]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/sparc-tdep.c
* buildsym.c (record_line): Remove call to gdbarch_addr_bits_remove.
[thirdparty/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
0fb0cc75 3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
9b254dd1 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 20
c906108c 21#include "defs.h"
5af923b0 22#include "arch-utils.h"
386c036b 23#include "dis-asm.h"
f5a9b87d 24#include "dwarf2-frame.h"
386c036b 25#include "floatformat.h"
c906108c 26#include "frame.h"
386c036b
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
c906108c 31#include "inferior.h"
386c036b
MK
32#include "symtab.h"
33#include "objfiles.h"
34#include "osabi.h"
35#include "regcache.h"
c906108c
SS
36#include "target.h"
37#include "value.h"
c906108c 38
43bd9a9e 39#include "gdb_assert.h"
386c036b 40#include "gdb_string.h"
c906108c 41
386c036b 42#include "sparc-tdep.h"
c906108c 43
a54124c5
MK
44struct regset;
45
9eb42ed1
MK
46/* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 49 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 50 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60/* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65/* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
8da61cc4 67#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
68
69/* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72#undef BIAS
73#define BIAS 2047
74
75/* Macros to extract fields from SPARC instructions. */
c906108c
SS
76#define X_OP(i) (((i) >> 30) & 0x3)
77#define X_RD(i) (((i) >> 25) & 0x1f)
78#define X_A(i) (((i) >> 29) & 1)
79#define X_COND(i) (((i) >> 25) & 0xf)
80#define X_OP2(i) (((i) >> 22) & 0x7)
81#define X_IMM22(i) ((i) & 0x3fffff)
82#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 83#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 84#define X_RS2(i) ((i) & 0x1f)
c906108c 85#define X_I(i) (((i) >> 13) & 1)
c906108c 86/* Sign extension macros. */
c906108c 87#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 88#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
075ccec8 89#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 90
386c036b
MK
91/* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94unsigned long
95sparc_fetch_instruction (CORE_ADDR pc)
c906108c 96{
e1613aba 97 gdb_byte buf[4];
386c036b
MK
98 unsigned long insn;
99 int i;
100
690668cc 101 /* If we can't read the instruction at PC, return zero. */
8defab1a 102 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 103 return 0;
c906108c 104
386c036b
MK
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109}
42cdca6c
MK
110\f
111
5465445a
JB
112/* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115static int
116sparc_is_unimp_insn (CORE_ADDR pc)
117{
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121}
122
42cdca6c
MK
123/* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152/* Fetch StackGhost Per-Process XOR cookie. */
153
154ULONGEST
155sparc_fetch_wcookie (void)
156{
baf92889 157 struct target_ops *ops = &current_target;
e1613aba 158 gdb_byte buf[8];
baf92889
MK
159 int len;
160
13547ab6 161 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
162 if (len == -1)
163 return 0;
42cdca6c 164
baf92889
MK
165 /* We should have either an 32-bit or an 64-bit cookie. */
166 gdb_assert (len == 4 || len == 8);
167
168 return extract_unsigned_integer (buf, len);
169}
386c036b 170\f
baf92889 171
386c036b
MK
172/* The functions on this page are intended to be used to classify
173 function arguments. */
c906108c 174
386c036b 175/* Check whether TYPE is "Integral or Pointer". */
c906108c 176
386c036b
MK
177static int
178sparc_integral_or_pointer_p (const struct type *type)
c906108c 179{
80ad1639
MK
180 int len = TYPE_LENGTH (type);
181
386c036b 182 switch (TYPE_CODE (type))
c906108c 183 {
386c036b
MK
184 case TYPE_CODE_INT:
185 case TYPE_CODE_BOOL:
186 case TYPE_CODE_CHAR:
187 case TYPE_CODE_ENUM:
188 case TYPE_CODE_RANGE:
80ad1639
MK
189 /* We have byte, half-word, word and extended-word/doubleword
190 integral types. The doubleword is an extension to the
191 original 32-bit ABI by the SCD 2.4.x. */
192 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
193 case TYPE_CODE_PTR:
194 case TYPE_CODE_REF:
80ad1639
MK
195 /* Allow either 32-bit or 64-bit pointers. */
196 return (len == 4 || len == 8);
386c036b
MK
197 default:
198 break;
199 }
c906108c 200
386c036b
MK
201 return 0;
202}
c906108c 203
386c036b 204/* Check whether TYPE is "Floating". */
c906108c 205
386c036b
MK
206static int
207sparc_floating_p (const struct type *type)
208{
209 switch (TYPE_CODE (type))
c906108c 210 {
386c036b
MK
211 case TYPE_CODE_FLT:
212 {
213 int len = TYPE_LENGTH (type);
214 return (len == 4 || len == 8 || len == 16);
215 }
216 default:
217 break;
218 }
219
220 return 0;
221}
c906108c 222
386c036b 223/* Check whether TYPE is "Structure or Union". */
c906108c 224
386c036b
MK
225static int
226sparc_structure_or_union_p (const struct type *type)
227{
228 switch (TYPE_CODE (type))
229 {
230 case TYPE_CODE_STRUCT:
231 case TYPE_CODE_UNION:
232 return 1;
233 default:
234 break;
c906108c 235 }
386c036b
MK
236
237 return 0;
c906108c 238}
386c036b
MK
239
240/* Register information. */
241
242static const char *sparc32_register_names[] =
5af923b0 243{
386c036b
MK
244 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
245 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
246 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
247 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
248
249 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
250 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
251 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
252 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
253
254 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
255};
256
386c036b
MK
257/* Total number of registers. */
258#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 259
386c036b
MK
260/* We provide the aliases %d0..%d30 for the floating registers as
261 "psuedo" registers. */
262
