]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/sparc64-tdep.c
Unify gdb printf functions
[thirdparty/binutils-gdb.git] / gdb / sparc64-tdep.c
CommitLineData
8b39fe56
MK
1/* Target-dependent code for UltraSPARC.
2
4a94e368 3 Copyright (C) 2003-2022 Free Software Foundation, Inc.
8b39fe56
MK
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
8b39fe56
MK
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b39fe56
MK
19
20#include "defs.h"
21#include "arch-utils.h"
82ca8957 22#include "dwarf2/frame.h"
8b39fe56
MK
23#include "frame.h"
24#include "frame-base.h"
25#include "frame-unwind.h"
26#include "gdbcore.h"
27#include "gdbtypes.h"
386c036b
MK
28#include "inferior.h"
29#include "symtab.h"
30#include "objfiles.h"
8b39fe56
MK
31#include "osabi.h"
32#include "regcache.h"
3f7b46f2 33#include "target-descriptions.h"
8b39fe56
MK
34#include "target.h"
35#include "value.h"
8b39fe56 36#include "sparc64-tdep.h"
159ed7d9 37#include <forward_list>
8b39fe56 38
b021a221 39/* This file implements the SPARC 64-bit ABI as defined by the
8b39fe56
MK
40 section "Low-Level System Information" of the SPARC Compliance
41 Definition (SCD) 2.4.1, which is the 64-bit System V psABI for
42 SPARC. */
43
44/* Please use the sparc32_-prefix for 32-bit specific code, the
45 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
46 code can handle both. */
8b39fe56 47\f
58afddc6
WP
48/* The M7 processor supports an Application Data Integrity (ADI) feature
49 that detects invalid data accesses. When software allocates memory and
50 enables ADI on the allocated memory, it chooses a 4-bit version number,
51 sets the version in the upper 4 bits of the 64-bit pointer to that data,
52 and stores the 4-bit version in every cacheline of the object. Hardware
53 saves the latter in spare bits in the cache and memory hierarchy. On each
54 load and store, the processor compares the upper 4 VA (virtual address) bits
55 to the cacheline's version. If there is a mismatch, the processor generates
56 a version mismatch trap which can be either precise or disrupting.
57 The trap is an error condition which the kernel delivers to the process
58 as a SIGSEGV signal.
59
60 The upper 4 bits of the VA represent a version and are not part of the
61 true address. The processor clears these bits and sign extends bit 59
62 to generate the true address.
63
64 Note that 32-bit applications cannot use ADI. */
65
66
67#include <algorithm>
68#include "cli/cli-utils.h"
69#include "gdbcmd.h"
70#include "auxv.h"
71
72#define MAX_PROC_NAME_SIZE sizeof("/proc/99999/lwp/9999/adi/lstatus")
73
74/* ELF Auxiliary vectors */
75#ifndef AT_ADI_BLKSZ
76#define AT_ADI_BLKSZ 34
77#endif
78#ifndef AT_ADI_NBITS
79#define AT_ADI_NBITS 35
80#endif
81#ifndef AT_ADI_UEONADI
82#define AT_ADI_UEONADI 36
83#endif
84
85/* ADI command list. */
86static struct cmd_list_element *sparc64adilist = NULL;
87
88/* ADI stat settings. */
8f86ae1a 89struct adi_stat_t
58afddc6
WP
90{
91 /* The ADI block size. */
92 unsigned long blksize;
93
94 /* Number of bits used for an ADI version tag which can be
654670a4
WP
95 used together with the shift value for an ADI version tag
96 to encode or extract the ADI version value in a pointer. */
58afddc6
WP
97 unsigned long nbits;
98
99 /* The maximum ADI version tag value supported. */
100 int max_version;
101
102 /* ADI version tag file. */
103 int tag_fd = 0;
104
105 /* ADI availability check has been done. */
106 bool checked_avail = false;
107
108 /* ADI is available. */
109 bool is_avail = false;
110
8f86ae1a 111};
58afddc6
WP
112
113/* Per-process ADI stat info. */
114
8f86ae1a 115struct sparc64_adi_info
58afddc6
WP
116{
117 sparc64_adi_info (pid_t pid_)
118 : pid (pid_)
119 {}
120
121 /* The process identifier. */
122 pid_t pid;
123
124 /* The ADI stat. */
125 adi_stat_t stat = {};
126
8f86ae1a 127};
58afddc6
WP
128
129static std::forward_list<sparc64_adi_info> adi_proc_list;
130
131
132/* Get ADI info for process PID, creating one if it doesn't exist. */
133
134static sparc64_adi_info *
135get_adi_info_proc (pid_t pid)
136{
137 auto found = std::find_if (adi_proc_list.begin (), adi_proc_list.end (),
dda83cd7
SM
138 [&pid] (const sparc64_adi_info &info)
139 {
140 return info.pid == pid;
141 });
58afddc6
WP
142
143 if (found == adi_proc_list.end ())
144 {
145 adi_proc_list.emplace_front (pid);
146 return &adi_proc_list.front ();
147 }
148 else
149 {
150 return &(*found);
151 }
152}
153
154static adi_stat_t
155get_adi_info (pid_t pid)
156{
157 sparc64_adi_info *proc;
158
159 proc = get_adi_info_proc (pid);
160 return proc->stat;
161}
162
163/* Is called when GDB is no longer debugging process PID. It
164 deletes data structure that keeps track of the ADI stat. */
165
166void
167sparc64_forget_process (pid_t pid)
168{
169 int target_errno;
170
171 for (auto pit = adi_proc_list.before_begin (),
172 it = std::next (pit);
173 it != adi_proc_list.end ();
174 )
175 {
176 if ((*it).pid == pid)
177 {
dda83cd7
SM
178 if ((*it).stat.tag_fd > 0)
179 target_fileio_close ((*it).stat.tag_fd, &target_errno);
58afddc6 180 adi_proc_list.erase_after (pit);
dda83cd7 181 break;
58afddc6
WP
182 }
183 else
184 pit = it++;
185 }
186
187}
188
58afddc6
WP
189/* Read attributes of a maps entry in /proc/[pid]/adi/maps. */
190
191static void
192read_maps_entry (const char *line,
dda83cd7 193 ULONGEST *addr, ULONGEST *endaddr)
58afddc6
WP
194{
195 const char *p = line;
196
197 *addr = strtoulst (p, &p, 16);
198 if (*p == '-')
199 p++;
200
201 *endaddr = strtoulst (p, &p, 16);
202}
203
204/* Check if ADI is available. */
205
206static bool
207adi_available (void)
208{
e99b03dc 209 pid_t pid = inferior_ptid.pid ();
58afddc6 210 sparc64_adi_info *proc = get_adi_info_proc (pid);
654670a4 211 CORE_ADDR value;
58afddc6
WP
212
213 if (proc->stat.checked_avail)
214 return proc->stat.is_avail;
215
216 proc->stat.checked_avail = true;
328d42d8
SM
217 if (target_auxv_search (current_inferior ()->top_target (),
218 AT_ADI_BLKSZ, &value) <= 0)
58afddc6 219 return false;
654670a4 220 proc->stat.blksize = value;
328d42d8
SM
221 target_auxv_search (current_inferior ()->top_target (),
222 AT_ADI_NBITS, &value);
654670a4 223 proc->stat.nbits = value;
58afddc6
WP
224 proc->stat.max_version = (1 << proc->stat.nbits) - 2;
225 proc->stat.is_avail = true;
226
227 return proc->stat.is_avail;
228}
229
230/* Normalize a versioned address - a VA with ADI bits (63-60) set. */
231
232static CORE_ADDR
233adi_normalize_address (CORE_ADDR addr)
234{
e99b03dc 235 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
58afddc6
WP
236
237 if (ast.nbits)
654670a4
WP
238 {
239 /* Clear upper bits. */
240 addr &= ((uint64_t) -1) >> ast.nbits;
241
242 /* Sign extend. */
243 CORE_ADDR signbit = (uint64_t) 1 << (64 - ast.nbits - 1);
244 return (addr ^ signbit) - signbit;
245 }
58afddc6
WP
246 return addr;
247}
248
249/* Align a normalized address - a VA with bit 59 sign extended into
250 ADI bits. */
251
252static CORE_ADDR
253adi_align_address (CORE_ADDR naddr)
254{
e99b03dc 255 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
58afddc6
WP
256
257 return (naddr - (naddr % ast.blksize)) / ast.blksize;
258}
259
260/* Convert a byte count to count at a ratio of 1:adi_blksz. */
261
262static int
263adi_convert_byte_count (CORE_ADDR naddr, int nbytes, CORE_ADDR locl)
264{
e99b03dc 265 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
58afddc6
WP
266
267 return ((naddr + nbytes + ast.blksize - 1) / ast.blksize) - locl;
268}
269
270/* The /proc/[pid]/adi/tags file, which allows gdb to get/set ADI
271 version in a target process, maps linearly to the address space
272 of the target process at a ratio of 1:adi_blksz.
