]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-svr4.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
7b6bb8da 4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
0fb0cc75 5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 21
13437d4b
KB
22#include "defs.h"
23
13437d4b 24#include "elf/external.h"
21479ded 25#include "elf/common.h"
f7856c8f 26#include "elf/mips.h"
13437d4b
KB
27
28#include "symtab.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdbcore.h"
13437d4b 33#include "target.h"
13437d4b 34#include "inferior.h"
fb14de7b 35#include "regcache.h"
2020b7ab 36#include "gdbthread.h"
1a816a87 37#include "observer.h"
13437d4b 38
4b188b9f
MK
39#include "gdb_assert.h"
40
13437d4b 41#include "solist.h"
bba93f6c 42#include "solib.h"
13437d4b
KB
43#include "solib-svr4.h"
44
2f4950cd 45#include "bfd-target.h"
cc10cae3 46#include "elf-bfd.h"
2f4950cd 47#include "exec.h"
8d4e36ba 48#include "auxv.h"
f1838a98 49#include "exceptions.h"
2f4950cd 50
e5e2b9ff 51static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 52static int svr4_have_link_map_offsets (void);
9f2982ff 53static void svr4_relocate_main_executable (void);
1c4dcb57 54
c378eb4e 55/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
56
57struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
4066fc10 62 gdb_byte *lm;
cc10cae3
AO
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
93a57060
DJ
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
13437d4b
KB
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
bc043ef3 83static const char * const solib_break_names[] =
13437d4b
KB
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
4c7dcb84 89 "__dl_rtld_db_dlactivity",
1f72e589 90 "_rtld_debug_state",
4c0122c8 91
13437d4b
KB
92 NULL
93};
13437d4b 94
bc043ef3 95static const char * const bkpt_names[] =
13437d4b 96{
13437d4b 97 "_start",
ad3dcc5c 98 "__start",
13437d4b
KB
99 "main",
100 NULL
101};
13437d4b 102
bc043ef3 103static const char * const main_name_list[] =
13437d4b
KB
104{
105 "main_$main",
106 NULL
107};
108
4d7b2d5b
JB
109/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112static int
113svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114{
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135}
136
137static int
138svr4_same (struct so_list *gdb, struct so_list *inferior)
139{
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141}
142
c378eb4e 143/* link map access functions. */
13437d4b
KB
144
145static CORE_ADDR
b23518f0 146lm_addr_from_link_map (struct so_list *so)
13437d4b 147{
4b188b9f 148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 150
cfaefc65 151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
b6da22b0 152 ptr_type);
13437d4b
KB
153}
154
cc10cae3 155static int
b23518f0 156has_lm_dynamic_from_link_map (void)
cc10cae3
AO
157{
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
cfaefc65 160 return lmo->l_ld_offset >= 0;
cc10cae3
AO
161}
162
163static CORE_ADDR
b23518f0 164lm_dynamic_from_link_map (struct so_list *so)
cc10cae3
AO
165{
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
cc10cae3 168
cfaefc65 169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
b6da22b0 170 ptr_type);
cc10cae3
AO
171}
172
173static CORE_ADDR
b23518f0 174lm_addr_check (struct so_list *so, bfd *abfd)
cc10cae3
AO
175{
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
28f34a8f 179 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 180
b23518f0 181 l_addr = lm_addr_from_link_map (so);
cc10cae3 182
b23518f0 183 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
184 goto set_addr;
185
b23518f0 186 l_dynaddr = lm_dynamic_from_link_map (so);
cc10cae3
AO
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
28f34a8f 196 CORE_ADDR align = 0x1000;
4e1fc9c9 197 CORE_ADDR minpagesize = align;
28f34a8f 198
cc10cae3
AO
199 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
200 {
201 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
202 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
203 int i;
204
205 align = 1;
206
207 for (i = 0; i < ehdr->e_phnum; i++)
208 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
209 align = phdr[i].p_align;
4e1fc9c9
JK
210
211 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
212 }
213
214 /* Turn it into a mask. */
215 align--;
216
217 /* If the changes match the alignment requirements, we
218 assume we're using a core file that was generated by the
219 same binary, just prelinked with a different base offset.
220 If it doesn't match, we may have a different binary, the
221 same binary with the dynamic table loaded at an unrelated
222 location, or anything, really. To avoid regressions,
223 don't adjust the base offset in the latter case, although
224 odds are that, if things really changed, debugging won't
5c0d192f
JK
225 quite work.
226
227 One could expect more the condition
228 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
229 but the one below is relaxed for PPC. The PPC kernel supports
230 either 4k or 64k page sizes. To be prepared for 64k pages,
231 PPC ELF files are built using an alignment requirement of 64k.
232 However, when running on a kernel supporting 4k pages, the memory
233 mapping of the library may not actually happen on a 64k boundary!
234
235 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
236 equivalent to the possibly expected check above.)
237
238 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 239
02835898
JK
240 l_addr = l_dynaddr - dynaddr;
241
4e1fc9c9
JK
242 if ((l_addr & (minpagesize - 1)) == 0
243 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 244 {
701ed6dc 245 if (info_verbose)
ccf26247
JK
246 printf_unfiltered (_("Using PIC (Position Independent Code) "
247 "prelink displacement %s for \"%s\".\n"),
248 paddress (target_gdbarch, l_addr),
249 so->so_name);
cc10cae3 250 }
79d4c408 251 else
02835898
JK
252 {
253 /* There is no way to verify the library file matches. prelink
254 can during prelinking of an unprelinked file (or unprelinking
255 of a prelinked file) shift the DYNAMIC segment by arbitrary
256 offset without any page size alignment. There is no way to
257 find out the ELF header and/or Program Headers for a limited
258 verification if it they match. One could do a verification
259 of the DYNAMIC segment. Still the found address is the best
260 one GDB could find. */
261
262 warning (_(".dynamic section for \"%s\" "
263 "is not at the expected address "
264 "(wrong library or version mismatch?)"), so->so_name);
265 }
cc10cae3
AO
266 }
267
268 set_addr:
269 so->lm_info->l_addr = l_addr;
270 }
271
272 return so->lm_info->l_addr;
273}
274
13437d4b 275static CORE_ADDR
b23518f0 276lm_next (struct so_list *so)
13437d4b 277{
4b188b9f 278 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 279 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 280
cfaefc65 281 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
b6da22b0 282 ptr_type);
13437d4b
KB
283}
284
492928e4 285static CORE_ADDR
b23518f0 286lm_prev (struct so_list *so)
492928e4
JK
287{
288 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
289 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
290
291 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
292 ptr_type);
293}
294
13437d4b 295static CORE_ADDR
b23518f0 296lm_name (struct so_list *so)
13437d4b 297{
4b188b9f 298 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 299 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 300
cfaefc65 301 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
b6da22b0 302 ptr_type);
13437d4b
KB
303}
304
13437d4b 305static int
b23518f0 306ignore_first_link_map_entry (struct so_list *so)
13437d4b 307{
e499d0f1
DJ
308 /* Assume that everything is a library if the dynamic loader was loaded
309 late by a static executable. */
0763ab81 310 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
e499d0f1
DJ
311 return 0;
312
b23518f0 313 return lm_prev (so) == 0;
13437d4b
KB
314}
315
6c95b8df 316/* Per pspace SVR4 specific data. */
13437d4b 317
1a816a87
PA
318struct svr4_info
319{
c378eb4e 320 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
321
322 /* Validity flag for debug_loader_offset. */
323 int debug_loader_offset_p;
324
325 /* Load address for the dynamic linker, inferred. */
326 CORE_ADDR debug_loader_offset;
327
328 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
329 char *debug_loader_name;
330
331 /* Load map address for the main executable. */
332 CORE_ADDR main_lm_addr;
1a816a87 333
6c95b8df
PA
334 CORE_ADDR interp_text_sect_low;
335 CORE_ADDR interp_text_sect_high;
336 CORE_ADDR interp_plt_sect_low;
337 CORE_ADDR interp_plt_sect_high;
338};
1a816a87 339
6c95b8df
PA
340/* Per-program-space data key. */
341static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 342
6c95b8df
PA
343static void
344svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 345{
6c95b8df 346 struct svr4_info *info;
1a816a87 347
6c95b8df
PA
348 info = program_space_data (pspace, solib_svr4_pspace_data);
349 xfree (info);
1a816a87
PA
350}
351
6c95b8df
PA
352/* Get the current svr4 data. If none is found yet, add it now. This
353 function always returns a valid object. */
34439770 354
6c95b8df
PA
355static struct svr4_info *
356get_svr4_info (void)
1a816a87 357{
6c95b8df 358 struct svr4_info *info;
1a816a87 359
6c95b8df
PA
360 info = program_space_data (current_program_space, solib_svr4_pspace_data);
361 if (info != NULL)
362 return info;
34439770 363
6c95b8df
PA
364 info = XZALLOC (struct svr4_info);
365 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
366 return info;
1a816a87 367}
93a57060 368
13437d4b
KB
369/* Local function prototypes */
370
bc043ef3 371static int match_main (const char *);
13437d4b 372
97ec2c2f
UW
373/* Read program header TYPE from inferior memory. The header is found
374 by scanning the OS auxillary vector.
