]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-svr4.c
2009-05-05 Christophe lyon <christophe.lyon@st.com>
[thirdparty/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
0fb0cc75
JB
4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 21
13437d4b
KB
22#include "defs.h"
23
13437d4b 24#include "elf/external.h"
21479ded 25#include "elf/common.h"
f7856c8f 26#include "elf/mips.h"
13437d4b
KB
27
28#include "symtab.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdbcore.h"
13437d4b 33#include "target.h"
13437d4b 34#include "inferior.h"
2020b7ab 35#include "gdbthread.h"
13437d4b 36
4b188b9f
MK
37#include "gdb_assert.h"
38
13437d4b 39#include "solist.h"
bba93f6c 40#include "solib.h"
13437d4b
KB
41#include "solib-svr4.h"
42
2f4950cd 43#include "bfd-target.h"
cc10cae3 44#include "elf-bfd.h"
2f4950cd 45#include "exec.h"
8d4e36ba 46#include "auxv.h"
f1838a98 47#include "exceptions.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
1c4dcb57 51
13437d4b
KB
52/* Link map info to include in an allocated so_list entry */
53
54struct lm_info
55 {
56 /* Pointer to copy of link map from inferior. The type is char *
57 rather than void *, so that we may use byte offsets to find the
58 various fields without the need for a cast. */
4066fc10 59 gdb_byte *lm;
cc10cae3
AO
60
61 /* Amount by which addresses in the binary should be relocated to
62 match the inferior. This could most often be taken directly
63 from lm, but when prelinking is involved and the prelink base
64 address changes, we may need a different offset, we want to
65 warn about the difference and compute it only once. */
66 CORE_ADDR l_addr;
93a57060
DJ
67
68 /* The target location of lm. */
69 CORE_ADDR lm_addr;
13437d4b
KB
70 };
71
72/* On SVR4 systems, a list of symbols in the dynamic linker where
73 GDB can try to place a breakpoint to monitor shared library
74 events.
75
76 If none of these symbols are found, or other errors occur, then
77 SVR4 systems will fall back to using a symbol as the "startup
78 mapping complete" breakpoint address. */
79
13437d4b
KB
80static char *solib_break_names[] =
81{
82 "r_debug_state",
83 "_r_debug_state",
84 "_dl_debug_state",
85 "rtld_db_dlactivity",
1f72e589 86 "_rtld_debug_state",
4c0122c8 87
13437d4b
KB
88 NULL
89};
13437d4b 90
13437d4b
KB
91static char *bkpt_names[] =
92{
13437d4b 93 "_start",
ad3dcc5c 94 "__start",
13437d4b
KB
95 "main",
96 NULL
97};
13437d4b 98
13437d4b
KB
99static char *main_name_list[] =
100{
101 "main_$main",
102 NULL
103};
104
4d7b2d5b
JB
105/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
106 the same shared library. */
107
108static int
109svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
110{
111 if (strcmp (gdb_so_name, inferior_so_name) == 0)
112 return 1;
113
114 /* On Solaris, when starting inferior we think that dynamic linker is
115 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
116 contains /lib/ld.so.1. Sometimes one file is a link to another, but
117 sometimes they have identical content, but are not linked to each
118 other. We don't restrict this check for Solaris, but the chances
119 of running into this situation elsewhere are very low. */
120 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
121 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
122 return 1;
123
124 /* Similarly, we observed the same issue with sparc64, but with
125 different locations. */
126 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
127 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
128 return 1;
129
130 return 0;
131}
132
133static int
134svr4_same (struct so_list *gdb, struct so_list *inferior)
135{
136 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
137}
138
13437d4b
KB
139/* link map access functions */
140
141static CORE_ADDR
cc10cae3 142LM_ADDR_FROM_LINK_MAP (struct so_list *so)
13437d4b 143{
4b188b9f 144 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 145 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 146
cfaefc65 147 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
b6da22b0 148 ptr_type);
13437d4b
KB
149}
150
cc10cae3 151static int
2c0b251b 152HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
cc10cae3
AO
153{
154 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
155
cfaefc65 156 return lmo->l_ld_offset >= 0;
cc10cae3
AO
157}
158
159static CORE_ADDR
160LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
161{
162 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 163 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
cc10cae3 164
cfaefc65 165 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
b6da22b0 166 ptr_type);
cc10cae3
AO
167}
168
169static CORE_ADDR
170LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
171{
172 if (so->lm_info->l_addr == (CORE_ADDR)-1)
173 {
174 struct bfd_section *dyninfo_sect;
175 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
176
177 l_addr = LM_ADDR_FROM_LINK_MAP (so);
178
179 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
180 goto set_addr;
181
182 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
183
184 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
185 if (dyninfo_sect == NULL)
186 goto set_addr;
187
188 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
189
190 if (dynaddr + l_addr != l_dynaddr)
191 {
cc10cae3
AO
192 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
193 {
194 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
195 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
196 int i;
197
198 align = 1;
199
200 for (i = 0; i < ehdr->e_phnum; i++)
201 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
202 align = phdr[i].p_align;
203 }
204
205 /* Turn it into a mask. */
206 align--;
207
208 /* If the changes match the alignment requirements, we
209 assume we're using a core file that was generated by the
210 same binary, just prelinked with a different base offset.
211 If it doesn't match, we may have a different binary, the
212 same binary with the dynamic table loaded at an unrelated
213 location, or anything, really. To avoid regressions,
214 don't adjust the base offset in the latter case, although
215 odds are that, if things really changed, debugging won't
216 quite work. */
f1e55806 217 if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3
AO
218 {
219 l_addr = l_dynaddr - dynaddr;
79d4c408
DJ
220
221 warning (_(".dynamic section for \"%s\" "
222 "is not at the expected address"), so->so_name);
cc10cae3
AO
223 warning (_("difference appears to be caused by prelink, "
224 "adjusting expectations"));
225 }
79d4c408
DJ
226 else
227 warning (_(".dynamic section for \"%s\" "
228 "is not at the expected address "
229 "(wrong library or version mismatch?)"), so->so_name);
cc10cae3
AO
230 }
231
232 set_addr:
233 so->lm_info->l_addr = l_addr;
234 }
235
236 return so->lm_info->l_addr;
237}
238
13437d4b
KB
239static CORE_ADDR
240LM_NEXT (struct so_list *so)
241{
4b188b9f 242 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 243 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 244
cfaefc65 245 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
b6da22b0 246 ptr_type);
13437d4b
KB
247}
248
249static CORE_ADDR
250LM_NAME (struct so_list *so)
251{
4b188b9f 252 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 253 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 254
cfaefc65 255 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
b6da22b0 256 ptr_type);
13437d4b
KB
257}
258
13437d4b
KB
259static int
260IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
261{
4b188b9f 262 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 263 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 264
e499d0f1
DJ
265 /* Assume that everything is a library if the dynamic loader was loaded
266 late by a static executable. */
267 if (bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
268 return 0;
269
cfaefc65 270 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
b6da22b0 271 ptr_type) == 0;
13437d4b
KB
272}
273
13437d4b 274static CORE_ADDR debug_base; /* Base of dynamic linker structures */
13437d4b 275
34439770
DJ
276/* Validity flag for debug_loader_offset. */
277static int debug_loader_offset_p;
278
279/* Load address for the dynamic linker, inferred. */
280static CORE_ADDR debug_loader_offset;
281
282/* Name of the dynamic linker, valid if debug_loader_offset_p. */
283static char *debug_loader_name;
284
93a57060
DJ
285/* Load map address for the main executable. */
286static CORE_ADDR main_lm_addr;
287
13437d4b
KB
288/* Local function prototypes */
289
290static int match_main (char *);
291
2bbe3cc1 292static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
13437d4b
KB
293
294/*
295
296 LOCAL FUNCTION
297
298 bfd_lookup_symbol -- lookup the value for a specific symbol
299
300 SYNOPSIS
301
2bbe3cc1 302 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b
KB
303
304 DESCRIPTION
305
306 An expensive way to lookup the value of a single symbol for
307 bfd's that are only temporary anyway. This is used by the
308 shared library support to find the address of the debugger
2bbe3cc1 309 notification routine in the shared library.
