]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/sparc-tdep.c
daily update
[thirdparty/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
6aba47ca 3 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
197e01b6
EZ
19 Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
c906108c 21
c906108c 22#include "defs.h"
5af923b0 23#include "arch-utils.h"
386c036b 24#include "dis-asm.h"
f5a9b87d 25#include "dwarf2-frame.h"
386c036b 26#include "floatformat.h"
c906108c 27#include "frame.h"
386c036b
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
30#include "gdbcore.h"
31#include "gdbtypes.h"
c906108c 32#include "inferior.h"
386c036b
MK
33#include "symtab.h"
34#include "objfiles.h"
35#include "osabi.h"
36#include "regcache.h"
c906108c
SS
37#include "target.h"
38#include "value.h"
c906108c 39
43bd9a9e 40#include "gdb_assert.h"
386c036b 41#include "gdb_string.h"
c906108c 42
386c036b 43#include "sparc-tdep.h"
c906108c 44
a54124c5
MK
45struct regset;
46
9eb42ed1
MK
47/* This file implements the SPARC 32-bit ABI as defined by the section
48 "Low-Level System Information" of the SPARC Compliance Definition
49 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 50 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 51 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
52
53 Note that if we talk about SunOS, we mean SunOS 4.x, which was
54 BSD-based, which is sometimes (retroactively?) referred to as
55 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
56 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
57 suffering from severe version number inflation). Solaris 2.x is
58 also known as SunOS 5.x, since that's what uname(1) says. Solaris
59 2.x is SVR4-based. */
60
61/* Please use the sparc32_-prefix for 32-bit specific code, the
62 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
63 code that can handle both. The 64-bit specific code lives in
64 sparc64-tdep.c; don't add any here. */
65
66/* The SPARC Floating-Point Quad-Precision format is similar to
67 big-endian IA-64 Quad-recision format. */
8da61cc4 68#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
69
70/* The stack pointer is offset from the stack frame by a BIAS of 2047
71 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
72 hosts, so undefine it first. */
73#undef BIAS
74#define BIAS 2047
75
76/* Macros to extract fields from SPARC instructions. */
c906108c
SS
77#define X_OP(i) (((i) >> 30) & 0x3)
78#define X_RD(i) (((i) >> 25) & 0x1f)
79#define X_A(i) (((i) >> 29) & 1)
80#define X_COND(i) (((i) >> 25) & 0xf)
81#define X_OP2(i) (((i) >> 22) & 0x7)
82#define X_IMM22(i) ((i) & 0x3fffff)
83#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 84#define X_RS1(i) (((i) >> 14) & 0x1f)
c906108c 85#define X_I(i) (((i) >> 13) & 1)
c906108c 86/* Sign extension macros. */
c906108c 87#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 88#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
075ccec8 89#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 90
386c036b
MK
91/* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94unsigned long
95sparc_fetch_instruction (CORE_ADDR pc)
c906108c 96{
e1613aba 97 gdb_byte buf[4];
386c036b
MK
98 unsigned long insn;
99 int i;
100
690668cc 101 /* If we can't read the instruction at PC, return zero. */
b5bf31df 102 if (read_memory_nobpt (pc, buf, sizeof (buf)))
690668cc 103 return 0;
c906108c 104
386c036b
MK
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109}
42cdca6c
MK
110\f
111
5465445a
JB
112/* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115static int
116sparc_is_unimp_insn (CORE_ADDR pc)
117{
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121}
122
42cdca6c
MK
123/* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152/* Fetch StackGhost Per-Process XOR cookie. */
153
154ULONGEST
155sparc_fetch_wcookie (void)
156{
baf92889 157 struct target_ops *ops = &current_target;
e1613aba 158 gdb_byte buf[8];
baf92889
MK
159 int len;
160
13547ab6 161 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
162 if (len == -1)
163 return 0;
42cdca6c 164
baf92889
MK
165 /* We should have either an 32-bit or an 64-bit cookie. */
166 gdb_assert (len == 4 || len == 8);
167
168 return extract_unsigned_integer (buf, len);
169}
386c036b 170\f
baf92889 171
386c036b 172/* Return the contents if register REGNUM as an address. */
c906108c 173
c893be75 174CORE_ADDR
386c036b
MK
175sparc_address_from_register (int regnum)
176{
177 ULONGEST addr;
c906108c 178
386c036b
MK
179 regcache_cooked_read_unsigned (current_regcache, regnum, &addr);
180 return addr;
181}
182\f
c906108c 183
386c036b
MK
184/* The functions on this page are intended to be used to classify
185 function arguments. */
c906108c 186
386c036b 187/* Check whether TYPE is "Integral or Pointer". */
c906108c 188
386c036b
MK
189static int
190sparc_integral_or_pointer_p (const struct type *type)
c906108c 191{
80ad1639
MK
192 int len = TYPE_LENGTH (type);
193
386c036b 194 switch (TYPE_CODE (type))
c906108c 195 {
386c036b
MK
196 case TYPE_CODE_INT:
197 case TYPE_CODE_BOOL:
198 case TYPE_CODE_CHAR:
199 case TYPE_CODE_ENUM:
200 case TYPE_CODE_RANGE:
80ad1639
MK
201 /* We have byte, half-word, word and extended-word/doubleword
202 integral types. The doubleword is an extension to the
203 original 32-bit ABI by the SCD 2.4.x. */
204 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
205 case TYPE_CODE_PTR:
206 case TYPE_CODE_REF:
80ad1639
MK
207 /* Allow either 32-bit or 64-bit pointers. */
208 return (len == 4 || len == 8);
386c036b
MK
209 default:
210 break;
211 }
c906108c 212
386c036b
MK
213 return 0;
214}
c906108c 215
386c036b 216/* Check whether TYPE is "Floating". */
c906108c 217
386c036b
MK
218static int
219sparc_floating_p (const struct type *type)
220{
221 switch (TYPE_CODE (type))
c906108c 222 {
386c036b
MK
223 case TYPE_CODE_FLT:
224 {
225 int len = TYPE_LENGTH (type);
226 return (len == 4 || len == 8 || len == 16);
227 }
228 default:
229 break;
230 }
231
232 return 0;
233}
c906108c 234
386c036b 235/* Check whether TYPE is "Structure or Union". */
c906108c 236
386c036b
MK
237static int
238sparc_structure_or_union_p (const struct type *type)
239{
240 switch (TYPE_CODE (type))
241 {
242 case TYPE_CODE_STRUCT:
243 case TYPE_CODE_UNION:
244 return 1;
245 default:
246 break;
c906108c 247 }
386c036b
MK
248
249 return 0;
c906108c 250}
386c036b
MK
251
252/* Register information. */
253
254static const char *sparc32_register_names[] =
5af923b0 255{
386c036b
MK
256 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