375
09919ac2
JK
376 If TYPE == -1, return the program headers instead of the contents of
377 one program header.
378
97ec2c2f
UW
379 Return a pointer to allocated memory holding the program header contents,
380 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
381 size of those contents is returned to P_SECT_SIZE. Likewise, the target
382 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
383
384static gdb_byte *
385read_program_header (int type, int *p_sect_size, int *p_arch_size)
386{
e17a4113 387 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
388 CORE_ADDR at_phdr, at_phent, at_phnum;
389 int arch_size, sect_size;
390 CORE_ADDR sect_addr;
391 gdb_byte *buf;
392
393 /* Get required auxv elements from target. */
394 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
395 return 0;
396 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
397 return 0;
398 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
399 return 0;
400 if (!at_phdr || !at_phnum)
401 return 0;
402
403 /* Determine ELF architecture type. */
404 if (at_phent == sizeof (Elf32_External_Phdr))
405 arch_size = 32;
406 else if (at_phent == sizeof (Elf64_External_Phdr))
407 arch_size = 64;
408 else
409 return 0;
410
09919ac2
JK
411 /* Find the requested segment. */
412 if (type == -1)
413 {
414 sect_addr = at_phdr;
415 sect_size = at_phent * at_phnum;
416 }
417 else if (arch_size == 32)
97ec2c2f
UW
418 {
419 Elf32_External_Phdr phdr;
420 int i;
421
422 /* Search for requested PHDR. */
423 for (i = 0; i < at_phnum; i++)
424 {
425 if (target_read_memory (at_phdr + i * sizeof (phdr),
426 (gdb_byte *)&phdr, sizeof (phdr)))
427 return 0;
428
e17a4113
UW
429 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
430 4, byte_order) == type)
97ec2c2f
UW
431 break;
432 }
433
434 if (i == at_phnum)
435 return 0;
436
437 /* Retrieve address and size. */
e17a4113
UW
438 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
439 4, byte_order);
440 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
441 4, byte_order);
97ec2c2f
UW
442 }
443 else
444 {
445 Elf64_External_Phdr phdr;
446 int i;
447
448 /* Search for requested PHDR. */
449 for (i = 0; i < at_phnum; i++)
450 {
451 if (target_read_memory (at_phdr + i * sizeof (phdr),
452 (gdb_byte *)&phdr, sizeof (phdr)))
453 return 0;
454
e17a4113
UW
455 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
456 4, byte_order) == type)
97ec2c2f
UW
457 break;
458 }
459
460 if (i == at_phnum)
461 return 0;
462
463 /* Retrieve address and size. */
e17a4113
UW
464 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
465 8, byte_order);
466 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
467 8, byte_order);
97ec2c2f
UW
468 }
469
470 /* Read in requested program header. */
471 buf = xmalloc (sect_size);
472 if (target_read_memory (sect_addr, buf, sect_size))
473 {
474 xfree (buf);
475 return NULL;
476 }
477
478 if (p_arch_size)
479 *p_arch_size = arch_size;
480 if (p_sect_size)
481 *p_sect_size = sect_size;
482
483 return buf;
484}
485
486
487/* Return program interpreter string. */
488static gdb_byte *
489find_program_interpreter (void)
490{
491 gdb_byte *buf = NULL;
492
493 /* If we have an exec_bfd, use its section table. */
494 if (exec_bfd
495 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
496 {
497 struct bfd_section *interp_sect;
498
499 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
500 if (interp_sect != NULL)
501 {
97ec2c2f
UW
502 int sect_size = bfd_section_size (exec_bfd, interp_sect);
503
504 buf = xmalloc (sect_size);
505 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
506 }
507 }
508
509 /* If we didn't find it, use the target auxillary vector. */
510 if (!buf)
511 buf = read_program_header (PT_INTERP, NULL, NULL);
512
513 return buf;
514}
515
516
c378eb4e 517/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
3a40aaa0
UW
518 returned and the corresponding PTR is set. */
519
520static int
521scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
522{
523 int arch_size, step, sect_size;
524 long dyn_tag;
b381ea14 525 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 526 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
527 Elf32_External_Dyn *x_dynp_32;
528 Elf64_External_Dyn *x_dynp_64;
529 struct bfd_section *sect;
61f0d762 530 struct target_section *target_section;
3a40aaa0
UW
531
532 if (abfd == NULL)
533 return 0;
0763ab81
PA
534
535 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
536 return 0;
537
3a40aaa0
UW
538 arch_size = bfd_get_arch_size (abfd);
539 if (arch_size == -1)
0763ab81 540 return 0;
3a40aaa0
UW
541
542 /* Find the start address of the .dynamic section. */
543 sect = bfd_get_section_by_name (abfd, ".dynamic");
544 if (sect == NULL)
545 return 0;
61f0d762
JK
546
547 for (target_section = current_target_sections->sections;
548 target_section < current_target_sections->sections_end;
549 target_section++)
550 if (sect == target_section->the_bfd_section)
551 break;
b381ea14
JK
552 if (target_section < current_target_sections->sections_end)
553 dyn_addr = target_section->addr;
554 else
555 {
556 /* ABFD may come from OBJFILE acting only as a symbol file without being
557 loaded into the target (see add_symbol_file_command). This case is
558 such fallback to the file VMA address without the possibility of
559 having the section relocated to its actual in-memory address. */
560
561 dyn_addr = bfd_section_vma (abfd, sect);
562 }
3a40aaa0 563
65728c26
DJ
564 /* Read in .dynamic from the BFD. We will get the actual value
565 from memory later. */
3a40aaa0 566 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
567 buf = bufstart = alloca (sect_size);
568 if (!bfd_get_section_contents (abfd, sect,
569 buf, 0, sect_size))
570 return 0;
3a40aaa0
UW
571
572 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
573 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
574 : sizeof (Elf64_External_Dyn);
575 for (bufend = buf + sect_size;
576 buf < bufend;
577 buf += step)
578 {
579 if (arch_size == 32)
580 {
581 x_dynp_32 = (Elf32_External_Dyn *) buf;
582 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
583 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
584 }
65728c26 585 else
3a40aaa0
UW
586 {
587 x_dynp_64 = (Elf64_External_Dyn *) buf;
588 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
589 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
590 }
591 if (dyn_tag == DT_NULL)
592 return 0;
593 if (dyn_tag == dyntag)
594 {
65728c26
DJ
595 /* If requested, try to read the runtime value of this .dynamic
596 entry. */
3a40aaa0 597 if (ptr)
65728c26 598 {
b6da22b0 599 struct type *ptr_type;
65728c26
DJ
600 gdb_byte ptr_buf[8];
601 CORE_ADDR ptr_addr;
602
b6da22b0 603 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
b381ea14 604 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 605 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 606 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
607 *ptr = dyn_ptr;
608 }
609 return 1;
3a40aaa0
UW
610 }
611 }
612
613 return 0;
614}
615
97ec2c2f
UW
616/* Scan for DYNTAG in .dynamic section of the target's main executable,
617 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
618 returned and the corresponding PTR is set. */
619
620static int
621scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
622{
e17a4113 623 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
624 int sect_size, arch_size, step;
625 long dyn_tag;
626 CORE_ADDR dyn_ptr;
627 gdb_byte *bufend, *bufstart, *buf;
628
629 /* Read in .dynamic section. */
630 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
631 if (!buf)
632 return 0;
633
634 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
635 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
636 : sizeof (Elf64_External_Dyn);
637 for (bufend = buf + sect_size;
638 buf < bufend;
639 buf += step)
640 {
641 if (arch_size == 32)
642 {
643 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 644
e17a4113
UW
645 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
646 4, byte_order);
647 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
648 4, byte_order);
97ec2c2f
UW
649 }
650 else
651 {
652 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 653
e17a4113
UW
654 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
655 8, byte_order);
656 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
657 8, byte_order);
97ec2c2f
UW
658 }
659 if (dyn_tag == DT_NULL)
660 break;
661
662 if (dyn_tag == dyntag)
663 {
664 if (ptr)
665 *ptr = dyn_ptr;
666
667 xfree (bufstart);
668 return 1;
669 }
670 }
671
672 xfree (bufstart);
673 return 0;
674}
675
7f86f058
PA
676/* Locate the base address of dynamic linker structs for SVR4 elf
677 targets.
13437d4b
KB
678
679 For SVR4 elf targets the address of the dynamic linker's runtime
680 structure is contained within the dynamic info section in the
681 executable file. The dynamic section is also mapped into the
682 inferior address space. Because the runtime loader fills in the
683 real address before starting the inferior, we have to read in the
684 dynamic info section from the inferior address space.