263static const char *sparc32_pseudo_register_names[] =
264{
265 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
266 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
267};
268
269/* Total number of pseudo registers. */
270#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
271
272/* Return the name of register REGNUM. */
273
274static const char *
d93859e2 275sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b
MK
276{
277 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
278 return sparc32_register_names[regnum];
279
280 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
281 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
282
283 return NULL;
284}
2d457077
MK
285\f
286
287/* Type for %psr. */
288struct type *sparc_psr_type;
289
290/* Type for %fsr. */
291struct type *sparc_fsr_type;
292
293/* Construct types for ISA-specific registers. */
294
295static void
296sparc_init_types (void)
297{
298 struct type *type;
299
300 type = init_flags_type ("builtin_type_sparc_psr", 4);
301 append_flags_type_flag (type, 5, "ET");
302 append_flags_type_flag (type, 6, "PS");
303 append_flags_type_flag (type, 7, "S");
304 append_flags_type_flag (type, 12, "EF");
305 append_flags_type_flag (type, 13, "EC");
306 sparc_psr_type = type;
307
308 type = init_flags_type ("builtin_type_sparc_fsr", 4);
309 append_flags_type_flag (type, 0, "NXA");
310 append_flags_type_flag (type, 1, "DZA");
311 append_flags_type_flag (type, 2, "UFA");
312 append_flags_type_flag (type, 3, "OFA");
313 append_flags_type_flag (type, 4, "NVA");
314 append_flags_type_flag (type, 5, "NXC");
315 append_flags_type_flag (type, 6, "DZC");
316 append_flags_type_flag (type, 7, "UFC");
317 append_flags_type_flag (type, 8, "OFC");
318 append_flags_type_flag (type, 9, "NVC");
319 append_flags_type_flag (type, 22, "NS");
320 append_flags_type_flag (type, 23, "NXM");
321 append_flags_type_flag (type, 24, "DZM");
322 append_flags_type_flag (type, 25, "UFM");
323 append_flags_type_flag (type, 26, "OFM");
324 append_flags_type_flag (type, 27, "NVM");
325 sparc_fsr_type = type;
326}
386c036b
MK
327
328/* Return the GDB type object for the "standard" data type of data in
329 register REGNUM. */
330
331static struct type *
332sparc32_register_type (struct gdbarch *gdbarch, int regnum)
333{
334 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 335 return builtin_type (gdbarch)->builtin_float;
386c036b
MK
336
337 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
0dfff4cb 338 return builtin_type (gdbarch)->builtin_double;
386c036b
MK
339
340 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 341 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
342
343 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 344 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 345
2d457077
MK
346 if (regnum == SPARC32_PSR_REGNUM)
347 return sparc_psr_type;
348
349 if (regnum == SPARC32_FSR_REGNUM)
350 return sparc_fsr_type;
351
386c036b
MK
352 return builtin_type_int32;
353}
354
355static void
356sparc32_pseudo_register_read (struct gdbarch *gdbarch,
357 struct regcache *regcache,
e1613aba 358 int regnum, gdb_byte *buf)
386c036b
MK
359{
360 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
361
362 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
363 regcache_raw_read (regcache, regnum, buf);
e1613aba 364 regcache_raw_read (regcache, regnum + 1, buf + 4);
386c036b
MK
365}
366
367static void
368sparc32_pseudo_register_write (struct gdbarch *gdbarch,
369 struct regcache *regcache,
e1613aba 370 int regnum, const gdb_byte *buf)
386c036b
MK
371{
372 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
373
374 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
375 regcache_raw_write (regcache, regnum, buf);
e1613aba 376 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
377}
378\f
379
380static CORE_ADDR
381sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 382 CORE_ADDR funcaddr,
386c036b
MK
383 struct value **args, int nargs,
384 struct type *value_type,
e4fd649a
UW
385 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
386 struct regcache *regcache)
c906108c 387{
386c036b
MK
388 *bp_addr = sp - 4;
389 *real_pc = funcaddr;
390
ea42b34a 391 if (using_struct_return (NULL, value_type))
c906108c 392 {
e1613aba 393 gdb_byte buf[4];
386c036b
MK
394
395 /* This is an UNIMP instruction. */
396 store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff);
397 write_memory (sp - 8, buf, 4);
398 return sp - 8;
c906108c
SS
399 }
400
386c036b
MK
401 return sp - 4;
402}
403
404static CORE_ADDR
405sparc32_store_arguments (struct regcache *regcache, int nargs,
406 struct value **args, CORE_ADDR sp,
407 int struct_return, CORE_ADDR struct_addr)
408{
409 /* Number of words in the "parameter array". */
410 int num_elements = 0;
411 int element = 0;
412 int i;
413
414 for (i = 0; i < nargs; i++)
c906108c 415 {
4991999e 416 struct type *type = value_type (args[i]);
386c036b
MK
417 int len = TYPE_LENGTH (type);
418
419 if (sparc_structure_or_union_p (type)
420 || (sparc_floating_p (type) && len == 16))
c906108c 421 {
386c036b
MK
422 /* Structure, Union and Quad-Precision Arguments. */
423 sp -= len;
424
425 /* Use doubleword alignment for these values. That's always
426 correct, and wasting a few bytes shouldn't be a problem. */
427 sp &= ~0x7;
428
0fd88904 429 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
430 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
431 num_elements++;
432 }
433 else if (sparc_floating_p (type))
434 {
435 /* Floating arguments. */
436 gdb_assert (len == 4 || len == 8);
437 num_elements += (len / 4);
c906108c 438 }
c5aa993b
JM
439 else
440 {
386c036b
MK
441 /* Integral and pointer arguments. */
442 gdb_assert (sparc_integral_or_pointer_p (type));
443
444 if (len < 4)
445 args[i] = value_cast (builtin_type_int32, args[i]);
446 num_elements += ((len + 3) / 4);
c5aa993b 447 }
c906108c 448 }
c906108c 449
386c036b
MK
450 /* Always allocate at least six words. */
451 sp -= max (6, num_elements) * 4;
c906108c 452
386c036b
MK
