]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-svr4.c
quit_force: Replace TRY_CATCH wrapper macros
[thirdparty/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
32d0add0 3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
1a816a87 36#include "observer.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
1c4dcb57 53
c378eb4e 54/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
55
56struct lm_info
57 {
cc10cae3 58 /* Amount by which addresses in the binary should be relocated to
3957565a
JK
59 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
60 When prelinking is involved and the prelink base address changes,
61 we may need a different offset - the recomputed offset is in L_ADDR.
62 It is commonly the same value. It is cached as we want to warn about
63 the difference and compute it only once. L_ADDR is valid
64 iff L_ADDR_P. */
65 CORE_ADDR l_addr, l_addr_inferior;
66 unsigned int l_addr_p : 1;
93a57060
DJ
67
68 /* The target location of lm. */
69 CORE_ADDR lm_addr;
3957565a
JK
70
71 /* Values read in from inferior's fields of the same name. */
72 CORE_ADDR l_ld, l_next, l_prev, l_name;
13437d4b
KB
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
bc043ef3 83static const char * const solib_break_names[] =
13437d4b
KB
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
4c7dcb84 89 "__dl_rtld_db_dlactivity",
1f72e589 90 "_rtld_debug_state",
4c0122c8 91
13437d4b
KB
92 NULL
93};
13437d4b 94
bc043ef3 95static const char * const bkpt_names[] =
13437d4b 96{
13437d4b 97 "_start",
ad3dcc5c 98 "__start",
13437d4b
KB
99 "main",
100 NULL
101};
13437d4b 102
bc043ef3 103static const char * const main_name_list[] =
13437d4b
KB
104{
105 "main_$main",
106 NULL
107};
108
f9e14852
GB
109/* What to do when a probe stop occurs. */
110
111enum probe_action
112{
113 /* Something went seriously wrong. Stop using probes and
114 revert to using the older interface. */
115 PROBES_INTERFACE_FAILED,
116
117 /* No action is required. The shared object list is still
118 valid. */
119 DO_NOTHING,
120
121 /* The shared object list should be reloaded entirely. */
122 FULL_RELOAD,
123
124 /* Attempt to incrementally update the shared object list. If
125 the update fails or is not possible, fall back to reloading
126 the list in full. */
127 UPDATE_OR_RELOAD,
128};
129
130/* A probe's name and its associated action. */
131
132struct probe_info
133{
134 /* The name of the probe. */
135 const char *name;
136
137 /* What to do when a probe stop occurs. */
138 enum probe_action action;
139};
140
141/* A list of named probes and their associated actions. If all
142 probes are present in the dynamic linker then the probes-based
143 interface will be used. */
144
145static const struct probe_info probe_info[] =
146{
147 { "init_start", DO_NOTHING },
148 { "init_complete", FULL_RELOAD },
149 { "map_start", DO_NOTHING },
150 { "map_failed", DO_NOTHING },
151 { "reloc_complete", UPDATE_OR_RELOAD },
152 { "unmap_start", DO_NOTHING },
153 { "unmap_complete", FULL_RELOAD },
154};
155
156#define NUM_PROBES ARRAY_SIZE (probe_info)
157
4d7b2d5b
JB
158/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
159 the same shared library. */
160
161static int
162svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
163{
164 if (strcmp (gdb_so_name, inferior_so_name) == 0)
165 return 1;
166
167 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
168 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
169 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
170 sometimes they have identical content, but are not linked to each
171 other. We don't restrict this check for Solaris, but the chances
172 of running into this situation elsewhere are very low. */
173 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
174 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
175 return 1;
176
177 /* Similarly, we observed the same issue with sparc64, but with
178 different locations. */
179 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
180 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
181 return 1;
182
183 return 0;
184}
185
186static int
187svr4_same (struct so_list *gdb, struct so_list *inferior)
188{
189 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
190}
191
3957565a
JK
192static struct lm_info *
193lm_info_read (CORE_ADDR lm_addr)
13437d4b 194{
4b188b9f 195 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
3957565a
JK
196 gdb_byte *lm;
197 struct lm_info *lm_info;
198 struct cleanup *back_to;
199
200 lm = xmalloc (lmo->link_map_size);
201 back_to = make_cleanup (xfree, lm);
202
203 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
204 {
205 warning (_("Error reading shared library list entry at %s"),
f5656ead 206 paddress (target_gdbarch (), lm_addr)),
3957565a
JK
207 lm_info = NULL;
208 }
209 else
210 {
f5656ead 211 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 212
3957565a
JK
213 lm_info = xzalloc (sizeof (*lm_info));
214 lm_info->lm_addr = lm_addr;
215
216 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
217 ptr_type);
218 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
219 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
220 ptr_type);
221 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
222 ptr_type);
223 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
224 ptr_type);
225 }
226
227 do_cleanups (back_to);
228
229 return lm_info;
13437d4b
KB
230}
231
cc10cae3 232static int
b23518f0 233has_lm_dynamic_from_link_map (void)
cc10cae3
AO
234{
235 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
236
cfaefc65 237 return lmo->l_ld_offset >= 0;
cc10cae3
AO
238}
239
cc10cae3 240static CORE_ADDR
f65ce5fb 241lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 242{
3957565a 243 if (!so->lm_info->l_addr_p)
cc10cae3
AO
244 {
245 struct bfd_section *dyninfo_sect;
28f34a8f 246 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 247
3957565a 248 l_addr = so->lm_info->l_addr_inferior;
cc10cae3 249
b23518f0 250 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
251 goto set_addr;
252
3957565a 253 l_dynaddr = so->lm_info->l_ld;
cc10cae3
AO
254
255 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
256 if (dyninfo_sect == NULL)
257 goto set_addr;
258
259 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
260
261 if (dynaddr + l_addr != l_dynaddr)
262 {
28f34a8f 263 CORE_ADDR align = 0x1000;
4e1fc9c9 264 CORE_ADDR minpagesize = align;
28f34a8f 265
cc10cae3
AO
266 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
267 {
268 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
269 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
270 int i;
271
272 align = 1;
273
274 for (i = 0; i < ehdr->e_phnum; i++)
275 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
276 align = phdr[i].p_align;
4e1fc9c9
JK
277
278 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
279 }
280
281 /* Turn it into a mask. */
282 align--;
283
284 /* If the changes match the alignment requirements, we
285 assume we're using a core file that was generated by the
286 same binary, just prelinked with a different base offset.
287 If it doesn't match, we may have a different binary, the
288 same binary with the dynamic table loaded at an unrelated
289 location, or anything, really. To avoid regressions,
290 don't adjust the base offset in the latter case, although
291 odds are that, if things really changed, debugging won't
5c0d192f
JK
292 quite work.
293
294 One could expect more the condition
295 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
296 but the one below is relaxed for PPC. The PPC kernel supports
297 either 4k or 64k page sizes. To be prepared for 64k pages,
298 PPC ELF files are built using an alignment requirement of 64k.
299 However, when running on a kernel supporting 4k pages, the memory
300 mapping of the library may not actually happen on a 64k boundary!
301
302 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
303 equivalent to the possibly expected check above.)
304
305 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 306
02835898
JK
307 l_addr = l_dynaddr - dynaddr;
308
4e1fc9c9
JK
309 if ((l_addr & (minpagesize - 1)) == 0
310 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 311 {
701ed6dc 312 if (info_verbose)
ccf26247
JK
313 printf_unfiltered (_("Using PIC (Position Independent Code) "
314 "prelink displacement %s for \"%s\".\n"),
f5656ead 315 paddress (target_gdbarch (), l_addr),
ccf26247 316 so->so_name);
cc10cae3 317 }
79d4c408 318 else
02835898
JK
319 {
320 /* There is no way to verify the library file matches. prelink
321 can during prelinking of an unprelinked file (or unprelinking
322 of a prelinked file) shift the DYNAMIC segment by arbitrary
323 offset without any page size alignment. There is no way to
324 find out the ELF header and/or Program Headers for a limited
325 verification if it they match. One could do a verification
326 of the DYNAMIC segment. Still the found address is the best
327 one GDB could find. */
328
329 warning (_(".dynamic section for \"%s\" "
330 "is not at the expected address "
331 "(wrong library or version mismatch?)"), so->so_name);
332 }
cc10cae3
AO
333 }
334
335 set_addr:
336 so->lm_info->l_addr = l_addr;
3957565a 337 so->lm_info->l_addr_p = 1;
cc10cae3
AO
338 }
339
340 return so->lm_info->l_addr;
341}
342
6c95b8df 343/* Per pspace SVR4 specific data. */
13437d4b 344
1a816a87
PA
345struct svr4_info
346{
c378eb4e 347 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
348
349 /* Validity flag for debug_loader_offset. */
350 int debug_loader_offset_p;
351
352 /* Load address for the dynamic linker, inferred. */
353 CORE_ADDR debug_loader_offset;
354
355 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
356 char *debug_loader_name;
357
358 /* Load map address for the main executable. */
359 CORE_ADDR main_lm_addr;
1a816a87 360
6c95b8df
PA
361 CORE_ADDR interp_text_sect_low;
362 CORE_ADDR interp_text_sect_high;
363 CORE_ADDR interp_plt_sect_low;
364 CORE_ADDR interp_plt_sect_high;
f9e14852
GB
365
366 /* Nonzero if the list of objects was last obtained from the target
367 via qXfer:libraries-svr4:read. */
368 int using_xfer;
369
370 /* Table of struct probe_and_action instances, used by the
371 probes-based interface to map breakpoint addresses to probes
372 and their associated actions. Lookup is performed using
373 probe_and_action->probe->address. */
374 htab_t probes_table;
375
376 /* List of objects loaded into the inferior, used by the probes-
377 based interface. */
378 struct so_list *solib_list;
6c95b8df 379};
1a816a87 380
6c95b8df
PA
381/* Per-program-space data key. */
382static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 383
f9e14852
GB
384/* Free the probes table. */
385
386static void
387free_probes_table (struct svr4_info *info)
388{
389 if (info->probes_table == NULL)
390 return;
391
392 htab_delete (info->probes_table);
393 info->probes_table = NULL;
394}
395
396/* Free the solib list. */
397
398static void
399free_solib_list (struct svr4_info *info)
400{
401 svr4_free_library_list (&info->solib_list);
402 info->solib_list = NULL;
403}
404
6c95b8df
PA
405static void
406svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 407{
487ad57c 408 struct svr4_info *info = arg;
f9e14852
GB
409
410 free_probes_table (info);
411 free_solib_list (info);
412
6c95b8df 413 xfree (info);
1a816a87
PA
414}
415
6c95b8df
PA
416/* Get the current svr4 data. If none is found yet, add it now. This
417 function always returns a valid object. */
34439770 418
6c95b8df
PA
419static struct svr4_info *
420get_svr4_info (void)
1a816a87 421{
6c95b8df 422 struct svr4_info *info;
1a816a87 423
6c95b8df
PA
424 info = program_space_data (current_program_space, solib_svr4_pspace_data);
425 if (info != NULL)
426 return info;
34439770 427
41bf6aca 428 info = XCNEW (struct svr4_info);
6c95b8df
PA
429 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
430 return info;
1a816a87 431}
93a57060 432
13437d4b
KB
433/* Local function prototypes */
434
bc043ef3 435static int match_main (const char *);
13437d4b 436
97ec2c2f
UW
437/* Read program header TYPE from inferior memory. The header is found
438 by scanning the OS auxillary vector.
439
09919ac2
JK
440 If TYPE == -1, return the program headers instead of the contents of
441 one program header.
