]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-svr4.c
2010-05-05 Michael Snyder <msnyder@vmware.com>
[thirdparty/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4c38e0a4 4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
0fb0cc75 5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 21
13437d4b
KB
22#include "defs.h"
23
13437d4b 24#include "elf/external.h"
21479ded 25#include "elf/common.h"
f7856c8f 26#include "elf/mips.h"
13437d4b
KB
27
28#include "symtab.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdbcore.h"
13437d4b 33#include "target.h"
13437d4b 34#include "inferior.h"
fb14de7b 35#include "regcache.h"
2020b7ab 36#include "gdbthread.h"
1a816a87 37#include "observer.h"
13437d4b 38
4b188b9f
MK
39#include "gdb_assert.h"
40
13437d4b 41#include "solist.h"
bba93f6c 42#include "solib.h"
13437d4b
KB
43#include "solib-svr4.h"
44
2f4950cd 45#include "bfd-target.h"
cc10cae3 46#include "elf-bfd.h"
2f4950cd 47#include "exec.h"
8d4e36ba 48#include "auxv.h"
f1838a98 49#include "exceptions.h"
2f4950cd 50
e5e2b9ff 51static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 52static int svr4_have_link_map_offsets (void);
9f2982ff 53static void svr4_relocate_main_executable (void);
1c4dcb57 54
13437d4b
KB
55/* Link map info to include in an allocated so_list entry */
56
57struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
4066fc10 62 gdb_byte *lm;
cc10cae3
AO
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
93a57060
DJ
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
13437d4b
KB
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
13437d4b
KB
83static char *solib_break_names[] =
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
4c7dcb84 89 "__dl_rtld_db_dlactivity",
1f72e589 90 "_rtld_debug_state",
4c0122c8 91
13437d4b
KB
92 NULL
93};
13437d4b 94
13437d4b
KB
95static char *bkpt_names[] =
96{
13437d4b 97 "_start",
ad3dcc5c 98 "__start",
13437d4b
KB
99 "main",
100 NULL
101};
13437d4b 102
13437d4b
KB
103static char *main_name_list[] =
104{
105 "main_$main",
106 NULL
107};
108
4d7b2d5b
JB
109/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112static int
113svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114{
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135}
136
137static int
138svr4_same (struct so_list *gdb, struct so_list *inferior)
139{
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141}
142
13437d4b
KB
143/* link map access functions */
144
145static CORE_ADDR
cc10cae3 146LM_ADDR_FROM_LINK_MAP (struct so_list *so)
13437d4b 147{
4b188b9f 148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 150
cfaefc65 151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
b6da22b0 152 ptr_type);
13437d4b
KB
153}
154
cc10cae3 155static int
2c0b251b 156HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
cc10cae3
AO
157{
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
cfaefc65 160 return lmo->l_ld_offset >= 0;
cc10cae3
AO
161}
162
163static CORE_ADDR
164LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
165{
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
cc10cae3 168
cfaefc65 169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
b6da22b0 170 ptr_type);
cc10cae3
AO
171}
172
173static CORE_ADDR
174LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
175{
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
28f34a8f 179 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3
AO
180
181 l_addr = LM_ADDR_FROM_LINK_MAP (so);
182
183 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
184 goto set_addr;
185
186 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
28f34a8f 196 CORE_ADDR align = 0x1000;
4e1fc9c9 197 CORE_ADDR minpagesize = align;
28f34a8f 198
cc10cae3
AO
199 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
200 {
201 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
202 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
203 int i;
204
205 align = 1;
206
207 for (i = 0; i < ehdr->e_phnum; i++)
208 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
209 align = phdr[i].p_align;
4e1fc9c9
JK
210
211 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
212 }
213
214 /* Turn it into a mask. */
215 align--;
216
217 /* If the changes match the alignment requirements, we
218 assume we're using a core file that was generated by the
219 same binary, just prelinked with a different base offset.
220 If it doesn't match, we may have a different binary, the
221 same binary with the dynamic table loaded at an unrelated
222 location, or anything, really. To avoid regressions,
223 don't adjust the base offset in the latter case, although
224 odds are that, if things really changed, debugging won't
5c0d192f
JK
225 quite work.
226
227 One could expect more the condition
228 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
229 but the one below is relaxed for PPC. The PPC kernel supports
230 either 4k or 64k page sizes. To be prepared for 64k pages,
231 PPC ELF files are built using an alignment requirement of 64k.
232 However, when running on a kernel supporting 4k pages, the memory
233 mapping of the library may not actually happen on a 64k boundary!
234
235 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
236 equivalent to the possibly expected check above.)
237
238 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 239
4e1fc9c9
JK
240 if ((l_addr & (minpagesize - 1)) == 0
241 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3
AO
242 {
243 l_addr = l_dynaddr - dynaddr;
79d4c408 244
701ed6dc 245 if (info_verbose)
ccf26247
JK
246 printf_unfiltered (_("Using PIC (Position Independent Code) "
247 "prelink displacement %s for \"%s\".\n"),
248 paddress (target_gdbarch, l_addr),
249 so->so_name);
cc10cae3 250 }
79d4c408
DJ
251 else
252 warning (_(".dynamic section for \"%s\" "
253 "is not at the expected address "
254 "(wrong library or version mismatch?)"), so->so_name);
cc10cae3
AO
255 }
256
257 set_addr:
258 so->lm_info->l_addr = l_addr;
259 }
260
261 return so->lm_info->l_addr;
262}
263
13437d4b
KB
264static CORE_ADDR
265LM_NEXT (struct so_list *so)
266{
4b188b9f 267 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 268 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 269
cfaefc65 270 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
b6da22b0 271 ptr_type);
13437d4b
KB
272}
273
492928e4
JK
274static CORE_ADDR
275LM_PREV (struct so_list *so)
276{
277 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
278 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
279
280 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
281 ptr_type);
282}
283
13437d4b
KB
284static CORE_ADDR
285LM_NAME (struct so_list *so)
286{
4b188b9f 287 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 288 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 289
cfaefc65 290 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
b6da22b0 291 ptr_type);
13437d4b
KB
292}
293
13437d4b
KB
294static int
295IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
296{
e499d0f1
DJ
297 /* Assume that everything is a library if the dynamic loader was loaded
298 late by a static executable. */
0763ab81 299 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
e499d0f1
DJ
300 return 0;
301
492928e4 302 return LM_PREV (so) == 0;
13437d4b
KB
303}
304
6c95b8df 305/* Per pspace SVR4 specific data. */
13437d4b 306
1a816a87
PA
307struct svr4_info
308{
1a816a87
PA
309 CORE_ADDR debug_base; /* Base of dynamic linker structures */
310
311 /* Validity flag for debug_loader_offset. */
312 int debug_loader_offset_p;
313
314 /* Load address for the dynamic linker, inferred. */
315 CORE_ADDR debug_loader_offset;
316
317 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
318 char *debug_loader_name;
319
320 /* Load map address for the main executable. */
321 CORE_ADDR main_lm_addr;
1a816a87 322
6c95b8df
PA
323 CORE_ADDR interp_text_sect_low;
324 CORE_ADDR interp_text_sect_high;
325 CORE_ADDR interp_plt_sect_low;
326 CORE_ADDR interp_plt_sect_high;
327};
1a816a87 328
6c95b8df
PA
329/* Per-program-space data key. */
330static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 331
6c95b8df
PA
332static void
333svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 334{
6c95b8df 335 struct svr4_info *info;
1a816a87 336
6c95b8df
PA
337 info = program_space_data (pspace, solib_svr4_pspace_data);
338 xfree (info);
1a816a87
PA
339}
340
6c95b8df
PA
341/* Get the current svr4 data. If none is found yet, add it now. This
342 function always returns a valid object. */
34439770 343
6c95b8df
PA
344static struct svr4_info *
345get_svr4_info (void)
1a816a87 346{
6c95b8df 347 struct svr4_info *info;
1a816a87 348
6c95b8df
PA
349 info = program_space_data (current_program_space, solib_svr4_pspace_data);
350 if (info != NULL)
351 return info;
34439770 352
6c95b8df
PA
353 info = XZALLOC (struct svr4_info);
354 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
355 return info;
1a816a87 356}
93a57060 357
13437d4b
KB
358/* Local function prototypes */
359
360static int match_main (char *);
361
2bbe3cc1 362static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
13437d4b
KB
363
364/*
365
366 LOCAL FUNCTION
367
368 bfd_lookup_symbol -- lookup the value for a specific symbol
369
370 SYNOPSIS
371
2bbe3cc1 372 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b
KB
373
374 DESCRIPTION
375
376 An expensive way to lookup the value of a single symbol for
377 bfd's that are only temporary anyway. This is used by the
378 shared library support to find the address of the debugger
2bbe3cc1 379 notification routine in the shared library.