273
274 A read (or write) at offset K in the file returns (or modifies)
275 the ADI version tag stored in the cacheline containing address
276 K * adi_blksz, encoded as 1 version tag per byte. The allowed
277 version tag values are between 0 and adi_stat.max_version. */
278
279static int
280adi_tag_fd (void)
281{
e99b03dc 282 pid_t pid = inferior_ptid.pid ();
58afddc6
WP
283 sparc64_adi_info *proc = get_adi_info_proc (pid);
284
285 if (proc->stat.tag_fd != 0)
286 return proc->stat.tag_fd;
287
288 char cl_name[MAX_PROC_NAME_SIZE];
39b06c20 289 snprintf (cl_name, sizeof(cl_name), "/proc/%ld/adi/tags", (long) pid);
58afddc6
WP
290 int target_errno;
291 proc->stat.tag_fd = target_fileio_open (NULL, cl_name, O_RDWR|O_EXCL,
dda83cd7 292 false, 0, &target_errno);
58afddc6
WP
293 return proc->stat.tag_fd;
294}
295
296/* Check if an address set is ADI enabled, using /proc/[pid]/adi/maps
297 which was exported by the kernel and contains the currently ADI
298 mapped memory regions and their access permissions. */
299
300static bool
301adi_is_addr_mapped (CORE_ADDR vaddr, size_t cnt)
302{
303 char filename[MAX_PROC_NAME_SIZE];
304 size_t i = 0;
305
e99b03dc 306 pid_t pid = inferior_ptid.pid ();
39b06c20 307 snprintf (filename, sizeof filename, "/proc/%ld/adi/maps", (long) pid);
87028b87
TT
308 gdb::unique_xmalloc_ptr<char> data
309 = target_fileio_read_stralloc (NULL, filename);
58afddc6
WP
310 if (data)
311 {
58afddc6 312 adi_stat_t adi_stat = get_adi_info (pid);
ca3a04f6
CB
313 char *saveptr;
314 for (char *line = strtok_r (data.get (), "\n", &saveptr);
315 line;
316 line = strtok_r (NULL, "\n", &saveptr))
dda83cd7
SM
317 {
318 ULONGEST addr, endaddr;
58afddc6 319
dda83cd7 320 read_maps_entry (line, &addr, &endaddr);
58afddc6 321
dda83cd7
SM
322 while (((vaddr + i) * adi_stat.blksize) >= addr
323 && ((vaddr + i) * adi_stat.blksize) < endaddr)
324 {
325 if (++i == cnt)
87028b87 326 return true;
dda83cd7
SM
327 }
328 }
58afddc6 329 }
492325c4
SM
330 else
331 warning (_("unable to open /proc file '%s'"), filename);
58afddc6
WP
332
333 return false;
334}
335
336/* Read ADI version tag value for memory locations starting at "VADDR"
337 for "SIZE" number of bytes. */
338
339static int
7f6743fd 340adi_read_versions (CORE_ADDR vaddr, size_t size, gdb_byte *tags)
58afddc6
WP
341{
342 int fd = adi_tag_fd ();
343 if (fd == -1)
344 return -1;
345
346 if (!adi_is_addr_mapped (vaddr, size))
347 {
e99b03dc 348 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
654670a4 349 error(_("Address at %s is not in ADI maps"),
dda83cd7 350 paddress (target_gdbarch (), vaddr * ast.blksize));
58afddc6
WP
351 }
352
353 int target_errno;
354 return target_fileio_pread (fd, tags, size, vaddr, &target_errno);
355}
356
357/* Write ADI version tag for memory locations starting at "VADDR" for
358 "SIZE" number of bytes to "TAGS". */
359
360static int
361adi_write_versions (CORE_ADDR vaddr, size_t size, unsigned char *tags)
362{
363 int fd = adi_tag_fd ();
364 if (fd == -1)
365 return -1;
366
367 if (!adi_is_addr_mapped (vaddr, size))
368 {
e99b03dc 369 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
654670a4 370 error(_("Address at %s is not in ADI maps"),
dda83cd7 371 paddress (target_gdbarch (), vaddr * ast.blksize));
58afddc6
WP
372 }
373
374 int target_errno;
375 return target_fileio_pwrite (fd, tags, size, vaddr, &target_errno);
376}
377
378/* Print ADI version tag value in "TAGS" for memory locations starting
379 at "VADDR" with number of "CNT". */
380
381static void
7f6743fd 382adi_print_versions (CORE_ADDR vaddr, size_t cnt, gdb_byte *tags)
58afddc6
WP
383{
384 int v_idx = 0;
385 const int maxelts = 8; /* # of elements per line */
386
e99b03dc 387 adi_stat_t adi_stat = get_adi_info (inferior_ptid.pid ());
58afddc6
WP
388
389 while (cnt > 0)
390 {
391 QUIT;
6cb06a8c
TT
392 gdb_printf ("%s:\t",
393 paddress (target_gdbarch (), vaddr * adi_stat.blksize));
58afddc6 394 for (int i = maxelts; i > 0 && cnt > 0; i--, cnt--)
dda83cd7
SM
395 {
396 if (tags[v_idx] == 0xff) /* no version tag */
6cb06a8c 397 gdb_printf ("-");
dda83cd7 398 else
6cb06a8c 399 gdb_printf ("%1X", tags[v_idx]);
58afddc6 400 if (cnt > 1)
6cb06a8c 401 gdb_printf (" ");
dda83cd7
SM
402 ++v_idx;
403 }
6cb06a8c 404 gdb_printf ("\n");
58afddc6
WP
405 vaddr += maxelts;
406 }
407}
408
409static void
410do_examine (CORE_ADDR start, int bcnt)
411{
412 CORE_ADDR vaddr = adi_normalize_address (start);
58afddc6
WP
413
414 CORE_ADDR vstart = adi_align_address (vaddr);
415 int cnt = adi_convert_byte_count (vaddr, bcnt, vstart);
7f6743fd
TT
416 gdb::def_vector<gdb_byte> buf (cnt);
417 int read_cnt = adi_read_versions (vstart, cnt, buf.data ());
58afddc6
WP
418 if (read_cnt == -1)
419 error (_("No ADI information"));
420 else if (read_cnt < cnt)
654670a4 421 error(_("No ADI information at %s"), paddress (target_gdbarch (), vaddr));
58afddc6 422
7f6743fd 423 adi_print_versions (vstart, cnt, buf.data ());
58afddc6
WP
424}
425
426static void
427do_assign (CORE_ADDR start, size_t bcnt, int version)
428{
429 CORE_ADDR vaddr = adi_normalize_address (start);
430
431 CORE_ADDR vstart = adi_align_address (vaddr);
432 int cnt = adi_convert_byte_count (vaddr, bcnt, vstart);
433 std::vector<unsigned char> buf (cnt, version);
434 int set_cnt = adi_write_versions (vstart, cnt, buf.data ());
435
436 if (set_cnt == -1)
437 error (_("No ADI information"));
438 else if (set_cnt < cnt)
654670a4 439 error(_("No ADI information at %s"), paddress (target_gdbarch (), vaddr));
58afddc6
WP
440
441}
442
443/* ADI examine version tag command.
444
445 Command syntax:
446
65e65158 447 adi (examine|x)[/COUNT] [ADDR] */
58afddc6
WP
448
449static void
5fed81ff 450adi_examine_command (const char *args, int from_tty)
58afddc6
WP
451{
452 /* make sure program is active and adi is available */
55f6301a 453 if (!target_has_execution ())
58afddc6
WP
454 error (_("ADI command requires a live process/thread"));
455
456 if (!adi_available ())
457 error (_("No ADI information"));
458
58afddc6 459 int cnt = 1;
5fed81ff 460 const char *p = args;
58afddc6
WP
461 if (p && *p == '/')
462 {
463 p++;
464 cnt = get_number (&p);
465 }
466
467 CORE_ADDR next_address = 0;
468 if (p != 0 && *p != 0)
469 next_address = parse_and_eval_address (p);
470 if (!cnt || !next_address)
65e65158 471 error (_("Usage: adi examine|x[/COUNT] [ADDR]"));
58afddc6
WP
472
473 do_examine (next_address, cnt);
474}
475
476/* ADI assign version tag command.
477
478 Command syntax:
479
65e65158 480 adi (assign|a)[/COUNT] ADDR = VERSION */
58afddc6
WP
481
482static void
5fed81ff 483adi_assign_command (const char *args, int from_tty)
58afddc6 484{
65e65158
TT
485 static const char *adi_usage
486 = N_("Usage: adi assign|a[/COUNT] ADDR = VERSION");
487
58afddc6 488 /* make sure program is active and adi is available */
55f6301a 489 if (!target_has_execution ())
58afddc6
WP
490 error (_("ADI command requires a live process/thread"));
491
492 if (!adi_available ())
493 error (_("No ADI information"));
494
5fed81ff 495 const char *exp = args;
58afddc6 496 if (exp == 0)
65e65158 497 error_no_arg (_(adi_usage));
58afddc6
WP
498
499 char *q = (char *) strchr (exp, '=');
500 if (q)
501 *q++ = 0;
502 else
65e65158 503 error ("%s", _(adi_usage));
58afddc6
WP
504
505 size_t cnt = 1;
5fed81ff 506 const char *p = args;
58afddc6
WP
507 if (exp && *exp == '/')
508 {
509 p = exp + 1;
510 cnt = get_number (&p);
511 }
512
513 CORE_ADDR next_address = 0;
514 if (p != 0 && *p != 0)
515 next_address = parse_and_eval_address (p);
516 else
65e65158 517 error ("%s", _(adi_usage));
58afddc6
WP
518
519 int version = 0;
520 if (q != NULL) /* parse version tag */
521 {
e99b03dc 522 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
58afddc6
WP
523 version = parse_and_eval_long (q);
524 if (version < 0 || version > ast.max_version)
dda83cd7 525 error (_("Invalid ADI version tag %d"), version);
58afddc6
WP
526 }
527
528 do_assign (next_address, cnt, version);
529}
530
6c265988 531void _initialize_sparc64_adi_tdep ();
58afddc6 532void
6c265988 533_initialize_sparc64_adi_tdep ()
58afddc6 534{
0743fc83
TT
535 add_basic_prefix_cmd ("adi", class_support,
536 _("ADI version related commands."),
2f822da5 537 &sparc64adilist, 0, &cmdlist);
5e84b7ee
SM
538 cmd_list_element *adi_examine_cmd
539 = add_cmd ("examine", class_support, adi_examine_command,
540 _("Examine ADI versions."), &sparc64adilist);
541 add_alias_cmd ("x", adi_examine_cmd, no_class, 1, &sparc64adilist);
58afddc6 542 add_cmd ("assign", class_support, adi_assign_command,
dda83cd7 543 _("Assign ADI versions."), &sparc64adilist);
58afddc6
WP
544
545}
546\f
547
8b39fe56
MK
548/* The functions on this page are intended to be used to classify
549 function arguments. */
550
8b39fe56
MK
551/* Check whether TYPE is "Integral or Pointer". */
552
553static int
554sparc64_integral_or_pointer_p (const struct type *type)
555{
78134374 556 switch (type->code ())
8b39fe56
MK
557 {
558 case TYPE_CODE_INT:
559 case TYPE_CODE_BOOL:
560 case TYPE_CODE_CHAR:
561 case TYPE_CODE_ENUM:
562 case TYPE_CODE_RANGE:
563 {
564 int len = TYPE_LENGTH (type);
565 gdb_assert (len == 1 || len == 2 || len == 4 || len == 8);
566 }
567 return 1;
568 case TYPE_CODE_PTR:
569 case TYPE_CODE_REF:
aa006118 570 case TYPE_CODE_RVALUE_REF:
8b39fe56
MK
571 {
572 int len = TYPE_LENGTH (type);
573 gdb_assert (len == 8);
574 }
575 return 1;
576 default:
577 break;
578 }
579
580 return 0;
581}
582
583/* Check whether TYPE is "Floating". */
584
585static int
586sparc64_floating_p (const struct type *type)
587{
78134374 588 switch (type->code ())
8b39fe56
MK
589 {
590 case TYPE_CODE_FLT:
591 {
592 int len = TYPE_LENGTH (type);
593 gdb_assert (len == 4 || len == 8 || len == 16);
594 }
595 return 1;
596 default:
597 break;
598 }
599
600 return 0;
601}
602
fe10a582
DM
603/* Check whether TYPE is "Complex Floating". */
604
605static int
606sparc64_complex_floating_p (const struct type *type)
607{
78134374 608 switch (type->code ())
fe10a582
DM
609 {
610 case TYPE_CODE_COMPLEX:
611 {
612 int len = TYPE_LENGTH (type);
613 gdb_assert (len == 8 || len == 16 || len == 32);
614 }
615 return 1;
616 default:
617 break;
618 }
619
620 return 0;
621}
622
0497f5b0
JB
623/* Check whether TYPE is "Structure or Union".