442
97ec2c2f
UW
443 Return a pointer to allocated memory holding the program header contents,
444 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
445 size of those contents is returned to P_SECT_SIZE. Likewise, the target
446 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
447
448static gdb_byte *
449read_program_header (int type, int *p_sect_size, int *p_arch_size)
450{
f5656ead 451 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 452 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
453 int arch_size, sect_size;
454 CORE_ADDR sect_addr;
455 gdb_byte *buf;
43136979 456 int pt_phdr_p = 0;
97ec2c2f
UW
457
458 /* Get required auxv elements from target. */
459 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
460 return 0;
461 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
462 return 0;
463 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
464 return 0;
465 if (!at_phdr || !at_phnum)
466 return 0;
467
468 /* Determine ELF architecture type. */
469 if (at_phent == sizeof (Elf32_External_Phdr))
470 arch_size = 32;
471 else if (at_phent == sizeof (Elf64_External_Phdr))
472 arch_size = 64;
473 else
474 return 0;
475
09919ac2
JK
476 /* Find the requested segment. */
477 if (type == -1)
478 {
479 sect_addr = at_phdr;
480 sect_size = at_phent * at_phnum;
481 }
482 else if (arch_size == 32)
97ec2c2f
UW
483 {
484 Elf32_External_Phdr phdr;
485 int i;
486
487 /* Search for requested PHDR. */
488 for (i = 0; i < at_phnum; i++)
489 {
43136979
AR
490 int p_type;
491
97ec2c2f
UW
492 if (target_read_memory (at_phdr + i * sizeof (phdr),
493 (gdb_byte *)&phdr, sizeof (phdr)))
494 return 0;
495
43136979
AR
496 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
497 4, byte_order);
498
499 if (p_type == PT_PHDR)
500 {
501 pt_phdr_p = 1;
502 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
503 4, byte_order);
504 }
505
506 if (p_type == type)
97ec2c2f
UW
507 break;
508 }
509
510 if (i == at_phnum)
511 return 0;
512
513 /* Retrieve address and size. */
e17a4113
UW
514 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
515 4, byte_order);
516 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
517 4, byte_order);
97ec2c2f
UW
518 }
519 else
520 {
521 Elf64_External_Phdr phdr;
522 int i;
523
524 /* Search for requested PHDR. */
525 for (i = 0; i < at_phnum; i++)
526 {
43136979
AR
527 int p_type;
528
97ec2c2f
UW
529 if (target_read_memory (at_phdr + i * sizeof (phdr),
530 (gdb_byte *)&phdr, sizeof (phdr)))
531 return 0;
532
43136979
AR
533 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
534 4, byte_order);
535
536 if (p_type == PT_PHDR)
537 {
538 pt_phdr_p = 1;
539 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
540 8, byte_order);
541 }
542
543 if (p_type == type)
97ec2c2f
UW
544 break;
545 }
546
547 if (i == at_phnum)
548 return 0;
549
550 /* Retrieve address and size. */
e17a4113
UW
551 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
552 8, byte_order);
553 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
554 8, byte_order);
97ec2c2f
UW
555 }
556
43136979
AR
557 /* PT_PHDR is optional, but we really need it
558 for PIE to make this work in general. */
559
560 if (pt_phdr_p)
561 {
562 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
563 Relocation offset is the difference between the two. */
564 sect_addr = sect_addr + (at_phdr - pt_phdr);
565 }
566
97ec2c2f
UW
567 /* Read in requested program header. */
568 buf = xmalloc (sect_size);
569 if (target_read_memory (sect_addr, buf, sect_size))
570 {
571 xfree (buf);
572 return NULL;
573 }
574
575 if (p_arch_size)
576 *p_arch_size = arch_size;
577 if (p_sect_size)
578 *p_sect_size = sect_size;
579
580 return buf;
581}
582
583
584/* Return program interpreter string. */
001f13d8 585static char *
97ec2c2f
UW
586find_program_interpreter (void)
587{
588 gdb_byte *buf = NULL;
589
590 /* If we have an exec_bfd, use its section table. */
591 if (exec_bfd
592 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
593 {
594 struct bfd_section *interp_sect;
595
596 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
597 if (interp_sect != NULL)
598 {
97ec2c2f
UW
599 int sect_size = bfd_section_size (exec_bfd, interp_sect);
600
601 buf = xmalloc (sect_size);
602 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
603 }
604 }
605
606 /* If we didn't find it, use the target auxillary vector. */
607 if (!buf)
608 buf = read_program_header (PT_INTERP, NULL, NULL);
609
001f13d8 610 return (char *) buf;
97ec2c2f
UW
611}
612
613
b6d7a4bf
SM
614/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
615 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
616
617static int
b6d7a4bf 618scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr)
3a40aaa0
UW
619{
620 int arch_size, step, sect_size;
b6d7a4bf 621 long current_dyntag;
b381ea14 622 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 623 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
624 Elf32_External_Dyn *x_dynp_32;
625 Elf64_External_Dyn *x_dynp_64;
626 struct bfd_section *sect;
61f0d762 627 struct target_section *target_section;
3a40aaa0
UW
628
629 if (abfd == NULL)
630 return 0;
0763ab81
PA
631
632 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
633 return 0;
634
3a40aaa0
UW
635 arch_size = bfd_get_arch_size (abfd);
636 if (arch_size == -1)
0763ab81 637 return 0;
3a40aaa0
UW
638
639 /* Find the start address of the .dynamic section. */
640 sect = bfd_get_section_by_name (abfd, ".dynamic");
641 if (sect == NULL)
642 return 0;
61f0d762
JK
643
644 for (target_section = current_target_sections->sections;
645 target_section < current_target_sections->sections_end;
646 target_section++)
647 if (sect == target_section->the_bfd_section)
648 break;
b381ea14
JK
649 if (target_section < current_target_sections->sections_end)
650 dyn_addr = target_section->addr;
651 else
652 {
653 /* ABFD may come from OBJFILE acting only as a symbol file without being
654 loaded into the target (see add_symbol_file_command). This case is
655 such fallback to the file VMA address without the possibility of
656 having the section relocated to its actual in-memory address. */
657
658 dyn_addr = bfd_section_vma (abfd, sect);
659 }
3a40aaa0 660
65728c26
DJ
661 /* Read in .dynamic from the BFD. We will get the actual value
662 from memory later. */
3a40aaa0 663 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
664 buf = bufstart = alloca (sect_size);
665 if (!bfd_get_section_contents (abfd, sect,
666 buf, 0, sect_size))
667 return 0;
3a40aaa0
UW
668
669 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
670 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
671 : sizeof (Elf64_External_Dyn);
672 for (bufend = buf + sect_size;
673 buf < bufend;
674 buf += step)
675 {
676 if (arch_size == 32)
677 {
678 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 679 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
680 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
681 }
65728c26 682 else
3a40aaa0
UW
683 {
684 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 685 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
686 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
687 }
b6d7a4bf 688 if (current_dyntag == DT_NULL)
3a40aaa0 689 return 0;
b6d7a4bf 690 if (current_dyntag == desired_dyntag)
3a40aaa0 691 {
65728c26
DJ
692 /* If requested, try to read the runtime value of this .dynamic
693 entry. */
3a40aaa0 694 if (ptr)
65728c26 695 {
b6da22b0 696 struct type *ptr_type;
65728c26
DJ
697 gdb_byte ptr_buf[8];
698 CORE_ADDR ptr_addr;
699
f5656ead 700 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b381ea14 701 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 702 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 703 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
704 *ptr = dyn_ptr;
705 }
706 return 1;
3a40aaa0
UW
707 }
708 }
709
710 return 0;
711}
712
b6d7a4bf
SM
713/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
714 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
715 is returned and the corresponding PTR is set. */
97ec2c2f
UW
716
717static int
b6d7a4bf 718scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr)
97ec2c2f 719{
f5656ead 720 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
97ec2c2f 721 int sect_size, arch_size, step;
b6d7a4bf 722 long current_dyntag;
97ec2c2f
UW
723 CORE_ADDR dyn_ptr;
724 gdb_byte *bufend, *bufstart, *buf;
725
726 /* Read in .dynamic section. */
727 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
728 if (!buf)
729 return 0;
730
731 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
732 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
733 : sizeof (Elf64_External_Dyn);
734 for (bufend = buf + sect_size;
735 buf < bufend;
736 buf += step)
737 {
738 if (arch_size == 32)
739 {
740 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 741
b6d7a4bf 742 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
743 4, byte_order);
744 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
745 4, byte_order);
97ec2c2f
UW
746 }
747 else
748 {
749 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 750
b6d7a4bf 751 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
752 8, byte_order);
753 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
754 8, byte_order);
97ec2c2f 755 }
b6d7a4bf 756 if (current_dyntag == DT_NULL)
97ec2c2f
UW
757 break;
758
b6d7a4bf 759 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
760 {
761 if (ptr)
762 *ptr = dyn_ptr;
763
764 xfree (bufstart);
765 return 1;
766 }
767 }
768
769 xfree (bufstart);
770 return 0;
771}
772
7f86f058
PA
773/* Locate the base address of dynamic linker structs for SVR4 elf
774 targets.
13437d4b
KB
775
776 For SVR4 elf targets the address of the dynamic linker's runtime
777 structure is contained within the dynamic info section in the
778 executable file. The dynamic section is also mapped into the
779 inferior address space. Because the runtime loader fills in the
780 real address before starting the inferior, we have to read in the
781 dynamic info section from the inferior address space.
782 If there are any errors while trying to find the address, we
7f86f058 783 silently return 0, otherwise the found address is returned. */
13437d4b
KB
784
785static CORE_ADDR
786elf_locate_base (void)
787{
3b7344d5 788 struct bound_minimal_symbol msymbol;
3a40aaa0 789 CORE_ADDR dyn_ptr;
13437d4b 790
65728c26
DJ
791 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
792 instead of DT_DEBUG, although they sometimes contain an unused
793 DT_DEBUG. */
97ec2c2f
UW
794 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
795 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 796 {
f5656ead 797 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 798 gdb_byte *pbuf;
b6da22b0 799 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 800
3a40aaa0
UW
801 pbuf = alloca (pbuf_size);
802 /* DT_MIPS_RLD_MAP contains a pointer to the address
803 of the dynamic link structure. */
804 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 805 return 0;
b6da22b0 806 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
807 }
808
65728c26 809 /* Find DT_DEBUG. */
97ec2c2f
UW
810 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
811 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
812 return dyn_ptr;
813
3a40aaa0
UW
814 /* This may be a static executable. Look for the symbol
815 conventionally named _r_debug, as a last resort. */
816 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 817 if (msymbol.minsym != NULL)
77e371c0 818 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
819
820 /* DT_DEBUG entry not found. */
821 return 0;
822}
823
7f86f058 824/* Locate the base address of dynamic linker structs.
13437d4b
KB
825
826 For both the SunOS and SVR4 shared library implementations, if the
827 inferior executable has been linked dynamically, there is a single
828 address somewhere in the inferior's data space which is the key to
829 locating all of the dynamic linker's runtime structures. This
830 address is the value of the debug base symbol. The job of this
831 function is to find and return that address, or to return 0 if there
832 is no such address (the executable is statically linked for example).
833
834 For SunOS, the job is almost trivial, since the dynamic linker and
835 all of it's structures are statically linked to the executable at
836 link time. Thus the symbol for the address we are looking for has
837 already been added to the minimal symbol table for the executable's
838 objfile at the time the symbol file's symbols were read, and all we
839 have to do is look it up there. Note that we explicitly do NOT want
840 to find the copies in the shared library.
841
842 The SVR4 version is a bit more complicated because the address
843 is contained somewhere in the dynamic info section. We have to go
844 to a lot more work to discover the address of the debug base symbol.
845 Because of this complexity, we cache the value we find and return that
846 value on subsequent invocations. Note there is no copy in the
7f86f058 847 executable symbol tables. */
13437d4b
KB
848
849static CORE_ADDR
1a816a87 850locate_base (struct svr4_info *info)
13437d4b 851{
13437d4b
KB
852 /* Check to see if we have a currently valid address, and if so, avoid
853 doing all this work again and just return the cached address. If
854 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
855 section for ELF executables. There's no point in doing any of this
856 though if we don't have some link map offsets to work with. */
13437d4b 857
1a816a87 858 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 859 info->debug_base = elf_locate_base ();
1a816a87 860 return info->debug_base;
13437d4b
KB
861}
862
e4cd0d6a 863/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
864 return its address in the inferior. Return zero if the address
865 could not be determined.
