2599 may be different from EXEC_BFD as the file may have been prelinked
2600 to a different address after the executable has been loaded.
2601 Moreover the address of placement in target memory can be
3e43a32a
MS
2602 different from what the program headers in target memory say -
2603 this is the goal of PIE.
0a1e94c7
JK
2604
2605 Detected DISPLACEMENT covers both the offsets of PIE placement and
2606 possible new prelink performed after start of the program. Here
2607 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2608 content offset for the verification purpose. */
2609
d1012b8e 2610 if (phdrs_target->size () != phdrs_binary->size ()
0a1e94c7 2611 || bfd_get_arch_size (exec_bfd) != arch_size)
d1012b8e 2612 return 0;
3e43a32a 2613 else if (arch_size == 32
17658d46
SM
2614 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2615 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
0a1e94c7
JK
2616 {
2617 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2618 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2619 CORE_ADDR displacement = 0;
2620 int i;
2621
2622 /* DISPLACEMENT could be found more easily by the difference of
2623 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2624 already have enough information to compute that displacement
2625 with what we've read. */
2626
2627 for (i = 0; i < ehdr2->e_phnum; i++)
2628 if (phdr2[i].p_type == PT_LOAD)
2629 {
2630 Elf32_External_Phdr *phdrp;
2631 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2632 CORE_ADDR vaddr, paddr;
2633 CORE_ADDR displacement_vaddr = 0;
2634 CORE_ADDR displacement_paddr = 0;
2635
17658d46 2636 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2637 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2638 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2639
2640 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2641 byte_order);
2642 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2643
2644 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2645 byte_order);
2646 displacement_paddr = paddr - phdr2[i].p_paddr;
2647
2648 if (displacement_vaddr == displacement_paddr)
2649 displacement = displacement_vaddr;
2650
2651 break;
2652 }
2653
17658d46
SM
2654 /* Now compare program headers from the target and the binary
2655 with optional DISPLACEMENT. */
0a1e94c7 2656
17658d46
SM
2657 for (i = 0;
2658 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2659 i++)
0a1e94c7
JK
2660 {
2661 Elf32_External_Phdr *phdrp;
2662 Elf32_External_Phdr *phdr2p;
2663 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2664 CORE_ADDR vaddr, paddr;
43b8e241 2665 asection *plt2_asect;
0a1e94c7 2666
17658d46 2667 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2668 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2669 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2670 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2671
2672 /* PT_GNU_STACK is an exception by being never relocated by
2673 prelink as its addresses are always zero. */
2674
2675 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2676 continue;
2677
2678 /* Check also other adjustment combinations - PR 11786. */
2679
3e43a32a
MS
2680 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2681 byte_order);
0a1e94c7
JK
2682 vaddr -= displacement;
2683 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2684
3e43a32a
MS
2685 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2686 byte_order);
0a1e94c7
JK
2687 paddr -= displacement;
2688 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2689
2690 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2691 continue;
2692
204b5331
DE
2693 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2694 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2695 Strip also modifies memsz of PT_TLS.