685 If there are any errors while trying to find the address, we
7f86f058 686 silently return 0, otherwise the found address is returned. */
13437d4b
KB
687
688static CORE_ADDR
689elf_locate_base (void)
690{
3a40aaa0
UW
691 struct minimal_symbol *msymbol;
692 CORE_ADDR dyn_ptr;
13437d4b 693
65728c26
DJ
694 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
695 instead of DT_DEBUG, although they sometimes contain an unused
696 DT_DEBUG. */
97ec2c2f
UW
697 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
698 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 699 {
b6da22b0 700 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
3a40aaa0 701 gdb_byte *pbuf;
b6da22b0 702 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 703
3a40aaa0
UW
704 pbuf = alloca (pbuf_size);
705 /* DT_MIPS_RLD_MAP contains a pointer to the address
706 of the dynamic link structure. */
707 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 708 return 0;
b6da22b0 709 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
710 }
711
65728c26 712 /* Find DT_DEBUG. */
97ec2c2f
UW
713 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
714 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
715 return dyn_ptr;
716
3a40aaa0
UW
717 /* This may be a static executable. Look for the symbol
718 conventionally named _r_debug, as a last resort. */
719 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
720 if (msymbol != NULL)
721 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
722
723 /* DT_DEBUG entry not found. */
724 return 0;
725}
726
7f86f058 727/* Locate the base address of dynamic linker structs.
13437d4b
KB
728
729 For both the SunOS and SVR4 shared library implementations, if the
730 inferior executable has been linked dynamically, there is a single
731 address somewhere in the inferior's data space which is the key to
732 locating all of the dynamic linker's runtime structures. This
733 address is the value of the debug base symbol. The job of this
734 function is to find and return that address, or to return 0 if there
735 is no such address (the executable is statically linked for example).
736
737 For SunOS, the job is almost trivial, since the dynamic linker and
738 all of it's structures are statically linked to the executable at
739 link time. Thus the symbol for the address we are looking for has
740 already been added to the minimal symbol table for the executable's
741 objfile at the time the symbol file's symbols were read, and all we
742 have to do is look it up there. Note that we explicitly do NOT want
743 to find the copies in the shared library.
744
745 The SVR4 version is a bit more complicated because the address
746 is contained somewhere in the dynamic info section. We have to go
747 to a lot more work to discover the address of the debug base symbol.
748 Because of this complexity, we cache the value we find and return that
749 value on subsequent invocations. Note there is no copy in the
7f86f058 750 executable symbol tables. */
13437d4b
KB
751
752static CORE_ADDR
1a816a87 753locate_base (struct svr4_info *info)
13437d4b 754{
13437d4b
KB
755 /* Check to see if we have a currently valid address, and if so, avoid
756 doing all this work again and just return the cached address. If
757 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
758 section for ELF executables. There's no point in doing any of this
759 though if we don't have some link map offsets to work with. */
13437d4b 760
1a816a87 761 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 762 info->debug_base = elf_locate_base ();
1a816a87 763 return info->debug_base;
13437d4b
KB
764}
765
e4cd0d6a 766/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
767 return its address in the inferior. Return zero if the address
768 could not be determined.
13437d4b 769
e4cd0d6a
MK
770 FIXME: Perhaps we should validate the info somehow, perhaps by
771 checking r_version for a known version number, or r_state for
772 RT_CONSISTENT. */
13437d4b
KB
773
774static CORE_ADDR
1a816a87 775solib_svr4_r_map (struct svr4_info *info)
13437d4b 776{
4b188b9f 777 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 778 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
08597104
JB
779 CORE_ADDR addr = 0;
780 volatile struct gdb_exception ex;
13437d4b 781
08597104
JB
782 TRY_CATCH (ex, RETURN_MASK_ERROR)
783 {
784 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
785 ptr_type);
786 }
787 exception_print (gdb_stderr, ex);
788 return addr;
e4cd0d6a 789}
13437d4b 790
7cd25cfc
DJ
791/* Find r_brk from the inferior's debug base. */
792
793static CORE_ADDR
1a816a87 794solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
795{
796 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 797 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
7cd25cfc 798
1a816a87
PA
799 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
800 ptr_type);
7cd25cfc
DJ
801}
802
e4cd0d6a
MK
803/* Find the link map for the dynamic linker (if it is not in the
804 normal list of loaded shared objects). */
13437d4b 805
e4cd0d6a 806static CORE_ADDR
1a816a87 807solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
808{
809 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 810 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
e17a4113 811 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
e4cd0d6a 812 ULONGEST version;
13437d4b 813
e4cd0d6a
MK
814 /* Check version, and return zero if `struct r_debug' doesn't have
815 the r_ldsomap member. */
1a816a87
PA
816 version
817 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 818 lmo->r_version_size, byte_order);
e4cd0d6a
MK
819 if (version < 2 || lmo->r_ldsomap_offset == -1)
820 return 0;
13437d4b 821
1a816a87 822 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 823 ptr_type);
13437d4b
KB
824}
825
de18c1d8
JM
826/* On Solaris systems with some versions of the dynamic linker,
827 ld.so's l_name pointer points to the SONAME in the string table
828 rather than into writable memory. So that GDB can find shared
829 libraries when loading a core file generated by gcore, ensure that
830 memory areas containing the l_name string are saved in the core
831 file. */
832
833static int
834svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
835{
836 struct svr4_info *info;
837 CORE_ADDR ldsomap;
838 struct so_list *new;
839 struct cleanup *old_chain;
840 struct link_map_offsets *lmo;
74de0234 841 CORE_ADDR name_lm;
de18c1d8
JM
842
843 info = get_svr4_info ();
844
845 info->debug_base = 0;
846 locate_base (info);
847 if (!info->debug_base)
848 return 0;
849
850 ldsomap = solib_svr4_r_ldsomap (info);
851 if (!ldsomap)
852 return 0;
853
854 lmo = svr4_fetch_link_map_offsets ();
855 new = XZALLOC (struct so_list);
856 old_chain = make_cleanup (xfree, new);
857 new->lm_info = xmalloc (sizeof (struct lm_info));
858 make_cleanup (xfree, new->lm_info);
859 new->lm_info->l_addr = (CORE_ADDR)-1;
860 new->lm_info->lm_addr = ldsomap;
861 new->lm_info->lm = xzalloc (lmo->link_map_size);
862 make_cleanup (xfree, new->lm_info->lm);
863 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
74de0234 864 name_lm = lm_name (new);
de18c1d8
JM
865 do_cleanups (old_chain);
866
74de0234 867 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
868}
869
7f86f058 870/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 871
7f86f058
PA
872 If no open symbol file, attempt to locate and open the main symbol
873 file. On SVR4 systems, this is the first link map entry. If its
874 name is here, we can open it. Useful when attaching to a process
875 without first loading its symbol file. */
13437d4b
KB
876
877static int
878open_symbol_file_object (void *from_ttyp)
879{
880 CORE_ADDR lm, l_name;
881 char *filename;
882 int errcode;
883 int from_tty = *(int *)from_ttyp;
4b188b9f 884 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0
UW
885 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
886 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 887 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 888 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 889 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
890
891 if (symfile_objfile)
9e2f0ad4 892 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
893 {
894 do_cleanups (cleanups);
895 return 0;
896 }
13437d4b 897
7cd25cfc 898 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
899 info->debug_base = 0;
900 if (locate_base (info) == 0)
3bb47e8b
TT
901 {
902 do_cleanups (cleanups);
903 return 0; /* failed somehow... */
904 }
13437d4b
KB
905
906 /* First link map member should be the executable. */
1a816a87 907 lm = solib_svr4_r_map (info);
e4cd0d6a 908 if (lm == 0)
3bb47e8b
TT
909 {
910 do_cleanups (cleanups);
911 return 0; /* failed somehow... */
912 }
13437d4b
KB
913
914 /* Read address of name from target memory to GDB. */
cfaefc65 915 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 916
cfaefc65 917 /* Convert the address to host format. */
b6da22b0 918 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 919
13437d4b 920 if (l_name == 0)
3bb47e8b
TT
921 {
922 do_cleanups (cleanups);
923 return 0; /* No filename. */
924 }
13437d4b
KB
925
926 /* Now fetch the filename from target memory. */
927 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 928 make_cleanup (xfree, filename);
13437d4b
KB
929
930 if (errcode)
931 {
8a3fe4f8 932 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 933 safe_strerror (errcode));
3bb47e8b 934 do_cleanups (cleanups);
13437d4b
KB
935 return 0;
936 }
937
13437d4b 938 /* Have a pathname: read the symbol file. */
1adeb98a 939 symbol_file_add_main (filename, from_tty);
13437d4b 940
3bb47e8b 941 do_cleanups (cleanups);