257 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
258 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
259 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
260
261 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
262 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
263 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
264 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
265
266 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
267};
268
386c036b
MK
269/* Total number of registers. */
270#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 271
386c036b
MK
272/* We provide the aliases %d0..%d30 for the floating registers as
273 "psuedo" registers. */
274
275static const char *sparc32_pseudo_register_names[] =
276{
277 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
278 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
279};
280
281/* Total number of pseudo registers. */
282#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
283
284/* Return the name of register REGNUM. */
285
286static const char *
287sparc32_register_name (int regnum)
288{
289 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
290 return sparc32_register_names[regnum];
291
292 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
293 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
294
295 return NULL;
296}
2d457077
MK
297\f
298
299/* Type for %psr. */
300struct type *sparc_psr_type;
301
302/* Type for %fsr. */
303struct type *sparc_fsr_type;
304
305/* Construct types for ISA-specific registers. */
306
307static void
308sparc_init_types (void)
309{
310 struct type *type;
311
312 type = init_flags_type ("builtin_type_sparc_psr", 4);
313 append_flags_type_flag (type, 5, "ET");
314 append_flags_type_flag (type, 6, "PS");
315 append_flags_type_flag (type, 7, "S");
316 append_flags_type_flag (type, 12, "EF");
317 append_flags_type_flag (type, 13, "EC");
318 sparc_psr_type = type;
319
320 type = init_flags_type ("builtin_type_sparc_fsr", 4);
321 append_flags_type_flag (type, 0, "NXA");
322 append_flags_type_flag (type, 1, "DZA");
323 append_flags_type_flag (type, 2, "UFA");
324 append_flags_type_flag (type, 3, "OFA");
325 append_flags_type_flag (type, 4, "NVA");
326 append_flags_type_flag (type, 5, "NXC");
327 append_flags_type_flag (type, 6, "DZC");
328 append_flags_type_flag (type, 7, "UFC");
329 append_flags_type_flag (type, 8, "OFC");
330 append_flags_type_flag (type, 9, "NVC");
331 append_flags_type_flag (type, 22, "NS");
332 append_flags_type_flag (type, 23, "NXM");
333 append_flags_type_flag (type, 24, "DZM");
334 append_flags_type_flag (type, 25, "UFM");
335 append_flags_type_flag (type, 26, "OFM");
336 append_flags_type_flag (type, 27, "NVM");
337 sparc_fsr_type = type;
338}
386c036b
MK
339
340/* Return the GDB type object for the "standard" data type of data in
341 register REGNUM. */
342
343static struct type *
344sparc32_register_type (struct gdbarch *gdbarch, int regnum)
345{
346 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
347 return builtin_type_float;
348
349 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
350 return builtin_type_double;
351
352 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
353 return builtin_type_void_data_ptr;
354
355 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
356 return builtin_type_void_func_ptr;
357
2d457077
MK
358 if (regnum == SPARC32_PSR_REGNUM)
359 return sparc_psr_type;
360
361 if (regnum == SPARC32_FSR_REGNUM)
362 return sparc_fsr_type;
363
386c036b
MK
364 return builtin_type_int32;
365}
366
367static void
368sparc32_pseudo_register_read (struct gdbarch *gdbarch,
369 struct regcache *regcache,
e1613aba 370 int regnum, gdb_byte *buf)
386c036b
MK
371{
372 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
373
374 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
375 regcache_raw_read (regcache, regnum, buf);
e1613aba 376 regcache_raw_read (regcache, regnum + 1, buf + 4);
386c036b
MK
377}
378
379static void
380sparc32_pseudo_register_write (struct gdbarch *gdbarch,
381 struct regcache *regcache,
e1613aba 382 int regnum, const gdb_byte *buf)
386c036b
MK
383{
384 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
385
386 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
387 regcache_raw_write (regcache, regnum, buf);
e1613aba 388 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
389}
390\f
391
392static CORE_ADDR
393sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
394 CORE_ADDR funcaddr, int using_gcc,
395 struct value **args, int nargs,
396 struct type *value_type,
397 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
c906108c 398{
386c036b
MK
399 *bp_addr = sp - 4;
400 *real_pc = funcaddr;
401
402 if (using_struct_return (value_type, using_gcc))
c906108c 403 {
e1613aba 404 gdb_byte buf[4];
386c036b
MK
405
406 /* This is an UNIMP instruction. */
407 store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff);
408 write_memory (sp - 8, buf, 4);
409 return sp - 8;
c906108c
SS
410 }
411
386c036b
MK
412 return sp - 4;
413}
414
415static CORE_ADDR
416sparc32_store_arguments (struct regcache *regcache, int nargs,
417 struct value **args, CORE_ADDR sp,
418 int struct_return, CORE_ADDR struct_addr)
419{
420 /* Number of words in the "parameter array". */
421 int num_elements = 0;
422 int element = 0;
423 int i;
424
425 for (i = 0; i < nargs; i++)
c906108c 426 {
4991999e 427 struct type *type = value_type (args[i]);
386c036b
MK
428 int len = TYPE_LENGTH (type);
429
430 if (sparc_structure_or_union_p (type)
431 || (sparc_floating_p (type) && len == 16))
c906108c 432 {
386c036b
MK
433 /* Structure, Union and Quad-Precision Arguments. */
434 sp -= len;
435
436 /* Use doubleword alignment for these values. That's always
437 correct, and wasting a few bytes shouldn't be a problem. */
438 sp &= ~0x7;
439
0fd88904 440 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
441 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
442 num_elements++;
443 }
444 else if (sparc_floating_p (type))
445 {
446 /* Floating arguments. */
447 gdb_assert (len == 4 || len == 8);
448 num_elements += (len / 4);
c906108c 449 }
c5aa993b
JM
450 else
451 {
386c036b
MK
452 /* Integral and pointer arguments. */
453 gdb_assert (sparc_integral_or_pointer_p (type));
454
455 if (len < 4)
456 args[i] = value_cast (builtin_type_int32, args[i]);
457 num_elements += ((len + 3) / 4);
c5aa993b 458 }
c906108c 459 }
c906108c 460
386c036b
MK
461 /* Always allocate at least six words. */
462 sp -= max (6, num_elements) * 4;