624
625 In terms of Ada subprogram calls, arrays are treated the same as
626 struct and union types. So this function also returns non-zero
627 for array types. */
8b39fe56
MK
628
629static int
630sparc64_structure_or_union_p (const struct type *type)
631{
78134374 632 switch (type->code ())
8b39fe56
MK
633 {
634 case TYPE_CODE_STRUCT:
635 case TYPE_CODE_UNION:
0497f5b0 636 case TYPE_CODE_ARRAY:
8b39fe56
MK
637 return 1;
638 default:
639 break;
640 }
641
642 return 0;
643}
fd936806
MK
644\f
645
209bd28e 646/* Construct types for ISA-specific registers. */
fd936806 647
209bd28e
UW
648static struct type *
649sparc64_pstate_type (struct gdbarch *gdbarch)
650{
345bd07c 651 sparc_gdbarch_tdep *tdep = (sparc_gdbarch_tdep *) gdbarch_tdep (gdbarch);
fd936806 652
209bd28e
UW
653 if (!tdep->sparc64_pstate_type)
654 {
655 struct type *type;
656
77b7c781 657 type = arch_flags_type (gdbarch, "builtin_type_sparc64_pstate", 64);
209bd28e
UW
658 append_flags_type_flag (type, 0, "AG");
659 append_flags_type_flag (type, 1, "IE");
660 append_flags_type_flag (type, 2, "PRIV");
661 append_flags_type_flag (type, 3, "AM");
662 append_flags_type_flag (type, 4, "PEF");
663 append_flags_type_flag (type, 5, "RED");
664 append_flags_type_flag (type, 8, "TLE");
665 append_flags_type_flag (type, 9, "CLE");
666 append_flags_type_flag (type, 10, "PID0");
667 append_flags_type_flag (type, 11, "PID1");
668
669 tdep->sparc64_pstate_type = type;
670 }
fd936806 671
209bd28e
UW
672 return tdep->sparc64_pstate_type;
673}
fd936806 674
5badf10a
IR
675static struct type *
676sparc64_ccr_type (struct gdbarch *gdbarch)
677{
345bd07c 678 sparc_gdbarch_tdep *tdep = (sparc_gdbarch_tdep *) gdbarch_tdep (gdbarch);
5badf10a
IR
679
680 if (tdep->sparc64_ccr_type == NULL)
681 {
682 struct type *type;
683
77b7c781 684 type = arch_flags_type (gdbarch, "builtin_type_sparc64_ccr", 64);
5badf10a
IR
685 append_flags_type_flag (type, 0, "icc.c");
686 append_flags_type_flag (type, 1, "icc.v");
687 append_flags_type_flag (type, 2, "icc.z");
688 append_flags_type_flag (type, 3, "icc.n");
689 append_flags_type_flag (type, 4, "xcc.c");
690 append_flags_type_flag (type, 5, "xcc.v");
691 append_flags_type_flag (type, 6, "xcc.z");
692 append_flags_type_flag (type, 7, "xcc.n");
693
694 tdep->sparc64_ccr_type = type;
695 }
696
697 return tdep->sparc64_ccr_type;
698}
699
209bd28e
UW
700static struct type *
701sparc64_fsr_type (struct gdbarch *gdbarch)
702{
345bd07c 703 sparc_gdbarch_tdep *tdep = (sparc_gdbarch_tdep *) gdbarch_tdep (gdbarch);
209bd28e
UW
704
705 if (!tdep->sparc64_fsr_type)
706 {
707 struct type *type;
708
77b7c781 709 type = arch_flags_type (gdbarch, "builtin_type_sparc64_fsr", 64);
5badf10a
IR
710 append_flags_type_flag (type, 0, "NXC");
711 append_flags_type_flag (type, 1, "DZC");
712 append_flags_type_flag (type, 2, "UFC");
713 append_flags_type_flag (type, 3, "OFC");
714 append_flags_type_flag (type, 4, "NVC");
715 append_flags_type_flag (type, 5, "NXA");
716 append_flags_type_flag (type, 6, "DZA");
717 append_flags_type_flag (type, 7, "UFA");
718 append_flags_type_flag (type, 8, "OFA");
719 append_flags_type_flag (type, 9, "NVA");
209bd28e
UW
720 append_flags_type_flag (type, 22, "NS");
721 append_flags_type_flag (type, 23, "NXM");
722 append_flags_type_flag (type, 24, "DZM");
723 append_flags_type_flag (type, 25, "UFM");
724 append_flags_type_flag (type, 26, "OFM");
725 append_flags_type_flag (type, 27, "NVM");
726
727 tdep->sparc64_fsr_type = type;
728 }
729
730 return tdep->sparc64_fsr_type;
731}
732
733static struct type *
734sparc64_fprs_type (struct gdbarch *gdbarch)
fd936806 735{
345bd07c 736 sparc_gdbarch_tdep *tdep = (sparc_gdbarch_tdep *) gdbarch_tdep (gdbarch);
209bd28e
UW
737
738 if (!tdep->sparc64_fprs_type)
739 {
740 struct type *type;
741
77b7c781 742 type = arch_flags_type (gdbarch, "builtin_type_sparc64_fprs", 64);
209bd28e
UW
743 append_flags_type_flag (type, 0, "DL");
744 append_flags_type_flag (type, 1, "DU");
745 append_flags_type_flag (type, 2, "FEF");
746
747 tdep->sparc64_fprs_type = type;
748 }
749
750 return tdep->sparc64_fprs_type;
fd936806 751}
8b39fe56 752
209bd28e 753
8b39fe56 754/* Register information. */
7a36499a
IR
755#define SPARC64_FPU_REGISTERS \
756 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
757 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
758 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
759 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
760 "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46", \
761 "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62"
762#define SPARC64_CP0_REGISTERS \
763 "pc", "npc", \
764 /* FIXME: Give "state" a name until we start using register groups. */ \
765 "state", \
766 "fsr", \
767 "fprs", \
768 "y"
8b39fe56 769
27087b7f
TT
770static const char * const sparc64_fpu_register_names[] = {
771 SPARC64_FPU_REGISTERS
772};
773static const char * const sparc64_cp0_register_names[] = {
774 SPARC64_CP0_REGISTERS
775};
3f7b46f2 776
27087b7f 777static const char * const sparc64_register_names[] =
8b39fe56 778{
7a36499a
IR
779 SPARC_CORE_REGISTERS,
780 SPARC64_FPU_REGISTERS,
781 SPARC64_CP0_REGISTERS
8b39fe56
MK
782};
783
784/* Total number of registers. */
6707b003 785#define SPARC64_NUM_REGS ARRAY_SIZE (sparc64_register_names)
8b39fe56
MK
786
787/* We provide the aliases %d0..%d62 and %q0..%q60 for the floating
788 registers as "psuedo" registers. */
789
27087b7f 790static const char * const sparc64_pseudo_register_names[] =
8b39fe56 791{
6707b003
UW
792 "cwp", "pstate", "asi", "ccr",
793
794 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
795 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30",
796 "d32", "d34", "d36", "d38", "d40", "d42", "d44", "d46",
797 "d48", "d50", "d52", "d54", "d56", "d58", "d60", "d62",
798
799 "q0", "q4", "q8", "q12", "q16", "q20", "q24", "q28",
800 "q32", "q36", "q40", "q44", "q48", "q52", "q56", "q60",
8b39fe56
MK
801};
802
803/* Total number of pseudo registers. */
6707b003 804#define SPARC64_NUM_PSEUDO_REGS ARRAY_SIZE (sparc64_pseudo_register_names)
8b39fe56 805
7a36499a
IR
806/* Return the name of pseudo register REGNUM. */
807
808static const char *
809sparc64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
810{
811 regnum -= gdbarch_num_regs (gdbarch);
812
813 if (regnum < SPARC64_NUM_PSEUDO_REGS)
814 return sparc64_pseudo_register_names[regnum];
815
816 internal_error (__FILE__, __LINE__,
dda83cd7
SM
817 _("sparc64_pseudo_register_name: bad register number %d"),
818 regnum);
7a36499a
IR
819}
820
8b39fe56
MK
821/* Return the name of register REGNUM. */
822
823static const char *
d93859e2 824sparc64_register_name (struct gdbarch *gdbarch, int regnum)
8b39fe56 825{
3f7b46f2
IR
826 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
827 return tdesc_register_name (gdbarch, regnum);
828
7a36499a 829 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
6707b003 830 return sparc64_register_names[regnum];
8b39fe56 831
7a36499a
IR
832 return sparc64_pseudo_register_name (gdbarch, regnum);
833}
834
835/* Return the GDB type object for the "standard" data type of data in
836 pseudo register REGNUM. */
837
838static struct type *
839sparc64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
840{
841 regnum -= gdbarch_num_regs (gdbarch);
842
843 if (regnum == SPARC64_CWP_REGNUM)
844 return builtin_type (gdbarch)->builtin_int64;
845 if (regnum == SPARC64_PSTATE_REGNUM)
846 return sparc64_pstate_type (gdbarch);
847 if (regnum == SPARC64_ASI_REGNUM)
848 return builtin_type (gdbarch)->builtin_int64;
849 if (regnum == SPARC64_CCR_REGNUM)
5badf10a 850 return sparc64_ccr_type (gdbarch);
7a36499a
IR
851 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D62_REGNUM)
852 return builtin_type (gdbarch)->builtin_double;
853 if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q60_REGNUM)
854 return builtin_type (gdbarch)->builtin_long_double;
8b39fe56 855
7a36499a 856 internal_error (__FILE__, __LINE__,
dda83cd7
SM
857 _("sparc64_pseudo_register_type: bad register number %d"),
858 regnum);
8b39fe56
MK
859}
860
861/* Return the GDB type object for the "standard" data type of data in
c378eb4e 862 register REGNUM. */
8b39fe56
MK
863
864static struct type *
865sparc64_register_type (struct gdbarch *gdbarch, int regnum)
866{
3f7b46f2
IR
867 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
868 return tdesc_register_type (gdbarch, regnum);
869
6707b003 870 /* Raw registers. */
6707b003 871 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 872 return builtin_type (gdbarch)->builtin_data_ptr;
6707b003 873 if (regnum >= SPARC_G0_REGNUM && regnum <= SPARC_I7_REGNUM)
df4df182 874 return builtin_type (gdbarch)->builtin_int64;
6707b003 875 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 876 return builtin_type (gdbarch)->builtin_float;
6707b003 877 if (regnum >= SPARC64_F32_REGNUM && regnum <= SPARC64_F62_REGNUM)
0dfff4cb 878 return builtin_type (gdbarch)->builtin_double;
6707b003 879 if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
0dfff4cb 880 return builtin_type (gdbarch)->builtin_func_ptr;
6707b003
UW
881 /* This raw register contains the contents of %cwp, %pstate, %asi
882 and %ccr as laid out in a %tstate register. */