13437d4b 310
2bbe3cc1
DJ
311 The returned symbol may be in a code or data section; functions
312 will normally be in a code section, but may be in a data section
313 if this architecture uses function descriptors.
87f84c9d 314
13437d4b
KB
315 Note that 0 is specifically allowed as an error return (no
316 such symbol).
317 */
318
319static CORE_ADDR
2bbe3cc1 320bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b 321{
435b259c 322 long storage_needed;
13437d4b
KB
323 asymbol *sym;
324 asymbol **symbol_table;
325 unsigned int number_of_symbols;
326 unsigned int i;
327 struct cleanup *back_to;
328 CORE_ADDR symaddr = 0;
329
330 storage_needed = bfd_get_symtab_upper_bound (abfd);
331
332 if (storage_needed > 0)
333 {
334 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 335 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
336 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
337
338 for (i = 0; i < number_of_symbols; i++)
339 {
340 sym = *symbol_table++;
6314a349 341 if (strcmp (sym->name, symname) == 0
2bbe3cc1 342 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 343 {
2bbe3cc1 344 /* BFD symbols are section relative. */
13437d4b
KB
345 symaddr = sym->value + sym->section->vma;
346 break;
347 }
348 }
349 do_cleanups (back_to);
350 }
351
352 if (symaddr)
353 return symaddr;
354
355 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
356 have to check the dynamic string table too. */
357
358 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
359
360 if (storage_needed > 0)
361 {
362 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 363 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
364 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
365
366 for (i = 0; i < number_of_symbols; i++)
367 {
368 sym = *symbol_table++;
87f84c9d 369
6314a349 370 if (strcmp (sym->name, symname) == 0
2bbe3cc1 371 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 372 {
2bbe3cc1 373 /* BFD symbols are section relative. */
13437d4b
KB
374 symaddr = sym->value + sym->section->vma;
375 break;
376 }
377 }
378 do_cleanups (back_to);
379 }
380
381 return symaddr;
382}
383
97ec2c2f
UW
384
385/* Read program header TYPE from inferior memory. The header is found
386 by scanning the OS auxillary vector.
387
388 Return a pointer to allocated memory holding the program header contents,
389 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
390 size of those contents is returned to P_SECT_SIZE. Likewise, the target
391 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
392
393static gdb_byte *
394read_program_header (int type, int *p_sect_size, int *p_arch_size)
395{
396 CORE_ADDR at_phdr, at_phent, at_phnum;
397 int arch_size, sect_size;
398 CORE_ADDR sect_addr;
399 gdb_byte *buf;
400
401 /* Get required auxv elements from target. */
402 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
403 return 0;
404 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
405 return 0;
406 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
407 return 0;
408 if (!at_phdr || !at_phnum)
409 return 0;
410
411 /* Determine ELF architecture type. */
412 if (at_phent == sizeof (Elf32_External_Phdr))
413 arch_size = 32;
414 else if (at_phent == sizeof (Elf64_External_Phdr))
415 arch_size = 64;
416 else
417 return 0;
418
419 /* Find .dynamic section via the PT_DYNAMIC PHDR. */
420 if (arch_size == 32)
421 {
422 Elf32_External_Phdr phdr;
423 int i;
424
425 /* Search for requested PHDR. */
426 for (i = 0; i < at_phnum; i++)
427 {
428 if (target_read_memory (at_phdr + i * sizeof (phdr),
429 (gdb_byte *)&phdr, sizeof (phdr)))
430 return 0;
431
432 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type, 4) == type)
433 break;
434 }
435
436 if (i == at_phnum)
437 return 0;
438
439 /* Retrieve address and size. */
440 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, 4);
441 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, 4);
442 }
443 else
444 {
445 Elf64_External_Phdr phdr;
446 int i;
447
448 /* Search for requested PHDR. */
449 for (i = 0; i < at_phnum; i++)
450 {
451 if (target_read_memory (at_phdr + i * sizeof (phdr),
452 (gdb_byte *)&phdr, sizeof (phdr)))
453 return 0;
454
455 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type, 4) == type)
456 break;
457 }
458
459 if (i == at_phnum)
460 return 0;
461
462 /* Retrieve address and size. */
463 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, 8);
464 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, 8);
465 }
466
467 /* Read in requested program header. */
468 buf = xmalloc (sect_size);
469 if (target_read_memory (sect_addr, buf, sect_size))
470 {
471 xfree (buf);
472 return NULL;
473 }
474
475 if (p_arch_size)
476 *p_arch_size = arch_size;
477 if (p_sect_size)
478 *p_sect_size = sect_size;
479
480 return buf;
481}
482
483
484/* Return program interpreter string. */
485static gdb_byte *
486find_program_interpreter (void)
487{
488 gdb_byte *buf = NULL;
489
490 /* If we have an exec_bfd, use its section table. */
491 if (exec_bfd
492 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
493 {
494 struct bfd_section *interp_sect;
495
496 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
497 if (interp_sect != NULL)
498 {
499 CORE_ADDR sect_addr = bfd_section_vma (exec_bfd, interp_sect);
500 int sect_size = bfd_section_size (exec_bfd, interp_sect);
501
502 buf = xmalloc (sect_size);
503 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
504 }
505 }
506
507 /* If we didn't find it, use the target auxillary vector. */
508 if (!buf)
509 buf = read_program_header (PT_INTERP, NULL, NULL);
510
511 return buf;
512}
513
514
3a40aaa0
UW
515/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
516 returned and the corresponding PTR is set. */
517
518static int
519scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
520{
521 int arch_size, step, sect_size;
522 long dyn_tag;
523 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 524 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
525 Elf32_External_Dyn *x_dynp_32;
526 Elf64_External_Dyn *x_dynp_64;
527 struct bfd_section *sect;
528
529 if (abfd == NULL)
530 return 0;
531 arch_size = bfd_get_arch_size (abfd);
532 if (arch_size == -1)
533 return 0;
534
535 /* Find the start address of the .dynamic section. */
536 sect = bfd_get_section_by_name (abfd, ".dynamic");
537 if (sect == NULL)
538 return 0;
539 dyn_addr = bfd_section_vma (abfd, sect);
540
65728c26
DJ
541 /* Read in .dynamic from the BFD. We will get the actual value
542 from memory later. */
3a40aaa0 543 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
544 buf = bufstart = alloca (sect_size);
545 if (!bfd_get_section_contents (abfd, sect,
546 buf, 0, sect_size))
547 return 0;
3a40aaa0
UW
548
549 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
550 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
551 : sizeof (Elf64_External_Dyn);
552 for (bufend = buf + sect_size;
553 buf < bufend;
554 buf += step)
555 {
556 if (arch_size == 32)
