]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/symfile.c
xtensa error message
[thirdparty/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
61baf725 3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
0efef640 59#include "common/byte-vector.h"
32fa66eb 60#include "selftest.h"
c906108c 61
c906108c
SS
62#include <sys/types.h>
63#include <fcntl.h>
53ce3c39 64#include <sys/stat.h>
c906108c 65#include <ctype.h>
dcb07cfa 66#include <chrono>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 84
c378eb4e 85/* Functions this file defines. */
c906108c 86
ecf45d2c 87static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 88 objfile_flags flags);
d7db6da9 89
00b5771c 90static const struct sym_fns *find_sym_fns (bfd *);
c906108c 91
a14ed312 92static void overlay_invalidate_all (void);
c906108c 93
a14ed312 94static void simple_free_overlay_table (void);
c906108c 95
e17a4113
UW
96static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
97 enum bfd_endian);
c906108c 98
a14ed312 99static int simple_read_overlay_table (void);
c906108c 100
a14ed312 101static int simple_overlay_update_1 (struct obj_section *);
c906108c 102
31d99776
DJ
103static void symfile_find_segment_sections (struct objfile *objfile);
104
c906108c
SS
105/* List of all available sym_fns. On gdb startup, each object file reader
106 calls add_symtab_fns() to register information on each format it is
c378eb4e 107 prepared to read. */
c906108c 108
905014d7 109struct registered_sym_fns
c256e171 110{
905014d7
SM
111 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
112 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
113 {}
114
c256e171
DE
115 /* BFD flavour that we handle. */
116 enum bfd_flavour sym_flavour;
117
118 /* The "vtable" of symbol functions. */
119 const struct sym_fns *sym_fns;
905014d7 120};
c256e171 121
905014d7 122static std::vector<registered_sym_fns> symtab_fns;
c906108c 123
770e7fc7
DE
124/* Values for "set print symbol-loading". */
125
126const char print_symbol_loading_off[] = "off";
127const char print_symbol_loading_brief[] = "brief";
128const char print_symbol_loading_full[] = "full";
129static const char *print_symbol_loading_enums[] =
130{
131 print_symbol_loading_off,
132 print_symbol_loading_brief,
133 print_symbol_loading_full,
134 NULL
135};
136static const char *print_symbol_loading = print_symbol_loading_full;
137
b7209cb4
FF
138/* If non-zero, shared library symbols will be added automatically
139 when the inferior is created, new libraries are loaded, or when
140 attaching to the inferior. This is almost always what users will
141 want to have happen; but for very large programs, the startup time
142 will be excessive, and so if this is a problem, the user can clear
143 this flag and then add the shared library symbols as needed. Note
144 that there is a potential for confusion, since if the shared
c906108c 145 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 146 report all the functions that are actually present. */
c906108c
SS
147
148int auto_solib_add = 1;
c906108c 149\f
c5aa993b 150
770e7fc7
DE
151/* Return non-zero if symbol-loading messages should be printed.
152 FROM_TTY is the standard from_tty argument to gdb commands.
153 If EXEC is non-zero the messages are for the executable.
154 Otherwise, messages are for shared libraries.
155 If FULL is non-zero then the caller is printing a detailed message.
156 E.g., the message includes the shared library name.
157 Otherwise, the caller is printing a brief "summary" message. */
158
159int
160print_symbol_loading_p (int from_tty, int exec, int full)
161{
162 if (!from_tty && !info_verbose)
163 return 0;
164
165 if (exec)
166 {
167 /* We don't check FULL for executables, there are few such
168 messages, therefore brief == full. */
169 return print_symbol_loading != print_symbol_loading_off;
170 }
171 if (full)
172 return print_symbol_loading == print_symbol_loading_full;
173 return print_symbol_loading == print_symbol_loading_brief;
174}
175
0d14a781 176/* True if we are reading a symbol table. */
c906108c
SS
177
178int currently_reading_symtab = 0;
179
ccefe4c4
TT
180/* Increment currently_reading_symtab and return a cleanup that can be
181 used to decrement it. */
3b7bacac 182
c83dd867 183scoped_restore_tmpl<int>
ccefe4c4 184increment_reading_symtab (void)
c906108c 185{
c83dd867
TT
186 gdb_assert (currently_reading_symtab >= 0);
187 return make_scoped_restore (&currently_reading_symtab,
188 currently_reading_symtab + 1);
c906108c
SS
189}
190
5417f6dc
RM
191/* Remember the lowest-addressed loadable section we've seen.
192 This function is called via bfd_map_over_sections.
c906108c
SS
193
194 In case of equal vmas, the section with the largest size becomes the
195 lowest-addressed loadable section.
196
197 If the vmas and sizes are equal, the last section is considered the
198 lowest-addressed loadable section. */
199
200void
4efb68b1 201find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 202{
c5aa993b 203 asection **lowest = (asection **) obj;
c906108c 204
eb73e134 205 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
206 return;
207 if (!*lowest)
208 *lowest = sect; /* First loadable section */
209 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
210 *lowest = sect; /* A lower loadable section */
211 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
212 && (bfd_section_size (abfd, (*lowest))
213 <= bfd_section_size (abfd, sect)))
214 *lowest = sect;
215}
216
d76488d8
TT
217/* Create a new section_addr_info, with room for NUM_SECTIONS. The
218 new object's 'num_sections' field is set to 0; it must be updated
219 by the caller. */
a39a16c4
MM
220
221struct section_addr_info *
222alloc_section_addr_info (size_t num_sections)
223{
224 struct section_addr_info *sap;
225 size_t size;
226
227 size = (sizeof (struct section_addr_info)
228 + sizeof (struct other_sections) * (num_sections - 1));
229 sap = (struct section_addr_info *) xmalloc (size);
230 memset (sap, 0, size);
a39a16c4
MM
231
232 return sap;
233}
62557bbc
KB
234
235/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 236 an existing section table. */
62557bbc
KB
237
238extern struct section_addr_info *
0542c86d
PA
239build_section_addr_info_from_section_table (const struct target_section *start,
240 const struct target_section *end)
62557bbc
KB
241{
242 struct section_addr_info *sap;
0542c86d 243 const struct target_section *stp;
62557bbc
KB
244 int oidx;
245
a39a16c4 246 sap = alloc_section_addr_info (end - start);
62557bbc
KB
247
248 for (stp = start, oidx = 0; stp != end; stp++)
249 {
2b2848e2
DE
250 struct bfd_section *asect = stp->the_bfd_section;
251 bfd *abfd = asect->owner;
252
253 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 254 && oidx < end - start)
62557bbc
KB
255 {
256 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
257 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
258 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
259 oidx++;
260 }
261 }
262
d76488d8
TT
263 sap->num_sections = oidx;
264
62557bbc
KB
265 return sap;
266}
267
82ccf5a5 268/* Create a section_addr_info from section offsets in ABFD. */
089b4803 269
82ccf5a5
JK
270static struct section_addr_info *
271build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
272{
273 struct section_addr_info *sap;
274 int i;
275 struct bfd_section *sec;
276
82ccf5a5
JK
277 sap = alloc_section_addr_info (bfd_count_sections (abfd));
278 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
279 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 280 {
82ccf5a5
JK
281 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
282 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 283 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
284 i++;
285 }
d76488d8
TT
286
287 sap->num_sections = i;
288
089b4803
TG
289 return sap;
290}
291
82ccf5a5
JK
292/* Create a section_addr_info from section offsets in OBJFILE. */
293
294struct section_addr_info *
295build_section_addr_info_from_objfile (const struct objfile *objfile)
296{
297 struct section_addr_info *sap;
298 int i;
299
300 /* Before reread_symbols gets rewritten it is not safe to call:
301 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
302 */
303 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 304 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
305 {
306 int sectindex = sap->other[i].sectindex;
307
308 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
309 }
310 return sap;
311}
62557bbc 312
c378eb4e 313/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
314
315extern void
316free_section_addr_info (struct section_addr_info *sap)
317{
318 int idx;
319
a39a16c4 320 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 321 xfree (sap->other[idx].name);
b8c9b27d 322 xfree (sap);
62557bbc
KB
323}
324
e8289572 325/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 326
e8289572
JB
327static void
328init_objfile_sect_indices (struct objfile *objfile)
c906108c 329{
e8289572 330 asection *sect;
c906108c 331 int i;
5417f6dc 332
b8fbeb18 333 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 334 if (sect)
b8fbeb18
EZ
335 objfile->sect_index_text = sect->index;
336
337 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 338 if (sect)
b8fbeb18
EZ
339 objfile->sect_index_data = sect->index;
340
341 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 342 if (sect)
b8fbeb18
EZ
343 objfile->sect_index_bss = sect->index;
344
345 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 346 if (sect)
b8fbeb18
EZ
347 objfile->sect_index_rodata = sect->index;
348
bbcd32ad
FF
349 /* This is where things get really weird... We MUST have valid
350 indices for the various sect_index_* members or gdb will abort.
351 So if for example, there is no ".text" section, we have to
31d99776
DJ
352 accomodate that. First, check for a file with the standard
353 one or two segments. */
354
355 symfile_find_segment_sections (objfile);
356
357 /* Except when explicitly adding symbol files at some address,
358 section_offsets contains nothing but zeros, so it doesn't matter
359 which slot in section_offsets the individual sect_index_* members
360 index into. So if they are all zero, it is safe to just point
361 all the currently uninitialized indices to the first slot. But
362 beware: if this is the main executable, it may be relocated
363 later, e.g. by the remote qOffsets packet, and then this will
364 be wrong! That's why we try segments first. */
bbcd32ad
FF
365
366 for (i = 0; i < objfile->num_sections; i++)
367 {
368 if (ANOFFSET (objfile->section_offsets, i) != 0)
369 {
370 break;
371 }
372 }
373 if (i == objfile->num_sections)
374 {
375 if (objfile->sect_index_text == -1)
376 objfile->sect_index_text = 0;
377 if (objfile->sect_index_data == -1)
378 objfile->sect_index_data = 0;
379 if (objfile->sect_index_bss == -1)
380 objfile->sect_index_bss = 0;
381 if (objfile->sect_index_rodata == -1)
382 objfile->sect_index_rodata = 0;
383 }
b8fbeb18 384}
c906108c 385
c1bd25fd
DJ
386/* The arguments to place_section. */
387
388struct place_section_arg
389{
390 struct section_offsets *offsets;
391 CORE_ADDR lowest;
392};
393
394/* Find a unique offset to use for loadable section SECT if
395 the user did not provide an offset. */
396
2c0b251b 397static void
c1bd25fd
DJ
398place_section (bfd *abfd, asection *sect, void *obj)
399{
19ba03f4 400 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
401 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
402 int done;
3bd72c6f 403 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 404
2711e456
DJ
405 /* We are only interested in allocated sections. */
406 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
407 return;
408
409 /* If the user specified an offset, honor it. */
65cf3563 410 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
411 return;
412
413 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
414 start_addr = (arg->lowest + align - 1) & -align;
415
c1bd25fd
DJ
416 do {
417 asection *cur_sec;
c1bd25fd 418
c1bd25fd
DJ
419 done = 1;
420
421 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
422 {
423 int indx = cur_sec->index;
c1bd25fd
DJ
424
425 /* We don't need to compare against ourself. */
426 if (cur_sec == sect)
427 continue;
428
2711e456
DJ
429 /* We can only conflict with allocated sections. */
430 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
431 continue;
432
433 /* If the section offset is 0, either the section has not been placed
434 yet, or it was the lowest section placed (in which case LOWEST
435 will be past its end). */
436 if (offsets[indx] == 0)
437 continue;
438
439 /* If this section would overlap us, then we must move up. */
440 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
441 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
442 {
443 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
444 start_addr = (start_addr + align - 1) & -align;
445 done = 0;
3bd72c6f 446 break;
c1bd25fd
DJ
447 }
448
449 /* Otherwise, we appear to be OK. So far. */
450 }
451 }
452 while (!done);
453
65cf3563 454 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 455 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 456}
e8289572 457
75242ef4
JK
458/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
459 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
460 entries. */
e8289572
JB
461
462void
75242ef4
JK
463relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
464 int num_sections,
3189cb12 465 const struct section_addr_info *addrs)
e8289572
JB
466{
467 int i;
468
75242ef4 469 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 470
c378eb4e 471 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 472 for (i = 0; i < addrs->num_sections; i++)
e8289572 473 {
3189cb12 474 const struct other_sections *osp;
e8289572 475
75242ef4 476 osp = &addrs->other[i];
5488dafb 477 if (osp->sectindex == -1)
e8289572
JB
478 continue;
479
c378eb4e 480 /* Record all sections in offsets. */
e8289572 481 /* The section_offsets in the objfile are here filled in using
c378eb4e 482 the BFD index. */
75242ef4
JK
483 section_offsets->offsets[osp->sectindex] = osp->addr;
484 }
485}
486
1276c759
JK
487/* Transform section name S for a name comparison. prelink can split section
488 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
489 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
490 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
491 (`.sbss') section has invalid (increased) virtual address. */
492
493static const char *
494addr_section_name (const char *s)
495{
496 if (strcmp (s, ".dynbss") == 0)
497 return ".bss";
498 if (strcmp (s, ".sdynbss") == 0)
499 return ".sbss";
500
501 return s;
502}
503
82ccf5a5
JK
504/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
505 their (name, sectindex) pair. sectindex makes the sort by name stable. */
506
507static int
508addrs_section_compar (const void *ap, const void *bp)
509{
510 const struct other_sections *a = *((struct other_sections **) ap);
511 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 512 int retval;
82ccf5a5 513
1276c759 514 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
515 if (retval)
516 return retval;
517
5488dafb 518 return a->sectindex - b->sectindex;
82ccf5a5
JK
519}
520
521/* Provide sorted array of pointers to sections of ADDRS. The array is
522 terminated by NULL. Caller is responsible to call xfree for it. */
523
524static struct other_sections **
525addrs_section_sort (struct section_addr_info *addrs)
526{
527 struct other_sections **array;
528 int i;
529
530 /* `+ 1' for the NULL terminator. */
8d749320 531 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 532 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
533 array[i] = &addrs->other[i];
534 array[i] = NULL;
535
536 qsort (array, i, sizeof (*array), addrs_section_compar);
537
538 return array;
539}
540
75242ef4 541/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
542 also SECTINDEXes specific to ABFD there. This function can be used to
543 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
544
545void
546addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
547{
548 asection *lower_sect;
75242ef4
JK
549 CORE_ADDR lower_offset;
550 int i;
82ccf5a5
JK
551 struct cleanup *my_cleanup;
552 struct section_addr_info *abfd_addrs;
553 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
554 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
555
556 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
557 continguous sections. */
558 lower_sect = NULL;
559 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
560 if (lower_sect == NULL)
561 {
562 warning (_("no loadable sections found in added symbol-file %s"),
563 bfd_get_filename (abfd));
564 lower_offset = 0;
e8289572 565 }
75242ef4
JK
566 else
567 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
568
82ccf5a5
JK
569 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
570 in ABFD. Section names are not unique - there can be multiple sections of
571 the same name. Also the sections of the same name do not have to be
572 adjacent to each other. Some sections may be present only in one of the
573 files. Even sections present in both files do not have to be in the same
574 order.
575
576 Use stable sort by name for the sections in both files. Then linearly
577 scan both lists matching as most of the entries as possible. */
578
579 addrs_sorted = addrs_section_sort (addrs);
580 my_cleanup = make_cleanup (xfree, addrs_sorted);
581
582 abfd_addrs = build_section_addr_info_from_bfd (abfd);
583 make_cleanup_free_section_addr_info (abfd_addrs);
584 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
585 make_cleanup (xfree, abfd_addrs_sorted);
586
c378eb4e
MS
587 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
588 ABFD_ADDRS_SORTED. */
82ccf5a5 589
8d749320 590 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
591 make_cleanup (xfree, addrs_to_abfd_addrs);
592
593 while (*addrs_sorted)
594 {
1276c759 595 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
596
597 while (*abfd_addrs_sorted
1276c759
JK
598 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
599 sect_name) < 0)
82ccf5a5
JK
600 abfd_addrs_sorted++;
601
602 if (*abfd_addrs_sorted
1276c759
JK
603 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
604 sect_name) == 0)
82ccf5a5
JK
605 {
606 int index_in_addrs;
607
608 /* Make the found item directly addressable from ADDRS. */
609 index_in_addrs = *addrs_sorted - addrs->other;
610 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
611 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
612
613 /* Never use the same ABFD entry twice. */
614 abfd_addrs_sorted++;
615 }
616
617 addrs_sorted++;
618 }
619
75242ef4
JK
620 /* Calculate offsets for the loadable sections.
621 FIXME! Sections must be in order of increasing loadable section
622 so that contiguous sections can use the lower-offset!!!