453 /* The psABI says that "Software convention requires space for the
454 struct/union return value pointer, even if the word is unused." */
455 sp -= 4;
c906108c 456
386c036b
MK
457 /* The psABI says that "Although software convention and the
458 operating system require every stack frame to be doubleword
459 aligned." */
460 sp &= ~0x7;
c906108c 461
386c036b 462 for (i = 0; i < nargs; i++)
c906108c 463 {
0fd88904 464 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 465 struct type *type = value_type (args[i]);
386c036b 466 int len = TYPE_LENGTH (type);
c906108c 467
386c036b 468 gdb_assert (len == 4 || len == 8);
c906108c 469
386c036b
MK
470 if (element < 6)
471 {
472 int regnum = SPARC_O0_REGNUM + element;
c906108c 473
386c036b
MK
474 regcache_cooked_write (regcache, regnum, valbuf);
475 if (len > 4 && element < 5)
476 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
477 }
5af923b0 478
386c036b
MK
479 /* Always store the argument in memory. */
480 write_memory (sp + 4 + element * 4, valbuf, len);
481 element += len / 4;
482 }
c906108c 483
386c036b 484 gdb_assert (element == num_elements);
c906108c 485
386c036b 486 if (struct_return)
c906108c 487 {
e1613aba 488 gdb_byte buf[4];
c906108c 489
386c036b
MK
490 store_unsigned_integer (buf, 4, struct_addr);
491 write_memory (sp, buf, 4);
492 }
c906108c 493
386c036b 494 return sp;
c906108c
SS
495}
496
386c036b 497static CORE_ADDR
7d9b040b 498sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
499 struct regcache *regcache, CORE_ADDR bp_addr,
500 int nargs, struct value **args, CORE_ADDR sp,
501 int struct_return, CORE_ADDR struct_addr)
c906108c 502{
386c036b
MK
503 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
504
505 /* Set return address. */
506 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
507
508 /* Set up function arguments. */
509 sp = sparc32_store_arguments (regcache, nargs, args, sp,
510 struct_return, struct_addr);
511
512 /* Allocate the 16-word window save area. */
513 sp -= 16 * 4;
c906108c 514
386c036b
MK
515 /* Stack should be doubleword aligned at this point. */
516 gdb_assert (sp % 8 == 0);
c906108c 517
386c036b
MK
518 /* Finally, update the stack pointer. */
519 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
520
521 return sp;
522}
523\f
c906108c 524
386c036b
MK
525/* Use the program counter to determine the contents and size of a
526 breakpoint instruction. Return a pointer to a string of bytes that
527 encode a breakpoint instruction, store the length of the string in
528 *LEN and optionally adjust *PC to point to the correct memory
529 location for inserting the breakpoint. */
530
e1613aba 531static const gdb_byte *
67d57894 532sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
386c036b 533{
864a1a37 534 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 535
386c036b
MK
536 *len = sizeof (break_insn);
537 return break_insn;
c906108c 538}
386c036b 539\f
c906108c 540
386c036b 541/* Allocate and initialize a frame cache. */
c906108c 542
386c036b
MK
543static struct sparc_frame_cache *
544sparc_alloc_frame_cache (void)
545{
546 struct sparc_frame_cache *cache;
547 int i;
c906108c 548
386c036b 549 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 550
386c036b
MK
551 /* Base address. */
552 cache->base = 0;
553 cache->pc = 0;
c906108c 554
386c036b
MK
555 /* Frameless until proven otherwise. */
556 cache->frameless_p = 1;
557
558 cache->struct_return_p = 0;
559
560 return cache;
561}
562
b0b92586
JB
563/* GCC generates several well-known sequences of instructions at the begining
564 of each function prologue when compiling with -fstack-check. If one of
565 such sequences starts at START_PC, then return the address of the
566 instruction immediately past this sequence. Otherwise, return START_PC. */
567
568static CORE_ADDR
569sparc_skip_stack_check (const CORE_ADDR start_pc)
570{
571 CORE_ADDR pc = start_pc;
572 unsigned long insn;
573 int offset_stack_checking_sequence = 0;
574
575 /* With GCC, all stack checking sequences begin with the same two
576 instructions. */
577
578 /* sethi <some immediate>,%g1 */
579 insn = sparc_fetch_instruction (pc);
580 pc = pc + 4;
581 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
582 return start_pc;
583
584 /* sub %sp, %g1, %g1 */
585 insn = sparc_fetch_instruction (pc);
586 pc = pc + 4;
587 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
588 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
589 return start_pc;
590
591 insn = sparc_fetch_instruction (pc);
592 pc = pc + 4;
593
594 /* First possible sequence:
595 [first two instructions above]
596 clr [%g1 - some immediate] */
597
598 /* clr [%g1 - some immediate] */
599 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
600 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
601 {
602 /* Valid stack-check sequence, return the new PC. */
603 return pc;
604 }
605
606 /* Second possible sequence: A small number of probes.
607 [first two instructions above]
608 clr [%g1]
609 add %g1, -<some immediate>, %g1
610 clr [%g1]
611 [repeat the two instructions above any (small) number of times]
612 clr [%g1 - some immediate] */
613
614 /* clr [%g1] */
615 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
616 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
617 {
618 while (1)
619 {
620 /* add %g1, -<some immediate>, %g1 */
621 insn = sparc_fetch_instruction (pc);
622 pc = pc + 4;
623 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
624 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
625 break;
626
627 /* clr [%g1] */
628 insn = sparc_fetch_instruction (pc);
629 pc = pc + 4;
630 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
631 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
632 return start_pc;
633 }
634
635 /* clr [%g1 - some immediate] */
636 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
637 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
638 return start_pc;
639
640 /* We found a valid stack-check sequence, return the new PC. */
641 return pc;
642 }
643
644 /* Third sequence: A probing loop.