13437d4b 866
e4cd0d6a
MK
867 FIXME: Perhaps we should validate the info somehow, perhaps by
868 checking r_version for a known version number, or r_state for
869 RT_CONSISTENT. */
13437d4b
KB
870
871static CORE_ADDR
1a816a87 872solib_svr4_r_map (struct svr4_info *info)
13437d4b 873{
4b188b9f 874 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 875 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104
JB
876 CORE_ADDR addr = 0;
877 volatile struct gdb_exception ex;
13437d4b 878
08597104
JB
879 TRY_CATCH (ex, RETURN_MASK_ERROR)
880 {
881 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
882 ptr_type);
883 }
7556d4a4
PA
884 if (ex.reason < 0)
885 exception_print (gdb_stderr, ex);
08597104 886 return addr;
e4cd0d6a 887}
13437d4b 888
7cd25cfc
DJ
889/* Find r_brk from the inferior's debug base. */
890
891static CORE_ADDR
1a816a87 892solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
893{
894 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 895 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 896
1a816a87
PA
897 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
898 ptr_type);
7cd25cfc
DJ
899}
900
e4cd0d6a
MK
901/* Find the link map for the dynamic linker (if it is not in the
902 normal list of loaded shared objects). */
13437d4b 903
e4cd0d6a 904static CORE_ADDR
1a816a87 905solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
906{
907 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
908 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
909 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
e4cd0d6a 910 ULONGEST version;
13437d4b 911
e4cd0d6a
MK
912 /* Check version, and return zero if `struct r_debug' doesn't have
913 the r_ldsomap member. */
1a816a87
PA
914 version
915 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 916 lmo->r_version_size, byte_order);
e4cd0d6a
MK
917 if (version < 2 || lmo->r_ldsomap_offset == -1)
918 return 0;
13437d4b 919
1a816a87 920 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 921 ptr_type);
13437d4b
KB
922}
923
de18c1d8
JM
924/* On Solaris systems with some versions of the dynamic linker,
925 ld.so's l_name pointer points to the SONAME in the string table
926 rather than into writable memory. So that GDB can find shared
927 libraries when loading a core file generated by gcore, ensure that
928 memory areas containing the l_name string are saved in the core
929 file. */
930
931static int
932svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
933{
934 struct svr4_info *info;
935 CORE_ADDR ldsomap;
fe978cb0 936 struct so_list *newobj;
de18c1d8 937 struct cleanup *old_chain;
74de0234 938 CORE_ADDR name_lm;
de18c1d8
JM
939
940 info = get_svr4_info ();
941
942 info->debug_base = 0;
943 locate_base (info);
944 if (!info->debug_base)
945 return 0;
946
947 ldsomap = solib_svr4_r_ldsomap (info);
948 if (!ldsomap)
949 return 0;
950
fe978cb0
PA
951 newobj = XCNEW (struct so_list);
952 old_chain = make_cleanup (xfree, newobj);
953 newobj->lm_info = lm_info_read (ldsomap);
954 make_cleanup (xfree, newobj->lm_info);
955 name_lm = newobj->lm_info ? newobj->lm_info->l_name : 0;
de18c1d8
JM
956 do_cleanups (old_chain);
957
74de0234 958 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
959}
960
7f86f058 961/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 962
7f86f058
PA
963 If no open symbol file, attempt to locate and open the main symbol
964 file. On SVR4 systems, this is the first link map entry. If its
965 name is here, we can open it. Useful when attaching to a process
966 without first loading its symbol file. */
13437d4b
KB
967
968static int
969open_symbol_file_object (void *from_ttyp)
970{
971 CORE_ADDR lm, l_name;
972 char *filename;
973 int errcode;
974 int from_tty = *(int *)from_ttyp;
4b188b9f 975 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 976 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 977 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 978 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 979 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 980 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
981
982 if (symfile_objfile)
9e2f0ad4 983 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
984 {
985 do_cleanups (cleanups);
986 return 0;
987 }
13437d4b 988
7cd25cfc 989 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
990 info->debug_base = 0;
991 if (locate_base (info) == 0)
3bb47e8b
TT
992 {
993 do_cleanups (cleanups);
994 return 0; /* failed somehow... */
995 }
13437d4b
KB
996
997 /* First link map member should be the executable. */
1a816a87 998 lm = solib_svr4_r_map (info);
e4cd0d6a 999 if (lm == 0)
3bb47e8b
TT
1000 {
1001 do_cleanups (cleanups);
1002 return 0; /* failed somehow... */
1003 }
13437d4b
KB
1004
1005 /* Read address of name from target memory to GDB. */
cfaefc65 1006 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 1007
cfaefc65 1008 /* Convert the address to host format. */
b6da22b0 1009 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 1010
13437d4b 1011 if (l_name == 0)
3bb47e8b
TT
1012 {
1013 do_cleanups (cleanups);
1014 return 0; /* No filename. */
1015 }
13437d4b
KB
1016
1017 /* Now fetch the filename from target memory. */
1018 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 1019 make_cleanup (xfree, filename);
13437d4b
KB
1020
1021 if (errcode)
1022 {
8a3fe4f8 1023 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 1024 safe_strerror (errcode));
3bb47e8b 1025 do_cleanups (cleanups);
13437d4b
KB
1026 return 0;
1027 }
1028
13437d4b 1029 /* Have a pathname: read the symbol file. */
1adeb98a 1030 symbol_file_add_main (filename, from_tty);
13437d4b 1031
3bb47e8b 1032 do_cleanups (cleanups);
13437d4b
KB
1033 return 1;
1034}
13437d4b 1035
2268b414
JK
1036/* Data exchange structure for the XML parser as returned by
1037 svr4_current_sos_via_xfer_libraries. */
1038
1039struct svr4_library_list
1040{
1041 struct so_list *head, **tailp;
1042
1043 /* Inferior address of struct link_map used for the main executable. It is
1044 NULL if not known. */
1045 CORE_ADDR main_lm;
1046};
1047
93f2a35e
JK
1048/* Implementation for target_so_ops.free_so. */
1049
1050static void
1051svr4_free_so (struct so_list *so)
1052{
1053 xfree (so->lm_info);
1054}
1055
0892cb63
DE
1056/* Implement target_so_ops.clear_so. */
1057
1058static void
1059svr4_clear_so (struct so_list *so)
1060{
6dcc1893
PP
1061 if (so->lm_info != NULL)
1062 so->lm_info->l_addr_p = 0;
0892cb63
DE
1063}
1064
93f2a35e
JK
1065/* Free so_list built so far (called via cleanup). */
1066
1067static void
1068svr4_free_library_list (void *p_list)
1069{
1070 struct so_list *list = *(struct so_list **) p_list;
1071
1072 while (list != NULL)
1073 {
1074 struct so_list *next = list->next;
1075
3756ef7e 1076 free_so (list);
93f2a35e
JK
1077 list = next;
1078 }
1079}
1080
f9e14852
GB
1081/* Copy library list. */
1082
1083static struct so_list *
1084svr4_copy_library_list (struct so_list *src)
1085{
1086 struct so_list *dst = NULL;
1087 struct so_list **link = &dst;
1088
1089 while (src != NULL)
1090 {
fe978cb0 1091 struct so_list *newobj;
f9e14852 1092
fe978cb0
PA
1093 newobj = xmalloc (sizeof (struct so_list));
1094 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1095
fe978cb0
PA
1096 newobj->lm_info = xmalloc (sizeof (struct lm_info));
1097 memcpy (newobj->lm_info, src->lm_info, sizeof (struct lm_info));
f9e14852 1098
fe978cb0
PA
1099 newobj->next = NULL;
1100 *link = newobj;
1101 link = &newobj->next;
f9e14852
GB
1102
1103 src = src->next;
1104 }
1105
1106 return dst;
1107}
1108
2268b414
JK
1109#ifdef HAVE_LIBEXPAT
1110
1111#include "xml-support.h"
1112
1113/* Handle the start of a <library> element. Note: new elements are added
1114 at the tail of the list, keeping the list in order. */
1115
1116static void
1117library_list_start_library (struct gdb_xml_parser *parser,
1118 const struct gdb_xml_element *element,
1119 void *user_data, VEC(gdb_xml_value_s) *attributes)
1120{
1121 struct svr4_library_list *list = user_data;
1122 const char *name = xml_find_attribute (attributes, "name")->value;
1123 ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value;
1124 ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value;
1125 ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value;
1126 struct so_list *new_elem;
1127
41bf6aca
TT
1128 new_elem = XCNEW (struct so_list);
1129 new_elem->lm_info = XCNEW (struct lm_info);
2268b414
JK
1130 new_elem->lm_info->lm_addr = *lmp;
1131 new_elem->lm_info->l_addr_inferior = *l_addrp;
1132 new_elem->lm_info->l_ld = *l_ldp;
1133
1134 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1135 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1136 strcpy (new_elem->so_original_name, new_elem->so_name);
1137
1138 *list->tailp = new_elem;
1139 list->tailp = &new_elem->next;
1140}
1141
1142/* Handle the start of a <library-list-svr4> element. */
1143
1144static void
1145svr4_library_list_start_list (struct gdb_xml_parser *parser,
1146 const struct gdb_xml_element *element,
1147 void *user_data, VEC(gdb_xml_value_s) *attributes)
1148{
1149 struct svr4_library_list *list = user_data;
1150 const char *version = xml_find_attribute (attributes, "version")->value;
1151 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1152
1153 if (strcmp (version, "1.0") != 0)
1154 gdb_xml_error (parser,
1155 _("SVR4 Library list has unsupported version \"%s\""),
1156 version);
1157
1158 if (main_lm)
1159 list->main_lm = *(ULONGEST *) main_lm->value;
1160}
1161
1162/* The allowed elements and attributes for an XML library list.
1163 The root element is a <library-list>. */
1164
1165static const struct gdb_xml_attribute svr4_library_attributes[] =
1166{
1167 { "name", GDB_XML_AF_NONE, NULL, NULL },
1168 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1169 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1170 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1171 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1172};
1173
1174static const struct gdb_xml_element svr4_library_list_children[] =
1175{
1176 {
1177 "library", svr4_library_attributes, NULL,
1178 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1179 library_list_start_library, NULL
1180 },
1181 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1182};
1183
1184static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1185{
1186 { "version", GDB_XML_AF_NONE, NULL, NULL },
1187 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1188 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1189};
1190
1191static const struct gdb_xml_element svr4_library_list_elements[] =
1192{
1193 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1194 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1195 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1196};
1197
2268b414
JK
1198/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1199
1200 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1201 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1202 empty, caller is responsible for freeing all its entries. */
1203
1204static int
1205svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1206{
1207 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1208 &list->head);
1209
1210 memset (list, 0, sizeof (*list));
1211 list->tailp = &list->head;
2eca4a8d 1212 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1213 svr4_library_list_elements, document, list) == 0)
1214 {
1215 /* Parsed successfully, keep the result. */
1216 discard_cleanups (back_to);
1217 return 1;
1218 }
1219
1220 do_cleanups (back_to);
1221 return 0;
1222}
1223
f9e14852 1224/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1225
1226 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1227 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1228 empty, caller is responsible for freeing all its entries.
1229
1230 Note that ANNEX must be NULL if the remote does not explicitly allow
1231 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1232 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1233
1234static int
f9e14852
GB
1235svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1236 const char *annex)
2268b414
JK
1237{
1238 char *svr4_library_document;
1239 int result;
1240 struct cleanup *back_to;
1241
f9e14852
GB
1242 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1243
2268b414
JK
1244 /* Fetch the list of shared libraries. */
1245 svr4_library_document = target_read_stralloc (&current_target,
1246 TARGET_OBJECT_LIBRARIES_SVR4,
f9e14852 1247 annex);
2268b414
JK
1248 if (svr4_library_document == NULL)
1249 return 0;
1250
1251 back_to = make_cleanup (xfree, svr4_library_document);
1252 result = svr4_parse_libraries (svr4_library_document, list);
1253 do_cleanups (back_to);
1254
1255 return result;
1256}
1257
1258#else
1259
1260static int
f9e14852
GB
1261svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1262 const char *annex)
2268b414
JK
1263{
1264 return 0;
1265}
1266
1267#endif
1268
34439770
DJ
1269/* If no shared library information is available from the dynamic
1270 linker, build a fallback list from other sources. */
1271
1272static struct so_list *
1273svr4_default_sos (void)
1274{
6c95b8df 1275 struct svr4_info *info = get_svr4_info ();
fe978cb0 1276 struct so_list *newobj;
1a816a87 1277
8e5c319d
JK
1278 if (!info->debug_loader_offset_p)
1279 return NULL;
34439770 1280
fe978cb0 1281 newobj = XCNEW (struct so_list);
34439770 1282
fe978cb0 1283 newobj->lm_info = xzalloc (sizeof (struct lm_info));
34439770 1284
3957565a 1285 /* Nothing will ever check the other fields if we set l_addr_p. */
fe978cb0
PA
1286 newobj->lm_info->l_addr = info->debug_loader_offset;
1287 newobj->lm_info->l_addr_p = 1;
34439770 1288
fe978cb0
PA
1289 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1290 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1291 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1292
fe978cb0 1293 return newobj;
34439770
DJ
1294}
1295
f9e14852
GB
1296/* Read the whole inferior libraries chain starting at address LM.