204b5331 2696 See PR 11786. */
c44deb73
SM
2697 if (phdr2[i].p_type == PT_GNU_RELRO
2698 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2699 {
2700 Elf32_External_Phdr tmp_phdr = *phdrp;
2701 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2702
2703 memset (tmp_phdr.p_filesz, 0, 4);
2704 memset (tmp_phdr.p_memsz, 0, 4);
2705 memset (tmp_phdr.p_flags, 0, 4);
2706 memset (tmp_phdr.p_align, 0, 4);
2707 memset (tmp_phdr2.p_filesz, 0, 4);
2708 memset (tmp_phdr2.p_memsz, 0, 4);
2709 memset (tmp_phdr2.p_flags, 0, 4);
2710 memset (tmp_phdr2.p_align, 0, 4);
2711
2712 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2713 == 0)
2714 continue;
2715 }
2716
43b8e241
JK
2717 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2718 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2719 if (plt2_asect)
2720 {
2721 int content2;
2722 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2723 CORE_ADDR filesz;
2724
2725 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2726 & SEC_HAS_CONTENTS) != 0;
2727
2728 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2729 byte_order);
2730
2731 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2732 FILESZ is from the in-memory image. */
2733 if (content2)
2734 filesz += bfd_get_section_size (plt2_asect);
2735 else
2736 filesz -= bfd_get_section_size (plt2_asect);
2737
2738 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2739 filesz);
2740
2741 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2742 continue;
2743 }
2744
d1012b8e 2745 return 0;
0a1e94c7
JK
2746 }
2747 }
3e43a32a 2748 else if (arch_size == 64
17658d46
SM
2749 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2750 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
0a1e94c7
JK
2751 {
2752 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2753 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2754 CORE_ADDR displacement = 0;
2755 int i;
2756
2757 /* DISPLACEMENT could be found more easily by the difference of
2758 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2759 already have enough information to compute that displacement
2760 with what we've read. */
2761
2762 for (i = 0; i < ehdr2->e_phnum; i++)
2763 if (phdr2[i].p_type == PT_LOAD)
2764 {
2765 Elf64_External_Phdr *phdrp;
2766 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2767 CORE_ADDR vaddr, paddr;
2768 CORE_ADDR displacement_vaddr = 0;
2769 CORE_ADDR displacement_paddr = 0;
2770
17658d46 2771 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2772 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2773 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2774
2775 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2776 byte_order);
2777 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2778
2779 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2780 byte_order);
2781 displacement_paddr = paddr - phdr2[i].p_paddr;
2782
2783 if (displacement_vaddr == displacement_paddr)
2784 displacement = displacement_vaddr;
2785
2786 break;
2787 }
2788
2789 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2790
17658d46
SM
2791 for (i = 0;
2792 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2793 i++)
0a1e94c7
JK
2794 {
2795 Elf64_External_Phdr *phdrp;
2796 Elf64_External_Phdr *phdr2p;
2797 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2798 CORE_ADDR vaddr, paddr;
43b8e241 2799 asection *plt2_asect;
0a1e94c7 2800
17658d46 2801 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2802 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2803 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2804 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2805
2806 /* PT_GNU_STACK is an exception by being never relocated by
2807 prelink as its addresses are always zero. */
2808
2809 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2810 continue;
2811
2812 /* Check also other adjustment combinations - PR 11786. */
2813
3e43a32a
MS
2814 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2815 byte_order);
0a1e94c7
JK
2816 vaddr -= displacement;
2817 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2818
3e43a32a
MS
2819 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2820 byte_order);
0a1e94c7
JK
2821 paddr -= displacement;
2822 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2823
2824 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2825 continue;
2826
204b5331
DE
2827 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2828 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2829 Strip also modifies memsz of PT_TLS.
204b5331 2830 See PR 11786. */
c44deb73
SM
2831 if (phdr2[i].p_type == PT_GNU_RELRO
2832 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2833 {
2834 Elf64_External_Phdr tmp_phdr = *phdrp;
2835 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2836
2837 memset (tmp_phdr.p_filesz, 0, 8);
2838 memset (tmp_phdr.p_memsz, 0, 8);
2839 memset (tmp_phdr.p_flags, 0, 4);
2840 memset (tmp_phdr.p_align, 0, 8);
2841 memset (tmp_phdr2.p_filesz, 0, 8);
2842 memset (tmp_phdr2.p_memsz, 0, 8);
2843 memset (tmp_phdr2.p_flags, 0, 4);
2844 memset (tmp_phdr2.p_align, 0, 8);
2845
2846 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2847 == 0)
2848 continue;
2849 }
2850
43b8e241
JK
2851 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2852 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2853 if (plt2_asect)
2854 {
2855 int content2;
2856 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2857 CORE_ADDR filesz;
2858
2859 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2860 & SEC_HAS_CONTENTS) != 0;
2861
2862 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2863 byte_order);
2864
2865 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2866 FILESZ is from the in-memory image. */
2867 if (content2)
2868 filesz += bfd_get_section_size (plt2_asect);
2869 else
2870 filesz -= bfd_get_section_size (plt2_asect);
2871
2872 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2873 filesz);
2874
2875 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2876 continue;
2877 }
2878
d1012b8e 2879 return 0;
0a1e94c7
JK
2880 }
2881 }
2882 else
d1012b8e 2883 return 0;
0a1e94c7 2884 }
09919ac2 2885 }
b8040f19 2886
ccf26247
JK
2887 if (info_verbose)
2888 {
2889 /* It can be printed repeatedly as there is no easy way to check
2890 the executable symbols/file has been already relocated to
2891 displacement. */
2892
2893 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2894 "displacement %s for \"%s\".\n"),
8f61baf8 2895 paddress (target_gdbarch (), exec_displacement),
ccf26247
JK
2896 bfd_get_filename (exec_bfd));
2897 }
2898
8f61baf8 2899 *displacementp = exec_displacement;
01c30d6e 2900 return 1;
b8040f19
JK
2901}
2902
2903/* Relocate the main executable. This function should be called upon
c378eb4e 2904 stopping the inferior process at the entry point to the program.