c906108c 463
386c036b
MK
464 /* The psABI says that "Software convention requires space for the
465 struct/union return value pointer, even if the word is unused." */
466 sp -= 4;
c906108c 467
386c036b
MK
468 /* The psABI says that "Although software convention and the
469 operating system require every stack frame to be doubleword
470 aligned." */
471 sp &= ~0x7;
c906108c 472
386c036b 473 for (i = 0; i < nargs; i++)
c906108c 474 {
0fd88904 475 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 476 struct type *type = value_type (args[i]);
386c036b 477 int len = TYPE_LENGTH (type);
c906108c 478
386c036b 479 gdb_assert (len == 4 || len == 8);
c906108c 480
386c036b
MK
481 if (element < 6)
482 {
483 int regnum = SPARC_O0_REGNUM + element;
c906108c 484
386c036b
MK
485 regcache_cooked_write (regcache, regnum, valbuf);
486 if (len > 4 && element < 5)
487 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
488 }
5af923b0 489
386c036b
MK
490 /* Always store the argument in memory. */
491 write_memory (sp + 4 + element * 4, valbuf, len);
492 element += len / 4;
493 }
c906108c 494
386c036b 495 gdb_assert (element == num_elements);
c906108c 496
386c036b 497 if (struct_return)
c906108c 498 {
e1613aba 499 gdb_byte buf[4];
c906108c 500
386c036b
MK
501 store_unsigned_integer (buf, 4, struct_addr);
502 write_memory (sp, buf, 4);
503 }
c906108c 504
386c036b 505 return sp;
c906108c
SS
506}
507
386c036b 508static CORE_ADDR
7d9b040b 509sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
510 struct regcache *regcache, CORE_ADDR bp_addr,
511 int nargs, struct value **args, CORE_ADDR sp,
512 int struct_return, CORE_ADDR struct_addr)
c906108c 513{
386c036b
MK
514 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
515
516 /* Set return address. */
517 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
518
519 /* Set up function arguments. */
520 sp = sparc32_store_arguments (regcache, nargs, args, sp,
521 struct_return, struct_addr);
522
523 /* Allocate the 16-word window save area. */
524 sp -= 16 * 4;
c906108c 525
386c036b
MK
526 /* Stack should be doubleword aligned at this point. */
527 gdb_assert (sp % 8 == 0);
c906108c 528
386c036b
MK
529 /* Finally, update the stack pointer. */
530 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
531
532 return sp;
533}
534\f
c906108c 535
386c036b
MK
536/* Use the program counter to determine the contents and size of a
537 breakpoint instruction. Return a pointer to a string of bytes that
538 encode a breakpoint instruction, store the length of the string in
539 *LEN and optionally adjust *PC to point to the correct memory
540 location for inserting the breakpoint. */
541
e1613aba 542static const gdb_byte *
386c036b
MK
543sparc_breakpoint_from_pc (CORE_ADDR *pc, int *len)
544{
864a1a37 545 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 546
386c036b
MK
547 *len = sizeof (break_insn);
548 return break_insn;
c906108c 549}
386c036b 550\f
c906108c 551
386c036b 552/* Allocate and initialize a frame cache. */
c906108c 553
386c036b
MK
554static struct sparc_frame_cache *
555sparc_alloc_frame_cache (void)
556{
557 struct sparc_frame_cache *cache;
558 int i;
c906108c 559
386c036b 560 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 561
386c036b
MK
562 /* Base address. */
563 cache->base = 0;
564 cache->pc = 0;
c906108c 565
386c036b
MK
566 /* Frameless until proven otherwise. */
567 cache->frameless_p = 1;
568
569 cache->struct_return_p = 0;
570
571 return cache;
572}
573
574CORE_ADDR
575sparc_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
576 struct sparc_frame_cache *cache)
c906108c 577{
386c036b
MK
578 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
579 unsigned long insn;
580 int offset = 0;
c906108c 581 int dest = -1;
c906108c 582
386c036b
MK
583 if (current_pc <= pc)
584 return current_pc;
585
586 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
587 SPARC the linker usually defines a symbol (typically
588 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
589 This symbol makes us end up here with PC pointing at the start of
590 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
591 would do our normal prologue analysis, we would probably conclude
592 that we've got a frame when in reality we don't, since the
593 dynamic linker patches up the first PLT with some code that
594 starts with a SAVE instruction. Patch up PC such that it points
595 at the start of our PLT entry. */
596 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
597 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 598
386c036b
MK
599 insn = sparc_fetch_instruction (pc);
600
601 /* Recognize a SETHI insn and record its destination. */
602 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
603 {
604 dest = X_RD (insn);
386c036b
MK
605 offset += 4;
606
607 insn = sparc_fetch_instruction (pc + 4);
c906108c
SS
608 }
609
386c036b
MK
610 /* Allow for an arithmetic operation on DEST or %g1. */
611 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
612 && (X_RD (insn) == 1 || X_RD (insn) == dest))
613 {
386c036b 614 offset += 4;
c906108c 615
386c036b 616 insn = sparc_fetch_instruction (pc + 8);
c906108c 617 }
c906108c 618
386c036b
MK
619 /* Check for the SAVE instruction that sets up the frame. */
620 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 621 {
386c036b
MK
622 cache->frameless_p = 0;
623 return pc + offset + 4;
c906108c
SS
624 }
625
626 return pc;
627}
628
386c036b
MK
629static CORE_ADDR
630sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
631{
632 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
633 return frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
634}
635
636/* Return PC of first real instruction of the function starting at
637 START_PC. */
f510d44e 638
386c036b
MK
639static CORE_ADDR
640sparc32_skip_prologue (CORE_ADDR start_pc)
c906108c 641{
f510d44e
DM
642 struct symtab_and_line sal;
643 CORE_ADDR func_start, func_end;
386c036b 644 struct sparc_frame_cache cache;
f510d44e
DM
645
646 /* This is the preferred method, find the end of the prologue by
647 using the debugging information. */
648 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
649 {
650 sal = find_pc_line (func_start, 0);
651
652 if (sal.end < func_end
653 && start_pc <= sal.end)
654 return sal.end;
655 }
656
075ccec8
MK
657 start_pc = sparc_analyze_prologue (start_pc, 0xffffffffUL, &cache);
658
659 /* The psABI says that "Although the first 6 words of arguments
660 reside in registers, the standard stack frame reserves space for
