]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-svr4.c
StackGhost cookie is per-process.
[thirdparty/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
ecd75fc8 3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
fb14de7b 33#include "regcache.h"
2020b7ab 34#include "gdbthread.h"
1a816a87 35#include "observer.h"
13437d4b 36
4b188b9f
MK
37#include "gdb_assert.h"
38
13437d4b 39#include "solist.h"
bba93f6c 40#include "solib.h"
13437d4b
KB
41#include "solib-svr4.h"
42
2f4950cd 43#include "bfd-target.h"
cc10cae3 44#include "elf-bfd.h"
2f4950cd 45#include "exec.h"
8d4e36ba 46#include "auxv.h"
f1838a98 47#include "exceptions.h"
695c3173 48#include "gdb_bfd.h"
f9e14852 49#include "probe.h"
2f4950cd 50
e5e2b9ff 51static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 52static int svr4_have_link_map_offsets (void);
9f2982ff 53static void svr4_relocate_main_executable (void);
f9e14852 54static void svr4_free_library_list (void *p_list);
1c4dcb57 55
c378eb4e 56/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
57
58struct lm_info
59 {
cc10cae3 60 /* Amount by which addresses in the binary should be relocated to
3957565a
JK
61 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
62 When prelinking is involved and the prelink base address changes,
63 we may need a different offset - the recomputed offset is in L_ADDR.
64 It is commonly the same value. It is cached as we want to warn about
65 the difference and compute it only once. L_ADDR is valid
66 iff L_ADDR_P. */
67 CORE_ADDR l_addr, l_addr_inferior;
68 unsigned int l_addr_p : 1;
93a57060
DJ
69
70 /* The target location of lm. */
71 CORE_ADDR lm_addr;
3957565a
JK
72
73 /* Values read in from inferior's fields of the same name. */
74 CORE_ADDR l_ld, l_next, l_prev, l_name;
13437d4b
KB
75 };
76
77/* On SVR4 systems, a list of symbols in the dynamic linker where
78 GDB can try to place a breakpoint to monitor shared library
79 events.
80
81 If none of these symbols are found, or other errors occur, then
82 SVR4 systems will fall back to using a symbol as the "startup
83 mapping complete" breakpoint address. */
84
bc043ef3 85static const char * const solib_break_names[] =
13437d4b
KB
86{
87 "r_debug_state",
88 "_r_debug_state",
89 "_dl_debug_state",
90 "rtld_db_dlactivity",
4c7dcb84 91 "__dl_rtld_db_dlactivity",
1f72e589 92 "_rtld_debug_state",
4c0122c8 93
13437d4b
KB
94 NULL
95};
13437d4b 96
bc043ef3 97static const char * const bkpt_names[] =
13437d4b 98{
13437d4b 99 "_start",
ad3dcc5c 100 "__start",
13437d4b
KB
101 "main",
102 NULL
103};
13437d4b 104
bc043ef3 105static const char * const main_name_list[] =
13437d4b
KB
106{
107 "main_$main",
108 NULL
109};
110
f9e14852
GB
111/* What to do when a probe stop occurs. */
112
113enum probe_action
114{
115 /* Something went seriously wrong. Stop using probes and
116 revert to using the older interface. */
117 PROBES_INTERFACE_FAILED,
118
119 /* No action is required. The shared object list is still
120 valid. */
121 DO_NOTHING,
122
123 /* The shared object list should be reloaded entirely. */
124 FULL_RELOAD,
125
126 /* Attempt to incrementally update the shared object list. If
127 the update fails or is not possible, fall back to reloading
128 the list in full. */
129 UPDATE_OR_RELOAD,
130};
131
132/* A probe's name and its associated action. */
133
134struct probe_info
135{
136 /* The name of the probe. */
137 const char *name;
138
139 /* What to do when a probe stop occurs. */
140 enum probe_action action;
141};
142
143/* A list of named probes and their associated actions. If all
144 probes are present in the dynamic linker then the probes-based
145 interface will be used. */
146
147static const struct probe_info probe_info[] =
148{
149 { "init_start", DO_NOTHING },
150 { "init_complete", FULL_RELOAD },
151 { "map_start", DO_NOTHING },
152 { "map_failed", DO_NOTHING },
153 { "reloc_complete", UPDATE_OR_RELOAD },
154 { "unmap_start", DO_NOTHING },
155 { "unmap_complete", FULL_RELOAD },
156};
157
158#define NUM_PROBES ARRAY_SIZE (probe_info)
159
4d7b2d5b
JB
160/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
161 the same shared library. */
162
163static int
164svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
165{
166 if (strcmp (gdb_so_name, inferior_so_name) == 0)
167 return 1;
168
169 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
170 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
171 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
172 sometimes they have identical content, but are not linked to each
173 other. We don't restrict this check for Solaris, but the chances
174 of running into this situation elsewhere are very low. */
175 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
176 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
177 return 1;
178
179 /* Similarly, we observed the same issue with sparc64, but with
180 different locations. */
181 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
182 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
183 return 1;
184
185 return 0;
186}
187
188static int
189svr4_same (struct so_list *gdb, struct so_list *inferior)
190{
191 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
192}
193
3957565a
JK
194static struct lm_info *
195lm_info_read (CORE_ADDR lm_addr)
13437d4b 196{
4b188b9f 197 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
3957565a
JK
198 gdb_byte *lm;
199 struct lm_info *lm_info;
200 struct cleanup *back_to;
201
202 lm = xmalloc (lmo->link_map_size);
203 back_to = make_cleanup (xfree, lm);
204
205 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
206 {
207 warning (_("Error reading shared library list entry at %s"),
f5656ead 208 paddress (target_gdbarch (), lm_addr)),
3957565a
JK
209 lm_info = NULL;
210 }
211 else
212 {
f5656ead 213 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 214
3957565a
JK
215 lm_info = xzalloc (sizeof (*lm_info));
216 lm_info->lm_addr = lm_addr;
217
218 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
219 ptr_type);
220 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
221 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
222 ptr_type);
223 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
224 ptr_type);
225 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
226 ptr_type);
227 }
228
229 do_cleanups (back_to);
230
231 return lm_info;
13437d4b
KB
232}
233
cc10cae3 234static int
b23518f0 235has_lm_dynamic_from_link_map (void)
cc10cae3
AO
236{
237 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
238
cfaefc65 239 return lmo->l_ld_offset >= 0;
cc10cae3
AO
240}
241
cc10cae3 242static CORE_ADDR
f65ce5fb 243lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 244{
3957565a 245 if (!so->lm_info->l_addr_p)
cc10cae3
AO
246 {
247 struct bfd_section *dyninfo_sect;
28f34a8f 248 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 249
3957565a 250 l_addr = so->lm_info->l_addr_inferior;
cc10cae3 251
b23518f0 252 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
253 goto set_addr;
254
3957565a 255 l_dynaddr = so->lm_info->l_ld;
cc10cae3
AO
256
257 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
258 if (dyninfo_sect == NULL)
259 goto set_addr;
260
261 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
262
263 if (dynaddr + l_addr != l_dynaddr)
264 {
28f34a8f 265 CORE_ADDR align = 0x1000;
4e1fc9c9 266 CORE_ADDR minpagesize = align;
28f34a8f 267
cc10cae3
AO
268 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
269 {
270 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
271 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
272 int i;
273
274 align = 1;
275
276 for (i = 0; i < ehdr->e_phnum; i++)
277 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
278 align = phdr[i].p_align;
4e1fc9c9
JK
279
280 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
281 }
282
283 /* Turn it into a mask. */
284 align--;
285
286 /* If the changes match the alignment requirements, we
287 assume we're using a core file that was generated by the
288 same binary, just prelinked with a different base offset.
289 If it doesn't match, we may have a different binary, the
290 same binary with the dynamic table loaded at an unrelated
291 location, or anything, really. To avoid regressions,
292 don't adjust the base offset in the latter case, although
293 odds are that, if things really changed, debugging won't
5c0d192f
JK
294 quite work.
295
296 One could expect more the condition
297 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
298 but the one below is relaxed for PPC. The PPC kernel supports
299 either 4k or 64k page sizes. To be prepared for 64k pages,
300 PPC ELF files are built using an alignment requirement of 64k.
301 However, when running on a kernel supporting 4k pages, the memory
302 mapping of the library may not actually happen on a 64k boundary!
303
304 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
305 equivalent to the possibly expected check above.)
306
307 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 308
02835898
JK
309 l_addr = l_dynaddr - dynaddr;
310
4e1fc9c9
JK
311 if ((l_addr & (minpagesize - 1)) == 0
312 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 313 {
701ed6dc 314 if (info_verbose)
ccf26247
JK
315 printf_unfiltered (_("Using PIC (Position Independent Code) "
316 "prelink displacement %s for \"%s\".\n"),
f5656ead 317 paddress (target_gdbarch (), l_addr),
ccf26247 318 so->so_name);
cc10cae3 319 }
79d4c408 320 else
02835898
JK
321 {
322 /* There is no way to verify the library file matches. prelink
323 can during prelinking of an unprelinked file (or unprelinking
324 of a prelinked file) shift the DYNAMIC segment by arbitrary
325 offset without any page size alignment. There is no way to
326 find out the ELF header and/or Program Headers for a limited
327 verification if it they match. One could do a verification
328 of the DYNAMIC segment. Still the found address is the best
329 one GDB could find. */
330
331 warning (_(".dynamic section for \"%s\" "
332 "is not at the expected address "
333 "(wrong library or version mismatch?)"), so->so_name);
334 }
cc10cae3
AO
335 }
336
337 set_addr:
338 so->lm_info->l_addr = l_addr;
3957565a 339 so->lm_info->l_addr_p = 1;
cc10cae3
AO
340 }
341
342 return so->lm_info->l_addr;
343}
344
6c95b8df 345/* Per pspace SVR4 specific data. */
13437d4b 346
1a816a87
PA
347struct svr4_info
348{
c378eb4e 349 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
350
351 /* Validity flag for debug_loader_offset. */
352 int debug_loader_offset_p;
353
354 /* Load address for the dynamic linker, inferred. */
355 CORE_ADDR debug_loader_offset;
356
357 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
358 char *debug_loader_name;
359
360 /* Load map address for the main executable. */
361 CORE_ADDR main_lm_addr;
1a816a87 362
6c95b8df
PA
363 CORE_ADDR interp_text_sect_low;
364 CORE_ADDR interp_text_sect_high;
365 CORE_ADDR interp_plt_sect_low;
366 CORE_ADDR interp_plt_sect_high;
f9e14852
GB
367
368 /* Nonzero if the list of objects was last obtained from the target
369 via qXfer:libraries-svr4:read. */
370 int using_xfer;
371
372 /* Table of struct probe_and_action instances, used by the
373 probes-based interface to map breakpoint addresses to probes
374 and their associated actions. Lookup is performed using
375 probe_and_action->probe->address. */
376 htab_t probes_table;
377
378 /* List of objects loaded into the inferior, used by the probes-
379 based interface. */
380 struct so_list *solib_list;
6c95b8df 381};
1a816a87 382
6c95b8df
PA
383/* Per-program-space data key. */
384static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 385
f9e14852
GB
386/* Free the probes table. */
387
388static void
389free_probes_table (struct svr4_info *info)
390{
391 if (info->probes_table == NULL)
392 return;
393
394 htab_delete (info->probes_table);
395 info->probes_table = NULL;
396}
397
398/* Free the solib list. */
399
400static void
401free_solib_list (struct svr4_info *info)
402{
403 svr4_free_library_list (&info->solib_list);
404 info->solib_list = NULL;
405}
406
6c95b8df
PA
407static void
408svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 409{
487ad57c 410 struct svr4_info *info = arg;
f9e14852
GB
411
412 free_probes_table (info);
413 free_solib_list (info);
414
6c95b8df 415 xfree (info);
1a816a87
PA
416}
417
6c95b8df
PA
418/* Get the current svr4 data. If none is found yet, add it now. This
419 function always returns a valid object. */
34439770 420
6c95b8df
PA
421static struct svr4_info *
422get_svr4_info (void)
1a816a87 423{
6c95b8df 424 struct svr4_info *info;
1a816a87 425
6c95b8df
PA
426 info = program_space_data (current_program_space, solib_svr4_pspace_data);
427 if (info != NULL)
428 return info;
34439770 429
41bf6aca 430 info = XCNEW (struct svr4_info);
6c95b8df
PA
431 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
432 return info;
1a816a87 433}
93a57060 434
13437d4b
KB
435/* Local function prototypes */
436
bc043ef3 437static int match_main (const char *);
13437d4b 438
97ec2c2f
UW
439/* Read program header TYPE from inferior memory. The header is found
440 by scanning the OS auxillary vector.