1297 Expect the first entry in the chain's previous entry to be PREV_LM.
1298 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1299 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1300 to it. Returns nonzero upon success. If zero is returned the
1301 entries stored to LINK_PTR_PTR are still valid although they may
1302 represent only part of the inferior library list. */
13437d4b 1303
f9e14852
GB
1304static int
1305svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1306 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1307{
c725e7b6 1308 CORE_ADDR first_l_name = 0;
f9e14852 1309 CORE_ADDR next_lm;
13437d4b 1310
cb08cc53 1311 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1312 {
fe978cb0 1313 struct so_list *newobj;
cb08cc53
JK
1314 struct cleanup *old_chain;
1315 int errcode;
1316 char *buffer;
13437d4b 1317
fe978cb0
PA
1318 newobj = XCNEW (struct so_list);
1319 old_chain = make_cleanup_free_so (newobj);
13437d4b 1320
fe978cb0
PA
1321 newobj->lm_info = lm_info_read (lm);
1322 if (newobj->lm_info == NULL)
3957565a
JK
1323 {
1324 do_cleanups (old_chain);
f9e14852 1325 return 0;
3957565a 1326 }
13437d4b 1327
fe978cb0 1328 next_lm = newobj->lm_info->l_next;
492928e4 1329
fe978cb0 1330 if (newobj->lm_info->l_prev != prev_lm)
492928e4 1331 {
2268b414 1332 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1333 paddress (target_gdbarch (), prev_lm),
fe978cb0 1334 paddress (target_gdbarch (), newobj->lm_info->l_prev));
cb08cc53 1335 do_cleanups (old_chain);
f9e14852 1336 return 0;
492928e4 1337 }
13437d4b
KB
1338
1339 /* For SVR4 versions, the first entry in the link map is for the
1340 inferior executable, so we must ignore it. For some versions of
1341 SVR4, it has no name. For others (Solaris 2.3 for example), it
1342 does have a name, so we can no longer use a missing name to
c378eb4e 1343 decide when to ignore it. */
fe978cb0 1344 if (ignore_first && newobj->lm_info->l_prev == 0)
93a57060 1345 {
cb08cc53
JK
1346 struct svr4_info *info = get_svr4_info ();
1347
fe978cb0
PA
1348 first_l_name = newobj->lm_info->l_name;
1349 info->main_lm_addr = newobj->lm_info->lm_addr;
cb08cc53
JK
1350 do_cleanups (old_chain);
1351 continue;
93a57060 1352 }
13437d4b 1353
cb08cc53 1354 /* Extract this shared object's name. */
fe978cb0 1355 target_read_string (newobj->lm_info->l_name, &buffer,
cb08cc53
JK
1356 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1357 if (errcode != 0)
1358 {
7d760051
UW
1359 /* If this entry's l_name address matches that of the
1360 inferior executable, then this is not a normal shared
1361 object, but (most likely) a vDSO. In this case, silently
1362 skip it; otherwise emit a warning. */
fe978cb0 1363 if (first_l_name == 0 || newobj->lm_info->l_name != first_l_name)
7d760051
UW
1364 warning (_("Can't read pathname for load map: %s."),
1365 safe_strerror (errcode));
cb08cc53
JK
1366 do_cleanups (old_chain);
1367 continue;
13437d4b
KB
1368 }
1369
fe978cb0
PA
1370 strncpy (newobj->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1371 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1372 strcpy (newobj->so_original_name, newobj->so_name);
cb08cc53 1373 xfree (buffer);
492928e4 1374
cb08cc53
JK
1375 /* If this entry has no name, or its name matches the name
1376 for the main executable, don't include it in the list. */
fe978cb0 1377 if (! newobj->so_name[0] || match_main (newobj->so_name))
492928e4 1378 {
cb08cc53
JK
1379 do_cleanups (old_chain);
1380 continue;
492928e4 1381 }
e4cd0d6a 1382
13437d4b 1383 discard_cleanups (old_chain);
fe978cb0
PA
1384 newobj->next = 0;
1385 **link_ptr_ptr = newobj;
1386 *link_ptr_ptr = &newobj->next;
13437d4b 1387 }
f9e14852
GB
1388
1389 return 1;
cb08cc53
JK
1390}
1391
f9e14852
GB
1392/* Read the full list of currently loaded shared objects directly
1393 from the inferior, without referring to any libraries read and
1394 stored by the probes interface. Handle special cases relating
1395 to the first elements of the list. */
cb08cc53
JK
1396
1397static struct so_list *
f9e14852 1398svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1399{
1400 CORE_ADDR lm;
1401 struct so_list *head = NULL;
1402 struct so_list **link_ptr = &head;
cb08cc53
JK
1403 struct cleanup *back_to;
1404 int ignore_first;
2268b414
JK
1405 struct svr4_library_list library_list;
1406
0c5bf5a9
JK
1407 /* Fall back to manual examination of the target if the packet is not
1408 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1409 tests a case where gdbserver cannot find the shared libraries list while
1410 GDB itself is able to find it via SYMFILE_OBJFILE.
1411
1412 Unfortunately statically linked inferiors will also fall back through this
1413 suboptimal code path. */
1414
f9e14852
GB
1415 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1416 NULL);
1417 if (info->using_xfer)
2268b414
JK
1418 {
1419 if (library_list.main_lm)
f9e14852 1420 info->main_lm_addr = library_list.main_lm;
2268b414
JK
1421
1422 return library_list.head ? library_list.head : svr4_default_sos ();
1423 }
cb08cc53 1424
cb08cc53
JK
1425 /* Always locate the debug struct, in case it has moved. */
1426 info->debug_base = 0;
1427 locate_base (info);
1428
1429 /* If we can't find the dynamic linker's base structure, this
1430 must not be a dynamically linked executable. Hmm. */
1431 if (! info->debug_base)
1432 return svr4_default_sos ();
1433
1434 /* Assume that everything is a library if the dynamic loader was loaded
1435 late by a static executable. */
1436 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1437 ignore_first = 0;
1438 else
1439 ignore_first = 1;
1440
1441 back_to = make_cleanup (svr4_free_library_list, &head);
1442
1443 /* Walk the inferior's link map list, and build our list of
1444 `struct so_list' nodes. */
1445 lm = solib_svr4_r_map (info);
1446 if (lm)
f9e14852 1447 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1448
1449 /* On Solaris, the dynamic linker is not in the normal list of
1450 shared objects, so make sure we pick it up too. Having
1451 symbol information for the dynamic linker is quite crucial
1452 for skipping dynamic linker resolver code. */
1453 lm = solib_svr4_r_ldsomap (info);
1454 if (lm)
f9e14852 1455 svr4_read_so_list (lm, 0, &link_ptr, 0);
cb08cc53
JK
1456
1457 discard_cleanups (back_to);
13437d4b 1458
34439770
DJ
1459 if (head == NULL)
1460 return svr4_default_sos ();
1461
13437d4b
KB
1462 return head;
1463}
1464
8b9a549d
PA
1465/* Implement the main part of the "current_sos" target_so_ops
1466 method. */
f9e14852
GB
1467
1468static struct so_list *
8b9a549d 1469svr4_current_sos_1 (void)
f9e14852
GB
1470{
1471 struct svr4_info *info = get_svr4_info ();
1472
1473 /* If the solib list has been read and stored by the probes
1474 interface then we return a copy of the stored list. */
1475 if (info->solib_list != NULL)
1476 return svr4_copy_library_list (info->solib_list);
1477
1478 /* Otherwise obtain the solib list directly from the inferior. */
1479 return svr4_current_sos_direct (info);
1480}
1481
8b9a549d
PA
1482/* Implement the "current_sos" target_so_ops method. */
1483
1484static struct so_list *
1485svr4_current_sos (void)
1486{
1487 struct so_list *so_head = svr4_current_sos_1 ();
1488 struct mem_range vsyscall_range;
1489
1490 /* Filter out the vDSO module, if present. Its symbol file would
1491 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1492 managed by symfile-mem.c:add_vsyscall_page. */
1493 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1494 && vsyscall_range.length != 0)
1495 {
1496 struct so_list **sop;
1497
1498 sop = &so_head;
1499 while (*sop != NULL)
1500 {
1501 struct so_list *so = *sop;
1502
1503 /* We can't simply match the vDSO by starting address alone,
1504 because lm_info->l_addr_inferior (and also l_addr) do not
1505 necessarily represent the real starting address of the
1506 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1507 field (the ".dynamic" section of the shared object)
1508 always points at the absolute/resolved address though.
1509 So check whether that address is inside the vDSO's
1510 mapping instead.
1511
1512 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1513 0-based ELF, and we see:
1514
1515 (gdb) info auxv
1516 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1517 (gdb) p/x *_r_debug.r_map.l_next
1518 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1519
1520 And on Linux 2.6.32 (x86_64) we see:
1521
1522 (gdb) info auxv
1523 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1524 (gdb) p/x *_r_debug.r_map.l_next
1525 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1526
1527 Dumping that vDSO shows:
1528
1529 (gdb) info proc mappings
1530 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1531 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1532 # readelf -Wa vdso.bin
1533 [...]
1534 Entry point address: 0xffffffffff700700
1535 [...]
1536 Section Headers:
1537 [Nr] Name Type Address Off Size
1538 [ 0] NULL 0000000000000000 000000 000000
1539 [ 1] .hash HASH ffffffffff700120 000120 000038
1540 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1541 [...]
1542 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1543 */
1544 if (address_in_mem_range (so->lm_info->l_ld, &vsyscall_range))
1545 {
1546 *sop = so->next;
1547 free_so (so);
1548 break;
1549 }
1550
1551 sop = &so->next;
1552 }
1553 }
1554
1555 return so_head;
1556}
1557
93a57060 1558/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1559
1560CORE_ADDR
1561svr4_fetch_objfile_link_map (struct objfile *objfile)
1562{
93a57060 1563 struct so_list *so;
6c95b8df 1564 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1565
93a57060 1566 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1567 if (info->main_lm_addr == 0)
93a57060 1568 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1569
93a57060
DJ
1570 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1571 if (objfile == symfile_objfile)
1a816a87 1572 return info->main_lm_addr;
93a57060
DJ
1573
1574 /* The other link map addresses may be found by examining the list
1575 of shared libraries. */
1576 for (so = master_so_list (); so; so = so->next)
1577 if (so->objfile == objfile)
1578 return so->lm_info->lm_addr;
1579
1580 /* Not found! */
bc4a16ae
EZ
1581 return 0;
1582}
13437d4b
KB
1583
1584/* On some systems, the only way to recognize the link map entry for
1585 the main executable file is by looking at its name. Return
1586 non-zero iff SONAME matches one of the known main executable names. */
1587
1588static int
bc043ef3 1589match_main (const char *soname)
13437d4b 1590{
bc043ef3 1591 const char * const *mainp;
13437d4b
KB
1592
1593 for (mainp = main_name_list; *mainp != NULL; mainp++)
1594 {
1595 if (strcmp (soname, *mainp) == 0)
1596 return (1);
1597 }
1598
1599 return (0);
1600}
1601
13437d4b
KB
1602/* Return 1 if PC lies in the dynamic symbol resolution code of the
1603 SVR4 run time loader. */
13437d4b 1604
7d522c90 1605int
d7fa2ae2 1606svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1607{
6c95b8df
PA
1608 struct svr4_info *info = get_svr4_info ();
1609
1610 return ((pc >= info->interp_text_sect_low
1611 && pc < info->interp_text_sect_high)
1612 || (pc >= info->interp_plt_sect_low
1613 && pc < info->interp_plt_sect_high)
3e5d3a5a 1614 || in_plt_section (pc)
0875794a 1615 || in_gnu_ifunc_stub (pc));
13437d4b 1616}
13437d4b 1617
2f4950cd
AC
1618/* Given an executable's ABFD and target, compute the entry-point
1619 address. */
1620
1621static CORE_ADDR
1622exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1623{
8c2b9656
YQ
1624 CORE_ADDR addr;
1625
2f4950cd
AC
1626 /* KevinB wrote ... for most targets, the address returned by
1627 bfd_get_start_address() is the entry point for the start
1628 function. But, for some targets, bfd_get_start_address() returns
1629 the address of a function descriptor from which the entry point
1630 address may be extracted. This address is extracted by
1631 gdbarch_convert_from_func_ptr_addr(). The method
1632 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1633 function for targets which don't use function descriptors. */
8c2b9656 1634 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1635 bfd_get_start_address (abfd),
1636 targ);
8c2b9656 1637 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1638}
13437d4b 1639
f9e14852
GB
1640/* A probe and its associated action. */
1641
1642struct probe_and_action
1643{
1644 /* The probe. */
1645 struct probe *probe;
1646
729662a5
TT
1647 /* The relocated address of the probe. */
1648 CORE_ADDR address;
1649
f9e14852
GB
1650 /* The action. */
1651 enum probe_action action;
1652};
1653
1654/* Returns a hash code for the probe_and_action referenced by p. */
1655
1656static hashval_t
1657hash_probe_and_action (const void *p)
1658{
1659 const struct probe_and_action *pa = p;
1660
729662a5 1661 return (hashval_t) pa->address;
f9e14852
GB
1662}
1663
1664/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1665 are equal. */
1666
1667static int
1668equal_probe_and_action (const void *p1, const void *p2)
1669{
1670 const struct probe_and_action *pa1 = p1;
1671 const struct probe_and_action *pa2 = p2;
1672
729662a5 1673 return pa1->address == pa2->address;
f9e14852
GB
1674}
1675
1676/* Register a solib event probe and its associated action in the
1677 probes table. */
1678
1679static void
729662a5
TT
1680register_solib_event_probe (struct probe *probe, CORE_ADDR address,
1681 enum probe_action action)
f9e14852
GB
1682{
1683 struct svr4_info *info = get_svr4_info ();
1684 struct probe_and_action lookup, *pa;
1685 void **slot;
1686
1687 /* Create the probes table, if necessary. */
1688 if (info->probes_table == NULL)
1689 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1690 equal_probe_and_action,
1691 xfree, xcalloc, xfree);
1692
1693 lookup.probe = probe;
729662a5 1694 lookup.address = address;
f9e14852
GB
1695 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1696 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1697
1698 pa = XCNEW (struct probe_and_action);
1699 pa->probe = probe;
729662a5 1700 pa->address = address;
f9e14852
GB
1701 pa->action = action;
1702
1703 *slot = pa;
1704}
1705
1706/* Get the solib event probe at the specified location, and the
1707 action associated with it. Returns NULL if no solib event probe
1708 was found. */
1709
1710static struct probe_and_action *
1711solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1712{
f9e14852
GB
1713 struct probe_and_action lookup;
1714 void **slot;
1715
729662a5 1716 lookup.address = address;
f9e14852
GB
1717 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1718
1719 if (slot == NULL)
1720 return NULL;
1721
1722 return (struct probe_and_action *) *slot;
1723}
1724
1725/* Decide what action to take when the specified solib event probe is
1726 hit. */
1727
1728static enum probe_action
1729solib_event_probe_action (struct probe_and_action *pa)
1730{
1731 enum probe_action action;
1732 unsigned probe_argc;
08a6411c 1733 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1734
1735 action = pa->action;
1736 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1737 return action;
1738
1739 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1740
1741 /* Check that an appropriate number of arguments has been supplied.