557 {
558 x_dynp_32 = (Elf32_External_Dyn *) buf;
559 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
560 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
561 }
65728c26 562 else
3a40aaa0
UW
563 {
564 x_dynp_64 = (Elf64_External_Dyn *) buf;
565 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
566 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
567 }
568 if (dyn_tag == DT_NULL)
569 return 0;
570 if (dyn_tag == dyntag)
571 {
65728c26
DJ
572 /* If requested, try to read the runtime value of this .dynamic
573 entry. */
3a40aaa0 574 if (ptr)
65728c26 575 {
b6da22b0 576 struct type *ptr_type;
65728c26
DJ
577 gdb_byte ptr_buf[8];
578 CORE_ADDR ptr_addr;
579
b6da22b0 580 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
65728c26
DJ
581 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
582 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 583 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
584 *ptr = dyn_ptr;
585 }
586 return 1;
3a40aaa0
UW
587 }
588 }
589
590 return 0;
591}
592
97ec2c2f
UW
593/* Scan for DYNTAG in .dynamic section of the target's main executable,
594 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
595 returned and the corresponding PTR is set. */
596
597static int
598scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
599{
600 int sect_size, arch_size, step;
601 long dyn_tag;
602 CORE_ADDR dyn_ptr;
603 gdb_byte *bufend, *bufstart, *buf;
604
605 /* Read in .dynamic section. */
606 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
607 if (!buf)
608 return 0;
609
610 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
611 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
612 : sizeof (Elf64_External_Dyn);
613 for (bufend = buf + sect_size;
614 buf < bufend;
615 buf += step)
616 {
617 if (arch_size == 32)
618 {
619 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
620 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, 4);
621 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, 4);
622 }
623 else
624 {
625 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
626 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, 8);
627 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, 8);
628 }
629 if (dyn_tag == DT_NULL)
630 break;
631
632 if (dyn_tag == dyntag)
633 {
634 if (ptr)
635 *ptr = dyn_ptr;
636
637 xfree (bufstart);
638 return 1;
639 }
640 }
641
642 xfree (bufstart);
643 return 0;
644}
645
3a40aaa0 646
13437d4b
KB
647/*
648
649 LOCAL FUNCTION
650
651 elf_locate_base -- locate the base address of dynamic linker structs
652 for SVR4 elf targets.
653
654 SYNOPSIS
655
656 CORE_ADDR elf_locate_base (void)
657
658 DESCRIPTION
659
660 For SVR4 elf targets the address of the dynamic linker's runtime
661 structure is contained within the dynamic info section in the
662 executable file. The dynamic section is also mapped into the
663 inferior address space. Because the runtime loader fills in the
664 real address before starting the inferior, we have to read in the
665 dynamic info section from the inferior address space.
666 If there are any errors while trying to find the address, we
667 silently return 0, otherwise the found address is returned.
668
669 */
670
671static CORE_ADDR
672elf_locate_base (void)
673{
3a40aaa0
UW
674 struct minimal_symbol *msymbol;
675 CORE_ADDR dyn_ptr;
13437d4b 676
65728c26
DJ
677 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
678 instead of DT_DEBUG, although they sometimes contain an unused
679 DT_DEBUG. */
97ec2c2f
UW
680 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
681 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 682 {
b6da22b0 683 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
3a40aaa0 684 gdb_byte *pbuf;
b6da22b0 685 int pbuf_size = TYPE_LENGTH (ptr_type);
3a40aaa0
UW
686 pbuf = alloca (pbuf_size);
687 /* DT_MIPS_RLD_MAP contains a pointer to the address
688 of the dynamic link structure. */
689 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 690 return 0;
b6da22b0 691 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
692 }
693
65728c26 694 /* Find DT_DEBUG. */
97ec2c2f
UW
695 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
696 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
697 return dyn_ptr;
698
3a40aaa0
UW
699 /* This may be a static executable. Look for the symbol
700 conventionally named _r_debug, as a last resort. */
701 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
702 if (msymbol != NULL)
703 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
704
705 /* DT_DEBUG entry not found. */
706 return 0;
707}
708
13437d4b
KB
709/*
710
711 LOCAL FUNCTION
712
713 locate_base -- locate the base address of dynamic linker structs
714
715 SYNOPSIS
716
717 CORE_ADDR locate_base (void)
718
719 DESCRIPTION
720
721 For both the SunOS and SVR4 shared library implementations, if the
722 inferior executable has been linked dynamically, there is a single
723 address somewhere in the inferior's data space which is the key to
724 locating all of the dynamic linker's runtime structures. This
725 address is the value of the debug base symbol. The job of this
726 function is to find and return that address, or to return 0 if there
727 is no such address (the executable is statically linked for example).
728
729 For SunOS, the job is almost trivial, since the dynamic linker and
730 all of it's structures are statically linked to the executable at
731 link time. Thus the symbol for the address we are looking for has
732 already been added to the minimal symbol table for the executable's
733 objfile at the time the symbol file's symbols were read, and all we
734 have to do is look it up there. Note that we explicitly do NOT want
735 to find the copies in the shared library.
736
737 The SVR4 version is a bit more complicated because the address
738 is contained somewhere in the dynamic info section. We have to go
739 to a lot more work to discover the address of the debug base symbol.
740 Because of this complexity, we cache the value we find and return that
741 value on subsequent invocations. Note there is no copy in the
742 executable symbol tables.
743
744 */
745
746static CORE_ADDR
747locate_base (void)
748{
13437d4b
KB
749 /* Check to see if we have a currently valid address, and if so, avoid
750 doing all this work again and just return the cached address. If
751 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
752 section for ELF executables. There's no point in doing any of this
753 though if we don't have some link map offsets to work with. */
13437d4b 754
d5a921c9 755 if (debug_base == 0 && svr4_have_link_map_offsets ())
13437d4b
KB
756 {
757 if (exec_bfd != NULL
758 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
759 debug_base = elf_locate_base ();
13437d4b
KB
760 }
761 return (debug_base);
13437d4b
KB
762}
763
e4cd0d6a
MK
764/* Find the first element in the inferior's dynamic link map, and
765 return its address in the inferior.