883 if (regnum == SPARC64_STATE_REGNUM)
df4df182 884 return builtin_type (gdbarch)->builtin_int64;
6707b003 885 if (regnum == SPARC64_FSR_REGNUM)
209bd28e 886 return sparc64_fsr_type (gdbarch);
6707b003 887 if (regnum == SPARC64_FPRS_REGNUM)
209bd28e 888 return sparc64_fprs_type (gdbarch);
6707b003
UW
889 /* "Although Y is a 64-bit register, its high-order 32 bits are
890 reserved and always read as 0." */
891 if (regnum == SPARC64_Y_REGNUM)
df4df182 892 return builtin_type (gdbarch)->builtin_int64;
6707b003
UW
893
894 /* Pseudo registers. */
7a36499a
IR
895 if (regnum >= gdbarch_num_regs (gdbarch))
896 return sparc64_pseudo_register_type (gdbarch, regnum);
6707b003
UW
897
898 internal_error (__FILE__, __LINE__, _("invalid regnum"));
8b39fe56
MK
899}
900
05d1431c 901static enum register_status
8b39fe56 902sparc64_pseudo_register_read (struct gdbarch *gdbarch,
849d0ba8 903 readable_regcache *regcache,
e1613aba 904 int regnum, gdb_byte *buf)
8b39fe56 905{
e17a4113 906 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
05d1431c
PA
907 enum register_status status;
908
7a36499a 909 regnum -= gdbarch_num_regs (gdbarch);
8b39fe56
MK
910
911 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
912 {
913 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
03f50fc8 914 status = regcache->raw_read (regnum, buf);
05d1431c 915 if (status == REG_VALID)
03f50fc8 916 status = regcache->raw_read (regnum + 1, buf + 4);
05d1431c 917 return status;
8b39fe56
MK
918 }
919 else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
920 {
921 regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
03f50fc8 922 return regcache->raw_read (regnum, buf);
8b39fe56
MK
923 }
924 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
925 {
926 regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
05d1431c 927
03f50fc8 928 status = regcache->raw_read (regnum, buf);
05d1431c 929 if (status == REG_VALID)
03f50fc8 930 status = regcache->raw_read (regnum + 1, buf + 4);
05d1431c 931 if (status == REG_VALID)
03f50fc8 932 status = regcache->raw_read (regnum + 2, buf + 8);
05d1431c 933 if (status == REG_VALID)
03f50fc8 934 status = regcache->raw_read (regnum + 3, buf + 12);
05d1431c
PA
935
936 return status;
8b39fe56
MK
937 }
938 else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
939 {
940 regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
05d1431c 941
03f50fc8 942 status = regcache->raw_read (regnum, buf);
05d1431c 943 if (status == REG_VALID)
03f50fc8 944 status = regcache->raw_read (regnum + 1, buf + 8);
05d1431c
PA
945
946 return status;
8b39fe56
MK
947 }
948 else if (regnum == SPARC64_CWP_REGNUM
949 || regnum == SPARC64_PSTATE_REGNUM
950 || regnum == SPARC64_ASI_REGNUM
951 || regnum == SPARC64_CCR_REGNUM)
952 {
953 ULONGEST state;
954
03f50fc8 955 status = regcache->raw_read (SPARC64_STATE_REGNUM, &state);
05d1431c
PA
956 if (status != REG_VALID)
957 return status;
958
8b39fe56
MK
959 switch (regnum)
960 {
3567a8ea 961 case SPARC64_CWP_REGNUM:
8b39fe56
MK
962 state = (state >> 0) & ((1 << 5) - 1);
963 break;
3567a8ea 964 case SPARC64_PSTATE_REGNUM:
8b39fe56
MK
965 state = (state >> 8) & ((1 << 12) - 1);
966 break;
3567a8ea 967 case SPARC64_ASI_REGNUM:
8b39fe56
MK
968 state = (state >> 24) & ((1 << 8) - 1);
969 break;
3567a8ea 970 case SPARC64_CCR_REGNUM:
8b39fe56
MK
971 state = (state >> 32) & ((1 << 8) - 1);
972 break;
973 }
e17a4113 974 store_unsigned_integer (buf, 8, byte_order, state);
8b39fe56 975 }
05d1431c
PA
976
977 return REG_VALID;
8b39fe56
MK
978}
979
980static void
981sparc64_pseudo_register_write (struct gdbarch *gdbarch,
982 struct regcache *regcache,
e1613aba 983 int regnum, const gdb_byte *buf)
8b39fe56 984{
e17a4113 985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7a36499a
IR
986
987 regnum -= gdbarch_num_regs (gdbarch);
8b39fe56
MK
988
989 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
990 {
991 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
10eaee5f
SM
992 regcache->raw_write (regnum, buf);
993 regcache->raw_write (regnum + 1, buf + 4);
8b39fe56
MK
994 }
995 else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
996 {
997 regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
10eaee5f 998 regcache->raw_write (regnum, buf);
8b39fe56
MK
999 }
1000 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
1001 {
1002 regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
10eaee5f
SM
1003 regcache->raw_write (regnum, buf);
1004 regcache->raw_write (regnum + 1, buf + 4);
1005 regcache->raw_write (regnum + 2, buf + 8);
1006 regcache->raw_write (regnum + 3, buf + 12);
8b39fe56
MK
1007 }
1008 else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
1009 {
1010 regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
10eaee5f
SM
1011 regcache->raw_write (regnum, buf);
1012 regcache->raw_write (regnum + 1, buf + 8);
8b39fe56 1013 }
3567a8ea
MK
1014 else if (regnum == SPARC64_CWP_REGNUM
1015 || regnum == SPARC64_PSTATE_REGNUM
1016 || regnum == SPARC64_ASI_REGNUM
1017 || regnum == SPARC64_CCR_REGNUM)
1018 {
1019 ULONGEST state, bits;
1020
1021 regcache_raw_read_unsigned (regcache, SPARC64_STATE_REGNUM, &state);
e17a4113 1022 bits = extract_unsigned_integer (buf, 8, byte_order);
3567a8ea
MK
1023 switch (regnum)
1024 {
1025 case SPARC64_CWP_REGNUM:
1026 state |= ((bits & ((1 << 5) - 1)) << 0);
1027 break;
1028 case SPARC64_PSTATE_REGNUM:
1029 state |= ((bits & ((1 << 12) - 1)) << 8);
1030 break;
1031 case SPARC64_ASI_REGNUM:
1032 state |= ((bits & ((1 << 8) - 1)) << 24);
1033 break;
1034 case SPARC64_CCR_REGNUM:
1035 state |= ((bits & ((1 << 8) - 1)) << 32);
1036 break;
1037 }
1038 regcache_raw_write_unsigned (regcache, SPARC64_STATE_REGNUM, state);
1039 }
8b39fe56 1040}
8b39fe56
MK
1041\f
1042
8b39fe56
MK
1043/* Return PC of first real instruction of the function starting at
1044 START_PC. */
1045
1046static CORE_ADDR
6093d2eb 1047sparc64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
8b39fe56
MK
1048{
1049 struct symtab_and_line sal;
1050 CORE_ADDR func_start, func_end;
386c036b 1051 struct sparc_frame_cache cache;
8b39fe56
MK
1052
1053 /* This is the preferred method, find the end of the prologue by
1054 using the debugging information. */
1055 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1056 {
1057 sal = find_pc_line (func_start, 0);
1058
1059 if (sal.end < func_end
1060 && start_pc <= sal.end)
1061 return sal.end;
1062 }
1063
be8626e0
MD
1064 return sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffULL,
1065 &cache);
8b39fe56
MK
1066}
1067
1068/* Normal frames. */
1069
386c036b 1070static struct sparc_frame_cache *
236369e7 1071sparc64_frame_cache (struct frame_info *this_frame, void **this_cache)
8b39fe56 1072{
236369e7 1073 return sparc_frame_cache (this_frame, this_cache);
8b39fe56
MK
1074}
1075
1076static void
236369e7 1077sparc64_frame_this_id (struct frame_info *this_frame, void **this_cache,
8b39fe56
MK
1078 struct frame_id *this_id)
1079{
386c036b 1080 struct sparc_frame_cache *cache =
236369e7 1081 sparc64_frame_cache (this_frame, this_cache);
8b39fe56
MK
1082
1083 /* This marks the outermost frame. */
1084 if (cache->base == 0)
1085 return;
1086
1087 (*this_id) = frame_id_build (cache->base, cache->pc);
1088}
1089
236369e7
JB
1090static struct value *
1091sparc64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1092 int regnum)
8b39fe56 1093{
e17a4113 1094 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 1095 struct sparc_frame_cache *cache =
236369e7 1096 sparc64_frame_cache (this_frame, this_cache);
8b39fe56
MK
1097
1098 if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
1099 {
236369e7 1100 CORE_ADDR pc = (regnum == SPARC64_NPC_REGNUM) ? 4 : 0;
8b39fe56 1101
369c397b
JB
1102 regnum =
1103 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
236369e7
JB
1104 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1105 return frame_unwind_got_constant (this_frame, regnum, pc);
8b39fe56
MK
1106 }
1107
f700a364
MK
1108 /* Handle StackGhost. */
1109 {
e17a4113 1110 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
f700a364
MK
1111
1112 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1113 {
dda83cd7
SM
1114 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 8;
1115 ULONGEST i7;
236369e7 1116
dda83cd7
SM
1117 /* Read the value in from memory. */
1118 i7 = get_frame_memory_unsigned (this_frame, addr, 8);
1119 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
f700a364
MK
1120 }
1121 }
1122
369c397b 1123 /* The previous frame's `local' and `in' registers may have been saved
8b39fe56 1124 in the register save area. */
369c397b
JB
1125 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1126 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
8b39fe56 1127 {
236369e7 1128 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 8;
8b39fe56 1129
236369e7 1130 return frame_unwind_got_memory (this_frame, regnum, addr);
8b39fe56
MK
1131 }
1132
369c397b
JB
1133 /* The previous frame's `out' registers may be accessible as the current
1134 frame's `in' registers. */
1135 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1136 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
8b39fe56
MK
1137 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1138
236369e7 1139 return frame_unwind_got_register (this_frame, regnum, regnum);