13437d4b
KB
942 return 1;
943}
13437d4b 944
34439770
DJ
945/* If no shared library information is available from the dynamic
946 linker, build a fallback list from other sources. */
947
948static struct so_list *
949svr4_default_sos (void)
950{
6c95b8df 951 struct svr4_info *info = get_svr4_info ();
1a816a87 952
34439770
DJ
953 struct so_list *head = NULL;
954 struct so_list **link_ptr = &head;
955
1a816a87 956 if (info->debug_loader_offset_p)
34439770
DJ
957 {
958 struct so_list *new = XZALLOC (struct so_list);
959
960 new->lm_info = xmalloc (sizeof (struct lm_info));
961
962 /* Nothing will ever check the cached copy of the link
963 map if we set l_addr. */
1a816a87 964 new->lm_info->l_addr = info->debug_loader_offset;
93a57060 965 new->lm_info->lm_addr = 0;
34439770
DJ
966 new->lm_info->lm = NULL;
967
1a816a87
PA
968 strncpy (new->so_name, info->debug_loader_name,
969 SO_NAME_MAX_PATH_SIZE - 1);
34439770
DJ
970 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
971 strcpy (new->so_original_name, new->so_name);
972
973 *link_ptr = new;
974 link_ptr = &new->next;
975 }
976
977 return head;
978}
979
7f86f058 980/* Implement the "current_sos" target_so_ops method. */
13437d4b
KB
981
982static struct so_list *
983svr4_current_sos (void)
984{
492928e4 985 CORE_ADDR lm, prev_lm;
13437d4b
KB
986 struct so_list *head = 0;
987 struct so_list **link_ptr = &head;
e4cd0d6a 988 CORE_ADDR ldsomap = 0;
1a816a87
PA
989 struct svr4_info *info;
990
6c95b8df 991 info = get_svr4_info ();
13437d4b 992
7cd25cfc 993 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
994 info->debug_base = 0;
995 locate_base (info);
13437d4b 996
7cd25cfc
DJ
997 /* If we can't find the dynamic linker's base structure, this
998 must not be a dynamically linked executable. Hmm. */
1a816a87 999 if (! info->debug_base)
7cd25cfc 1000 return svr4_default_sos ();
13437d4b
KB
1001
1002 /* Walk the inferior's link map list, and build our list of
1003 `struct so_list' nodes. */
492928e4 1004 prev_lm = 0;
1a816a87 1005 lm = solib_svr4_r_map (info);
34439770 1006
13437d4b
KB
1007 while (lm)
1008 {
4b188b9f 1009 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 1010 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 1011 struct cleanup *old_chain = make_cleanup (xfree, new);
492928e4 1012 CORE_ADDR next_lm;
13437d4b 1013
13437d4b 1014 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 1015 make_cleanup (xfree, new->lm_info);
13437d4b 1016
831004b7 1017 new->lm_info->l_addr = (CORE_ADDR)-1;
93a57060 1018 new->lm_info->lm_addr = lm;
f4456994 1019 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 1020 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
1021
1022 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1023
b23518f0 1024 next_lm = lm_next (new);
492928e4 1025
b23518f0 1026 if (lm_prev (new) != prev_lm)
492928e4
JK
1027 {
1028 warning (_("Corrupted shared library list"));
1029 free_so (new);
1030 next_lm = 0;
1031 }
13437d4b
KB
1032
1033 /* For SVR4 versions, the first entry in the link map is for the
1034 inferior executable, so we must ignore it. For some versions of
1035 SVR4, it has no name. For others (Solaris 2.3 for example), it
1036 does have a name, so we can no longer use a missing name to
c378eb4e 1037 decide when to ignore it. */
b23518f0 1038 else if (ignore_first_link_map_entry (new) && ldsomap == 0)
93a57060 1039 {
1a816a87 1040 info->main_lm_addr = new->lm_info->lm_addr;
93a57060
DJ
1041 free_so (new);
1042 }
13437d4b
KB
1043 else
1044 {
1045 int errcode;
1046 char *buffer;
1047
1048 /* Extract this shared object's name. */
b23518f0 1049 target_read_string (lm_name (new), &buffer,
13437d4b
KB
1050 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1051 if (errcode != 0)
8a3fe4f8
AC
1052 warning (_("Can't read pathname for load map: %s."),
1053 safe_strerror (errcode));
13437d4b
KB
1054 else
1055 {
1056 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1057 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
13437d4b
KB
1058 strcpy (new->so_original_name, new->so_name);
1059 }
ea5bf0a1 1060 xfree (buffer);
13437d4b
KB
1061
1062 /* If this entry has no name, or its name matches the name
1063 for the main executable, don't include it in the list. */
1064 if (! new->so_name[0]
1065 || match_main (new->so_name))
1066 free_so (new);
1067 else
1068 {
1069 new->next = 0;
1070 *link_ptr = new;
1071 link_ptr = &new->next;
1072 }
1073 }
1074
492928e4
JK
1075 prev_lm = lm;
1076 lm = next_lm;
1077
e4cd0d6a
MK
1078 /* On Solaris, the dynamic linker is not in the normal list of
1079 shared objects, so make sure we pick it up too. Having
1080 symbol information for the dynamic linker is quite crucial
1081 for skipping dynamic linker resolver code. */
1082 if (lm == 0 && ldsomap == 0)
492928e4
JK
1083 {
1084 lm = ldsomap = solib_svr4_r_ldsomap (info);
1085 prev_lm = 0;
1086 }
e4cd0d6a 1087
13437d4b
KB
1088 discard_cleanups (old_chain);
1089 }
1090
34439770
DJ
1091 if (head == NULL)
1092 return svr4_default_sos ();
1093
13437d4b
KB
1094 return head;
1095}
1096
93a57060 1097/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1098
1099CORE_ADDR
1100svr4_fetch_objfile_link_map (struct objfile *objfile)
1101{
93a57060 1102 struct so_list *so;
6c95b8df 1103 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1104
93a57060 1105 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1106 if (info->main_lm_addr == 0)
93a57060 1107 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1108
93a57060
DJ
1109 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1110 if (objfile == symfile_objfile)
1a816a87 1111 return info->main_lm_addr;
93a57060
DJ
1112
1113 /* The other link map addresses may be found by examining the list
1114 of shared libraries. */
1115 for (so = master_so_list (); so; so = so->next)
1116 if (so->objfile == objfile)
1117 return so->lm_info->lm_addr;
1118
1119 /* Not found! */
bc4a16ae
EZ
1120 return 0;
1121}
13437d4b
KB
1122
1123/* On some systems, the only way to recognize the link map entry for
1124 the main executable file is by looking at its name. Return
1125 non-zero iff SONAME matches one of the known main executable names. */
1126
1127static int
bc043ef3 1128match_main (const char *soname)
13437d4b 1129{
bc043ef3 1130 const char * const *mainp;
13437d4b
KB
1131
1132 for (mainp = main_name_list; *mainp != NULL; mainp++)
1133 {
1134 if (strcmp (soname, *mainp) == 0)
1135 return (1);
1136 }
1137
1138 return (0);
1139}
1140
13437d4b
KB
1141/* Return 1 if PC lies in the dynamic symbol resolution code of the
1142 SVR4 run time loader. */
13437d4b 1143
7d522c90 1144int
d7fa2ae2 1145svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1146{
6c95b8df
PA
1147 struct svr4_info *info = get_svr4_info ();
1148
1149 return ((pc >= info->interp_text_sect_low
1150 && pc < info->interp_text_sect_high)
1151 || (pc >= info->interp_plt_sect_low
1152 && pc < info->interp_plt_sect_high)
0875794a
JK
1153 || in_plt_section (pc, NULL)
1154 || in_gnu_ifunc_stub (pc));
13437d4b 1155}
13437d4b 1156
2f4950cd
AC
1157/* Given an executable's ABFD and target, compute the entry-point
1158 address. */
1159
1160static CORE_ADDR
1161exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1162{
1163 /* KevinB wrote ... for most targets, the address returned by
1164 bfd_get_start_address() is the entry point for the start
1165 function. But, for some targets, bfd_get_start_address() returns
1166 the address of a function descriptor from which the entry point
1167 address may be extracted. This address is extracted by
1168 gdbarch_convert_from_func_ptr_addr(). The method
1169 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1170 function for targets which don't use function descriptors. */
1cf3db46 1171 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2f4950cd
AC
1172 bfd_get_start_address (abfd),
1173 targ);
1174}
13437d4b 1175
cb457ae2
YQ
1176/* Helper function for gdb_bfd_lookup_symbol. */
1177
1178static int
1179cmp_name_and_sec_flags (asymbol *sym, void *data)
1180{
1181 return (strcmp (sym->name, (const char *) data) == 0
1182 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
1183}
7f86f058 1184/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
1185
1186 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1187 debugger interface, support for arranging for the inferior to hit
1188 a breakpoint after mapping in the shared libraries. This function
1189 enables that breakpoint.
1190
1191 For SunOS, there is a special flag location (in_debugger) which we
1192 set to 1. When the dynamic linker sees this flag set, it will set
1193 a breakpoint at a location known only to itself, after saving the
1194 original contents of that place and the breakpoint address itself,
1195 in it's own internal structures. When we resume the inferior, it
1196 will eventually take a SIGTRAP when it runs into the breakpoint.
1197 We handle this (in a different place) by restoring the contents of
1198 the breakpointed location (which is only known after it stops),
1199 chasing around to locate the shared libraries that have been
1200 loaded, then resuming.
1201
1202 For SVR4, the debugger interface structure contains a member (r_brk)
1203 which is statically initialized at the time the shared library is
1204 built, to the offset of a function (_r_debug_state) which is guaran-
1205 teed to be called once before mapping in a library, and again when
1206 the mapping is complete. At the time we are examining this member,
1207 it contains only the unrelocated offset of the function, so we have
1208 to do our own relocation. Later, when the dynamic linker actually
1209 runs, it relocates r_brk to be the actual address of _r_debug_state().