13437d4b 380
2bbe3cc1
DJ
381 The returned symbol may be in a code or data section; functions
382 will normally be in a code section, but may be in a data section
383 if this architecture uses function descriptors.
87f84c9d 384
13437d4b
KB
385 Note that 0 is specifically allowed as an error return (no
386 such symbol).
387 */
388
389static CORE_ADDR
2bbe3cc1 390bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b 391{
435b259c 392 long storage_needed;
13437d4b
KB
393 asymbol *sym;
394 asymbol **symbol_table;
395 unsigned int number_of_symbols;
396 unsigned int i;
397 struct cleanup *back_to;
398 CORE_ADDR symaddr = 0;
399
400 storage_needed = bfd_get_symtab_upper_bound (abfd);
401
402 if (storage_needed > 0)
403 {
404 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 405 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
406 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
407
408 for (i = 0; i < number_of_symbols; i++)
409 {
410 sym = *symbol_table++;
6314a349 411 if (strcmp (sym->name, symname) == 0
2bbe3cc1 412 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 413 {
2bbe3cc1 414 /* BFD symbols are section relative. */
13437d4b
KB
415 symaddr = sym->value + sym->section->vma;
416 break;
417 }
418 }
419 do_cleanups (back_to);
420 }
421
422 if (symaddr)
423 return symaddr;
424
425 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
426 have to check the dynamic string table too. */
427
428 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
429
430 if (storage_needed > 0)
431 {
432 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 433 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
434 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
435
436 for (i = 0; i < number_of_symbols; i++)
437 {
438 sym = *symbol_table++;
87f84c9d 439
6314a349 440 if (strcmp (sym->name, symname) == 0
2bbe3cc1 441 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 442 {
2bbe3cc1 443 /* BFD symbols are section relative. */
13437d4b
KB
444 symaddr = sym->value + sym->section->vma;
445 break;
446 }
447 }
448 do_cleanups (back_to);
449 }
450
451 return symaddr;
452}
453
97ec2c2f
UW
454
455/* Read program header TYPE from inferior memory. The header is found
456 by scanning the OS auxillary vector.
457
09919ac2
JK
458 If TYPE == -1, return the program headers instead of the contents of
459 one program header.
460
97ec2c2f
UW
461 Return a pointer to allocated memory holding the program header contents,
462 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
463 size of those contents is returned to P_SECT_SIZE. Likewise, the target
464 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
465
466static gdb_byte *
467read_program_header (int type, int *p_sect_size, int *p_arch_size)
468{
e17a4113 469 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
470 CORE_ADDR at_phdr, at_phent, at_phnum;
471 int arch_size, sect_size;
472 CORE_ADDR sect_addr;
473 gdb_byte *buf;
474
475 /* Get required auxv elements from target. */
476 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
477 return 0;
478 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
479 return 0;
480 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
481 return 0;
482 if (!at_phdr || !at_phnum)
483 return 0;
484
485 /* Determine ELF architecture type. */
486 if (at_phent == sizeof (Elf32_External_Phdr))
487 arch_size = 32;
488 else if (at_phent == sizeof (Elf64_External_Phdr))
489 arch_size = 64;
490 else
491 return 0;
492
09919ac2
JK
493 /* Find the requested segment. */
494 if (type == -1)
495 {
496 sect_addr = at_phdr;
497 sect_size = at_phent * at_phnum;
498 }
499 else if (arch_size == 32)
97ec2c2f
UW
500 {
501 Elf32_External_Phdr phdr;
502 int i;
503
504 /* Search for requested PHDR. */
505 for (i = 0; i < at_phnum; i++)
506 {
507 if (target_read_memory (at_phdr + i * sizeof (phdr),
508 (gdb_byte *)&phdr, sizeof (phdr)))
509 return 0;
510
e17a4113
UW
511 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
512 4, byte_order) == type)
97ec2c2f
UW
513 break;
514 }
515
516 if (i == at_phnum)
517 return 0;
518
519 /* Retrieve address and size. */
e17a4113
UW
520 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
521 4, byte_order);
522 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
523 4, byte_order);
97ec2c2f
UW
524 }
525 else
526 {
527 Elf64_External_Phdr phdr;
528 int i;
529
530 /* Search for requested PHDR. */
531 for (i = 0; i < at_phnum; i++)
532 {
533 if (target_read_memory (at_phdr + i * sizeof (phdr),
534 (gdb_byte *)&phdr, sizeof (phdr)))
535 return 0;
536
e17a4113
UW
537 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
538 4, byte_order) == type)
97ec2c2f
UW
539 break;
540 }
541
542 if (i == at_phnum)
543 return 0;
544
545 /* Retrieve address and size. */
e17a4113
UW
546 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
547 8, byte_order);
548 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
549 8, byte_order);
97ec2c2f
UW
550 }
551
552 /* Read in requested program header. */
553 buf = xmalloc (sect_size);
554 if (target_read_memory (sect_addr, buf, sect_size))
555 {
556 xfree (buf);
557 return NULL;
558 }
559
560 if (p_arch_size)
561 *p_arch_size = arch_size;
562 if (p_sect_size)
563 *p_sect_size = sect_size;
564
565 return buf;
566}
567
568
569/* Return program interpreter string. */
570static gdb_byte *
571find_program_interpreter (void)
572{
573 gdb_byte *buf = NULL;
574
575 /* If we have an exec_bfd, use its section table. */
576 if (exec_bfd
577 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
578 {
579 struct bfd_section *interp_sect;
580
581 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
582 if (interp_sect != NULL)
583 {
584 CORE_ADDR sect_addr = bfd_section_vma (exec_bfd, interp_sect);
585 int sect_size = bfd_section_size (exec_bfd, interp_sect);
586
587 buf = xmalloc (sect_size);
588 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
589 }
590 }
591
592 /* If we didn't find it, use the target auxillary vector. */
593 if (!buf)
594 buf = read_program_header (PT_INTERP, NULL, NULL);
595
596 return buf;
597}
598
599
3a40aaa0
UW
600/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
601 returned and the corresponding PTR is set. */
602
603static int
604scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
605{
606 int arch_size, step, sect_size;
607 long dyn_tag;
b381ea14 608 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 609 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
610 Elf32_External_Dyn *x_dynp_32;
611 Elf64_External_Dyn *x_dynp_64;
612 struct bfd_section *sect;
61f0d762 613 struct target_section *target_section;
3a40aaa0
UW
614
615 if (abfd == NULL)
616 return 0;
0763ab81
PA
617
618 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
619 return 0;
620
3a40aaa0
UW
621 arch_size = bfd_get_arch_size (abfd);
622 if (arch_size == -1)
0763ab81 623 return 0;
3a40aaa0
UW
624
625 /* Find the start address of the .dynamic section. */
626 sect = bfd_get_section_by_name (abfd, ".dynamic");
627 if (sect == NULL)
628 return 0;
61f0d762
JK
629
630 for (target_section = current_target_sections->sections;
631 target_section < current_target_sections->sections_end;
632 target_section++)
633 if (sect == target_section->the_bfd_section)
634 break;
b381ea14
JK
635 if (target_section < current_target_sections->sections_end)
636 dyn_addr = target_section->addr;
637 else
638 {
639 /* ABFD may come from OBJFILE acting only as a symbol file without being
640 loaded into the target (see add_symbol_file_command). This case is
641 such fallback to the file VMA address without the possibility of
642 having the section relocated to its actual in-memory address. */
643
644 dyn_addr = bfd_section_vma (abfd, sect);
645 }
3a40aaa0 646
65728c26
DJ
647 /* Read in .dynamic from the BFD. We will get the actual value
648 from memory later. */
3a40aaa0 649 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
650 buf = bufstart = alloca (sect_size);
651 if (!bfd_get_section_contents (abfd, sect,
652 buf, 0, sect_size))
653 return 0;
3a40aaa0
UW
654
655 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
656 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
657 : sizeof (Elf64_External_Dyn);
658 for (bufend = buf + sect_size;
659 buf < bufend;
660 buf += step)
661 {
662 if (arch_size == 32)
663 {
664 x_dynp_32 = (Elf32_External_Dyn *) buf;
665 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
666 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
667 }
65728c26 668 else
3a40aaa0
UW
669 {
670 x_dynp_64 = (Elf64_External_Dyn *) buf;
671 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
672 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
673 }
674 if (dyn_tag == DT_NULL)
675 return 0;
676 if (dyn_tag == dyntag)
677 {
65728c26
DJ
678 /* If requested, try to read the runtime value of this .dynamic
679 entry. */
3a40aaa0 680 if (ptr)
65728c26 681 {
b6da22b0 682 struct type *ptr_type;
65728c26
DJ
683 gdb_byte ptr_buf[8];
684 CORE_ADDR ptr_addr;
685
b6da22b0 686 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
b381ea14 687 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 688 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 689 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
690 *ptr = dyn_ptr;
691 }
692 return 1;
3a40aaa0
UW
693 }
694 }
695
696 return 0;
697}
698
97ec2c2f
UW
699/* Scan for DYNTAG in .dynamic section of the target's main executable,
700 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
701 returned and the corresponding PTR is set. */
702
703static int
704scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
705{
e17a4113 706 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
707 int sect_size, arch_size, step;
708 long dyn_tag;
709 CORE_ADDR dyn_ptr;
710 gdb_byte *bufend, *bufstart, *buf;
711
712 /* Read in .dynamic section. */
713 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
714 if (!buf)
715 return 0;
716
717 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
718 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
719 : sizeof (Elf64_External_Dyn);
720 for (bufend = buf + sect_size;
721 buf < bufend;
722 buf += step)
723 {
724 if (arch_size == 32)
725 {
726 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
e17a4113
UW
727 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
728 4, byte_order);
729 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
730 4, byte_order);
97ec2c2f
UW
731 }
732 else
733 {
734 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
e17a4113
UW
735 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
736 8, byte_order);
737 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
738 8, byte_order);
97ec2c2f
UW
739 }
740 if (dyn_tag == DT_NULL)
741 break;
742
743 if (dyn_tag == dyntag)
744 {
745 if (ptr)
746 *ptr = dyn_ptr;
747
748 xfree (bufstart);
749 return 1;
750 }
751 }
752
753 xfree (bufstart);
754 return 0;
755}
756
3a40aaa0 757
13437d4b
KB
758/*
759
760 LOCAL FUNCTION
761
762 elf_locate_base -- locate the base address of dynamic linker structs
763 for SVR4 elf targets.