441
09919ac2
JK
442 If TYPE == -1, return the program headers instead of the contents of
443 one program header.
444
97ec2c2f
UW
445 Return a pointer to allocated memory holding the program header contents,
446 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
447 size of those contents is returned to P_SECT_SIZE. Likewise, the target
448 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
449
450static gdb_byte *
451read_program_header (int type, int *p_sect_size, int *p_arch_size)
452{
f5656ead 453 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 454 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
455 int arch_size, sect_size;
456 CORE_ADDR sect_addr;
457 gdb_byte *buf;
43136979 458 int pt_phdr_p = 0;
97ec2c2f
UW
459
460 /* Get required auxv elements from target. */
461 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
462 return 0;
463 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
464 return 0;
465 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
466 return 0;
467 if (!at_phdr || !at_phnum)
468 return 0;
469
470 /* Determine ELF architecture type. */
471 if (at_phent == sizeof (Elf32_External_Phdr))
472 arch_size = 32;
473 else if (at_phent == sizeof (Elf64_External_Phdr))
474 arch_size = 64;
475 else
476 return 0;
477
09919ac2
JK
478 /* Find the requested segment. */
479 if (type == -1)
480 {
481 sect_addr = at_phdr;
482 sect_size = at_phent * at_phnum;
483 }
484 else if (arch_size == 32)
97ec2c2f
UW
485 {
486 Elf32_External_Phdr phdr;
487 int i;
488
489 /* Search for requested PHDR. */
490 for (i = 0; i < at_phnum; i++)
491 {
43136979
AR
492 int p_type;
493
97ec2c2f
UW
494 if (target_read_memory (at_phdr + i * sizeof (phdr),
495 (gdb_byte *)&phdr, sizeof (phdr)))
496 return 0;
497
43136979
AR
498 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
499 4, byte_order);
500
501 if (p_type == PT_PHDR)
502 {
503 pt_phdr_p = 1;
504 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
505 4, byte_order);
506 }
507
508 if (p_type == type)
97ec2c2f
UW
509 break;
510 }
511
512 if (i == at_phnum)
513 return 0;
514
515 /* Retrieve address and size. */
e17a4113
UW
516 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
517 4, byte_order);
518 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
519 4, byte_order);
97ec2c2f
UW
520 }
521 else
522 {
523 Elf64_External_Phdr phdr;
524 int i;
525
526 /* Search for requested PHDR. */
527 for (i = 0; i < at_phnum; i++)
528 {
43136979
AR
529 int p_type;
530
97ec2c2f
UW
531 if (target_read_memory (at_phdr + i * sizeof (phdr),
532 (gdb_byte *)&phdr, sizeof (phdr)))
533 return 0;
534
43136979
AR
535 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
536 4, byte_order);
537
538 if (p_type == PT_PHDR)
539 {
540 pt_phdr_p = 1;
541 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
542 8, byte_order);
543 }
544
545 if (p_type == type)
97ec2c2f
UW
546 break;
547 }
548
549 if (i == at_phnum)
550 return 0;
551
552 /* Retrieve address and size. */
e17a4113
UW
553 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
554 8, byte_order);
555 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
556 8, byte_order);
97ec2c2f
UW
557 }
558
43136979
AR
559 /* PT_PHDR is optional, but we really need it
560 for PIE to make this work in general. */
561
562 if (pt_phdr_p)
563 {
564 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
565 Relocation offset is the difference between the two. */
566 sect_addr = sect_addr + (at_phdr - pt_phdr);
567 }
568
97ec2c2f
UW
569 /* Read in requested program header. */
570 buf = xmalloc (sect_size);
571 if (target_read_memory (sect_addr, buf, sect_size))
572 {
573 xfree (buf);
574 return NULL;
575 }
576
577 if (p_arch_size)
578 *p_arch_size = arch_size;
579 if (p_sect_size)
580 *p_sect_size = sect_size;
581
582 return buf;
583}
584
585
586/* Return program interpreter string. */
001f13d8 587static char *
97ec2c2f
UW
588find_program_interpreter (void)
589{
590 gdb_byte *buf = NULL;
591
592 /* If we have an exec_bfd, use its section table. */
593 if (exec_bfd
594 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
595 {
596 struct bfd_section *interp_sect;
597
598 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
599 if (interp_sect != NULL)
600 {
97ec2c2f
UW
601 int sect_size = bfd_section_size (exec_bfd, interp_sect);
602
603 buf = xmalloc (sect_size);
604 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
605 }
606 }
607
608 /* If we didn't find it, use the target auxillary vector. */
609 if (!buf)
610 buf = read_program_header (PT_INTERP, NULL, NULL);
611
001f13d8 612 return (char *) buf;
97ec2c2f
UW
613}
614
615
c378eb4e 616/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
3a40aaa0
UW
617 returned and the corresponding PTR is set. */
618
619static int
620scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
621{
622 int arch_size, step, sect_size;
623 long dyn_tag;
b381ea14 624 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 625 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
626 Elf32_External_Dyn *x_dynp_32;
627 Elf64_External_Dyn *x_dynp_64;
628 struct bfd_section *sect;
61f0d762 629 struct target_section *target_section;
3a40aaa0
UW
630
631 if (abfd == NULL)
632 return 0;
0763ab81
PA
633
634 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
635 return 0;
636
3a40aaa0
UW
637 arch_size = bfd_get_arch_size (abfd);
638 if (arch_size == -1)
0763ab81 639 return 0;
3a40aaa0
UW
640
641 /* Find the start address of the .dynamic section. */
642 sect = bfd_get_section_by_name (abfd, ".dynamic");
643 if (sect == NULL)
644 return 0;
61f0d762
JK
645
646 for (target_section = current_target_sections->sections;
647 target_section < current_target_sections->sections_end;
648 target_section++)
649 if (sect == target_section->the_bfd_section)
650 break;
b381ea14
JK
651 if (target_section < current_target_sections->sections_end)
652 dyn_addr = target_section->addr;
653 else
654 {
655 /* ABFD may come from OBJFILE acting only as a symbol file without being
656 loaded into the target (see add_symbol_file_command). This case is
657 such fallback to the file VMA address without the possibility of
658 having the section relocated to its actual in-memory address. */
659
660 dyn_addr = bfd_section_vma (abfd, sect);
661 }
3a40aaa0 662
65728c26
DJ
663 /* Read in .dynamic from the BFD. We will get the actual value
664 from memory later. */
3a40aaa0 665 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
666 buf = bufstart = alloca (sect_size);
667 if (!bfd_get_section_contents (abfd, sect,
668 buf, 0, sect_size))
669 return 0;
3a40aaa0
UW
670
671 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
672 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
673 : sizeof (Elf64_External_Dyn);
674 for (bufend = buf + sect_size;
675 buf < bufend;
676 buf += step)
677 {
678 if (arch_size == 32)
679 {
680 x_dynp_32 = (Elf32_External_Dyn *) buf;
681 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
682 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
683 }
65728c26 684 else
3a40aaa0
UW
685 {
686 x_dynp_64 = (Elf64_External_Dyn *) buf;
687 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
688 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
689 }
690 if (dyn_tag == DT_NULL)
691 return 0;
692 if (dyn_tag == dyntag)
693 {
65728c26
DJ
694 /* If requested, try to read the runtime value of this .dynamic
695 entry. */
3a40aaa0 696 if (ptr)
65728c26 697 {
b6da22b0 698 struct type *ptr_type;
65728c26
DJ
699 gdb_byte ptr_buf[8];
700 CORE_ADDR ptr_addr;
701
f5656ead 702 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b381ea14 703 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 704 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 705 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
706 *ptr = dyn_ptr;
707 }
708 return 1;
3a40aaa0
UW
709 }
710 }
711
712 return 0;
713}
714
97ec2c2f
UW
715/* Scan for DYNTAG in .dynamic section of the target's main executable,
716 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
717 returned and the corresponding PTR is set. */
718
719static int
720scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
721{
f5656ead 722 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
97ec2c2f
UW
723 int sect_size, arch_size, step;
724 long dyn_tag;
725 CORE_ADDR dyn_ptr;
726 gdb_byte *bufend, *bufstart, *buf;
727
728 /* Read in .dynamic section. */
729 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
730 if (!buf)
731 return 0;
732
733 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
734 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
735 : sizeof (Elf64_External_Dyn);
736 for (bufend = buf + sect_size;
737 buf < bufend;
738 buf += step)
739 {
740 if (arch_size == 32)
741 {
742 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 743
e17a4113
UW
744 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
745 4, byte_order);
746 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
747 4, byte_order);
97ec2c2f
UW
748 }
749 else
750 {
751 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 752
e17a4113
UW
753 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
754 8, byte_order);
755 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
756 8, byte_order);
97ec2c2f
UW
757 }
758 if (dyn_tag == DT_NULL)
759 break;
760
761 if (dyn_tag == dyntag)
762 {
763 if (ptr)
764 *ptr = dyn_ptr;
765
766 xfree (bufstart);
767 return 1;
768 }
769 }
770
771 xfree (bufstart);
772 return 0;
773}
774
7f86f058
PA
775/* Locate the base address of dynamic linker structs for SVR4 elf
776 targets.
13437d4b
KB
777
778 For SVR4 elf targets the address of the dynamic linker's runtime
779 structure is contained within the dynamic info section in the
780 executable file. The dynamic section is also mapped into the
781 inferior address space. Because the runtime loader fills in the
782 real address before starting the inferior, we have to read in the
783 dynamic info section from the inferior address space.
784 If there are any errors while trying to find the address, we
7f86f058 785 silently return 0, otherwise the found address is returned. */
13437d4b
KB
786
787static CORE_ADDR
788elf_locate_base (void)
789{
3b7344d5 790 struct bound_minimal_symbol msymbol;
3a40aaa0 791 CORE_ADDR dyn_ptr;
13437d4b 792
65728c26
DJ
793 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
794 instead of DT_DEBUG, although they sometimes contain an unused
795 DT_DEBUG. */
97ec2c2f
UW
796 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
797 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 798 {
f5656ead 799 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 800 gdb_byte *pbuf;
b6da22b0 801 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 802
3a40aaa0
UW
803 pbuf = alloca (pbuf_size);
804 /* DT_MIPS_RLD_MAP contains a pointer to the address
805 of the dynamic link structure. */
806 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 807 return 0;
b6da22b0 808 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
809 }
810
65728c26 811 /* Find DT_DEBUG. */
97ec2c2f
UW
812 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
813 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
814 return dyn_ptr;
815
3a40aaa0
UW
816 /* This may be a static executable. Look for the symbol
817 conventionally named _r_debug, as a last resort. */
818 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 819 if (msymbol.minsym != NULL)
77e371c0 820 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
821
822 /* DT_DEBUG entry not found. */
823 return 0;
824}
825
7f86f058 826/* Locate the base address of dynamic linker structs.
13437d4b
KB
827
828 For both the SunOS and SVR4 shared library implementations, if the
829 inferior executable has been linked dynamically, there is a single
830 address somewhere in the inferior's data space which is the key to
831 locating all of the dynamic linker's runtime structures. This
832 address is the value of the debug base symbol. The job of this
833 function is to find and return that address, or to return 0 if there
834 is no such address (the executable is statically linked for example).
835
836 For SunOS, the job is almost trivial, since the dynamic linker and
837 all of it's structures are statically linked to the executable at
838 link time. Thus the symbol for the address we are looking for has
839 already been added to the minimal symbol table for the executable's
840 objfile at the time the symbol file's symbols were read, and all we
841 have to do is look it up there. Note that we explicitly do NOT want
842 to find the copies in the shared library.
843
844 The SVR4 version is a bit more complicated because the address
845 is contained somewhere in the dynamic info section. We have to go
846 to a lot more work to discover the address of the debug base symbol.
847 Because of this complexity, we cache the value we find and return that
848 value on subsequent invocations. Note there is no copy in the
7f86f058 849 executable symbol tables. */
13437d4b
KB
850
851static CORE_ADDR
1a816a87 852locate_base (struct svr4_info *info)
13437d4b 853{
13437d4b
KB
854 /* Check to see if we have a currently valid address, and if so, avoid
855 doing all this work again and just return the cached address. If
856 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
857 section for ELF executables. There's no point in doing any of this
858 though if we don't have some link map offsets to work with. */
13437d4b 859
1a816a87 860 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 861 info->debug_base = elf_locate_base ();
1a816a87 862 return info->debug_base;
13437d4b
KB
863}
864
e4cd0d6a 865/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
866 return its address in the inferior. Return zero if the address
867 could not be determined.