645 [first two instructions above]
646 sethi <some immediate>, %g4
647 sub %g1, %g4, %g4
648 cmp %g1, %g4
649 be <disp>
650 add %g1, -<some immediate>, %g1
651 ba <disp>
652 clr [%g1]
653 clr [%g4 - some immediate] */
654
655 /* sethi <some immediate>, %g4 */
656 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
657 {
658 /* sub %g1, %g4, %g4 */
659 insn = sparc_fetch_instruction (pc);
660 pc = pc + 4;
661 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
662 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
663 return start_pc;
664
665 /* cmp %g1, %g4 */
666 insn = sparc_fetch_instruction (pc);
667 pc = pc + 4;
668 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
669 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
670 return start_pc;
671
672 /* be <disp> */
673 insn = sparc_fetch_instruction (pc);
674 pc = pc + 4;
675 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
676 return start_pc;
677
678 /* add %g1, -<some immediate>, %g1 */
679 insn = sparc_fetch_instruction (pc);
680 pc = pc + 4;
681 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
682 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
683 return start_pc;
684
685 /* ba <disp> */
686 insn = sparc_fetch_instruction (pc);
687 pc = pc + 4;
688 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
689 return start_pc;
690
691 /* clr [%g1] */
692 insn = sparc_fetch_instruction (pc);
693 pc = pc + 4;
694 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
695 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
696 return start_pc;
697
698 /* clr [%g4 - some immediate] */
699 insn = sparc_fetch_instruction (pc);
700 pc = pc + 4;
701 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
702 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
703 return start_pc;
704
705 /* We found a valid stack-check sequence, return the new PC. */
706 return pc;
707 }
708
709 /* No stack check code in our prologue, return the start_pc. */
710 return start_pc;
711}
712
386c036b 713CORE_ADDR
be8626e0
MD
714sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
715 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 716{
be8626e0 717 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
718 unsigned long insn;
719 int offset = 0;
c906108c 720 int dest = -1;
c906108c 721
b0b92586
JB
722 pc = sparc_skip_stack_check (pc);
723
386c036b
MK
724 if (current_pc <= pc)
725 return current_pc;
726
727 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
728 SPARC the linker usually defines a symbol (typically
729 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
730 This symbol makes us end up here with PC pointing at the start of
731 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
732 would do our normal prologue analysis, we would probably conclude
733 that we've got a frame when in reality we don't, since the
734 dynamic linker patches up the first PLT with some code that
735 starts with a SAVE instruction. Patch up PC such that it points
736 at the start of our PLT entry. */
737 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
738 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 739
386c036b
MK
740 insn = sparc_fetch_instruction (pc);
741
742 /* Recognize a SETHI insn and record its destination. */
743 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
744 {
745 dest = X_RD (insn);
386c036b
MK
746 offset += 4;
747
748 insn = sparc_fetch_instruction (pc + 4);
c906108c
SS
749 }
750
386c036b
MK
751 /* Allow for an arithmetic operation on DEST or %g1. */
752 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
753 && (X_RD (insn) == 1 || X_RD (insn) == dest))
754 {
386c036b 755 offset += 4;
c906108c 756
386c036b 757 insn = sparc_fetch_instruction (pc + 8);
c906108c 758 }
c906108c 759
386c036b
MK
760 /* Check for the SAVE instruction that sets up the frame. */
761 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 762 {
386c036b
MK
763 cache->frameless_p = 0;
764 return pc + offset + 4;
c906108c
SS
765 }
766
767 return pc;
768}
769
386c036b 770static CORE_ADDR
236369e7 771sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
772{
773 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236369e7 774 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
386c036b
MK
775}
776
777/* Return PC of first real instruction of the function starting at
778 START_PC. */
f510d44e 779
386c036b 780static CORE_ADDR
6093d2eb 781sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 782{
f510d44e
DM
783 struct symtab_and_line sal;
784 CORE_ADDR func_start, func_end;
386c036b 785 struct sparc_frame_cache cache;
f510d44e
DM
786
787 /* This is the preferred method, find the end of the prologue by
788 using the debugging information. */
789 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
790 {
791 sal = find_pc_line (func_start, 0);
792
793 if (sal.end < func_end
794 && start_pc <= sal.end)
795 return sal.end;
796 }
797
be8626e0 798 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
799
800 /* The psABI says that "Although the first 6 words of arguments
801 reside in registers, the standard stack frame reserves space for
802 them.". It also suggests that a function may use that space to
803 "write incoming arguments 0 to 5" into that space, and that's
804 indeed what GCC seems to be doing. In that case GCC will
805 generate debug information that points to the stack slots instead
806 of the registers, so we should consider the instructions that
807 write out these incoming arguments onto the stack. Of course we
808 only need to do this if we have a stack frame. */
809
810 while (!cache.frameless_p)
811 {
812 unsigned long insn = sparc_fetch_instruction (start_pc);
813
814 /* Recognize instructions that store incoming arguments in
815 %i0...%i5 into the corresponding stack slot. */
816 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
817 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
818 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
819 {
820 start_pc += 4;
821 continue;
822 }
823
824 break;
825 }
826
827 return start_pc;
c906108c
SS
828}
829
386c036b 830/* Normal frames. */
9319a2fe 831
386c036b 832struct sparc_frame_cache *
236369e7 833sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 834{
386c036b 835 struct sparc_frame_cache *cache;
9319a2fe 836
386c036b
MK
837 if (*this_cache)
838 return *this_cache;
c906108c 839
386c036b
MK
840 cache = sparc_alloc_frame_cache ();
841 *this_cache = cache;
c906108c 842
236369e7 843 cache->pc = get_frame_func (this_frame);
386c036b 844 if (cache->pc != 0)
236369e7
JB
845 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
846 get_frame_pc (this_frame), cache);
386c036b
MK
847
848 if (cache->frameless_p)
c906108c 849 {
cbeae229
MK
850 /* This function is frameless, so %fp (%i6) holds the frame
851 pointer for our calling frame. Use %sp (%o6) as this frame's
852 base address. */
853 cache->base =
236369e7 854 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
855 }
856 else
857 {
858 /* For normal frames, %fp (%i6) holds the frame pointer, the
859 base address for the current stack frame. */
860 cache->base =