764
765 SYNOPSIS
766
767 CORE_ADDR elf_locate_base (void)
768
769 DESCRIPTION
770
771 For SVR4 elf targets the address of the dynamic linker's runtime
772 structure is contained within the dynamic info section in the
773 executable file. The dynamic section is also mapped into the
774 inferior address space. Because the runtime loader fills in the
775 real address before starting the inferior, we have to read in the
776 dynamic info section from the inferior address space.
777 If there are any errors while trying to find the address, we
778 silently return 0, otherwise the found address is returned.
779
780 */
781
782static CORE_ADDR
783elf_locate_base (void)
784{
3a40aaa0
UW
785 struct minimal_symbol *msymbol;
786 CORE_ADDR dyn_ptr;
13437d4b 787
65728c26
DJ
788 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
789 instead of DT_DEBUG, although they sometimes contain an unused
790 DT_DEBUG. */
97ec2c2f
UW
791 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
792 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 793 {
b6da22b0 794 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
3a40aaa0 795 gdb_byte *pbuf;
b6da22b0 796 int pbuf_size = TYPE_LENGTH (ptr_type);
3a40aaa0
UW
797 pbuf = alloca (pbuf_size);
798 /* DT_MIPS_RLD_MAP contains a pointer to the address
799 of the dynamic link structure. */
800 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 801 return 0;
b6da22b0 802 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
803 }
804
65728c26 805 /* Find DT_DEBUG. */
97ec2c2f
UW
806 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
807 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
808 return dyn_ptr;
809
3a40aaa0
UW
810 /* This may be a static executable. Look for the symbol
811 conventionally named _r_debug, as a last resort. */
812 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
813 if (msymbol != NULL)
814 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
815
816 /* DT_DEBUG entry not found. */
817 return 0;
818}
819
13437d4b
KB
820/*
821
822 LOCAL FUNCTION
823
824 locate_base -- locate the base address of dynamic linker structs
825
826 SYNOPSIS
827
1a816a87 828 CORE_ADDR locate_base (struct svr4_info *)
13437d4b
KB
829
830 DESCRIPTION
831
832 For both the SunOS and SVR4 shared library implementations, if the
833 inferior executable has been linked dynamically, there is a single
834 address somewhere in the inferior's data space which is the key to
835 locating all of the dynamic linker's runtime structures. This
836 address is the value of the debug base symbol. The job of this
837 function is to find and return that address, or to return 0 if there
838 is no such address (the executable is statically linked for example).
839
840 For SunOS, the job is almost trivial, since the dynamic linker and
841 all of it's structures are statically linked to the executable at
842 link time. Thus the symbol for the address we are looking for has
843 already been added to the minimal symbol table for the executable's
844 objfile at the time the symbol file's symbols were read, and all we
845 have to do is look it up there. Note that we explicitly do NOT want
846 to find the copies in the shared library.
847
848 The SVR4 version is a bit more complicated because the address
849 is contained somewhere in the dynamic info section. We have to go
850 to a lot more work to discover the address of the debug base symbol.
851 Because of this complexity, we cache the value we find and return that
852 value on subsequent invocations. Note there is no copy in the
853 executable symbol tables.
854
855 */
856
857static CORE_ADDR
1a816a87 858locate_base (struct svr4_info *info)
13437d4b 859{
13437d4b
KB
860 /* Check to see if we have a currently valid address, and if so, avoid
861 doing all this work again and just return the cached address. If
862 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
863 section for ELF executables. There's no point in doing any of this
864 though if we don't have some link map offsets to work with. */
13437d4b 865
1a816a87 866 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 867 info->debug_base = elf_locate_base ();
1a816a87 868 return info->debug_base;
13437d4b
KB
869}
870
e4cd0d6a 871/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
872 return its address in the inferior. Return zero if the address
873 could not be determined.
13437d4b 874
e4cd0d6a
MK
875 FIXME: Perhaps we should validate the info somehow, perhaps by
876 checking r_version for a known version number, or r_state for
877 RT_CONSISTENT. */
13437d4b
KB
878
879static CORE_ADDR
1a816a87 880solib_svr4_r_map (struct svr4_info *info)
13437d4b 881{
4b188b9f 882 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 883 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
08597104
JB
884 CORE_ADDR addr = 0;
885 volatile struct gdb_exception ex;
13437d4b 886
08597104
JB
887 TRY_CATCH (ex, RETURN_MASK_ERROR)
888 {
889 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
890 ptr_type);
891 }
892 exception_print (gdb_stderr, ex);
893 return addr;
e4cd0d6a 894}
13437d4b 895
7cd25cfc
DJ
896/* Find r_brk from the inferior's debug base. */
897
898static CORE_ADDR
1a816a87 899solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
900{
901 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 902 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
7cd25cfc 903
1a816a87
PA
904 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
905 ptr_type);
7cd25cfc
DJ
906}
907
e4cd0d6a
MK
908/* Find the link map for the dynamic linker (if it is not in the
909 normal list of loaded shared objects). */
13437d4b 910
e4cd0d6a 911static CORE_ADDR
1a816a87 912solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
913{
914 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 915 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
e17a4113 916 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
e4cd0d6a 917 ULONGEST version;
13437d4b 918
e4cd0d6a
MK
919 /* Check version, and return zero if `struct r_debug' doesn't have
920 the r_ldsomap member. */
1a816a87
PA
921 version
922 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 923 lmo->r_version_size, byte_order);
e4cd0d6a
MK
924 if (version < 2 || lmo->r_ldsomap_offset == -1)
925 return 0;
13437d4b 926
1a816a87 927 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 928 ptr_type);
13437d4b
KB
929}
930
de18c1d8
JM
931/* On Solaris systems with some versions of the dynamic linker,
932 ld.so's l_name pointer points to the SONAME in the string table
933 rather than into writable memory. So that GDB can find shared
934 libraries when loading a core file generated by gcore, ensure that
935 memory areas containing the l_name string are saved in the core
936 file. */
937
938static int
939svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
940{
941 struct svr4_info *info;
942 CORE_ADDR ldsomap;
943 struct so_list *new;
944 struct cleanup *old_chain;
945 struct link_map_offsets *lmo;
946 CORE_ADDR lm_name;
947
948 info = get_svr4_info ();
949
950 info->debug_base = 0;
951 locate_base (info);
952 if (!info->debug_base)
953 return 0;
954
955 ldsomap = solib_svr4_r_ldsomap (info);
956 if (!ldsomap)
957 return 0;
958
959 lmo = svr4_fetch_link_map_offsets ();
960 new = XZALLOC (struct so_list);
961 old_chain = make_cleanup (xfree, new);
962 new->lm_info = xmalloc (sizeof (struct lm_info));
963 make_cleanup (xfree, new->lm_info);
964 new->lm_info->l_addr = (CORE_ADDR)-1;
965 new->lm_info->lm_addr = ldsomap;
966 new->lm_info->lm = xzalloc (lmo->link_map_size);
967 make_cleanup (xfree, new->lm_info->lm);
968 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
969 lm_name = LM_NAME (new);
970 do_cleanups (old_chain);
971
972 return (lm_name >= vaddr && lm_name < vaddr + size);
973}
974
13437d4b
KB
975/*
976
977 LOCAL FUNCTION
978
979 open_symbol_file_object
980
981 SYNOPSIS
982
983 void open_symbol_file_object (void *from_tty)
984
985 DESCRIPTION
986
987 If no open symbol file, attempt to locate and open the main symbol
988 file. On SVR4 systems, this is the first link map entry. If its
989 name is here, we can open it. Useful when attaching to a process
990 without first loading its symbol file.