1210
1211 The debugger interface structure also contains an enumeration which
1212 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1213 depending upon whether or not the library is being mapped or unmapped,
7f86f058 1214 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
1215
1216static int
268a4a75 1217enable_break (struct svr4_info *info, int from_tty)
13437d4b 1218{
13437d4b 1219 struct minimal_symbol *msymbol;
bc043ef3 1220 const char * const *bkpt_namep;
13437d4b 1221 asection *interp_sect;
97ec2c2f 1222 gdb_byte *interp_name;
7cd25cfc 1223 CORE_ADDR sym_addr;
13437d4b 1224
6c95b8df
PA
1225 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1226 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 1227
7cd25cfc
DJ
1228 /* If we already have a shared library list in the target, and
1229 r_debug contains r_brk, set the breakpoint there - this should
1230 mean r_brk has already been relocated. Assume the dynamic linker
1231 is the object containing r_brk. */
1232
268a4a75 1233 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 1234 sym_addr = 0;
1a816a87
PA
1235 if (info->debug_base && solib_svr4_r_map (info) != 0)
1236 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1237
1238 if (sym_addr != 0)
1239 {
1240 struct obj_section *os;
1241
b36ec657 1242 sym_addr = gdbarch_addr_bits_remove
1cf3db46 1243 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3e43a32a
MS
1244 sym_addr,
1245 &current_target));
b36ec657 1246
48379de6
DE
1247 /* On at least some versions of Solaris there's a dynamic relocation
1248 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1249 we get control before the dynamic linker has self-relocated.
1250 Check if SYM_ADDR is in a known section, if it is assume we can
1251 trust its value. This is just a heuristic though, it could go away
1252 or be replaced if it's getting in the way.
1253
1254 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1255 however it's spelled in your particular system) is ARM or Thumb.
1256 That knowledge is encoded in the address, if it's Thumb the low bit
1257 is 1. However, we've stripped that info above and it's not clear
1258 what all the consequences are of passing a non-addr_bits_remove'd
1259 address to create_solib_event_breakpoint. The call to
1260 find_pc_section verifies we know about the address and have some
1261 hope of computing the right kind of breakpoint to use (via
1262 symbol info). It does mean that GDB needs to be pointed at a
1263 non-stripped version of the dynamic linker in order to obtain
1264 information it already knows about. Sigh. */
1265
7cd25cfc
DJ
1266 os = find_pc_section (sym_addr);
1267 if (os != NULL)
1268 {
1269 /* Record the relocated start and end address of the dynamic linker
1270 text and plt section for svr4_in_dynsym_resolve_code. */
1271 bfd *tmp_bfd;
1272 CORE_ADDR load_addr;
1273
1274 tmp_bfd = os->objfile->obfd;
1275 load_addr = ANOFFSET (os->objfile->section_offsets,
1276 os->objfile->sect_index_text);
1277
1278 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1279 if (interp_sect)
1280 {
6c95b8df 1281 info->interp_text_sect_low =
7cd25cfc 1282 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1283 info->interp_text_sect_high =
1284 info->interp_text_sect_low
1285 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1286 }
1287 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1288 if (interp_sect)
1289 {
6c95b8df 1290 info->interp_plt_sect_low =
7cd25cfc 1291 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1292 info->interp_plt_sect_high =
1293 info->interp_plt_sect_low
1294 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1295 }
1296
a6d9a66e 1297 create_solib_event_breakpoint (target_gdbarch, sym_addr);
7cd25cfc
DJ
1298 return 1;
1299 }
1300 }
1301
97ec2c2f 1302 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1303 into the old breakpoint at symbol code. */
97ec2c2f
UW
1304 interp_name = find_program_interpreter ();
1305 if (interp_name)
13437d4b 1306 {
8ad2fcde
KB
1307 CORE_ADDR load_addr = 0;
1308 int load_addr_found = 0;
2ec9a4f8 1309 int loader_found_in_list = 0;
f8766ec1 1310 struct so_list *so;
e4f7b8c8 1311 bfd *tmp_bfd = NULL;
2f4950cd 1312 struct target_ops *tmp_bfd_target;
f1838a98 1313 volatile struct gdb_exception ex;
13437d4b 1314
7cd25cfc 1315 sym_addr = 0;
13437d4b
KB
1316
1317 /* Now we need to figure out where the dynamic linker was
1318 loaded so that we can load its symbols and place a breakpoint
1319 in the dynamic linker itself.
1320
1321 This address is stored on the stack. However, I've been unable
1322 to find any magic formula to find it for Solaris (appears to
1323 be trivial on GNU/Linux). Therefore, we have to try an alternate
1324 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1325
f1838a98
UW
1326 TRY_CATCH (ex, RETURN_MASK_ALL)
1327 {
97ec2c2f 1328 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1329 }
13437d4b
KB
1330 if (tmp_bfd == NULL)
1331 goto bkpt_at_symbol;
1332
2f4950cd
AC
1333 /* Now convert the TMP_BFD into a target. That way target, as
1334 well as BFD operations can be used. Note that closing the
1335 target will also close the underlying bfd. */
1336 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1337
f8766ec1
KB
1338 /* On a running target, we can get the dynamic linker's base
1339 address from the shared library table. */
f8766ec1
KB
1340 so = master_so_list ();
1341 while (so)
8ad2fcde 1342 {
97ec2c2f 1343 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1344 {
1345 load_addr_found = 1;
2ec9a4f8 1346 loader_found_in_list = 1;
b23518f0 1347 load_addr = lm_addr_check (so, tmp_bfd);
8ad2fcde
KB
1348 break;
1349 }
f8766ec1 1350 so = so->next;
8ad2fcde
KB
1351 }
1352
8d4e36ba
JB
1353 /* If we were not able to find the base address of the loader
1354 from our so_list, then try using the AT_BASE auxilliary entry. */
1355 if (!load_addr_found)
1356 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b
JK
1357 {
1358 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1359
1360 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1361 that `+ load_addr' will overflow CORE_ADDR width not creating
1362 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1363 GDB. */
1364
d182d057 1365 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 1366 {
d182d057 1367 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
1368 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1369 tmp_bfd_target);
1370
1371 gdb_assert (load_addr < space_size);
1372
1373 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1374 64bit ld.so with 32bit executable, it should not happen. */
1375
1376 if (tmp_entry_point < space_size
1377 && tmp_entry_point + load_addr >= space_size)
1378 load_addr -= space_size;
1379 }
1380
1381 load_addr_found = 1;
1382 }
8d4e36ba 1383
8ad2fcde
KB
1384 /* Otherwise we find the dynamic linker's base address by examining
1385 the current pc (which should point at the entry point for the
8d4e36ba
JB
1386 dynamic linker) and subtracting the offset of the entry point.
1387
1388 This is more fragile than the previous approaches, but is a good
1389 fallback method because it has actually been working well in
1390 most cases. */
8ad2fcde 1391 if (!load_addr_found)
fb14de7b 1392 {
c2250ad1
UW
1393 struct regcache *regcache
1394 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
433759f7 1395
fb14de7b
UW
1396 load_addr = (regcache_read_pc (regcache)
1397 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1398 }
2ec9a4f8
DJ
1399
1400 if (!loader_found_in_list)
34439770 1401 {
1a816a87
PA
1402 info->debug_loader_name = xstrdup (interp_name);
1403 info->debug_loader_offset_p = 1;
1404 info->debug_loader_offset = load_addr;
268a4a75 1405 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 1406 }
13437d4b
KB
1407
1408 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1409 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1410 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1411 if (interp_sect)
1412 {
6c95b8df 1413 info->interp_text_sect_low =
13437d4b 1414 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1415 info->interp_text_sect_high =
1416 info->interp_text_sect_low
1417 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1418 }
1419 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1420 if (interp_sect)
1421 {
6c95b8df 1422 info->interp_plt_sect_low =
13437d4b 1423 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1424 info->interp_plt_sect_high =
1425 info->interp_plt_sect_low
1426 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1427 }
1428
1429 /* Now try to set a breakpoint in the dynamic linker. */
1430 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1431 {
cb457ae2
YQ
1432 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
1433 (void *) *bkpt_namep);
13437d4b
KB
1434 if (sym_addr != 0)
1435 break;
1436 }
1437
2bbe3cc1
DJ
1438 if (sym_addr != 0)
1439 /* Convert 'sym_addr' from a function pointer to an address.