661 them.". It also suggests that a function may use that space to
662 "write incoming arguments 0 to 5" into that space, and that's
663 indeed what GCC seems to be doing. In that case GCC will
664 generate debug information that points to the stack slots instead
665 of the registers, so we should consider the instructions that
666 write out these incoming arguments onto the stack. Of course we
667 only need to do this if we have a stack frame. */
668
669 while (!cache.frameless_p)
670 {
671 unsigned long insn = sparc_fetch_instruction (start_pc);
672
673 /* Recognize instructions that store incoming arguments in
674 %i0...%i5 into the corresponding stack slot. */
675 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
676 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
677 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
678 {
679 start_pc += 4;
680 continue;
681 }
682
683 break;
684 }
685
686 return start_pc;
c906108c
SS
687}
688
386c036b 689/* Normal frames. */
9319a2fe 690
386c036b
MK
691struct sparc_frame_cache *
692sparc_frame_cache (struct frame_info *next_frame, void **this_cache)
9319a2fe 693{
386c036b 694 struct sparc_frame_cache *cache;
9319a2fe 695
386c036b
MK
696 if (*this_cache)
697 return *this_cache;
c906108c 698
386c036b
MK
699 cache = sparc_alloc_frame_cache ();
700 *this_cache = cache;
c906108c 701
93d42b30 702 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
386c036b 703 if (cache->pc != 0)
93d42b30 704 sparc_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
386c036b
MK
705
706 if (cache->frameless_p)
c906108c 707 {
cbeae229
MK
708 /* This function is frameless, so %fp (%i6) holds the frame
709 pointer for our calling frame. Use %sp (%o6) as this frame's
710 base address. */
711 cache->base =
712 frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
713 }
714 else
715 {
716 /* For normal frames, %fp (%i6) holds the frame pointer, the
717 base address for the current stack frame. */
718 cache->base =
719 frame_unwind_register_unsigned (next_frame, SPARC_FP_REGNUM);
c906108c 720 }
c906108c 721
5b2d44a0
MK
722 if (cache->base & 1)
723 cache->base += BIAS;
724
386c036b 725 return cache;
c906108c 726}
c906108c 727
aff37fc1
DM
728static int
729sparc32_struct_return_from_sym (struct symbol *sym)
730{
731 struct type *type = check_typedef (SYMBOL_TYPE (sym));
732 enum type_code code = TYPE_CODE (type);
733
734 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
735 {
736 type = check_typedef (TYPE_TARGET_TYPE (type));
737 if (sparc_structure_or_union_p (type)
738 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
739 return 1;
740 }
741
742 return 0;
743}
744
386c036b
MK
745struct sparc_frame_cache *
746sparc32_frame_cache (struct frame_info *next_frame, void **this_cache)
c906108c 747{
386c036b
MK
748 struct sparc_frame_cache *cache;
749 struct symbol *sym;
c906108c 750
386c036b
MK
751 if (*this_cache)
752 return *this_cache;
c906108c 753
386c036b 754 cache = sparc_frame_cache (next_frame, this_cache);
c906108c 755
386c036b
MK
756 sym = find_pc_function (cache->pc);
757 if (sym)
c906108c 758 {
aff37fc1 759 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 760 }
5465445a
JB
761 else
762 {
763 /* There is no debugging information for this function to
764 help us determine whether this function returns a struct
765 or not. So we rely on another heuristic which is to check
766 the instruction at the return address and see if this is
767 an "unimp" instruction. If it is, then it is a struct-return
768 function. */
769 CORE_ADDR pc;
770 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
771
772 pc = frame_unwind_register_unsigned (next_frame, regnum) + 8;
773 if (sparc_is_unimp_insn (pc))
774 cache->struct_return_p = 1;
775 }
c906108c 776
386c036b
MK
777 return cache;
778}
779
780static void
781sparc32_frame_this_id (struct frame_info *next_frame, void **this_cache,
782 struct frame_id *this_id)
783{
784 struct sparc_frame_cache *cache =
785 sparc32_frame_cache (next_frame, this_cache);
786
787 /* This marks the outermost frame. */
788 if (cache->base == 0)
789 return;
790
791 (*this_id) = frame_id_build (cache->base, cache->pc);
792}
c906108c 793
386c036b
MK
794static void
795sparc32_frame_prev_register (struct frame_info *next_frame, void **this_cache,
796 int regnum, int *optimizedp,
797 enum lval_type *lvalp, CORE_ADDR *addrp,
47ef841b 798 int *realnump, gdb_byte *valuep)
386c036b
MK
799{
800 struct sparc_frame_cache *cache =
801 sparc32_frame_cache (next_frame, this_cache);
c906108c 802
386c036b 803 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 804 {
386c036b
MK
805 *optimizedp = 0;
806 *lvalp = not_lval;
807 *addrp = 0;
808 *realnump = -1;
809 if (valuep)
c906108c 810 {
386c036b
MK
811 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
812
813 /* If this functions has a Structure, Union or
814 Quad-Precision return value, we have to skip the UNIMP
815 instruction that encodes the size of the structure. */
816 if (cache->struct_return_p)
817 pc += 4;
818
819 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
820 pc += frame_unwind_register_unsigned (next_frame, regnum) + 8;
821 store_unsigned_integer (valuep, 4, pc);
c906108c 822 }
c906108c
SS
823 return;
824 }
825
42cdca6c
MK
826 /* Handle StackGhost. */
827 {
828 ULONGEST wcookie = sparc_fetch_wcookie ();
829
830 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
831 {
832 *optimizedp = 0;
833 *lvalp = not_lval;
834 *addrp = 0;
835 *realnump = -1;
836 if (valuep)
837 {
838 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
7d34766b 839 ULONGEST i7;
42cdca6c
MK
840
841 /* Read the value in from memory. */
7d34766b
MK
842 i7 = get_frame_memory_unsigned (next_frame, addr, 4);
843 store_unsigned_integer (valuep, 4, i7 ^ wcookie);
42cdca6c
MK
844 }
845 return;
846 }
847 }
848
386c036b
MK
849 /* The previous frame's `local' and `in' registers have been saved
850 in the register save area. */
851 if (!cache->frameless_p
852 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
c906108c 853 {
386c036b
MK
854 *optimizedp = 0;
855 *lvalp = lval_memory;
856 *addrp = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
857 *realnump = -1;
858 if (valuep)
c906108c 859 {
386c036b
MK
860 struct gdbarch *gdbarch = get_frame_arch (next_frame);
861
862 /* Read the value in from memory. */
863 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
c906108c 864 }
386c036b
MK
865 return;
866 }
c906108c 867
386c036b
MK
868 /* The previous frame's `out' registers are accessable as the