8b39fe56
MK
1140}
1141
1142static const struct frame_unwind sparc64_frame_unwind =
1143{
a154d838 1144 "sparc64 prologue",
8b39fe56 1145 NORMAL_FRAME,
8fbca658 1146 default_frame_unwind_stop_reason,
8b39fe56 1147 sparc64_frame_this_id,
236369e7
JB
1148 sparc64_frame_prev_register,
1149 NULL,
1150 default_frame_sniffer
8b39fe56 1151};
8b39fe56
MK
1152\f
1153
1154static CORE_ADDR
236369e7 1155sparc64_frame_base_address (struct frame_info *this_frame, void **this_cache)
8b39fe56 1156{
386c036b 1157 struct sparc_frame_cache *cache =
236369e7 1158 sparc64_frame_cache (this_frame, this_cache);
8b39fe56 1159
5b2d44a0 1160 return cache->base;
8b39fe56
MK
1161}
1162
1163static const struct frame_base sparc64_frame_base =
1164{
1165 &sparc64_frame_unwind,
1166 sparc64_frame_base_address,
1167 sparc64_frame_base_address,
1168 sparc64_frame_base_address
1169};
8b39fe56
MK
1170\f
1171/* Check whether TYPE must be 16-byte aligned. */
1172
1173static int
1174sparc64_16_byte_align_p (struct type *type)
1175{
78134374 1176 if (type->code () == TYPE_CODE_ARRAY)
1933fd8e
VM
1177 {
1178 struct type *t = check_typedef (TYPE_TARGET_TYPE (type));
1179
1180 if (sparc64_floating_p (t))
dda83cd7 1181 return 1;
1933fd8e 1182 }
8b39fe56
MK
1183 if (sparc64_floating_p (type) && TYPE_LENGTH (type) == 16)
1184 return 1;
1185
1186 if (sparc64_structure_or_union_p (type))
1187 {
1188 int i;
1189
1f704f76 1190 for (i = 0; i < type->num_fields (); i++)
60af1db2 1191 {
940da03e 1192 struct type *subtype = check_typedef (type->field (i).type ());
60af1db2
MK
1193
1194 if (sparc64_16_byte_align_p (subtype))
1195 return 1;
1196 }
8b39fe56
MK
1197 }
1198
1199 return 0;
1200}
1201
1202/* Store floating fields of element ELEMENT of an "parameter array"
1203 that has type TYPE and is stored at BITPOS in VALBUF in the
30baf67b 1204 appropriate registers of REGCACHE. This function can be called
8b39fe56
MK
1205 recursively and therefore handles floating types in addition to
1206 structures. */
1207
1208static void
1209sparc64_store_floating_fields (struct regcache *regcache, struct type *type,
e1613aba 1210 const gdb_byte *valbuf, int element, int bitpos)
8b39fe56 1211{
ac7936df 1212 struct gdbarch *gdbarch = regcache->arch ();
fe10a582
DM
1213 int len = TYPE_LENGTH (type);
1214
8b39fe56
MK
1215 gdb_assert (element < 16);
1216
78134374 1217 if (type->code () == TYPE_CODE_ARRAY)
1933fd8e
VM
1218 {
1219 gdb_byte buf[8];
1220 int regnum = SPARC_F0_REGNUM + element * 2 + bitpos / 32;
1221
1222 valbuf += bitpos / 8;
1223 if (len < 8)
dda83cd7
SM
1224 {
1225 memset (buf, 0, 8 - len);
1226 memcpy (buf + 8 - len, valbuf, len);
1227 valbuf = buf;
1228 len = 8;
1229 }
1933fd8e 1230 for (int n = 0; n < (len + 3) / 4; n++)
dda83cd7 1231 regcache->cooked_write (regnum + n, valbuf + n * 4);
1933fd8e
VM
1232 }
1233 else if (sparc64_floating_p (type)
fe10a582 1234 || (sparc64_complex_floating_p (type) && len <= 16))
8b39fe56 1235 {
8b39fe56
MK
1236 int regnum;
1237
1238 if (len == 16)
1239 {
1240 gdb_assert (bitpos == 0);
1241 gdb_assert ((element % 2) == 0);
1242
7a36499a 1243 regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM + element / 2;
b66f5587 1244 regcache->cooked_write (regnum, valbuf);
8b39fe56
MK
1245 }
1246 else if (len == 8)
1247 {
1248 gdb_assert (bitpos == 0 || bitpos == 64);
1249
7a36499a 1250 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
dda83cd7 1251 + element + bitpos / 64;
b66f5587 1252 regcache->cooked_write (regnum, valbuf + (bitpos / 8));
8b39fe56
MK
1253 }
1254 else
1255 {
1256 gdb_assert (len == 4);
1257 gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 128);
1258
1259 regnum = SPARC_F0_REGNUM + element * 2 + bitpos / 32;
b66f5587 1260 regcache->cooked_write (regnum, valbuf + (bitpos / 8));
8b39fe56
MK
1261 }
1262 }
1263 else if (sparc64_structure_or_union_p (type))
1264 {
1265 int i;
1266
1f704f76 1267 for (i = 0; i < type->num_fields (); i++)
60af1db2 1268 {
940da03e 1269 struct type *subtype = check_typedef (type->field (i).type ());
b610c045 1270 int subpos = bitpos + type->field (i).loc_bitpos ();
60af1db2
MK
1271
1272 sparc64_store_floating_fields (regcache, subtype, valbuf,
1273 element, subpos);
1274 }
200cc553
MK
1275
1276 /* GCC has an interesting bug. If TYPE is a structure that has
dda83cd7
SM
1277 a single `float' member, GCC doesn't treat it as a structure
1278 at all, but rather as an ordinary `float' argument. This
1279 argument will be stored in %f1, as required by the psABI.
1280 However, as a member of a structure the psABI requires it to
1281 be stored in %f0. This bug is present in GCC 3.3.2, but
1282 probably in older releases to. To appease GCC, if a
1283 structure has only a single `float' member, we store its
1284 value in %f1 too (we already have stored in %f0). */
1f704f76 1285 if (type->num_fields () == 1)
200cc553 1286 {
940da03e 1287 struct type *subtype = check_typedef (type->field (0).type ());
200cc553
MK
1288
1289 if (sparc64_floating_p (subtype) && TYPE_LENGTH (subtype) == 4)
b66f5587 1290 regcache->cooked_write (SPARC_F1_REGNUM, valbuf);
200cc553 1291 }
8b39fe56
MK
1292 }
1293}
1294
1295/* Fetch floating fields from a variable of type TYPE from the
1296 appropriate registers for BITPOS in REGCACHE and store it at BITPOS
1297 in VALBUF. This function can be called recursively and therefore
1298 handles floating types in addition to structures. */
1299
1300static void
1301sparc64_extract_floating_fields (struct regcache *regcache, struct type *type,
e1613aba 1302 gdb_byte *valbuf, int bitpos)
8b39fe56 1303{
ac7936df 1304 struct gdbarch *gdbarch = regcache->arch ();
7a36499a 1305
78134374 1306 if (type->code () == TYPE_CODE_ARRAY)
1933fd8e
VM
1307 {
1308 int len = TYPE_LENGTH (type);
1309 int regnum = SPARC_F0_REGNUM + bitpos / 32;
1310
1311 valbuf += bitpos / 8;
1312 if (len < 4)
dda83cd7
SM
1313 {
1314 gdb_byte buf[4];
1315 regcache->cooked_read (regnum, buf);
1316 memcpy (valbuf, buf + 4 - len, len);
1317 }
1933fd8e 1318 else
dda83cd7
SM
1319 for (int i = 0; i < (len + 3) / 4; i++)
1320 regcache->cooked_read (regnum + i, valbuf + i * 4);
1933fd8e
VM
1321 }
1322 else if (sparc64_floating_p (type))
8b39fe56
MK
1323 {
1324 int len = TYPE_LENGTH (type);
1325 int regnum;
1326
1327 if (len == 16)
1328 {
1329 gdb_assert (bitpos == 0 || bitpos == 128);
1330
7a36499a 1331 regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM
dda83cd7 1332 + bitpos / 128;
dca08e1f 1333 regcache->cooked_read (regnum, valbuf + (bitpos / 8));
8b39fe56
MK
1334 }
1335 else if (len == 8)
1336 {
1337 gdb_assert (bitpos % 64 == 0 && bitpos >= 0 && bitpos < 256);
1338
7a36499a 1339 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM + bitpos / 64;
dca08e1f 1340 regcache->cooked_read (regnum, valbuf + (bitpos / 8));
8b39fe56
MK
1341 }
1342 else
1343 {
1344 gdb_assert (len == 4);
1345 gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 256);
1346
1347 regnum = SPARC_F0_REGNUM + bitpos / 32;
dca08e1f 1348 regcache->cooked_read (regnum, valbuf + (bitpos / 8));
8b39fe56
MK
1349 }
1350 }
1351 else if (sparc64_structure_or_union_p (type))
1352 {
1353 int i;
1354
1f704f76 1355 for (i = 0; i < type->num_fields (); i++)
60af1db2 1356 {
940da03e 1357 struct type *subtype = check_typedef (type->field (i).type ());
b610c045 1358 int subpos = bitpos + type->field (i).loc_bitpos ();
60af1db2
MK
1359
1360 sparc64_extract_floating_fields (regcache, subtype, valbuf, subpos);
1361 }
8b39fe56
MK
1362 }
1363}
1364
1365/* Store the NARGS arguments ARGS and STRUCT_ADDR (if STRUCT_RETURN is
1366 non-zero) in REGCACHE and on the stack (starting from address SP). */
1367
1368static CORE_ADDR
1369sparc64_store_arguments (struct regcache *regcache, int nargs,
1370 struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1371 function_call_return_method return_method,
1372 CORE_ADDR struct_addr)
8b39fe56 1373{
ac7936df 1374 struct gdbarch *gdbarch = regcache->arch ();
8b39fe56
MK
1375 /* Number of extended words in the "parameter array". */
1376 int num_elements = 0;
1377 int element = 0;
1378 int i;
1379
1380 /* Take BIAS into account. */
1381 sp += BIAS;
1382
1383 /* First we calculate the number of extended words in the "parameter
1384 array". While doing so we also convert some of the arguments. */
1385
cf84fa6b 1386 if (return_method == return_method_struct)
8b39fe56
MK
1387 num_elements++;
1388
1389 for (i = 0; i < nargs; i++)
1390 {
4991999e 1391 struct type *type = value_type (args[i]);
8b39fe56
MK
1392 int len = TYPE_LENGTH (type);
1393
fb57d452
MK
1394 if (sparc64_structure_or_union_p (type)
1395 || (sparc64_complex_floating_p (type) && len == 32))
8b39fe56
MK
1396 {
1397 /* Structure or Union arguments. */
1398 if (len <= 16)
1399 {
1400 if (num_elements % 2 && sparc64_16_byte_align_p (type))
1401 num_elements++;
1402 num_elements += ((len + 7) / 8);
1403 }
1404 else
1405 {
1406 /* The psABI says that "Structures or unions larger than
1407 sixteen bytes are copied by the caller and passed
1408 indirectly; the caller will pass the address of a
1409 correctly aligned structure value. This sixty-four
1410 bit address will occupy one word in the parameter
1411 array, and may be promoted to an %o register like any