623
624 Adjust offsets if the segments are not contiguous.
625 If the section is contiguous, its offset should be set to
626 the offset of the highest loadable section lower than it
627 (the loadable section directly below it in memory).
628 this_offset = lower_offset = lower_addr - lower_orig_addr */
629
d76488d8 630 for (i = 0; i < addrs->num_sections; i++)
75242ef4 631 {
82ccf5a5 632 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
633
634 if (sect)
75242ef4 635 {
c378eb4e 636 /* This is the index used by BFD. */
82ccf5a5 637 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
638
639 if (addrs->other[i].addr != 0)
75242ef4 640 {
82ccf5a5 641 addrs->other[i].addr -= sect->addr;
75242ef4 642 lower_offset = addrs->other[i].addr;
75242ef4
JK
643 }
644 else
672d9c23 645 addrs->other[i].addr = lower_offset;
75242ef4
JK
646 }
647 else
672d9c23 648 {
1276c759
JK
649 /* addr_section_name transformation is not used for SECT_NAME. */
650 const char *sect_name = addrs->other[i].name;
651
b0fcb67f
JK
652 /* This section does not exist in ABFD, which is normally
653 unexpected and we want to issue a warning.
654
4d9743af
JK
655 However, the ELF prelinker does create a few sections which are
656 marked in the main executable as loadable (they are loaded in
657 memory from the DYNAMIC segment) and yet are not present in
658 separate debug info files. This is fine, and should not cause
659 a warning. Shared libraries contain just the section
660 ".gnu.liblist" but it is not marked as loadable there. There is
661 no other way to identify them than by their name as the sections
1276c759
JK
662 created by prelink have no special flags.
663
664 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
665
666 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 667 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
668 || (strcmp (sect_name, ".bss") == 0
669 && i > 0
670 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
671 && addrs_to_abfd_addrs[i - 1] != NULL)
672 || (strcmp (sect_name, ".sbss") == 0
673 && i > 0
674 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
675 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
676 warning (_("section %s not found in %s"), sect_name,
677 bfd_get_filename (abfd));
678
672d9c23 679 addrs->other[i].addr = 0;
5488dafb 680 addrs->other[i].sectindex = -1;
672d9c23 681 }
75242ef4 682 }
82ccf5a5
JK
683
684 do_cleanups (my_cleanup);
75242ef4
JK
685}
686
687/* Parse the user's idea of an offset for dynamic linking, into our idea
688 of how to represent it for fast symbol reading. This is the default
689 version of the sym_fns.sym_offsets function for symbol readers that
690 don't need to do anything special. It allocates a section_offsets table
691 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
692
693void
694default_symfile_offsets (struct objfile *objfile,
3189cb12 695 const struct section_addr_info *addrs)
75242ef4 696{
d445b2f6 697 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
698 objfile->section_offsets = (struct section_offsets *)
699 obstack_alloc (&objfile->objfile_obstack,
700 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
701 relative_addr_info_to_section_offsets (objfile->section_offsets,
702 objfile->num_sections, addrs);
e8289572 703
c1bd25fd
DJ
704 /* For relocatable files, all loadable sections will start at zero.
705 The zero is meaningless, so try to pick arbitrary addresses such
706 that no loadable sections overlap. This algorithm is quadratic,
707 but the number of sections in a single object file is generally
708 small. */
709 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
710 {
711 struct place_section_arg arg;
2711e456
DJ
712 bfd *abfd = objfile->obfd;
713 asection *cur_sec;
2711e456
DJ
714
715 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
716 /* We do not expect this to happen; just skip this step if the
717 relocatable file has a section with an assigned VMA. */
718 if (bfd_section_vma (abfd, cur_sec) != 0)
719 break;
720
721 if (cur_sec == NULL)
722 {
723 CORE_ADDR *offsets = objfile->section_offsets->offsets;
724
725 /* Pick non-overlapping offsets for sections the user did not
726 place explicitly. */
727 arg.offsets = objfile->section_offsets;
728 arg.lowest = 0;
729 bfd_map_over_sections (objfile->obfd, place_section, &arg);
730
731 /* Correctly filling in the section offsets is not quite
732 enough. Relocatable files have two properties that
733 (most) shared objects do not:
734
735 - Their debug information will contain relocations. Some
736 shared libraries do also, but many do not, so this can not
737 be assumed.
738
739 - If there are multiple code sections they will be loaded
740 at different relative addresses in memory than they are
741 in the objfile, since all sections in the file will start
742 at address zero.
743
744 Because GDB has very limited ability to map from an
745 address in debug info to the correct code section,
746 it relies on adding SECT_OFF_TEXT to things which might be
747 code. If we clear all the section offsets, and set the
748 section VMAs instead, then symfile_relocate_debug_section
749 will return meaningful debug information pointing at the
750 correct sections.
751
752 GDB has too many different data structures for section
753 addresses - a bfd, objfile, and so_list all have section
754 tables, as does exec_ops. Some of these could probably
755 be eliminated. */
756
757 for (cur_sec = abfd->sections; cur_sec != NULL;
758 cur_sec = cur_sec->next)
759 {
760 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
761 continue;
762
763 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
764 exec_set_section_address (bfd_get_filename (abfd),
765 cur_sec->index,
30510692 766 offsets[cur_sec->index]);
2711e456
DJ
767 offsets[cur_sec->index] = 0;
768 }
769 }
c1bd25fd
DJ
770 }
771
e8289572 772 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 773 .rodata sections. */
e8289572
JB
774 init_objfile_sect_indices (objfile);
775}
776
31d99776
DJ
777/* Divide the file into segments, which are individual relocatable units.
778 This is the default version of the sym_fns.sym_segments function for
779 symbol readers that do not have an explicit representation of segments.
780 It assumes that object files do not have segments, and fully linked
781 files have a single segment. */
782
783struct symfile_segment_data *
784default_symfile_segments (bfd *abfd)
785{
786 int num_sections, i;
787 asection *sect;
788 struct symfile_segment_data *data;
789 CORE_ADDR low, high;
790
791 /* Relocatable files contain enough information to position each
792 loadable section independently; they should not be relocated
793 in segments. */
794 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
795 return NULL;
796
797 /* Make sure there is at least one loadable section in the file. */
798 for (sect = abfd->sections; sect != NULL; sect = sect->next)
799 {
800 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
801 continue;
802
803 break;
804 }
805 if (sect == NULL)
806 return NULL;
807
808 low = bfd_get_section_vma (abfd, sect);
809 high = low + bfd_get_section_size (sect);
810
41bf6aca 811 data = XCNEW (struct symfile_segment_data);
31d99776 812 data->num_segments = 1;
fc270c35
TT
813 data->segment_bases = XCNEW (CORE_ADDR);
814 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
815
816 num_sections = bfd_count_sections (abfd);
fc270c35 817 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
818
819 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
820 {
821 CORE_ADDR vma;
822
823 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
824 continue;
825
826 vma = bfd_get_section_vma (abfd, sect);
827 if (vma < low)
828 low = vma;
829 if (vma + bfd_get_section_size (sect) > high)
830 high = vma + bfd_get_section_size (sect);
831
832 data->segment_info[i] = 1;
833 }
834
835 data->segment_bases[0] = low;
836 data->segment_sizes[0] = high - low;
837
838 return data;
839}
840
608e2dbb
TT
841/* This is a convenience function to call sym_read for OBJFILE and
842 possibly force the partial symbols to be read. */
843
844static void
b15cc25c 845read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
846{
847 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 848 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
849
850 /* find_separate_debug_file_in_section should be called only if there is
851 single binary with no existing separate debug info file. */
852 if (!objfile_has_partial_symbols (objfile)
853 && objfile->separate_debug_objfile == NULL
854 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 855 {
192b62ce 856 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
857
858 if (abfd != NULL)
24ba069a
JK
859 {
860 /* find_separate_debug_file_in_section uses the same filename for the
861 virtual section-as-bfd like the bfd filename containing the
862 section. Therefore use also non-canonical name form for the same
863 file containing the section. */
192b62ce
TT
864 symbol_file_add_separate (abfd.get (), objfile->original_name,
865 add_flags, objfile);
24ba069a 866 }
608e2dbb
TT
867 }
868 if ((add_flags & SYMFILE_NO_READ) == 0)
869 require_partial_symbols (objfile, 0);
870}
871
3d6e24f0
JB
872/* Initialize entry point information for this objfile. */
873
874static void
875init_entry_point_info (struct objfile *objfile)
876{
6ef55de7
TT
877 struct entry_info *ei = &objfile->per_bfd->ei;
878
879 if (ei->initialized)
880 return;
881 ei->initialized = 1;
882
3d6e24f0
JB
883 /* Save startup file's range of PC addresses to help blockframe.c
884 decide where the bottom of the stack is. */
885
886 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
887 {
888 /* Executable file -- record its entry point so we'll recognize
889 the startup file because it contains the entry point. */
6ef55de7
TT
890 ei->entry_point = bfd_get_start_address (objfile->obfd);
891 ei->entry_point_p = 1;
3d6e24f0
JB
892 }
893 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
894 && bfd_get_start_address (objfile->obfd) != 0)
895 {
896 /* Some shared libraries may have entry points set and be
897 runnable. There's no clear way to indicate this, so just check
898 for values other than zero. */
6ef55de7
TT
899 ei->entry_point = bfd_get_start_address (objfile->obfd);
900 ei->entry_point_p = 1;
3d6e24f0
JB
901 }
902 else
903 {
904 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 905 ei->entry_point_p = 0;
3d6e24f0
JB
906 }
907
6ef55de7 908 if (ei->entry_point_p)
3d6e24f0 909 {
53eddfa6 910 struct obj_section *osect;
6ef55de7 911 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 912 int found;
3d6e24f0
JB
913
914 /* Make certain that the address points at real code, and not a
915 function descriptor. */
916 entry_point
df6d5441 917 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
918 entry_point,
919 &current_target);
920
921 /* Remove any ISA markers, so that this matches entries in the
922 symbol table. */
6ef55de7 923 ei->entry_point
df6d5441 924 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
925
926 found = 0;
927 ALL_OBJFILE_OSECTIONS (objfile, osect)
928 {
929 struct bfd_section *sect = osect->the_bfd_section;
930
931 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
932 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
933 + bfd_get_section_size (sect)))
934 {
6ef55de7 935 ei->the_bfd_section_index
53eddfa6
TT
936 = gdb_bfd_section_index (objfile->obfd, sect);
937 found = 1;
938 break;
939 }
940 }
941
942 if (!found)
6ef55de7 943 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
944 }
945}
946
c906108c
SS
947/* Process a symbol file, as either the main file or as a dynamically
948 loaded file.
949
36e4d068
JB
950 This function does not set the OBJFILE's entry-point info.
951
96baa820
JM
952 OBJFILE is where the symbols are to be read from.
953
7e8580c1
JB
954 ADDRS is the list of section load addresses. If the user has given
955 an 'add-symbol-file' command, then this is the list of offsets and
956 addresses he or she provided as arguments to the command; or, if
957 we're handling a shared library, these are the actual addresses the
958 sections are loaded at, according to the inferior's dynamic linker
959 (as gleaned by GDB's shared library code). We convert each address
960 into an offset from the section VMA's as it appears in the object
961 file, and then call the file's sym_offsets function to convert this
962 into a format-specific offset table --- a `struct section_offsets'.
96baa820 963
7eedccfa
PP
964 ADD_FLAGS encodes verbosity level, whether this is main symbol or
965 an extra symbol file such as dynamically loaded code, and wether
966 breakpoint reset should be deferred. */
c906108c 967
36e4d068
JB
968static void
969syms_from_objfile_1 (struct objfile *objfile,
970 struct section_addr_info *addrs,
b15cc25c 971 symfile_add_flags add_flags)
c906108c 972{
a39a16c4 973 struct section_addr_info *local_addr = NULL;
c906108c 974 struct cleanup *old_chain;
7eedccfa 975 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 976
8fb8eb5c 977 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 978
75245b24 979 if (objfile->sf == NULL)
36e4d068
JB
980 {
981 /* No symbols to load, but we still need to make sure
982 that the section_offsets table is allocated. */
d445b2f6 983 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 984 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
985
986 objfile->num_sections = num_sections;
987 objfile->section_offsets
224c3ddb
SM
988 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
989 size);
36e4d068
JB
990 memset (objfile->section_offsets, 0, size);
991 return;
992 }
75245b24 993
c906108c
SS
994 /* Make sure that partially constructed symbol tables will be cleaned up
995 if an error occurs during symbol reading. */
ed2b3126
TT
996 old_chain = make_cleanup (null_cleanup, NULL);
997 std::unique_ptr<struct objfile> objfile_holder (objfile);
c906108c 998
6bf667bb
DE
999 /* If ADDRS is NULL, put together a dummy address list.
1000 We now establish the convention that an addr of zero means
c378eb4e 1001 no load address was specified. */
6bf667bb 1002 if (! addrs)
a39a16c4 1003 {
d445b2f6 1004 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1005 make_cleanup (xfree, local_addr);
1006 addrs = local_addr;
1007 }
1008
c5aa993b 1009 if (mainline)
c906108c
SS
1010 {
1011 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1012 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1013 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1014
1015 /* Since no error yet, throw away the old symbol table. */
1016
1017 if (symfile_objfile != NULL)
1018 {
9e86da07 1019 delete symfile_objfile;
adb7f338 1020 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1021 }
1022
1023 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1024 If the user wants to get rid of them, they should do "symbol-file"
1025 without arguments first. Not sure this is the best behavior
1026 (PR 2207). */
c906108c 1027
c5aa993b 1028 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1029 }
1030
1031 /* Convert addr into an offset rather than an absolute address.
1032 We find the lowest address of a loaded segment in the objfile,
53a5351d 1033 and assume that <addr> is where that got loaded.
c906108c 1034
53a5351d
JM
1035 We no longer warn if the lowest section is not a text segment (as
1036 happens for the PA64 port. */
6bf667bb 1037 if (addrs->num_sections > 0)
75242ef4 1038 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1039
1040 /* Initialize symbol reading routines for this objfile, allow complaints to
1041 appear for this new file, and record how verbose to be, then do the
c378eb4e 1042 initial symbol reading for this file. */
c906108c 1043
c5aa993b 1044 (*objfile->sf->sym_init) (objfile);
7eedccfa 1045 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1046
6bf667bb 1047 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1048
608e2dbb 1049 read_symbols (objfile, add_flags);
b11896a5 1050
c906108c
SS
1051 /* Discard cleanups as symbol reading was successful. */
1052
ed2b3126 1053 objfile_holder.release ();
c906108c 1054 discard_cleanups (old_chain);
f7545552 1055 xfree (local_addr);
c906108c
SS
1056}
1057
36e4d068
JB
1058/* Same as syms_from_objfile_1, but also initializes the objfile
1059 entry-point info. */
1060
6bf667bb 1061static void
36e4d068
JB
1062syms_from_objfile (struct objfile *objfile,
1063 struct section_addr_info *addrs,
b15cc25c 1064 symfile_add_flags add_flags)
36e4d068 1065{
6bf667bb 1066 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1067 init_entry_point_info (objfile);
1068}
1069
c906108c
SS
1070/* Perform required actions after either reading in the initial
1071 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1072 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1073
e7d52ed3 1074static void
b15cc25c 1075finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1076{
c906108c 1077 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1078 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1079 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1080 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1081 {
1082 /* OK, make it the "real" symbol file. */
1083 symfile_objfile = objfile;
1084
c1e56572 1085 clear_symtab_users (add_flags);
c906108c 1086 }
7eedccfa 1087 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1088 {
69de3c6a 1089 breakpoint_re_set ();
c906108c
SS
1090 }
1091
1092 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1093 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1094}
1095
1096/* Process a symbol file, as either the main file or as a dynamically
1097 loaded file.
1098
5417f6dc 1099 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1100 A new reference is acquired by this function.
7904e09f 1101
9e86da07 1102 For NAME description see the objfile constructor.