13437d4b 766
e4cd0d6a
MK
767 FIXME: Perhaps we should validate the info somehow, perhaps by
768 checking r_version for a known version number, or r_state for
769 RT_CONSISTENT. */
13437d4b
KB
770
771static CORE_ADDR
e4cd0d6a 772solib_svr4_r_map (void)
13437d4b 773{
4b188b9f 774 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 775 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 776
b6da22b0 777 return read_memory_typed_address (debug_base + lmo->r_map_offset, ptr_type);
e4cd0d6a 778}
13437d4b 779
7cd25cfc
DJ
780/* Find r_brk from the inferior's debug base. */
781
782static CORE_ADDR
783solib_svr4_r_brk (void)
784{
785 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 786 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
7cd25cfc 787
b6da22b0 788 return read_memory_typed_address (debug_base + lmo->r_brk_offset, ptr_type);
7cd25cfc
DJ
789}
790
e4cd0d6a
MK
791/* Find the link map for the dynamic linker (if it is not in the
792 normal list of loaded shared objects). */
13437d4b 793
e4cd0d6a
MK
794static CORE_ADDR
795solib_svr4_r_ldsomap (void)
796{
797 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 798 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
e4cd0d6a 799 ULONGEST version;
13437d4b 800
e4cd0d6a
MK
801 /* Check version, and return zero if `struct r_debug' doesn't have
802 the r_ldsomap member. */
803 version = read_memory_unsigned_integer (debug_base + lmo->r_version_offset,
804 lmo->r_version_size);
805 if (version < 2 || lmo->r_ldsomap_offset == -1)
806 return 0;
13437d4b 807
e4cd0d6a 808 return read_memory_typed_address (debug_base + lmo->r_ldsomap_offset,
b6da22b0 809 ptr_type);
13437d4b
KB
810}
811
13437d4b
KB
812/*
813
814 LOCAL FUNCTION
815
816 open_symbol_file_object
817
818 SYNOPSIS
819
820 void open_symbol_file_object (void *from_tty)
821
822 DESCRIPTION
823
824 If no open symbol file, attempt to locate and open the main symbol
825 file. On SVR4 systems, this is the first link map entry. If its
826 name is here, we can open it. Useful when attaching to a process
827 without first loading its symbol file.
828
829 If FROM_TTYP dereferences to a non-zero integer, allow messages to
830 be printed. This parameter is a pointer rather than an int because
831 open_symbol_file_object() is called via catch_errors() and
832 catch_errors() requires a pointer argument. */
833
834static int
835open_symbol_file_object (void *from_ttyp)
836{
837 CORE_ADDR lm, l_name;
838 char *filename;
839 int errcode;
840 int from_tty = *(int *)from_ttyp;
4b188b9f 841 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0
UW
842 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
843 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 844 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 845 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
13437d4b
KB
846
847 if (symfile_objfile)
9e2f0ad4 848 if (!query (_("Attempt to reload symbols from process? ")))
13437d4b
KB
849 return 0;
850
7cd25cfc
DJ
851 /* Always locate the debug struct, in case it has moved. */
852 debug_base = 0;
853 if (locate_base () == 0)
13437d4b
KB
854 return 0; /* failed somehow... */
855
856 /* First link map member should be the executable. */
e4cd0d6a
MK
857 lm = solib_svr4_r_map ();
858 if (lm == 0)
13437d4b
KB
859 return 0; /* failed somehow... */
860
861 /* Read address of name from target memory to GDB. */
cfaefc65 862 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 863
cfaefc65 864 /* Convert the address to host format. */
b6da22b0 865 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b
KB
866
867 /* Free l_name_buf. */
868 do_cleanups (cleanups);
869
870 if (l_name == 0)
871 return 0; /* No filename. */
872
873 /* Now fetch the filename from target memory. */
874 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 875 make_cleanup (xfree, filename);
13437d4b
KB
876
877 if (errcode)
878 {
8a3fe4f8 879 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
880 safe_strerror (errcode));
881 return 0;
882 }
883
13437d4b 884 /* Have a pathname: read the symbol file. */
1adeb98a 885 symbol_file_add_main (filename, from_tty);
13437d4b
KB
886
887 return 1;
888}
13437d4b 889
34439770
DJ
890/* If no shared library information is available from the dynamic
891 linker, build a fallback list from other sources. */
892
893static struct so_list *
894svr4_default_sos (void)
895{
896 struct so_list *head = NULL;
897 struct so_list **link_ptr = &head;
898
899 if (debug_loader_offset_p)
900 {
901 struct so_list *new = XZALLOC (struct so_list);
902
903 new->lm_info = xmalloc (sizeof (struct lm_info));
904
905 /* Nothing will ever check the cached copy of the link
906 map if we set l_addr. */
907 new->lm_info->l_addr = debug_loader_offset;
93a57060 908 new->lm_info->lm_addr = 0;
34439770
DJ
909 new->lm_info->lm = NULL;
910
911 strncpy (new->so_name, debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
912 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
913 strcpy (new->so_original_name, new->so_name);
914
915 *link_ptr = new;
916 link_ptr = &new->next;
917 }
918
919 return head;
920}
921
13437d4b
KB
922/* LOCAL FUNCTION
923
924 current_sos -- build a list of currently loaded shared objects
925
926 SYNOPSIS
927
928 struct so_list *current_sos ()
929
930 DESCRIPTION
931
932 Build a list of `struct so_list' objects describing the shared
933 objects currently loaded in the inferior. This list does not
934 include an entry for the main executable file.
935
936 Note that we only gather information directly available from the
937 inferior --- we don't examine any of the shared library files
938 themselves. The declaration of `struct so_list' says which fields
939 we provide values for. */
940
941static struct so_list *
942svr4_current_sos (void)
943{
944 CORE_ADDR lm;
945 struct so_list *head = 0;
946 struct so_list **link_ptr = &head;
e4cd0d6a 947 CORE_ADDR ldsomap = 0;
13437d4b 948
7cd25cfc
DJ
949 /* Always locate the debug struct, in case it has moved. */
950 debug_base = 0;
951 locate_base ();
13437d4b 952
7cd25cfc
DJ
953 /* If we can't find the dynamic linker's base structure, this
954 must not be a dynamically linked executable. Hmm. */
955 if (! debug_base)
956 return svr4_default_sos ();
13437d4b
KB
957
958 /* Walk the inferior's link map list, and build our list of
959 `struct so_list' nodes. */
e4cd0d6a 960 lm = solib_svr4_r_map ();
34439770 961
13437d4b
KB
962 while (lm)
963 {
4b188b9f 964 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 965 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 966 struct cleanup *old_chain = make_cleanup (xfree, new);
13437d4b 967
13437d4b 968 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 969 make_cleanup (xfree, new->lm_info);
13437d4b 970
831004b7 971 new->lm_info->l_addr = (CORE_ADDR)-1;
93a57060 972 new->lm_info->lm_addr = lm;
f4456994 973 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 974 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
975
976 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
977
978 lm = LM_NEXT (new);
979
980 /* For SVR4 versions, the first entry in the link map is for the
981 inferior executable, so we must ignore it. For some versions of
982 SVR4, it has no name. For others (Solaris 2.3 for example), it
983 does have a name, so we can no longer use a missing name to
984 decide when to ignore it. */
e4cd0d6a 985 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
93a57060
DJ
986 {
987 main_lm_addr = new->lm_info->lm_addr;
988 free_so (new);
989 }
13437d4b
KB
990 else
991 {
992 int errcode;
993 char *buffer;
994
995 /* Extract this shared object's name. */
996 target_read_string (LM_NAME (new), &buffer,
997 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
998 if (errcode != 0)
8a3fe4f8
AC
999 warning (_("Can't read pathname for load map: %s."),
1000 safe_strerror (errcode));
13437d4b
KB
1001 else
1002 {
1003 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1004 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
13437d4b
KB
1005 strcpy (new->so_original_name, new->so_name);
1006 }
ea5bf0a1 1007 xfree (buffer);
13437d4b
KB
1008
1009 /* If this entry has no name, or its name matches the name
1010 for the main executable, don't include it in the list. */
1011 if (! new->so_name[0]