13437d4b 868
e4cd0d6a
MK
869 FIXME: Perhaps we should validate the info somehow, perhaps by
870 checking r_version for a known version number, or r_state for
871 RT_CONSISTENT. */
13437d4b
KB
872
873static CORE_ADDR
1a816a87 874solib_svr4_r_map (struct svr4_info *info)
13437d4b 875{
4b188b9f 876 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 877 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104
JB
878 CORE_ADDR addr = 0;
879 volatile struct gdb_exception ex;
13437d4b 880
08597104
JB
881 TRY_CATCH (ex, RETURN_MASK_ERROR)
882 {
883 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
884 ptr_type);
885 }
886 exception_print (gdb_stderr, ex);
887 return addr;
e4cd0d6a 888}
13437d4b 889
7cd25cfc
DJ
890/* Find r_brk from the inferior's debug base. */
891
892static CORE_ADDR
1a816a87 893solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
894{
895 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 896 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 897
1a816a87
PA
898 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
899 ptr_type);
7cd25cfc
DJ
900}
901
e4cd0d6a
MK
902/* Find the link map for the dynamic linker (if it is not in the
903 normal list of loaded shared objects). */
13437d4b 904
e4cd0d6a 905static CORE_ADDR
1a816a87 906solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
907{
908 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
909 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
910 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
e4cd0d6a 911 ULONGEST version;
13437d4b 912
e4cd0d6a
MK
913 /* Check version, and return zero if `struct r_debug' doesn't have
914 the r_ldsomap member. */
1a816a87
PA
915 version
916 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 917 lmo->r_version_size, byte_order);
e4cd0d6a
MK
918 if (version < 2 || lmo->r_ldsomap_offset == -1)
919 return 0;
13437d4b 920
1a816a87 921 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 922 ptr_type);
13437d4b
KB
923}
924
de18c1d8
JM
925/* On Solaris systems with some versions of the dynamic linker,
926 ld.so's l_name pointer points to the SONAME in the string table
927 rather than into writable memory. So that GDB can find shared
928 libraries when loading a core file generated by gcore, ensure that
929 memory areas containing the l_name string are saved in the core
930 file. */
931
932static int
933svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
934{
935 struct svr4_info *info;
936 CORE_ADDR ldsomap;
937 struct so_list *new;
938 struct cleanup *old_chain;
74de0234 939 CORE_ADDR name_lm;
de18c1d8
JM
940
941 info = get_svr4_info ();
942
943 info->debug_base = 0;
944 locate_base (info);
945 if (!info->debug_base)
946 return 0;
947
948 ldsomap = solib_svr4_r_ldsomap (info);
949 if (!ldsomap)
950 return 0;
951
41bf6aca 952 new = XCNEW (struct so_list);
de18c1d8 953 old_chain = make_cleanup (xfree, new);
3957565a 954 new->lm_info = lm_info_read (ldsomap);
de18c1d8 955 make_cleanup (xfree, new->lm_info);
3957565a 956 name_lm = new->lm_info ? new->lm_info->l_name : 0;
de18c1d8
JM
957 do_cleanups (old_chain);
958
74de0234 959 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
960}
961
7f86f058 962/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 963
7f86f058
PA
964 If no open symbol file, attempt to locate and open the main symbol
965 file. On SVR4 systems, this is the first link map entry. If its
966 name is here, we can open it. Useful when attaching to a process
967 without first loading its symbol file. */
13437d4b
KB
968
969static int
970open_symbol_file_object (void *from_ttyp)
971{
972 CORE_ADDR lm, l_name;
973 char *filename;
974 int errcode;
975 int from_tty = *(int *)from_ttyp;
4b188b9f 976 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 977 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 978 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 979 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 980 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 981 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
982
983 if (symfile_objfile)
9e2f0ad4 984 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
985 {
986 do_cleanups (cleanups);
987 return 0;
988 }
13437d4b 989
7cd25cfc 990 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
991 info->debug_base = 0;
992 if (locate_base (info) == 0)
3bb47e8b
TT
993 {
994 do_cleanups (cleanups);
995 return 0; /* failed somehow... */
996 }
13437d4b
KB
997
998 /* First link map member should be the executable. */
1a816a87 999 lm = solib_svr4_r_map (info);
e4cd0d6a 1000 if (lm == 0)
3bb47e8b
TT
1001 {
1002 do_cleanups (cleanups);
1003 return 0; /* failed somehow... */
1004 }
13437d4b
KB
1005
1006 /* Read address of name from target memory to GDB. */
cfaefc65 1007 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 1008
cfaefc65 1009 /* Convert the address to host format. */
b6da22b0 1010 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 1011
13437d4b 1012 if (l_name == 0)
3bb47e8b
TT
1013 {
1014 do_cleanups (cleanups);
1015 return 0; /* No filename. */
1016 }
13437d4b
KB
1017
1018 /* Now fetch the filename from target memory. */
1019 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 1020 make_cleanup (xfree, filename);
13437d4b
KB
1021
1022 if (errcode)
1023 {
8a3fe4f8 1024 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 1025 safe_strerror (errcode));
3bb47e8b 1026 do_cleanups (cleanups);
13437d4b
KB
1027 return 0;
1028 }
1029
13437d4b 1030 /* Have a pathname: read the symbol file. */
1adeb98a 1031 symbol_file_add_main (filename, from_tty);
13437d4b 1032
3bb47e8b 1033 do_cleanups (cleanups);
13437d4b
KB
1034 return 1;
1035}
13437d4b 1036
2268b414
JK
1037/* Data exchange structure for the XML parser as returned by
1038 svr4_current_sos_via_xfer_libraries. */
1039
1040struct svr4_library_list
1041{
1042 struct so_list *head, **tailp;
1043
1044 /* Inferior address of struct link_map used for the main executable. It is
1045 NULL if not known. */
1046 CORE_ADDR main_lm;
1047};
1048
93f2a35e
JK
1049/* Implementation for target_so_ops.free_so. */
1050
1051static void
1052svr4_free_so (struct so_list *so)
1053{
1054 xfree (so->lm_info);
1055}
1056
0892cb63
DE
1057/* Implement target_so_ops.clear_so. */
1058
1059static void
1060svr4_clear_so (struct so_list *so)
1061{
6dcc1893
PP
1062 if (so->lm_info != NULL)
1063 so->lm_info->l_addr_p = 0;
0892cb63
DE
1064}
1065
93f2a35e
JK
1066/* Free so_list built so far (called via cleanup). */
1067
1068static void
1069svr4_free_library_list (void *p_list)
1070{
1071 struct so_list *list = *(struct so_list **) p_list;
1072
1073 while (list != NULL)
1074 {
1075 struct so_list *next = list->next;
1076
3756ef7e 1077 free_so (list);
93f2a35e
JK
1078 list = next;
1079 }
1080}
1081
f9e14852
GB
1082/* Copy library list. */
1083
1084static struct so_list *
1085svr4_copy_library_list (struct so_list *src)
1086{
1087 struct so_list *dst = NULL;
1088 struct so_list **link = &dst;
1089
1090 while (src != NULL)
1091 {
1092 struct so_list *new;
1093
1094 new = xmalloc (sizeof (struct so_list));
1095 memcpy (new, src, sizeof (struct so_list));
1096
1097 new->lm_info = xmalloc (sizeof (struct lm_info));
1098 memcpy (new->lm_info, src->lm_info, sizeof (struct lm_info));
1099
1100 new->next = NULL;
1101 *link = new;
1102 link = &new->next;
1103
1104 src = src->next;
1105 }
1106
1107 return dst;
1108}
1109
2268b414
JK
1110#ifdef HAVE_LIBEXPAT
1111
1112#include "xml-support.h"
1113
1114/* Handle the start of a <library> element. Note: new elements are added
1115 at the tail of the list, keeping the list in order. */
1116
1117static void
1118library_list_start_library (struct gdb_xml_parser *parser,
1119 const struct gdb_xml_element *element,
1120 void *user_data, VEC(gdb_xml_value_s) *attributes)
1121{
1122 struct svr4_library_list *list = user_data;
1123 const char *name = xml_find_attribute (attributes, "name")->value;
1124 ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value;
1125 ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value;
1126 ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value;
1127 struct so_list *new_elem;
1128
41bf6aca
TT
1129 new_elem = XCNEW (struct so_list);
1130 new_elem->lm_info = XCNEW (struct lm_info);
2268b414
JK
1131 new_elem->lm_info->lm_addr = *lmp;
1132 new_elem->lm_info->l_addr_inferior = *l_addrp;
1133 new_elem->lm_info->l_ld = *l_ldp;
1134
1135 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1136 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1137 strcpy (new_elem->so_original_name, new_elem->so_name);
1138
1139 *list->tailp = new_elem;
1140 list->tailp = &new_elem->next;
1141}
1142
1143/* Handle the start of a <library-list-svr4> element. */
1144
1145static void
1146svr4_library_list_start_list (struct gdb_xml_parser *parser,
1147 const struct gdb_xml_element *element,
1148 void *user_data, VEC(gdb_xml_value_s) *attributes)
1149{
1150 struct svr4_library_list *list = user_data;
1151 const char *version = xml_find_attribute (attributes, "version")->value;
1152 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1153
1154 if (strcmp (version, "1.0") != 0)
1155 gdb_xml_error (parser,
1156 _("SVR4 Library list has unsupported version \"%s\""),
1157 version);
1158
1159 if (main_lm)
1160 list->main_lm = *(ULONGEST *) main_lm->value;
1161}
1162
1163/* The allowed elements and attributes for an XML library list.
1164 The root element is a <library-list>. */
1165
1166static const struct gdb_xml_attribute svr4_library_attributes[] =
1167{
1168 { "name", GDB_XML_AF_NONE, NULL, NULL },
1169 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1170 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1171 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1172 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1173};
1174
1175static const struct gdb_xml_element svr4_library_list_children[] =
1176{
1177 {
1178 "library", svr4_library_attributes, NULL,
1179 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1180 library_list_start_library, NULL
1181 },
1182 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1183};
1184
1185static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1186{
1187 { "version", GDB_XML_AF_NONE, NULL, NULL },
1188 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1189 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1190};
1191
1192static const struct gdb_xml_element svr4_library_list_elements[] =
1193{
1194 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1195 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1196 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1197};
1198
2268b414
JK
1199/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1200
1201 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1202 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1203 empty, caller is responsible for freeing all its entries. */
1204
1205static int
1206svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1207{
1208 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1209 &list->head);
1210
1211 memset (list, 0, sizeof (*list));
1212 list->tailp = &list->head;
1213 if (gdb_xml_parse_quick (_("target library list"), "library-list.dtd",
1214 svr4_library_list_elements, document, list) == 0)
1215 {
1216 /* Parsed successfully, keep the result. */
1217 discard_cleanups (back_to);
1218 return 1;
1219 }
1220
1221 do_cleanups (back_to);
1222 return 0;
1223}
1224
f9e14852 1225/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1226
1227 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1228 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1229 empty, caller is responsible for freeing all its entries.
1230
1231 Note that ANNEX must be NULL if the remote does not explicitly allow
1232 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1233 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1234
1235static int
f9e14852
GB
1236svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1237 const char *annex)
2268b414
JK
1238{
1239 char *svr4_library_document;
1240 int result;
1241 struct cleanup *back_to;
1242
f9e14852
GB
1243 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1244
2268b414
JK
1245 /* Fetch the list of shared libraries. */
1246 svr4_library_document = target_read_stralloc (&current_target,
1247 TARGET_OBJECT_LIBRARIES_SVR4,
f9e14852 1248 annex);
2268b414
JK
1249 if (svr4_library_document == NULL)
1250 return 0;
1251
1252 back_to = make_cleanup (xfree, svr4_library_document);
1253 result = svr4_parse_libraries (svr4_library_document, list);
1254 do_cleanups (back_to);
1255
1256 return result;
1257}
1258
1259#else
1260
1261static int
f9e14852
GB
1262svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1263 const char *annex)
2268b414
JK
1264{
1265 return 0;
1266}
1267
1268#endif
1269
34439770
DJ
1270/* If no shared library information is available from the dynamic
1271 linker, build a fallback list from other sources. */
1272
1273static struct so_list *
1274svr4_default_sos (void)
1275{
6c95b8df 1276 struct svr4_info *info = get_svr4_info ();
8e5c319d 1277 struct so_list *new;
1a816a87 1278
8e5c319d
JK
1279 if (!info->debug_loader_offset_p)
1280 return NULL;
34439770 1281
41bf6aca 1282 new = XCNEW (struct so_list);
34439770 1283
3957565a 1284 new->lm_info = xzalloc (sizeof (struct lm_info));
34439770 1285
3957565a 1286 /* Nothing will ever check the other fields if we set l_addr_p. */
8e5c319d 1287 new->lm_info->l_addr = info->debug_loader_offset;
3957565a 1288 new->lm_info->l_addr_p = 1;
34439770 1289
8e5c319d
JK
1290 strncpy (new->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1291 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1292 strcpy (new->so_original_name, new->so_name);
34439770 1293
8e5c319d 1294 return new;
34439770
DJ
1295}
1296
f9e14852
GB
1297/* Read the whole inferior libraries chain starting at address LM.