1440 Because we pass tmp_bfd_target instead of the current
1441 target, this will always produce an unrelocated value. */
1cf3db46 1442 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2bbe3cc1
DJ
1443 sym_addr,
1444 tmp_bfd_target);
1445
2f4950cd
AC
1446 /* We're done with both the temporary bfd and target. Remember,
1447 closing the target closes the underlying bfd. */
1448 target_close (tmp_bfd_target, 0);
13437d4b
KB
1449
1450 if (sym_addr != 0)
1451 {
a6d9a66e 1452 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
97ec2c2f 1453 xfree (interp_name);
13437d4b
KB
1454 return 1;
1455 }
1456
1457 /* For whatever reason we couldn't set a breakpoint in the dynamic
1458 linker. Warn and drop into the old code. */
1459 bkpt_at_symbol:
97ec2c2f 1460 xfree (interp_name);
82d03102
PG
1461 warning (_("Unable to find dynamic linker breakpoint function.\n"
1462 "GDB will be unable to debug shared library initializers\n"
1463 "and track explicitly loaded dynamic code."));
13437d4b 1464 }
13437d4b 1465
e499d0f1
DJ
1466 /* Scan through the lists of symbols, trying to look up the symbol and
1467 set a breakpoint there. Terminate loop when we/if we succeed. */
1468
1469 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1470 {
1471 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1472 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1473 {
de64a9ac
JM
1474 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1475 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1476 sym_addr,
1477 &current_target);
1478 create_solib_event_breakpoint (target_gdbarch, sym_addr);
e499d0f1
DJ
1479 return 1;
1480 }
1481 }
13437d4b 1482
c6490bf2 1483 if (!current_inferior ()->attach_flag)
13437d4b 1484 {
c6490bf2 1485 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 1486 {
c6490bf2
KB
1487 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1488 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1489 {
1490 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1491 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1492 sym_addr,
1493 &current_target);
1494 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1495 return 1;
1496 }
13437d4b
KB
1497 }
1498 }
542c95c2 1499 return 0;
13437d4b
KB
1500}
1501
7f86f058 1502/* Implement the "special_symbol_handling" target_so_ops method. */
13437d4b
KB
1503
1504static void
1505svr4_special_symbol_handling (void)
1506{
7f86f058 1507 /* Nothing to do. */
13437d4b
KB
1508}
1509
09919ac2
JK
1510/* Read the ELF program headers from ABFD. Return the contents and
1511 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 1512
09919ac2
JK
1513static gdb_byte *
1514read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 1515{
09919ac2
JK
1516 Elf_Internal_Ehdr *ehdr;
1517 gdb_byte *buf;
e2a44558 1518
09919ac2 1519 ehdr = elf_elfheader (abfd);
b8040f19 1520
09919ac2
JK
1521 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1522 if (*phdrs_size == 0)
1523 return NULL;
1524
1525 buf = xmalloc (*phdrs_size);
1526 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1527 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1528 {
1529 xfree (buf);
1530 return NULL;
1531 }
1532
1533 return buf;
b8040f19
JK
1534}
1535
01c30d6e
JK
1536/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1537 exec_bfd. Otherwise return 0.
1538
1539 We relocate all of the sections by the same amount. This
c378eb4e 1540 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
1541 According to the System V Application Binary Interface,
1542 Edition 4.1, page 5-5:
1543
1544 ... Though the system chooses virtual addresses for
1545 individual processes, it maintains the segments' relative
1546 positions. Because position-independent code uses relative
1547 addressesing between segments, the difference between
1548 virtual addresses in memory must match the difference
1549 between virtual addresses in the file. The difference
1550 between the virtual address of any segment in memory and
1551 the corresponding virtual address in the file is thus a
1552 single constant value for any one executable or shared
1553 object in a given process. This difference is the base
1554 address. One use of the base address is to relocate the
1555 memory image of the program during dynamic linking.
1556
1557 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
1558 ABI and is left unspecified in some of the earlier editions.
1559
1560 Decide if the objfile needs to be relocated. As indicated above, we will
1561 only be here when execution is stopped. But during attachment PC can be at
1562 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1563 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1564 regcache_read_pc would point to the interpreter and not the main executable.
1565
1566 So, to summarize, relocations are necessary when the start address obtained
1567 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 1568
09919ac2
JK
1569 [ The astute reader will note that we also test to make sure that
1570 the executable in question has the DYNAMIC flag set. It is my
1571 opinion that this test is unnecessary (undesirable even). It
1572 was added to avoid inadvertent relocation of an executable
1573 whose e_type member in the ELF header is not ET_DYN. There may
1574 be a time in the future when it is desirable to do relocations
1575 on other types of files as well in which case this condition
1576 should either be removed or modified to accomodate the new file
1577 type. - Kevin, Nov 2000. ] */
b8040f19 1578
01c30d6e
JK
1579static int
1580svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 1581{
41752192
JK
1582 /* ENTRY_POINT is a possible function descriptor - before
1583 a call to gdbarch_convert_from_func_ptr_addr. */
09919ac2 1584 CORE_ADDR entry_point, displacement;
b8040f19
JK
1585
1586 if (exec_bfd == NULL)
1587 return 0;
1588
09919ac2
JK
1589 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1590 being executed themselves and PIE (Position Independent Executable)
1591 executables are ET_DYN. */
1592
1593 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1594 return 0;
1595
1596 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1597 return 0;
1598
1599 displacement = entry_point - bfd_get_start_address (exec_bfd);
1600
1601 /* Verify the DISPLACEMENT candidate complies with the required page
1602 alignment. It is cheaper than the program headers comparison below. */
1603
1604 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1605 {
1606 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1607
1608 /* p_align of PT_LOAD segments does not specify any alignment but
1609 only congruency of addresses:
1610 p_offset % p_align == p_vaddr % p_align
1611 Kernel is free to load the executable with lower alignment. */
1612
1613 if ((displacement & (elf->minpagesize - 1)) != 0)
1614 return 0;
1615 }
1616
1617 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1618 comparing their program headers. If the program headers in the auxilliary
1619 vector do not match the program headers in the executable, then we are
1620 looking at a different file than the one used by the kernel - for
1621 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1622
1623 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1624 {
1625 /* Be optimistic and clear OK only if GDB was able to verify the headers
1626 really do not match. */
1627 int phdrs_size, phdrs2_size, ok = 1;
1628 gdb_byte *buf, *buf2;
0a1e94c7 1629 int arch_size;
09919ac2 1630
0a1e94c7 1631 buf = read_program_header (-1, &phdrs_size, &arch_size);
09919ac2 1632 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
1633 if (buf != NULL && buf2 != NULL)
1634 {
1635 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1636
1637 /* We are dealing with three different addresses. EXEC_BFD
1638 represents current address in on-disk file. target memory content
1639 may be different from EXEC_BFD as the file may have been prelinked
1640 to a different address after the executable has been loaded.
1641 Moreover the address of placement in target memory can be
3e43a32a
MS
1642 different from what the program headers in target memory say -
1643 this is the goal of PIE.