991
992 If FROM_TTYP dereferences to a non-zero integer, allow messages to
993 be printed. This parameter is a pointer rather than an int because
994 open_symbol_file_object() is called via catch_errors() and
995 catch_errors() requires a pointer argument. */
996
997static int
998open_symbol_file_object (void *from_ttyp)
999{
1000 CORE_ADDR lm, l_name;
1001 char *filename;
1002 int errcode;
1003 int from_tty = *(int *)from_ttyp;
4b188b9f 1004 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0
UW
1005 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
1006 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 1007 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 1008 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 1009 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
1010
1011 if (symfile_objfile)
9e2f0ad4 1012 if (!query (_("Attempt to reload symbols from process? ")))
13437d4b
KB
1013 return 0;
1014
7cd25cfc 1015 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1016 info->debug_base = 0;
1017 if (locate_base (info) == 0)
13437d4b
KB
1018 return 0; /* failed somehow... */
1019
1020 /* First link map member should be the executable. */
1a816a87 1021 lm = solib_svr4_r_map (info);
e4cd0d6a 1022 if (lm == 0)
13437d4b
KB
1023 return 0; /* failed somehow... */
1024
1025 /* Read address of name from target memory to GDB. */
cfaefc65 1026 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 1027
cfaefc65 1028 /* Convert the address to host format. */
b6da22b0 1029 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b
KB
1030
1031 /* Free l_name_buf. */
1032 do_cleanups (cleanups);
1033
1034 if (l_name == 0)
1035 return 0; /* No filename. */
1036
1037 /* Now fetch the filename from target memory. */
1038 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 1039 make_cleanup (xfree, filename);
13437d4b
KB
1040
1041 if (errcode)
1042 {
8a3fe4f8 1043 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
1044 safe_strerror (errcode));
1045 return 0;
1046 }
1047
13437d4b 1048 /* Have a pathname: read the symbol file. */
1adeb98a 1049 symbol_file_add_main (filename, from_tty);
13437d4b
KB
1050
1051 return 1;
1052}
13437d4b 1053
34439770
DJ
1054/* If no shared library information is available from the dynamic
1055 linker, build a fallback list from other sources. */
1056
1057static struct so_list *
1058svr4_default_sos (void)
1059{
6c95b8df 1060 struct svr4_info *info = get_svr4_info ();
1a816a87 1061
34439770
DJ
1062 struct so_list *head = NULL;
1063 struct so_list **link_ptr = &head;
1064
1a816a87 1065 if (info->debug_loader_offset_p)
34439770
DJ
1066 {
1067 struct so_list *new = XZALLOC (struct so_list);
1068
1069 new->lm_info = xmalloc (sizeof (struct lm_info));
1070
1071 /* Nothing will ever check the cached copy of the link
1072 map if we set l_addr. */
1a816a87 1073 new->lm_info->l_addr = info->debug_loader_offset;
93a57060 1074 new->lm_info->lm_addr = 0;
34439770
DJ
1075 new->lm_info->lm = NULL;
1076
1a816a87
PA
1077 strncpy (new->so_name, info->debug_loader_name,
1078 SO_NAME_MAX_PATH_SIZE - 1);
34439770
DJ
1079 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1080 strcpy (new->so_original_name, new->so_name);
1081
1082 *link_ptr = new;
1083 link_ptr = &new->next;
1084 }
1085
1086 return head;
1087}
1088
13437d4b
KB
1089/* LOCAL FUNCTION
1090
1091 current_sos -- build a list of currently loaded shared objects
1092
1093 SYNOPSIS
1094
1095 struct so_list *current_sos ()
1096
1097 DESCRIPTION
1098
1099 Build a list of `struct so_list' objects describing the shared
1100 objects currently loaded in the inferior. This list does not
1101 include an entry for the main executable file.
1102
1103 Note that we only gather information directly available from the
1104 inferior --- we don't examine any of the shared library files
1105 themselves. The declaration of `struct so_list' says which fields
1106 we provide values for. */
1107
1108static struct so_list *
1109svr4_current_sos (void)
1110{
492928e4 1111 CORE_ADDR lm, prev_lm;
13437d4b
KB
1112 struct so_list *head = 0;
1113 struct so_list **link_ptr = &head;
e4cd0d6a 1114 CORE_ADDR ldsomap = 0;
1a816a87
PA
1115 struct svr4_info *info;
1116
6c95b8df 1117 info = get_svr4_info ();
13437d4b 1118
7cd25cfc 1119 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1120 info->debug_base = 0;
1121 locate_base (info);
13437d4b 1122
7cd25cfc
DJ
1123 /* If we can't find the dynamic linker's base structure, this
1124 must not be a dynamically linked executable. Hmm. */
1a816a87 1125 if (! info->debug_base)
7cd25cfc 1126 return svr4_default_sos ();
13437d4b
KB
1127
1128 /* Walk the inferior's link map list, and build our list of
1129 `struct so_list' nodes. */
492928e4 1130 prev_lm = 0;
1a816a87 1131 lm = solib_svr4_r_map (info);
34439770 1132
13437d4b
KB
1133 while (lm)
1134 {
4b188b9f 1135 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 1136 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 1137 struct cleanup *old_chain = make_cleanup (xfree, new);
492928e4 1138 CORE_ADDR next_lm;
13437d4b 1139
13437d4b 1140 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 1141 make_cleanup (xfree, new->lm_info);
13437d4b 1142
831004b7 1143 new->lm_info->l_addr = (CORE_ADDR)-1;
93a57060 1144 new->lm_info->lm_addr = lm;
f4456994 1145 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 1146 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
1147
1148 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1149
492928e4
JK
1150 next_lm = LM_NEXT (new);
1151
1152 if (LM_PREV (new) != prev_lm)
1153 {
1154 warning (_("Corrupted shared library list"));
1155 free_so (new);
1156 next_lm = 0;
1157 }
13437d4b
KB
1158
1159 /* For SVR4 versions, the first entry in the link map is for the
1160 inferior executable, so we must ignore it. For some versions of
1161 SVR4, it has no name. For others (Solaris 2.3 for example), it
1162 does have a name, so we can no longer use a missing name to
1163 decide when to ignore it. */
492928e4 1164 else if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
93a57060 1165 {
1a816a87 1166 info->main_lm_addr = new->lm_info->lm_addr;
93a57060
DJ
1167 free_so (new);
1168 }
13437d4b
KB
1169 else
1170 {
1171 int errcode;
1172 char *buffer;
1173
1174 /* Extract this shared object's name. */
1175 target_read_string (LM_NAME (new), &buffer,
1176 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1177 if (errcode != 0)
8a3fe4f8
AC
1178 warning (_("Can't read pathname for load map: %s."),
1179 safe_strerror (errcode));
13437d4b
KB
1180 else
1181 {
1182 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1183 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
13437d4b
KB
1184 strcpy (new->so_original_name, new->so_name);
1185 }
ea5bf0a1 1186 xfree (buffer);
13437d4b
KB
1187
1188 /* If this entry has no name, or its name matches the name
1189 for the main executable, don't include it in the list. */
1190 if (! new->so_name[0]
1191 || match_main (new->so_name))
1192 free_so (new);
1193 else
1194 {
1195 new->next = 0;
1196 *link_ptr = new;
1197 link_ptr = &new->next;
1198 }
1199 }
1200
492928e4
JK
1201 prev_lm = lm;
1202 lm = next_lm;
1203
e4cd0d6a
MK
1204 /* On Solaris, the dynamic linker is not in the normal list of
1205 shared objects, so make sure we pick it up too. Having
1206 symbol information for the dynamic linker is quite crucial
1207 for skipping dynamic linker resolver code. */
1208 if (lm == 0 && ldsomap == 0)
492928e4
JK
1209 {
1210 lm = ldsomap = solib_svr4_r_ldsomap (info);
1211 prev_lm = 0;
1212 }
e4cd0d6a 1213
13437d4b
KB
1214 discard_cleanups (old_chain);
1215 }
1216
34439770
DJ
1217 if (head == NULL)
1218 return svr4_default_sos ();
1219
13437d4b
KB
1220 return head;
1221}
1222
93a57060 1223/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1224
1225CORE_ADDR
1226svr4_fetch_objfile_link_map (struct objfile *objfile)
1227{
93a57060 1228 struct so_list *so;
6c95b8df 1229 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1230
93a57060 1231 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1232 if (info->main_lm_addr == 0)
93a57060 1233 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1234
93a57060
DJ
1235 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1236 if (objfile == symfile_objfile)