1298 Expect the first entry in the chain's previous entry to be PREV_LM.
1299 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1300 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1301 to it. Returns nonzero upon success. If zero is returned the
1302 entries stored to LINK_PTR_PTR are still valid although they may
1303 represent only part of the inferior library list. */
13437d4b 1304
f9e14852
GB
1305static int
1306svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1307 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1308{
c91550fc 1309 CORE_ADDR first_l_name;
f9e14852 1310 CORE_ADDR next_lm;
13437d4b 1311
cb08cc53 1312 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1313 {
cb08cc53
JK
1314 struct so_list *new;
1315 struct cleanup *old_chain;
1316 int errcode;
1317 char *buffer;
13437d4b 1318
41bf6aca 1319 new = XCNEW (struct so_list);
cb08cc53 1320 old_chain = make_cleanup_free_so (new);
13437d4b 1321
3957565a
JK
1322 new->lm_info = lm_info_read (lm);
1323 if (new->lm_info == NULL)
1324 {
1325 do_cleanups (old_chain);
f9e14852 1326 return 0;
3957565a 1327 }
13437d4b 1328
3957565a 1329 next_lm = new->lm_info->l_next;
492928e4 1330
3957565a 1331 if (new->lm_info->l_prev != prev_lm)
492928e4 1332 {
2268b414 1333 warning (_("Corrupted shared library list: %s != %s"),
f5656ead
TT
1334 paddress (target_gdbarch (), prev_lm),
1335 paddress (target_gdbarch (), new->lm_info->l_prev));
cb08cc53 1336 do_cleanups (old_chain);
f9e14852 1337 return 0;
492928e4 1338 }
13437d4b
KB
1339
1340 /* For SVR4 versions, the first entry in the link map is for the
1341 inferior executable, so we must ignore it. For some versions of
1342 SVR4, it has no name. For others (Solaris 2.3 for example), it
1343 does have a name, so we can no longer use a missing name to
c378eb4e 1344 decide when to ignore it. */
3957565a 1345 if (ignore_first && new->lm_info->l_prev == 0)
93a57060 1346 {
cb08cc53
JK
1347 struct svr4_info *info = get_svr4_info ();
1348
c91550fc 1349 first_l_name = new->lm_info->l_name;
1a816a87 1350 info->main_lm_addr = new->lm_info->lm_addr;
cb08cc53
JK
1351 do_cleanups (old_chain);
1352 continue;
93a57060 1353 }
13437d4b 1354
cb08cc53 1355 /* Extract this shared object's name. */
3957565a 1356 target_read_string (new->lm_info->l_name, &buffer,
cb08cc53
JK
1357 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1358 if (errcode != 0)
1359 {
7d760051
UW
1360 /* If this entry's l_name address matches that of the
1361 inferior executable, then this is not a normal shared
1362 object, but (most likely) a vDSO. In this case, silently
1363 skip it; otherwise emit a warning. */
c91550fc 1364 if (first_l_name == 0 || new->lm_info->l_name != first_l_name)
7d760051
UW
1365 warning (_("Can't read pathname for load map: %s."),
1366 safe_strerror (errcode));
cb08cc53
JK
1367 do_cleanups (old_chain);
1368 continue;
13437d4b
KB
1369 }
1370
cb08cc53
JK
1371 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1372 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1373 strcpy (new->so_original_name, new->so_name);
1374 xfree (buffer);
492928e4 1375
cb08cc53
JK
1376 /* If this entry has no name, or its name matches the name
1377 for the main executable, don't include it in the list. */
1378 if (! new->so_name[0] || match_main (new->so_name))
492928e4 1379 {
cb08cc53
JK
1380 do_cleanups (old_chain);
1381 continue;
492928e4 1382 }
e4cd0d6a 1383
13437d4b 1384 discard_cleanups (old_chain);
cb08cc53
JK
1385 new->next = 0;
1386 **link_ptr_ptr = new;
1387 *link_ptr_ptr = &new->next;
13437d4b 1388 }
f9e14852
GB
1389
1390 return 1;
cb08cc53
JK
1391}
1392
f9e14852
GB
1393/* Read the full list of currently loaded shared objects directly
1394 from the inferior, without referring to any libraries read and
1395 stored by the probes interface. Handle special cases relating
1396 to the first elements of the list. */
cb08cc53
JK
1397
1398static struct so_list *
f9e14852 1399svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1400{
1401 CORE_ADDR lm;
1402 struct so_list *head = NULL;
1403 struct so_list **link_ptr = &head;
cb08cc53
JK
1404 struct cleanup *back_to;
1405 int ignore_first;
2268b414
JK
1406 struct svr4_library_list library_list;
1407
0c5bf5a9
JK
1408 /* Fall back to manual examination of the target if the packet is not
1409 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1410 tests a case where gdbserver cannot find the shared libraries list while
1411 GDB itself is able to find it via SYMFILE_OBJFILE.
1412
1413 Unfortunately statically linked inferiors will also fall back through this
1414 suboptimal code path. */
1415
f9e14852
GB
1416 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1417 NULL);
1418 if (info->using_xfer)
2268b414
JK
1419 {
1420 if (library_list.main_lm)
f9e14852 1421 info->main_lm_addr = library_list.main_lm;
2268b414
JK
1422
1423 return library_list.head ? library_list.head : svr4_default_sos ();
1424 }
cb08cc53 1425
cb08cc53
JK
1426 /* Always locate the debug struct, in case it has moved. */
1427 info->debug_base = 0;
1428 locate_base (info);
1429
1430 /* If we can't find the dynamic linker's base structure, this
1431 must not be a dynamically linked executable. Hmm. */
1432 if (! info->debug_base)
1433 return svr4_default_sos ();
1434
1435 /* Assume that everything is a library if the dynamic loader was loaded
1436 late by a static executable. */
1437 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1438 ignore_first = 0;
1439 else
1440 ignore_first = 1;
1441
1442 back_to = make_cleanup (svr4_free_library_list, &head);
1443
1444 /* Walk the inferior's link map list, and build our list of
1445 `struct so_list' nodes. */
1446 lm = solib_svr4_r_map (info);
1447 if (lm)
f9e14852 1448 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1449
1450 /* On Solaris, the dynamic linker is not in the normal list of
1451 shared objects, so make sure we pick it up too. Having
1452 symbol information for the dynamic linker is quite crucial
1453 for skipping dynamic linker resolver code. */
1454 lm = solib_svr4_r_ldsomap (info);
1455 if (lm)
f9e14852 1456 svr4_read_so_list (lm, 0, &link_ptr, 0);
cb08cc53
JK
1457
1458 discard_cleanups (back_to);
13437d4b 1459
34439770
DJ
1460 if (head == NULL)
1461 return svr4_default_sos ();
1462
13437d4b
KB
1463 return head;
1464}
1465
f9e14852
GB
1466/* Implement the "current_sos" target_so_ops method. */
1467
1468static struct so_list *
1469svr4_current_sos (void)
1470{
1471 struct svr4_info *info = get_svr4_info ();
1472
1473 /* If the solib list has been read and stored by the probes
1474 interface then we return a copy of the stored list. */
1475 if (info->solib_list != NULL)
1476 return svr4_copy_library_list (info->solib_list);
1477
1478 /* Otherwise obtain the solib list directly from the inferior. */
1479 return svr4_current_sos_direct (info);
1480}
1481
93a57060 1482/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1483
1484CORE_ADDR
1485svr4_fetch_objfile_link_map (struct objfile *objfile)
1486{
93a57060 1487 struct so_list *so;
6c95b8df 1488 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1489
93a57060 1490 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1491 if (info->main_lm_addr == 0)
93a57060 1492 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1493
93a57060
DJ
1494 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1495 if (objfile == symfile_objfile)
1a816a87 1496 return info->main_lm_addr;
93a57060
DJ
1497
1498 /* The other link map addresses may be found by examining the list
1499 of shared libraries. */
1500 for (so = master_so_list (); so; so = so->next)
1501 if (so->objfile == objfile)
1502 return so->lm_info->lm_addr;
1503
1504 /* Not found! */
bc4a16ae
EZ
1505 return 0;
1506}
13437d4b
KB
1507
1508/* On some systems, the only way to recognize the link map entry for
1509 the main executable file is by looking at its name. Return
1510 non-zero iff SONAME matches one of the known main executable names. */
1511
1512static int
bc043ef3 1513match_main (const char *soname)
13437d4b 1514{
bc043ef3 1515 const char * const *mainp;
13437d4b
KB
1516
1517 for (mainp = main_name_list; *mainp != NULL; mainp++)
1518 {
1519 if (strcmp (soname, *mainp) == 0)
1520 return (1);
1521 }
1522
1523 return (0);
1524}
1525
13437d4b
KB
1526/* Return 1 if PC lies in the dynamic symbol resolution code of the
1527 SVR4 run time loader. */
13437d4b 1528
7d522c90 1529int
d7fa2ae2 1530svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1531{
6c95b8df
PA
1532 struct svr4_info *info = get_svr4_info ();
1533
1534 return ((pc >= info->interp_text_sect_low
1535 && pc < info->interp_text_sect_high)
1536 || (pc >= info->interp_plt_sect_low
1537 && pc < info->interp_plt_sect_high)
3e5d3a5a 1538 || in_plt_section (pc)
0875794a 1539 || in_gnu_ifunc_stub (pc));
13437d4b 1540}
13437d4b 1541
2f4950cd
AC
1542/* Given an executable's ABFD and target, compute the entry-point
1543 address. */
1544
1545static CORE_ADDR
1546exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1547{
8c2b9656
YQ
1548 CORE_ADDR addr;
1549
2f4950cd
AC
1550 /* KevinB wrote ... for most targets, the address returned by
1551 bfd_get_start_address() is the entry point for the start
1552 function. But, for some targets, bfd_get_start_address() returns
1553 the address of a function descriptor from which the entry point
1554 address may be extracted. This address is extracted by
1555 gdbarch_convert_from_func_ptr_addr(). The method
1556 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1557 function for targets which don't use function descriptors. */
8c2b9656 1558 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1559 bfd_get_start_address (abfd),
1560 targ);
8c2b9656 1561 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1562}
13437d4b 1563
f9e14852
GB
1564/* A probe and its associated action. */
1565
1566struct probe_and_action
1567{
1568 /* The probe. */
1569 struct probe *probe;
1570
1571 /* The action. */
1572 enum probe_action action;
1573};
1574
1575/* Returns a hash code for the probe_and_action referenced by p. */
1576
1577static hashval_t
1578hash_probe_and_action (const void *p)
1579{
1580 const struct probe_and_action *pa = p;
1581
1582 return (hashval_t) pa->probe->address;
1583}
1584
1585/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1586 are equal. */
1587
1588static int
1589equal_probe_and_action (const void *p1, const void *p2)
1590{
1591 const struct probe_and_action *pa1 = p1;
1592 const struct probe_and_action *pa2 = p2;
1593
1594 return pa1->probe->address == pa2->probe->address;
1595}
1596
1597/* Register a solib event probe and its associated action in the
1598 probes table. */
1599
1600static void
1601register_solib_event_probe (struct probe *probe, enum probe_action action)
1602{
1603 struct svr4_info *info = get_svr4_info ();
1604 struct probe_and_action lookup, *pa;
1605 void **slot;
1606
1607 /* Create the probes table, if necessary. */
1608 if (info->probes_table == NULL)
1609 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1610 equal_probe_and_action,
1611 xfree, xcalloc, xfree);
1612
1613 lookup.probe = probe;
1614 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1615 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1616
1617 pa = XCNEW (struct probe_and_action);
1618 pa->probe = probe;
1619 pa->action = action;
1620
1621 *slot = pa;
1622}
1623
1624/* Get the solib event probe at the specified location, and the
1625 action associated with it. Returns NULL if no solib event probe
1626 was found. */
1627
1628static struct probe_and_action *
1629solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1630{
1631 struct probe lookup_probe;
1632 struct probe_and_action lookup;
1633 void **slot;
1634
1635 lookup_probe.address = address;
1636 lookup.probe = &lookup_probe;
1637 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1638
1639 if (slot == NULL)
1640 return NULL;
1641
1642 return (struct probe_and_action *) *slot;
1643}
1644
1645/* Decide what action to take when the specified solib event probe is
1646 hit. */
1647
1648static enum probe_action
1649solib_event_probe_action (struct probe_and_action *pa)
1650{
1651 enum probe_action action;
1652 unsigned probe_argc;
08a6411c 1653 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1654
1655 action = pa->action;
1656 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1657 return action;
1658
1659 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1660
1661 /* Check that an appropriate number of arguments has been supplied.