24ba069a 1103
7eedccfa
PP
1104 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1105 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1106
6bf667bb 1107 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1108 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1109
63524580
JK
1110 PARENT is the original objfile if ABFD is a separate debug info file.
1111 Otherwise PARENT is NULL.
1112
c906108c 1113 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1114 Upon failure, jumps back to command level (never returns). */
7eedccfa 1115
7904e09f 1116static struct objfile *
b15cc25c
PA
1117symbol_file_add_with_addrs (bfd *abfd, const char *name,
1118 symfile_add_flags add_flags,
6bf667bb 1119 struct section_addr_info *addrs,
b15cc25c 1120 objfile_flags flags, struct objfile *parent)
c906108c
SS
1121{
1122 struct objfile *objfile;
7eedccfa 1123 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1124 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1125 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1126 && (readnow_symbol_files
1127 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1128
9291a0cd 1129 if (readnow_symbol_files)
b11896a5
TT
1130 {
1131 flags |= OBJF_READNOW;
1132 add_flags &= ~SYMFILE_NO_READ;
1133 }
9291a0cd 1134
5417f6dc
RM
1135 /* Give user a chance to burp if we'd be
1136 interactively wiping out any existing symbols. */
c906108c
SS
1137
1138 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1139 && mainline
c906108c 1140 && from_tty
9e2f0ad4 1141 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1142 error (_("Not confirmed."));
c906108c 1143
b15cc25c
PA
1144 if (mainline)
1145 flags |= OBJF_MAINLINE;
9e86da07 1146 objfile = new struct objfile (abfd, name, flags);
c906108c 1147
63524580
JK
1148 if (parent)
1149 add_separate_debug_objfile (objfile, parent);
1150
78a4a9b9
AC
1151 /* We either created a new mapped symbol table, mapped an existing
1152 symbol table file which has not had initial symbol reading
c378eb4e 1153 performed, or need to read an unmapped symbol table. */
b11896a5 1154 if (should_print)
c906108c 1155 {
769d7dc4
AC
1156 if (deprecated_pre_add_symbol_hook)
1157 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1158 else
c906108c 1159 {
55333a84
DE
1160 printf_unfiltered (_("Reading symbols from %s..."), name);
1161 wrap_here ("");
1162 gdb_flush (gdb_stdout);
c906108c 1163 }
c906108c 1164 }
6bf667bb 1165 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1166
1167 /* We now have at least a partial symbol table. Check to see if the
1168 user requested that all symbols be read on initial access via either
1169 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1170 all partial symbol tables for this objfile if so. */
c906108c 1171
9291a0cd 1172 if ((flags & OBJF_READNOW))
c906108c 1173 {
b11896a5 1174 if (should_print)
c906108c 1175 {
a3f17187 1176 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1177 wrap_here ("");
1178 gdb_flush (gdb_stdout);
1179 }
1180
ccefe4c4
TT
1181 if (objfile->sf)
1182 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1183 }
1184
b11896a5 1185 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1186 {
1187 wrap_here ("");
55333a84 1188 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1189 wrap_here ("");
1190 }
1191
b11896a5 1192 if (should_print)
c906108c 1193 {
769d7dc4
AC
1194 if (deprecated_post_add_symbol_hook)
1195 deprecated_post_add_symbol_hook ();
c906108c 1196 else
55333a84 1197 printf_unfiltered (_("done.\n"));
c906108c
SS
1198 }
1199
481d0f41
JB
1200 /* We print some messages regardless of whether 'from_tty ||
1201 info_verbose' is true, so make sure they go out at the right
1202 time. */
1203 gdb_flush (gdb_stdout);
1204
109f874e 1205 if (objfile->sf == NULL)
8caee43b
PP
1206 {
1207 observer_notify_new_objfile (objfile);
c378eb4e 1208 return objfile; /* No symbols. */
8caee43b 1209 }
109f874e 1210
e7d52ed3 1211 finish_new_objfile (objfile, add_flags);
c906108c 1212
06d3b283 1213 observer_notify_new_objfile (objfile);
c906108c 1214
ce7d4522 1215 bfd_cache_close_all ();
c906108c
SS
1216 return (objfile);
1217}
1218
24ba069a 1219/* Add BFD as a separate debug file for OBJFILE. For NAME description
9e86da07 1220 see the objfile constructor. */
9cce227f
TG
1221
1222void
b15cc25c
PA
1223symbol_file_add_separate (bfd *bfd, const char *name,
1224 symfile_add_flags symfile_flags,
24ba069a 1225 struct objfile *objfile)
9cce227f 1226{
089b4803
TG
1227 struct section_addr_info *sap;
1228 struct cleanup *my_cleanup;
1229
1230 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1231 because sections of BFD may not match sections of OBJFILE and because
1232 vma may have been modified by tools such as prelink. */
1233 sap = build_section_addr_info_from_objfile (objfile);
1234 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1235
870f88f7 1236 symbol_file_add_with_addrs
24ba069a 1237 (bfd, name, symfile_flags, sap,
9cce227f 1238 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1239 | OBJF_USERLOADED),
1240 objfile);
089b4803
TG
1241
1242 do_cleanups (my_cleanup);
9cce227f 1243}
7904e09f 1244
eb4556d7
JB
1245/* Process the symbol file ABFD, as either the main file or as a
1246 dynamically loaded file.
6bf667bb 1247 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1248
eb4556d7 1249struct objfile *
b15cc25c
PA
1250symbol_file_add_from_bfd (bfd *abfd, const char *name,
1251 symfile_add_flags add_flags,
eb4556d7 1252 struct section_addr_info *addrs,
b15cc25c 1253 objfile_flags flags, struct objfile *parent)
eb4556d7 1254{
24ba069a
JK
1255 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1256 parent);
eb4556d7
JB
1257}
1258
7904e09f 1259/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1260 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1261
7904e09f 1262struct objfile *
b15cc25c
PA
1263symbol_file_add (const char *name, symfile_add_flags add_flags,
1264 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1265{
192b62ce 1266 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1267
192b62ce
TT
1268 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1269 flags, NULL);
7904e09f
JB
1270}
1271
d7db6da9
FN
1272/* Call symbol_file_add() with default values and update whatever is
1273 affected by the loading of a new main().
1274 Used when the file is supplied in the gdb command line
1275 and by some targets with special loading requirements.
1276 The auxiliary function, symbol_file_add_main_1(), has the flags
1277 argument for the switches that can only be specified in the symbol_file
1278 command itself. */
5417f6dc 1279
1adeb98a 1280void
ecf45d2c 1281symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1282{
ecf45d2c 1283 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1284}
1285
1286static void
ecf45d2c
SL
1287symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1288 objfile_flags flags)
d7db6da9 1289{
ecf45d2c 1290 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1291
7eedccfa 1292 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1293
d7db6da9
FN
1294 /* Getting new symbols may change our opinion about
1295 what is frameless. */
1296 reinit_frame_cache ();
1297
b15cc25c 1298 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1299 set_initial_language ();
1adeb98a
FN
1300}
1301
1302void
1303symbol_file_clear (int from_tty)
1304{
1305 if ((have_full_symbols () || have_partial_symbols ())
1306 && from_tty
0430b0d6
AS
1307 && (symfile_objfile
1308 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1309 objfile_name (symfile_objfile))
0430b0d6 1310 : !query (_("Discard symbol table? "))))
8a3fe4f8 1311 error (_("Not confirmed."));
1adeb98a 1312
0133421a
JK
1313 /* solib descriptors may have handles to objfiles. Wipe them before their
1314 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1315 no_shared_libraries (NULL, from_tty);
1316
0133421a
JK
1317 free_all_objfiles ();
1318
adb7f338 1319 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1320 if (from_tty)
1321 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1322}
1323
c4dcb155
SM
1324/* See symfile.h. */
1325
1326int separate_debug_file_debug = 0;
1327
5b5d99cf 1328static int
287ccc17 1329separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1330 struct objfile *parent_objfile)
5b5d99cf 1331{
904578ed
JK
1332 unsigned long file_crc;
1333 int file_crc_p;
32a0e547 1334 struct stat parent_stat, abfd_stat;
904578ed 1335 int verified_as_different;
32a0e547
JK
1336
1337 /* Find a separate debug info file as if symbols would be present in
1338 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1339 section can contain just the basename of PARENT_OBJFILE without any
1340 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1341 the separate debug infos with the same basename can exist. */
32a0e547 1342
4262abfb 1343 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1344 return 0;
5b5d99cf 1345
c4dcb155
SM
1346 if (separate_debug_file_debug)
1347 printf_unfiltered (_(" Trying %s\n"), name);
1348
192b62ce 1349 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
f1838a98 1350
192b62ce 1351 if (abfd == NULL)
5b5d99cf
JB
1352 return 0;
1353
0ba1096a 1354 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1355
1356 Some operating systems, e.g. Windows, do not provide a meaningful
1357 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1358 meaningful st_dev.) Files accessed from gdbservers that do not
1359 support the vFile:fstat packet will also have st_ino set to zero.
1360 Do not indicate a duplicate library in either case. While there
1361 is no guarantee that a system that provides meaningful inode
1362 numbers will never set st_ino to zero, this is merely an
1363 optimization, so we do not need to worry about false negatives. */
32a0e547 1364
192b62ce 1365 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1366 && abfd_stat.st_ino != 0
1367 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1368 {
904578ed
JK
1369 if (abfd_stat.st_dev == parent_stat.st_dev
1370 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1371 return 0;
904578ed 1372 verified_as_different = 1;
32a0e547 1373 }
904578ed
JK
1374 else
1375 verified_as_different = 0;
32a0e547 1376
192b62ce 1377 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1378
904578ed
JK
1379 if (!file_crc_p)
1380 return 0;
1381
287ccc17
JK
1382 if (crc != file_crc)
1383 {
dccee2de
TT
1384 unsigned long parent_crc;
1385
0a93529c
GB
1386 /* If the files could not be verified as different with
1387 bfd_stat then we need to calculate the parent's CRC
1388 to verify whether the files are different or not. */
904578ed 1389
dccee2de 1390 if (!verified_as_different)
904578ed 1391 {
dccee2de 1392 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1393 return 0;
1394 }
1395
dccee2de 1396 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1397 warning (_("the debug information found in \"%s\""
1398 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1399 name, objfile_name (parent_objfile));
904578ed 1400
287ccc17
JK
1401 return 0;
1402 }
1403
1404 return 1;
5b5d99cf
JB
1405}
1406
aa28a74e 1407char *debug_file_directory = NULL;
920d2a44
AC
1408static void
1409show_debug_file_directory (struct ui_file *file, int from_tty,
1410 struct cmd_list_element *c, const char *value)
1411{
3e43a32a
MS
1412 fprintf_filtered (file,
1413 _("The directory where separate debug "
1414 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1415 value);
1416}
5b5d99cf
JB
1417
1418#if ! defined (DEBUG_SUBDIRECTORY)
1419#define DEBUG_SUBDIRECTORY ".debug"
1420#endif
1421
1db33378
PP
1422/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1423 where the original file resides (may not be the same as
1424 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1425 looking for. CANON_DIR is the "realpath" form of DIR.
1426 DIR must contain a trailing '/'.
1427 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1428
1429static char *
1430find_separate_debug_file (const char *dir,
1431 const char *canon_dir,
1432 const char *debuglink,
1433 unsigned long crc32, struct objfile *objfile)
9cce227f 1434{
1db33378
PP
1435 char *debugdir;
1436 char *debugfile;
9cce227f 1437 int i;
e4ab2fad
JK
1438 VEC (char_ptr) *debugdir_vec;
1439 struct cleanup *back_to;
1440 int ix;
5b5d99cf 1441
c4dcb155
SM
1442 if (separate_debug_file_debug)
1443 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1444 "%s\n"), objfile_name (objfile));
1445
325fac50 1446 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1447 i = strlen (dir);
1db33378
PP
1448 if (canon_dir != NULL && strlen (canon_dir) > i)
1449 i = strlen (canon_dir);
1ffa32ee 1450
224c3ddb
SM
1451 debugfile
1452 = (char *) xmalloc (strlen (debug_file_directory) + 1
1453 + i
1454 + strlen (DEBUG_SUBDIRECTORY)
1455 + strlen ("/")
1456 + strlen (debuglink)
1457 + 1);
5b5d99cf
JB
1458
1459 /* First try in the same directory as the original file. */
1460 strcpy (debugfile, dir);
1db33378 1461 strcat (debugfile, debuglink);
5b5d99cf 1462
32a0e547 1463 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1464 return debugfile;
5417f6dc 1465
5b5d99cf
JB
1466 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1467 strcpy (debugfile, dir);
1468 strcat (debugfile, DEBUG_SUBDIRECTORY);
1469 strcat (debugfile, "/");
1db33378 1470 strcat (debugfile, debuglink);
5b5d99cf 1471
32a0e547 1472 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1473 return debugfile;
5417f6dc 1474
24ddea62 1475 /* Then try in the global debugfile directories.
f888f159 1476
24ddea62
JK
1477 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1478 cause "/..." lookups. */
5417f6dc 1479
e4ab2fad
JK
1480 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1481 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1482
e4ab2fad
JK
1483 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1484 {
1485 strcpy (debugfile, debugdir);
aa28a74e 1486 strcat (debugfile, "/");
24ddea62 1487 strcat (debugfile, dir);
1db33378 1488 strcat (debugfile, debuglink);
aa28a74e 1489
32a0e547 1490 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1491 {
1492 do_cleanups (back_to);
1493 return debugfile;
1494 }
24ddea62
JK
1495
1496 /* If the file is in the sysroot, try using its base path in the
1497 global debugfile directory. */
1db33378
PP
1498 if (canon_dir != NULL
1499 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1500 strlen (gdb_sysroot)) == 0
1db33378 1501 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1502 {
e4ab2fad 1503 strcpy (debugfile, debugdir);
1db33378 1504 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1505 strcat (debugfile, "/");
1db33378 1506 strcat (debugfile, debuglink);
24ddea62 1507
32a0e547 1508 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1509 {
1510 do_cleanups (back_to);
1511 return debugfile;
1512 }
24ddea62 1513 }
aa28a74e 1514 }
f888f159 1515
e4ab2fad 1516 do_cleanups (back_to);
25522fae 1517 xfree (debugfile);
1db33378
PP
1518 return NULL;
1519}
1520
7edbb660 1521/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1522 If there were no directory separators in PATH, PATH will be empty
1523 string on return. */
1524
1525static void
1526terminate_after_last_dir_separator (char *path)
1527{
1528 int i;
1529
1530 /* Strip off the final filename part, leaving the directory name,
1531 followed by a slash. The directory can be relative or absolute. */
1532 for (i = strlen(path) - 1; i >= 0; i--)
1533 if (IS_DIR_SEPARATOR (path[i]))
1534 break;
1535
1536 /* If I is -1 then no directory is present there and DIR will be "". */
1537 path[i + 1] = '\0';
1538}
1539
1540/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1541 Returns pathname, or NULL. */
1542
1543char *
1544find_separate_debug_file_by_debuglink (struct objfile *objfile)
1545{
1db33378
PP
1546 char *debugfile;
1547 unsigned long crc32;
1db33378 1548
5eae7aea
TT
1549 gdb::unique_xmalloc_ptr<char> debuglink
1550 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1db33378
PP
1551
1552 if (debuglink == NULL)
1553 {
1554 /* There's no separate debug info, hence there's no way we could
1555 load it => no warning. */
1556 return NULL;
1557 }
1558
5eae7aea
TT
1559 std::string dir = objfile_name (objfile);
1560 terminate_after_last_dir_separator (&dir[0]);
1561 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1db33378 1562
5eae7aea
TT
1563 debugfile = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1564 debuglink.get (), crc32, objfile);
1db33378
PP
1565
1566 if (debugfile == NULL)
1567 {
1db33378
PP
1568 /* For PR gdb/9538, try again with realpath (if different from the
1569 original). */
1570
1571 struct stat st_buf;
1572
4262abfb
JK
1573 if (lstat (objfile_name (objfile), &st_buf) == 0
1574 && S_ISLNK (st_buf.st_mode))
1db33378 1575 {
5eae7aea
TT
1576 gdb::unique_xmalloc_ptr<char> symlink_dir
1577 (lrealpath (objfile_name (objfile)));
1db33378
PP
1578 if (symlink_dir != NULL)
1579 {
5eae7aea
TT
1580 terminate_after_last_dir_separator (symlink_dir.get ());
1581 if (dir != symlink_dir.get ())
1db33378
PP
1582 {
1583 /* Different directory, so try using it. */
5eae7aea
TT
1584 debugfile = find_separate_debug_file (symlink_dir.get (),
1585 symlink_dir.get (),
1586 debuglink.get (),
1db33378
PP
1587 crc32,
1588 objfile);
1589 }
1590 }
1591 }
1db33378 1592 }
aa28a74e 1593
25522fae 1594 return debugfile;
5b5d99cf
JB
1595}
1596
c906108c
SS
1597/* This is the symbol-file command. Read the file, analyze its
1598 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1599 the command is rather bizarre:
1600
1601 1. The function buildargv implements various quoting conventions
1602 which are undocumented and have little or nothing in common with
1603 the way things are quoted (or not quoted) elsewhere in GDB.