1012 || match_main (new->so_name))
1013 free_so (new);
1014 else
1015 {
1016 new->next = 0;
1017 *link_ptr = new;
1018 link_ptr = &new->next;
1019 }
1020 }
1021
e4cd0d6a
MK
1022 /* On Solaris, the dynamic linker is not in the normal list of
1023 shared objects, so make sure we pick it up too. Having
1024 symbol information for the dynamic linker is quite crucial
1025 for skipping dynamic linker resolver code. */
1026 if (lm == 0 && ldsomap == 0)
1027 lm = ldsomap = solib_svr4_r_ldsomap ();
1028
13437d4b
KB
1029 discard_cleanups (old_chain);
1030 }
1031
34439770
DJ
1032 if (head == NULL)
1033 return svr4_default_sos ();
1034
13437d4b
KB
1035 return head;
1036}
1037
93a57060 1038/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1039
1040CORE_ADDR
1041svr4_fetch_objfile_link_map (struct objfile *objfile)
1042{
93a57060 1043 struct so_list *so;
bc4a16ae 1044
93a57060
DJ
1045 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1046 if (main_lm_addr == 0)
1047 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1048
93a57060
DJ
1049 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1050 if (objfile == symfile_objfile)
1051 return main_lm_addr;
1052
1053 /* The other link map addresses may be found by examining the list
1054 of shared libraries. */
1055 for (so = master_so_list (); so; so = so->next)
1056 if (so->objfile == objfile)
1057 return so->lm_info->lm_addr;
1058
1059 /* Not found! */
bc4a16ae
EZ
1060 return 0;
1061}
13437d4b
KB
1062
1063/* On some systems, the only way to recognize the link map entry for
1064 the main executable file is by looking at its name. Return
1065 non-zero iff SONAME matches one of the known main executable names. */
1066
1067static int
1068match_main (char *soname)
1069{
1070 char **mainp;
1071
1072 for (mainp = main_name_list; *mainp != NULL; mainp++)
1073 {
1074 if (strcmp (soname, *mainp) == 0)
1075 return (1);
1076 }
1077
1078 return (0);
1079}
1080
13437d4b
KB
1081/* Return 1 if PC lies in the dynamic symbol resolution code of the
1082 SVR4 run time loader. */
13437d4b
KB
1083static CORE_ADDR interp_text_sect_low;
1084static CORE_ADDR interp_text_sect_high;
1085static CORE_ADDR interp_plt_sect_low;
1086static CORE_ADDR interp_plt_sect_high;
1087
7d522c90 1088int
d7fa2ae2 1089svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b
KB
1090{
1091 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1092 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1093 || in_plt_section (pc, NULL));
1094}
13437d4b 1095
2f4950cd
AC
1096/* Given an executable's ABFD and target, compute the entry-point
1097 address. */
1098
1099static CORE_ADDR
1100exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1101{
1102 /* KevinB wrote ... for most targets, the address returned by
1103 bfd_get_start_address() is the entry point for the start
1104 function. But, for some targets, bfd_get_start_address() returns
1105 the address of a function descriptor from which the entry point
1106 address may be extracted. This address is extracted by
1107 gdbarch_convert_from_func_ptr_addr(). The method
1108 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1109 function for targets which don't use function descriptors. */
1cf3db46 1110 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2f4950cd
AC
1111 bfd_get_start_address (abfd),
1112 targ);
1113}
13437d4b
KB
1114
1115/*
1116
1117 LOCAL FUNCTION
1118
1119 enable_break -- arrange for dynamic linker to hit breakpoint
1120
1121 SYNOPSIS
1122
1123 int enable_break (void)
1124
1125 DESCRIPTION
1126
1127 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1128 debugger interface, support for arranging for the inferior to hit
1129 a breakpoint after mapping in the shared libraries. This function
1130 enables that breakpoint.
1131
1132 For SunOS, there is a special flag location (in_debugger) which we
1133 set to 1. When the dynamic linker sees this flag set, it will set
1134 a breakpoint at a location known only to itself, after saving the
1135 original contents of that place and the breakpoint address itself,
1136 in it's own internal structures. When we resume the inferior, it
1137 will eventually take a SIGTRAP when it runs into the breakpoint.
1138 We handle this (in a different place) by restoring the contents of
1139 the breakpointed location (which is only known after it stops),
1140 chasing around to locate the shared libraries that have been
1141 loaded, then resuming.
1142
1143 For SVR4, the debugger interface structure contains a member (r_brk)
1144 which is statically initialized at the time the shared library is
1145 built, to the offset of a function (_r_debug_state) which is guaran-
1146 teed to be called once before mapping in a library, and again when
1147 the mapping is complete. At the time we are examining this member,
1148 it contains only the unrelocated offset of the function, so we have
1149 to do our own relocation. Later, when the dynamic linker actually
1150 runs, it relocates r_brk to be the actual address of _r_debug_state().
1151
1152 The debugger interface structure also contains an enumeration which
1153 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1154 depending upon whether or not the library is being mapped or unmapped,
1155 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1156 */
1157
1158static int
1159enable_break (void)
1160{
13437d4b
KB
1161 struct minimal_symbol *msymbol;
1162 char **bkpt_namep;
1163 asection *interp_sect;
97ec2c2f 1164 gdb_byte *interp_name;
7cd25cfc 1165 CORE_ADDR sym_addr;
13437d4b
KB
1166
1167 /* First, remove all the solib event breakpoints. Their addresses
1168 may have changed since the last time we ran the program. */
1169 remove_solib_event_breakpoints ();
1170
13437d4b
KB
1171 interp_text_sect_low = interp_text_sect_high = 0;
1172 interp_plt_sect_low = interp_plt_sect_high = 0;
1173
7cd25cfc
DJ
1174 /* If we already have a shared library list in the target, and
1175 r_debug contains r_brk, set the breakpoint there - this should
1176 mean r_brk has already been relocated. Assume the dynamic linker
1177 is the object containing r_brk. */
1178
1179 solib_add (NULL, 0, &current_target, auto_solib_add);
1180 sym_addr = 0;
1181 if (debug_base && solib_svr4_r_map () != 0)
1182 sym_addr = solib_svr4_r_brk ();
1183
1184 if (sym_addr != 0)
1185 {
1186 struct obj_section *os;
1187
b36ec657 1188 sym_addr = gdbarch_addr_bits_remove
1cf3db46 1189 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
b36ec657
DJ
1190 sym_addr,
1191 &current_target));
1192
7cd25cfc
DJ
1193 os = find_pc_section (sym_addr);
1194 if (os != NULL)
1195 {
1196 /* Record the relocated start and end address of the dynamic linker
1197 text and plt section for svr4_in_dynsym_resolve_code. */
1198 bfd *tmp_bfd;
1199 CORE_ADDR load_addr;
1200
1201 tmp_bfd = os->objfile->obfd;
1202 load_addr = ANOFFSET (os->objfile->section_offsets,
1203 os->objfile->sect_index_text);
1204
1205 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1206 if (interp_sect)
1207 {
1208 interp_text_sect_low =
1209 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1210 interp_text_sect_high =
1211 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1212 }
1213 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1214 if (interp_sect)
1215 {
1216 interp_plt_sect_low =
1217 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1218 interp_plt_sect_high =
1219 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1220 }
1221
1222 create_solib_event_breakpoint (sym_addr);
1223 return 1;
1224 }
1225 }
1226
97ec2c2f 1227 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1228 into the old breakpoint at symbol code. */
97ec2c2f
UW
1229 interp_name = find_program_interpreter ();
1230 if (interp_name)
13437d4b 1231 {
8ad2fcde
KB
1232 CORE_ADDR load_addr = 0;
1233 int load_addr_found = 0;
2ec9a4f8 1234 int loader_found_in_list = 0;
f8766ec1 1235 struct so_list *so;
e4f7b8c8 1236 bfd *tmp_bfd = NULL;
2f4950cd 1237 struct target_ops *tmp_bfd_target;
f1838a98 1238 volatile struct gdb_exception ex;
13437d4b 1239
7cd25cfc 1240 sym_addr = 0;
13437d4b
KB
1241
1242 /* Now we need to figure out where the dynamic linker was
1243 loaded so that we can load its symbols and place a breakpoint
1244 in the dynamic linker itself.