1662 We expect:
1663 arg0: Lmid_t lmid (mandatory)
1664 arg1: struct r_debug *debug_base (mandatory)
1665 arg2: struct link_map *new (optional, for incremental updates) */
08a6411c 1666 probe_argc = get_probe_argument_count (pa->probe, frame);
f9e14852
GB
1667 if (probe_argc == 2)
1668 action = FULL_RELOAD;
1669 else if (probe_argc < 2)
1670 action = PROBES_INTERFACE_FAILED;
1671
1672 return action;
1673}
1674
1675/* Populate the shared object list by reading the entire list of
1676 shared objects from the inferior. Handle special cases relating
1677 to the first elements of the list. Returns nonzero on success. */
1678
1679static int
1680solist_update_full (struct svr4_info *info)
1681{
1682 free_solib_list (info);
1683 info->solib_list = svr4_current_sos_direct (info);
1684
1685 return 1;
1686}
1687
1688/* Update the shared object list starting from the link-map entry
1689 passed by the linker in the probe's third argument. Returns
1690 nonzero if the list was successfully updated, or zero to indicate
1691 failure. */
1692
1693static int
1694solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1695{
1696 struct so_list *tail;
1697 CORE_ADDR prev_lm;
1698
1699 /* svr4_current_sos_direct contains logic to handle a number of
1700 special cases relating to the first elements of the list. To
1701 avoid duplicating this logic we defer to solist_update_full
1702 if the list is empty. */
1703 if (info->solib_list == NULL)
1704 return 0;
1705
1706 /* Fall back to a full update if we are using a remote target
1707 that does not support incremental transfers. */
1708 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1709 return 0;
1710
1711 /* Walk to the end of the list. */
1712 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1713 /* Nothing. */;
1714 prev_lm = tail->lm_info->lm_addr;
1715
1716 /* Read the new objects. */
1717 if (info->using_xfer)
1718 {
1719 struct svr4_library_list library_list;
1720 char annex[64];
1721
1722 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1723 phex_nz (lm, sizeof (lm)),
1724 phex_nz (prev_lm, sizeof (prev_lm)));
1725 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1726 return 0;
1727
1728 tail->next = library_list.head;
1729 }
1730 else
1731 {
1732 struct so_list **link = &tail->next;
1733
1734 /* IGNORE_FIRST may safely be set to zero here because the
1735 above check and deferral to solist_update_full ensures
1736 that this call to svr4_read_so_list will never see the
1737 first element. */
1738 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1739 return 0;
1740 }
1741
1742 return 1;
1743}
1744
1745/* Disable the probes-based linker interface and revert to the
1746 original interface. We don't reset the breakpoints as the
1747 ones set up for the probes-based interface are adequate. */
1748
1749static void
1750disable_probes_interface_cleanup (void *arg)
1751{
1752 struct svr4_info *info = get_svr4_info ();
1753
1754 warning (_("Probes-based dynamic linker interface failed.\n"
1755 "Reverting to original interface.\n"));
1756
1757 free_probes_table (info);
1758 free_solib_list (info);
1759}
1760
1761/* Update the solib list as appropriate when using the
1762 probes-based linker interface. Do nothing if using the
1763 standard interface. */
1764
1765static void
1766svr4_handle_solib_event (void)
1767{
1768 struct svr4_info *info = get_svr4_info ();
1769 struct probe_and_action *pa;
1770 enum probe_action action;
1771 struct cleanup *old_chain, *usm_chain;
1772 struct value *val;
1773 CORE_ADDR pc, debug_base, lm = 0;
1774 int is_initial_ns;
08a6411c 1775 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1776
1777 /* Do nothing if not using the probes interface. */
1778 if (info->probes_table == NULL)
1779 return;
1780
1781 /* If anything goes wrong we revert to the original linker
1782 interface. */
1783 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1784
1785 pc = regcache_read_pc (get_current_regcache ());
1786 pa = solib_event_probe_at (info, pc);
1787 if (pa == NULL)
1788 {
1789 do_cleanups (old_chain);
1790 return;
1791 }
1792
1793 action = solib_event_probe_action (pa);
1794 if (action == PROBES_INTERFACE_FAILED)
1795 {
1796 do_cleanups (old_chain);
1797 return;
1798 }
1799
1800 if (action == DO_NOTHING)
1801 {
1802 discard_cleanups (old_chain);
1803 return;
1804 }
1805
1806 /* evaluate_probe_argument looks up symbols in the dynamic linker
1807 using find_pc_section. find_pc_section is accelerated by a cache
1808 called the section map. The section map is invalidated every
1809 time a shared library is loaded or unloaded, and if the inferior
1810 is generating a lot of shared library events then the section map
1811 will be updated every time svr4_handle_solib_event is called.
1812 We called find_pc_section in svr4_create_solib_event_breakpoints,
1813 so we can guarantee that the dynamic linker's sections are in the
1814 section map. We can therefore inhibit section map updates across
1815 these calls to evaluate_probe_argument and save a lot of time. */
1816 inhibit_section_map_updates (current_program_space);
1817 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1818 current_program_space);
1819
08a6411c 1820 val = evaluate_probe_argument (pa->probe, 1, frame);
f9e14852
GB
1821 if (val == NULL)
1822 {
1823 do_cleanups (old_chain);
1824 return;
1825 }
1826
1827 debug_base = value_as_address (val);
1828 if (debug_base == 0)
1829 {
1830 do_cleanups (old_chain);
1831 return;
1832 }
1833
1834 /* Always locate the debug struct, in case it moved. */
1835 info->debug_base = 0;
1836 if (locate_base (info) == 0)
1837 {
1838 do_cleanups (old_chain);
1839 return;
1840 }
1841
1842 /* GDB does not currently support libraries loaded via dlmopen
1843 into namespaces other than the initial one. We must ignore
1844 any namespace other than the initial namespace here until
1845 support for this is added to GDB. */
1846 if (debug_base != info->debug_base)
1847 action = DO_NOTHING;
1848
1849 if (action == UPDATE_OR_RELOAD)
1850 {
08a6411c 1851 val = evaluate_probe_argument (pa->probe, 2, frame);
f9e14852
GB
1852 if (val != NULL)
1853 lm = value_as_address (val);
1854
1855 if (lm == 0)
1856 action = FULL_RELOAD;
1857 }
1858
1859 /* Resume section map updates. */
1860 do_cleanups (usm_chain);
1861
1862 if (action == UPDATE_OR_RELOAD)
1863 {
1864 if (!solist_update_incremental (info, lm))
1865 action = FULL_RELOAD;
1866 }
1867
1868 if (action == FULL_RELOAD)
1869 {
1870 if (!solist_update_full (info))
1871 {
1872 do_cleanups (old_chain);
1873 return;
1874 }
1875 }
1876
1877 discard_cleanups (old_chain);
1878}
1879
1880/* Helper function for svr4_update_solib_event_breakpoints. */
1881
1882static int
1883svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1884{
1885 struct bp_location *loc;
1886
1887 if (b->type != bp_shlib_event)
1888 {
1889 /* Continue iterating. */
1890 return 0;
1891 }
1892
1893 for (loc = b->loc; loc != NULL; loc = loc->next)
1894 {
1895 struct svr4_info *info;
1896 struct probe_and_action *pa;
1897
1898 info = program_space_data (loc->pspace, solib_svr4_pspace_data);
1899 if (info == NULL || info->probes_table == NULL)
1900 continue;
1901
1902 pa = solib_event_probe_at (info, loc->address);
1903 if (pa == NULL)
1904 continue;
1905
1906 if (pa->action == DO_NOTHING)
1907 {
1908 if (b->enable_state == bp_disabled && stop_on_solib_events)
1909 enable_breakpoint (b);
1910 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
1911 disable_breakpoint (b);
1912 }
1913
1914 break;
1915 }
1916
1917 /* Continue iterating. */
1918 return 0;
1919}
1920
1921/* Enable or disable optional solib event breakpoints as appropriate.
1922 Called whenever stop_on_solib_events is changed. */
1923
1924static void
1925svr4_update_solib_event_breakpoints (void)
1926{
1927 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
1928}
1929
1930/* Create and register solib event breakpoints. PROBES is an array
1931 of NUM_PROBES elements, each of which is vector of probes. A
1932 solib event breakpoint will be created and registered for each
1933 probe. */
1934
1935static void
1936svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
1937 VEC (probe_p) **probes)
1938{
1939 int i;
1940
1941 for (i = 0; i < NUM_PROBES; i++)
1942 {
1943 enum probe_action action = probe_info[i].action;
1944 struct probe *probe;
1945 int ix;
1946
1947 for (ix = 0;
1948 VEC_iterate (probe_p, probes[i], ix, probe);
1949 ++ix)
1950 {
1951 create_solib_event_breakpoint (gdbarch, probe->address);
1952 register_solib_event_probe (probe, action);
1953 }
1954 }
1955
1956 svr4_update_solib_event_breakpoints ();
1957}
1958
1959/* Both the SunOS and the SVR4 dynamic linkers call a marker function
1960 before and after mapping and unmapping shared libraries. The sole
1961 purpose of this method is to allow debuggers to set a breakpoint so
1962 they can track these changes.
1963
1964 Some versions of the glibc dynamic linker contain named probes
1965 to allow more fine grained stopping. Given the address of the
1966 original marker function, this function attempts to find these
1967 probes, and if found, sets breakpoints on those instead. If the
1968 probes aren't found, a single breakpoint is set on the original
1969 marker function. */
1970
1971static void
1972svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
1973 CORE_ADDR address)
1974{
1975 struct obj_section *os;
1976
1977 os = find_pc_section (address);
1978 if (os != NULL)
1979 {
1980 int with_prefix;
1981
1982 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
1983 {
1984 VEC (probe_p) *probes[NUM_PROBES];
1985 int all_probes_found = 1;
25f9533e 1986 int checked_can_use_probe_arguments = 0;
f9e14852
GB
1987 int i;
1988
1989 memset (probes, 0, sizeof (probes));
1990 for (i = 0; i < NUM_PROBES; i++)
1991 {
1992 const char *name = probe_info[i].name;
25f9533e 1993 struct probe *p;
f9e14852
GB
1994 char buf[32];
1995
1996 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
1997 shipped with an early version of the probes code in
1998 which the probes' names were prefixed with "rtld_"
1999 and the "map_failed" probe did not exist. The
2000 locations of the probes are otherwise the same, so
2001 we check for probes with prefixed names if probes
2002 with unprefixed names are not present. */
2003 if (with_prefix)
2004 {
2005 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2006 name = buf;
2007 }
2008
2009 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2010
2011 /* The "map_failed" probe did not exist in early
2012 versions of the probes code in which the probes'
2013 names were prefixed with "rtld_". */
2014 if (strcmp (name, "rtld_map_failed") == 0)
2015 continue;
2016
2017 if (VEC_empty (probe_p, probes[i]))
2018 {
2019 all_probes_found = 0;
2020 break;
2021 }
25f9533e
SDJ
2022
2023 /* Ensure probe arguments can be evaluated. */
2024 if (!checked_can_use_probe_arguments)
2025 {
2026 p = VEC_index (probe_p, probes[i], 0);
2027 if (!can_evaluate_probe_arguments (p))
2028 {
2029 all_probes_found = 0;
2030 break;
2031 }
2032 checked_can_use_probe_arguments = 1;
2033 }
f9e14852
GB
2034 }
2035
2036 if (all_probes_found)
2037 svr4_create_probe_breakpoints (gdbarch, probes);
2038
2039 for (i = 0; i < NUM_PROBES; i++)
2040 VEC_free (probe_p, probes[i]);
2041
2042 if (all_probes_found)
2043 return;
2044 }
2045 }
2046
2047 create_solib_event_breakpoint (gdbarch, address);
2048}
2049
cb457ae2
YQ
2050/* Helper function for gdb_bfd_lookup_symbol. */
2051
2052static int
2053cmp_name_and_sec_flags (asymbol *sym, void *data)
2054{
2055 return (strcmp (sym->name, (const char *) data) == 0
2056 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2057}
7f86f058 2058/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2059
2060 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2061 debugger interface, support for arranging for the inferior to hit
2062 a breakpoint after mapping in the shared libraries. This function
2063 enables that breakpoint.