b8040f19
JK
2905 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2906 different, the main executable is relocated by the proper amount. */
2907
2908static void
2909svr4_relocate_main_executable (void)
2910{
01c30d6e
JK
2911 CORE_ADDR displacement;
2912
4e5799b6
JK
2913 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2914 probably contains the offsets computed using the PIE displacement
2915 from the previous run, which of course are irrelevant for this run.
2916 So we need to determine the new PIE displacement and recompute the
2917 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2918 already contains pre-computed offsets.
01c30d6e 2919
4e5799b6 2920 If we cannot compute the PIE displacement, either:
01c30d6e 2921
4e5799b6
JK
2922 - The executable is not PIE.
2923
2924 - SYMFILE_OBJFILE does not match the executable started in the target.
2925 This can happen for main executable symbols loaded at the host while
2926 `ld.so --ld-args main-executable' is loaded in the target.
2927
2928 Then we leave the section offsets untouched and use them as is for
2929 this run. Either:
2930
2931 - These section offsets were properly reset earlier, and thus
2932 already contain the correct values. This can happen for instance
2933 when reconnecting via the remote protocol to a target that supports
2934 the `qOffsets' packet.
2935
2936 - The section offsets were not reset earlier, and the best we can
c378eb4e 2937 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2938
2939 if (! svr4_exec_displacement (&displacement))
2940 return;
b8040f19 2941
01c30d6e
JK
2942 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2943 addresses. */
b8040f19
JK
2944
2945 if (symfile_objfile)
e2a44558 2946 {
e2a44558 2947 struct section_offsets *new_offsets;
b8040f19 2948 int i;
e2a44558 2949
224c3ddb
SM
2950 new_offsets = XALLOCAVEC (struct section_offsets,
2951 symfile_objfile->num_sections);
e2a44558 2952
b8040f19
JK
2953 for (i = 0; i < symfile_objfile->num_sections; i++)
2954 new_offsets->offsets[i] = displacement;
e2a44558 2955
b8040f19 2956 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2957 }
51bee8e9
JK
2958 else if (exec_bfd)
2959 {
2960 asection *asect;
2961
2962 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2963 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2964 (bfd_section_vma (exec_bfd, asect)
2965 + displacement));
2966 }
e2a44558
KB
2967}
2968
7f86f058 2969/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2970
2971 For SVR4 executables, this first instruction is either the first
2972 instruction in the dynamic linker (for dynamically linked
2973 executables) or the instruction at "start" for statically linked
2974 executables. For dynamically linked executables, the system
2975 first exec's /lib/libc.so.N, which contains the dynamic linker,
2976 and starts it running. The dynamic linker maps in any needed
2977 shared libraries, maps in the actual user executable, and then
2978 jumps to "start" in the user executable.
2979
7f86f058
PA
2980 We can arrange to cooperate with the dynamic linker to discover the
2981 names of shared libraries that are dynamically linked, and the base
2982 addresses to which they are linked.