1742 We expect:
1743 arg0: Lmid_t lmid (mandatory)
1744 arg1: struct r_debug *debug_base (mandatory)
1745 arg2: struct link_map *new (optional, for incremental updates) */
08a6411c 1746 probe_argc = get_probe_argument_count (pa->probe, frame);
f9e14852
GB
1747 if (probe_argc == 2)
1748 action = FULL_RELOAD;
1749 else if (probe_argc < 2)
1750 action = PROBES_INTERFACE_FAILED;
1751
1752 return action;
1753}
1754
1755/* Populate the shared object list by reading the entire list of
1756 shared objects from the inferior. Handle special cases relating
1757 to the first elements of the list. Returns nonzero on success. */
1758
1759static int
1760solist_update_full (struct svr4_info *info)
1761{
1762 free_solib_list (info);
1763 info->solib_list = svr4_current_sos_direct (info);
1764
1765 return 1;
1766}
1767
1768/* Update the shared object list starting from the link-map entry
1769 passed by the linker in the probe's third argument. Returns
1770 nonzero if the list was successfully updated, or zero to indicate
1771 failure. */
1772
1773static int
1774solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1775{
1776 struct so_list *tail;
1777 CORE_ADDR prev_lm;
1778
1779 /* svr4_current_sos_direct contains logic to handle a number of
1780 special cases relating to the first elements of the list. To
1781 avoid duplicating this logic we defer to solist_update_full
1782 if the list is empty. */
1783 if (info->solib_list == NULL)
1784 return 0;
1785
1786 /* Fall back to a full update if we are using a remote target
1787 that does not support incremental transfers. */
1788 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1789 return 0;
1790
1791 /* Walk to the end of the list. */
1792 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1793 /* Nothing. */;
1794 prev_lm = tail->lm_info->lm_addr;
1795
1796 /* Read the new objects. */
1797 if (info->using_xfer)
1798 {
1799 struct svr4_library_list library_list;
1800 char annex[64];
1801
1802 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1803 phex_nz (lm, sizeof (lm)),
1804 phex_nz (prev_lm, sizeof (prev_lm)));
1805 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1806 return 0;
1807
1808 tail->next = library_list.head;
1809 }
1810 else
1811 {
1812 struct so_list **link = &tail->next;
1813
1814 /* IGNORE_FIRST may safely be set to zero here because the
1815 above check and deferral to solist_update_full ensures
1816 that this call to svr4_read_so_list will never see the
1817 first element. */
1818 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1819 return 0;
1820 }
1821
1822 return 1;
1823}
1824
1825/* Disable the probes-based linker interface and revert to the
1826 original interface. We don't reset the breakpoints as the
1827 ones set up for the probes-based interface are adequate. */
1828
1829static void
1830disable_probes_interface_cleanup (void *arg)
1831{
1832 struct svr4_info *info = get_svr4_info ();
1833
1834 warning (_("Probes-based dynamic linker interface failed.\n"
1835 "Reverting to original interface.\n"));
1836
1837 free_probes_table (info);
1838 free_solib_list (info);
1839}
1840
1841/* Update the solib list as appropriate when using the
1842 probes-based linker interface. Do nothing if using the
1843 standard interface. */
1844
1845static void
1846svr4_handle_solib_event (void)
1847{
1848 struct svr4_info *info = get_svr4_info ();
1849 struct probe_and_action *pa;
1850 enum probe_action action;
1851 struct cleanup *old_chain, *usm_chain;
1852 struct value *val;
1853 CORE_ADDR pc, debug_base, lm = 0;
1854 int is_initial_ns;
08a6411c 1855 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1856
1857 /* Do nothing if not using the probes interface. */
1858 if (info->probes_table == NULL)
1859 return;
1860
1861 /* If anything goes wrong we revert to the original linker
1862 interface. */
1863 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1864
1865 pc = regcache_read_pc (get_current_regcache ());
1866 pa = solib_event_probe_at (info, pc);
1867 if (pa == NULL)
1868 {
1869 do_cleanups (old_chain);
1870 return;
1871 }
1872
1873 action = solib_event_probe_action (pa);
1874 if (action == PROBES_INTERFACE_FAILED)
1875 {
1876 do_cleanups (old_chain);
1877 return;
1878 }
1879
1880 if (action == DO_NOTHING)
1881 {
1882 discard_cleanups (old_chain);
1883 return;
1884 }
1885
1886 /* evaluate_probe_argument looks up symbols in the dynamic linker
1887 using find_pc_section. find_pc_section is accelerated by a cache
1888 called the section map. The section map is invalidated every
1889 time a shared library is loaded or unloaded, and if the inferior
1890 is generating a lot of shared library events then the section map
1891 will be updated every time svr4_handle_solib_event is called.
1892 We called find_pc_section in svr4_create_solib_event_breakpoints,
1893 so we can guarantee that the dynamic linker's sections are in the
1894 section map. We can therefore inhibit section map updates across
1895 these calls to evaluate_probe_argument and save a lot of time. */
1896 inhibit_section_map_updates (current_program_space);
1897 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1898 current_program_space);
1899
08a6411c 1900 val = evaluate_probe_argument (pa->probe, 1, frame);
f9e14852
GB
1901 if (val == NULL)
1902 {
1903 do_cleanups (old_chain);
1904 return;
1905 }
1906
1907 debug_base = value_as_address (val);
1908 if (debug_base == 0)
1909 {
1910 do_cleanups (old_chain);
1911 return;
1912 }
1913
1914 /* Always locate the debug struct, in case it moved. */
1915 info->debug_base = 0;
1916 if (locate_base (info) == 0)
1917 {
1918 do_cleanups (old_chain);
1919 return;
1920 }
1921
1922 /* GDB does not currently support libraries loaded via dlmopen
1923 into namespaces other than the initial one. We must ignore
1924 any namespace other than the initial namespace here until
1925 support for this is added to GDB. */
1926 if (debug_base != info->debug_base)
1927 action = DO_NOTHING;
1928
1929 if (action == UPDATE_OR_RELOAD)
1930 {
08a6411c 1931 val = evaluate_probe_argument (pa->probe, 2, frame);
f9e14852
GB
1932 if (val != NULL)
1933 lm = value_as_address (val);
1934
1935 if (lm == 0)
1936 action = FULL_RELOAD;
1937 }
1938
1939 /* Resume section map updates. */
1940 do_cleanups (usm_chain);
1941
1942 if (action == UPDATE_OR_RELOAD)
1943 {
1944 if (!solist_update_incremental (info, lm))
1945 action = FULL_RELOAD;
1946 }
1947
1948 if (action == FULL_RELOAD)
1949 {
1950 if (!solist_update_full (info))
1951 {
1952 do_cleanups (old_chain);
1953 return;
1954 }
1955 }
1956
1957 discard_cleanups (old_chain);
1958}
1959
1960/* Helper function for svr4_update_solib_event_breakpoints. */
1961
1962static int
1963svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1964{
1965 struct bp_location *loc;
1966
1967 if (b->type != bp_shlib_event)
1968 {
1969 /* Continue iterating. */
1970 return 0;
1971 }
1972
1973 for (loc = b->loc; loc != NULL; loc = loc->next)
1974 {
1975 struct svr4_info *info;
1976 struct probe_and_action *pa;
1977
1978 info = program_space_data (loc->pspace, solib_svr4_pspace_data);
1979 if (info == NULL || info->probes_table == NULL)
1980 continue;
1981
1982 pa = solib_event_probe_at (info, loc->address);
1983 if (pa == NULL)
1984 continue;
1985
1986 if (pa->action == DO_NOTHING)
1987 {
1988 if (b->enable_state == bp_disabled && stop_on_solib_events)
1989 enable_breakpoint (b);
1990 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
1991 disable_breakpoint (b);
1992 }
1993
1994 break;
1995 }
1996
1997 /* Continue iterating. */
1998 return 0;
1999}
2000
2001/* Enable or disable optional solib event breakpoints as appropriate.
2002 Called whenever stop_on_solib_events is changed. */
2003
2004static void
2005svr4_update_solib_event_breakpoints (void)
2006{
2007 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2008}
2009
2010/* Create and register solib event breakpoints. PROBES is an array
2011 of NUM_PROBES elements, each of which is vector of probes. A
2012 solib event breakpoint will be created and registered for each
2013 probe. */
2014
2015static void
2016svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
729662a5
TT
2017 VEC (probe_p) **probes,
2018 struct objfile *objfile)
f9e14852
GB
2019{
2020 int i;
2021
2022 for (i = 0; i < NUM_PROBES; i++)
2023 {
2024 enum probe_action action = probe_info[i].action;
2025 struct probe *probe;
2026 int ix;
2027
2028 for (ix = 0;
2029 VEC_iterate (probe_p, probes[i], ix, probe);
2030 ++ix)
2031 {
729662a5
TT
2032 CORE_ADDR address = get_probe_address (probe, objfile);
2033
2034 create_solib_event_breakpoint (gdbarch, address);
2035 register_solib_event_probe (probe, address, action);
f9e14852
GB
2036 }
2037 }
2038
2039 svr4_update_solib_event_breakpoints ();
2040}
2041
2042/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2043 before and after mapping and unmapping shared libraries. The sole
2044 purpose of this method is to allow debuggers to set a breakpoint so
2045 they can track these changes.
2046
2047 Some versions of the glibc dynamic linker contain named probes
2048 to allow more fine grained stopping. Given the address of the
2049 original marker function, this function attempts to find these
2050 probes, and if found, sets breakpoints on those instead. If the
2051 probes aren't found, a single breakpoint is set on the original
2052 marker function. */
2053
2054static void
2055svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2056 CORE_ADDR address)
2057{
2058 struct obj_section *os;
2059
2060 os = find_pc_section (address);
2061 if (os != NULL)
2062 {
2063 int with_prefix;
2064
2065 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2066 {
2067 VEC (probe_p) *probes[NUM_PROBES];
2068 int all_probes_found = 1;
25f9533e 2069 int checked_can_use_probe_arguments = 0;
f9e14852
GB
2070 int i;
2071
2072 memset (probes, 0, sizeof (probes));
2073 for (i = 0; i < NUM_PROBES; i++)
2074 {
2075 const char *name = probe_info[i].name;
25f9533e 2076 struct probe *p;
f9e14852
GB
2077 char buf[32];
2078
2079 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2080 shipped with an early version of the probes code in
2081 which the probes' names were prefixed with "rtld_"
2082 and the "map_failed" probe did not exist. The
2083 locations of the probes are otherwise the same, so
2084 we check for probes with prefixed names if probes
2085 with unprefixed names are not present. */
2086 if (with_prefix)
2087 {
2088 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2089 name = buf;
2090 }
2091
2092 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2093
2094 /* The "map_failed" probe did not exist in early
2095 versions of the probes code in which the probes'
2096 names were prefixed with "rtld_". */
2097 if (strcmp (name, "rtld_map_failed") == 0)
2098 continue;
2099
2100 if (VEC_empty (probe_p, probes[i]))
2101 {
2102 all_probes_found = 0;
2103 break;
2104 }
25f9533e
SDJ
2105
2106 /* Ensure probe arguments can be evaluated. */
2107 if (!checked_can_use_probe_arguments)
2108 {
2109 p = VEC_index (probe_p, probes[i], 0);
2110 if (!can_evaluate_probe_arguments (p))
2111 {
2112 all_probes_found = 0;
2113 break;
2114 }
2115 checked_can_use_probe_arguments = 1;
2116 }
f9e14852
GB
2117 }
2118
2119 if (all_probes_found)
729662a5 2120 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
f9e14852
GB
2121
2122 for (i = 0; i < NUM_PROBES; i++)
2123 VEC_free (probe_p, probes[i]);
2124
2125 if (all_probes_found)
2126 return;
2127 }
2128 }
2129
2130 create_solib_event_breakpoint (gdbarch, address);
2131}
2132
cb457ae2
YQ
2133/* Helper function for gdb_bfd_lookup_symbol. */
2134
2135static int
2136cmp_name_and_sec_flags (asymbol *sym, void *data)
2137{
2138 return (strcmp (sym->name, (const char *) data) == 0
2139 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2140}
7f86f058 2141/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2142
2143 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2144 debugger interface, support for arranging for the inferior to hit
2145 a breakpoint after mapping in the shared libraries. This function
2146 enables that breakpoint.