2064
2065 For SunOS, there is a special flag location (in_debugger) which we
2066 set to 1. When the dynamic linker sees this flag set, it will set
2067 a breakpoint at a location known only to itself, after saving the
2068 original contents of that place and the breakpoint address itself,
2069 in it's own internal structures. When we resume the inferior, it
2070 will eventually take a SIGTRAP when it runs into the breakpoint.
2071 We handle this (in a different place) by restoring the contents of
2072 the breakpointed location (which is only known after it stops),
2073 chasing around to locate the shared libraries that have been
2074 loaded, then resuming.
2075
2076 For SVR4, the debugger interface structure contains a member (r_brk)
2077 which is statically initialized at the time the shared library is
2078 built, to the offset of a function (_r_debug_state) which is guaran-
2079 teed to be called once before mapping in a library, and again when
2080 the mapping is complete. At the time we are examining this member,
2081 it contains only the unrelocated offset of the function, so we have
2082 to do our own relocation. Later, when the dynamic linker actually
2083 runs, it relocates r_brk to be the actual address of _r_debug_state().
2084
2085 The debugger interface structure also contains an enumeration which
2086 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2087 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2088 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2089
2090static int
268a4a75 2091enable_break (struct svr4_info *info, int from_tty)
13437d4b 2092{
3b7344d5 2093 struct bound_minimal_symbol msymbol;
bc043ef3 2094 const char * const *bkpt_namep;
13437d4b 2095 asection *interp_sect;
001f13d8 2096 char *interp_name;
7cd25cfc 2097 CORE_ADDR sym_addr;
13437d4b 2098
6c95b8df
PA
2099 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2100 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2101
7cd25cfc
DJ
2102 /* If we already have a shared library list in the target, and
2103 r_debug contains r_brk, set the breakpoint there - this should
2104 mean r_brk has already been relocated. Assume the dynamic linker
2105 is the object containing r_brk. */
2106
268a4a75 2107 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 2108 sym_addr = 0;
1a816a87
PA
2109 if (info->debug_base && solib_svr4_r_map (info) != 0)
2110 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2111
2112 if (sym_addr != 0)
2113 {
2114 struct obj_section *os;
2115
b36ec657 2116 sym_addr = gdbarch_addr_bits_remove
f5656ead 2117 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3e43a32a
MS
2118 sym_addr,
2119 &current_target));
b36ec657 2120
48379de6
DE
2121 /* On at least some versions of Solaris there's a dynamic relocation
2122 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2123 we get control before the dynamic linker has self-relocated.
2124 Check if SYM_ADDR is in a known section, if it is assume we can
2125 trust its value. This is just a heuristic though, it could go away
2126 or be replaced if it's getting in the way.
2127
2128 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2129 however it's spelled in your particular system) is ARM or Thumb.
2130 That knowledge is encoded in the address, if it's Thumb the low bit
2131 is 1. However, we've stripped that info above and it's not clear
2132 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2133 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2134 find_pc_section verifies we know about the address and have some
2135 hope of computing the right kind of breakpoint to use (via
2136 symbol info). It does mean that GDB needs to be pointed at a
2137 non-stripped version of the dynamic linker in order to obtain
2138 information it already knows about. Sigh. */
2139
7cd25cfc
DJ
2140 os = find_pc_section (sym_addr);
2141 if (os != NULL)
2142 {
2143 /* Record the relocated start and end address of the dynamic linker
2144 text and plt section for svr4_in_dynsym_resolve_code. */
2145 bfd *tmp_bfd;
2146 CORE_ADDR load_addr;
2147
2148 tmp_bfd = os->objfile->obfd;
2149 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 2150 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
2151
2152 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2153 if (interp_sect)
2154 {
6c95b8df 2155 info->interp_text_sect_low =
7cd25cfc 2156 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2157 info->interp_text_sect_high =
2158 info->interp_text_sect_low
2159 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2160 }
2161 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2162 if (interp_sect)
2163 {
6c95b8df 2164 info->interp_plt_sect_low =
7cd25cfc 2165 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2166 info->interp_plt_sect_high =
2167 info->interp_plt_sect_low
2168 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2169 }
2170
f9e14852 2171 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
7cd25cfc
DJ
2172 return 1;
2173 }
2174 }
2175
97ec2c2f 2176 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2177 into the old breakpoint at symbol code. */
97ec2c2f
UW
2178 interp_name = find_program_interpreter ();
2179 if (interp_name)
13437d4b 2180 {
8ad2fcde
KB
2181 CORE_ADDR load_addr = 0;
2182 int load_addr_found = 0;
2ec9a4f8 2183 int loader_found_in_list = 0;
f8766ec1 2184 struct so_list *so;
e4f7b8c8 2185 bfd *tmp_bfd = NULL;
2f4950cd 2186 struct target_ops *tmp_bfd_target;
f1838a98 2187 volatile struct gdb_exception ex;
13437d4b 2188
7cd25cfc 2189 sym_addr = 0;
13437d4b
KB
2190
2191 /* Now we need to figure out where the dynamic linker was
2192 loaded so that we can load its symbols and place a breakpoint
2193 in the dynamic linker itself.
2194
2195 This address is stored on the stack. However, I've been unable
2196 to find any magic formula to find it for Solaris (appears to
2197 be trivial on GNU/Linux). Therefore, we have to try an alternate
2198 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2199
f1838a98
UW
2200 TRY_CATCH (ex, RETURN_MASK_ALL)
2201 {
97ec2c2f 2202 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2203 }
13437d4b
KB
2204 if (tmp_bfd == NULL)
2205 goto bkpt_at_symbol;
2206
2f4950cd 2207 /* Now convert the TMP_BFD into a target. That way target, as
695c3173 2208 well as BFD operations can be used. */
2f4950cd 2209 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
695c3173
TT
2210 /* target_bfd_reopen acquired its own reference, so we can
2211 release ours now. */
2212 gdb_bfd_unref (tmp_bfd);
2f4950cd 2213
f8766ec1
KB
2214 /* On a running target, we can get the dynamic linker's base
2215 address from the shared library table. */
f8766ec1
KB
2216 so = master_so_list ();
2217 while (so)
8ad2fcde 2218 {
97ec2c2f 2219 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2220 {
2221 load_addr_found = 1;
2ec9a4f8 2222 loader_found_in_list = 1;
b23518f0 2223 load_addr = lm_addr_check (so, tmp_bfd);
8ad2fcde
KB
2224 break;
2225 }
f8766ec1 2226 so = so->next;
8ad2fcde
KB
2227 }
2228
8d4e36ba
JB
2229 /* If we were not able to find the base address of the loader
2230 from our so_list, then try using the AT_BASE auxilliary entry. */
2231 if (!load_addr_found)
2232 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b 2233 {
f5656ead 2234 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2235
2236 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2237 that `+ load_addr' will overflow CORE_ADDR width not creating
2238 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2239 GDB. */
2240
d182d057 2241 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2242 {
d182d057 2243 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
2244 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
2245 tmp_bfd_target);
2246
2247 gdb_assert (load_addr < space_size);
2248
2249 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2250 64bit ld.so with 32bit executable, it should not happen. */
2251
2252 if (tmp_entry_point < space_size
2253 && tmp_entry_point + load_addr >= space_size)
2254 load_addr -= space_size;
2255 }
2256
2257 load_addr_found = 1;
2258 }
8d4e36ba 2259
8ad2fcde
KB
2260 /* Otherwise we find the dynamic linker's base address by examining
2261 the current pc (which should point at the entry point for the
8d4e36ba
JB
2262 dynamic linker) and subtracting the offset of the entry point.
2263
2264 This is more fragile than the previous approaches, but is a good
2265 fallback method because it has actually been working well in
2266 most cases. */
8ad2fcde 2267 if (!load_addr_found)
fb14de7b 2268 {
c2250ad1 2269 struct regcache *regcache
f5656ead 2270 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 2271
fb14de7b
UW
2272 load_addr = (regcache_read_pc (regcache)
2273 - exec_entry_point (tmp_bfd, tmp_bfd_target));
2274 }
2ec9a4f8
DJ
2275
2276 if (!loader_found_in_list)
34439770 2277 {
1a816a87
PA
2278 info->debug_loader_name = xstrdup (interp_name);
2279 info->debug_loader_offset_p = 1;
2280 info->debug_loader_offset = load_addr;
268a4a75 2281 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 2282 }
13437d4b
KB
2283
2284 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2285 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
2286 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2287 if (interp_sect)
2288 {
6c95b8df 2289 info->interp_text_sect_low =
13437d4b 2290 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2291 info->interp_text_sect_high =
2292 info->interp_text_sect_low
2293 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
2294 }
2295 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2296 if (interp_sect)
2297 {
6c95b8df 2298 info->interp_plt_sect_low =
13437d4b 2299 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2300 info->interp_plt_sect_high =
2301 info->interp_plt_sect_low
2302 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
2303 }
2304
2305 /* Now try to set a breakpoint in the dynamic linker. */
2306 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2307 {
cb457ae2
YQ
2308 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
2309 (void *) *bkpt_namep);
13437d4b
KB
2310 if (sym_addr != 0)
2311 break;
2312 }
2313
2bbe3cc1
DJ
2314 if (sym_addr != 0)
2315 /* Convert 'sym_addr' from a function pointer to an address.
2316 Because we pass tmp_bfd_target instead of the current
2317 target, this will always produce an unrelocated value. */
f5656ead 2318 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2319 sym_addr,
2320 tmp_bfd_target);
2321
695c3173
TT
2322 /* We're done with both the temporary bfd and target. Closing
2323 the target closes the underlying bfd, because it holds the
2324 only remaining reference. */
460014f5 2325 target_close (tmp_bfd_target);
13437d4b
KB
2326
2327 if (sym_addr != 0)
2328 {
f9e14852
GB
2329 svr4_create_solib_event_breakpoints (target_gdbarch (),
2330 load_addr + sym_addr);
97ec2c2f 2331 xfree (interp_name);
13437d4b
KB
2332 return 1;
2333 }
2334
2335 /* For whatever reason we couldn't set a breakpoint in the dynamic
2336 linker. Warn and drop into the old code. */
2337 bkpt_at_symbol:
97ec2c2f 2338 xfree (interp_name);
82d03102
PG
2339 warning (_("Unable to find dynamic linker breakpoint function.\n"
2340 "GDB will be unable to debug shared library initializers\n"
2341 "and track explicitly loaded dynamic code."));
13437d4b 2342 }
13437d4b 2343
e499d0f1
DJ
2344 /* Scan through the lists of symbols, trying to look up the symbol and
2345 set a breakpoint there. Terminate loop when we/if we succeed. */
2346
2347 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2348 {
2349 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2350 if ((msymbol.minsym != NULL)
77e371c0 2351 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2352 {
77e371c0 2353 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2354 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac
JM
2355 sym_addr,
2356 &current_target);
f9e14852 2357 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
e499d0f1
DJ
2358 return 1;
2359 }
2360 }
13437d4b 2361
fb139f32 2362 if (interp_name != NULL && !current_inferior ()->attach_flag)
13437d4b 2363 {
c6490bf2 2364 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2365 {
c6490bf2 2366 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2367 if ((msymbol.minsym != NULL)
77e371c0 2368 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2369 {
77e371c0 2370 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2371 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2
KB
2372 sym_addr,
2373 &current_target);
f9e14852 2374 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
c6490bf2
KB
2375 return 1;
2376 }
13437d4b
KB
2377 }
2378 }
542c95c2 2379 return 0;
13437d4b
KB
2380}
2381
7f86f058 2382/* Implement the "special_symbol_handling" target_so_ops method. */
13437d4b
KB
2383
2384static void
2385svr4_special_symbol_handling (void)
2386{
7f86f058 2387 /* Nothing to do. */
13437d4b
KB
2388}
2389
09919ac2
JK
2390/* Read the ELF program headers from ABFD. Return the contents and
2391 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 2392
09919ac2
JK
2393static gdb_byte *
2394read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 2395{
09919ac2
JK
2396 Elf_Internal_Ehdr *ehdr;
2397 gdb_byte *buf;
e2a44558 2398
09919ac2 2399 ehdr = elf_elfheader (abfd);
b8040f19 2400
09919ac2
JK
2401 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2402 if (*phdrs_size == 0)
2403 return NULL;
2404
2405 buf = xmalloc (*phdrs_size);
2406 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2407 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2408 {
2409 xfree (buf);
2410 return NULL;
2411 }
2412
2413 return buf;
b8040f19
JK
2414}
2415
01c30d6e
JK
2416/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2417 exec_bfd. Otherwise return 0.