1604
1605 2. Options are used, which are not generally used in GDB (perhaps
1606 "set mapped on", "set readnow on" would be better)
1607
1608 3. The order of options matters, which is contrary to GNU
c906108c
SS
1609 conventions (because it is confusing and inconvenient). */
1610
1611void
1d8b34a7 1612symbol_file_command (const char *args, int from_tty)
c906108c 1613{
c906108c
SS
1614 dont_repeat ();
1615
1616 if (args == NULL)
1617 {
1adeb98a 1618 symbol_file_clear (from_tty);
c906108c
SS
1619 }
1620 else
1621 {
b15cc25c 1622 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1623 symfile_add_flags add_flags = 0;
cb2f3a29
MK
1624 char *name = NULL;
1625
ecf45d2c
SL
1626 if (from_tty)
1627 add_flags |= SYMFILE_VERBOSE;
1628
773a1edc
TT
1629 gdb_argv built_argv (args);
1630 for (char *arg : built_argv)
c906108c 1631 {
773a1edc 1632 if (strcmp (arg, "-readnow") == 0)
78a4a9b9 1633 flags |= OBJF_READNOW;
773a1edc
TT
1634 else if (*arg == '-')
1635 error (_("unknown option `%s'"), arg);
78a4a9b9
AC
1636 else
1637 {
773a1edc
TT
1638 symbol_file_add_main_1 (arg, add_flags, flags);
1639 name = arg;
78a4a9b9 1640 }
c906108c
SS
1641 }
1642
1643 if (name == NULL)
cb2f3a29 1644 error (_("no symbol file name was specified"));
c906108c
SS
1645 }
1646}
1647
1648/* Set the initial language.
1649
cb2f3a29
MK
1650 FIXME: A better solution would be to record the language in the
1651 psymtab when reading partial symbols, and then use it (if known) to
1652 set the language. This would be a win for formats that encode the
1653 language in an easily discoverable place, such as DWARF. For
1654 stabs, we can jump through hoops looking for specially named
1655 symbols or try to intuit the language from the specific type of
1656 stabs we find, but we can't do that until later when we read in
1657 full symbols. */
c906108c 1658
8b60591b 1659void
fba45db2 1660set_initial_language (void)
c906108c 1661{
9e6c82ad 1662 enum language lang = main_language ();
c906108c 1663
9e6c82ad 1664 if (lang == language_unknown)
01f8c46d 1665 {
bf6d8a91 1666 char *name = main_name ();
d12307c1 1667 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1668
bf6d8a91
TT
1669 if (sym != NULL)
1670 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1671 }
cb2f3a29 1672
ccefe4c4
TT
1673 if (lang == language_unknown)
1674 {
1675 /* Make C the default language */
1676 lang = language_c;
c906108c 1677 }
ccefe4c4
TT
1678
1679 set_language (lang);
1680 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1681}
1682
cb2f3a29
MK
1683/* Open the file specified by NAME and hand it off to BFD for
1684 preliminary analysis. Return a newly initialized bfd *, which
1685 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1686 absolute). In case of trouble, error() is called. */
c906108c 1687
192b62ce 1688gdb_bfd_ref_ptr
97a41605 1689symfile_bfd_open (const char *name)
c906108c 1690{
97a41605
GB
1691 int desc = -1;
1692 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1693
97a41605 1694 if (!is_target_filename (name))
f1838a98 1695 {
ee0c3293 1696 char *absolute_name;
f1838a98 1697
ee0c3293 1698 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1699
97a41605
GB
1700 /* Look down path for it, allocate 2nd new malloc'd copy. */
1701 desc = openp (getenv ("PATH"),
1702 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1703 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1704#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1705 if (desc < 0)
1706 {
ee0c3293 1707 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1708
ee0c3293 1709 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1710 desc = openp (getenv ("PATH"),
1711 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1712 exename, O_RDONLY | O_BINARY, &absolute_name);
1713 }
c906108c 1714#endif
97a41605 1715 if (desc < 0)
ee0c3293 1716 perror_with_name (expanded_name.get ());
cb2f3a29 1717
97a41605
GB
1718 make_cleanup (xfree, absolute_name);
1719 name = absolute_name;
1720 }
c906108c 1721
192b62ce
TT
1722 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1723 if (sym_bfd == NULL)
faab9922
JK
1724 error (_("`%s': can't open to read symbols: %s."), name,
1725 bfd_errmsg (bfd_get_error ()));
97a41605 1726
192b62ce
TT
1727 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1728 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1729
192b62ce
TT
1730 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1731 error (_("`%s': can't read symbols: %s."), name,
1732 bfd_errmsg (bfd_get_error ()));
cb2f3a29 1733
faab9922
JK
1734 do_cleanups (back_to);
1735
cb2f3a29 1736 return sym_bfd;
c906108c
SS
1737}
1738
cb2f3a29
MK
1739/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1740 the section was not found. */
1741
0e931cf0 1742int
a121b7c1 1743get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1744{
1745 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1746
0e931cf0
JB
1747 if (sect)
1748 return sect->index;
1749 else
1750 return -1;
1751}
1752
c256e171
DE
1753/* Link SF into the global symtab_fns list.
1754 FLAVOUR is the file format that SF handles.
1755 Called on startup by the _initialize routine in each object file format
1756 reader, to register information about each format the reader is prepared
1757 to handle. */
c906108c
SS
1758
1759void
c256e171 1760add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1761{
905014d7 1762 symtab_fns.emplace_back (flavour, sf);
c906108c
SS
1763}
1764
cb2f3a29
MK
1765/* Initialize OBJFILE to read symbols from its associated BFD. It
1766 either returns or calls error(). The result is an initialized
1767 struct sym_fns in the objfile structure, that contains cached
1768 information about the symbol file. */
c906108c 1769
00b5771c 1770static const struct sym_fns *
31d99776 1771find_sym_fns (bfd *abfd)
c906108c 1772{
31d99776 1773 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1774
75245b24
MS
1775 if (our_flavour == bfd_target_srec_flavour
1776 || our_flavour == bfd_target_ihex_flavour
1777 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1778 return NULL; /* No symbols. */
75245b24 1779
905014d7
SM
1780 for (const registered_sym_fns &rsf : symtab_fns)
1781 if (our_flavour == rsf.sym_flavour)
1782 return rsf.sym_fns;
cb2f3a29 1783
8a3fe4f8 1784 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1785 bfd_get_target (abfd));
c906108c
SS
1786}
1787\f
cb2f3a29 1788
c906108c
SS
1789/* This function runs the load command of our current target. */
1790
1791static void
5fed81ff 1792load_command (const char *arg, int from_tty)
c906108c 1793{
5b3fca71
TT
1794 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1795
e5cc9f32
JB
1796 dont_repeat ();
1797
4487aabf
PA
1798 /* The user might be reloading because the binary has changed. Take
1799 this opportunity to check. */
1800 reopen_exec_file ();
1801 reread_symbols ();
1802
c906108c 1803 if (arg == NULL)
1986bccd 1804 {
5fed81ff 1805 const char *parg;
1986bccd
AS
1806 int count = 0;
1807
1808 parg = arg = get_exec_file (1);
1809
1810 /* Count how many \ " ' tab space there are in the name. */
1811 while ((parg = strpbrk (parg, "\\\"'\t ")))
1812 {
1813 parg++;
1814 count++;
1815 }
1816
1817 if (count)
1818 {
1819 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1820 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd 1821 char *ptemp = temp;
5fed81ff 1822 const char *prev;
1986bccd
AS
1823
1824 make_cleanup (xfree, temp);
1825
1826 prev = parg = arg;
1827 while ((parg = strpbrk (parg, "\\\"'\t ")))
1828 {
1829 strncpy (ptemp, prev, parg - prev);
1830 ptemp += parg - prev;
1831 prev = parg++;
1832 *ptemp++ = '\\';
1833 }
1834 strcpy (ptemp, prev);
1835
1836 arg = temp;
1837 }
1838 }
1839
c906108c 1840 target_load (arg, from_tty);
2889e661
JB
1841
1842 /* After re-loading the executable, we don't really know which
1843 overlays are mapped any more. */
1844 overlay_cache_invalid = 1;
5b3fca71
TT
1845
1846 do_cleanups (cleanup);
c906108c
SS
1847}
1848
1849/* This version of "load" should be usable for any target. Currently
1850 it is just used for remote targets, not inftarg.c or core files,
1851 on the theory that only in that case is it useful.
1852
1853 Avoiding xmodem and the like seems like a win (a) because we don't have
1854 to worry about finding it, and (b) On VMS, fork() is very slow and so
1855 we don't want to run a subprocess. On the other hand, I'm not sure how
1856 performance compares. */
917317f4 1857
917317f4
JM
1858static int validate_download = 0;
1859
e4f9b4d5
MS
1860/* Callback service function for generic_load (bfd_map_over_sections). */
1861
1862static void
1863add_section_size_callback (bfd *abfd, asection *asec, void *data)
1864{
19ba03f4 1865 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1866
2c500098 1867 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1868}
1869
1870/* Opaque data for load_section_callback. */
1871struct load_section_data {
f698ca8e 1872 CORE_ADDR load_offset;
a76d924d
DJ
1873 struct load_progress_data *progress_data;
1874 VEC(memory_write_request_s) *requests;
1875};
1876
1877/* Opaque data for load_progress. */
1878struct load_progress_data {
1879 /* Cumulative data. */
e4f9b4d5
MS
1880 unsigned long write_count;
1881 unsigned long data_count;
1882 bfd_size_type total_size;
a76d924d
DJ
1883};
1884
1885/* Opaque data for load_progress for a single section. */
1886struct load_progress_section_data {
1887 struct load_progress_data *cumulative;
cf7a04e8 1888
a76d924d 1889 /* Per-section data. */
cf7a04e8
DJ
1890 const char *section_name;
1891 ULONGEST section_sent;
1892 ULONGEST section_size;
1893 CORE_ADDR lma;
1894 gdb_byte *buffer;
e4f9b4d5
MS
1895};
1896
a76d924d 1897/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1898
1899static void
1900load_progress (ULONGEST bytes, void *untyped_arg)
1901{
19ba03f4
SM
1902 struct load_progress_section_data *args
1903 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1904 struct load_progress_data *totals;
1905
1906 if (args == NULL)
1907 /* Writing padding data. No easy way to get at the cumulative
1908 stats, so just ignore this. */
1909 return;
1910
1911 totals = args->cumulative;
1912
1913 if (bytes == 0 && args->section_sent == 0)
1914 {
1915 /* The write is just starting. Let the user know we've started
1916 this section. */
112e8700
SM
1917 current_uiout->message ("Loading section %s, size %s lma %s\n",
1918 args->section_name,
1919 hex_string (args->section_size),
1920 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1921 return;
1922 }
cf7a04e8
DJ
1923
1924 if (validate_download)
1925 {
1926 /* Broken memories and broken monitors manifest themselves here
1927 when bring new computers to life. This doubles already slow
1928 downloads. */
1929 /* NOTE: cagney/1999-10-18: A more efficient implementation
1930 might add a verify_memory() method to the target vector and
1931 then use that. remote.c could implement that method using
1932 the ``qCRC'' packet. */
0efef640 1933 gdb::byte_vector check (bytes);
cf7a04e8 1934
0efef640 1935 if (target_read_memory (args->lma, check.data (), bytes) != 0)
5af949e3 1936 error (_("Download verify read failed at %s"),
f5656ead 1937 paddress (target_gdbarch (), args->lma));
0efef640 1938 if (memcmp (args->buffer, check.data (), bytes) != 0)
5af949e3 1939 error (_("Download verify compare failed at %s"),
f5656ead 1940 paddress (target_gdbarch (), args->lma));
cf7a04e8 1941 }
a76d924d 1942 totals->data_count += bytes;
cf7a04e8
DJ
1943 args->lma += bytes;
1944 args->buffer += bytes;
a76d924d 1945 totals->write_count += 1;
cf7a04e8 1946 args->section_sent += bytes;
522002f9 1947 if (check_quit_flag ()
cf7a04e8
DJ
1948 || (deprecated_ui_load_progress_hook != NULL
1949 && deprecated_ui_load_progress_hook (args->section_name,
1950 args->section_sent)))
1951 error (_("Canceled the download"));
1952
1953 if (deprecated_show_load_progress != NULL)
1954 deprecated_show_load_progress (args->section_name,
1955 args->section_sent,
1956 args->section_size,
a76d924d
DJ
1957 totals->data_count,
1958 totals->total_size);
cf7a04e8
DJ
1959}
1960
e4f9b4d5
MS
1961/* Callback service function for generic_load (bfd_map_over_sections). */
1962
1963static void
1964load_section_callback (bfd *abfd, asection *asec, void *data)
1965{
a76d924d 1966 struct memory_write_request *new_request;
19ba03f4 1967 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 1968 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1969 bfd_size_type size = bfd_get_section_size (asec);
1970 gdb_byte *buffer;
cf7a04e8 1971 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1972
cf7a04e8
DJ
1973 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1974 return;
e4f9b4d5 1975
cf7a04e8
DJ
1976 if (size == 0)
1977 return;
e4f9b4d5 1978
a76d924d
DJ
1979 new_request = VEC_safe_push (memory_write_request_s,
1980 args->requests, NULL);
1981 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 1982 section_data = XCNEW (struct load_progress_section_data);
a76d924d 1983 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
1984 new_request->end = new_request->begin + size; /* FIXME Should size
1985 be in instead? */
224c3ddb 1986 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 1987 new_request->baton = section_data;
cf7a04e8 1988
a76d924d 1989 buffer = new_request->data;
cf7a04e8 1990
a76d924d
DJ
1991 section_data->cumulative = args->progress_data;
1992 section_data->section_name = sect_name;
1993 section_data->section_size = size;
1994 section_data->lma = new_request->begin;
1995 section_data->buffer = buffer;
cf7a04e8
DJ
1996
1997 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1998}
1999
2000/* Clean up an entire memory request vector, including load
2001 data and progress records. */
cf7a04e8 2002
a76d924d
DJ
2003static void
2004clear_memory_write_data (void *arg)
2005{
19ba03f4 2006 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2007 VEC(memory_write_request_s) *vec = *vec_p;
2008 int i;
2009 struct memory_write_request *mr;
cf7a04e8 2010
a76d924d
DJ
2011 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2012 {
2013 xfree (mr->data);
2014 xfree (mr->baton);
2015 }
2016 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2017}
2018
dcb07cfa
PA
2019static void print_transfer_performance (struct ui_file *stream,
2020 unsigned long data_count,
2021 unsigned long write_count,
2022 std::chrono::steady_clock::duration d);
2023
c906108c 2024void
9cbe5fff 2025generic_load (const char *args, int from_tty)
c906108c 2026{
773a1edc 2027 struct cleanup *old_cleanups;
e4f9b4d5 2028 struct load_section_data cbdata;
a76d924d 2029 struct load_progress_data total_progress;
79a45e25 2030 struct ui_out *uiout = current_uiout;
a76d924d 2031
e4f9b4d5
MS
2032 CORE_ADDR entry;
2033
a76d924d
DJ
2034 memset (&cbdata, 0, sizeof (cbdata));
2035 memset (&total_progress, 0, sizeof (total_progress));
2036 cbdata.progress_data = &total_progress;
2037
773a1edc 2038 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2039
d1a41061
PP
2040 if (args == NULL)
2041 error_no_arg (_("file to load"));
1986bccd 2042
773a1edc 2043 gdb_argv argv (args);
1986bccd 2044
ee0c3293 2045 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
2046
2047 if (argv[1] != NULL)
917317f4 2048 {
f698ca8e 2049 const char *endptr;
ba5f2f8a 2050
f698ca8e 2051 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2052
2053 /* If the last word was not a valid number then
2054 treat it as a file name with spaces in. */
2055 if (argv[1] == endptr)
2056 error (_("Invalid download offset:%s."), argv[1]);
2057
2058 if (argv[2] != NULL)
2059 error (_("Too many parameters."));
917317f4 2060 }
c906108c 2061
c378eb4e 2062 /* Open the file for loading. */
ee0c3293 2063 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 2064 if (loadfile_bfd == NULL)
ee0c3293 2065 perror_with_name (filename.get ());
917317f4 2066
192b62ce 2067 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2068 {
ee0c3293 2069 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
2070 bfd_errmsg (bfd_get_error ()));
2071 }
c5aa993b 2072
192b62ce 2073 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2074 (void *) &total_progress.total_size);
2075
192b62ce 2076 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2077
dcb07cfa
PA
2078 using namespace std::chrono;
2079
2080 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2081
a76d924d
DJ
2082 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2083 load_progress) != 0)
2084 error (_("Load failed"));
c906108c 2085
dcb07cfa 2086 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2087
192b62ce 2088 entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2089 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2090 uiout->text ("Start address ");
2091 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2092 uiout->text (", load size ");
2093 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2094 uiout->text ("\n");
fb14de7b 2095 regcache_write_pc (get_current_regcache (), entry);
c906108c 2096
38963c97
DJ
2097 /* Reset breakpoints, now that we have changed the load image. For
2098 instance, breakpoints may have been set (or reset, by
2099 post_create_inferior) while connected to the target but before we
2100 loaded the program. In that case, the prologue analyzer could
2101 have read instructions from the target to find the right
2102 breakpoint locations. Loading has changed the contents of that
2103 memory. */
2104
2105 breakpoint_re_set ();
2106
a76d924d
DJ
2107 print_transfer_performance (gdb_stdout, total_progress.data_count,
2108 total_progress.write_count,
dcb07cfa 2109 end_time - start_time);
c906108c
SS
2110
2111 do_cleanups (old_cleanups);
2112}
2113
dcb07cfa
PA
2114/* Report on STREAM the performance of a memory transfer operation,
2115 such as 'load'. DATA_COUNT is the number of bytes transferred.