13437d4b
KB
2983
2984 This function is responsible for discovering those names and
2985 addresses, and saving sufficient information about them to allow
d2e5c99a 2986 their symbols to be read at a later time. */
13437d4b 2987
e2a44558 2988static void
268a4a75 2989svr4_solib_create_inferior_hook (int from_tty)
13437d4b 2990{
1a816a87
PA
2991 struct svr4_info *info;
2992
6c95b8df 2993 info = get_svr4_info ();
2020b7ab 2994
f9e14852
GB
2995 /* Clear the probes-based interface's state. */
2996 free_probes_table (info);
2997 free_solib_list (info);
2998
e2a44558 2999 /* Relocate the main executable if necessary. */
86e4bafc 3000 svr4_relocate_main_executable ();
e2a44558 3001
c91c8c16
PA
3002 /* No point setting a breakpoint in the dynamic linker if we can't
3003 hit it (e.g., a core file, or a trace file). */
3004 if (!target_has_execution)
3005 return;
3006
d5a921c9 3007 if (!svr4_have_link_map_offsets ())
513f5903 3008 return;
d5a921c9 3009
268a4a75 3010 if (!enable_break (info, from_tty))
542c95c2 3011 return;
13437d4b
KB
3012}
3013
3014static void
3015svr4_clear_solib (void)
3016{
6c95b8df
PA
3017 struct svr4_info *info;
3018
3019 info = get_svr4_info ();
3020 info->debug_base = 0;
3021 info->debug_loader_offset_p = 0;
3022 info->debug_loader_offset = 0;
3023 xfree (info->debug_loader_name);
3024 info->debug_loader_name = NULL;
13437d4b
KB
3025}
3026
6bb7be43
JB
3027/* Clear any bits of ADDR that wouldn't fit in a target-format
3028 data pointer. "Data pointer" here refers to whatever sort of
3029 address the dynamic linker uses to manage its sections. At the
3030 moment, we don't support shared libraries on any processors where
3031 code and data pointers are different sizes.
3032
3033 This isn't really the right solution. What we really need here is
3034 a way to do arithmetic on CORE_ADDR values that respects the
3035 natural pointer/address correspondence. (For example, on the MIPS,
3036 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3037 sign-extend the value. There, simply truncating the bits above
819844ad 3038 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3039 be a new gdbarch method or something. */
3040static CORE_ADDR
3041svr4_truncate_ptr (CORE_ADDR addr)
3042{
f5656ead 3043 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3044 /* We don't need to truncate anything, and the bit twiddling below
3045 will fail due to overflow problems. */
3046 return addr;
3047 else
f5656ead 3048 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3049}
3050
3051
749499cb
KB
3052static void
3053svr4_relocate_section_addresses (struct so_list *so,
0542c86d 3054 struct target_section *sec)
749499cb 3055{
2b2848e2
DE
3056 bfd *abfd = sec->the_bfd_section->owner;
3057
3058 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3059 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3060}
4b188b9f 3061\f
749499cb 3062
4b188b9f 3063/* Architecture-specific operations. */
6bb7be43 3064
4b188b9f
MK
3065/* Per-architecture data key. */
3066static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3067
4b188b9f 3068struct solib_svr4_ops
e5e2b9ff 3069{
4b188b9f
MK
3070 /* Return a description of the layout of `struct link_map'. */
3071 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3072};
e5e2b9ff 3073
4b188b9f 3074/* Return a default for the architecture-specific operations. */
e5e2b9ff 3075
4b188b9f
MK
3076static void *
3077solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3078{
4b188b9f 3079 struct solib_svr4_ops *ops;
e5e2b9ff 3080
4b188b9f 3081 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3082 ops->fetch_link_map_offsets = NULL;
4b188b9f 3083 return ops;
e5e2b9ff
KB
3084}
3085
4b188b9f 3086/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3087 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3088
21479ded 3089void
e5e2b9ff
KB
3090set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3091 struct link_map_offsets *(*flmo) (void))
21479ded 3092{
19ba03f4
SM
3093 struct solib_svr4_ops *ops
3094 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
4b188b9f
MK
3095
3096 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3097
3098 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
3099}
3100
4b188b9f
MK
3101/* Fetch a link_map_offsets structure using the architecture-specific
3102 `struct link_map_offsets' fetcher. */
1c4dcb57 3103
4b188b9f
MK
3104static struct link_map_offsets *
3105svr4_fetch_link_map_offsets (void)
21479ded 3106{
19ba03f4
SM
3107 struct solib_svr4_ops *ops