236369e7 861 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 862 }
c906108c 863
5b2d44a0
MK
864 if (cache->base & 1)
865 cache->base += BIAS;
866
386c036b 867 return cache;
c906108c 868}
c906108c 869
aff37fc1
DM
870static int
871sparc32_struct_return_from_sym (struct symbol *sym)
872{
873 struct type *type = check_typedef (SYMBOL_TYPE (sym));
874 enum type_code code = TYPE_CODE (type);
875
876 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
877 {
878 type = check_typedef (TYPE_TARGET_TYPE (type));
879 if (sparc_structure_or_union_p (type)
880 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
881 return 1;
882 }
883
884 return 0;
885}
886
386c036b 887struct sparc_frame_cache *
236369e7 888sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 889{
386c036b
MK
890 struct sparc_frame_cache *cache;
891 struct symbol *sym;
c906108c 892
386c036b
MK
893 if (*this_cache)
894 return *this_cache;
c906108c 895
236369e7 896 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 897
386c036b
MK
898 sym = find_pc_function (cache->pc);
899 if (sym)
c906108c 900 {
aff37fc1 901 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 902 }
5465445a
JB
903 else
904 {
905 /* There is no debugging information for this function to
906 help us determine whether this function returns a struct
907 or not. So we rely on another heuristic which is to check
908 the instruction at the return address and see if this is
909 an "unimp" instruction. If it is, then it is a struct-return
910 function. */
911 CORE_ADDR pc;
912 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
913
236369e7 914 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a
JB
915 if (sparc_is_unimp_insn (pc))
916 cache->struct_return_p = 1;
917 }
c906108c 918
386c036b
MK
919 return cache;
920}
921
922static void
236369e7 923sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
924 struct frame_id *this_id)
925{
926 struct sparc_frame_cache *cache =
236369e7 927 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
928
929 /* This marks the outermost frame. */
930 if (cache->base == 0)
931 return;
932
933 (*this_id) = frame_id_build (cache->base, cache->pc);
934}
c906108c 935
236369e7
JB
936static struct value *
937sparc32_frame_prev_register (struct frame_info *this_frame,
938 void **this_cache, int regnum)
386c036b
MK
939{
940 struct sparc_frame_cache *cache =
236369e7 941 sparc32_frame_cache (this_frame, this_cache);
c906108c 942
386c036b 943 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 944 {
236369e7 945 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 946
236369e7
JB
947 /* If this functions has a Structure, Union or Quad-Precision
948 return value, we have to skip the UNIMP instruction that encodes
949 the size of the structure. */
950 if (cache->struct_return_p)
951 pc += 4;
386c036b 952
236369e7
JB
953 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
954 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
955 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
956 }
957
42cdca6c
MK
958 /* Handle StackGhost. */
959 {
960 ULONGEST wcookie = sparc_fetch_wcookie ();
961
962 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
963 {
236369e7
JB
964 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
965 ULONGEST i7;
966
967 /* Read the value in from memory. */
968 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
969 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
970 }
971 }
972
386c036b
MK
973 /* The previous frame's `local' and `in' registers have been saved
974 in the register save area. */
975 if (!cache->frameless_p
976 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
c906108c 977 {
236369e7 978 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 979
236369e7 980 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 981 }
c906108c 982
236369e7 983 /* The previous frame's `out' registers are accessible as the
386c036b
MK
984 current frame's `in' registers. */
985 if (!cache->frameless_p
986 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
987 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 988
236369e7 989 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 990}
c906108c 991
386c036b
MK
992static const struct frame_unwind sparc32_frame_unwind =
993{
994 NORMAL_FRAME,
995 sparc32_frame_this_id,
236369e7
JB
996 sparc32_frame_prev_register,
997 NULL,
998 default_frame_sniffer
386c036b 999};
386c036b 1000\f
c906108c 1001
386c036b 1002static CORE_ADDR
236369e7 1003sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1004{
1005 struct sparc_frame_cache *cache =
236369e7 1006 sparc32_frame_cache (this_frame, this_cache);
c906108c 1007
386c036b
MK
1008 return cache->base;
1009}
c906108c 1010
386c036b
MK
1011static const struct frame_base sparc32_frame_base =
1012{
1013 &sparc32_frame_unwind,
1014 sparc32_frame_base_address,
1015 sparc32_frame_base_address,
1016 sparc32_frame_base_address
1017};
c906108c 1018
386c036b 1019static struct frame_id
236369e7 1020sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1021{
1022 CORE_ADDR sp;
5af923b0 1023
236369e7 1024 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1025 if (sp & 1)
1026 sp += BIAS;
236369e7 1027 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1028}
1029\f
c906108c 1030
3923a2b2
MK
1031/* Extract a function return value of TYPE from REGCACHE, and copy
1032 that into VALBUF. */
5af923b0 1033
386c036b
MK
1034static void
1035sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1036 gdb_byte *valbuf)
386c036b
MK
1037{
1038 int len = TYPE_LENGTH (type);
e1613aba 1039 gdb_byte buf[8];
c906108c 1040
386c036b
MK
1041 gdb_assert (!sparc_structure_or_union_p (type));
1042 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1043
386c036b 1044 if (sparc_floating_p (type))
5af923b0 1045 {
386c036b
MK
1046 /* Floating return values. */
1047 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1048 if (len > 4)
1049 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1050 memcpy (valbuf, buf, len);
5af923b0
MS
1051 }
1052 else
1053 {
386c036b
MK
1054 /* Integral and pointer return values. */
1055 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1056
386c036b
MK
1057 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1058 if (len > 4)
1059 {
1060 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1061 gdb_assert (len == 8);
1062 memcpy (valbuf, buf, 8);
1063 }
1064 else
1065 {
1066 /* Just stripping off any unused bytes should preserve the
1067 signed-ness just fine. */
1068 memcpy (valbuf, buf + 4 - len, len);
1069 }
1070 }
1071}
c906108c 1072
3923a2b2
MK
1073/* Store the function return value of type TYPE from VALBUF into
1074 REGCACHE. */
c906108c 1075
386c036b
MK
1076static void
1077sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1078 const gdb_byte *valbuf)
386c036b
MK
1079{
1080 int len = TYPE_LENGTH (type);
e1613aba 1081 gdb_byte buf[8];
c906108c 1082
386c036b
MK
1083 gdb_assert (!sparc_structure_or_union_p (type));
1084 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1085
386c036b
MK
1086 if (sparc_floating_p (type))
1087 {
1088 /* Floating return values. */
1089 memcpy (buf, valbuf, len);
