]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/symfile.c
Use a single, consistent representation for an empty minimal
[thirdparty/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c
AC
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1bac305b 4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
8926118c 5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
c5aa993b 41#include "inferior.h" /* for write_pc */
5b5d99cf 42#include "filenames.h" /* for DOSish file names */
c906108c 43#include "gdb-stabs.h"
04ea0df1 44#include "gdb_obstack.h"
d75b5104 45#include "completer.h"
af5f3db6 46#include "bcache.h"
38017ce8 47#include <readline/readline.h>
7e8580c1 48#include "gdb_assert.h"
c906108c 49
c906108c
SS
50#include <sys/types.h>
51#include <fcntl.h>
52#include "gdb_string.h"
53#include "gdb_stat.h"
54#include <ctype.h>
55#include <time.h>
c906108c
SS
56
57#ifndef O_BINARY
58#define O_BINARY 0
59#endif
60
61#ifdef HPUXHPPA
62
63/* Some HP-UX related globals to clear when a new "main"
64 symbol file is loaded. HP-specific. */
65
66extern int hp_som_som_object_present;
67extern int hp_cxx_exception_support_initialized;
68#define RESET_HP_UX_GLOBALS() do {\
69 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
70 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
71 } while (0)
72#endif
73
917317f4 74int (*ui_load_progress_hook) (const char *section, unsigned long num);
c2d11a7d
JM
75void (*show_load_progress) (const char *section,
76 unsigned long section_sent,
77 unsigned long section_size,
78 unsigned long total_sent,
79 unsigned long total_size);
507f3c78
KB
80void (*pre_add_symbol_hook) (char *);
81void (*post_add_symbol_hook) (void);
82void (*target_new_objfile_hook) (struct objfile *);
c906108c 83
74b7792f
AC
84static void clear_symtab_users_cleanup (void *ignore);
85
c906108c 86/* Global variables owned by this file */
c5aa993b 87int readnow_symbol_files; /* Read full symbols immediately */
c906108c 88
c906108c
SS
89/* External variables and functions referenced. */
90
a14ed312 91extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
92
93/* Functions this file defines */
94
95#if 0
a14ed312
KB
96static int simple_read_overlay_region_table (void);
97static void simple_free_overlay_region_table (void);
c906108c
SS
98#endif
99
a14ed312 100static void set_initial_language (void);
c906108c 101
a14ed312 102static void load_command (char *, int);
c906108c 103
d7db6da9
FN
104static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
105
a14ed312 106static void add_symbol_file_command (char *, int);
c906108c 107
a14ed312 108static void add_shared_symbol_files_command (char *, int);
c906108c 109
5b5d99cf
JB
110static void reread_separate_symbols (struct objfile *objfile);
111
a14ed312 112static void cashier_psymtab (struct partial_symtab *);
c906108c 113
a14ed312 114bfd *symfile_bfd_open (char *);
c906108c 115
0e931cf0
JB
116int get_section_index (struct objfile *, char *);
117
a14ed312 118static void find_sym_fns (struct objfile *);
c906108c 119
a14ed312 120static void decrement_reading_symtab (void *);
c906108c 121
a14ed312 122static void overlay_invalidate_all (void);
c906108c 123
a14ed312 124static int overlay_is_mapped (struct obj_section *);
c906108c 125
a14ed312 126void list_overlays_command (char *, int);
c906108c 127
a14ed312 128void map_overlay_command (char *, int);
c906108c 129
a14ed312 130void unmap_overlay_command (char *, int);
c906108c 131
a14ed312 132static void overlay_auto_command (char *, int);
c906108c 133
a14ed312 134static void overlay_manual_command (char *, int);
c906108c 135
a14ed312 136static void overlay_off_command (char *, int);
c906108c 137
a14ed312 138static void overlay_load_command (char *, int);
c906108c 139
a14ed312 140static void overlay_command (char *, int);
c906108c 141
a14ed312 142static void simple_free_overlay_table (void);
c906108c 143
a14ed312 144static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 145
a14ed312 146static int simple_read_overlay_table (void);
c906108c 147
a14ed312 148static int simple_overlay_update_1 (struct obj_section *);
c906108c 149
a14ed312 150static void add_filename_language (char *ext, enum language lang);
392a587b 151
a14ed312 152static void set_ext_lang_command (char *args, int from_tty);
392a587b 153
a14ed312 154static void info_ext_lang_command (char *args, int from_tty);
392a587b 155
5b5d99cf
JB
156static char *find_separate_debug_file (struct objfile *objfile);
157
a14ed312 158static void init_filename_language_table (void);
392a587b 159
a14ed312 160void _initialize_symfile (void);
c906108c
SS
161
162/* List of all available sym_fns. On gdb startup, each object file reader
163 calls add_symtab_fns() to register information on each format it is
164 prepared to read. */
165
166static struct sym_fns *symtab_fns = NULL;
167
168/* Flag for whether user will be reloading symbols multiple times.