2147
2148 For SunOS, there is a special flag location (in_debugger) which we
2149 set to 1. When the dynamic linker sees this flag set, it will set
2150 a breakpoint at a location known only to itself, after saving the
2151 original contents of that place and the breakpoint address itself,
2152 in it's own internal structures. When we resume the inferior, it
2153 will eventually take a SIGTRAP when it runs into the breakpoint.
2154 We handle this (in a different place) by restoring the contents of
2155 the breakpointed location (which is only known after it stops),
2156 chasing around to locate the shared libraries that have been
2157 loaded, then resuming.
2158
2159 For SVR4, the debugger interface structure contains a member (r_brk)
2160 which is statically initialized at the time the shared library is
2161 built, to the offset of a function (_r_debug_state) which is guaran-
2162 teed to be called once before mapping in a library, and again when
2163 the mapping is complete. At the time we are examining this member,
2164 it contains only the unrelocated offset of the function, so we have
2165 to do our own relocation. Later, when the dynamic linker actually
2166 runs, it relocates r_brk to be the actual address of _r_debug_state().
2167
2168 The debugger interface structure also contains an enumeration which
2169 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2170 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2171 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2172
2173static int
268a4a75 2174enable_break (struct svr4_info *info, int from_tty)
13437d4b 2175{
3b7344d5 2176 struct bound_minimal_symbol msymbol;
bc043ef3 2177 const char * const *bkpt_namep;
13437d4b 2178 asection *interp_sect;
001f13d8 2179 char *interp_name;
7cd25cfc 2180 CORE_ADDR sym_addr;
13437d4b 2181
6c95b8df
PA
2182 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2183 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2184
7cd25cfc
DJ
2185 /* If we already have a shared library list in the target, and
2186 r_debug contains r_brk, set the breakpoint there - this should
2187 mean r_brk has already been relocated. Assume the dynamic linker
2188 is the object containing r_brk. */
2189
268a4a75 2190 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 2191 sym_addr = 0;
1a816a87
PA
2192 if (info->debug_base && solib_svr4_r_map (info) != 0)
2193 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2194
2195 if (sym_addr != 0)
2196 {
2197 struct obj_section *os;
2198
b36ec657 2199 sym_addr = gdbarch_addr_bits_remove
f5656ead 2200 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3e43a32a
MS
2201 sym_addr,
2202 &current_target));
b36ec657 2203
48379de6
DE
2204 /* On at least some versions of Solaris there's a dynamic relocation
2205 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2206 we get control before the dynamic linker has self-relocated.
2207 Check if SYM_ADDR is in a known section, if it is assume we can
2208 trust its value. This is just a heuristic though, it could go away
2209 or be replaced if it's getting in the way.
2210
2211 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2212 however it's spelled in your particular system) is ARM or Thumb.
2213 That knowledge is encoded in the address, if it's Thumb the low bit
2214 is 1. However, we've stripped that info above and it's not clear
2215 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2216 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2217 find_pc_section verifies we know about the address and have some
2218 hope of computing the right kind of breakpoint to use (via
2219 symbol info). It does mean that GDB needs to be pointed at a
2220 non-stripped version of the dynamic linker in order to obtain
2221 information it already knows about. Sigh. */
2222
7cd25cfc
DJ
2223 os = find_pc_section (sym_addr);
2224 if (os != NULL)
2225 {
2226 /* Record the relocated start and end address of the dynamic linker
2227 text and plt section for svr4_in_dynsym_resolve_code. */
2228 bfd *tmp_bfd;
2229 CORE_ADDR load_addr;
2230
2231 tmp_bfd = os->objfile->obfd;
2232 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 2233 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
2234
2235 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2236 if (interp_sect)
2237 {
6c95b8df 2238 info->interp_text_sect_low =
7cd25cfc 2239 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2240 info->interp_text_sect_high =
2241 info->interp_text_sect_low
2242 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2243 }
2244 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2245 if (interp_sect)
2246 {
6c95b8df 2247 info->interp_plt_sect_low =
7cd25cfc 2248 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2249 info->interp_plt_sect_high =
2250 info->interp_plt_sect_low
2251 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2252 }
2253
f9e14852 2254 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
7cd25cfc
DJ
2255 return 1;
2256 }
2257 }
2258
97ec2c2f 2259 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2260 into the old breakpoint at symbol code. */
97ec2c2f
UW
2261 interp_name = find_program_interpreter ();
2262 if (interp_name)
13437d4b 2263 {
8ad2fcde
KB
2264 CORE_ADDR load_addr = 0;
2265 int load_addr_found = 0;
2ec9a4f8 2266 int loader_found_in_list = 0;
f8766ec1 2267 struct so_list *so;
e4f7b8c8 2268 bfd *tmp_bfd = NULL;
2f4950cd 2269 struct target_ops *tmp_bfd_target;
f1838a98 2270 volatile struct gdb_exception ex;
13437d4b 2271
7cd25cfc 2272 sym_addr = 0;
13437d4b
KB
2273
2274 /* Now we need to figure out where the dynamic linker was
2275 loaded so that we can load its symbols and place a breakpoint
2276 in the dynamic linker itself.
2277
2278 This address is stored on the stack. However, I've been unable
2279 to find any magic formula to find it for Solaris (appears to
2280 be trivial on GNU/Linux). Therefore, we have to try an alternate
2281 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2282
f1838a98
UW
2283 TRY_CATCH (ex, RETURN_MASK_ALL)
2284 {
97ec2c2f 2285 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2286 }
13437d4b
KB
2287 if (tmp_bfd == NULL)
2288 goto bkpt_at_symbol;
2289
2f4950cd 2290 /* Now convert the TMP_BFD into a target. That way target, as
695c3173 2291 well as BFD operations can be used. */
2f4950cd 2292 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
695c3173
TT
2293 /* target_bfd_reopen acquired its own reference, so we can
2294 release ours now. */
2295 gdb_bfd_unref (tmp_bfd);
2f4950cd 2296
f8766ec1
KB
2297 /* On a running target, we can get the dynamic linker's base
2298 address from the shared library table. */
f8766ec1
KB
2299 so = master_so_list ();
2300 while (so)
8ad2fcde 2301 {
97ec2c2f 2302 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2303 {
2304 load_addr_found = 1;
2ec9a4f8 2305 loader_found_in_list = 1;
b23518f0 2306 load_addr = lm_addr_check (so, tmp_bfd);
8ad2fcde
KB
2307 break;
2308 }
f8766ec1 2309 so = so->next;
8ad2fcde
KB
2310 }
2311
8d4e36ba
JB
2312 /* If we were not able to find the base address of the loader
2313 from our so_list, then try using the AT_BASE auxilliary entry. */
2314 if (!load_addr_found)
2315 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b 2316 {
f5656ead 2317 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2318
2319 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2320 that `+ load_addr' will overflow CORE_ADDR width not creating
2321 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2322 GDB. */
2323
d182d057 2324 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2325 {
d182d057 2326 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
2327 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
2328 tmp_bfd_target);
2329
2330 gdb_assert (load_addr < space_size);
2331
2332 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2333 64bit ld.so with 32bit executable, it should not happen. */
2334
2335 if (tmp_entry_point < space_size
2336 && tmp_entry_point + load_addr >= space_size)
2337 load_addr -= space_size;
2338 }
2339
2340 load_addr_found = 1;
2341 }
8d4e36ba 2342
8ad2fcde
KB
2343 /* Otherwise we find the dynamic linker's base address by examining
2344 the current pc (which should point at the entry point for the
8d4e36ba
JB
2345 dynamic linker) and subtracting the offset of the entry point.
2346
2347 This is more fragile than the previous approaches, but is a good
2348 fallback method because it has actually been working well in
2349 most cases. */
8ad2fcde 2350 if (!load_addr_found)
fb14de7b 2351 {
c2250ad1 2352 struct regcache *regcache
f5656ead 2353 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 2354
fb14de7b
UW
2355 load_addr = (regcache_read_pc (regcache)
2356 - exec_entry_point (tmp_bfd, tmp_bfd_target));
2357 }
2ec9a4f8
DJ
2358
2359 if (!loader_found_in_list)
34439770 2360 {
1a816a87
PA
2361 info->debug_loader_name = xstrdup (interp_name);
2362 info->debug_loader_offset_p = 1;
2363 info->debug_loader_offset = load_addr;
268a4a75 2364 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 2365 }
13437d4b
KB
2366
2367 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2368 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
2369 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2370 if (interp_sect)
2371 {
6c95b8df 2372 info->interp_text_sect_low =
13437d4b 2373 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2374 info->interp_text_sect_high =
2375 info->interp_text_sect_low
2376 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
2377 }
2378 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2379 if (interp_sect)
2380 {
6c95b8df 2381 info->interp_plt_sect_low =
13437d4b 2382 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2383 info->interp_plt_sect_high =
2384 info->interp_plt_sect_low
2385 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
2386 }
2387
2388 /* Now try to set a breakpoint in the dynamic linker. */
2389 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2390 {
cb457ae2
YQ
2391 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
2392 (void *) *bkpt_namep);
13437d4b
KB
2393 if (sym_addr != 0)
2394 break;
2395 }
2396
2bbe3cc1
DJ
2397 if (sym_addr != 0)
2398 /* Convert 'sym_addr' from a function pointer to an address.
2399 Because we pass tmp_bfd_target instead of the current
2400 target, this will always produce an unrelocated value. */
f5656ead 2401 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2402 sym_addr,
2403 tmp_bfd_target);
2404
695c3173
TT
2405 /* We're done with both the temporary bfd and target. Closing
2406 the target closes the underlying bfd, because it holds the
2407 only remaining reference. */
460014f5 2408 target_close (tmp_bfd_target);
13437d4b
KB
2409
2410 if (sym_addr != 0)
2411 {
f9e14852
GB
2412 svr4_create_solib_event_breakpoints (target_gdbarch (),
2413 load_addr + sym_addr);
97ec2c2f 2414 xfree (interp_name);
13437d4b
KB
2415 return 1;
2416 }
2417
2418 /* For whatever reason we couldn't set a breakpoint in the dynamic
2419 linker. Warn and drop into the old code. */
2420 bkpt_at_symbol:
97ec2c2f 2421 xfree (interp_name);
82d03102
PG
2422 warning (_("Unable to find dynamic linker breakpoint function.\n"
2423 "GDB will be unable to debug shared library initializers\n"
2424 "and track explicitly loaded dynamic code."));
13437d4b 2425 }
13437d4b 2426
e499d0f1
DJ
2427 /* Scan through the lists of symbols, trying to look up the symbol and
2428 set a breakpoint there. Terminate loop when we/if we succeed. */
2429
2430 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2431 {
2432 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2433 if ((msymbol.minsym != NULL)
77e371c0 2434 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2435 {
77e371c0 2436 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2437 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac
JM
2438 sym_addr,
2439 &current_target);
f9e14852 2440 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
e499d0f1
DJ
2441 return 1;
2442 }
2443 }
13437d4b 2444
fb139f32 2445 if (interp_name != NULL && !current_inferior ()->attach_flag)
13437d4b 2446 {
c6490bf2 2447 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2448 {
c6490bf2 2449 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2450 if ((msymbol.minsym != NULL)
77e371c0 2451 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2452 {
77e371c0 2453 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2454 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2
KB
2455 sym_addr,
2456 &current_target);
f9e14852 2457 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
c6490bf2
KB
2458 return 1;
2459 }
13437d4b
KB
2460 }
2461 }
542c95c2 2462 return 0;
13437d4b
KB
2463}
2464
7f86f058 2465/* Implement the "special_symbol_handling" target_so_ops method. */
13437d4b
KB
2466
2467static void
2468svr4_special_symbol_handling (void)
2469{
7f86f058 2470 /* Nothing to do. */
13437d4b
KB
2471}
2472
09919ac2
JK
2473/* Read the ELF program headers from ABFD. Return the contents and
2474 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 2475
09919ac2
JK
2476static gdb_byte *
2477read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 2478{
09919ac2
JK
2479 Elf_Internal_Ehdr *ehdr;
2480 gdb_byte *buf;
e2a44558 2481
09919ac2 2482 ehdr = elf_elfheader (abfd);
b8040f19 2483
09919ac2
JK
2484 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2485 if (*phdrs_size == 0)
2486 return NULL;
2487
2488 buf = xmalloc (*phdrs_size);
2489 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2490 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2491 {
2492 xfree (buf);
2493 return NULL;
2494 }
2495
2496 return buf;
b8040f19
JK
2497}
2498
01c30d6e
JK
2499/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2500 exec_bfd. Otherwise return 0.