2116 WRITE_COUNT is the number of separate write operations, or 0, if
2117 that information is not available. TIME is how long the operation
2118 lasted. */
c906108c 2119
dcb07cfa 2120static void
d9fcf2fb 2121print_transfer_performance (struct ui_file *stream,
917317f4
JM
2122 unsigned long data_count,
2123 unsigned long write_count,
dcb07cfa 2124 std::chrono::steady_clock::duration time)
917317f4 2125{
dcb07cfa 2126 using namespace std::chrono;
79a45e25 2127 struct ui_out *uiout = current_uiout;
2b71414d 2128
dcb07cfa 2129 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2130
112e8700 2131 uiout->text ("Transfer rate: ");
dcb07cfa 2132 if (ms.count () > 0)
8b93c638 2133 {
dcb07cfa 2134 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2135
112e8700 2136 if (uiout->is_mi_like_p ())
9f43d28c 2137 {
112e8700
SM
2138 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2139 uiout->text (" bits/sec");
9f43d28c
DJ
2140 }
2141 else if (rate < 1024)
2142 {
112e8700
SM
2143 uiout->field_fmt ("transfer-rate", "%lu", rate);
2144 uiout->text (" bytes/sec");
9f43d28c
DJ
2145 }
2146 else
2147 {
112e8700
SM
2148 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2149 uiout->text (" KB/sec");
9f43d28c 2150 }
8b93c638
JM
2151 }
2152 else
2153 {
112e8700
SM
2154 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2155 uiout->text (" bits in <1 sec");
8b93c638
JM
2156 }
2157 if (write_count > 0)
2158 {
112e8700
SM
2159 uiout->text (", ");
2160 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2161 uiout->text (" bytes/write");
8b93c638 2162 }
112e8700 2163 uiout->text (".\n");
c906108c
SS
2164}
2165
2166/* This function allows the addition of incrementally linked object files.
2167 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2168/* Note: ezannoni 2000-04-13 This function/command used to have a
2169 special case syntax for the rombug target (Rombug is the boot
2170 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2171 rombug case, the user doesn't need to supply a text address,
2172 instead a call to target_link() (in target.c) would supply the
c378eb4e 2173 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2174
c906108c 2175static void
2cf311eb 2176add_symbol_file_command (const char *args, int from_tty)
c906108c 2177{
5af949e3 2178 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2179 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2180 char *arg;
2acceee2
JM
2181 int argcnt = 0;
2182 int sec_num = 0;
db162d44
EZ
2183 int expecting_sec_name = 0;
2184 int expecting_sec_addr = 0;
76ad5e1e 2185 struct objfile *objf;
b15cc25c
PA
2186 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2187 symfile_add_flags add_flags = 0;
2188
2189 if (from_tty)
2190 add_flags |= SYMFILE_VERBOSE;
db162d44 2191
a39a16c4 2192 struct sect_opt
2acceee2 2193 {
a121b7c1
PA
2194 const char *name;
2195 const char *value;
a39a16c4 2196 };
db162d44 2197
a39a16c4 2198 struct section_addr_info *section_addrs;
f978cb06 2199 std::vector<sect_opt> sect_opts;
3017564a 2200 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2201
c906108c
SS
2202 dont_repeat ();
2203
2204 if (args == NULL)
8a3fe4f8 2205 error (_("add-symbol-file takes a file name and an address"));
c906108c 2206
773a1edc 2207 gdb_argv argv (args);
db162d44 2208
5b96932b
AS
2209 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2210 {
c378eb4e 2211 /* Process the argument. */
db162d44 2212 if (argcnt == 0)
c906108c 2213 {
c378eb4e 2214 /* The first argument is the file name. */
ee0c3293 2215 filename.reset (tilde_expand (arg));
c906108c 2216 }
41dc8db8
MB
2217 else if (argcnt == 1)
2218 {
2219 /* The second argument is always the text address at which
2220 to load the program. */
f978cb06
TT
2221 sect_opt sect = { ".text", arg };
2222 sect_opts.push_back (sect);
41dc8db8 2223 }
db162d44 2224 else
41dc8db8
MB
2225 {
2226 /* It's an option (starting with '-') or it's an argument
2227 to an option. */
41dc8db8
MB
2228 if (expecting_sec_name)
2229 {
f978cb06
TT
2230 sect_opt sect = { arg, NULL };
2231 sect_opts.push_back (sect);
41dc8db8
MB
2232 expecting_sec_name = 0;
2233 }
2234 else if (expecting_sec_addr)
2235 {
f978cb06 2236 sect_opts.back ().value = arg;
41dc8db8 2237 expecting_sec_addr = 0;
41dc8db8
MB
2238 }
2239 else if (strcmp (arg, "-readnow") == 0)
2240 flags |= OBJF_READNOW;
2241 else if (strcmp (arg, "-s") == 0)
2242 {
2243 expecting_sec_name = 1;
2244 expecting_sec_addr = 1;
2245 }
2246 else
2247 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2248 " [-readnow] [-s <secname> <addr>]*"));
2249 }
c906108c 2250 }
c906108c 2251
927890d0
JB
2252 /* This command takes at least two arguments. The first one is a
2253 filename, and the second is the address where this file has been
2254 loaded. Abort now if this address hasn't been provided by the
2255 user. */
f978cb06 2256 if (sect_opts.empty ())
ee0c3293
TT
2257 error (_("The address where %s has been loaded is missing"),
2258 filename.get ());
927890d0 2259
c378eb4e 2260 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2261 a sect_addr_info structure to be passed around to other
2262 functions. We have to split this up into separate print
bb599908 2263 statements because hex_string returns a local static
c378eb4e 2264 string. */
5417f6dc 2265
ee0c3293
TT
2266 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2267 filename.get ());
f978cb06 2268 section_addrs = alloc_section_addr_info (sect_opts.size ());
a39a16c4 2269 make_cleanup (xfree, section_addrs);
f978cb06 2270 for (sect_opt &sect : sect_opts)
c906108c 2271 {
db162d44 2272 CORE_ADDR addr;
f978cb06
TT
2273 const char *val = sect.value;
2274 const char *sec = sect.name;
5417f6dc 2275
ae822768 2276 addr = parse_and_eval_address (val);
db162d44 2277
db162d44 2278 /* Here we store the section offsets in the order they were
c378eb4e 2279 entered on the command line. */
a121b7c1 2280 section_addrs->other[sec_num].name = (char *) sec;
a39a16c4 2281 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2282 printf_unfiltered ("\t%s_addr = %s\n", sec,
2283 paddress (gdbarch, addr));
db162d44
EZ
2284 sec_num++;
2285
5417f6dc 2286 /* The object's sections are initialized when a
db162d44 2287 call is made to build_objfile_section_table (objfile).
5417f6dc 2288 This happens in reread_symbols.
db162d44
EZ
2289 At this point, we don't know what file type this is,
2290 so we can't determine what section names are valid. */
2acceee2 2291 }
d76488d8 2292 section_addrs->num_sections = sec_num;
db162d44 2293
2acceee2 2294 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2295 error (_("Not confirmed."));
c906108c 2296
ee0c3293 2297 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
76ad5e1e
NB
2298
2299 add_target_sections_of_objfile (objf);
c906108c
SS
2300
2301 /* Getting new symbols may change our opinion about what is
2302 frameless. */
2303 reinit_frame_cache ();
db162d44 2304 do_cleanups (my_cleanups);
c906108c
SS
2305}
2306\f
70992597 2307
63644780
NB
2308/* This function removes a symbol file that was added via add-symbol-file. */
2309
2310static void
2cf311eb 2311remove_symbol_file_command (const char *args, int from_tty)
63644780 2312{
63644780 2313 struct objfile *objf = NULL;
63644780 2314 struct program_space *pspace = current_program_space;
63644780
NB
2315
2316 dont_repeat ();
2317
2318 if (args == NULL)
2319 error (_("remove-symbol-file: no symbol file provided"));
2320
773a1edc 2321 gdb_argv argv (args);
63644780
NB
2322
2323 if (strcmp (argv[0], "-a") == 0)
2324 {
2325 /* Interpret the next argument as an address. */
2326 CORE_ADDR addr;
2327
2328 if (argv[1] == NULL)
2329 error (_("Missing address argument"));
2330
2331 if (argv[2] != NULL)
2332 error (_("Junk after %s"), argv[1]);
2333
2334 addr = parse_and_eval_address (argv[1]);
2335
2336 ALL_OBJFILES (objf)
2337 {
d03de421
PA
2338 if ((objf->flags & OBJF_USERLOADED) != 0
2339 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2340 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2341 break;
2342 }
2343 }
2344 else if (argv[0] != NULL)
2345 {
2346 /* Interpret the current argument as a file name. */
63644780
NB
2347
2348 if (argv[1] != NULL)
2349 error (_("Junk after %s"), argv[0]);
2350
ee0c3293 2351 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2352
2353 ALL_OBJFILES (objf)
2354 {
d03de421
PA
2355 if ((objf->flags & OBJF_USERLOADED) != 0
2356 && (objf->flags & OBJF_SHARED) != 0
63644780 2357 && objf->pspace == pspace
ee0c3293 2358 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2359 break;
2360 }
2361 }
2362
2363 if (objf == NULL)
2364 error (_("No symbol file found"));
2365
2366 if (from_tty
2367 && !query (_("Remove symbol table from file \"%s\"? "),
2368 objfile_name (objf)))
2369 error (_("Not confirmed."));
2370
9e86da07 2371 delete objf;
63644780 2372 clear_symtab_users (0);
63644780
NB
2373}
2374
c906108c 2375/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2376
c906108c 2377void
fba45db2 2378reread_symbols (void)
c906108c
SS
2379{
2380 struct objfile *objfile;
2381 long new_modtime;
c906108c
SS
2382 struct stat new_statbuf;
2383 int res;
4c404b8b 2384 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2385
2386 /* With the addition of shared libraries, this should be modified,
2387 the load time should be saved in the partial symbol tables, since
2388 different tables may come from different source files. FIXME.
2389 This routine should then walk down each partial symbol table
c378eb4e 2390 and see if the symbol table that it originates from has been changed. */
c906108c 2391
c5aa993b
JM
2392 for (objfile = object_files; objfile; objfile = objfile->next)
2393 {
9cce227f
TG
2394 if (objfile->obfd == NULL)
2395 continue;
2396
2397 /* Separate debug objfiles are handled in the main objfile. */
2398 if (objfile->separate_debug_objfile_backlink)
2399 continue;
2400
02aeec7b
JB
2401 /* If this object is from an archive (what you usually create with
2402 `ar', often called a `static library' on most systems, though
2403 a `shared library' on AIX is also an archive), then you should
2404 stat on the archive name, not member name. */
9cce227f
TG
2405 if (objfile->obfd->my_archive)
2406 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2407 else
4262abfb 2408 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2409 if (res != 0)
2410 {
c378eb4e 2411 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2412 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2413 objfile_name (objfile));
9cce227f
TG
2414 continue;
2415 }
2416 new_modtime = new_statbuf.st_mtime;
2417 if (new_modtime != objfile->mtime)
2418 {
2419 struct cleanup *old_cleanups;
2420 struct section_offsets *offsets;
2421 int num_offsets;
24ba069a 2422 char *original_name;
9cce227f
TG
2423
2424 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2425 objfile_name (objfile));
9cce227f
TG
2426
2427 /* There are various functions like symbol_file_add,
2428 symfile_bfd_open, syms_from_objfile, etc., which might
2429 appear to do what we want. But they have various other
2430 effects which we *don't* want. So we just do stuff
2431 ourselves. We don't worry about mapped files (for one thing,
2432 any mapped file will be out of date). */
2433
2434 /* If we get an error, blow away this objfile (not sure if
2435 that is the correct response for things like shared
2436 libraries). */
ed2b3126
TT
2437 std::unique_ptr<struct objfile> objfile_holder (objfile);
2438
9cce227f 2439 /* We need to do this whenever any symbols go away. */
ed2b3126 2440 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
9cce227f 2441
0ba1096a
KT
2442 if (exec_bfd != NULL
2443 && filename_cmp (bfd_get_filename (objfile->obfd),
2444 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2445 {
2446 /* Reload EXEC_BFD without asking anything. */
2447
2448 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2449 }
2450
f6eeced0
JK
2451 /* Keep the calls order approx. the same as in free_objfile. */
2452
2453 /* Free the separate debug objfiles. It will be
2454 automatically recreated by sym_read. */
2455 free_objfile_separate_debug (objfile);
2456
2457 /* Remove any references to this objfile in the global
2458 value lists. */
2459 preserve_values (objfile);
2460
2461 /* Nuke all the state that we will re-read. Much of the following
2462 code which sets things to NULL really is necessary to tell
2463 other parts of GDB that there is nothing currently there.
2464
2465 Try to keep the freeing order compatible with free_objfile. */
2466
2467 if (objfile->sf != NULL)
2468 {
2469 (*objfile->sf->sym_finish) (objfile);
2470 }
2471
2472 clear_objfile_data (objfile);
2473
e1507e95 2474 /* Clean up any state BFD has sitting around. */
a4453b7e 2475 {
192b62ce 2476 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2477 char *obfd_filename;
a4453b7e
TT
2478
2479 obfd_filename = bfd_get_filename (objfile->obfd);
2480 /* Open the new BFD before freeing the old one, so that
2481 the filename remains live. */
192b62ce
TT
2482 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2483 objfile->obfd = temp.release ();
e1507e95 2484 if (objfile->obfd == NULL)
192b62ce 2485 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2486 }
2487
24ba069a
JK
2488 original_name = xstrdup (objfile->original_name);
2489 make_cleanup (xfree, original_name);
2490
9cce227f
TG
2491 /* bfd_openr sets cacheable to true, which is what we want. */
2492 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2493 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2494 bfd_errmsg (bfd_get_error ()));
2495
2496 /* Save the offsets, we will nuke them with the rest of the
2497 objfile_obstack. */
2498 num_offsets = objfile->num_sections;
2499 offsets = ((struct section_offsets *)
2500 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2501 memcpy (offsets, objfile->section_offsets,
2502 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2503
9cce227f
TG
2504 /* FIXME: Do we have to free a whole linked list, or is this
2505 enough? */
af5bf4ad
SM
2506 objfile->global_psymbols.clear ();
2507 objfile->static_psymbols.clear ();
9cce227f 2508
c378eb4e 2509 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2510 psymbol_bcache_free (objfile->psymbol_cache);
2511 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2512
2513 /* NB: after this call to obstack_free, objfiles_changed
2514 will need to be called (see discussion below). */
9cce227f
TG
2515 obstack_free (&objfile->objfile_obstack, 0);
2516 objfile->sections = NULL;
43f3e411 2517 objfile->compunit_symtabs = NULL;
9cce227f
TG
2518 objfile->psymtabs = NULL;
2519 objfile->psymtabs_addrmap = NULL;
2520 objfile->free_psymtabs = NULL;
34eaf542 2521 objfile->template_symbols = NULL;
9cce227f 2522
9cce227f
TG
2523 /* obstack_init also initializes the obstack so it is
2524 empty. We could use obstack_specify_allocation but
d82ea6a8 2525 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2526 obstack_init (&objfile->objfile_obstack);
779bd270 2527
846060df
JB
2528 /* set_objfile_per_bfd potentially allocates the per-bfd
2529 data on the objfile's obstack (if sharing data across
2530 multiple users is not possible), so it's important to
2531 do it *after* the obstack has been initialized. */
2532 set_objfile_per_bfd (objfile);
2533
224c3ddb
SM
2534 objfile->original_name
2535 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2536 strlen (original_name));
24ba069a 2537
779bd270
DE
2538 /* Reset the sym_fns pointer. The ELF reader can change it
2539 based on whether .gdb_index is present, and we need it to
2540 start over. PR symtab/15885 */
8fb8eb5c 2541 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2542
d82ea6a8 2543 build_objfile_section_table (objfile);
9cce227f
TG
2544 terminate_minimal_symbol_table (objfile);
2545
2546 /* We use the same section offsets as from last time. I'm not
2547 sure whether that is always correct for shared libraries. */
2548 objfile->section_offsets = (struct section_offsets *)
2549 obstack_alloc (&objfile->objfile_obstack,
2550 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2551 memcpy (objfile->section_offsets, offsets,
2552 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2553 objfile->num_sections = num_offsets;
2554
2555 /* What the hell is sym_new_init for, anyway? The concept of
2556 distinguishing between the main file and additional files
2557 in this way seems rather dubious. */
2558 if (objfile == symfile_objfile)
c906108c 2559 {
9cce227f 2560 (*objfile->sf->sym_new_init) (objfile);
c906108c 2561 }
9cce227f
TG
2562
2563 (*objfile->sf->sym_init) (objfile);
2564 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2565
2566 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2567
2568 /* We are about to read new symbols and potentially also
2569 DWARF information. Some targets may want to pass addresses
2570 read from DWARF DIE's through an adjustment function before
2571 saving them, like MIPS, which may call into
2572 "find_pc_section". When called, that function will make
2573 use of per-objfile program space data.