169 Defaults to ON for VxWorks, otherwise OFF. */
170
171#ifdef SYMBOL_RELOADING_DEFAULT
172int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
173#else
174int symbol_reloading = 0;
175#endif
176
b7209cb4
FF
177/* If non-zero, shared library symbols will be added automatically
178 when the inferior is created, new libraries are loaded, or when
179 attaching to the inferior. This is almost always what users will
180 want to have happen; but for very large programs, the startup time
181 will be excessive, and so if this is a problem, the user can clear
182 this flag and then add the shared library symbols as needed. Note
183 that there is a potential for confusion, since if the shared
c906108c 184 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 185 report all the functions that are actually present. */
c906108c
SS
186
187int auto_solib_add = 1;
b7209cb4
FF
188
189/* For systems that support it, a threshold size in megabytes. If
190 automatically adding a new library's symbol table to those already
191 known to the debugger would cause the total shared library symbol
192 size to exceed this threshhold, then the shlib's symbols are not
193 added. The threshold is ignored if the user explicitly asks for a
194 shlib to be added, such as when using the "sharedlibrary"
195 command. */
196
197int auto_solib_limit;
c906108c 198\f
c5aa993b 199
c906108c
SS
200/* Since this function is called from within qsort, in an ANSI environment
201 it must conform to the prototype for qsort, which specifies that the
202 comparison function takes two "void *" pointers. */
203
204static int
0cd64fe2 205compare_symbols (const void *s1p, const void *s2p)
c906108c
SS
206{
207 register struct symbol **s1, **s2;
208
209 s1 = (struct symbol **) s1p;
210 s2 = (struct symbol **) s2p;
494b7ec9 211 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
c906108c
SS
212}
213
214/*
215
c5aa993b 216 LOCAL FUNCTION
c906108c 217
c5aa993b 218 compare_psymbols -- compare two partial symbols by name
c906108c 219
c5aa993b 220 DESCRIPTION
c906108c 221
c5aa993b
JM
222 Given pointers to pointers to two partial symbol table entries,
223 compare them by name and return -N, 0, or +N (ala strcmp).
224 Typically used by sorting routines like qsort().
c906108c 225
c5aa993b 226 NOTES
c906108c 227
c5aa993b
JM
228 Does direct compare of first two characters before punting
229 and passing to strcmp for longer compares. Note that the
230 original version had a bug whereby two null strings or two
231 identically named one character strings would return the
232 comparison of memory following the null byte.
c906108c
SS
233
234 */
235
236static int
0cd64fe2 237compare_psymbols (const void *s1p, const void *s2p)
c906108c 238{
fba7f19c
EZ
239 register struct partial_symbol **s1, **s2;
240 register char *st1, *st2;
241
242 s1 = (struct partial_symbol **) s1p;
243 s2 = (struct partial_symbol **) s2p;
244 st1 = SYMBOL_SOURCE_NAME (*s1);
245 st2 = SYMBOL_SOURCE_NAME (*s2);
246
c906108c
SS
247
248 if ((st1[0] - st2[0]) || !st1[0])
249 {
250 return (st1[0] - st2[0]);
251 }
252 else if ((st1[1] - st2[1]) || !st1[1])
253 {
254 return (st1[1] - st2[1]);
255 }
256 else
257 {
c5aa993b 258 return (strcmp (st1, st2));
c906108c
SS
259 }
260}
261
262void
fba45db2 263sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
264{
265 /* Sort the global list; don't sort the static list */
266
c5aa993b
JM
267 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
268 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
269 compare_psymbols);
270}
271
272/* Call sort_block_syms to sort alphabetically the symbols of one block. */
273
274void
fba45db2 275sort_block_syms (register struct block *b)
c906108c
SS
276{
277 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
278 sizeof (struct symbol *), compare_symbols);
279}
280
281/* Call sort_symtab_syms to sort alphabetically
282 the symbols of each block of one symtab. */
283
284void
fba45db2 285sort_symtab_syms (register struct symtab *s)
c906108c
SS
286{
287 register struct blockvector *bv;
288 int nbl;
289 int i;
290 register struct block *b;
291
292 if (s == 0)
293 return;
294 bv = BLOCKVECTOR (s);
295 nbl = BLOCKVECTOR_NBLOCKS (bv);
296 for (i = 0; i < nbl; i++)
297 {
298 b = BLOCKVECTOR_BLOCK (bv, i);
299 if (BLOCK_SHOULD_SORT (b))
300 sort_block_syms (b);
301 }
302}
303
304/* Make a null terminated copy of the string at PTR with SIZE characters in
305 the obstack pointed to by OBSTACKP . Returns the address of the copy.