869 current frame's `in' registers. */
870 if (!cache->frameless_p
871 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
872 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 873
00b25ff3
AC
874 *optimizedp = 0;
875 *lvalp = lval_register;
876 *addrp = 0;
877 *realnump = regnum;
878 if (valuep)
879 frame_unwind_register (next_frame, (*realnump), valuep);
386c036b 880}
c906108c 881
386c036b
MK
882static const struct frame_unwind sparc32_frame_unwind =
883{
884 NORMAL_FRAME,
885 sparc32_frame_this_id,
886 sparc32_frame_prev_register
887};
888
889static const struct frame_unwind *
890sparc32_frame_sniffer (struct frame_info *next_frame)
891{
892 return &sparc32_frame_unwind;
c906108c 893}
386c036b 894\f
c906108c 895
386c036b
MK
896static CORE_ADDR
897sparc32_frame_base_address (struct frame_info *next_frame, void **this_cache)
898{
899 struct sparc_frame_cache *cache =
900 sparc32_frame_cache (next_frame, this_cache);
c906108c 901
386c036b
MK
902 return cache->base;
903}
c906108c 904
386c036b
MK
905static const struct frame_base sparc32_frame_base =
906{
907 &sparc32_frame_unwind,
908 sparc32_frame_base_address,
909 sparc32_frame_base_address,
910 sparc32_frame_base_address
911};
c906108c 912
386c036b
MK
913static struct frame_id
914sparc_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
915{
916 CORE_ADDR sp;
5af923b0 917
386c036b 918 sp = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
919 if (sp & 1)
920 sp += BIAS;
386c036b
MK
921 return frame_id_build (sp, frame_pc_unwind (next_frame));
922}
923\f
c906108c 924
386c036b
MK
925/* Extract from an array REGBUF containing the (raw) register state, a
926 function return value of TYPE, and copy that into VALBUF. */
5af923b0 927
386c036b
MK
928static void
929sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 930 gdb_byte *valbuf)
386c036b
MK
931{
932 int len = TYPE_LENGTH (type);
e1613aba 933 gdb_byte buf[8];
c906108c 934
386c036b
MK
935 gdb_assert (!sparc_structure_or_union_p (type));
936 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 937
386c036b 938 if (sparc_floating_p (type))
5af923b0 939 {
386c036b
MK
940 /* Floating return values. */
941 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
942 if (len > 4)
943 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
944 memcpy (valbuf, buf, len);
5af923b0
MS
945 }
946 else
947 {
386c036b
MK
948 /* Integral and pointer return values. */
949 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 950
386c036b
MK
951 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
952 if (len > 4)
953 {
954 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
955 gdb_assert (len == 8);
956 memcpy (valbuf, buf, 8);
957 }
958 else
959 {
960 /* Just stripping off any unused bytes should preserve the
961 signed-ness just fine. */
962 memcpy (valbuf, buf + 4 - len, len);
963 }
964 }
965}
c906108c 966
386c036b
MK
967/* Write into the appropriate registers a function return value stored
968 in VALBUF of type TYPE. */
c906108c 969
386c036b
MK
970static void
971sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 972 const gdb_byte *valbuf)
386c036b
MK
973{
974 int len = TYPE_LENGTH (type);
e1613aba 975 gdb_byte buf[8];
c906108c 976
386c036b
MK
977 gdb_assert (!sparc_structure_or_union_p (type));
978 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 979
386c036b
MK
980 if (sparc_floating_p (type))
981 {
982 /* Floating return values. */
983 memcpy (buf, valbuf, len);
984 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
985 if (len > 4)
986 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
987 }
988 else
c906108c 989 {
386c036b
MK
990 /* Integral and pointer return values. */
991 gdb_assert (sparc_integral_or_pointer_p (type));
992
993 if (len > 4)
2757dd86 994 {
386c036b
MK
995 gdb_assert (len == 8);
996 memcpy (buf, valbuf, 8);
997 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
998 }
999 else
1000 {
386c036b
MK
1001 /* ??? Do we need to do any sign-extension here? */
1002 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1003 }
386c036b 1004 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1005 }
1006}
1007
b9d4c5ed
MK
1008static enum return_value_convention
1009sparc32_return_value (struct gdbarch *gdbarch, struct type *type,
e1613aba
MK
1010 struct regcache *regcache, gdb_byte *readbuf,
1011 const gdb_byte *writebuf)
b9d4c5ed 1012{
0a8f48b9
MK
1013 /* The psABI says that "...every stack frame reserves the word at
1014 %fp+64. If a function returns a structure, union, or
1015 quad-precision value, this word should hold the address of the
1016 object into which the return value should be copied." This
1017 guarantees that we can always find the return value, not just
1018 before the function returns. */
1019
b9d4c5ed
MK
1020 if (sparc_structure_or_union_p (type)
1021 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9
MK
1022 {
1023 if (readbuf)
1024 {
1025 ULONGEST sp;
1026 CORE_ADDR addr;
1027
1028 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1029 addr = read_memory_unsigned_integer (sp + 64, 4);
1030 read_memory (addr, readbuf, TYPE_LENGTH (type));
1031 }
1032
1033 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1034 }
b9d4c5ed
MK
1035
1036 if (readbuf)
1037 sparc32_extract_return_value (type, regcache, readbuf);
1038 if (writebuf)
1039 sparc32_store_return_value (type, regcache, writebuf);
1040
1041 return RETURN_VALUE_REGISTER_CONVENTION;
1042}
1043
386c036b
MK
1044static int
1045sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1046{
386c036b
MK
1047 return (sparc_structure_or_union_p (type)
1048 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1049}
c906108c 1050
aff37fc1
DM
1051static int
1052sparc32_dwarf2_struct_return_p (struct frame_info *next_frame)
1053{
93d42b30 1054 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
aff37fc1
DM
1055 struct symbol *sym = find_pc_function (pc);
1056
1057 if (sym)
1058 return sparc32_struct_return_from_sym (sym);
1059 return 0;
1060}
1061
f5a9b87d
DM
1062static void
1063sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1
DM
1064 struct dwarf2_frame_state_reg *reg,
1065 struct frame_info *next_frame)
f5a9b87d 1066{
aff37fc1
DM
1067 int off;
1068
f5a9b87d
DM
1069 switch (regnum)
1070 {
1071 case SPARC_G0_REGNUM:
1072 /* Since %g0 is always zero, there is no point in saving it, and
1073 people will be inclined omit it from the CFI. Make sure we
1074 don't warn about that. */
1075 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1076 break;
1077 case SPARC_SP_REGNUM:
1078 reg->how = DWARF2_FRAME_REG_CFA;
1079 break;
1080 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1081 case SPARC32_NPC_REGNUM:
1082 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1
DM
1083 off = 8;
1084 if (sparc32_dwarf2_struct_return_p (next_frame))
1085 off += 4;
1086 if (regnum == SPARC32_NPC_REGNUM)
1087 off += 4;
1088 reg->loc.offset = off;
f5a9b87d
DM
1089 break;
1090 }
1091}
1092
386c036b
MK
1093\f
1094/* The SPARC Architecture doesn't have hardware single-step support,
1095 and most operating systems don't implement it either, so we provide
1096 software single-step mechanism. */
c906108c 1097
386c036b 1098static CORE_ADDR
c893be75
MK
1099sparc_analyze_control_transfer (struct gdbarch *arch,
1100 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1101{
1102 unsigned long insn = sparc_fetch_instruction (pc);
1103 int conditional_p = X_COND (insn) & 0x7;
1104 int branch_p = 0;
1105 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1106
386c036b 1107 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
c906108c 1108 {
386c036b
MK
1109 /* Branch on Integer Register with Prediction (BPr). */
1110 branch_p = 1;
1111 conditional_p = 1;
c906108c 1112 }
386c036b 1113 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1114 {
386c036b
MK
1115 /* Branch on Floating-Point Condition Codes (FBfcc). */
1116 branch_p = 1;
1117 offset = 4 * X_DISP22 (insn);
c906108c 1118 }
386c036b
MK
1119 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1120 {
1121 /* Branch on Floating-Point Condition Codes with Prediction
1122 (FBPfcc). */
1123 branch_p = 1;
1124 offset = 4 * X_DISP19 (insn);
1125 }
1126 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1127 {
1128 /* Branch on Integer Condition Codes (Bicc). */
1129 branch_p = 1;
1130 offset = 4 * X_DISP22 (insn);
1131 }
1132 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1133 {
386c036b
MK
1134 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1135 branch_p = 1;
1136 offset = 4 * X_DISP19 (insn);
c906108c 1137 }
c893be75
MK
1138 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1139 {
1140 /* Trap instruction (TRAP). */
1141 return gdbarch_tdep (arch)->step_trap (insn);
1142 }
386c036b
MK
1143
1144 /* FIXME: Handle DONE and RETRY instructions. */
1145
386c036b 1146 if (branch_p)
c906108c 1147 {
386c036b 1148 if (conditional_p)
c906108c 1149 {
386c036b
MK
1150 /* For conditional branches, return nPC + 4 iff the annul
1151 bit is 1. */
1152 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1153 }
1154 else
1155 {
386c036b
MK
1156 /* For unconditional branches, return the target if its
1157 specified condition is "always" and return nPC + 4 if the
1158 condition is "never". If the annul bit is 1, set *NPC to
1159 zero. */
1160 if (X_COND (insn) == 0x0)
1161 pc = *npc, offset = 4;
1162 if (X_A (insn))
1163 *npc = 0;
1164
1165 gdb_assert (offset != 0);
1166 return pc + offset;
c906108c
SS
1167 }
1168 }
386c036b
MK
1169
1170 return 0;
c906108c
SS
1171}
1172
c893be75
MK
1173static CORE_ADDR
1174sparc_step_trap (unsigned long insn)
1175{
1176 return 0;
1177}
1178
386c036b
MK
1179void
1180sparc_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1181{
c893be75
MK
1182 struct gdbarch *arch = current_gdbarch;
1183 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
8181d85f 1184 CORE_ADDR npc, nnpc;
c906108c 1185
386c036b
MK
1186 if (insert_breakpoints_p)
1187 {
8c3900e4 1188 CORE_ADDR pc, orig_npc;
c906108c 1189
386c036b 1190 pc = sparc_address_from_register (tdep->pc_regnum);
8c3900e4 1191 orig_npc = npc = sparc_address_from_register (tdep->npc_regnum);
c906108c 1192
386c036b 1193 /* Analyze the instruction at PC. */
c893be75 1194 nnpc = sparc_analyze_control_transfer (arch, pc, &npc);
386c036b 1195 if (npc != 0)
8181d85f
DJ
1196 insert_single_step_breakpoint (npc);
1197
386c036b 1198 if (nnpc != 0)
8181d85f 1199 insert_single_step_breakpoint (nnpc);
c906108c 1200
386c036b 1201 /* Assert that we have set at least one breakpoint, and that
8c3900e4
DJ
1202 they're not set at the same spot - unless we're going
1203 from here straight to NULL, i.e. a call or jump to 0. */
1204 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1205 gdb_assert (nnpc != npc || orig_npc == 0);
60054393 1206 }
386c036b 1207 else
8181d85f 1208 remove_single_step_breakpoints ();
386c036b
MK
1209}
1210
1211static void
1212sparc_write_pc (CORE_ADDR pc, ptid_t ptid)
1213{
1214 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1215
1216 write_register_pid (tdep->pc_regnum, pc, ptid);
1217 write_register_pid (tdep->npc_regnum, pc + 4, ptid);
1218}
1219\f
1220/* Unglobalize NAME. */
1221
1222char *
1223sparc_stabs_unglobalize_name (char *name)
1224{
1225 /* The Sun compilers (Sun ONE Studio, Forte Developer, Sun WorkShop,
1226 SunPRO) convert file static variables into global values, a
1227 process known as globalization. In order to do this, the
1228 compiler will create a unique prefix and prepend it to each file
1229 static variable. For static variables within a function, this
1230 globalization prefix is followed by the function name (nested
1231 static variables within a function are supposed to generate a
1232 warning message, and are left alone). The procedure is
1233 documented in the Stabs Interface Manual, which is distrubuted
1234 with the compilers, although version 4.0 of the manual seems to
1235 be incorrect in some places, at least for SPARC. The
1236 globalization prefix is encoded into an N_OPT stab, with the form
1237 "G=<prefix>". The globalization prefix always seems to start
1238 with a dollar sign '$'; a dot '.' is used as a seperator. So we
1239 simply strip everything up until the last dot. */
c906108c 1240
386c036b 1241 if (name[0] == '$')
c906108c 1242 {
386c036b
MK
1243 char *p = strrchr (name, '.');
1244 if (p)
1245 return p + 1;
c906108c 1246 }
c906108c 1247
386c036b
MK
1248 return name;
1249}
1250\f
5af923b0 1251
a54124c5
MK
1252/* Return the appropriate register set for the core section identified
1253 by SECT_NAME and SECT_SIZE. */
1254
1255const struct regset *
1256sparc_regset_from_core_section (struct gdbarch *gdbarch,
1257 const char *sect_name, size_t sect_size)
1258{
1259 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1260
c558d81a 1261 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1262 return tdep->gregset;
1263
c558d81a 1264 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1265 return tdep->fpregset;
1266
1267 return NULL;
1268}
1269\f
1270
386c036b
MK
1271static struct gdbarch *