1a816a87 1237 return info->main_lm_addr;
93a57060
DJ
1238
1239 /* The other link map addresses may be found by examining the list
1240 of shared libraries. */
1241 for (so = master_so_list (); so; so = so->next)
1242 if (so->objfile == objfile)
1243 return so->lm_info->lm_addr;
1244
1245 /* Not found! */
bc4a16ae
EZ
1246 return 0;
1247}
13437d4b
KB
1248
1249/* On some systems, the only way to recognize the link map entry for
1250 the main executable file is by looking at its name. Return
1251 non-zero iff SONAME matches one of the known main executable names. */
1252
1253static int
1254match_main (char *soname)
1255{
1256 char **mainp;
1257
1258 for (mainp = main_name_list; *mainp != NULL; mainp++)
1259 {
1260 if (strcmp (soname, *mainp) == 0)
1261 return (1);
1262 }
1263
1264 return (0);
1265}
1266
13437d4b
KB
1267/* Return 1 if PC lies in the dynamic symbol resolution code of the
1268 SVR4 run time loader. */
13437d4b 1269
7d522c90 1270int
d7fa2ae2 1271svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1272{
6c95b8df
PA
1273 struct svr4_info *info = get_svr4_info ();
1274
1275 return ((pc >= info->interp_text_sect_low
1276 && pc < info->interp_text_sect_high)
1277 || (pc >= info->interp_plt_sect_low
1278 && pc < info->interp_plt_sect_high)
13437d4b
KB
1279 || in_plt_section (pc, NULL));
1280}
13437d4b 1281
2f4950cd
AC
1282/* Given an executable's ABFD and target, compute the entry-point
1283 address. */
1284
1285static CORE_ADDR
1286exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1287{
1288 /* KevinB wrote ... for most targets, the address returned by
1289 bfd_get_start_address() is the entry point for the start
1290 function. But, for some targets, bfd_get_start_address() returns
1291 the address of a function descriptor from which the entry point
1292 address may be extracted. This address is extracted by
1293 gdbarch_convert_from_func_ptr_addr(). The method
1294 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1295 function for targets which don't use function descriptors. */
1cf3db46 1296 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2f4950cd
AC
1297 bfd_get_start_address (abfd),
1298 targ);
1299}
13437d4b
KB
1300
1301/*
1302
1303 LOCAL FUNCTION
1304
1305 enable_break -- arrange for dynamic linker to hit breakpoint
1306
1307 SYNOPSIS
1308
1309 int enable_break (void)
1310
1311 DESCRIPTION
1312
1313 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1314 debugger interface, support for arranging for the inferior to hit
1315 a breakpoint after mapping in the shared libraries. This function
1316 enables that breakpoint.
1317
1318 For SunOS, there is a special flag location (in_debugger) which we
1319 set to 1. When the dynamic linker sees this flag set, it will set
1320 a breakpoint at a location known only to itself, after saving the
1321 original contents of that place and the breakpoint address itself,
1322 in it's own internal structures. When we resume the inferior, it
1323 will eventually take a SIGTRAP when it runs into the breakpoint.
1324 We handle this (in a different place) by restoring the contents of
1325 the breakpointed location (which is only known after it stops),
1326 chasing around to locate the shared libraries that have been
1327 loaded, then resuming.
1328
1329 For SVR4, the debugger interface structure contains a member (r_brk)
1330 which is statically initialized at the time the shared library is
1331 built, to the offset of a function (_r_debug_state) which is guaran-
1332 teed to be called once before mapping in a library, and again when
1333 the mapping is complete. At the time we are examining this member,
1334 it contains only the unrelocated offset of the function, so we have
1335 to do our own relocation. Later, when the dynamic linker actually
1336 runs, it relocates r_brk to be the actual address of _r_debug_state().
1337
1338 The debugger interface structure also contains an enumeration which
1339 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1340 depending upon whether or not the library is being mapped or unmapped,
1341 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1342 */
1343
1344static int
268a4a75 1345enable_break (struct svr4_info *info, int from_tty)
13437d4b 1346{
13437d4b
KB
1347 struct minimal_symbol *msymbol;
1348 char **bkpt_namep;
1349 asection *interp_sect;
97ec2c2f 1350 gdb_byte *interp_name;
7cd25cfc 1351 CORE_ADDR sym_addr;
13437d4b 1352
6c95b8df
PA
1353 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1354 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 1355
7cd25cfc
DJ
1356 /* If we already have a shared library list in the target, and
1357 r_debug contains r_brk, set the breakpoint there - this should
1358 mean r_brk has already been relocated. Assume the dynamic linker
1359 is the object containing r_brk. */
1360
268a4a75 1361 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 1362 sym_addr = 0;
1a816a87
PA
1363 if (info->debug_base && solib_svr4_r_map (info) != 0)
1364 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1365
1366 if (sym_addr != 0)
1367 {
1368 struct obj_section *os;
1369
b36ec657 1370 sym_addr = gdbarch_addr_bits_remove
1cf3db46 1371 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
b36ec657
DJ
1372 sym_addr,
1373 &current_target));
1374
48379de6
DE
1375 /* On at least some versions of Solaris there's a dynamic relocation
1376 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1377 we get control before the dynamic linker has self-relocated.
1378 Check if SYM_ADDR is in a known section, if it is assume we can
1379 trust its value. This is just a heuristic though, it could go away
1380 or be replaced if it's getting in the way.
1381
1382 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1383 however it's spelled in your particular system) is ARM or Thumb.
1384 That knowledge is encoded in the address, if it's Thumb the low bit
1385 is 1. However, we've stripped that info above and it's not clear
1386 what all the consequences are of passing a non-addr_bits_remove'd
1387 address to create_solib_event_breakpoint. The call to
1388 find_pc_section verifies we know about the address and have some
1389 hope of computing the right kind of breakpoint to use (via
1390 symbol info). It does mean that GDB needs to be pointed at a
1391 non-stripped version of the dynamic linker in order to obtain
1392 information it already knows about. Sigh. */
1393
7cd25cfc
DJ
1394 os = find_pc_section (sym_addr);
1395 if (os != NULL)
1396 {
1397 /* Record the relocated start and end address of the dynamic linker
1398 text and plt section for svr4_in_dynsym_resolve_code. */
1399 bfd *tmp_bfd;
1400 CORE_ADDR load_addr;
1401
1402 tmp_bfd = os->objfile->obfd;
1403 load_addr = ANOFFSET (os->objfile->section_offsets,
1404 os->objfile->sect_index_text);
1405
1406 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1407 if (interp_sect)
1408 {
6c95b8df 1409 info->interp_text_sect_low =
7cd25cfc 1410 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1411 info->interp_text_sect_high =
1412 info->interp_text_sect_low
1413 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1414 }
1415 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1416 if (interp_sect)
1417 {
6c95b8df 1418 info->interp_plt_sect_low =
7cd25cfc 1419 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1420 info->interp_plt_sect_high =
1421 info->interp_plt_sect_low
1422 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1423 }
1424
a6d9a66e 1425 create_solib_event_breakpoint (target_gdbarch, sym_addr);
7cd25cfc
DJ
1426 return 1;
1427 }
1428 }
1429
97ec2c2f 1430 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1431 into the old breakpoint at symbol code. */
97ec2c2f
UW
1432 interp_name = find_program_interpreter ();
1433 if (interp_name)
13437d4b 1434 {
8ad2fcde
KB
1435 CORE_ADDR load_addr = 0;
1436 int load_addr_found = 0;
2ec9a4f8 1437 int loader_found_in_list = 0;
f8766ec1 1438 struct so_list *so;
e4f7b8c8 1439 bfd *tmp_bfd = NULL;
2f4950cd 1440 struct target_ops *tmp_bfd_target;
f1838a98 1441 volatile struct gdb_exception ex;
13437d4b 1442
7cd25cfc 1443 sym_addr = 0;
13437d4b
KB
1444
1445 /* Now we need to figure out where the dynamic linker was
1446 loaded so that we can load its symbols and place a breakpoint
1447 in the dynamic linker itself.