2418
2419 We relocate all of the sections by the same amount. This
c378eb4e 2420 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2421 According to the System V Application Binary Interface,
2422 Edition 4.1, page 5-5:
2423
2424 ... Though the system chooses virtual addresses for
2425 individual processes, it maintains the segments' relative
2426 positions. Because position-independent code uses relative
2427 addressesing between segments, the difference between
2428 virtual addresses in memory must match the difference
2429 between virtual addresses in the file. The difference
2430 between the virtual address of any segment in memory and
2431 the corresponding virtual address in the file is thus a
2432 single constant value for any one executable or shared
2433 object in a given process. This difference is the base
2434 address. One use of the base address is to relocate the
2435 memory image of the program during dynamic linking.
2436
2437 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2438 ABI and is left unspecified in some of the earlier editions.
2439
2440 Decide if the objfile needs to be relocated. As indicated above, we will
2441 only be here when execution is stopped. But during attachment PC can be at
2442 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2443 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2444 regcache_read_pc would point to the interpreter and not the main executable.
2445
2446 So, to summarize, relocations are necessary when the start address obtained
2447 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2448
09919ac2
JK
2449 [ The astute reader will note that we also test to make sure that
2450 the executable in question has the DYNAMIC flag set. It is my
2451 opinion that this test is unnecessary (undesirable even). It
2452 was added to avoid inadvertent relocation of an executable
2453 whose e_type member in the ELF header is not ET_DYN. There may
2454 be a time in the future when it is desirable to do relocations
2455 on other types of files as well in which case this condition
2456 should either be removed or modified to accomodate the new file
2457 type. - Kevin, Nov 2000. ] */
b8040f19 2458
01c30d6e
JK
2459static int
2460svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2461{
41752192
JK
2462 /* ENTRY_POINT is a possible function descriptor - before
2463 a call to gdbarch_convert_from_func_ptr_addr. */
09919ac2 2464 CORE_ADDR entry_point, displacement;
b8040f19
JK
2465
2466 if (exec_bfd == NULL)
2467 return 0;
2468
09919ac2
JK
2469 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2470 being executed themselves and PIE (Position Independent Executable)
2471 executables are ET_DYN. */
2472
2473 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2474 return 0;
2475
2476 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2477 return 0;
2478
2479 displacement = entry_point - bfd_get_start_address (exec_bfd);
2480
2481 /* Verify the DISPLACEMENT candidate complies with the required page
2482 alignment. It is cheaper than the program headers comparison below. */
2483
2484 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2485 {
2486 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2487
2488 /* p_align of PT_LOAD segments does not specify any alignment but
2489 only congruency of addresses:
2490 p_offset % p_align == p_vaddr % p_align
2491 Kernel is free to load the executable with lower alignment. */
2492
2493 if ((displacement & (elf->minpagesize - 1)) != 0)
2494 return 0;
2495 }
2496
2497 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2498 comparing their program headers. If the program headers in the auxilliary
2499 vector do not match the program headers in the executable, then we are
2500 looking at a different file than the one used by the kernel - for
2501 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2502
2503 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2504 {
2505 /* Be optimistic and clear OK only if GDB was able to verify the headers
2506 really do not match. */
2507 int phdrs_size, phdrs2_size, ok = 1;
2508 gdb_byte *buf, *buf2;
0a1e94c7 2509 int arch_size;
09919ac2 2510
0a1e94c7 2511 buf = read_program_header (-1, &phdrs_size, &arch_size);
09919ac2 2512 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
2513 if (buf != NULL && buf2 != NULL)
2514 {
f5656ead 2515 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2516
2517 /* We are dealing with three different addresses. EXEC_BFD
2518 represents current address in on-disk file. target memory content
2519 may be different from EXEC_BFD as the file may have been prelinked
2520 to a different address after the executable has been loaded.
2521 Moreover the address of placement in target memory can be
3e43a32a
MS
2522 different from what the program headers in target memory say -
2523 this is the goal of PIE.
0a1e94c7
JK
2524
2525 Detected DISPLACEMENT covers both the offsets of PIE placement and
2526 possible new prelink performed after start of the program. Here
2527 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2528 content offset for the verification purpose. */
2529
2530 if (phdrs_size != phdrs2_size
2531 || bfd_get_arch_size (exec_bfd) != arch_size)
2532 ok = 0;
3e43a32a
MS
2533 else if (arch_size == 32
2534 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
2535 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2536 {
2537 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2538 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2539 CORE_ADDR displacement = 0;
2540 int i;
2541
2542 /* DISPLACEMENT could be found more easily by the difference of
2543 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2544 already have enough information to compute that displacement
2545 with what we've read. */
2546
2547 for (i = 0; i < ehdr2->e_phnum; i++)
2548 if (phdr2[i].p_type == PT_LOAD)
2549 {
2550 Elf32_External_Phdr *phdrp;
2551 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2552 CORE_ADDR vaddr, paddr;
2553 CORE_ADDR displacement_vaddr = 0;
2554 CORE_ADDR displacement_paddr = 0;
2555
2556 phdrp = &((Elf32_External_Phdr *) buf)[i];
2557 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2558 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2559
2560 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2561 byte_order);
2562 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2563
2564 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2565 byte_order);
2566 displacement_paddr = paddr - phdr2[i].p_paddr;
2567
2568 if (displacement_vaddr == displacement_paddr)
2569 displacement = displacement_vaddr;
2570
2571 break;
2572 }
2573
2574 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2575
2576 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2577 {
2578 Elf32_External_Phdr *phdrp;
2579 Elf32_External_Phdr *phdr2p;
2580 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2581 CORE_ADDR vaddr, paddr;
43b8e241 2582 asection *plt2_asect;
0a1e94c7
JK
2583
2584 phdrp = &((Elf32_External_Phdr *) buf)[i];
2585 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2586 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2587 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2588
2589 /* PT_GNU_STACK is an exception by being never relocated by
2590 prelink as its addresses are always zero. */
2591
2592 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2593 continue;
2594
2595 /* Check also other adjustment combinations - PR 11786. */
2596
3e43a32a
MS
2597 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2598 byte_order);
0a1e94c7
JK
2599 vaddr -= displacement;
2600 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2601
3e43a32a
MS
2602 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2603 byte_order);
0a1e94c7
JK
2604 paddr -= displacement;
2605 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2606
2607 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2608 continue;
2609
204b5331
DE
2610 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2611 CentOS-5 has problems with filesz, memsz as well.
2612 See PR 11786. */
2613 if (phdr2[i].p_type == PT_GNU_RELRO)
2614 {
2615 Elf32_External_Phdr tmp_phdr = *phdrp;
2616 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2617
2618 memset (tmp_phdr.p_filesz, 0, 4);
2619 memset (tmp_phdr.p_memsz, 0, 4);
2620 memset (tmp_phdr.p_flags, 0, 4);
2621 memset (tmp_phdr.p_align, 0, 4);
2622 memset (tmp_phdr2.p_filesz, 0, 4);
2623 memset (tmp_phdr2.p_memsz, 0, 4);
2624 memset (tmp_phdr2.p_flags, 0, 4);
2625 memset (tmp_phdr2.p_align, 0, 4);
2626
2627 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2628 == 0)
2629 continue;
2630 }
2631
43b8e241
JK
2632 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2633 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2634 if (plt2_asect)
2635 {
2636 int content2;
2637 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2638 CORE_ADDR filesz;
2639
2640 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2641 & SEC_HAS_CONTENTS) != 0;
2642
2643 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2644 byte_order);
2645
2646 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2647 FILESZ is from the in-memory image. */
2648 if (content2)
2649 filesz += bfd_get_section_size (plt2_asect);
2650 else
2651 filesz -= bfd_get_section_size (plt2_asect);
2652
2653 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2654 filesz);
2655
2656 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2657 continue;
2658 }
2659
0a1e94c7
JK
2660 ok = 0;
2661 break;
2662 }
2663 }
3e43a32a
MS
2664 else if (arch_size == 64
2665 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
2666 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2667 {
2668 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2669 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2670 CORE_ADDR displacement = 0;
2671 int i;
2672
2673 /* DISPLACEMENT could be found more easily by the difference of
2674 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2675 already have enough information to compute that displacement
2676 with what we've read. */
2677
2678 for (i = 0; i < ehdr2->e_phnum; i++)
2679 if (phdr2[i].p_type == PT_LOAD)
2680 {
2681 Elf64_External_Phdr *phdrp;
2682 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2683 CORE_ADDR vaddr, paddr;
2684 CORE_ADDR displacement_vaddr = 0;
2685 CORE_ADDR displacement_paddr = 0;
2686
2687 phdrp = &((Elf64_External_Phdr *) buf)[i];
2688 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2689 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2690
2691 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2692 byte_order);
2693 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2694
2695 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2696 byte_order);
2697 displacement_paddr = paddr - phdr2[i].p_paddr;
2698
2699 if (displacement_vaddr == displacement_paddr)
2700 displacement = displacement_vaddr;
2701
2702 break;
2703 }
2704
2705 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2706
2707 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2708 {
2709 Elf64_External_Phdr *phdrp;
2710 Elf64_External_Phdr *phdr2p;
2711 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2712 CORE_ADDR vaddr, paddr;
43b8e241 2713 asection *plt2_asect;
0a1e94c7
JK
2714
2715 phdrp = &((Elf64_External_Phdr *) buf)[i];
2716 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2717 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2718 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2719
2720 /* PT_GNU_STACK is an exception by being never relocated by
2721 prelink as its addresses are always zero. */
2722
2723 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2724 continue;
2725
2726 /* Check also other adjustment combinations - PR 11786. */
2727
3e43a32a
MS
2728 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2729 byte_order);
0a1e94c7
JK
2730 vaddr -= displacement;
2731 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2732
3e43a32a
MS
2733 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2734 byte_order);
0a1e94c7
JK
2735 paddr -= displacement;
2736 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2737
2738 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2739 continue;
2740
204b5331
DE
2741 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2742 CentOS-5 has problems with filesz, memsz as well.
2743 See PR 11786. */
2744 if (phdr2[i].p_type == PT_GNU_RELRO)
2745 {
2746 Elf64_External_Phdr tmp_phdr = *phdrp;
2747 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2748
2749 memset (tmp_phdr.p_filesz, 0, 8);
2750 memset (tmp_phdr.p_memsz, 0, 8);
2751 memset (tmp_phdr.p_flags, 0, 4);
2752 memset (tmp_phdr.p_align, 0, 8);
2753 memset (tmp_phdr2.p_filesz, 0, 8);
2754 memset (tmp_phdr2.p_memsz, 0, 8);
2755 memset (tmp_phdr2.p_flags, 0, 4);
2756 memset (tmp_phdr2.p_align, 0, 8);
2757
2758 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2759 == 0)
2760 continue;
2761 }
2762
43b8e241
JK
2763 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2764 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2765 if (plt2_asect)
2766 {
2767 int content2;
2768 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2769 CORE_ADDR filesz;
2770
2771 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2772 & SEC_HAS_CONTENTS) != 0;
2773
2774 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2775 byte_order);
2776
2777 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2778 FILESZ is from the in-memory image. */
2779 if (content2)
2780 filesz += bfd_get_section_size (plt2_asect);
2781 else
2782 filesz -= bfd_get_section_size (plt2_asect);
2783
2784 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2785 filesz);
2786
2787 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2788 continue;
2789 }
2790
0a1e94c7
JK
2791 ok = 0;
2792 break;
2793 }
2794 }
2795 else
2796 ok = 0;
2797 }
09919ac2
JK
2798
2799 xfree (buf);
2800 xfree (buf2);
2801
2802 if (!ok)
2803 return 0;
2804 }
b8040f19 2805
ccf26247
JK
2806 if (info_verbose)
2807 {
2808 /* It can be printed repeatedly as there is no easy way to check
2809 the executable symbols/file has been already relocated to
2810 displacement. */
2811
2812 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2813 "displacement %s for \"%s\".\n"),
f5656ead 2814 paddress (target_gdbarch (), displacement),
ccf26247
JK
2815 bfd_get_filename (exec_bfd));
2816 }
2817
01c30d6e
JK
2818 *displacementp = displacement;
2819 return 1;
b8040f19
JK
2820}
2821
2822/* Relocate the main executable. This function should be called upon
c378eb4e 2823 stopping the inferior process at the entry point to the program.
b8040f19
JK
2824 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2825 different, the main executable is relocated by the proper amount. */
2826
2827static void
2828svr4_relocate_main_executable (void)
2829{
01c30d6e
JK
2830 CORE_ADDR displacement;
2831
4e5799b6
JK
2832 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2833 probably contains the offsets computed using the PIE displacement
2834 from the previous run, which of course are irrelevant for this run.