1272sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1273{
1274 struct gdbarch_tdep *tdep;
1275 struct gdbarch *gdbarch;
c906108c 1276
386c036b
MK
1277 /* If there is already a candidate, use it. */
1278 arches = gdbarch_list_lookup_by_info (arches, &info);
1279 if (arches != NULL)
1280 return arches->gdbarch;
c906108c 1281
386c036b
MK
1282 /* Allocate space for the new architecture. */
1283 tdep = XMALLOC (struct gdbarch_tdep);
1284 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1285
386c036b
MK
1286 tdep->pc_regnum = SPARC32_PC_REGNUM;
1287 tdep->npc_regnum = SPARC32_NPC_REGNUM;
a54124c5 1288 tdep->gregset = NULL;
c558d81a 1289 tdep->sizeof_gregset = 0;
a54124c5 1290 tdep->fpregset = NULL;
c558d81a 1291 tdep->sizeof_fpregset = 0;
386c036b 1292 tdep->plt_entry_size = 0;
c893be75 1293 tdep->step_trap = sparc_step_trap;
386c036b
MK
1294
1295 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1296 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1297
1298 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1299 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1300 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1301 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1302 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1303 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1304
1305 /* Register numbers of various important registers. */
1306 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1307 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1308 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1309
1310 /* Call dummy code. */
1311 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1312 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1313 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1314
b9d4c5ed 1315 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1316 set_gdbarch_stabs_argument_has_addr
1317 (gdbarch, sparc32_stabs_argument_has_addr);
1318
1319 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1320
1321 /* Stack grows downward. */
1322 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1323
386c036b 1324 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1325
386c036b 1326 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1327
386c036b 1328 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1329
386c036b
MK
1330 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1331 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1332
386c036b 1333 set_gdbarch_unwind_dummy_id (gdbarch, sparc_unwind_dummy_id);
c906108c 1334
386c036b 1335 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1336
386c036b
MK
1337 frame_base_set_default (gdbarch, &sparc32_frame_base);
1338
f5a9b87d
DM
1339 /* Hook in the DWARF CFI frame unwinder. */
1340 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1341 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1342 StackGhost issues have been resolved. */
1343
b2a0b9b2
DM
1344 /* Hook in ABI-specific overrides, if they have been registered. */
1345 gdbarch_init_osabi (info, gdbarch);
1346
386c036b 1347 frame_unwind_append_sniffer (gdbarch, sparc32_frame_sniffer);
c906108c 1348
a54124c5 1349 /* If we have register sets, enable the generic core file support. */
4c72d57a 1350 if (tdep->gregset)
a54124c5
MK
1351 set_gdbarch_regset_from_core_section (gdbarch,
1352 sparc_regset_from_core_section);
1353
386c036b
MK
1354 return gdbarch;
1355}
1356\f
1357/* Helper functions for dealing with register windows. */
1358
1359void
1360sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1361{
386c036b 1362 int offset = 0;
e1613aba 1363 gdb_byte buf[8];
386c036b
MK
1364 int i;
1365
1366 if (sp & 1)
1367 {
1368 /* Registers are 64-bit. */
1369 sp += BIAS;
c906108c 1370
386c036b
MK
1371 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1372 {
1373 if (regnum == i || regnum == -1)
1374 {
1375 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1376
1377 /* Handle StackGhost. */
1378 if (i == SPARC_I7_REGNUM)
1379 {
1380 ULONGEST wcookie = sparc_fetch_wcookie ();
1381 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1382
1383 store_unsigned_integer (buf + offset, 8, i7 ^ wcookie);
1384 }
1385
386c036b
MK
1386 regcache_raw_supply (regcache, i, buf);
1387 }
1388 }
1389 }
1390 else
c906108c 1391 {
386c036b
MK
1392 /* Registers are 32-bit. Toss any sign-extension of the stack
1393 pointer. */
1394 sp &= 0xffffffffUL;
c906108c 1395
386c036b
MK
1396 /* Clear out the top half of the temporary buffer, and put the
1397 register value in the bottom half if we're in 64-bit mode. */
1398 if (gdbarch_ptr_bit (current_gdbarch) == 64)
c906108c 1399 {
386c036b
MK
1400 memset (buf, 0, 4);
1401 offset = 4;
1402 }
c906108c 1403
386c036b
MK
1404 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1405 {
1406 if (regnum == i || regnum == -1)
1407 {
1408 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1409 buf + offset, 4);
42cdca6c
MK
1410
1411 /* Handle StackGhost. */
1412 if (i == SPARC_I7_REGNUM)
1413 {
1414 ULONGEST wcookie = sparc_fetch_wcookie ();
7d34766b 1415 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
42cdca6c 1416
7d34766b 1417 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
42cdca6c
MK
1418 }
1419
386c036b
MK
1420 regcache_raw_supply (regcache, i, buf);
1421 }
c906108c
SS
1422 }
1423 }
c906108c 1424}
c906108c
SS
1425
1426void
386c036b
MK
1427sparc_collect_rwindow (const struct regcache *regcache,
1428 CORE_ADDR sp, int regnum)
c906108c 1429{
386c036b 1430 int offset = 0;
e1613aba 1431 gdb_byte buf[8];
386c036b 1432 int i;
5af923b0 1433
386c036b 1434 if (sp & 1)
5af923b0 1435 {
386c036b
MK
1436 /* Registers are 64-bit. */
1437 sp += BIAS;
c906108c 1438
386c036b
MK
1439 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1440 {
1441 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1442 {
1443 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1444
1445 /* Handle StackGhost. */
1446 if (i == SPARC_I7_REGNUM)
1447 {
1448 ULONGEST wcookie = sparc_fetch_wcookie ();
1449 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1450
1451 store_unsigned_integer (buf, 8, i7 ^ wcookie);
1452 }
1453
386c036b
MK
1454 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1455 }
1456 }
5af923b0
MS
1457 }
1458 else
1459 {
386c036b
MK
1460 /* Registers are 32-bit. Toss any sign-extension of the stack
1461 pointer. */
1462 sp &= 0xffffffffUL;
1463
1464 /* Only use the bottom half if we're in 64-bit mode. */
1465 if (gdbarch_ptr_bit (current_gdbarch) == 64)
1466 offset = 4;
1467