1448
1449 This address is stored on the stack. However, I've been unable
1450 to find any magic formula to find it for Solaris (appears to
1451 be trivial on GNU/Linux). Therefore, we have to try an alternate
1452 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1453
f1838a98
UW
1454 TRY_CATCH (ex, RETURN_MASK_ALL)
1455 {
97ec2c2f 1456 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1457 }
13437d4b
KB
1458 if (tmp_bfd == NULL)
1459 goto bkpt_at_symbol;
1460
2f4950cd
AC
1461 /* Now convert the TMP_BFD into a target. That way target, as
1462 well as BFD operations can be used. Note that closing the
1463 target will also close the underlying bfd. */
1464 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1465
f8766ec1
KB
1466 /* On a running target, we can get the dynamic linker's base
1467 address from the shared library table. */
f8766ec1
KB
1468 so = master_so_list ();
1469 while (so)
8ad2fcde 1470 {
97ec2c2f 1471 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1472 {
1473 load_addr_found = 1;
2ec9a4f8 1474 loader_found_in_list = 1;
cc10cae3 1475 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
8ad2fcde
KB
1476 break;
1477 }
f8766ec1 1478 so = so->next;
8ad2fcde
KB
1479 }
1480
8d4e36ba
JB
1481 /* If we were not able to find the base address of the loader
1482 from our so_list, then try using the AT_BASE auxilliary entry. */
1483 if (!load_addr_found)
1484 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b
JK
1485 {
1486 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1487
1488 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1489 that `+ load_addr' will overflow CORE_ADDR width not creating
1490 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1491 GDB. */
1492
d182d057 1493 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 1494 {
d182d057 1495 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
1496 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1497 tmp_bfd_target);
1498
1499 gdb_assert (load_addr < space_size);
1500
1501 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1502 64bit ld.so with 32bit executable, it should not happen. */
1503
1504 if (tmp_entry_point < space_size
1505 && tmp_entry_point + load_addr >= space_size)
1506 load_addr -= space_size;
1507 }
1508
1509 load_addr_found = 1;
1510 }
8d4e36ba 1511
8ad2fcde
KB
1512 /* Otherwise we find the dynamic linker's base address by examining
1513 the current pc (which should point at the entry point for the
8d4e36ba
JB
1514 dynamic linker) and subtracting the offset of the entry point.
1515
1516 This is more fragile than the previous approaches, but is a good
1517 fallback method because it has actually been working well in
1518 most cases. */
8ad2fcde 1519 if (!load_addr_found)
fb14de7b 1520 {
c2250ad1
UW
1521 struct regcache *regcache
1522 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
fb14de7b
UW
1523 load_addr = (regcache_read_pc (regcache)
1524 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1525 }
2ec9a4f8
DJ
1526
1527 if (!loader_found_in_list)
34439770 1528 {
1a816a87
PA
1529 info->debug_loader_name = xstrdup (interp_name);
1530 info->debug_loader_offset_p = 1;
1531 info->debug_loader_offset = load_addr;
268a4a75 1532 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 1533 }
13437d4b
KB
1534
1535 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1536 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1537 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1538 if (interp_sect)
1539 {
6c95b8df 1540 info->interp_text_sect_low =
13437d4b 1541 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1542 info->interp_text_sect_high =
1543 info->interp_text_sect_low
1544 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1545 }
1546 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1547 if (interp_sect)
1548 {
6c95b8df 1549 info->interp_plt_sect_low =
13437d4b 1550 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1551 info->interp_plt_sect_high =
1552 info->interp_plt_sect_low
1553 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1554 }
1555
1556 /* Now try to set a breakpoint in the dynamic linker. */
1557 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1558 {
2bbe3cc1 1559 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
13437d4b
KB
1560 if (sym_addr != 0)
1561 break;
1562 }
1563
2bbe3cc1
DJ
1564 if (sym_addr != 0)
1565 /* Convert 'sym_addr' from a function pointer to an address.
1566 Because we pass tmp_bfd_target instead of the current
1567 target, this will always produce an unrelocated value. */
1cf3db46 1568 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2bbe3cc1
DJ
1569 sym_addr,
1570 tmp_bfd_target);
1571
2f4950cd
AC
1572 /* We're done with both the temporary bfd and target. Remember,
1573 closing the target closes the underlying bfd. */
1574 target_close (tmp_bfd_target, 0);
13437d4b
KB
1575
1576 if (sym_addr != 0)
1577 {
a6d9a66e 1578 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
97ec2c2f 1579 xfree (interp_name);
13437d4b
KB
1580 return 1;
1581 }
1582
1583 /* For whatever reason we couldn't set a breakpoint in the dynamic
1584 linker. Warn and drop into the old code. */
1585 bkpt_at_symbol:
97ec2c2f 1586 xfree (interp_name);
82d03102
PG
1587 warning (_("Unable to find dynamic linker breakpoint function.\n"
1588 "GDB will be unable to debug shared library initializers\n"
1589 "and track explicitly loaded dynamic code."));
13437d4b 1590 }
13437d4b 1591
e499d0f1
DJ
1592 /* Scan through the lists of symbols, trying to look up the symbol and
1593 set a breakpoint there. Terminate loop when we/if we succeed. */
1594
1595 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1596 {
1597 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1598 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1599 {
de64a9ac
JM
1600 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1601 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1602 sym_addr,
1603 &current_target);
1604 create_solib_event_breakpoint (target_gdbarch, sym_addr);
e499d0f1
DJ
1605 return 1;
1606 }
1607 }
13437d4b 1608
13437d4b
KB
1609 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1610 {
1611 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1612 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1613 {
de64a9ac
JM
1614 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1615 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1616 sym_addr,
1617 &current_target);
1618 create_solib_event_breakpoint (target_gdbarch, sym_addr);
13437d4b
KB
1619 return 1;
1620 }
1621 }
542c95c2 1622 return 0;
13437d4b
KB
1623}
1624
1625/*
1626
1627 LOCAL FUNCTION
1628
1629 special_symbol_handling -- additional shared library symbol handling
1630
1631 SYNOPSIS
1632
1633 void special_symbol_handling ()
1634
1635 DESCRIPTION
1636
1637 Once the symbols from a shared object have been loaded in the usual
1638 way, we are called to do any system specific symbol handling that
1639 is needed.
1640
ab31aa69 1641 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1642 linkers structures to find symbol definitions for "common" symbols
1643 and adding them to the minimal symbol table for the runtime common
1644 objfile.
1645
ab31aa69
KB
1646 However, for SVR4, there's nothing to do.
1647
13437d4b
KB
1648 */
1649
1650static void
1651svr4_special_symbol_handling (void)
1652{
9f2982ff 1653 svr4_relocate_main_executable ();
13437d4b
KB
1654}
1655
09919ac2
JK
1656/* Read the ELF program headers from ABFD. Return the contents and
1657 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 1658
09919ac2
JK
1659static gdb_byte *
1660read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 1661{
09919ac2
JK
1662 Elf_Internal_Ehdr *ehdr;
1663 gdb_byte *buf;
e2a44558 1664
09919ac2 1665 ehdr = elf_elfheader (abfd);
b8040f19 1666
09919ac2
JK
1667 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1668 if (*phdrs_size == 0)
1669 return NULL;
1670
1671 buf = xmalloc (*phdrs_size);
1672 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1673 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1674 {
1675 xfree (buf);
1676 return NULL;
1677 }
1678
1679 return buf;
b8040f19
JK
1680}
1681
01c30d6e
JK
1682/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1683 exec_bfd. Otherwise return 0.
1684
1685 We relocate all of the sections by the same amount. This
b8040f19
JK
1686 behavior is mandated by recent editions of the System V ABI.
1687 According to the System V Application Binary Interface,
1688 Edition 4.1, page 5-5:
1689
1690 ... Though the system chooses virtual addresses for
1691 individual processes, it maintains the segments' relative
1692 positions. Because position-independent code uses relative
1693 addressesing between segments, the difference between
1694 virtual addresses in memory must match the difference
1695 between virtual addresses in the file. The difference
1696 between the virtual address of any segment in memory and
1697 the corresponding virtual address in the file is thus a
1698 single constant value for any one executable or shared
1699 object in a given process. This difference is the base
1700 address. One use of the base address is to relocate the
1701 memory image of the program during dynamic linking.