2835 So we need to determine the new PIE displacement and recompute the
2836 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2837 already contains pre-computed offsets.
01c30d6e 2838
4e5799b6 2839 If we cannot compute the PIE displacement, either:
01c30d6e 2840
4e5799b6
JK
2841 - The executable is not PIE.
2842
2843 - SYMFILE_OBJFILE does not match the executable started in the target.
2844 This can happen for main executable symbols loaded at the host while
2845 `ld.so --ld-args main-executable' is loaded in the target.
2846
2847 Then we leave the section offsets untouched and use them as is for
2848 this run. Either:
2849
2850 - These section offsets were properly reset earlier, and thus
2851 already contain the correct values. This can happen for instance
2852 when reconnecting via the remote protocol to a target that supports
2853 the `qOffsets' packet.
2854
2855 - The section offsets were not reset earlier, and the best we can
c378eb4e 2856 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2857
2858 if (! svr4_exec_displacement (&displacement))
2859 return;
b8040f19 2860
01c30d6e
JK
2861 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2862 addresses. */
b8040f19
JK
2863
2864 if (symfile_objfile)
e2a44558 2865 {
e2a44558 2866 struct section_offsets *new_offsets;
b8040f19 2867 int i;
e2a44558 2868
b8040f19
JK
2869 new_offsets = alloca (symfile_objfile->num_sections
2870 * sizeof (*new_offsets));
e2a44558 2871
b8040f19
JK
2872 for (i = 0; i < symfile_objfile->num_sections; i++)
2873 new_offsets->offsets[i] = displacement;
e2a44558 2874
b8040f19 2875 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2876 }
51bee8e9
JK
2877 else if (exec_bfd)
2878 {
2879 asection *asect;
2880
2881 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2882 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2883 (bfd_section_vma (exec_bfd, asect)
2884 + displacement));
2885 }
e2a44558
KB
2886}
2887
7f86f058 2888/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2889
2890 For SVR4 executables, this first instruction is either the first
2891 instruction in the dynamic linker (for dynamically linked
2892 executables) or the instruction at "start" for statically linked
2893 executables. For dynamically linked executables, the system
2894 first exec's /lib/libc.so.N, which contains the dynamic linker,
2895 and starts it running. The dynamic linker maps in any needed
2896 shared libraries, maps in the actual user executable, and then
2897 jumps to "start" in the user executable.
2898
7f86f058
PA
2899 We can arrange to cooperate with the dynamic linker to discover the
2900 names of shared libraries that are dynamically linked, and the base
2901 addresses to which they are linked.
13437d4b
KB
2902
2903 This function is responsible for discovering those names and
2904 addresses, and saving sufficient information about them to allow
d2e5c99a 2905 their symbols to be read at a later time. */
13437d4b 2906
e2a44558 2907static void
268a4a75 2908svr4_solib_create_inferior_hook (int from_tty)
13437d4b 2909{
1a816a87
PA
2910 struct svr4_info *info;
2911
6c95b8df 2912 info = get_svr4_info ();
2020b7ab 2913
f9e14852
GB
2914 /* Clear the probes-based interface's state. */
2915 free_probes_table (info);
2916 free_solib_list (info);
2917
e2a44558 2918 /* Relocate the main executable if necessary. */
86e4bafc 2919 svr4_relocate_main_executable ();
e2a44558 2920
c91c8c16
PA
2921 /* No point setting a breakpoint in the dynamic linker if we can't
2922 hit it (e.g., a core file, or a trace file). */
2923 if (!target_has_execution)
2924 return;
2925
d5a921c9 2926 if (!svr4_have_link_map_offsets ())
513f5903 2927 return;
d5a921c9 2928
268a4a75 2929 if (!enable_break (info, from_tty))
542c95c2 2930 return;
13437d4b
KB
2931}
2932
2933static void
2934svr4_clear_solib (void)
2935{
6c95b8df
PA
2936 struct svr4_info *info;
2937
2938 info = get_svr4_info ();
2939 info->debug_base = 0;
2940 info->debug_loader_offset_p = 0;
2941 info->debug_loader_offset = 0;
2942 xfree (info->debug_loader_name);
2943 info->debug_loader_name = NULL;
13437d4b
KB
2944}
2945
6bb7be43
JB
2946/* Clear any bits of ADDR that wouldn't fit in a target-format
2947 data pointer. "Data pointer" here refers to whatever sort of
2948 address the dynamic linker uses to manage its sections. At the
2949 moment, we don't support shared libraries on any processors where
2950 code and data pointers are different sizes.
2951
2952 This isn't really the right solution. What we really need here is
2953 a way to do arithmetic on CORE_ADDR values that respects the
2954 natural pointer/address correspondence. (For example, on the MIPS,
2955 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2956 sign-extend the value. There, simply truncating the bits above
819844ad 2957 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
2958 be a new gdbarch method or something. */
2959static CORE_ADDR
2960svr4_truncate_ptr (CORE_ADDR addr)
2961{
f5656ead 2962 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
2963 /* We don't need to truncate anything, and the bit twiddling below
2964 will fail due to overflow problems. */
2965 return addr;
2966 else
f5656ead 2967 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
2968}
2969
2970
749499cb
KB
2971static void
2972svr4_relocate_section_addresses (struct so_list *so,
0542c86d 2973 struct target_section *sec)
749499cb 2974{
2b2848e2
DE
2975 bfd *abfd = sec->the_bfd_section->owner;
2976
2977 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
2978 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 2979}
4b188b9f 2980\f
749499cb 2981
4b188b9f 2982/* Architecture-specific operations. */
6bb7be43 2983
4b188b9f
MK
2984/* Per-architecture data key. */
2985static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 2986
4b188b9f 2987struct solib_svr4_ops
e5e2b9ff 2988{
4b188b9f
MK
2989 /* Return a description of the layout of `struct link_map'. */
2990 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2991};
e5e2b9ff 2992
4b188b9f 2993/* Return a default for the architecture-specific operations. */
e5e2b9ff 2994
4b188b9f
MK
2995static void *
2996solib_svr4_init (struct obstack *obstack)
e5e2b9ff 2997{
4b188b9f 2998 struct solib_svr4_ops *ops;
e5e2b9ff 2999
4b188b9f 3000 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3001 ops->fetch_link_map_offsets = NULL;
4b188b9f 3002 return ops;
e5e2b9ff
KB
3003}
3004
4b188b9f 3005/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3006 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3007
21479ded 3008void
e5e2b9ff
KB
3009set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3010 struct link_map_offsets *(*flmo) (void))
21479ded 3011{
4b188b9f
MK
3012 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
3013
3014 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3015
3016 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
3017}
3018
4b188b9f
MK
3019/* Fetch a link_map_offsets structure using the architecture-specific
3020 `struct link_map_offsets' fetcher. */
1c4dcb57 3021
4b188b9f
MK
3022static struct link_map_offsets *
3023svr4_fetch_link_map_offsets (void)
21479ded 3024{
f5656ead 3025 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
4b188b9f
MK
3026
3027 gdb_assert (ops->fetch_link_map_offsets);
3028 return ops->fetch_link_map_offsets ();
21479ded
KB
3029}
3030
4b188b9f
MK
3031/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3032
3033static int
3034svr4_have_link_map_offsets (void)
3035{
f5656ead 3036 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
433759f7 3037
4b188b9f
MK
3038 return (ops->fetch_link_map_offsets != NULL);
3039}
3040\f
3041
e4bbbda8
MK
3042/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3043 `struct r_debug' and a `struct link_map' that are binary compatible
3044 with the origional SVR4 implementation. */
3045
3046/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3047 for an ILP32 SVR4 system. */
d989b283 3048
e4bbbda8
MK
3049struct link_map_offsets *
3050svr4_ilp32_fetch_link_map_offsets (void)
3051{
3052 static struct link_map_offsets lmo;
3053 static struct link_map_offsets *lmp = NULL;
3054
3055 if (lmp == NULL)
3056 {
3057 lmp = &lmo;
3058
e4cd0d6a
MK
3059 lmo.r_version_offset = 0;
3060 lmo.r_version_size = 4;
e4bbbda8 3061 lmo.r_map_offset = 4;
7cd25cfc 3062 lmo.r_brk_offset = 8;
e4cd0d6a 3063 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3064
3065 /* Everything we need is in the first 20 bytes. */
3066 lmo.link_map_size = 20;
3067 lmo.l_addr_offset = 0;
e4bbbda8 3068 lmo.l_name_offset = 4;
cc10cae3 3069 lmo.l_ld_offset = 8;
e4bbbda8 3070 lmo.l_next_offset = 12;
e4bbbda8 3071 lmo.l_prev_offset = 16;
e4bbbda8
MK
3072 }
3073
3074 return lmp;
3075}
3076
3077/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3078 for an LP64 SVR4 system. */
d989b283 3079
e4bbbda8
MK
3080struct link_map_offsets *
3081svr4_lp64_fetch_link_map_offsets (void)
3082{
3083 static struct link_map_offsets lmo;
3084 static struct link_map_offsets *lmp = NULL;
3085
3086 if (lmp == NULL)
3087 {
3088 lmp = &lmo;
3089
e4cd0d6a
MK
3090 lmo.r_version_offset = 0;
3091 lmo.r_version_size = 4;
e4bbbda8 3092 lmo.r_map_offset = 8;
7cd25cfc 3093 lmo.r_brk_offset = 16;
e4cd0d6a 3094 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3095
3096 /* Everything we need is in the first 40 bytes. */
3097 lmo.link_map_size = 40;
3098 lmo.l_addr_offset = 0;
e4bbbda8 3099 lmo.l_name_offset = 8;
cc10cae3 3100 lmo.l_ld_offset = 16;
e4bbbda8 3101 lmo.l_next_offset = 24;
e4bbbda8 3102 lmo.l_prev_offset = 32;
e4bbbda8
MK
3103 }
3104
3105 return lmp;
3106}
3107\f
3108
7d522c90 3109struct target_so_ops svr4_so_ops;
13437d4b 3110
c378eb4e 3111/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3112 different rule for symbol lookup. The lookup begins here in the DSO, not in
3113 the main executable. */
3114
3115static struct symbol *
3116elf_lookup_lib_symbol (const struct objfile *objfile,
3117 const char *name,
21b556f4 3118 const domain_enum domain)
3a40aaa0 3119{
61f0d762
JK
3120 bfd *abfd;
3121
3122 if (objfile == symfile_objfile)
3123 abfd = exec_bfd;
3124 else
3125 {
3126 /* OBJFILE should have been passed as the non-debug one. */
3127 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3128
3129 abfd = objfile->obfd;
3130 }
3131
3132 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
3133 return NULL;
3134
94af9270 3135 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
3136}
3137
a78f21af
AC
3138extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
3139
13437d4b
KB
3140void
3141_initialize_svr4_solib (void)
3142{
4b188b9f 3143 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 3144 solib_svr4_pspace_data
8e260fc0 3145 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 3146
749499cb 3147 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3148 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3149 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3150 svr4_so_ops.clear_solib = svr4_clear_solib;
3151 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3152 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
3153 svr4_so_ops.current_sos = svr4_current_sos;
3154 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3155 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3156 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 3157 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 3158 svr4_so_ops.same = svr4_same;
de18c1d8 3159 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3160 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3161 svr4_so_ops.handle_event = svr4_handle_solib_event;
13437d4b 3162}