2501
2502 We relocate all of the sections by the same amount. This
c378eb4e 2503 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2504 According to the System V Application Binary Interface,
2505 Edition 4.1, page 5-5:
2506
2507 ... Though the system chooses virtual addresses for
2508 individual processes, it maintains the segments' relative
2509 positions. Because position-independent code uses relative
2510 addressesing between segments, the difference between
2511 virtual addresses in memory must match the difference
2512 between virtual addresses in the file. The difference
2513 between the virtual address of any segment in memory and
2514 the corresponding virtual address in the file is thus a
2515 single constant value for any one executable or shared
2516 object in a given process. This difference is the base
2517 address. One use of the base address is to relocate the
2518 memory image of the program during dynamic linking.
2519
2520 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2521 ABI and is left unspecified in some of the earlier editions.
2522
2523 Decide if the objfile needs to be relocated. As indicated above, we will
2524 only be here when execution is stopped. But during attachment PC can be at
2525 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2526 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2527 regcache_read_pc would point to the interpreter and not the main executable.
2528
2529 So, to summarize, relocations are necessary when the start address obtained
2530 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2531
09919ac2
JK
2532 [ The astute reader will note that we also test to make sure that
2533 the executable in question has the DYNAMIC flag set. It is my
2534 opinion that this test is unnecessary (undesirable even). It
2535 was added to avoid inadvertent relocation of an executable
2536 whose e_type member in the ELF header is not ET_DYN. There may
2537 be a time in the future when it is desirable to do relocations
2538 on other types of files as well in which case this condition
2539 should either be removed or modified to accomodate the new file
2540 type. - Kevin, Nov 2000. ] */
b8040f19 2541
01c30d6e
JK
2542static int
2543svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2544{
41752192
JK
2545 /* ENTRY_POINT is a possible function descriptor - before
2546 a call to gdbarch_convert_from_func_ptr_addr. */
09919ac2 2547 CORE_ADDR entry_point, displacement;
b8040f19
JK
2548
2549 if (exec_bfd == NULL)
2550 return 0;
2551
09919ac2
JK
2552 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2553 being executed themselves and PIE (Position Independent Executable)
2554 executables are ET_DYN. */
2555
2556 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2557 return 0;
2558
2559 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2560 return 0;
2561
2562 displacement = entry_point - bfd_get_start_address (exec_bfd);
2563
2564 /* Verify the DISPLACEMENT candidate complies with the required page
2565 alignment. It is cheaper than the program headers comparison below. */
2566
2567 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2568 {
2569 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2570
2571 /* p_align of PT_LOAD segments does not specify any alignment but
2572 only congruency of addresses:
2573 p_offset % p_align == p_vaddr % p_align
2574 Kernel is free to load the executable with lower alignment. */
2575
2576 if ((displacement & (elf->minpagesize - 1)) != 0)
2577 return 0;
2578 }
2579
2580 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2581 comparing their program headers. If the program headers in the auxilliary
2582 vector do not match the program headers in the executable, then we are
2583 looking at a different file than the one used by the kernel - for
2584 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2585
2586 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2587 {
2588 /* Be optimistic and clear OK only if GDB was able to verify the headers
2589 really do not match. */
2590 int phdrs_size, phdrs2_size, ok = 1;
2591 gdb_byte *buf, *buf2;
0a1e94c7 2592 int arch_size;
09919ac2 2593
0a1e94c7 2594 buf = read_program_header (-1, &phdrs_size, &arch_size);
09919ac2 2595 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
2596 if (buf != NULL && buf2 != NULL)
2597 {
f5656ead 2598 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2599
2600 /* We are dealing with three different addresses. EXEC_BFD
2601 represents current address in on-disk file. target memory content
2602 may be different from EXEC_BFD as the file may have been prelinked
2603 to a different address after the executable has been loaded.
2604 Moreover the address of placement in target memory can be
3e43a32a
MS
2605 different from what the program headers in target memory say -
2606 this is the goal of PIE.
0a1e94c7
JK
2607
2608 Detected DISPLACEMENT covers both the offsets of PIE placement and
2609 possible new prelink performed after start of the program. Here
2610 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2611 content offset for the verification purpose. */
2612
2613 if (phdrs_size != phdrs2_size
2614 || bfd_get_arch_size (exec_bfd) != arch_size)
2615 ok = 0;
3e43a32a
MS
2616 else if (arch_size == 32
2617 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
2618 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2619 {
2620 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2621 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2622 CORE_ADDR displacement = 0;
2623 int i;
2624
2625 /* DISPLACEMENT could be found more easily by the difference of
2626 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2627 already have enough information to compute that displacement
2628 with what we've read. */
2629
2630 for (i = 0; i < ehdr2->e_phnum; i++)
2631 if (phdr2[i].p_type == PT_LOAD)
2632 {
2633 Elf32_External_Phdr *phdrp;
2634 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2635 CORE_ADDR vaddr, paddr;
2636 CORE_ADDR displacement_vaddr = 0;
2637 CORE_ADDR displacement_paddr = 0;
2638
2639 phdrp = &((Elf32_External_Phdr *) buf)[i];
2640 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2641 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2642
2643 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2644 byte_order);
2645 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2646
2647 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2648 byte_order);
2649 displacement_paddr = paddr - phdr2[i].p_paddr;
2650
2651 if (displacement_vaddr == displacement_paddr)
2652 displacement = displacement_vaddr;
2653
2654 break;
2655 }
2656
2657 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2658
2659 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2660 {
2661 Elf32_External_Phdr *phdrp;
2662 Elf32_External_Phdr *phdr2p;
2663 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2664 CORE_ADDR vaddr, paddr;
43b8e241 2665 asection *plt2_asect;
0a1e94c7
JK
2666
2667 phdrp = &((Elf32_External_Phdr *) buf)[i];
2668 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2669 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2670 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2671
2672 /* PT_GNU_STACK is an exception by being never relocated by
2673 prelink as its addresses are always zero. */
2674
2675 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2676 continue;
2677
2678 /* Check also other adjustment combinations - PR 11786. */
2679
3e43a32a
MS
2680 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2681 byte_order);
0a1e94c7
JK
2682 vaddr -= displacement;
2683 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2684
3e43a32a
MS
2685 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2686 byte_order);
0a1e94c7
JK
2687 paddr -= displacement;
2688 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2689
2690 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2691 continue;
2692
204b5331
DE
2693 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2694 CentOS-5 has problems with filesz, memsz as well.
2695 See PR 11786. */
2696 if (phdr2[i].p_type == PT_GNU_RELRO)
2697 {
2698 Elf32_External_Phdr tmp_phdr = *phdrp;
2699 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2700
2701 memset (tmp_phdr.p_filesz, 0, 4);
2702 memset (tmp_phdr.p_memsz, 0, 4);
2703 memset (tmp_phdr.p_flags, 0, 4);
2704 memset (tmp_phdr.p_align, 0, 4);
2705 memset (tmp_phdr2.p_filesz, 0, 4);
2706 memset (tmp_phdr2.p_memsz, 0, 4);
2707 memset (tmp_phdr2.p_flags, 0, 4);
2708 memset (tmp_phdr2.p_align, 0, 4);
2709
2710 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2711 == 0)
2712 continue;
2713 }
2714
43b8e241
JK
2715 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2716 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2717 if (plt2_asect)
2718 {
2719 int content2;
2720 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2721 CORE_ADDR filesz;
2722
2723 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2724 & SEC_HAS_CONTENTS) != 0;
2725
2726 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2727 byte_order);
2728
2729 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2730 FILESZ is from the in-memory image. */
2731 if (content2)
2732 filesz += bfd_get_section_size (plt2_asect);
2733 else
2734 filesz -= bfd_get_section_size (plt2_asect);
2735
2736 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2737 filesz);
2738
2739 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2740 continue;
2741 }
2742
0a1e94c7
JK
2743 ok = 0;
2744 break;
2745 }
2746 }
3e43a32a
MS
2747 else if (arch_size == 64
2748 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
2749 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2750 {
2751 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2752 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2753 CORE_ADDR displacement = 0;
2754 int i;
2755
2756 /* DISPLACEMENT could be found more easily by the difference of
2757 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2758 already have enough information to compute that displacement
2759 with what we've read. */
2760
2761 for (i = 0; i < ehdr2->e_phnum; i++)
2762 if (phdr2[i].p_type == PT_LOAD)
2763 {
2764 Elf64_External_Phdr *phdrp;
2765 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2766 CORE_ADDR vaddr, paddr;
2767 CORE_ADDR displacement_vaddr = 0;
2768 CORE_ADDR displacement_paddr = 0;
2769
2770 phdrp = &((Elf64_External_Phdr *) buf)[i];
2771 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2772 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2773
2774 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2775 byte_order);
2776 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2777
2778 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2779 byte_order);
2780 displacement_paddr = paddr - phdr2[i].p_paddr;
2781
2782 if (displacement_vaddr == displacement_paddr)
2783 displacement = displacement_vaddr;
2784
2785 break;
2786 }
2787
2788 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2789
2790 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2791 {
2792 Elf64_External_Phdr *phdrp;
2793 Elf64_External_Phdr *phdr2p;
2794 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2795 CORE_ADDR vaddr, paddr;
43b8e241 2796 asection *plt2_asect;
0a1e94c7
JK
2797
2798 phdrp = &((Elf64_External_Phdr *) buf)[i];
2799 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2800 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2801 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2802
2803 /* PT_GNU_STACK is an exception by being never relocated by
2804 prelink as its addresses are always zero. */
2805
2806 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2807 continue;
2808
2809 /* Check also other adjustment combinations - PR 11786. */
2810
3e43a32a
MS
2811 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2812 byte_order);
0a1e94c7
JK
2813 vaddr -= displacement;
2814 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2815
3e43a32a
MS
2816 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2817 byte_order);
0a1e94c7
JK
2818 paddr -= displacement;
2819 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2820
2821 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2822 continue;
2823
204b5331
DE
2824 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2825 CentOS-5 has problems with filesz, memsz as well.