1412 other pointer value." Allocate memory for these
1413 values on the stack. */
1414 sp -= len;
1415
1416 /* Use 16-byte alignment for these values. That's
dda83cd7
SM
1417 always correct, and wasting a few bytes shouldn't be
1418 a problem. */
8b39fe56
MK
1419 sp &= ~0xf;
1420
50888e42 1421 write_memory (sp, value_contents (args[i]).data (), len);
8b39fe56
MK
1422 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
1423 num_elements++;
1424 }
1425 }
cdc7b32f 1426 else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
8b39fe56
MK
1427 {
1428 /* Floating arguments. */
8b39fe56
MK
1429 if (len == 16)
1430 {
1431 /* The psABI says that "Each quad-precision parameter
dda83cd7
SM
1432 value will be assigned to two extended words in the
1433 parameter array. */
8b39fe56
MK
1434 num_elements += 2;
1435
1436 /* The psABI says that "Long doubles must be
dda83cd7
SM
1437 quad-aligned, and thus a hole might be introduced
1438 into the parameter array to force alignment." Skip
1439 an element if necessary. */
49caec94 1440 if ((num_elements % 2) && sparc64_16_byte_align_p (type))
8b39fe56
MK
1441 num_elements++;
1442 }
1443 else
1444 num_elements++;
1445 }
1446 else
1447 {
1448 /* Integral and pointer arguments. */
1449 gdb_assert (sparc64_integral_or_pointer_p (type));
1450
1451 /* The psABI says that "Each argument value of integral type
1452 smaller than an extended word will be widened by the
1453 caller to an extended word according to the signed-ness
1454 of the argument type." */
1455 if (len < 8)
df4df182
UW
1456 args[i] = value_cast (builtin_type (gdbarch)->builtin_int64,
1457 args[i]);
8b39fe56
MK
1458 num_elements++;
1459 }
1460 }
1461
1462 /* Allocate the "parameter array". */
1463 sp -= num_elements * 8;
1464
1465 /* The psABI says that "Every stack frame must be 16-byte aligned." */
1466 sp &= ~0xf;
1467
85102364 1468 /* Now we store the arguments in to the "parameter array". Some
8b39fe56
MK
1469 Integer or Pointer arguments and Structure or Union arguments
1470 will be passed in %o registers. Some Floating arguments and
1471 floating members of structures are passed in floating-point
1472 registers. However, for functions with variable arguments,
1473 floating arguments are stored in an %0 register, and for
1474 functions without a prototype floating arguments are stored in
1475 both a floating-point and an %o registers, or a floating-point
1476 register and memory. To simplify the logic here we always pass
1477 arguments in memory, an %o register, and a floating-point
1478 register if appropriate. This should be no problem since the
1479 contents of any unused memory or registers in the "parameter
1480 array" are undefined. */
1481
cf84fa6b 1482 if (return_method == return_method_struct)
8b39fe56
MK
1483 {
1484 regcache_cooked_write_unsigned (regcache, SPARC_O0_REGNUM, struct_addr);
1485 element++;
1486 }
1487
1488 for (i = 0; i < nargs; i++)
1489 {
50888e42 1490 const gdb_byte *valbuf = value_contents (args[i]).data ();
4991999e 1491 struct type *type = value_type (args[i]);
8b39fe56
MK
1492 int len = TYPE_LENGTH (type);
1493 int regnum = -1;
e1613aba 1494 gdb_byte buf[16];
8b39fe56 1495
fb57d452
MK
1496 if (sparc64_structure_or_union_p (type)
1497 || (sparc64_complex_floating_p (type) && len == 32))
8b39fe56 1498 {
49caec94 1499 /* Structure, Union or long double Complex arguments. */
8b39fe56
MK
1500 gdb_assert (len <= 16);
1501 memset (buf, 0, sizeof (buf));
cfcb22a5
SM
1502 memcpy (buf, valbuf, len);
1503 valbuf = buf;
8b39fe56
MK
1504
1505 if (element % 2 && sparc64_16_byte_align_p (type))
1506 element++;
1507
1508 if (element < 6)
1509 {
1510 regnum = SPARC_O0_REGNUM + element;
1511 if (len > 8 && element < 5)
b66f5587 1512 regcache->cooked_write (regnum + 1, valbuf + 8);
8b39fe56
MK
1513 }
1514
1515 if (element < 16)
1516 sparc64_store_floating_fields (regcache, type, valbuf, element, 0);
1517 }
49caec94
JM
1518 else if (sparc64_complex_floating_p (type))
1519 {
1520 /* Float Complex or double Complex arguments. */
1521 if (element < 16)
1522 {
7a36499a 1523 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM + element;
49caec94
JM
1524
1525 if (len == 16)
1526 {
7a36499a 1527 if (regnum < gdbarch_num_regs (gdbarch) + SPARC64_D30_REGNUM)
b66f5587 1528 regcache->cooked_write (regnum + 1, valbuf + 8);
7a36499a 1529 if (regnum < gdbarch_num_regs (gdbarch) + SPARC64_D10_REGNUM)
b66f5587
SM
1530 regcache->cooked_write (SPARC_O0_REGNUM + element + 1,
1531 valbuf + 8);
49caec94
JM
1532 }
1533 }
1534 }
1535 else if (sparc64_floating_p (type))
8b39fe56
MK
1536 {
1537 /* Floating arguments. */
1538 if (len == 16)
1539 {
1540 if (element % 2)
1541 element++;
1542 if (element < 16)
7a36499a 1543 regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM
dda83cd7 1544 + element / 2;
8b39fe56
MK
1545 }
1546 else if (len == 8)
1547 {
1548 if (element < 16)
7a36499a 1549 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
dda83cd7 1550 + element;
8b39fe56 1551 }
fe10a582 1552 else if (len == 4)
8b39fe56
MK
1553 {
1554 /* The psABI says "Each single-precision parameter value
dda83cd7
SM
1555 will be assigned to one extended word in the
1556 parameter array, and right-justified within that
1557 word; the left half (even float register) is
1558 undefined." Even though the psABI says that "the
1559 left half is undefined", set it to zero here. */
8b39fe56 1560 memset (buf, 0, 4);
8ada74e3
MK
1561 memcpy (buf + 4, valbuf, 4);
1562 valbuf = buf;
8b39fe56
MK
1563 len = 8;
1564 if (element < 16)
7a36499a 1565 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
dda83cd7 1566 + element;
8b39fe56
MK
1567 }
1568 }
1569 else
1570 {
1571 /* Integral and pointer arguments. */
1572 gdb_assert (len == 8);
1573 if (element < 6)
1574 regnum = SPARC_O0_REGNUM + element;
1575 }
1576
1577 if (regnum != -1)
1578 {
b66f5587 1579 regcache->cooked_write (regnum, valbuf);
8b39fe56
MK
1580
1581 /* If we're storing the value in a floating-point register,
dda83cd7 1582 also store it in the corresponding %0 register(s). */
7a36499a 1583 if (regnum >= gdbarch_num_regs (gdbarch))
dda83cd7
SM
1584 {
1585 regnum -= gdbarch_num_regs (gdbarch);
1586
1587 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D10_REGNUM)
1588 {
1589 gdb_assert (element < 6);
1590 regnum = SPARC_O0_REGNUM + element;
1591 regcache->cooked_write (regnum, valbuf);
1592 }
1593 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q8_REGNUM)
1594 {
1595 gdb_assert (element < 5);
1596 regnum = SPARC_O0_REGNUM + element;
1597 regcache->cooked_write (regnum, valbuf);
1598 regcache->cooked_write (regnum + 1, valbuf + 8);
1599 }
1600 }
8b39fe56
MK
1601 }
1602
c4f2d4d7 1603 /* Always store the argument in memory. */
8b39fe56
MK
1604 write_memory (sp + element * 8, valbuf, len);
1605 element += ((len + 7) / 8);
1606 }
1607
1608 gdb_assert (element == num_elements);
1609
1610 /* Take BIAS into account. */
1611 sp -= BIAS;
1612 return sp;
1613}
1614
49a45ecf
JB
1615static CORE_ADDR
1616sparc64_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1617{
1618 /* The ABI requires 16-byte alignment. */
1619 return address & ~0xf;
1620}
1621
8b39fe56 1622static CORE_ADDR
7d9b040b 1623sparc64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
8b39fe56
MK
1624 struct regcache *regcache, CORE_ADDR bp_addr,
1625 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1626 function_call_return_method return_method,
1627 CORE_ADDR struct_addr)
8b39fe56
MK
1628{
1629 /* Set return address. */
1630 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, bp_addr - 8);
1631
1632 /* Set up function arguments. */
cf84fa6b
AH
1633 sp = sparc64_store_arguments (regcache, nargs, args, sp, return_method,
1634 struct_addr);
8b39fe56
MK
1635
1636 /* Allocate the register save area. */
1637 sp -= 16 * 8;
1638
1639 /* Stack should be 16-byte aligned at this point. */
3567a8ea 1640 gdb_assert ((sp + BIAS) % 16 == 0);
8b39fe56
MK
1641
1642 /* Finally, update the stack pointer. */
1643 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
1644
5b2d44a0 1645 return sp + BIAS;
8b39fe56
MK
1646}
1647\f
1648
1649/* Extract from an array REGBUF containing the (raw) register state, a
1650 function return value of TYPE, and copy that into VALBUF. */
1651
1652static void
1653sparc64_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1654 gdb_byte *valbuf)
8b39fe56
MK
1655{
1656 int len = TYPE_LENGTH (type);
e1613aba 1657 gdb_byte buf[32];
8b39fe56
MK
1658 int i;
1659
1660 if (sparc64_structure_or_union_p (type))
1661 {
1662 /* Structure or Union return values. */
1663 gdb_assert (len <= 32);
1664
1665 for (i = 0; i < ((len + 7) / 8); i++)
dca08e1f 1666 regcache->cooked_read (SPARC_O0_REGNUM + i, buf + i * 8);
78134374 1667 if (type->code () != TYPE_CODE_UNION)
8b39fe56
MK
1668 sparc64_extract_floating_fields (regcache, type, buf, 0);
1669 memcpy (valbuf, buf, len);
1670 }
cdc7b32f 1671 else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
8b39fe56
MK
1672 {
1673 /* Floating return values. */
1674 for (i = 0; i < len / 4; i++)
dca08e1f 1675 regcache->cooked_read (SPARC_F0_REGNUM + i, buf + i * 4);
8b39fe56
MK
1676 memcpy (valbuf, buf, len);
1677 }
78134374 1678 else if (type->code () == TYPE_CODE_ARRAY)
4bd87714
JB
1679 {
1680 /* Small arrays are returned the same way as small structures. */