1702
1703 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
1704 ABI and is left unspecified in some of the earlier editions.
1705
1706 Decide if the objfile needs to be relocated. As indicated above, we will
1707 only be here when execution is stopped. But during attachment PC can be at
1708 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1709 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1710 regcache_read_pc would point to the interpreter and not the main executable.
1711
1712 So, to summarize, relocations are necessary when the start address obtained
1713 from the executable is different from the address in auxv AT_ENTRY entry.
1714
1715 [ The astute reader will note that we also test to make sure that
1716 the executable in question has the DYNAMIC flag set. It is my
1717 opinion that this test is unnecessary (undesirable even). It
1718 was added to avoid inadvertent relocation of an executable
1719 whose e_type member in the ELF header is not ET_DYN. There may
1720 be a time in the future when it is desirable to do relocations
1721 on other types of files as well in which case this condition
1722 should either be removed or modified to accomodate the new file
1723 type. - Kevin, Nov 2000. ] */
b8040f19 1724
01c30d6e
JK
1725static int
1726svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 1727{
41752192
JK
1728 /* ENTRY_POINT is a possible function descriptor - before
1729 a call to gdbarch_convert_from_func_ptr_addr. */
09919ac2 1730 CORE_ADDR entry_point, displacement;
b8040f19
JK
1731
1732 if (exec_bfd == NULL)
1733 return 0;
1734
09919ac2
JK
1735 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1736 being executed themselves and PIE (Position Independent Executable)
1737 executables are ET_DYN. */
1738
1739 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1740 return 0;
1741
1742 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1743 return 0;
1744
1745 displacement = entry_point - bfd_get_start_address (exec_bfd);
1746
1747 /* Verify the DISPLACEMENT candidate complies with the required page
1748 alignment. It is cheaper than the program headers comparison below. */
1749
1750 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1751 {
1752 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1753
1754 /* p_align of PT_LOAD segments does not specify any alignment but
1755 only congruency of addresses:
1756 p_offset % p_align == p_vaddr % p_align
1757 Kernel is free to load the executable with lower alignment. */
1758
1759 if ((displacement & (elf->minpagesize - 1)) != 0)
1760 return 0;
1761 }
1762
1763 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1764 comparing their program headers. If the program headers in the auxilliary
1765 vector do not match the program headers in the executable, then we are
1766 looking at a different file than the one used by the kernel - for
1767 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1768
1769 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1770 {
1771 /* Be optimistic and clear OK only if GDB was able to verify the headers
1772 really do not match. */
1773 int phdrs_size, phdrs2_size, ok = 1;
1774 gdb_byte *buf, *buf2;
1775
1776 buf = read_program_header (-1, &phdrs_size, NULL);
1777 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
1778 if (buf != NULL && buf2 != NULL
1779 && (phdrs_size != phdrs2_size
1780 || memcmp (buf, buf2, phdrs_size) != 0))
1781 ok = 0;
1782
1783 xfree (buf);
1784 xfree (buf2);
1785
1786 if (!ok)
1787 return 0;
1788 }
b8040f19 1789
ccf26247
JK
1790 if (info_verbose)
1791 {
1792 /* It can be printed repeatedly as there is no easy way to check
1793 the executable symbols/file has been already relocated to
1794 displacement. */
1795
1796 printf_unfiltered (_("Using PIE (Position Independent Executable) "
1797 "displacement %s for \"%s\".\n"),
1798 paddress (target_gdbarch, displacement),
1799 bfd_get_filename (exec_bfd));
1800 }
1801
01c30d6e
JK
1802 *displacementp = displacement;
1803 return 1;
b8040f19
JK
1804}
1805
1806/* Relocate the main executable. This function should be called upon
1807 stopping the inferior process at the entry point to the program.
1808 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
1809 different, the main executable is relocated by the proper amount. */
1810
1811static void
1812svr4_relocate_main_executable (void)
1813{
01c30d6e
JK
1814 CORE_ADDR displacement;
1815
1816 if (symfile_objfile)
1817 {
1818 int i;
1819
1820 /* Remote target may have already set specific offsets by `qOffsets'
1821 which should be preferred. */
1822
1823 for (i = 0; i < symfile_objfile->num_sections; i++)
1824 if (ANOFFSET (symfile_objfile->section_offsets, i) != 0)
1825 return;
1826 }
1827
1828 if (! svr4_exec_displacement (&displacement))
1829 return;
b8040f19 1830
01c30d6e
JK
1831 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
1832 addresses. */
b8040f19
JK
1833
1834 if (symfile_objfile)
e2a44558 1835 {
e2a44558 1836 struct section_offsets *new_offsets;
b8040f19 1837 int i;
e2a44558 1838
b8040f19
JK
1839 new_offsets = alloca (symfile_objfile->num_sections
1840 * sizeof (*new_offsets));
e2a44558 1841
b8040f19
JK
1842 for (i = 0; i < symfile_objfile->num_sections; i++)
1843 new_offsets->offsets[i] = displacement;
e2a44558 1844
b8040f19 1845 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 1846 }
51bee8e9
JK
1847 else if (exec_bfd)
1848 {
1849 asection *asect;
1850
1851 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
1852 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
1853 (bfd_section_vma (exec_bfd, asect)
1854 + displacement));
1855 }
e2a44558
KB
1856}
1857
13437d4b
KB
1858/*
1859
1860 GLOBAL FUNCTION
1861
1862 svr4_solib_create_inferior_hook -- shared library startup support
1863
1864 SYNOPSIS
1865
268a4a75 1866 void svr4_solib_create_inferior_hook (int from_tty)
13437d4b
KB
1867
1868 DESCRIPTION
1869
1870 When gdb starts up the inferior, it nurses it along (through the
1871 shell) until it is ready to execute it's first instruction. At this
1872 point, this function gets called via expansion of the macro
1873 SOLIB_CREATE_INFERIOR_HOOK.
1874
1875 For SunOS executables, this first instruction is typically the
1876 one at "_start", or a similar text label, regardless of whether
1877 the executable is statically or dynamically linked. The runtime
1878 startup code takes care of dynamically linking in any shared
1879 libraries, once gdb allows the inferior to continue.
1880
1881 For SVR4 executables, this first instruction is either the first
1882 instruction in the dynamic linker (for dynamically linked
1883 executables) or the instruction at "start" for statically linked
1884 executables. For dynamically linked executables, the system
1885 first exec's /lib/libc.so.N, which contains the dynamic linker,
1886 and starts it running. The dynamic linker maps in any needed
1887 shared libraries, maps in the actual user executable, and then
1888 jumps to "start" in the user executable.
1889
1890 For both SunOS shared libraries, and SVR4 shared libraries, we
1891 can arrange to cooperate with the dynamic linker to discover the
1892 names of shared libraries that are dynamically linked, and the
1893 base addresses to which they are linked.
1894
1895 This function is responsible for discovering those names and
1896 addresses, and saving sufficient information about them to allow
1897 their symbols to be read at a later time.
1898
1899 FIXME
1900
1901 Between enable_break() and disable_break(), this code does not
1902 properly handle hitting breakpoints which the user might have
1903 set in the startup code or in the dynamic linker itself. Proper
1904 handling will probably have to wait until the implementation is
1905 changed to use the "breakpoint handler function" method.
1906
1907 Also, what if child has exit()ed? Must exit loop somehow.
1908 */
1909
e2a44558 1910static void
268a4a75 1911svr4_solib_create_inferior_hook (int from_tty)
13437d4b 1912{
d6b48e9c 1913 struct inferior *inf;
2020b7ab 1914 struct thread_info *tp;
1a816a87
PA
1915 struct svr4_info *info;
1916
6c95b8df 1917 info = get_svr4_info ();
2020b7ab 1918
e2a44558 1919 /* Relocate the main executable if necessary. */
9f2982ff
JK
1920 if (current_inferior ()->attach_flag == 0)
1921 svr4_relocate_main_executable ();
e2a44558 1922
d5a921c9 1923 if (!svr4_have_link_map_offsets ())
513f5903 1924 return;
d5a921c9 1925
268a4a75 1926 if (!enable_break (info, from_tty))
542c95c2 1927 return;
13437d4b 1928
ab31aa69
KB
1929#if defined(_SCO_DS)
1930 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
1931 special shared library breakpoints and the shared library breakpoint
1932 service routine.