1090 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1091 if (len > 4)
1092 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1093 }
1094 else
c906108c 1095 {
386c036b
MK
1096 /* Integral and pointer return values. */
1097 gdb_assert (sparc_integral_or_pointer_p (type));
1098
1099 if (len > 4)
2757dd86 1100 {
386c036b
MK
1101 gdb_assert (len == 8);
1102 memcpy (buf, valbuf, 8);
1103 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1104 }
1105 else
1106 {
386c036b
MK
1107 /* ??? Do we need to do any sign-extension here? */
1108 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1109 }
386c036b 1110 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1111 }
1112}
1113
b9d4c5ed 1114static enum return_value_convention
c055b101
CV
1115sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1116 struct type *type, struct regcache *regcache,
1117 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1118{
0a8f48b9
MK
1119 /* The psABI says that "...every stack frame reserves the word at
1120 %fp+64. If a function returns a structure, union, or
1121 quad-precision value, this word should hold the address of the
1122 object into which the return value should be copied." This
1123 guarantees that we can always find the return value, not just
1124 before the function returns. */
1125
b9d4c5ed
MK
1126 if (sparc_structure_or_union_p (type)
1127 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9
MK
1128 {
1129 if (readbuf)
1130 {
1131 ULONGEST sp;
1132 CORE_ADDR addr;
1133
1134 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1135 addr = read_memory_unsigned_integer (sp + 64, 4);
1136 read_memory (addr, readbuf, TYPE_LENGTH (type));
1137 }
1138
1139 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1140 }
b9d4c5ed
MK
1141
1142 if (readbuf)
1143 sparc32_extract_return_value (type, regcache, readbuf);
1144 if (writebuf)
1145 sparc32_store_return_value (type, regcache, writebuf);
1146
1147 return RETURN_VALUE_REGISTER_CONVENTION;
1148}
1149
386c036b
MK
1150static int
1151sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1152{
386c036b
MK
1153 return (sparc_structure_or_union_p (type)
1154 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1155}
c906108c 1156
aff37fc1 1157static int
4a4e5149 1158sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1159{
236369e7 1160 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1161 struct symbol *sym = find_pc_function (pc);
1162
1163 if (sym)
1164 return sparc32_struct_return_from_sym (sym);
1165 return 0;
1166}
1167
f5a9b87d
DM
1168static void
1169sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1170 struct dwarf2_frame_state_reg *reg,
4a4e5149 1171 struct frame_info *this_frame)
f5a9b87d 1172{
aff37fc1
DM
1173 int off;
1174
f5a9b87d
DM
1175 switch (regnum)
1176 {
1177 case SPARC_G0_REGNUM:
1178 /* Since %g0 is always zero, there is no point in saving it, and
1179 people will be inclined omit it from the CFI. Make sure we
1180 don't warn about that. */
1181 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1182 break;
1183 case SPARC_SP_REGNUM:
1184 reg->how = DWARF2_FRAME_REG_CFA;
1185 break;
1186 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1187 case SPARC32_NPC_REGNUM:
1188 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1189 off = 8;
4a4e5149 1190 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1191 off += 4;
1192 if (regnum == SPARC32_NPC_REGNUM)
1193 off += 4;
1194 reg->loc.offset = off;
f5a9b87d
DM
1195 break;
1196 }
1197}
1198
386c036b
MK
1199\f
1200/* The SPARC Architecture doesn't have hardware single-step support,
1201 and most operating systems don't implement it either, so we provide
1202 software single-step mechanism. */
c906108c 1203
386c036b 1204static CORE_ADDR
0b1b3e42 1205sparc_analyze_control_transfer (struct frame_info *frame,
c893be75 1206 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1207{
1208 unsigned long insn = sparc_fetch_instruction (pc);
1209 int conditional_p = X_COND (insn) & 0x7;
1210 int branch_p = 0;
1211 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1212
386c036b 1213 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
c906108c 1214 {
386c036b
MK
1215 /* Branch on Integer Register with Prediction (BPr). */
1216 branch_p = 1;
1217 conditional_p = 1;
c906108c 1218 }
386c036b 1219 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1220 {
386c036b
MK
1221 /* Branch on Floating-Point Condition Codes (FBfcc). */
1222 branch_p = 1;
1223 offset = 4 * X_DISP22 (insn);
c906108c 1224 }
386c036b
MK
1225 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1226 {
1227 /* Branch on Floating-Point Condition Codes with Prediction
1228 (FBPfcc). */
1229 branch_p = 1;
1230 offset = 4 * X_DISP19 (insn);
1231 }
1232 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1233 {
1234 /* Branch on Integer Condition Codes (Bicc). */
1235 branch_p = 1;
1236 offset = 4 * X_DISP22 (insn);
1237 }
1238 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1239 {
386c036b
MK
1240 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1241 branch_p = 1;
1242 offset = 4 * X_DISP19 (insn);
c906108c 1243 }
c893be75
MK
1244 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1245 {
1246 /* Trap instruction (TRAP). */
0b1b3e42 1247 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
c893be75 1248 }
386c036b
MK
1249
1250 /* FIXME: Handle DONE and RETRY instructions. */
1251
386c036b 1252 if (branch_p)
c906108c 1253 {
386c036b 1254 if (conditional_p)
c906108c 1255 {
386c036b
MK
1256 /* For conditional branches, return nPC + 4 iff the annul
1257 bit is 1. */
1258 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1259 }
1260 else
1261 {
386c036b
MK
1262 /* For unconditional branches, return the target if its
1263 specified condition is "always" and return nPC + 4 if the
1264 condition is "never". If the annul bit is 1, set *NPC to
1265 zero. */
1266 if (X_COND (insn) == 0x0)
1267 pc = *npc, offset = 4;
1268 if (X_A (insn))
1269 *npc = 0;
1270
1271 gdb_assert (offset != 0);
1272 return pc + offset;
c906108c
SS
1273 }
1274 }
386c036b
MK
1275
1276 return 0;
c906108c
SS
1277}
1278
c893be75 1279static CORE_ADDR
0b1b3e42 1280sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1281{
1282 return 0;
1283}
1284
e6590a1b 1285int
0b1b3e42 1286sparc_software_single_step (struct frame_info *frame)
386c036b 1287{
0b1b3e42 1288 struct gdbarch *arch = get_frame_arch (frame);
c893be75 1289 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
8181d85f 1290 CORE_ADDR npc, nnpc;
c906108c 1291
e0cd558a 1292 CORE_ADDR pc, orig_npc;
c906108c 1293
0b1b3e42
UW
1294 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1295 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
c906108c 1296
e0cd558a 1297 /* Analyze the instruction at PC. */
0b1b3e42 1298 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
e0cd558a
UW
1299 if (npc != 0)
1300 insert_single_step_breakpoint (npc);
8181d85f 1301
e0cd558a
UW
1302 if (nnpc != 0)
1303 insert_single_step_breakpoint (nnpc);
c906108c 1304
e0cd558a
UW
1305 /* Assert that we have set at least one breakpoint, and that
1306 they're not set at the same spot - unless we're going