2574
2575 Since we discarded our section information above, we have
2576 dangling pointers in the per-objfile program space data
2577 structure. Force GDB to update the section mapping
2578 information by letting it know the objfile has changed,
2579 making the dangling pointers point to correct data
2580 again. */
2581
2582 objfiles_changed ();
2583
608e2dbb 2584 read_symbols (objfile, 0);
b11896a5 2585
9cce227f 2586 if (!objfile_has_symbols (objfile))
c906108c 2587 {
9cce227f
TG
2588 wrap_here ("");
2589 printf_unfiltered (_("(no debugging symbols found)\n"));
2590 wrap_here ("");
c5aa993b 2591 }
9cce227f
TG
2592
2593 /* We're done reading the symbol file; finish off complaints. */
2594 clear_complaints (&symfile_complaints, 0, 1);
2595
2596 /* Getting new symbols may change our opinion about what is
2597 frameless. */
2598
2599 reinit_frame_cache ();
2600
2601 /* Discard cleanups as symbol reading was successful. */
ed2b3126 2602 objfile_holder.release ();
9cce227f
TG
2603 discard_cleanups (old_cleanups);
2604
2605 /* If the mtime has changed between the time we set new_modtime
2606 and now, we *want* this to be out of date, so don't call stat
2607 again now. */
2608 objfile->mtime = new_modtime;
9cce227f 2609 init_entry_point_info (objfile);
4ac39b97 2610
4c404b8b 2611 new_objfiles.push_back (objfile);
c906108c
SS
2612 }
2613 }
c906108c 2614
4c404b8b 2615 if (!new_objfiles.empty ())
ea53e89f 2616 {
c1e56572 2617 clear_symtab_users (0);
4ac39b97
JK
2618
2619 /* clear_objfile_data for each objfile was called before freeing it and
2620 observer_notify_new_objfile (NULL) has been called by
2621 clear_symtab_users above. Notify the new files now. */
4c404b8b
TT
2622 for (auto iter : new_objfiles)
2623 observer_notify_new_objfile (iter);
4ac39b97 2624
ea53e89f
JB
2625 /* At least one objfile has changed, so we can consider that
2626 the executable we're debugging has changed too. */
781b42b0 2627 observer_notify_executable_changed ();
ea53e89f 2628 }
c906108c 2629}
c906108c
SS
2630\f
2631
593e3209 2632struct filename_language
c5aa993b 2633{
593e3209
SM
2634 filename_language (const std::string &ext_, enum language lang_)
2635 : ext (ext_), lang (lang_)
2636 {}
3fcf0b0d 2637
593e3209
SM
2638 std::string ext;
2639 enum language lang;
2640};
c906108c 2641
593e3209 2642static std::vector<filename_language> filename_language_table;
c906108c 2643
56618e20
TT
2644/* See symfile.h. */
2645
2646void
2647add_filename_language (const char *ext, enum language lang)
c906108c 2648{
593e3209 2649 filename_language_table.emplace_back (ext, lang);
c906108c
SS
2650}
2651
2652static char *ext_args;
920d2a44
AC
2653static void
2654show_ext_args (struct ui_file *file, int from_tty,
2655 struct cmd_list_element *c, const char *value)
2656{
3e43a32a
MS
2657 fprintf_filtered (file,
2658 _("Mapping between filename extension "
2659 "and source language is \"%s\".\n"),
920d2a44
AC
2660 value);
2661}
c906108c
SS
2662
2663static void
eb4c3f4a
TT
2664set_ext_lang_command (const char *args,
2665 int from_tty, struct cmd_list_element *e)
c906108c 2666{
c906108c
SS
2667 char *cp = ext_args;
2668 enum language lang;
2669
c378eb4e 2670 /* First arg is filename extension, starting with '.' */
c906108c 2671 if (*cp != '.')
8a3fe4f8 2672 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2673
2674 /* Find end of first arg. */
c5aa993b 2675 while (*cp && !isspace (*cp))
c906108c
SS
2676 cp++;
2677
2678 if (*cp == '\0')
3e43a32a
MS
2679 error (_("'%s': two arguments required -- "
2680 "filename extension and language"),
c906108c
SS
2681 ext_args);
2682
c378eb4e 2683 /* Null-terminate first arg. */
c5aa993b 2684 *cp++ = '\0';
c906108c
SS
2685
2686 /* Find beginning of second arg, which should be a source language. */
529480d0 2687 cp = skip_spaces (cp);
c906108c
SS
2688
2689 if (*cp == '\0')
3e43a32a
MS
2690 error (_("'%s': two arguments required -- "
2691 "filename extension and language"),
c906108c
SS
2692 ext_args);
2693
2694 /* Lookup the language from among those we know. */
2695 lang = language_enum (cp);
2696
593e3209 2697 auto it = filename_language_table.begin ();
c906108c 2698 /* Now lookup the filename extension: do we already know it? */
593e3209 2699 for (; it != filename_language_table.end (); it++)
3fcf0b0d 2700 {
593e3209 2701 if (it->ext == ext_args)
3fcf0b0d
TT
2702 break;
2703 }
c906108c 2704
593e3209 2705 if (it == filename_language_table.end ())
c906108c 2706 {
c378eb4e 2707 /* New file extension. */
c906108c
SS
2708 add_filename_language (ext_args, lang);
2709 }
2710 else
2711 {
c378eb4e 2712 /* Redefining a previously known filename extension. */
c906108c
SS
2713
2714 /* if (from_tty) */
2715 /* query ("Really make files of type %s '%s'?", */
2716 /* ext_args, language_str (lang)); */
2717
593e3209 2718 it->lang = lang;
c906108c
SS
2719 }
2720}
2721
2722static void
1d12d88f 2723info_ext_lang_command (const char *args, int from_tty)
c906108c 2724{
a3f17187 2725 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2726 printf_filtered ("\n\n");
593e3209
SM
2727 for (const filename_language &entry : filename_language_table)
2728 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2729 language_str (entry.lang));
c906108c
SS
2730}
2731
c906108c 2732enum language
dd786858 2733deduce_language_from_filename (const char *filename)
c906108c 2734{
e6a959d6 2735 const char *cp;
c906108c
SS
2736
2737 if (filename != NULL)
2738 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d 2739 {
593e3209
SM
2740 for (const filename_language &entry : filename_language_table)
2741 if (entry.ext == cp)
2742 return entry.lang;
3fcf0b0d 2743 }
c906108c
SS
2744
2745 return language_unknown;
2746}
2747\f
43f3e411
DE
2748/* Allocate and initialize a new symbol table.
2749 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2750
2751struct symtab *
43f3e411 2752allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2753{
43f3e411
DE
2754 struct objfile *objfile = cust->objfile;
2755 struct symtab *symtab
2756 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2757
19ba03f4
SM
2758 symtab->filename
2759 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2760 objfile->per_bfd->filename_cache);
c5aa993b
JM
2761 symtab->fullname = NULL;
2762 symtab->language = deduce_language_from_filename (filename);
c906108c 2763
db0fec5c
DE
2764 /* This can be very verbose with lots of headers.
2765 Only print at higher debug levels. */
2766 if (symtab_create_debug >= 2)
45cfd468
DE
2767 {
2768 /* Be a bit clever with debugging messages, and don't print objfile
2769 every time, only when it changes. */
2770 static char *last_objfile_name = NULL;
2771
2772 if (last_objfile_name == NULL
4262abfb 2773 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2774 {
2775 xfree (last_objfile_name);
4262abfb 2776 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2777 fprintf_unfiltered (gdb_stdlog,
2778 "Creating one or more symtabs for objfile %s ...\n",
2779 last_objfile_name);
2780 }
2781 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2782 "Created symtab %s for module %s.\n",
2783 host_address_to_string (symtab), filename);
45cfd468
DE
2784 }
2785
43f3e411
DE
2786 /* Add it to CUST's list of symtabs. */
2787 if (cust->filetabs == NULL)
2788 {
2789 cust->filetabs = symtab;
2790 cust->last_filetab = symtab;
2791 }
2792 else
2793 {
2794 cust->last_filetab->next = symtab;
2795 cust->last_filetab = symtab;
2796 }
2797
2798 /* Backlink to the containing compunit symtab. */
2799 symtab->compunit_symtab = cust;
2800
2801 return symtab;
2802}
2803
2804/* Allocate and initialize a new compunit.
2805 NAME is the name of the main source file, if there is one, or some
2806 descriptive text if there are no source files. */
2807
2808struct compunit_symtab *
2809allocate_compunit_symtab (struct objfile *objfile, const char *name)
2810{
2811 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2812 struct compunit_symtab);
2813 const char *saved_name;
2814
2815 cu->objfile = objfile;
2816
2817 /* The name we record here is only for display/debugging purposes.
2818 Just save the basename to avoid path issues (too long for display,
2819 relative vs absolute, etc.). */
2820 saved_name = lbasename (name);
224c3ddb
SM
2821 cu->name
2822 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2823 strlen (saved_name));
43f3e411
DE
2824
2825 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2826
2827 if (symtab_create_debug)
2828 {
2829 fprintf_unfiltered (gdb_stdlog,
2830 "Created compunit symtab %s for %s.\n",
2831 host_address_to_string (cu),
2832 cu->name);
2833 }
2834
2835 return cu;
2836}
2837
2838/* Hook CU to the objfile it comes from. */
2839
2840void
2841add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2842{
2843 cu->next = cu->objfile->compunit_symtabs;
2844 cu->objfile->compunit_symtabs = cu;
c906108c 2845}
c906108c 2846\f
c5aa993b 2847
b15cc25c
PA
2848/* Reset all data structures in gdb which may contain references to
2849 symbol table data. */
c906108c
SS
2850
2851void
b15cc25c 2852clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2853{
2854 /* Someday, we should do better than this, by only blowing away
2855 the things that really need to be blown. */
c0501be5
DJ
2856
2857 /* Clear the "current" symtab first, because it is no longer valid.
2858 breakpoint_re_set may try to access the current symtab. */
2859 clear_current_source_symtab_and_line ();
2860
c906108c 2861 clear_displays ();
1bfeeb0f 2862 clear_last_displayed_sal ();
c906108c 2863 clear_pc_function_cache ();
06d3b283 2864 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2865
2866 /* Clear globals which might have pointed into a removed objfile.
2867 FIXME: It's not clear which of these are supposed to persist
2868 between expressions and which ought to be reset each time. */
2869 expression_context_block = NULL;
2870 innermost_block = NULL;
8756216b
DP
2871
2872 /* Varobj may refer to old symbols, perform a cleanup. */
2873 varobj_invalidate ();
2874
e700d1b2
JB
2875 /* Now that the various caches have been cleared, we can re_set
2876 our breakpoints without risking it using stale data. */
2877 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2878 breakpoint_re_set ();
c906108c
SS
2879}
2880
74b7792f
AC
2881static void
2882clear_symtab_users_cleanup (void *ignore)
2883{
c1e56572 2884 clear_symtab_users (0);
74b7792f 2885}
c906108c 2886\f
c906108c
SS
2887/* OVERLAYS:
2888 The following code implements an abstraction for debugging overlay sections.
2889
2890 The target model is as follows:
2891 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2892 same VMA, each with its own unique LMA (or load address).
c906108c 2893 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2894 sections, one by one, from the load address into the VMA address.
5417f6dc 2895 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2896 sections should be considered to be mapped from the VMA to the LMA.
2897 This information is used for symbol lookup, and memory read/write.
5417f6dc 2898 For instance, if a section has been mapped then its contents
c5aa993b 2899 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2900
2901 Two levels of debugger support for overlays are available. One is
2902 "manual", in which the debugger relies on the user to tell it which
2903 overlays are currently mapped. This level of support is
2904 implemented entirely in the core debugger, and the information about
2905 whether a section is mapped is kept in the objfile->obj_section table.
2906
2907 The second level of support is "automatic", and is only available if
2908 the target-specific code provides functionality to read the target's
2909 overlay mapping table, and translate its contents for the debugger
2910 (by updating the mapped state information in the obj_section tables).
2911
2912 The interface is as follows:
c5aa993b
JM
2913 User commands:
2914 overlay map <name> -- tell gdb to consider this section mapped
2915 overlay unmap <name> -- tell gdb to consider this section unmapped
2916 overlay list -- list the sections that GDB thinks are mapped
2917 overlay read-target -- get the target's state of what's mapped
2918 overlay off/manual/auto -- set overlay debugging state
2919 Functional interface:
2920 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2921 section, return that section.
5417f6dc 2922 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2923 the pc, either in its VMA or its LMA
714835d5 2924 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2925 section_is_overlay(sect): true if section's VMA != LMA
2926 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2927 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2928 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2929 overlay_mapped_address(...): map an address from section's LMA to VMA
2930 overlay_unmapped_address(...): map an address from section's VMA to LMA
2931 symbol_overlayed_address(...): Return a "current" address for symbol:
2932 either in VMA or LMA depending on whether
c378eb4e 2933 the symbol's section is currently mapped. */
c906108c
SS
2934
2935/* Overlay debugging state: */
2936
d874f1e2 2937enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2938int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2939
c906108c 2940/* Function: section_is_overlay (SECTION)
5417f6dc 2941 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2942 SECTION is loaded at an address different from where it will "run". */
2943
2944int
714835d5 2945section_is_overlay (struct obj_section *section)
c906108c 2946{
714835d5
UW
2947 if (overlay_debugging && section)
2948 {
2949 bfd *abfd = section->objfile->obfd;
2950 asection *bfd_section = section->the_bfd_section;
f888f159 2951
714835d5
UW
2952 if (bfd_section_lma (abfd, bfd_section) != 0
2953 && bfd_section_lma (abfd, bfd_section)
2954 != bfd_section_vma (abfd, bfd_section))
2955 return 1;
2956 }
c906108c
SS
2957
2958 return 0;
2959}
2960
2961/* Function: overlay_invalidate_all (void)
2962 Invalidate the mapped state of all overlay sections (mark it as stale). */
2963
2964static void
fba45db2 2965overlay_invalidate_all (void)
c906108c 2966{
c5aa993b 2967 struct objfile *objfile;
c906108c
SS
2968 struct obj_section *sect;
2969
2970 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2971 if (section_is_overlay (sect))
2972 sect->ovly_mapped = -1;
c906108c
SS
2973}
2974
714835d5 2975/* Function: section_is_mapped (SECTION)
5417f6dc 2976 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2977
2978 Access to the ovly_mapped flag is restricted to this function, so
2979 that we can do automatic update. If the global flag
2980 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2981 overlay_invalidate_all. If the mapped state of the particular
2982 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2983
714835d5
UW
2984int
2985section_is_mapped (struct obj_section *osect)
c906108c 2986{
9216df95
UW
2987 struct gdbarch *gdbarch;
2988
714835d5 2989 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2990 return 0;
2991
c5aa993b 2992 switch (overlay_debugging)
c906108c
SS
2993 {
2994 default:
d874f1e2 2995 case ovly_off:
c5aa993b 2996 return 0; /* overlay debugging off */
d874f1e2 2997 case ovly_auto: /* overlay debugging automatic */
1c772458 2998 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 2999 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3000 gdbarch = get_objfile_arch (osect->objfile);
3001 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3002 {
3003 if (overlay_cache_invalid)
3004 {
3005 overlay_invalidate_all ();
3006 overlay_cache_invalid = 0;
3007 }
3008 if (osect->ovly_mapped == -1)
9216df95 3009 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3010 }
3011 /* fall thru to manual case */
d874f1e2 3012 case ovly_on: /* overlay debugging manual */
c906108c
SS
3013 return osect->ovly_mapped == 1;
3014 }
3015}
3016
c906108c
SS
3017/* Function: pc_in_unmapped_range
3018 If PC falls into the lma range of SECTION, return true, else false. */
3019
3020CORE_ADDR
714835d5 3021pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3022{
714835d5
UW
3023 if (section_is_overlay (section))
3024 {
3025 bfd *abfd = section->objfile->obfd;
3026 asection *bfd_section = section->the_bfd_section;
fbd35540 3027
714835d5
UW
3028 /* We assume the LMA is relocated by the same offset as the VMA. */
3029 bfd_vma size = bfd_get_section_size (bfd_section);
3030 CORE_ADDR offset = obj_section_offset (section);
3031
3032 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3033 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3034 return 1;
3035 }
c906108c 3036
c906108c
SS
3037 return 0;
3038}
3039
3040/* Function: pc_in_mapped_range
3041 If PC falls into the vma range of SECTION, return true, else false. */
3042
3043CORE_ADDR
714835d5 3044pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3045{
714835d5
UW
3046 if (section_is_overlay (section))
3047 {
3048 if (obj_section_addr (section) <= pc
3049 && pc < obj_section_endaddr (section))
3050 return 1;
3051 }
c906108c 3052
c906108c
SS
3053 return 0;
3054}
3055
9ec8e6a0
JB
3056/* Return true if the mapped ranges of sections A and B overlap, false
3057 otherwise. */
3b7bacac 3058
b9362cc7 3059static int
714835d5 3060sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3061{
714835d5
UW
3062 CORE_ADDR a_start = obj_section_addr (a);
3063 CORE_ADDR a_end = obj_section_endaddr (a);
3064 CORE_ADDR b_start = obj_section_addr (b);
3065 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3066
3067 return (a_start < b_end && b_start < a_end);
3068}
3069
c906108c
SS
3070/* Function: overlay_unmapped_address (PC, SECTION)