3108 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3109 solib_svr4_data);
4b188b9f
MK
3110
3111 gdb_assert (ops->fetch_link_map_offsets);
3112 return ops->fetch_link_map_offsets ();
21479ded
KB
3113}
3114
4b188b9f
MK
3115/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3116
3117static int
3118svr4_have_link_map_offsets (void)
3119{
19ba03f4
SM
3120 struct solib_svr4_ops *ops
3121 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3122 solib_svr4_data);
433759f7 3123
4b188b9f
MK
3124 return (ops->fetch_link_map_offsets != NULL);
3125}
3126\f
3127
e4bbbda8
MK
3128/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3129 `struct r_debug' and a `struct link_map' that are binary compatible
3130 with the origional SVR4 implementation. */
3131
3132/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3133 for an ILP32 SVR4 system. */
d989b283 3134
e4bbbda8
MK
3135struct link_map_offsets *
3136svr4_ilp32_fetch_link_map_offsets (void)
3137{
3138 static struct link_map_offsets lmo;
3139 static struct link_map_offsets *lmp = NULL;
3140
3141 if (lmp == NULL)
3142 {
3143 lmp = &lmo;
3144
e4cd0d6a
MK
3145 lmo.r_version_offset = 0;
3146 lmo.r_version_size = 4;
e4bbbda8 3147 lmo.r_map_offset = 4;
7cd25cfc 3148 lmo.r_brk_offset = 8;
e4cd0d6a 3149 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3150
3151 /* Everything we need is in the first 20 bytes. */
3152 lmo.link_map_size = 20;
3153 lmo.l_addr_offset = 0;
e4bbbda8 3154 lmo.l_name_offset = 4;
cc10cae3 3155 lmo.l_ld_offset = 8;
e4bbbda8 3156 lmo.l_next_offset = 12;
e4bbbda8 3157 lmo.l_prev_offset = 16;
e4bbbda8
MK
3158 }
3159
3160 return lmp;
3161}
3162
3163/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3164 for an LP64 SVR4 system. */
d989b283 3165
e4bbbda8
MK
3166struct link_map_offsets *
3167svr4_lp64_fetch_link_map_offsets (void)
3168{
3169 static struct link_map_offsets lmo;
3170 static struct link_map_offsets *lmp = NULL;
3171
3172 if (lmp == NULL)
3173 {
3174 lmp = &lmo;
3175
e4cd0d6a
MK
3176 lmo.r_version_offset = 0;
3177 lmo.r_version_size = 4;
e4bbbda8 3178 lmo.r_map_offset = 8;
7cd25cfc 3179 lmo.r_brk_offset = 16;
e4cd0d6a 3180 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3181
3182 /* Everything we need is in the first 40 bytes. */
3183 lmo.link_map_size = 40;
3184 lmo.l_addr_offset = 0;
e4bbbda8 3185 lmo.l_name_offset = 8;
cc10cae3 3186 lmo.l_ld_offset = 16;
e4bbbda8 3187 lmo.l_next_offset = 24;
e4bbbda8 3188 lmo.l_prev_offset = 32;
e4bbbda8
MK
3189 }
3190
3191 return lmp;
3192}
3193\f
3194
7d522c90 3195struct target_so_ops svr4_so_ops;
13437d4b 3196
c378eb4e 3197/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3198 different rule for symbol lookup. The lookup begins here in the DSO, not in
3199 the main executable. */
3200
d12307c1 3201static struct block_symbol
efad9b6a 3202elf_lookup_lib_symbol (struct objfile *objfile,
3a40aaa0 3203 const char *name,
21b556f4 3204 const domain_enum domain)
3a40aaa0 3205{
61f0d762
JK
3206 bfd *abfd;
3207
3208 if (objfile == symfile_objfile)
3209 abfd = exec_bfd;
3210 else
3211 {
3212 /* OBJFILE should have been passed as the non-debug one. */
3213 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3214
3215 abfd = objfile->obfd;
3216 }
3217
a738da3a 3218 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
d12307c1 3219 return (struct block_symbol) {NULL, NULL};
3a40aaa0 3220
94af9270 3221 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
3222}
3223
13437d4b
KB
3224void
3225_initialize_svr4_solib (void)
3226{
4b188b9f 3227 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 3228 solib_svr4_pspace_data
8e260fc0 3229 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 3230
749499cb 3231 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3232 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3233 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3234 svr4_so_ops.clear_solib = svr4_clear_solib;
3235 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
13437d4b
KB
3236 svr4_so_ops.current_sos = svr4_current_sos;
3237 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3238 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3239 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 3240 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 3241 svr4_so_ops.same = svr4_same;
de18c1d8 3242 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3243 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3244 svr4_so_ops.handle_event = svr4_handle_solib_event;
13437d4b 3245}