1933
1934 Now run the target. It will eventually hit the breakpoint, at
1935 which point all of the libraries will have been mapped in and we
1936 can go groveling around in the dynamic linker structures to find
1937 out what we need to know about them. */
1938
d6b48e9c 1939 inf = current_inferior ();
2020b7ab
PA
1940 tp = inferior_thread ();
1941
13437d4b 1942 clear_proceed_status ();
d6b48e9c 1943 inf->stop_soon = STOP_QUIETLY;
2020b7ab 1944 tp->stop_signal = TARGET_SIGNAL_0;
13437d4b
KB
1945 do
1946 {
2020b7ab 1947 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
ae123ec6 1948 wait_for_inferior (0);
13437d4b 1949 }
2020b7ab 1950 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
d6b48e9c 1951 inf->stop_soon = NO_STOP_QUIETLY;
ab31aa69 1952#endif /* defined(_SCO_DS) */
13437d4b
KB
1953}
1954
1955static void
1956svr4_clear_solib (void)
1957{
6c95b8df
PA
1958 struct svr4_info *info;
1959
1960 info = get_svr4_info ();
1961 info->debug_base = 0;
1962 info->debug_loader_offset_p = 0;
1963 info->debug_loader_offset = 0;
1964 xfree (info->debug_loader_name);
1965 info->debug_loader_name = NULL;
13437d4b
KB
1966}
1967
1968static void
1969svr4_free_so (struct so_list *so)
1970{
b8c9b27d
KB
1971 xfree (so->lm_info->lm);
1972 xfree (so->lm_info);
13437d4b
KB
1973}
1974
6bb7be43
JB
1975
1976/* Clear any bits of ADDR that wouldn't fit in a target-format
1977 data pointer. "Data pointer" here refers to whatever sort of
1978 address the dynamic linker uses to manage its sections. At the
1979 moment, we don't support shared libraries on any processors where
1980 code and data pointers are different sizes.
1981
1982 This isn't really the right solution. What we really need here is
1983 a way to do arithmetic on CORE_ADDR values that respects the
1984 natural pointer/address correspondence. (For example, on the MIPS,
1985 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1986 sign-extend the value. There, simply truncating the bits above
819844ad 1987 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
1988 be a new gdbarch method or something. */
1989static CORE_ADDR
1990svr4_truncate_ptr (CORE_ADDR addr)
1991{
1cf3db46 1992 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
1993 /* We don't need to truncate anything, and the bit twiddling below
1994 will fail due to overflow problems. */
1995 return addr;
1996 else
1cf3db46 1997 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
6bb7be43
JB
1998}
1999
2000
749499cb
KB
2001static void
2002svr4_relocate_section_addresses (struct so_list *so,
0542c86d 2003 struct target_section *sec)
749499cb 2004{
cc10cae3
AO
2005 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
2006 sec->bfd));
2007 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
2008 sec->bfd));
749499cb 2009}
4b188b9f 2010\f
749499cb 2011
4b188b9f 2012/* Architecture-specific operations. */
6bb7be43 2013
4b188b9f
MK
2014/* Per-architecture data key. */
2015static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 2016
4b188b9f 2017struct solib_svr4_ops
e5e2b9ff 2018{
4b188b9f
MK
2019 /* Return a description of the layout of `struct link_map'. */
2020 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2021};
e5e2b9ff 2022
4b188b9f 2023/* Return a default for the architecture-specific operations. */
e5e2b9ff 2024
4b188b9f
MK
2025static void *
2026solib_svr4_init (struct obstack *obstack)
e5e2b9ff 2027{
4b188b9f 2028 struct solib_svr4_ops *ops;
e5e2b9ff 2029
4b188b9f 2030 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 2031 ops->fetch_link_map_offsets = NULL;
4b188b9f 2032 return ops;
e5e2b9ff
KB
2033}
2034
4b188b9f 2035/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 2036 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 2037
21479ded 2038void
e5e2b9ff
KB
2039set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2040 struct link_map_offsets *(*flmo) (void))
21479ded 2041{
4b188b9f
MK
2042 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2043
2044 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
2045
2046 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
2047}
2048
4b188b9f
MK
2049/* Fetch a link_map_offsets structure using the architecture-specific
2050 `struct link_map_offsets' fetcher. */
1c4dcb57 2051
4b188b9f
MK
2052static struct link_map_offsets *
2053svr4_fetch_link_map_offsets (void)
21479ded 2054{
1cf3db46 2055 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
2056
2057 gdb_assert (ops->fetch_link_map_offsets);
2058 return ops->fetch_link_map_offsets ();
21479ded
KB
2059}
2060
4b188b9f
MK
2061/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2062
2063static int
2064svr4_have_link_map_offsets (void)
2065{
1cf3db46 2066 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
2067 return (ops->fetch_link_map_offsets != NULL);
2068}
2069\f
2070
e4bbbda8
MK
2071/* Most OS'es that have SVR4-style ELF dynamic libraries define a
2072 `struct r_debug' and a `struct link_map' that are binary compatible
2073 with the origional SVR4 implementation. */
2074
2075/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2076 for an ILP32 SVR4 system. */
2077
2078struct link_map_offsets *
2079svr4_ilp32_fetch_link_map_offsets (void)
2080{
2081 static struct link_map_offsets lmo;
2082 static struct link_map_offsets *lmp = NULL;
2083
2084 if (lmp == NULL)
2085 {
2086 lmp = &lmo;
2087
e4cd0d6a
MK
2088 lmo.r_version_offset = 0;
2089 lmo.r_version_size = 4;
e4bbbda8 2090 lmo.r_map_offset = 4;
7cd25cfc 2091 lmo.r_brk_offset = 8;
e4cd0d6a 2092 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
2093
2094 /* Everything we need is in the first 20 bytes. */
2095 lmo.link_map_size = 20;
2096 lmo.l_addr_offset = 0;
e4bbbda8 2097 lmo.l_name_offset = 4;
cc10cae3 2098 lmo.l_ld_offset = 8;
e4bbbda8 2099 lmo.l_next_offset = 12;
e4bbbda8 2100 lmo.l_prev_offset = 16;
e4bbbda8
MK
2101 }
2102
2103 return lmp;
2104}
2105
2106/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2107 for an LP64 SVR4 system. */
2108
2109struct link_map_offsets *
2110svr4_lp64_fetch_link_map_offsets (void)
2111{
2112 static struct link_map_offsets lmo;
2113 static struct link_map_offsets *lmp = NULL;
2114
2115 if (lmp == NULL)
2116 {
2117 lmp = &lmo;
2118
e4cd0d6a
MK
2119 lmo.r_version_offset = 0;
2120 lmo.r_version_size = 4;
e4bbbda8 2121 lmo.r_map_offset = 8;
7cd25cfc 2122 lmo.r_brk_offset = 16;
e4cd0d6a 2123 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
2124
2125 /* Everything we need is in the first 40 bytes. */
2126 lmo.link_map_size = 40;
2127 lmo.l_addr_offset = 0;
e4bbbda8 2128 lmo.l_name_offset = 8;
cc10cae3 2129 lmo.l_ld_offset = 16;
e4bbbda8 2130 lmo.l_next_offset = 24;
e4bbbda8 2131 lmo.l_prev_offset = 32;
e4bbbda8
MK
2132 }
2133
2134 return lmp;
2135}
2136\f
2137
7d522c90 2138struct target_so_ops svr4_so_ops;
13437d4b 2139
3a40aaa0
UW
2140/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
2141 different rule for symbol lookup. The lookup begins here in the DSO, not in
2142 the main executable. */
2143
2144static struct symbol *
2145elf_lookup_lib_symbol (const struct objfile *objfile,
2146 const char *name,
21b556f4 2147 const domain_enum domain)
3a40aaa0 2148{
61f0d762
JK
2149 bfd *abfd;
2150
2151 if (objfile == symfile_objfile)
2152 abfd = exec_bfd;
2153 else
2154 {
2155 /* OBJFILE should have been passed as the non-debug one. */
2156 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2157
2158 abfd = objfile->obfd;
2159 }
2160
2161 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
2162 return NULL;
2163
94af9270 2164 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
2165}
2166
a78f21af
AC
2167extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2168
13437d4b
KB
2169void
2170_initialize_svr4_solib (void)
2171{
4b188b9f 2172 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df
PA
2173 solib_svr4_pspace_data
2174 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
4b188b9f 2175
749499cb 2176 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
2177 svr4_so_ops.free_so = svr4_free_so;
2178 svr4_so_ops.clear_solib = svr4_clear_solib;
2179 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2180 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2181 svr4_so_ops.current_sos = svr4_current_sos;
2182 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 2183 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 2184 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 2185 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 2186 svr4_so_ops.same = svr4_same;
de18c1d8 2187 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
13437d4b 2188}