3071 Returns the address corresponding to PC in the unmapped (load) range.
3072 May be the same as PC. */
3073
3074CORE_ADDR
714835d5 3075overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3076{
714835d5
UW
3077 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3078 {
3079 bfd *abfd = section->objfile->obfd;
3080 asection *bfd_section = section->the_bfd_section;
fbd35540 3081
714835d5
UW
3082 return pc + bfd_section_lma (abfd, bfd_section)
3083 - bfd_section_vma (abfd, bfd_section);
3084 }
c906108c
SS
3085
3086 return pc;
3087}
3088
3089/* Function: overlay_mapped_address (PC, SECTION)
3090 Returns the address corresponding to PC in the mapped (runtime) range.
3091 May be the same as PC. */
3092
3093CORE_ADDR
714835d5 3094overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3095{
714835d5
UW
3096 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3097 {
3098 bfd *abfd = section->objfile->obfd;
3099 asection *bfd_section = section->the_bfd_section;
fbd35540 3100
714835d5
UW
3101 return pc + bfd_section_vma (abfd, bfd_section)
3102 - bfd_section_lma (abfd, bfd_section);
3103 }
c906108c
SS
3104
3105 return pc;
3106}
3107
5417f6dc 3108/* Function: symbol_overlayed_address
c906108c
SS
3109 Return one of two addresses (relative to the VMA or to the LMA),
3110 depending on whether the section is mapped or not. */
3111
c5aa993b 3112CORE_ADDR
714835d5 3113symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3114{
3115 if (overlay_debugging)
3116 {
c378eb4e 3117 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3118 if (section == 0)
3119 return address;
c378eb4e
MS
3120 /* If the symbol's section is not an overlay, just return its
3121 address. */
c906108c
SS
3122 if (!section_is_overlay (section))
3123 return address;
c378eb4e 3124 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3125 if (section_is_mapped (section))
3126 return address;
3127 /*
3128 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3129 * then return its LOADED address rather than its vma address!!
3130 */
3131 return overlay_unmapped_address (address, section);
3132 }
3133 return address;
3134}
3135
5417f6dc 3136/* Function: find_pc_overlay (PC)
c906108c
SS
3137 Return the best-match overlay section for PC:
3138 If PC matches a mapped overlay section's VMA, return that section.
3139 Else if PC matches an unmapped section's VMA, return that section.
3140 Else if PC matches an unmapped section's LMA, return that section. */
3141
714835d5 3142struct obj_section *
fba45db2 3143find_pc_overlay (CORE_ADDR pc)
c906108c 3144{
c5aa993b 3145 struct objfile *objfile;
c906108c
SS
3146 struct obj_section *osect, *best_match = NULL;
3147
3148 if (overlay_debugging)
b631e59b
KT
3149 {
3150 ALL_OBJSECTIONS (objfile, osect)
3151 if (section_is_overlay (osect))
c5aa993b 3152 {
b631e59b
KT
3153 if (pc_in_mapped_range (pc, osect))
3154 {
3155 if (section_is_mapped (osect))
3156 return osect;
3157 else
3158 best_match = osect;
3159 }
3160 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3161 best_match = osect;
3162 }
b631e59b 3163 }
714835d5 3164 return best_match;
c906108c
SS
3165}
3166
3167/* Function: find_pc_mapped_section (PC)
5417f6dc 3168 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3169 currently marked as MAPPED, return that section. Else return NULL. */
3170
714835d5 3171struct obj_section *
fba45db2 3172find_pc_mapped_section (CORE_ADDR pc)
c906108c 3173{
c5aa993b 3174 struct objfile *objfile;
c906108c
SS
3175 struct obj_section *osect;
3176
3177 if (overlay_debugging)
b631e59b
KT
3178 {
3179 ALL_OBJSECTIONS (objfile, osect)
3180 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3181 return osect;
3182 }
c906108c
SS
3183
3184 return NULL;
3185}
3186
3187/* Function: list_overlays_command
c378eb4e 3188 Print a list of mapped sections and their PC ranges. */
c906108c 3189
5d3055ad 3190static void
2cf311eb 3191list_overlays_command (const char *args, int from_tty)
c906108c 3192{
c5aa993b
JM
3193 int nmapped = 0;
3194 struct objfile *objfile;
c906108c
SS
3195 struct obj_section *osect;
3196
3197 if (overlay_debugging)
b631e59b
KT
3198 {
3199 ALL_OBJSECTIONS (objfile, osect)
714835d5 3200 if (section_is_mapped (osect))
b631e59b
KT
3201 {
3202 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3203 const char *name;
3204 bfd_vma lma, vma;
3205 int size;
3206
3207 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3208 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3209 size = bfd_get_section_size (osect->the_bfd_section);
3210 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3211
3212 printf_filtered ("Section %s, loaded at ", name);
3213 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3214 puts_filtered (" - ");
3215 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3216 printf_filtered (", mapped at ");
3217 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3218 puts_filtered (" - ");
3219 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3220 puts_filtered ("\n");
3221
3222 nmapped++;
3223 }
3224 }
c906108c 3225 if (nmapped == 0)
a3f17187 3226 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3227}
3228
3229/* Function: map_overlay_command
3230 Mark the named section as mapped (ie. residing at its VMA address). */
3231
5d3055ad 3232static void
2cf311eb 3233map_overlay_command (const char *args, int from_tty)
c906108c 3234{
c5aa993b
JM
3235 struct objfile *objfile, *objfile2;
3236 struct obj_section *sec, *sec2;
c906108c
SS
3237
3238 if (!overlay_debugging)
3e43a32a
MS
3239 error (_("Overlay debugging not enabled. Use "
3240 "either the 'overlay auto' or\n"
3241 "the 'overlay manual' command."));
c906108c
SS
3242
3243 if (args == 0 || *args == 0)
8a3fe4f8 3244 error (_("Argument required: name of an overlay section"));
c906108c 3245
c378eb4e 3246 /* First, find a section matching the user supplied argument. */
c906108c
SS
3247 ALL_OBJSECTIONS (objfile, sec)
3248 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3249 {
c378eb4e 3250 /* Now, check to see if the section is an overlay. */
714835d5 3251 if (!section_is_overlay (sec))
c5aa993b
JM
3252 continue; /* not an overlay section */
3253
c378eb4e 3254 /* Mark the overlay as "mapped". */
c5aa993b
JM
3255 sec->ovly_mapped = 1;
3256
3257 /* Next, make a pass and unmap any sections that are
3258 overlapped by this new section: */
3259 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3260 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3261 {
3262 if (info_verbose)
a3f17187 3263 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3264 bfd_section_name (objfile->obfd,
3265 sec2->the_bfd_section));
c378eb4e 3266 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3267 }
3268 return;
3269 }
8a3fe4f8 3270 error (_("No overlay section called %s"), args);
c906108c
SS
3271}
3272
3273/* Function: unmap_overlay_command
5417f6dc 3274 Mark the overlay section as unmapped
c906108c
SS
3275 (ie. resident in its LMA address range, rather than the VMA range). */
3276
5d3055ad 3277static void
2cf311eb 3278unmap_overlay_command (const char *args, int from_tty)
c906108c 3279{
c5aa993b 3280 struct objfile *objfile;
7a270e0c 3281 struct obj_section *sec = NULL;
c906108c
SS
3282
3283 if (!overlay_debugging)
3e43a32a
MS
3284 error (_("Overlay debugging not enabled. "
3285 "Use either the 'overlay auto' or\n"
3286 "the 'overlay manual' command."));
c906108c
SS
3287
3288 if (args == 0 || *args == 0)
8a3fe4f8 3289 error (_("Argument required: name of an overlay section"));
c906108c 3290
c378eb4e 3291 /* First, find a section matching the user supplied argument. */
c906108c
SS
3292 ALL_OBJSECTIONS (objfile, sec)
3293 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3294 {
3295 if (!sec->ovly_mapped)
8a3fe4f8 3296 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3297 sec->ovly_mapped = 0;
3298 return;
3299 }
8a3fe4f8 3300 error (_("No overlay section called %s"), args);
c906108c
SS
3301}
3302
3303/* Function: overlay_auto_command
3304 A utility command to turn on overlay debugging.
c378eb4e 3305 Possibly this should be done via a set/show command. */
c906108c
SS
3306
3307static void
2cf311eb 3308overlay_auto_command (const char *args, int from_tty)
c906108c 3309{
d874f1e2 3310 overlay_debugging = ovly_auto;
1900040c 3311 enable_overlay_breakpoints ();
c906108c 3312 if (info_verbose)
a3f17187 3313 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3314}
3315
3316/* Function: overlay_manual_command
3317 A utility command to turn on overlay debugging.
c378eb4e 3318 Possibly this should be done via a set/show command. */
c906108c
SS
3319
3320static void
2cf311eb 3321overlay_manual_command (const char *args, int from_tty)
c906108c 3322{
d874f1e2 3323 overlay_debugging = ovly_on;
1900040c 3324 disable_overlay_breakpoints ();
c906108c 3325 if (info_verbose)
a3f17187 3326 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3327}
3328
3329/* Function: overlay_off_command
3330 A utility command to turn on overlay debugging.
c378eb4e 3331 Possibly this should be done via a set/show command. */
c906108c
SS
3332
3333static void
2cf311eb 3334overlay_off_command (const char *args, int from_tty)
c906108c 3335{
d874f1e2 3336 overlay_debugging = ovly_off;
1900040c 3337 disable_overlay_breakpoints ();
c906108c 3338 if (info_verbose)
a3f17187 3339 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3340}
3341
3342static void
2cf311eb 3343overlay_load_command (const char *args, int from_tty)
c906108c 3344{
e17c207e
UW
3345 struct gdbarch *gdbarch = get_current_arch ();
3346
3347 if (gdbarch_overlay_update_p (gdbarch))
3348 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3349 else
8a3fe4f8 3350 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3351}
3352
3353/* Function: overlay_command
c378eb4e 3354 A place-holder for a mis-typed command. */
c906108c 3355
c378eb4e 3356/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3357static struct cmd_list_element *overlaylist;
c906108c
SS
3358
3359static void
981a3fb3 3360overlay_command (const char *args, int from_tty)
c906108c 3361{
c5aa993b 3362 printf_unfiltered
c906108c 3363 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3364 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3365}
3366
c906108c
SS
3367/* Target Overlays for the "Simplest" overlay manager:
3368
5417f6dc
RM
3369 This is GDB's default target overlay layer. It works with the
3370 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3371 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3372 so targets that use a different runtime overlay manager can
c906108c
SS
3373 substitute their own overlay_update function and take over the
3374 function pointer.
3375
3376 The overlay_update function pokes around in the target's data structures
3377 to see what overlays are mapped, and updates GDB's overlay mapping with
3378 this information.
3379
3380 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3381 unsigned _novlys; /# number of overlay sections #/
3382 unsigned _ovly_table[_novlys][4] = {
438e1e42 3383 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3384 {..., ..., ..., ...},
3385 }
3386 unsigned _novly_regions; /# number of overlay regions #/
3387 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3388 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3389 {..., ..., ...},
3390 }
c906108c
SS
3391 These functions will attempt to update GDB's mappedness state in the
3392 symbol section table, based on the target's mappedness state.
3393
3394 To do this, we keep a cached copy of the target's _ovly_table, and
3395 attempt to detect when the cached copy is invalidated. The main
3396 entry point is "simple_overlay_update(SECT), which looks up SECT in
3397 the cached table and re-reads only the entry for that section from
c378eb4e 3398 the target (whenever possible). */
c906108c
SS
3399
3400/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3401static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3402static unsigned cache_novlys = 0;
c906108c 3403static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3404enum ovly_index
3405 {
438e1e42 3406 VMA, OSIZE, LMA, MAPPED
c5aa993b 3407 };
c906108c 3408
c378eb4e 3409/* Throw away the cached copy of _ovly_table. */
3b7bacac 3410
c906108c 3411static void
fba45db2 3412simple_free_overlay_table (void)
c906108c
SS
3413{
3414 if (cache_ovly_table)
b8c9b27d 3415 xfree (cache_ovly_table);
c5aa993b 3416 cache_novlys = 0;
c906108c
SS
3417 cache_ovly_table = NULL;
3418 cache_ovly_table_base = 0;
3419}
3420
9216df95 3421/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3422 Convert to host order. int LEN is number of ints. */
3b7bacac 3423
c906108c 3424static void
9216df95 3425read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3426 int len, int size, enum bfd_endian byte_order)
c906108c 3427{
c378eb4e 3428 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3429 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3430 int i;
c906108c 3431
9216df95 3432 read_memory (memaddr, buf, len * size);
c906108c 3433 for (i = 0; i < len; i++)
e17a4113 3434 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3435}
3436
3437/* Find and grab a copy of the target _ovly_table
c378eb4e 3438 (and _novlys, which is needed for the table's size). */
3b7bacac 3439
c5aa993b 3440static int
fba45db2 3441simple_read_overlay_table (void)
c906108c 3442{
3b7344d5 3443 struct bound_minimal_symbol novlys_msym;
7c7b6655 3444 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3445 struct gdbarch *gdbarch;
3446 int word_size;
e17a4113 3447 enum bfd_endian byte_order;
c906108c
SS
3448
3449 simple_free_overlay_table ();
9b27852e 3450 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3451 if (! novlys_msym.minsym)
c906108c 3452 {
8a3fe4f8 3453 error (_("Error reading inferior's overlay table: "
0d43edd1 3454 "couldn't find `_novlys' variable\n"
8a3fe4f8 3455 "in inferior. Use `overlay manual' mode."));
0d43edd1 3456 return 0;
c906108c 3457 }
0d43edd1 3458
7c7b6655
TT
3459 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3460 if (! ovly_table_msym.minsym)
0d43edd1 3461 {
8a3fe4f8 3462 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3463 "`_ovly_table' array\n"
8a3fe4f8 3464 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3465 return 0;
3466 }
3467
7c7b6655 3468 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3469 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3470 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3471
77e371c0
TT
3472 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3473 4, byte_order);
0d43edd1 3474 cache_ovly_table
224c3ddb 3475 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3476 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3477 read_target_long_array (cache_ovly_table_base,
777ea8f1 3478 (unsigned int *) cache_ovly_table,
e17a4113 3479 cache_novlys * 4, word_size, byte_order);
0d43edd1 3480
c5aa993b 3481 return 1; /* SUCCESS */
c906108c
SS
3482}
3483
5417f6dc 3484/* Function: simple_overlay_update_1
c906108c
SS
3485 A helper function for simple_overlay_update. Assuming a cached copy
3486 of _ovly_table exists, look through it to find an entry whose vma,
3487 lma and size match those of OSECT. Re-read the entry and make sure
3488 it still matches OSECT (else the table may no longer be valid).