1245
1246 This address is stored on the stack. However, I've been unable
1247 to find any magic formula to find it for Solaris (appears to
1248 be trivial on GNU/Linux). Therefore, we have to try an alternate
1249 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1250
f1838a98
UW
1251 TRY_CATCH (ex, RETURN_MASK_ALL)
1252 {
97ec2c2f 1253 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1254 }
13437d4b
KB
1255 if (tmp_bfd == NULL)
1256 goto bkpt_at_symbol;
1257
2f4950cd
AC
1258 /* Now convert the TMP_BFD into a target. That way target, as
1259 well as BFD operations can be used. Note that closing the
1260 target will also close the underlying bfd. */
1261 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1262
f8766ec1
KB
1263 /* On a running target, we can get the dynamic linker's base
1264 address from the shared library table. */
f8766ec1
KB
1265 so = master_so_list ();
1266 while (so)
8ad2fcde 1267 {
97ec2c2f 1268 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1269 {
1270 load_addr_found = 1;
2ec9a4f8 1271 loader_found_in_list = 1;
cc10cae3 1272 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
8ad2fcde
KB
1273 break;
1274 }
f8766ec1 1275 so = so->next;
8ad2fcde
KB
1276 }
1277
8d4e36ba
JB
1278 /* If we were not able to find the base address of the loader
1279 from our so_list, then try using the AT_BASE auxilliary entry. */
1280 if (!load_addr_found)
1281 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1282 load_addr_found = 1;
1283
8ad2fcde
KB
1284 /* Otherwise we find the dynamic linker's base address by examining
1285 the current pc (which should point at the entry point for the
8d4e36ba
JB
1286 dynamic linker) and subtracting the offset of the entry point.
1287
1288 This is more fragile than the previous approaches, but is a good
1289 fallback method because it has actually been working well in
1290 most cases. */
8ad2fcde 1291 if (!load_addr_found)
2ec9a4f8
DJ
1292 load_addr = (read_pc ()
1293 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1294
1295 if (!loader_found_in_list)
34439770 1296 {
97ec2c2f 1297 debug_loader_name = xstrdup (interp_name);
34439770
DJ
1298 debug_loader_offset_p = 1;
1299 debug_loader_offset = load_addr;
2bbe3cc1 1300 solib_add (NULL, 0, &current_target, auto_solib_add);
34439770 1301 }
13437d4b
KB
1302
1303 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1304 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1305 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1306 if (interp_sect)
1307 {
1308 interp_text_sect_low =
1309 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1310 interp_text_sect_high =
1311 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1312 }
1313 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1314 if (interp_sect)
1315 {
1316 interp_plt_sect_low =
1317 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1318 interp_plt_sect_high =
1319 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1320 }
1321
1322 /* Now try to set a breakpoint in the dynamic linker. */
1323 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1324 {
2bbe3cc1 1325 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
13437d4b
KB
1326 if (sym_addr != 0)
1327 break;
1328 }
1329
2bbe3cc1
DJ
1330 if (sym_addr != 0)
1331 /* Convert 'sym_addr' from a function pointer to an address.
1332 Because we pass tmp_bfd_target instead of the current
1333 target, this will always produce an unrelocated value. */
1cf3db46 1334 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2bbe3cc1
DJ
1335 sym_addr,
1336 tmp_bfd_target);
1337
2f4950cd
AC
1338 /* We're done with both the temporary bfd and target. Remember,
1339 closing the target closes the underlying bfd. */
1340 target_close (tmp_bfd_target, 0);
13437d4b
KB
1341
1342 if (sym_addr != 0)
1343 {
1344 create_solib_event_breakpoint (load_addr + sym_addr);
97ec2c2f 1345 xfree (interp_name);
13437d4b
KB
1346 return 1;
1347 }
1348
1349 /* For whatever reason we couldn't set a breakpoint in the dynamic
1350 linker. Warn and drop into the old code. */
1351 bkpt_at_symbol:
97ec2c2f 1352 xfree (interp_name);
82d03102
PG
1353 warning (_("Unable to find dynamic linker breakpoint function.\n"
1354 "GDB will be unable to debug shared library initializers\n"
1355 "and track explicitly loaded dynamic code."));
13437d4b 1356 }
13437d4b 1357
e499d0f1
DJ
1358 /* Scan through the lists of symbols, trying to look up the symbol and
1359 set a breakpoint there. Terminate loop when we/if we succeed. */
1360
1361 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1362 {
1363 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1364 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1365 {
1366 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1367 return 1;
1368 }
1369 }
13437d4b 1370
13437d4b
KB
1371 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1372 {
1373 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1374 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1375 {
1376 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1377 return 1;
1378 }
1379 }
542c95c2 1380 return 0;
13437d4b
KB
1381}
1382
1383/*
1384
1385 LOCAL FUNCTION
1386
1387 special_symbol_handling -- additional shared library symbol handling
1388
1389 SYNOPSIS
1390
1391 void special_symbol_handling ()
1392
1393 DESCRIPTION
1394
1395 Once the symbols from a shared object have been loaded in the usual
1396 way, we are called to do any system specific symbol handling that
1397 is needed.
1398
ab31aa69 1399 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1400 linkers structures to find symbol definitions for "common" symbols
1401 and adding them to the minimal symbol table for the runtime common
1402 objfile.
1403
ab31aa69
KB
1404 However, for SVR4, there's nothing to do.
1405
13437d4b
KB
1406 */
1407
1408static void
1409svr4_special_symbol_handling (void)
1410{
13437d4b
KB
1411}
1412
e2a44558
KB
1413/* Relocate the main executable. This function should be called upon
1414 stopping the inferior process at the entry point to the program.
1415 The entry point from BFD is compared to the PC and if they are
1416 different, the main executable is relocated by the proper amount.
1417
1418 As written it will only attempt to relocate executables which
1419 lack interpreter sections. It seems likely that only dynamic
1420 linker executables will get relocated, though it should work
1421 properly for a position-independent static executable as well. */
1422
1423static void
1424svr4_relocate_main_executable (void)
1425{
1426 asection *interp_sect;
1427 CORE_ADDR pc = read_pc ();
1428
1429 /* Decide if the objfile needs to be relocated. As indicated above,
1430 we will only be here when execution is stopped at the beginning
1431 of the program. Relocation is necessary if the address at which
1432 we are presently stopped differs from the start address stored in
1433 the executable AND there's no interpreter section. The condition
1434 regarding the interpreter section is very important because if
1435 there *is* an interpreter section, execution will begin there
1436 instead. When there is an interpreter section, the start address
1437 is (presumably) used by the interpreter at some point to start
1438 execution of the program.