1681 gdb_assert (len <= 32);
1682
1683 for (i = 0; i < ((len + 7) / 8); i++)
dca08e1f 1684 regcache->cooked_read (SPARC_O0_REGNUM + i, buf + i * 8);
4bd87714
JB
1685 memcpy (valbuf, buf, len);
1686 }
8b39fe56
MK
1687 else
1688 {
1689 /* Integral and pointer return values. */
1690 gdb_assert (sparc64_integral_or_pointer_p (type));
1691
1692 /* Just stripping off any unused bytes should preserve the
dda83cd7 1693 signed-ness just fine. */
dca08e1f 1694 regcache->cooked_read (SPARC_O0_REGNUM, buf);
8b39fe56
MK
1695 memcpy (valbuf, buf + 8 - len, len);
1696 }
1697}
1698
1699/* Write into the appropriate registers a function return value stored
1700 in VALBUF of type TYPE. */
1701
1702static void
1703sparc64_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1704 const gdb_byte *valbuf)
8b39fe56
MK
1705{
1706 int len = TYPE_LENGTH (type);
e1613aba 1707 gdb_byte buf[16];
8b39fe56
MK
1708 int i;
1709
1710 if (sparc64_structure_or_union_p (type))
1711 {
1712 /* Structure or Union return values. */
1713 gdb_assert (len <= 32);
1714
1715 /* Simplify matters by storing the complete value (including
dda83cd7
SM
1716 floating members) into %o0 and %o1. Floating members are
1717 also store in the appropriate floating-point registers. */
8b39fe56
MK
1718 memset (buf, 0, sizeof (buf));
1719 memcpy (buf, valbuf, len);
1720 for (i = 0; i < ((len + 7) / 8); i++)
b66f5587 1721 regcache->cooked_write (SPARC_O0_REGNUM + i, buf + i * 8);
78134374 1722 if (type->code () != TYPE_CODE_UNION)
8b39fe56
MK
1723 sparc64_store_floating_fields (regcache, type, buf, 0, 0);
1724 }
fe10a582 1725 else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
8b39fe56
MK
1726 {
1727 /* Floating return values. */
1728 memcpy (buf, valbuf, len);
1729 for (i = 0; i < len / 4; i++)
b66f5587 1730 regcache->cooked_write (SPARC_F0_REGNUM + i, buf + i * 4);
8b39fe56 1731 }
78134374 1732 else if (type->code () == TYPE_CODE_ARRAY)
4bd87714
JB
1733 {
1734 /* Small arrays are returned the same way as small structures. */
1735 gdb_assert (len <= 32);
1736
1737 memset (buf, 0, sizeof (buf));
1738 memcpy (buf, valbuf, len);
1739 for (i = 0; i < ((len + 7) / 8); i++)
b66f5587 1740 regcache->cooked_write (SPARC_O0_REGNUM + i, buf + i * 8);
4bd87714 1741 }
8b39fe56
MK
1742 else
1743 {
1744 /* Integral and pointer return values. */
1745 gdb_assert (sparc64_integral_or_pointer_p (type));
1746
1747 /* ??? Do we need to do any sign-extension here? */
1748 memset (buf, 0, 8);
1749 memcpy (buf + 8 - len, valbuf, len);
b66f5587 1750 regcache->cooked_write (SPARC_O0_REGNUM, buf);
8b39fe56
MK
1751 }
1752}
1753
60af1db2 1754static enum return_value_convention
6a3a010b 1755sparc64_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1756 struct type *type, struct regcache *regcache,
1757 gdb_byte *readbuf, const gdb_byte *writebuf)
8b39fe56 1758{
60af1db2
MK
1759 if (TYPE_LENGTH (type) > 32)
1760 return RETURN_VALUE_STRUCT_CONVENTION;
1761
1762 if (readbuf)
1763 sparc64_extract_return_value (type, regcache, readbuf);
1764 if (writebuf)
1765 sparc64_store_return_value (type, regcache, writebuf);
1766
1767 return RETURN_VALUE_REGISTER_CONVENTION;
8b39fe56 1768}
8b39fe56 1769\f
8b39fe56 1770
02a71ae8
MK
1771static void
1772sparc64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1773 struct dwarf2_frame_state_reg *reg,
4a4e5149 1774 struct frame_info *this_frame)
02a71ae8
MK
1775{
1776 switch (regnum)
1777 {
1778 case SPARC_G0_REGNUM:
1779 /* Since %g0 is always zero, there is no point in saving it, and
1780 people will be inclined omit it from the CFI. Make sure we
1781 don't warn about that. */
1782 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1783 break;
1784 case SPARC_SP_REGNUM:
1785 reg->how = DWARF2_FRAME_REG_CFA;
1786 break;
1787 case SPARC64_PC_REGNUM:
1788 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1789 reg->loc.offset = 8;
1790 break;
1791 case SPARC64_NPC_REGNUM:
1792 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1793 reg->loc.offset = 12;
1794 break;
1795 }
1796}
1797
58afddc6
WP
1798/* sparc64_addr_bits_remove - remove useless address bits */
1799
1800static CORE_ADDR
1801sparc64_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
1802{
1803 return adi_normalize_address (addr);
1804}
1805
8b39fe56 1806void
386c036b 1807sparc64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
8b39fe56 1808{
345bd07c 1809 sparc_gdbarch_tdep *tdep = (sparc_gdbarch_tdep *) gdbarch_tdep (gdbarch);
8b39fe56 1810
386c036b
MK
1811 tdep->pc_regnum = SPARC64_PC_REGNUM;
1812 tdep->npc_regnum = SPARC64_NPC_REGNUM;
3f7b46f2
IR
1813 tdep->fpu_register_names = sparc64_fpu_register_names;
1814 tdep->fpu_registers_num = ARRAY_SIZE (sparc64_fpu_register_names);
1815 tdep->cp0_register_names = sparc64_cp0_register_names;
1816 tdep->cp0_registers_num = ARRAY_SIZE (sparc64_cp0_register_names);
8b39fe56 1817
386c036b 1818 /* This is what all the fuss is about. */
8b39fe56
MK
1819 set_gdbarch_long_bit (gdbarch, 64);
1820 set_gdbarch_long_long_bit (gdbarch, 64);
1821 set_gdbarch_ptr_bit (gdbarch, 64);
8b39fe56 1822
53375380
PA
1823 set_gdbarch_wchar_bit (gdbarch, 16);
1824 set_gdbarch_wchar_signed (gdbarch, 0);
1825
8b39fe56
MK
1826 set_gdbarch_num_regs (gdbarch, SPARC64_NUM_REGS);
1827 set_gdbarch_register_name (gdbarch, sparc64_register_name);
1828 set_gdbarch_register_type (gdbarch, sparc64_register_type);
1829 set_gdbarch_num_pseudo_regs (gdbarch, SPARC64_NUM_PSEUDO_REGS);
3f7b46f2
IR
1830 set_tdesc_pseudo_register_name (gdbarch, sparc64_pseudo_register_name);
1831 set_tdesc_pseudo_register_type (gdbarch, sparc64_pseudo_register_type);
8b39fe56
MK
1832 set_gdbarch_pseudo_register_read (gdbarch, sparc64_pseudo_register_read);
1833 set_gdbarch_pseudo_register_write (gdbarch, sparc64_pseudo_register_write);
1834
1835 /* Register numbers of various important registers. */
8b39fe56 1836 set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM); /* %pc */
8b39fe56
MK
1837
1838 /* Call dummy code. */
49a45ecf 1839 set_gdbarch_frame_align (gdbarch, sparc64_frame_align);
386c036b
MK
1840 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1841 set_gdbarch_push_dummy_code (gdbarch, NULL);
8b39fe56
MK
1842 set_gdbarch_push_dummy_call (gdbarch, sparc64_push_dummy_call);
1843
60af1db2 1844 set_gdbarch_return_value (gdbarch, sparc64_return_value);
386c036b
MK
1845 set_gdbarch_stabs_argument_has_addr
1846 (gdbarch, default_stabs_argument_has_addr);
8b39fe56
MK
1847
1848 set_gdbarch_skip_prologue (gdbarch, sparc64_skip_prologue);
c9cf6e20 1849 set_gdbarch_stack_frame_destroyed_p (gdbarch, sparc_stack_frame_destroyed_p);
8b39fe56 1850
02a71ae8
MK
1851 /* Hook in the DWARF CFI frame unwinder. */
1852 dwarf2_frame_set_init_reg (gdbarch, sparc64_dwarf2_frame_init_reg);
1853 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1854 StackGhost issues have been resolved. */
1855
236369e7 1856 frame_unwind_append_unwinder (gdbarch, &sparc64_frame_unwind);
8b39fe56 1857 frame_base_set_default (gdbarch, &sparc64_frame_base);
58afddc6
WP
1858
1859 set_gdbarch_addr_bits_remove (gdbarch, sparc64_addr_bits_remove);
386c036b
MK
1860}
1861\f
8b39fe56 1862
386c036b 1863/* Helper functions for dealing with register sets. */
8b39fe56 1864
386c036b
MK
1865#define TSTATE_CWP 0x000000000000001fULL
1866#define TSTATE_ICC 0x0000000f00000000ULL
1867#define TSTATE_XCC 0x000000f000000000ULL
8b39fe56 1868
386c036b 1869#define PSR_S 0x00000080
39b06c20 1870#ifndef PSR_ICC
386c036b 1871#define PSR_ICC 0x00f00000
39b06c20 1872#endif
386c036b 1873#define PSR_VERS 0x0f000000
39b06c20 1874#ifndef PSR_IMPL
386c036b 1875#define PSR_IMPL 0xf0000000
39b06c20 1876#endif
386c036b
MK
1877#define PSR_V8PLUS 0xff000000
1878#define PSR_XCC 0x000f0000
8b39fe56 1879
3567a8ea 1880void
b4fd25c9 1881sparc64_supply_gregset (const struct sparc_gregmap *gregmap,
386c036b
MK
1882 struct regcache *regcache,
1883 int regnum, const void *gregs)
8b39fe56 1884{
ac7936df 1885 struct gdbarch *gdbarch = regcache->arch ();
e17a4113
UW
1886 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1887 int sparc32 = (gdbarch_ptr_bit (gdbarch) == 32);
19ba03f4 1888 const gdb_byte *regs = (const gdb_byte *) gregs;
22e74ef9 1889 gdb_byte zero[8] = { 0 };
8b39fe56
MK
1890 int i;
1891
386c036b 1892 if (sparc32)
8b39fe56 1893 {
386c036b
MK
1894 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1895 {
b4fd25c9 1896 int offset = gregmap->r_tstate_offset;
386c036b 1897 ULONGEST tstate, psr;
e1613aba 1898 gdb_byte buf[4];
386c036b 1899
e17a4113 1900 tstate = extract_unsigned_integer (regs + offset, 8, byte_order);
386c036b
MK
1901 psr = ((tstate & TSTATE_CWP) | PSR_S | ((tstate & TSTATE_ICC) >> 12)
1902 | ((tstate & TSTATE_XCC) >> 20) | PSR_V8PLUS);
e17a4113 1903 store_unsigned_integer (buf, 4, byte_order, psr);
73e1c03f 1904 regcache->raw_supply (SPARC32_PSR_REGNUM, buf);
386c036b
MK
1905 }
1906
1907 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
73e1c03f
SM
1908 regcache->raw_supply (SPARC32_PC_REGNUM,
1909 regs + gregmap->r_pc_offset + 4);
386c036b
MK
1910
1911 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
73e1c03f
SM
1912 regcache->raw_supply (SPARC32_NPC_REGNUM,
1913 regs + gregmap->r_npc_offset + 4);
8b39fe56 1914