3489 Set OSECT's mapped state to match the entry. Return: 1 for
3490 success, 0 for failure. */
3491
3492static int
fba45db2 3493simple_overlay_update_1 (struct obj_section *osect)
c906108c 3494{
764c99c1 3495 int i;
fbd35540
MS
3496 bfd *obfd = osect->objfile->obfd;
3497 asection *bsect = osect->the_bfd_section;
9216df95
UW
3498 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3499 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3500 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3501
c906108c 3502 for (i = 0; i < cache_novlys; i++)
fbd35540 3503 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3504 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3505 {
9216df95
UW
3506 read_target_long_array (cache_ovly_table_base + i * word_size,
3507 (unsigned int *) cache_ovly_table[i],
e17a4113 3508 4, word_size, byte_order);
fbd35540 3509 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3510 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3511 {
3512 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3513 return 1;
3514 }
c378eb4e 3515 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3516 return 0;
3517 }
3518 return 0;
3519}
3520
3521/* Function: simple_overlay_update
5417f6dc
RM
3522 If OSECT is NULL, then update all sections' mapped state
3523 (after re-reading the entire target _ovly_table).
3524 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3525 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3526 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3527 re-read the entire cache, and go ahead and update all sections. */
3528
1c772458 3529void
fba45db2 3530simple_overlay_update (struct obj_section *osect)
c906108c 3531{
c5aa993b 3532 struct objfile *objfile;
c906108c 3533
c378eb4e 3534 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3535 if (osect)
c378eb4e 3536 /* Have we got a cached copy of the target's overlay table? */
c906108c 3537 if (cache_ovly_table != NULL)
9cc89665
MS
3538 {
3539 /* Does its cached location match what's currently in the
3540 symtab? */
3b7344d5 3541 struct bound_minimal_symbol minsym
9cc89665
MS
3542 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3543
3b7344d5 3544 if (minsym.minsym == NULL)
9cc89665
MS
3545 error (_("Error reading inferior's overlay table: couldn't "
3546 "find `_ovly_table' array\n"
3547 "in inferior. Use `overlay manual' mode."));
3548
77e371c0 3549 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3550 /* Then go ahead and try to look up this single section in
3551 the cache. */
3552 if (simple_overlay_update_1 (osect))
3553 /* Found it! We're done. */
3554 return;
3555 }
c906108c
SS
3556
3557 /* Cached table no good: need to read the entire table anew.
3558 Or else we want all the sections, in which case it's actually
3559 more efficient to read the whole table in one block anyway. */
3560
0d43edd1
JB
3561 if (! simple_read_overlay_table ())
3562 return;
3563
c378eb4e 3564 /* Now may as well update all sections, even if only one was requested. */
c906108c 3565 ALL_OBJSECTIONS (objfile, osect)
714835d5 3566 if (section_is_overlay (osect))
c5aa993b 3567 {
764c99c1 3568 int i;
fbd35540
MS
3569 bfd *obfd = osect->objfile->obfd;
3570 asection *bsect = osect->the_bfd_section;
c5aa993b 3571
c5aa993b 3572 for (i = 0; i < cache_novlys; i++)
fbd35540 3573 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3574 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3575 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3576 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3577 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3578 }
3579 }
c906108c
SS
3580}
3581
086df311
DJ
3582/* Set the output sections and output offsets for section SECTP in
3583 ABFD. The relocation code in BFD will read these offsets, so we
3584 need to be sure they're initialized. We map each section to itself,
3585 with no offset; this means that SECTP->vma will be honored. */
3586
3587static void
3588symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3589{
3590 sectp->output_section = sectp;
3591 sectp->output_offset = 0;
3592}
3593
ac8035ab
TG
3594/* Default implementation for sym_relocate. */
3595
ac8035ab
TG
3596bfd_byte *
3597default_symfile_relocate (struct objfile *objfile, asection *sectp,
3598 bfd_byte *buf)
3599{
3019eac3
DE
3600 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3601 DWO file. */
3602 bfd *abfd = sectp->owner;
ac8035ab
TG
3603
3604 /* We're only interested in sections with relocation
3605 information. */
3606 if ((sectp->flags & SEC_RELOC) == 0)
3607 return NULL;
3608
3609 /* We will handle section offsets properly elsewhere, so relocate as if
3610 all sections begin at 0. */
3611 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3612
3613 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3614}
3615
086df311
DJ
3616/* Relocate the contents of a debug section SECTP in ABFD. The
3617 contents are stored in BUF if it is non-NULL, or returned in a
3618 malloc'd buffer otherwise.
3619
3620 For some platforms and debug info formats, shared libraries contain
3621 relocations against the debug sections (particularly for DWARF-2;
3622 one affected platform is PowerPC GNU/Linux, although it depends on
3623 the version of the linker in use). Also, ELF object files naturally
3624 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3625 the relocations in order to get the locations of symbols correct.
3626 Another example that may require relocation processing, is the
3627 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3628 debug section. */
086df311
DJ
3629
3630bfd_byte *
ac8035ab
TG
3631symfile_relocate_debug_section (struct objfile *objfile,
3632 asection *sectp, bfd_byte *buf)
086df311 3633{
ac8035ab 3634 gdb_assert (objfile->sf->sym_relocate);
086df311 3635
ac8035ab 3636 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3637}
c906108c 3638
31d99776
DJ
3639struct symfile_segment_data *
3640get_symfile_segment_data (bfd *abfd)
3641{
00b5771c 3642 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3643
3644 if (sf == NULL)
3645 return NULL;
3646
3647 return sf->sym_segments (abfd);
3648}
3649
3650void
3651free_symfile_segment_data (struct symfile_segment_data *data)
3652{
3653 xfree (data->segment_bases);
3654 xfree (data->segment_sizes);
3655 xfree (data->segment_info);
3656 xfree (data);
3657}
3658
28c32713
JB
3659/* Given:
3660 - DATA, containing segment addresses from the object file ABFD, and
3661 the mapping from ABFD's sections onto the segments that own them,
3662 and
3663 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3664 segment addresses reported by the target,
3665 store the appropriate offsets for each section in OFFSETS.
3666
3667 If there are fewer entries in SEGMENT_BASES than there are segments
3668 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3669
8d385431
DJ
3670 If there are more entries, then ignore the extra. The target may
3671 not be able to distinguish between an empty data segment and a
3672 missing data segment; a missing text segment is less plausible. */
3b7bacac 3673
31d99776 3674int
3189cb12
DE
3675symfile_map_offsets_to_segments (bfd *abfd,
3676 const struct symfile_segment_data *data,
31d99776
DJ
3677 struct section_offsets *offsets,
3678 int num_segment_bases,
3679 const CORE_ADDR *segment_bases)
3680{
3681 int i;
3682 asection *sect;
3683
28c32713
JB
3684 /* It doesn't make sense to call this function unless you have some
3685 segment base addresses. */
202b96c1 3686 gdb_assert (num_segment_bases > 0);
28c32713 3687
31d99776
DJ
3688 /* If we do not have segment mappings for the object file, we
3689 can not relocate it by segments. */
3690 gdb_assert (data != NULL);
3691 gdb_assert (data->num_segments > 0);
3692
31d99776
DJ
3693 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3694 {
31d99776
DJ
3695 int which = data->segment_info[i];
3696
28c32713
JB
3697 gdb_assert (0 <= which && which <= data->num_segments);
3698
3699 /* Don't bother computing offsets for sections that aren't
3700 loaded as part of any segment. */
3701 if (! which)
3702 continue;
3703
3704 /* Use the last SEGMENT_BASES entry as the address of any extra
3705 segments mentioned in DATA->segment_info. */
31d99776 3706 if (which > num_segment_bases)
28c32713 3707 which = num_segment_bases;
31d99776 3708
28c32713
JB
3709 offsets->offsets[i] = (segment_bases[which - 1]
3710 - data->segment_bases[which - 1]);
31d99776
DJ
3711 }
3712
3713 return 1;
3714}
3715
3716static void
3717symfile_find_segment_sections (struct objfile *objfile)
3718{
3719 bfd *abfd = objfile->obfd;
3720 int i;
3721 asection *sect;
3722 struct symfile_segment_data *data;
3723
3724 data = get_symfile_segment_data (objfile->obfd);
3725 if (data == NULL)
3726 return;
3727
3728 if (data->num_segments != 1 && data->num_segments != 2)
3729 {
3730 free_symfile_segment_data (data);
3731 return;
3732 }
3733
3734 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3735 {
31d99776
DJ
3736 int which = data->segment_info[i];
3737
3738 if (which == 1)
3739 {
3740 if (objfile->sect_index_text == -1)
3741 objfile->sect_index_text = sect->index;
3742
3743 if (objfile->sect_index_rodata == -1)
3744 objfile->sect_index_rodata = sect->index;
3745 }
3746 else if (which == 2)
3747 {
3748 if (objfile->sect_index_data == -1)
3749 objfile->sect_index_data = sect->index;
3750
3751 if (objfile->sect_index_bss == -1)
3752 objfile->sect_index_bss = sect->index;
3753 }
3754 }
3755
3756 free_symfile_segment_data (data);
3757}
3758
76ad5e1e
NB
3759/* Listen for free_objfile events. */
3760
3761static void
3762symfile_free_objfile (struct objfile *objfile)
3763{
c33b2f12
MM
3764 /* Remove the target sections owned by this objfile. */
3765 if (objfile != NULL)
76ad5e1e
NB
3766 remove_target_sections ((void *) objfile);
3767}
3768
540c2971
DE
3769/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3770 Expand all symtabs that match the specified criteria.
3771 See quick_symbol_functions.expand_symtabs_matching for details. */
3772
3773void
14bc53a8
PA
3774expand_symtabs_matching
3775 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
b5ec771e 3776 const lookup_name_info &lookup_name,
14bc53a8
PA
3777 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3778 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3779 enum search_domain kind)
540c2971
DE
3780{
3781 struct objfile *objfile;
3782
3783 ALL_OBJFILES (objfile)
3784 {
3785 if (objfile->sf)
bb4142cf 3786 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
b5ec771e 3787 lookup_name,
276d885b 3788 symbol_matcher,
14bc53a8 3789 expansion_notify, kind);
540c2971
DE
3790 }
3791}
3792
3793/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3794 Map function FUN over every file.
3795 See quick_symbol_functions.map_symbol_filenames for details. */
3796
3797void
bb4142cf
DE
3798map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3799 int need_fullname)
540c2971
DE
3800{
3801 struct objfile *objfile;
3802
3803 ALL_OBJFILES (objfile)
3804 {
3805 if (objfile->sf)
3806 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3807 need_fullname);
3808 }
3809}
3810
32fa66eb
SM
3811#if GDB_SELF_TEST
3812
3813namespace selftests {
3814namespace filename_language {
3815
32fa66eb
SM
3816static void test_filename_language ()
3817{
3818 /* This test messes up the filename_language_table global. */
593e3209 3819 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3820
3821 /* Test deducing an unknown extension. */
3822 language lang = deduce_language_from_filename ("myfile.blah");
3823 SELF_CHECK (lang == language_unknown);
3824
3825 /* Test deducing a known extension. */
3826 lang = deduce_language_from_filename ("myfile.c");
3827 SELF_CHECK (lang == language_c);
3828
3829 /* Test adding a new extension using the internal API. */
3830 add_filename_language (".blah", language_pascal);
3831 lang = deduce_language_from_filename ("myfile.blah");
3832 SELF_CHECK (lang == language_pascal);
3833}
3834
3835static void
3836test_set_ext_lang_command ()
3837{
3838 /* This test messes up the filename_language_table global. */
593e3209 3839 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3840
3841 /* Confirm that the .hello extension is not known. */
3842 language lang = deduce_language_from_filename ("cake.hello");
3843 SELF_CHECK (lang == language_unknown);
3844
3845 /* Test adding a new extension using the CLI command. */
3846 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3847 ext_args = args_holder.get ();
3848 set_ext_lang_command (NULL, 1, NULL);
3849
3850 lang = deduce_language_from_filename ("cake.hello");
3851 SELF_CHECK (lang == language_rust);
3852
3853 /* Test overriding an existing extension using the CLI command. */
593e3209 3854 int size_before = filename_language_table.size ();
32fa66eb
SM
3855 args_holder.reset (xstrdup (".hello pascal"));
3856 ext_args = args_holder.get ();
3857 set_ext_lang_command (NULL, 1, NULL);
593e3209 3858 int size_after = filename_language_table.size ();
32fa66eb
SM
3859
3860 lang = deduce_language_from_filename ("cake.hello");
3861 SELF_CHECK (lang == language_pascal);
3862 SELF_CHECK (size_before == size_after);
3863}
3864
3865} /* namespace filename_language */
3866} /* namespace selftests */
3867
3868#endif /* GDB_SELF_TEST */
3869
c906108c 3870void
fba45db2 3871_initialize_symfile (void)
c906108c
SS
3872{
3873 struct cmd_list_element *c;
c5aa993b 3874
76ad5e1e
NB
3875 observer_attach_free_objfile (symfile_free_objfile);
3876
1a966eab
AC
3877 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3878Load symbol table from executable file FILE.\n\
c906108c 3879The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3880to execute."), &cmdlist);
5ba2abeb 3881 set_cmd_completer (c, filename_completer);
c906108c 3882
1a966eab 3883 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3884Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3885Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3886 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3887The optional arguments are section-name section-address pairs and\n\
3888should be specified if the data and bss segments are not contiguous\n\
1a966eab 3889with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3890 &cmdlist);
5ba2abeb 3891 set_cmd_completer (c, filename_completer);
c906108c 3892
63644780
NB
3893 c = add_cmd ("remove-symbol-file", class_files,
3894 remove_symbol_file_command, _("\
3895Remove a symbol file added via the add-symbol-file command.\n\
3896Usage: remove-symbol-file FILENAME\n\
3897 remove-symbol-file -a ADDRESS\n\
3898The file to remove can be identified by its filename or by an address\n\
3899that lies within the boundaries of this symbol file in memory."),
3900 &cmdlist);
3901
1a966eab
AC
3902 c = add_cmd ("load", class_files, load_command, _("\
3903Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3904for access from GDB.\n\
5cf30ebf
LM
3905An optional load OFFSET may also be given as a literal address.\n\
3906When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3907on its own.\n\
3908Usage: load [FILE] [OFFSET]"), &cmdlist);
5ba2abeb 3909 set_cmd_completer (c, filename_completer);
c906108c 3910
c5aa993b 3911 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3912 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3913 "overlay ", 0, &cmdlist);
3914
3915 add_com_alias ("ovly", "overlay", class_alias, 1);
3916 add_com_alias ("ov", "overlay", class_alias, 1);
3917
c5aa993b 3918 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3919 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3920
c5aa993b 3921 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3922 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3923
c5aa993b 3924 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3925 _("List mappings of overlay sections."), &overlaylist);
c906108c 3926
c5aa993b 3927 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3928 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3929 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3930 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3931 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3932 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3933 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3934 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3935
3936 /* Filename extension to source language lookup table: */
26c41df3
AC
3937 add_setshow_string_noescape_cmd ("extension-language", class_files,
3938 &ext_args, _("\
3939Set mapping between filename extension and source language."), _("\
3940Show mapping between filename extension and source language."), _("\
3941Usage: set extension-language .foo bar"),
3942 set_ext_lang_command,
920d2a44 3943 show_ext_args,
26c41df3 3944 &setlist, &showlist);
c906108c 3945
c5aa993b 3946 add_info ("extensions", info_ext_lang_command,
1bedd215 3947 _("All filename extensions associated with a source language."));
917317f4 3948
525226b5
AC
3949 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3950 &debug_file_directory, _("\
24ddea62
JK
3951Set the directories where separate debug symbols are searched for."), _("\
3952Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3953Separate debug symbols are first searched for in the same\n\
3954directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3955and lastly at the path of the directory of the binary with\n\
24ddea62 3956each global debug-file-directory component prepended."),
525226b5 3957 NULL,
920d2a44 3958 show_debug_file_directory,
525226b5 3959 &setlist, &showlist);
770e7fc7
DE
3960
3961 add_setshow_enum_cmd ("symbol-loading", no_class,
3962 print_symbol_loading_enums, &print_symbol_loading,
3963 _("\
3964Set printing of symbol loading messages."), _("\
3965Show printing of symbol loading messages."), _("\
3966off == turn all messages off\n\
3967brief == print messages for the executable,\n\
3968 and brief messages for shared libraries\n\
3969full == print messages for the executable,\n\
3970 and messages for each shared library."),
3971 NULL,
3972 NULL,
3973 &setprintlist, &showprintlist);
c4dcb155
SM
3974
3975 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3976 &separate_debug_file_debug, _("\
3977Set printing of separate debug info file search debug."), _("\
3978Show printing of separate debug info file search debug."), _("\
3979When on, GDB prints the searched locations while looking for separate debug \
3980info files."), NULL, NULL, &setdebuglist, &showdebuglist);
32fa66eb
SM
3981
3982#if GDB_SELF_TEST
3983 selftests::register_test
3984 ("filename_language", selftests::filename_language::test_filename_language);
3985 selftests::register_test
3986 ("set_ext_lang_command",
3987 selftests::filename_language::test_set_ext_lang_command);
3988#endif
c906108c 3989}