1468 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1469 {
1470 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1471 {
1472 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1473
1474 /* Handle StackGhost. */
1475 if (i == SPARC_I7_REGNUM)
1476 {
1477 ULONGEST wcookie = sparc_fetch_wcookie ();
7d34766b 1478 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
42cdca6c 1479
7d34766b 1480 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
42cdca6c
MK
1481 }
1482
386c036b
MK
1483 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1484 buf + offset, 4);
1485 }
1486 }
5af923b0 1487 }
c906108c
SS
1488}
1489
386c036b
MK
1490/* Helper functions for dealing with register sets. */
1491
c906108c 1492void
386c036b
MK
1493sparc32_supply_gregset (const struct sparc_gregset *gregset,
1494 struct regcache *regcache,
1495 int regnum, const void *gregs)
c906108c 1496{
e1613aba 1497 const gdb_byte *regs = gregs;
386c036b 1498 int i;
5af923b0 1499
386c036b
MK
1500 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1501 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1502 regs + gregset->r_psr_offset);
c906108c 1503
386c036b
MK
1504 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1505 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1506 regs + gregset->r_pc_offset);
5af923b0 1507
386c036b
MK
1508 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1509 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1510 regs + gregset->r_npc_offset);
5af923b0 1511
386c036b
MK
1512 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1513 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1514 regs + gregset->r_y_offset);
5af923b0 1515
386c036b
MK
1516 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1517 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
5af923b0 1518
386c036b 1519 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1520 {
386c036b
MK
1521 int offset = gregset->r_g1_offset;
1522
1523 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1524 {
1525 if (regnum == i || regnum == -1)
1526 regcache_raw_supply (regcache, i, regs + offset);
1527 offset += 4;
1528 }
c906108c 1529 }
386c036b
MK
1530
1531 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1532 {
386c036b
MK
1533 /* Not all of the register set variants include Locals and
1534 Inputs. For those that don't, we read them off the stack. */
1535 if (gregset->r_l0_offset == -1)
1536 {
1537 ULONGEST sp;
1538
1539 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1540 sparc_supply_rwindow (regcache, sp, regnum);
1541 }
1542 else
1543 {
1544 int offset = gregset->r_l0_offset;
1545
1546 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1547 {
1548 if (regnum == i || regnum == -1)
1549 regcache_raw_supply (regcache, i, regs + offset);
1550 offset += 4;
1551 }
1552 }
c906108c
SS
1553 }
1554}
1555
c5aa993b 1556void
386c036b
MK
1557sparc32_collect_gregset (const struct sparc_gregset *gregset,
1558 const struct regcache *regcache,
1559 int regnum, void *gregs)
c906108c 1560{
e1613aba 1561 gdb_byte *regs = gregs;
386c036b 1562 int i;
c5aa993b 1563
386c036b
MK
1564 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1565 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1566 regs + gregset->r_psr_offset);
60054393 1567
386c036b
MK
1568 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1569 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1570 regs + gregset->r_pc_offset);
1571
1572 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1573 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1574 regs + gregset->r_npc_offset);
5af923b0 1575
386c036b
MK
1576 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1577 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1578 regs + gregset->r_y_offset);
1579
1580 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1581 {
386c036b
MK
1582 int offset = gregset->r_g1_offset;
1583
1584 /* %g0 is always zero. */
1585 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1586 {
1587 if (regnum == i || regnum == -1)
1588 regcache_raw_collect (regcache, i, regs + offset);
1589 offset += 4;
1590 }
5af923b0 1591 }
386c036b
MK
1592
1593 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1594 {
386c036b
MK
1595 /* Not all of the register set variants include Locals and
1596 Inputs. For those that don't, we read them off the stack. */
1597 if (gregset->r_l0_offset != -1)
1598 {
1599 int offset = gregset->r_l0_offset;
1600
1601 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1602 {
1603 if (regnum == i || regnum == -1)
1604 regcache_raw_collect (regcache, i, regs + offset);
1605 offset += 4;
1606 }
1607 }
5af923b0 1608 }
c906108c
SS
1609}
1610
c906108c 1611void
386c036b
MK
1612sparc32_supply_fpregset (struct regcache *regcache,
1613 int regnum, const void *fpregs)
c906108c 1614{
e1613aba 1615 const gdb_byte *regs = fpregs;
386c036b 1616 int i;
60054393 1617
386c036b 1618 for (i = 0; i < 32; i++)
c906108c 1619 {
386c036b
MK
1620 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1621 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
c906108c 1622 }
5af923b0 1623
386c036b
MK
1624 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1625 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c
SS
1626}
1627
386c036b
MK
1628void
1629sparc32_collect_fpregset (const struct regcache *regcache,
1630 int regnum, void *fpregs)
c906108c 1631{
e1613aba 1632 gdb_byte *regs = fpregs;
386c036b 1633 int i;
c906108c 1634
386c036b
MK
1635 for (i = 0; i < 32; i++)
1636 {
1637 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1638 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1639 }
c906108c 1640
386c036b
MK
1641 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1642 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c 1643}
c906108c 1644\f
c906108c 1645
386c036b 1646/* SunOS 4. */
c906108c 1647
386c036b
MK
1648/* From <machine/reg.h>. */
1649const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 1650{
386c036b
MK
1651 0 * 4, /* %psr */
1652 1 * 4, /* %pc */
1653 2 * 4, /* %npc */
1654 3 * 4, /* %y */
1655 -1, /* %wim */
1656 -1, /* %tbr */
1657 4 * 4, /* %g1 */
1658 -1 /* %l0 */
1659};
1660\f
c906108c 1661
386c036b
MK
1662/* Provide a prototype to silence -Wmissing-prototypes. */
1663void _initialize_sparc_tdep (void);
c906108c
SS
1664
1665void
386c036b 1666_initialize_sparc_tdep (void)
c906108c 1667{
386c036b 1668 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
2d457077
MK
1669
1670 /* Initialize the SPARC-specific register types. */
1671 sparc_init_types();
ef3cf062 1672}