1307 from here straight to NULL, i.e. a call or jump to 0. */
1308 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1309 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b
UW
1310
1311 return 1;
386c036b
MK
1312}
1313
1314static void
61a1198a 1315sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1316{
61a1198a 1317 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
386c036b 1318
61a1198a
UW
1319 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1320 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1321}
1322\f
5af923b0 1323
a54124c5
MK
1324/* Return the appropriate register set for the core section identified
1325 by SECT_NAME and SECT_SIZE. */
1326
63807e1d 1327static const struct regset *
a54124c5
MK
1328sparc_regset_from_core_section (struct gdbarch *gdbarch,
1329 const char *sect_name, size_t sect_size)
1330{
1331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1332
c558d81a 1333 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1334 return tdep->gregset;
1335
c558d81a 1336 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1337 return tdep->fpregset;
1338
1339 return NULL;
1340}
1341\f
1342
386c036b
MK
1343static struct gdbarch *
1344sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1345{
1346 struct gdbarch_tdep *tdep;
1347 struct gdbarch *gdbarch;
c906108c 1348
386c036b
MK
1349 /* If there is already a candidate, use it. */
1350 arches = gdbarch_list_lookup_by_info (arches, &info);
1351 if (arches != NULL)
1352 return arches->gdbarch;
c906108c 1353
386c036b
MK
1354 /* Allocate space for the new architecture. */
1355 tdep = XMALLOC (struct gdbarch_tdep);
1356 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1357
386c036b
MK
1358 tdep->pc_regnum = SPARC32_PC_REGNUM;
1359 tdep->npc_regnum = SPARC32_NPC_REGNUM;
a54124c5 1360 tdep->gregset = NULL;
c558d81a 1361 tdep->sizeof_gregset = 0;
a54124c5 1362 tdep->fpregset = NULL;
c558d81a 1363 tdep->sizeof_fpregset = 0;
386c036b 1364 tdep->plt_entry_size = 0;
c893be75 1365 tdep->step_trap = sparc_step_trap;
386c036b
MK
1366
1367 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1368 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1369
1370 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1371 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1372 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1373 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1374 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1375 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1376
1377 /* Register numbers of various important registers. */
1378 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1379 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1380 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1381
1382 /* Call dummy code. */
1383 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1384 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1385 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1386
b9d4c5ed 1387 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1388 set_gdbarch_stabs_argument_has_addr
1389 (gdbarch, sparc32_stabs_argument_has_addr);
1390
1391 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1392
1393 /* Stack grows downward. */
1394 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1395
386c036b 1396 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1397
386c036b 1398 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1399
386c036b 1400 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1401
386c036b
MK
1402 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1403 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1404
236369e7 1405 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1406
386c036b 1407 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1408
386c036b
MK
1409 frame_base_set_default (gdbarch, &sparc32_frame_base);
1410
f5a9b87d
DM
1411 /* Hook in the DWARF CFI frame unwinder. */
1412 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1413 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1414 StackGhost issues have been resolved. */
1415
b2a0b9b2
DM
1416 /* Hook in ABI-specific overrides, if they have been registered. */
1417 gdbarch_init_osabi (info, gdbarch);
1418
236369e7 1419 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1420
a54124c5 1421 /* If we have register sets, enable the generic core file support. */
4c72d57a 1422 if (tdep->gregset)
a54124c5
MK
1423 set_gdbarch_regset_from_core_section (gdbarch,
1424 sparc_regset_from_core_section);
1425
386c036b
MK
1426 return gdbarch;
1427}
1428\f
1429/* Helper functions for dealing with register windows. */
1430
1431void
1432sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1433{
386c036b 1434 int offset = 0;
e1613aba 1435 gdb_byte buf[8];
386c036b
MK
1436 int i;
1437
1438 if (sp & 1)
1439 {
1440 /* Registers are 64-bit. */
1441 sp += BIAS;
c906108c 1442
386c036b
MK
1443 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1444 {
1445 if (regnum == i || regnum == -1)
1446 {
1447 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1448
1449 /* Handle StackGhost. */
1450 if (i == SPARC_I7_REGNUM)
1451 {
1452 ULONGEST wcookie = sparc_fetch_wcookie ();
1453 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1454
1455 store_unsigned_integer (buf + offset, 8, i7 ^ wcookie);
1456 }
1457
386c036b
MK
1458 regcache_raw_supply (regcache, i, buf);
1459 }
1460 }
1461 }
1462 else
c906108c 1463 {
386c036b
MK
1464 /* Registers are 32-bit. Toss any sign-extension of the stack
1465 pointer. */
1466 sp &= 0xffffffffUL;
c906108c 1467
386c036b
MK
1468 /* Clear out the top half of the temporary buffer, and put the
1469 register value in the bottom half if we're in 64-bit mode. */
e6d4f032 1470 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c906108c 1471 {
386c036b
MK
1472 memset (buf, 0, 4);
1473 offset = 4;
1474 }
c906108c 1475
386c036b
MK
1476 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1477 {
1478 if (regnum == i || regnum == -1)
1479 {
1480 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1481 buf + offset, 4);
42cdca6c
MK
1482
1483 /* Handle StackGhost. */
1484 if (i == SPARC_I7_REGNUM)
1485 {
1486 ULONGEST wcookie = sparc_fetch_wcookie ();
7d34766b 1487 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
42cdca6c 1488
7d34766b 1489 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
42cdca6c
MK
1490 }
1491
386c036b
MK
1492 regcache_raw_supply (regcache, i, buf);
1493 }
c906108c
SS
1494 }
1495 }
c906108c 1496}
c906108c
SS
1497
1498void
386c036b
MK
1499sparc_collect_rwindow (const struct regcache *regcache,
1500 CORE_ADDR sp, int regnum)
c906108c 1501{
386c036b 1502 int offset = 0;
e1613aba 1503 gdb_byte buf[8];
386c036b 1504 int i;
5af923b0 1505
386c036b 1506 if (sp & 1)
5af923b0 1507 {
386c036b
MK
1508 /* Registers are 64-bit. */
1509 sp += BIAS;
c906108c 1510
386c036b
MK
1511 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1512 {
1513 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1514 {
1515 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1516
1517 /* Handle StackGhost. */
1518 if (i == SPARC_I7_REGNUM)
1519 {