2826 See PR 11786. */
2827 if (phdr2[i].p_type == PT_GNU_RELRO)
2828 {
2829 Elf64_External_Phdr tmp_phdr = *phdrp;
2830 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2831
2832 memset (tmp_phdr.p_filesz, 0, 8);
2833 memset (tmp_phdr.p_memsz, 0, 8);
2834 memset (tmp_phdr.p_flags, 0, 4);
2835 memset (tmp_phdr.p_align, 0, 8);
2836 memset (tmp_phdr2.p_filesz, 0, 8);
2837 memset (tmp_phdr2.p_memsz, 0, 8);
2838 memset (tmp_phdr2.p_flags, 0, 4);
2839 memset (tmp_phdr2.p_align, 0, 8);
2840
2841 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2842 == 0)
2843 continue;
2844 }
2845
43b8e241
JK
2846 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2847 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2848 if (plt2_asect)
2849 {
2850 int content2;
2851 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2852 CORE_ADDR filesz;
2853
2854 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2855 & SEC_HAS_CONTENTS) != 0;
2856
2857 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2858 byte_order);
2859
2860 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2861 FILESZ is from the in-memory image. */
2862 if (content2)
2863 filesz += bfd_get_section_size (plt2_asect);
2864 else
2865 filesz -= bfd_get_section_size (plt2_asect);
2866
2867 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2868 filesz);
2869
2870 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2871 continue;
2872 }
2873
0a1e94c7
JK
2874 ok = 0;
2875 break;
2876 }
2877 }
2878 else
2879 ok = 0;
2880 }
09919ac2
JK
2881
2882 xfree (buf);
2883 xfree (buf2);
2884
2885 if (!ok)
2886 return 0;
2887 }
b8040f19 2888
ccf26247
JK
2889 if (info_verbose)
2890 {
2891 /* It can be printed repeatedly as there is no easy way to check
2892 the executable symbols/file has been already relocated to
2893 displacement. */
2894
2895 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2896 "displacement %s for \"%s\".\n"),
f5656ead 2897 paddress (target_gdbarch (), displacement),
ccf26247
JK
2898 bfd_get_filename (exec_bfd));
2899 }
2900
01c30d6e
JK
2901 *displacementp = displacement;
2902 return 1;
b8040f19
JK
2903}
2904
2905/* Relocate the main executable. This function should be called upon
c378eb4e 2906 stopping the inferior process at the entry point to the program.
b8040f19
JK
2907 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2908 different, the main executable is relocated by the proper amount. */
2909
2910static void
2911svr4_relocate_main_executable (void)
2912{
01c30d6e
JK
2913 CORE_ADDR displacement;
2914
4e5799b6
JK
2915 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2916 probably contains the offsets computed using the PIE displacement
2917 from the previous run, which of course are irrelevant for this run.
2918 So we need to determine the new PIE displacement and recompute the
2919 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2920 already contains pre-computed offsets.
01c30d6e 2921
4e5799b6 2922 If we cannot compute the PIE displacement, either:
01c30d6e 2923
4e5799b6
JK
2924 - The executable is not PIE.
2925
2926 - SYMFILE_OBJFILE does not match the executable started in the target.
2927 This can happen for main executable symbols loaded at the host while
2928 `ld.so --ld-args main-executable' is loaded in the target.
2929
2930 Then we leave the section offsets untouched and use them as is for
2931 this run. Either:
2932
2933 - These section offsets were properly reset earlier, and thus
2934 already contain the correct values. This can happen for instance
2935 when reconnecting via the remote protocol to a target that supports
2936 the `qOffsets' packet.
2937
2938 - The section offsets were not reset earlier, and the best we can
c378eb4e 2939 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2940
2941 if (! svr4_exec_displacement (&displacement))
2942 return;
b8040f19 2943
01c30d6e
JK
2944 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2945 addresses. */
b8040f19
JK
2946
2947 if (symfile_objfile)
e2a44558 2948 {
e2a44558 2949 struct section_offsets *new_offsets;
b8040f19 2950 int i;
e2a44558 2951
b8040f19
JK
2952 new_offsets = alloca (symfile_objfile->num_sections
2953 * sizeof (*new_offsets));
e2a44558 2954
b8040f19
JK
2955 for (i = 0; i < symfile_objfile->num_sections; i++)
2956 new_offsets->offsets[i] = displacement;
e2a44558 2957
b8040f19 2958 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2959 }
51bee8e9
JK
2960 else if (exec_bfd)
2961 {
2962 asection *asect;
2963
2964 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2965 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2966 (bfd_section_vma (exec_bfd, asect)
2967 + displacement));
2968 }
e2a44558
KB
2969}
2970
7f86f058 2971/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2972
2973 For SVR4 executables, this first instruction is either the first
2974 instruction in the dynamic linker (for dynamically linked
2975 executables) or the instruction at "start" for statically linked
2976 executables. For dynamically linked executables, the system
2977 first exec's /lib/libc.so.N, which contains the dynamic linker,
2978 and starts it running. The dynamic linker maps in any needed
2979 shared libraries, maps in the actual user executable, and then
2980 jumps to "start" in the user executable.
2981
7f86f058
PA
2982 We can arrange to cooperate with the dynamic linker to discover the
2983 names of shared libraries that are dynamically linked, and the base
2984 addresses to which they are linked.
13437d4b
KB
2985
2986 This function is responsible for discovering those names and
2987 addresses, and saving sufficient information about them to allow
d2e5c99a 2988 their symbols to be read at a later time. */
13437d4b 2989
e2a44558 2990static void
268a4a75 2991svr4_solib_create_inferior_hook (int from_tty)
13437d4b 2992{
1a816a87
PA
2993 struct svr4_info *info;
2994
6c95b8df 2995 info = get_svr4_info ();
2020b7ab 2996
f9e14852
GB
2997 /* Clear the probes-based interface's state. */
2998 free_probes_table (info);
2999 free_solib_list (info);
3000
e2a44558 3001 /* Relocate the main executable if necessary. */
86e4bafc 3002 svr4_relocate_main_executable ();
e2a44558 3003
c91c8c16
PA
3004 /* No point setting a breakpoint in the dynamic linker if we can't
3005 hit it (e.g., a core file, or a trace file). */
3006 if (!target_has_execution)
3007 return;
3008
d5a921c9 3009 if (!svr4_have_link_map_offsets ())
513f5903 3010 return;
d5a921c9 3011
268a4a75 3012 if (!enable_break (info, from_tty))
542c95c2 3013 return;
13437d4b
KB
3014}
3015
3016static void
3017svr4_clear_solib (void)
3018{
6c95b8df
PA
3019 struct svr4_info *info;
3020
3021 info = get_svr4_info ();
3022 info->debug_base = 0;
3023 info->debug_loader_offset_p = 0;
3024 info->debug_loader_offset = 0;
3025 xfree (info->debug_loader_name);
3026 info->debug_loader_name = NULL;
13437d4b
KB
3027}
3028
6bb7be43
JB
3029/* Clear any bits of ADDR that wouldn't fit in a target-format
3030 data pointer. "Data pointer" here refers to whatever sort of
3031 address the dynamic linker uses to manage its sections. At the
3032 moment, we don't support shared libraries on any processors where
3033 code and data pointers are different sizes.
3034
3035 This isn't really the right solution. What we really need here is
3036 a way to do arithmetic on CORE_ADDR values that respects the
3037 natural pointer/address correspondence. (For example, on the MIPS,
3038 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3039 sign-extend the value. There, simply truncating the bits above
819844ad 3040 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3041 be a new gdbarch method or something. */
3042static CORE_ADDR
3043svr4_truncate_ptr (CORE_ADDR addr)
3044{
f5656ead 3045 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3046 /* We don't need to truncate anything, and the bit twiddling below
3047 will fail due to overflow problems. */
3048 return addr;
3049 else
f5656ead 3050 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3051}
3052
3053
749499cb
KB
3054static void
3055svr4_relocate_section_addresses (struct so_list *so,
0542c86d 3056 struct target_section *sec)
749499cb 3057{
2b2848e2
DE
3058 bfd *abfd = sec->the_bfd_section->owner;
3059
3060 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3061 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3062}
4b188b9f 3063\f
749499cb 3064
4b188b9f 3065/* Architecture-specific operations. */
6bb7be43 3066
4b188b9f
MK
3067/* Per-architecture data key. */
3068static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3069
4b188b9f 3070struct solib_svr4_ops
e5e2b9ff 3071{
4b188b9f
MK
3072 /* Return a description of the layout of `struct link_map'. */
3073 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3074};
e5e2b9ff 3075
4b188b9f 3076/* Return a default for the architecture-specific operations. */
e5e2b9ff 3077
4b188b9f
MK
3078static void *
3079solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3080{
4b188b9f 3081 struct solib_svr4_ops *ops;
e5e2b9ff 3082
4b188b9f 3083 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3084 ops->fetch_link_map_offsets = NULL;
4b188b9f 3085 return ops;
e5e2b9ff
KB
3086}
3087
4b188b9f 3088/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3089 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3090
21479ded 3091void
e5e2b9ff
KB
3092set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3093 struct link_map_offsets *(*flmo) (void))
21479ded 3094{
4b188b9f
MK
3095 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
3096
3097 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3098
3099 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
3100}
3101
4b188b9f
MK
3102/* Fetch a link_map_offsets structure using the architecture-specific
3103 `struct link_map_offsets' fetcher. */
1c4dcb57 3104
4b188b9f
MK
3105static struct link_map_offsets *
3106svr4_fetch_link_map_offsets (void)
21479ded 3107{
f5656ead 3108 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
4b188b9f
MK
3109
3110 gdb_assert (ops->fetch_link_map_offsets);
3111 return ops->fetch_link_map_offsets ();
21479ded
KB
3112}
3113
4b188b9f
MK
3114/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3115
3116static int
3117svr4_have_link_map_offsets (void)
3118{
f5656ead 3119 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
433759f7 3120
4b188b9f
MK
3121 return (ops->fetch_link_map_offsets != NULL);
3122}
3123\f
3124
e4bbbda8
MK
3125/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3126 `struct r_debug' and a `struct link_map' that are binary compatible
3127 with the origional SVR4 implementation. */
3128
3129/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3130 for an ILP32 SVR4 system. */
d989b283 3131
e4bbbda8
MK
3132struct link_map_offsets *
3133svr4_ilp32_fetch_link_map_offsets (void)
3134{
3135 static struct link_map_offsets lmo;
3136 static struct link_map_offsets *lmp = NULL;
3137
3138 if (lmp == NULL)
3139 {
3140 lmp = &lmo;
3141
e4cd0d6a
MK
3142 lmo.r_version_offset = 0;
3143 lmo.r_version_size = 4;
e4bbbda8 3144 lmo.r_map_offset = 4;
7cd25cfc 3145 lmo.r_brk_offset = 8;
e4cd0d6a 3146 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3147
3148 /* Everything we need is in the first 20 bytes. */
3149 lmo.link_map_size = 20;
3150 lmo.l_addr_offset = 0;
e4bbbda8 3151 lmo.l_name_offset = 4;
cc10cae3 3152 lmo.l_ld_offset = 8;
e4bbbda8 3153 lmo.l_next_offset = 12;
e4bbbda8 3154 lmo.l_prev_offset = 16;
e4bbbda8
MK
3155 }
3156
3157 return lmp;
3158}
3159
3160/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3161 for an LP64 SVR4 system. */
d989b283 3162
e4bbbda8
MK
3163struct link_map_offsets *
3164svr4_lp64_fetch_link_map_offsets (void)
3165{
3166 static struct link_map_offsets lmo;
3167 static struct link_map_offsets *lmp = NULL;
3168
3169 if (lmp == NULL)
3170 {
3171 lmp = &lmo;
3172
e4cd0d6a
MK
3173 lmo.r_version_offset = 0;
3174 lmo.r_version_size = 4;
e4bbbda8 3175 lmo.r_map_offset = 8;
7cd25cfc 3176 lmo.r_brk_offset = 16;
e4cd0d6a 3177 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3178
3179 /* Everything we need is in the first 40 bytes. */
3180 lmo.link_map_size = 40;
3181 lmo.l_addr_offset = 0;
e4bbbda8 3182 lmo.l_name_offset = 8;
cc10cae3 3183 lmo.l_ld_offset = 16;
e4bbbda8 3184 lmo.l_next_offset = 24;
e4bbbda8 3185 lmo.l_prev_offset = 32;
e4bbbda8
MK
3186 }
3187
3188 return lmp;
3189}
3190\f
3191
7d522c90 3192struct target_so_ops svr4_so_ops;
13437d4b 3193
c378eb4e 3194/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3195 different rule for symbol lookup. The lookup begins here in the DSO, not in
3196 the main executable. */
3197
3198static struct symbol *
efad9b6a 3199elf_lookup_lib_symbol (struct objfile *objfile,
3a40aaa0 3200 const char *name,
21b556f4 3201 const domain_enum domain)
3a40aaa0 3202{
61f0d762
JK
3203 bfd *abfd;
3204
3205 if (objfile == symfile_objfile)
3206 abfd = exec_bfd;
3207 else
3208 {
3209 /* OBJFILE should have been passed as the non-debug one. */
3210 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3211
3212 abfd = objfile->obfd;
3213 }
3214
3215 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
3216 return NULL;
3217
94af9270 3218 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
3219}
3220
a78f21af
AC
3221extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
3222
13437d4b
KB
3223void
3224_initialize_svr4_solib (void)
3225{
4b188b9f 3226 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 3227 solib_svr4_pspace_data
8e260fc0 3228 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 3229
749499cb 3230 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3231 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3232 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3233 svr4_so_ops.clear_solib = svr4_clear_solib;
3234 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3235 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
3236 svr4_so_ops.current_sos = svr4_current_sos;
3237 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3238 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3239 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 3240 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 3241 svr4_so_ops.same = svr4_same;
de18c1d8 3242 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3243 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3244 svr4_so_ops.handle_event = svr4_handle_solib_event;
13437d4b 3245}