1439
1440 If there is an interpreter, it is normal for it to be set to an
1441 arbitrary address at the outset. The job of finding it is
1442 handled in enable_break().
1443
1444 So, to summarize, relocations are necessary when there is no
1445 interpreter section and the start address obtained from the
1446 executable is different from the address at which GDB is
1447 currently stopped.
1448
1449 [ The astute reader will note that we also test to make sure that
1450 the executable in question has the DYNAMIC flag set. It is my
1451 opinion that this test is unnecessary (undesirable even). It
1452 was added to avoid inadvertent relocation of an executable
1453 whose e_type member in the ELF header is not ET_DYN. There may
1454 be a time in the future when it is desirable to do relocations
1455 on other types of files as well in which case this condition
1456 should either be removed or modified to accomodate the new file
1457 type. (E.g, an ET_EXEC executable which has been built to be
1458 position-independent could safely be relocated by the OS if
1459 desired. It is true that this violates the ABI, but the ABI
1460 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1461 */
1462
1463 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1464 if (interp_sect == NULL
1465 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
2f4950cd 1466 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
e2a44558
KB
1467 {
1468 struct cleanup *old_chain;
1469 struct section_offsets *new_offsets;
1470 int i, changed;
1471 CORE_ADDR displacement;
1472
1473 /* It is necessary to relocate the objfile. The amount to
1474 relocate by is simply the address at which we are stopped
1475 minus the starting address from the executable.
1476
1477 We relocate all of the sections by the same amount. This
1478 behavior is mandated by recent editions of the System V ABI.
1479 According to the System V Application Binary Interface,
1480 Edition 4.1, page 5-5:
1481
1482 ... Though the system chooses virtual addresses for
1483 individual processes, it maintains the segments' relative
1484 positions. Because position-independent code uses relative
1485 addressesing between segments, the difference between
1486 virtual addresses in memory must match the difference
1487 between virtual addresses in the file. The difference
1488 between the virtual address of any segment in memory and
1489 the corresponding virtual address in the file is thus a
1490 single constant value for any one executable or shared
1491 object in a given process. This difference is the base
1492 address. One use of the base address is to relocate the
1493 memory image of the program during dynamic linking.
1494
1495 The same language also appears in Edition 4.0 of the System V
1496 ABI and is left unspecified in some of the earlier editions. */
1497
2f4950cd 1498 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
e2a44558
KB
1499 changed = 0;
1500
13fc0c2f
KB
1501 new_offsets = xcalloc (symfile_objfile->num_sections,
1502 sizeof (struct section_offsets));
b8c9b27d 1503 old_chain = make_cleanup (xfree, new_offsets);
e2a44558
KB
1504
1505 for (i = 0; i < symfile_objfile->num_sections; i++)
1506 {
1507 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1508 changed = 1;
1509 new_offsets->offsets[i] = displacement;
1510 }
1511
1512 if (changed)
1513 objfile_relocate (symfile_objfile, new_offsets);
1514
1515 do_cleanups (old_chain);
1516 }
1517}
1518
13437d4b
KB
1519/*
1520
1521 GLOBAL FUNCTION
1522
1523 svr4_solib_create_inferior_hook -- shared library startup support
1524
1525 SYNOPSIS
1526
7095b863 1527 void svr4_solib_create_inferior_hook ()
13437d4b
KB
1528
1529 DESCRIPTION
1530
1531 When gdb starts up the inferior, it nurses it along (through the
1532 shell) until it is ready to execute it's first instruction. At this
1533 point, this function gets called via expansion of the macro
1534 SOLIB_CREATE_INFERIOR_HOOK.
1535
1536 For SunOS executables, this first instruction is typically the
1537 one at "_start", or a similar text label, regardless of whether
1538 the executable is statically or dynamically linked. The runtime
1539 startup code takes care of dynamically linking in any shared
1540 libraries, once gdb allows the inferior to continue.
1541
1542 For SVR4 executables, this first instruction is either the first
1543 instruction in the dynamic linker (for dynamically linked
1544 executables) or the instruction at "start" for statically linked
1545 executables. For dynamically linked executables, the system
1546 first exec's /lib/libc.so.N, which contains the dynamic linker,
1547 and starts it running. The dynamic linker maps in any needed
1548 shared libraries, maps in the actual user executable, and then
1549 jumps to "start" in the user executable.
1550
1551 For both SunOS shared libraries, and SVR4 shared libraries, we
1552 can arrange to cooperate with the dynamic linker to discover the
1553 names of shared libraries that are dynamically linked, and the
1554 base addresses to which they are linked.
1555
1556 This function is responsible for discovering those names and
1557 addresses, and saving sufficient information about them to allow
1558 their symbols to be read at a later time.
1559
1560 FIXME
1561
1562 Between enable_break() and disable_break(), this code does not
1563 properly handle hitting breakpoints which the user might have
1564 set in the startup code or in the dynamic linker itself. Proper
1565 handling will probably have to wait until the implementation is
1566 changed to use the "breakpoint handler function" method.
1567
1568 Also, what if child has exit()ed? Must exit loop somehow.
1569 */
1570
e2a44558 1571static void
13437d4b
KB
1572svr4_solib_create_inferior_hook (void)
1573{
d6b48e9c 1574 struct inferior *inf;
2020b7ab
PA
1575 struct thread_info *tp;
1576
e2a44558
KB
1577 /* Relocate the main executable if necessary. */
1578 svr4_relocate_main_executable ();
1579
d5a921c9 1580 if (!svr4_have_link_map_offsets ())
513f5903 1581 return;
d5a921c9 1582
13437d4b 1583 if (!enable_break ())
542c95c2 1584 return;
13437d4b 1585
ab31aa69
KB
1586#if defined(_SCO_DS)
1587 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
1588 special shared library breakpoints and the shared library breakpoint
1589 service routine.
1590
1591 Now run the target. It will eventually hit the breakpoint, at
1592 which point all of the libraries will have been mapped in and we
1593 can go groveling around in the dynamic linker structures to find
1594 out what we need to know about them. */
1595
d6b48e9c 1596 inf = current_inferior ();
2020b7ab
PA
1597 tp = inferior_thread ();
1598
13437d4b 1599 clear_proceed_status ();
d6b48e9c 1600 inf->stop_soon = STOP_QUIETLY;
2020b7ab 1601 tp->stop_signal = TARGET_SIGNAL_0;
13437d4b
KB
1602 do
1603 {
2020b7ab 1604 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
ae123ec6 1605 wait_for_inferior (0);
13437d4b 1606 }
2020b7ab 1607 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
d6b48e9c 1608 inf->stop_soon = NO_STOP_QUIETLY;
ab31aa69 1609#endif /* defined(_SCO_DS) */
13437d4b
KB
1610}
1611
1612static void
1613svr4_clear_solib (void)
1614{
1615 debug_base = 0;
34439770
DJ
1616 debug_loader_offset_p = 0;
1617 debug_loader_offset = 0;
1618 xfree (debug_loader_name);
1619 debug_loader_name = NULL;
93a57060 1620 main_lm_addr = 0;
13437d4b
KB
1621}
1622
1623static void
1624svr4_free_so (struct so_list *so)
1625{
b8c9b27d
KB
1626 xfree (so->lm_info->lm);
1627 xfree (so->lm_info);
13437d4b
KB
1628}
1629
6bb7be43
JB
1630
1631/* Clear any bits of ADDR that wouldn't fit in a target-format
1632 data pointer. "Data pointer" here refers to whatever sort of
1633 address the dynamic linker uses to manage its sections. At the
1634 moment, we don't support shared libraries on any processors where
1635 code and data pointers are different sizes.