1520 ULONGEST wcookie = sparc_fetch_wcookie ();
1521 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1522
1523 store_unsigned_integer (buf, 8, i7 ^ wcookie);
1524 }
1525
386c036b
MK
1526 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1527 }
1528 }
5af923b0
MS
1529 }
1530 else
1531 {
386c036b
MK
1532 /* Registers are 32-bit. Toss any sign-extension of the stack
1533 pointer. */
1534 sp &= 0xffffffffUL;
1535
1536 /* Only use the bottom half if we're in 64-bit mode. */
e6d4f032 1537 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
386c036b
MK
1538 offset = 4;
1539
1540 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1541 {
1542 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1543 {
1544 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1545
1546 /* Handle StackGhost. */
1547 if (i == SPARC_I7_REGNUM)
1548 {
1549 ULONGEST wcookie = sparc_fetch_wcookie ();
7d34766b 1550 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
42cdca6c 1551
7d34766b 1552 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
42cdca6c
MK
1553 }
1554
386c036b
MK
1555 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1556 buf + offset, 4);
1557 }
1558 }
5af923b0 1559 }
c906108c
SS
1560}
1561
386c036b
MK
1562/* Helper functions for dealing with register sets. */
1563
c906108c 1564void
386c036b
MK
1565sparc32_supply_gregset (const struct sparc_gregset *gregset,
1566 struct regcache *regcache,
1567 int regnum, const void *gregs)
c906108c 1568{
e1613aba 1569 const gdb_byte *regs = gregs;
386c036b 1570 int i;
5af923b0 1571
386c036b
MK
1572 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1573 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1574 regs + gregset->r_psr_offset);
c906108c 1575
386c036b
MK
1576 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1577 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1578 regs + gregset->r_pc_offset);
5af923b0 1579
386c036b
MK
1580 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1581 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1582 regs + gregset->r_npc_offset);
5af923b0 1583
386c036b
MK
1584 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1585 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1586 regs + gregset->r_y_offset);
5af923b0 1587
386c036b
MK
1588 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1589 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
5af923b0 1590
386c036b 1591 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1592 {
386c036b
MK
1593 int offset = gregset->r_g1_offset;
1594
1595 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1596 {
1597 if (regnum == i || regnum == -1)
1598 regcache_raw_supply (regcache, i, regs + offset);
1599 offset += 4;
1600 }
c906108c 1601 }
386c036b
MK
1602
1603 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1604 {
386c036b
MK
1605 /* Not all of the register set variants include Locals and
1606 Inputs. For those that don't, we read them off the stack. */
1607 if (gregset->r_l0_offset == -1)
1608 {
1609 ULONGEST sp;
1610
1611 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1612 sparc_supply_rwindow (regcache, sp, regnum);
1613 }
1614 else
1615 {
1616 int offset = gregset->r_l0_offset;
1617
1618 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1619 {
1620 if (regnum == i || regnum == -1)
1621 regcache_raw_supply (regcache, i, regs + offset);
1622 offset += 4;
1623 }
1624 }
c906108c
SS
1625 }
1626}
1627
c5aa993b 1628void
386c036b
MK
1629sparc32_collect_gregset (const struct sparc_gregset *gregset,
1630 const struct regcache *regcache,
1631 int regnum, void *gregs)
c906108c 1632{
e1613aba 1633 gdb_byte *regs = gregs;
386c036b 1634 int i;
c5aa993b 1635
386c036b
MK
1636 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1637 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1638 regs + gregset->r_psr_offset);
60054393 1639
386c036b
MK
1640 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1641 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1642 regs + gregset->r_pc_offset);
1643
1644 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1645 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1646 regs + gregset->r_npc_offset);
5af923b0 1647
386c036b
MK
1648 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1649 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1650 regs + gregset->r_y_offset);
1651
1652 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1653 {
386c036b
MK
1654 int offset = gregset->r_g1_offset;
1655
1656 /* %g0 is always zero. */
1657 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1658 {
1659 if (regnum == i || regnum == -1)
1660 regcache_raw_collect (regcache, i, regs + offset);
1661 offset += 4;
1662 }
5af923b0 1663 }
386c036b
MK
1664
1665 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1666 {
386c036b
MK
1667 /* Not all of the register set variants include Locals and
1668 Inputs. For those that don't, we read them off the stack. */
1669 if (gregset->r_l0_offset != -1)
1670 {
1671 int offset = gregset->r_l0_offset;
1672
1673 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1674 {
1675 if (regnum == i || regnum == -1)
1676 regcache_raw_collect (regcache, i, regs + offset);
1677 offset += 4;
1678 }
1679 }
5af923b0 1680 }
c906108c
SS
1681}
1682
c906108c 1683void
386c036b
MK
1684sparc32_supply_fpregset (struct regcache *regcache,
1685 int regnum, const void *fpregs)
c906108c 1686{
e1613aba 1687 const gdb_byte *regs = fpregs;
386c036b 1688 int i;
60054393 1689
386c036b 1690 for (i = 0; i < 32; i++)
c906108c 1691 {
386c036b
MK
1692 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1693 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
c906108c 1694 }
5af923b0 1695
386c036b
MK
1696 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1697 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c
SS
1698}
1699
386c036b
MK
1700void
1701sparc32_collect_fpregset (const struct regcache *regcache,
1702 int regnum, void *fpregs)
c906108c 1703{
e1613aba 1704 gdb_byte *regs = fpregs;
386c036b 1705 int i;
c906108c 1706
386c036b
MK
1707 for (i = 0; i < 32; i++)
1708 {
1709 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1710 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1711 }
c906108c 1712
386c036b
MK
1713 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1714 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c 1715}
c906108c 1716\f
c906108c 1717
386c036b 1718/* SunOS 4. */
c906108c 1719
386c036b
MK
1720/* From <machine/reg.h>. */
1721const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 1722{
386c036b
MK
1723 0 * 4, /* %psr */
1724 1 * 4, /* %pc */
1725 2 * 4, /* %npc */
1726 3 * 4, /* %y */
1727 -1, /* %wim */
1728 -1, /* %tbr */
1729 4 * 4, /* %g1 */
1730 -1 /* %l0 */
1731};
1732\f
c906108c 1733
386c036b
MK
1734/* Provide a prototype to silence -Wmissing-prototypes. */
1735void _initialize_sparc_tdep (void);
c906108c
SS
1736
1737void
386c036b 1738_initialize_sparc_tdep (void)
c906108c 1739{
386c036b 1740 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
2d457077
MK
1741
1742 /* Initialize the SPARC-specific register types. */
1743 sparc_init_types();
ef3cf062 1744}