386c036b 1915 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
8b39fe56 1916 {
b4fd25c9 1917 int offset = gregmap->r_y_offset + 8 - gregmap->r_y_size;
73e1c03f 1918 regcache->raw_supply (SPARC32_Y_REGNUM, regs + offset);
8b39fe56
MK
1919 }
1920 }
1921 else
1922 {
386c036b 1923 if (regnum == SPARC64_STATE_REGNUM || regnum == -1)
73e1c03f
SM
1924 regcache->raw_supply (SPARC64_STATE_REGNUM,
1925 regs + gregmap->r_tstate_offset);
8b39fe56 1926
386c036b 1927 if (regnum == SPARC64_PC_REGNUM || regnum == -1)
73e1c03f
SM
1928 regcache->raw_supply (SPARC64_PC_REGNUM,
1929 regs + gregmap->r_pc_offset);
386c036b
MK
1930
1931 if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
73e1c03f
SM
1932 regcache->raw_supply (SPARC64_NPC_REGNUM,
1933 regs + gregmap->r_npc_offset);
386c036b
MK
1934
1935 if (regnum == SPARC64_Y_REGNUM || regnum == -1)
3567a8ea 1936 {
e1613aba 1937 gdb_byte buf[8];
386c036b
MK
1938
1939 memset (buf, 0, 8);
b4fd25c9
AA
1940 memcpy (buf + 8 - gregmap->r_y_size,
1941 regs + gregmap->r_y_offset, gregmap->r_y_size);
73e1c03f 1942 regcache->raw_supply (SPARC64_Y_REGNUM, buf);
3567a8ea 1943 }
8b39fe56 1944
386c036b 1945 if ((regnum == SPARC64_FPRS_REGNUM || regnum == -1)
b4fd25c9 1946 && gregmap->r_fprs_offset != -1)
73e1c03f
SM
1947 regcache->raw_supply (SPARC64_FPRS_REGNUM,
1948 regs + gregmap->r_fprs_offset);
386c036b
MK
1949 }
1950
1951 if (regnum == SPARC_G0_REGNUM || regnum == -1)
73e1c03f 1952 regcache->raw_supply (SPARC_G0_REGNUM, &zero);
386c036b
MK
1953
1954 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1955 {
b4fd25c9 1956 int offset = gregmap->r_g1_offset;
386c036b
MK
1957
1958 if (sparc32)
1959 offset += 4;
1960
1961 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
8b39fe56 1962 {
3567a8ea 1963 if (regnum == i || regnum == -1)
73e1c03f 1964 regcache->raw_supply (i, regs + offset);
386c036b
MK
1965 offset += 8;
1966 }
1967 }
1968
1969 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1970 {
1971 /* Not all of the register set variants include Locals and
dda83cd7 1972 Inputs. For those that don't, we read them off the stack. */
b4fd25c9 1973 if (gregmap->r_l0_offset == -1)
386c036b
MK
1974 {
1975 ULONGEST sp;
1976
1977 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1978 sparc_supply_rwindow (regcache, sp, regnum);
1979 }
1980 else
1981 {
b4fd25c9 1982 int offset = gregmap->r_l0_offset;
386c036b
MK
1983
1984 if (sparc32)
1985 offset += 4;
1986
1987 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
3567a8ea 1988 {
386c036b 1989 if (regnum == i || regnum == -1)
73e1c03f 1990 regcache->raw_supply (i, regs + offset);
386c036b 1991 offset += 8;
3567a8ea 1992 }
8b39fe56
MK
1993 }
1994 }
1995}
1996
1997void
b4fd25c9 1998sparc64_collect_gregset (const struct sparc_gregmap *gregmap,
386c036b
MK
1999 const struct regcache *regcache,
2000 int regnum, void *gregs)
8b39fe56 2001{
ac7936df 2002 struct gdbarch *gdbarch = regcache->arch ();
e17a4113
UW
2003 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2004 int sparc32 = (gdbarch_ptr_bit (gdbarch) == 32);
19ba03f4 2005 gdb_byte *regs = (gdb_byte *) gregs;
3567a8ea
MK
2006 int i;
2007
386c036b 2008 if (sparc32)
8b39fe56 2009 {
386c036b
MK
2010 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
2011 {
b4fd25c9 2012 int offset = gregmap->r_tstate_offset;
386c036b 2013 ULONGEST tstate, psr;
e1613aba 2014 gdb_byte buf[8];
386c036b 2015
e17a4113 2016 tstate = extract_unsigned_integer (regs + offset, 8, byte_order);
34a79281 2017 regcache->raw_collect (SPARC32_PSR_REGNUM, buf);
e17a4113 2018 psr = extract_unsigned_integer (buf, 4, byte_order);
386c036b
MK
2019 tstate |= (psr & PSR_ICC) << 12;
2020 if ((psr & (PSR_VERS | PSR_IMPL)) == PSR_V8PLUS)
2021 tstate |= (psr & PSR_XCC) << 20;
e17a4113 2022 store_unsigned_integer (buf, 8, byte_order, tstate);
386c036b
MK
2023 memcpy (regs + offset, buf, 8);
2024 }
8b39fe56 2025
386c036b 2026 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
34a79281
SM
2027 regcache->raw_collect (SPARC32_PC_REGNUM,
2028 regs + gregmap->r_pc_offset + 4);
386c036b
MK
2029
2030 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
34a79281
SM
2031 regcache->raw_collect (SPARC32_NPC_REGNUM,
2032 regs + gregmap->r_npc_offset + 4);
386c036b
MK
2033
2034 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
8b39fe56 2035 {
b4fd25c9 2036 int offset = gregmap->r_y_offset + 8 - gregmap->r_y_size;
34a79281 2037 regcache->raw_collect (SPARC32_Y_REGNUM, regs + offset);
8b39fe56
MK
2038 }
2039 }
2040 else
2041 {
386c036b 2042 if (regnum == SPARC64_STATE_REGNUM || regnum == -1)
34a79281
SM
2043 regcache->raw_collect (SPARC64_STATE_REGNUM,
2044 regs + gregmap->r_tstate_offset);
386c036b
MK
2045
2046 if (regnum == SPARC64_PC_REGNUM || regnum == -1)
34a79281
SM
2047 regcache->raw_collect (SPARC64_PC_REGNUM,
2048 regs + gregmap->r_pc_offset);
3567a8ea 2049
386c036b 2050 if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
34a79281
SM
2051 regcache->raw_collect (SPARC64_NPC_REGNUM,
2052 regs + gregmap->r_npc_offset);
3567a8ea 2053
386c036b 2054 if (regnum == SPARC64_Y_REGNUM || regnum == -1)
3567a8ea 2055 {
e1613aba 2056 gdb_byte buf[8];
386c036b 2057
34a79281 2058 regcache->raw_collect (SPARC64_Y_REGNUM, buf);
b4fd25c9
AA
2059 memcpy (regs + gregmap->r_y_offset,
2060 buf + 8 - gregmap->r_y_size, gregmap->r_y_size);
386c036b
MK
2061 }
2062
2063 if ((regnum == SPARC64_FPRS_REGNUM || regnum == -1)
b4fd25c9 2064 && gregmap->r_fprs_offset != -1)
34a79281
SM
2065 regcache->raw_collect (SPARC64_FPRS_REGNUM,
2066 regs + gregmap->r_fprs_offset);
386c036b
MK
2067
2068 }
2069
2070 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
2071 {
b4fd25c9 2072 int offset = gregmap->r_g1_offset;
386c036b
MK
2073
2074 if (sparc32)
2075 offset += 4;
2076
2077 /* %g0 is always zero. */
2078 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2079 {
2080 if (regnum == i || regnum == -1)
34a79281 2081 regcache->raw_collect (i, regs + offset);
386c036b
MK
2082 offset += 8;
2083 }
2084 }
2085
2086 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2087 {
2088 /* Not all of the register set variants include Locals and
dda83cd7 2089 Inputs. For those that don't, we read them off the stack. */
b4fd25c9 2090 if (gregmap->r_l0_offset != -1)
386c036b 2091 {
b4fd25c9 2092 int offset = gregmap->r_l0_offset;
386c036b
MK
2093
2094 if (sparc32)
2095 offset += 4;
2096
2097 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
3567a8ea 2098 {
386c036b 2099 if (regnum == i || regnum == -1)
34a79281 2100 regcache->raw_collect (i, regs + offset);
386c036b 2101 offset += 8;
3567a8ea
MK
2102 }
2103 }
8b39fe56
MK
2104 }
2105}
8b39fe56 2106
386c036b 2107void
b4fd25c9 2108sparc64_supply_fpregset (const struct sparc_fpregmap *fpregmap,
db75c717 2109 struct regcache *regcache,
386c036b
MK
2110 int regnum, const void *fpregs)
2111{
ac7936df 2112 int sparc32 = (gdbarch_ptr_bit (regcache->arch ()) == 32);
19ba03f4 2113 const gdb_byte *regs = (const gdb_byte *) fpregs;
386c036b
MK
2114 int i;
2115
2116 for (i = 0; i < 32; i++)
2117 {
2118 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
73e1c03f 2119 regcache->raw_supply (SPARC_F0_REGNUM + i,
34a79281 2120 regs + fpregmap->r_f0_offset + (i * 4));
386c036b
MK
2121 }
2122
2123 if (sparc32)
2124 {
2125 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
73e1c03f 2126 regcache->raw_supply (SPARC32_FSR_REGNUM,
b4fd25c9 2127 regs + fpregmap->r_fsr_offset);
386c036b
MK
2128 }
2129 else
2130 {
2131 for (i = 0; i < 16; i++)
2132 {
2133 if (regnum == (SPARC64_F32_REGNUM + i) || regnum == -1)
73e1c03f
SM
2134 regcache->raw_supply
2135 (SPARC64_F32_REGNUM + i,
2136 regs + fpregmap->r_f0_offset + (32 * 4) + (i * 8));
386c036b
MK
2137 }
2138
2139 if (regnum == SPARC64_FSR_REGNUM || regnum == -1)
73e1c03f
SM
2140 regcache->raw_supply (SPARC64_FSR_REGNUM,
2141 regs + fpregmap->r_fsr_offset);
386c036b
MK
2142 }
2143}
8b39fe56
MK
2144
2145void
b4fd25c9 2146sparc64_collect_fpregset (const struct sparc_fpregmap *fpregmap,
db75c717 2147 const struct regcache *regcache,
386c036b 2148 int regnum, void *fpregs)
8b39fe56 2149{
ac7936df 2150 int sparc32 = (gdbarch_ptr_bit (regcache->arch ()) == 32);
19ba03f4 2151 gdb_byte *regs = (gdb_byte *) fpregs;
386c036b
MK
2152 int i;
2153
2154 for (i = 0; i < 32; i++)
2155 {
2156 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
34a79281
SM
2157 regcache->raw_collect (SPARC_F0_REGNUM + i,
2158 regs + fpregmap->r_f0_offset + (i * 4));
386c036b
MK
2159 }
2160
2161 if (sparc32)
2162 {
2163 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
34a79281
SM
2164 regcache->raw_collect (SPARC32_FSR_REGNUM,
2165 regs + fpregmap->r_fsr_offset);
386c036b
MK
2166 }
2167 else
2168 {
2169 for (i = 0; i < 16; i++)
2170 {
2171 if (regnum == (SPARC64_F32_REGNUM + i) || regnum == -1)
34a79281
SM
2172 regcache->raw_collect (SPARC64_F32_REGNUM + i,
2173 (regs + fpregmap->r_f0_offset
2174 + (32 * 4) + (i * 8)));
386c036b
MK
2175 }
2176
2177 if (regnum == SPARC64_FSR_REGNUM || regnum == -1)
34a79281
SM
2178 regcache->raw_collect (SPARC64_FSR_REGNUM,
2179 regs + fpregmap->r_fsr_offset);
386c036b 2180 }
8b39fe56 2181}
fd936806 2182
b4fd25c9 2183const struct sparc_fpregmap sparc64_bsd_fpregmap =
db75c717
DM
2184{
2185 0 * 8, /* %f0 */
2186 32 * 8, /* %fsr */
2187};