1636
1637 This isn't really the right solution. What we really need here is
1638 a way to do arithmetic on CORE_ADDR values that respects the
1639 natural pointer/address correspondence. (For example, on the MIPS,
1640 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1641 sign-extend the value. There, simply truncating the bits above
819844ad 1642 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
1643 be a new gdbarch method or something. */
1644static CORE_ADDR
1645svr4_truncate_ptr (CORE_ADDR addr)
1646{
1cf3db46 1647 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
1648 /* We don't need to truncate anything, and the bit twiddling below
1649 will fail due to overflow problems. */
1650 return addr;
1651 else
1cf3db46 1652 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
6bb7be43
JB
1653}
1654
1655
749499cb
KB
1656static void
1657svr4_relocate_section_addresses (struct so_list *so,
1658 struct section_table *sec)
1659{
cc10cae3
AO
1660 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1661 sec->bfd));
1662 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1663 sec->bfd));
749499cb 1664}
4b188b9f 1665\f
749499cb 1666
4b188b9f 1667/* Architecture-specific operations. */
6bb7be43 1668
4b188b9f
MK
1669/* Per-architecture data key. */
1670static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 1671
4b188b9f 1672struct solib_svr4_ops
e5e2b9ff 1673{
4b188b9f
MK
1674 /* Return a description of the layout of `struct link_map'. */
1675 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1676};
e5e2b9ff 1677
4b188b9f 1678/* Return a default for the architecture-specific operations. */
e5e2b9ff 1679
4b188b9f
MK
1680static void *
1681solib_svr4_init (struct obstack *obstack)
e5e2b9ff 1682{
4b188b9f 1683 struct solib_svr4_ops *ops;
e5e2b9ff 1684
4b188b9f 1685 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 1686 ops->fetch_link_map_offsets = NULL;
4b188b9f 1687 return ops;
e5e2b9ff
KB
1688}
1689
4b188b9f 1690/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 1691 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 1692
21479ded 1693void
e5e2b9ff
KB
1694set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1695 struct link_map_offsets *(*flmo) (void))
21479ded 1696{
4b188b9f
MK
1697 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1698
1699 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
1700
1701 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
1702}
1703
4b188b9f
MK
1704/* Fetch a link_map_offsets structure using the architecture-specific
1705 `struct link_map_offsets' fetcher. */
1c4dcb57 1706
4b188b9f
MK
1707static struct link_map_offsets *
1708svr4_fetch_link_map_offsets (void)
21479ded 1709{
1cf3db46 1710 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
1711
1712 gdb_assert (ops->fetch_link_map_offsets);
1713 return ops->fetch_link_map_offsets ();
21479ded
KB
1714}
1715
4b188b9f
MK
1716/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1717
1718static int
1719svr4_have_link_map_offsets (void)
1720{
1cf3db46 1721 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
1722 return (ops->fetch_link_map_offsets != NULL);
1723}
1724\f
1725
e4bbbda8
MK
1726/* Most OS'es that have SVR4-style ELF dynamic libraries define a
1727 `struct r_debug' and a `struct link_map' that are binary compatible
1728 with the origional SVR4 implementation. */
1729
1730/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1731 for an ILP32 SVR4 system. */
1732
1733struct link_map_offsets *
1734svr4_ilp32_fetch_link_map_offsets (void)
1735{
1736 static struct link_map_offsets lmo;
1737 static struct link_map_offsets *lmp = NULL;
1738
1739 if (lmp == NULL)
1740 {
1741 lmp = &lmo;
1742
e4cd0d6a
MK
1743 lmo.r_version_offset = 0;
1744 lmo.r_version_size = 4;
e4bbbda8 1745 lmo.r_map_offset = 4;
7cd25cfc 1746 lmo.r_brk_offset = 8;
e4cd0d6a 1747 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
1748
1749 /* Everything we need is in the first 20 bytes. */
1750 lmo.link_map_size = 20;
1751 lmo.l_addr_offset = 0;
e4bbbda8 1752 lmo.l_name_offset = 4;
cc10cae3 1753 lmo.l_ld_offset = 8;
e4bbbda8 1754 lmo.l_next_offset = 12;
e4bbbda8 1755 lmo.l_prev_offset = 16;
e4bbbda8
MK
1756 }
1757
1758 return lmp;
1759}
1760
1761/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1762 for an LP64 SVR4 system. */
1763
1764struct link_map_offsets *
1765svr4_lp64_fetch_link_map_offsets (void)
1766{
1767 static struct link_map_offsets lmo;
1768 static struct link_map_offsets *lmp = NULL;
1769
1770 if (lmp == NULL)
1771 {
1772 lmp = &lmo;
1773
e4cd0d6a
MK
1774 lmo.r_version_offset = 0;
1775 lmo.r_version_size = 4;
e4bbbda8 1776 lmo.r_map_offset = 8;
7cd25cfc 1777 lmo.r_brk_offset = 16;
e4cd0d6a 1778 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
1779
1780 /* Everything we need is in the first 40 bytes. */
1781 lmo.link_map_size = 40;
1782 lmo.l_addr_offset = 0;
e4bbbda8 1783 lmo.l_name_offset = 8;
cc10cae3 1784 lmo.l_ld_offset = 16;
e4bbbda8 1785 lmo.l_next_offset = 24;
e4bbbda8 1786 lmo.l_prev_offset = 32;
e4bbbda8
MK
1787 }
1788
1789 return lmp;
1790}
1791\f
1792
7d522c90 1793struct target_so_ops svr4_so_ops;
13437d4b 1794
3a40aaa0
UW
1795/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
1796 different rule for symbol lookup. The lookup begins here in the DSO, not in
1797 the main executable. */
1798
1799static struct symbol *
1800elf_lookup_lib_symbol (const struct objfile *objfile,
1801 const char *name,
1802 const char *linkage_name,
21b556f4 1803 const domain_enum domain)
3a40aaa0
UW
1804{
1805 if (objfile->obfd == NULL
1806 || scan_dyntag (DT_SYMBOLIC, objfile->obfd, NULL) != 1)
1807 return NULL;
1808
65728c26 1809 return lookup_global_symbol_from_objfile
21b556f4 1810 (objfile, name, linkage_name, domain);
3a40aaa0
UW
1811}
1812
a78f21af
AC
1813extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1814
13437d4b
KB
1815void
1816_initialize_svr4_solib (void)
1817{
4b188b9f
MK
1818 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1819
749499cb 1820 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
1821 svr4_so_ops.free_so = svr4_free_so;
1822 svr4_so_ops.clear_solib = svr4_clear_solib;
1823 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1824 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1825 svr4_so_ops.current_sos = svr4_current_sos;
1826 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 1827 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3a40aaa0 1828 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 1829 svr4_so_ops.same = svr4_same;
13437d4b 1830}