0a1e94c7
JK
1644
1645 Detected DISPLACEMENT covers both the offsets of PIE placement and
1646 possible new prelink performed after start of the program. Here
1647 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1648 content offset for the verification purpose. */
1649
1650 if (phdrs_size != phdrs2_size
1651 || bfd_get_arch_size (exec_bfd) != arch_size)
1652 ok = 0;
3e43a32a
MS
1653 else if (arch_size == 32
1654 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
1655 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1656 {
1657 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1658 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1659 CORE_ADDR displacement = 0;
1660 int i;
1661
1662 /* DISPLACEMENT could be found more easily by the difference of
1663 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1664 already have enough information to compute that displacement
1665 with what we've read. */
1666
1667 for (i = 0; i < ehdr2->e_phnum; i++)
1668 if (phdr2[i].p_type == PT_LOAD)
1669 {
1670 Elf32_External_Phdr *phdrp;
1671 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1672 CORE_ADDR vaddr, paddr;
1673 CORE_ADDR displacement_vaddr = 0;
1674 CORE_ADDR displacement_paddr = 0;
1675
1676 phdrp = &((Elf32_External_Phdr *) buf)[i];
1677 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1678 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1679
1680 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1681 byte_order);
1682 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1683
1684 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1685 byte_order);
1686 displacement_paddr = paddr - phdr2[i].p_paddr;
1687
1688 if (displacement_vaddr == displacement_paddr)
1689 displacement = displacement_vaddr;
1690
1691 break;
1692 }
1693
1694 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1695
1696 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1697 {
1698 Elf32_External_Phdr *phdrp;
1699 Elf32_External_Phdr *phdr2p;
1700 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1701 CORE_ADDR vaddr, paddr;
43b8e241 1702 asection *plt2_asect;
0a1e94c7
JK
1703
1704 phdrp = &((Elf32_External_Phdr *) buf)[i];
1705 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1706 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1707 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1708
1709 /* PT_GNU_STACK is an exception by being never relocated by
1710 prelink as its addresses are always zero. */
1711
1712 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1713 continue;
1714
1715 /* Check also other adjustment combinations - PR 11786. */
1716
3e43a32a
MS
1717 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1718 byte_order);
0a1e94c7
JK
1719 vaddr -= displacement;
1720 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1721
3e43a32a
MS
1722 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1723 byte_order);
0a1e94c7
JK
1724 paddr -= displacement;
1725 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1726
1727 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1728 continue;
1729
43b8e241
JK
1730 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1731 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1732 if (plt2_asect)
1733 {
1734 int content2;
1735 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1736 CORE_ADDR filesz;
1737
1738 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1739 & SEC_HAS_CONTENTS) != 0;
1740
1741 filesz = extract_unsigned_integer (buf_filesz_p, 4,
1742 byte_order);
1743
1744 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1745 FILESZ is from the in-memory image. */
1746 if (content2)
1747 filesz += bfd_get_section_size (plt2_asect);
1748 else
1749 filesz -= bfd_get_section_size (plt2_asect);
1750
1751 store_unsigned_integer (buf_filesz_p, 4, byte_order,
1752 filesz);
1753
1754 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1755 continue;
1756 }
1757
0a1e94c7
JK
1758 ok = 0;
1759 break;
1760 }
1761 }
3e43a32a
MS
1762 else if (arch_size == 64
1763 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
1764 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1765 {
1766 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1767 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1768 CORE_ADDR displacement = 0;
1769 int i;
1770
1771 /* DISPLACEMENT could be found more easily by the difference of
1772 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1773 already have enough information to compute that displacement
1774 with what we've read. */
1775
1776 for (i = 0; i < ehdr2->e_phnum; i++)
1777 if (phdr2[i].p_type == PT_LOAD)
1778 {
1779 Elf64_External_Phdr *phdrp;
1780 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1781 CORE_ADDR vaddr, paddr;
1782 CORE_ADDR displacement_vaddr = 0;
1783 CORE_ADDR displacement_paddr = 0;
1784
1785 phdrp = &((Elf64_External_Phdr *) buf)[i];
1786 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1787 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1788
1789 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1790 byte_order);
1791 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1792
1793 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1794 byte_order);
1795 displacement_paddr = paddr - phdr2[i].p_paddr;
1796
1797 if (displacement_vaddr == displacement_paddr)
1798 displacement = displacement_vaddr;
1799
1800 break;
1801 }
1802
1803 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1804
1805 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
1806 {
1807 Elf64_External_Phdr *phdrp;
1808 Elf64_External_Phdr *phdr2p;
1809 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1810 CORE_ADDR vaddr, paddr;
43b8e241 1811 asection *plt2_asect;
0a1e94c7
JK
1812
1813 phdrp = &((Elf64_External_Phdr *) buf)[i];
1814 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1815 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1816 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
1817
1818 /* PT_GNU_STACK is an exception by being never relocated by
1819 prelink as its addresses are always zero. */
1820
1821 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1822 continue;
1823
1824 /* Check also other adjustment combinations - PR 11786. */
1825
3e43a32a
MS
1826 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1827 byte_order);
0a1e94c7
JK
1828 vaddr -= displacement;
1829 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
1830
3e43a32a
MS
1831 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1832 byte_order);
0a1e94c7
JK
1833 paddr -= displacement;
1834 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
1835
1836 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1837 continue;
1838
43b8e241
JK
1839 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1840 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1841 if (plt2_asect)
1842 {
1843 int content2;
1844 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1845 CORE_ADDR filesz;
1846
1847 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1848 & SEC_HAS_CONTENTS) != 0;
1849
1850 filesz = extract_unsigned_integer (buf_filesz_p, 8,
1851 byte_order);
1852
1853 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1854 FILESZ is from the in-memory image. */
1855 if (content2)
1856 filesz += bfd_get_section_size (plt2_asect);
1857 else
1858 filesz -= bfd_get_section_size (plt2_asect);
1859
1860 store_unsigned_integer (buf_filesz_p, 8, byte_order,
1861 filesz);
1862
1863 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1864 continue;
1865 }
1866
0a1e94c7
JK
1867 ok = 0;
1868 break;
1869 }
1870 }
1871 else
1872 ok = 0;
1873 }
09919ac2
JK
1874
1875 xfree (buf);
1876 xfree (buf2);
1877
1878 if (!ok)
1879 return 0;
1880 }
b8040f19 1881
ccf26247
JK
1882 if (info_verbose)
1883 {
1884 /* It can be printed repeatedly as there is no easy way to check
1885 the executable symbols/file has been already relocated to
1886 displacement. */
1887
1888 printf_unfiltered (_("Using PIE (Position Independent Executable) "
1889 "displacement %s for \"%s\".\n"),
1890 paddress (target_gdbarch, displacement),
1891 bfd_get_filename (exec_bfd));
1892 }
1893
01c30d6e
JK
1894 *displacementp = displacement;
1895 return 1;
b8040f19
JK
1896}
1897
1898/* Relocate the main executable. This function should be called upon
c378eb4e 1899 stopping the inferior process at the entry point to the program.
b8040f19
JK
1900 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
1901 different, the main executable is relocated by the proper amount. */
1902
1903static void
1904svr4_relocate_main_executable (void)
1905{
01c30d6e
JK
1906 CORE_ADDR displacement;
1907
4e5799b6
JK
1908 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
1909 probably contains the offsets computed using the PIE displacement
1910 from the previous run, which of course are irrelevant for this run.
1911 So we need to determine the new PIE displacement and recompute the
1912 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
1913 already contains pre-computed offsets.
01c30d6e 1914
4e5799b6 1915 If we cannot compute the PIE displacement, either:
01c30d6e 1916
4e5799b6
JK
1917 - The executable is not PIE.
1918
1919 - SYMFILE_OBJFILE does not match the executable started in the target.
1920 This can happen for main executable symbols loaded at the host while
1921 `ld.so --ld-args main-executable' is loaded in the target.
1922
1923 Then we leave the section offsets untouched and use them as is for
1924 this run. Either:
1925
1926 - These section offsets were properly reset earlier, and thus
1927 already contain the correct values. This can happen for instance
1928 when reconnecting via the remote protocol to a target that supports
1929 the `qOffsets' packet.
1930
1931 - The section offsets were not reset earlier, and the best we can
c378eb4e 1932 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
1933
1934 if (! svr4_exec_displacement (&displacement))
1935 return;
b8040f19 1936
01c30d6e
JK
1937 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
1938 addresses. */
b8040f19
JK
1939
1940 if (symfile_objfile)
e2a44558 1941 {
e2a44558 1942 struct section_offsets *new_offsets;
b8040f19 1943 int i;
e2a44558 1944
b8040f19
JK
1945 new_offsets = alloca (symfile_objfile->num_sections
1946 * sizeof (*new_offsets));
e2a44558 1947
b8040f19
JK
1948 for (i = 0; i < symfile_objfile->num_sections; i++)
1949 new_offsets->offsets[i] = displacement;
e2a44558 1950
b8040f19 1951 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 1952 }
51bee8e9
JK
1953 else if (exec_bfd)
1954 {
1955 asection *asect;
1956
1957 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
1958 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
1959 (bfd_section_vma (exec_bfd, asect)
1960 + displacement));
1961 }
e2a44558
KB
1962}
1963
7f86f058 1964/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
1965
1966 For SVR4 executables, this first instruction is either the first
1967 instruction in the dynamic linker (for dynamically linked
1968 executables) or the instruction at "start" for statically linked
1969 executables. For dynamically linked executables, the system
1970 first exec's /lib/libc.so.N, which contains the dynamic linker,
1971 and starts it running. The dynamic linker maps in any needed
1972 shared libraries, maps in the actual user executable, and then
1973 jumps to "start" in the user executable.
1974
7f86f058
PA
1975 We can arrange to cooperate with the dynamic linker to discover the
1976 names of shared libraries that are dynamically linked, and the base
1977 addresses to which they are linked.
13437d4b
KB
1978
1979 This function is responsible for discovering those names and
1980 addresses, and saving sufficient information about them to allow
1981 their symbols to be read at a later time.
1982
1983 FIXME
1984
1985 Between enable_break() and disable_break(), this code does not
1986 properly handle hitting breakpoints which the user might have
1987 set in the startup code or in the dynamic linker itself. Proper
1988 handling will probably have to wait until the implementation is
1989 changed to use the "breakpoint handler function" method.
1990
7f86f058 1991 Also, what if child has exit()ed? Must exit loop somehow. */
13437d4b 1992
e2a44558 1993static void
268a4a75 1994svr4_solib_create_inferior_hook (int from_tty)
13437d4b 1995{
1cd337a5 1996#if defined(_SCO_DS)
d6b48e9c 1997 struct inferior *inf;
2020b7ab 1998 struct thread_info *tp;
1cd337a5 1999#endif /* defined(_SCO_DS) */
1a816a87
PA
2000 struct svr4_info *info;
2001
6c95b8df 2002 info = get_svr4_info ();
2020b7ab 2003
e2a44558 2004 /* Relocate the main executable if necessary. */
86e4bafc 2005 svr4_relocate_main_executable ();
e2a44558 2006
c91c8c16
PA
2007 /* No point setting a breakpoint in the dynamic linker if we can't
2008 hit it (e.g., a core file, or a trace file). */
2009 if (!target_has_execution)
2010 return;
2011
d5a921c9 2012 if (!svr4_have_link_map_offsets ())
513f5903 2013 return;
d5a921c9 2014
268a4a75 2015 if (!enable_break (info, from_tty))
542c95c2 2016 return;
13437d4b 2017
ab31aa69
KB
2018#if defined(_SCO_DS)
2019 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
2020 special shared library breakpoints and the shared library breakpoint
2021 service routine.
2022
2023 Now run the target. It will eventually hit the breakpoint, at
2024 which point all of the libraries will have been mapped in and we
2025 can go groveling around in the dynamic linker structures to find
c378eb4e 2026 out what we need to know about them. */
13437d4b 2027
d6b48e9c 2028 inf = current_inferior ();
2020b7ab
PA
2029 tp = inferior_thread ();
2030
13437d4b 2031 clear_proceed_status ();
16c381f0
JK
2032 inf->control.stop_soon = STOP_QUIETLY;
2033 tp->suspend.stop_signal = TARGET_SIGNAL_0;
13437d4b
KB
2034 do
2035 {
16c381f0 2036 target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
e4c8541f 2037 wait_for_inferior ();
13437d4b 2038 }
16c381f0
JK
2039 while (tp->suspend.stop_signal != TARGET_SIGNAL_TRAP);
2040 inf->control.stop_soon = NO_STOP_QUIETLY;
ab31aa69 2041#endif /* defined(_SCO_DS) */
13437d4b
KB
2042}
2043
2044static void
2045svr4_clear_solib (void)
2046{
6c95b8df
PA
2047 struct svr4_info *info;
2048
2049 info = get_svr4_info ();
2050 info->debug_base = 0;
2051 info->debug_loader_offset_p = 0;
2052 info->debug_loader_offset = 0;
2053 xfree (info->debug_loader_name);
2054 info->debug_loader_name = NULL;
13437d4b
KB
2055}
2056
2057static void
2058svr4_free_so (struct so_list *so)
2059{
b8c9b27d
KB
2060 xfree (so->lm_info->lm);
2061 xfree (so->lm_info);
13437d4b
KB
2062}
2063
6bb7be43
JB
2064
2065/* Clear any bits of ADDR that wouldn't fit in a target-format
2066 data pointer. "Data pointer" here refers to whatever sort of
2067 address the dynamic linker uses to manage its sections. At the
2068 moment, we don't support shared libraries on any processors where
2069 code and data pointers are different sizes.
2070
2071 This isn't really the right solution. What we really need here is
2072 a way to do arithmetic on CORE_ADDR values that respects the
2073 natural pointer/address correspondence. (For example, on the MIPS,
2074 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2075 sign-extend the value. There, simply truncating the bits above
819844ad 2076 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
2077 be a new gdbarch method or something. */
2078static CORE_ADDR
2079svr4_truncate_ptr (CORE_ADDR addr)
2080{
1cf3db46 2081 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
2082 /* We don't need to truncate anything, and the bit twiddling below
2083 will fail due to overflow problems. */
2084 return addr;
2085 else
1cf3db46 2086 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
6bb7be43
JB
2087}
2088
2089
749499cb
KB
2090static void
2091svr4_relocate_section_addresses (struct so_list *so,
0542c86d 2092 struct target_section *sec)
749499cb 2093{
b23518f0 2094 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so,
cc10cae3 2095 sec->bfd));
b23518f0 2096 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so,
cc10cae3 2097 sec->bfd));
749499cb 2098}
4b188b9f 2099\f
749499cb 2100
4b188b9f 2101/* Architecture-specific operations. */
6bb7be43 2102
4b188b9f
MK
2103/* Per-architecture data key. */
2104static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 2105
4b188b9f 2106struct solib_svr4_ops
e5e2b9ff 2107{
4b188b9f
MK
2108 /* Return a description of the layout of `struct link_map'. */
2109 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2110};
e5e2b9ff 2111
4b188b9f 2112/* Return a default for the architecture-specific operations. */
e5e2b9ff 2113
4b188b9f
MK
2114static void *
2115solib_svr4_init (struct obstack *obstack)
e5e2b9ff 2116{
4b188b9f 2117 struct solib_svr4_ops *ops;
e5e2b9ff 2118
4b188b9f 2119 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 2120 ops->fetch_link_map_offsets = NULL;
4b188b9f 2121 return ops;
e5e2b9ff
KB
2122}
2123
4b188b9f 2124/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 2125 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 2126
21479ded 2127void
e5e2b9ff
KB
2128set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2129 struct link_map_offsets *(*flmo) (void))
21479ded 2130{
4b188b9f
MK
2131 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2132
2133 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
2134
2135 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
2136}
2137
4b188b9f
MK
2138/* Fetch a link_map_offsets structure using the architecture-specific
2139 `struct link_map_offsets' fetcher. */
1c4dcb57 2140
4b188b9f
MK
2141static struct link_map_offsets *
2142svr4_fetch_link_map_offsets (void)
21479ded 2143{
1cf3db46 2144 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
2145
2146 gdb_assert (ops->fetch_link_map_offsets);
2147 return ops->fetch_link_map_offsets ();
21479ded
KB
2148}
2149
4b188b9f
MK
2150/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2151
2152static int
2153svr4_have_link_map_offsets (void)
2154{
1cf3db46 2155 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
433759f7 2156
4b188b9f
MK
2157 return (ops->fetch_link_map_offsets != NULL);
2158}
2159\f
2160
e4bbbda8
MK
2161/* Most OS'es that have SVR4-style ELF dynamic libraries define a
2162 `struct r_debug' and a `struct link_map' that are binary compatible
2163 with the origional SVR4 implementation. */
2164
2165/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2166 for an ILP32 SVR4 system. */
d989b283 2167
e4bbbda8
MK
2168struct link_map_offsets *
2169svr4_ilp32_fetch_link_map_offsets (void)
2170{
2171 static struct link_map_offsets lmo;
2172 static struct link_map_offsets *lmp = NULL;
2173
2174 if (lmp == NULL)
2175 {
2176 lmp = &lmo;
2177
e4cd0d6a
MK
2178 lmo.r_version_offset = 0;
2179 lmo.r_version_size = 4;
e4bbbda8 2180 lmo.r_map_offset = 4;
7cd25cfc 2181 lmo.r_brk_offset = 8;
e4cd0d6a 2182 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
2183
2184 /* Everything we need is in the first 20 bytes. */
2185 lmo.link_map_size = 20;
2186 lmo.l_addr_offset = 0;
e4bbbda8 2187 lmo.l_name_offset = 4;
cc10cae3 2188 lmo.l_ld_offset = 8;
e4bbbda8 2189 lmo.l_next_offset = 12;
e4bbbda8 2190 lmo.l_prev_offset = 16;
e4bbbda8
MK
2191 }
2192
2193 return lmp;
2194}
2195
2196/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2197 for an LP64 SVR4 system. */
d989b283 2198
e4bbbda8
MK
2199struct link_map_offsets *
2200svr4_lp64_fetch_link_map_offsets (void)
2201{
2202 static struct link_map_offsets lmo;
2203 static struct link_map_offsets *lmp = NULL;
2204
2205 if (lmp == NULL)
2206 {
2207 lmp = &lmo;
2208
e4cd0d6a
MK
2209 lmo.r_version_offset = 0;
2210 lmo.r_version_size = 4;
e4bbbda8 2211 lmo.r_map_offset = 8;
7cd25cfc 2212 lmo.r_brk_offset = 16;
e4cd0d6a 2213 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
2214
2215 /* Everything we need is in the first 40 bytes. */
2216 lmo.link_map_size = 40;
2217 lmo.l_addr_offset = 0;
e4bbbda8 2218 lmo.l_name_offset = 8;
cc10cae3 2219 lmo.l_ld_offset = 16;
e4bbbda8 2220 lmo.l_next_offset = 24;
e4bbbda8 2221 lmo.l_prev_offset = 32;
e4bbbda8
MK
2222 }
2223
2224 return lmp;
2225}
2226\f
2227
7d522c90 2228struct target_so_ops svr4_so_ops;
13437d4b 2229
c378eb4e 2230/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
2231 different rule for symbol lookup. The lookup begins here in the DSO, not in
2232 the main executable. */
2233
2234static struct symbol *
2235elf_lookup_lib_symbol (const struct objfile *objfile,
2236 const char *name,
21b556f4 2237 const domain_enum domain)
3a40aaa0 2238{
61f0d762
JK
2239 bfd *abfd;
2240
2241 if (objfile == symfile_objfile)
2242 abfd = exec_bfd;
2243 else
2244 {
2245 /* OBJFILE should have been passed as the non-debug one. */
2246 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2247
2248 abfd = objfile->obfd;
2249 }
2250
2251 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
2252 return NULL;
2253
94af9270 2254 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
2255}
2256
a78f21af
AC
2257extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2258
13437d4b
KB
2259void
2260_initialize_svr4_solib (void)
2261{
4b188b9f 2262 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df
PA
2263 solib_svr4_pspace_data
2264 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
4b188b9f 2265
749499cb 2266 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
2267 svr4_so_ops.free_so = svr4_free_so;
2268 svr4_so_ops.clear_solib = svr4_clear_solib;
2269 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2270 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2271 svr4_so_ops.current_sos = svr4_current_sos;
2272 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 2273 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 2274 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 2275 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 2276 svr4_so_ops.same = svr4_same;
de18c1d8 2277 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
13437d4b 2278}