306 Note that the string at PTR does not have to be null terminated, I.E. it
307 may be part of a larger string and we are only saving a substring. */
308
309char *
63ca651f 310obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c
SS
311{
312 register char *p = (char *) obstack_alloc (obstackp, size + 1);
313 /* Open-coded memcpy--saves function call time. These strings are usually
314 short. FIXME: Is this really still true with a compiler that can
315 inline memcpy? */
316 {
63ca651f 317 register const char *p1 = ptr;
c906108c 318 register char *p2 = p;
63ca651f 319 const char *end = ptr + size;
c906108c
SS
320 while (p1 != end)
321 *p2++ = *p1++;
322 }
323 p[size] = 0;
324 return p;
325}
326
327/* Concatenate strings S1, S2 and S3; return the new string. Space is found
328 in the obstack pointed to by OBSTACKP. */
329
330char *
fba45db2
KB
331obconcat (struct obstack *obstackp, const char *s1, const char *s2,
332 const char *s3)
c906108c
SS
333{
334 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
335 register char *val = (char *) obstack_alloc (obstackp, len);
336 strcpy (val, s1);
337 strcat (val, s2);
338 strcat (val, s3);
339 return val;
340}
341
342/* True if we are nested inside psymtab_to_symtab. */
343
344int currently_reading_symtab = 0;
345
346static void
fba45db2 347decrement_reading_symtab (void *dummy)
c906108c
SS
348{
349 currently_reading_symtab--;
350}
351
352/* Get the symbol table that corresponds to a partial_symtab.
353 This is fast after the first time you do it. In fact, there
354 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
355 case inline. */
356
357struct symtab *
fba45db2 358psymtab_to_symtab (register struct partial_symtab *pst)
c906108c
SS
359{
360 /* If it's been looked up before, return it. */
361 if (pst->symtab)
362 return pst->symtab;
363
364 /* If it has not yet been read in, read it. */
365 if (!pst->readin)
c5aa993b 366 {
c906108c
SS
367 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
368 currently_reading_symtab++;
369 (*pst->read_symtab) (pst);
370 do_cleanups (back_to);
371 }
372
373 return pst->symtab;
374}
375
376/* Initialize entry point information for this objfile. */
377
378void
fba45db2 379init_entry_point_info (struct objfile *objfile)
c906108c
SS
380{
381 /* Save startup file's range of PC addresses to help blockframe.c
382 decide where the bottom of the stack is. */
383
c5aa993b 384 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
c906108c
SS
385 {
386 /* Executable file -- record its entry point so we'll recognize
c5aa993b
JM
387 the startup file because it contains the entry point. */
388 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
c906108c
SS
389 }
390 else
391 {
392 /* Examination of non-executable.o files. Short-circuit this stuff. */
c5aa993b 393 objfile->ei.entry_point = INVALID_ENTRY_POINT;
c906108c 394 }
c5aa993b
JM
395 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
396 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
397 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
398 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
399 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
400 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
c906108c
SS
401}
402
403/* Get current entry point address. */
404
405CORE_ADDR
fba45db2 406entry_point_address (void)
c906108c
SS
407{
408 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
409}
410
411/* Remember the lowest-addressed loadable section we've seen.
412 This function is called via bfd_map_over_sections.
413
414 In case of equal vmas, the section with the largest size becomes the
415 lowest-addressed loadable section.
416
417 If the vmas and sizes are equal, the last section is considered the
418 lowest-addressed loadable section. */
419
420void
4efb68b1 421find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 422{
c5aa993b 423 asection **lowest = (asection **) obj;
c906108c
SS
424
425 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
426 return;
427 if (!*lowest)
428 *lowest = sect; /* First loadable section */
429 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
430 *lowest = sect; /* A lower loadable section */
431 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
432 && (bfd_section_size (abfd, (*lowest))
433 <= bfd_section_size (abfd, sect)))
434 *lowest = sect;
435}
436
62557bbc
KB
437
438/* Build (allocate and populate) a section_addr_info struct from
439 an existing section table. */
440
441extern struct section_addr_info *
442build_section_addr_info_from_section_table (const struct section_table *start,
443 const struct section_table *end)
444{
445 struct section_addr_info *sap;
446 const struct section_table *stp;
447 int oidx;
448
449 sap = xmalloc (sizeof (struct section_addr_info));
450 memset (sap, 0, sizeof (struct section_addr_info));
451
452 for (stp = start, oidx = 0; stp != end; stp++)
453 {
fbd35540
MS
454 if (bfd_get_section_flags (stp->bfd,
455 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
62557bbc
KB
456 && oidx < MAX_SECTIONS)
457 {
458 sap->other[oidx].addr = stp->addr;
fbd35540
MS
459 sap->other[oidx].name
460 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
461 sap->other[oidx].sectindex = stp->the_bfd_section->index;
462 oidx++;
463 }
464 }
465
466 return sap;
467}
468
469
470/* Free all memory allocated by build_section_addr_info_from_section_table. */
471
472extern void
473free_section_addr_info (struct section_addr_info *sap)
474{
475 int idx;
476
477 for (idx = 0; idx < MAX_SECTIONS; idx++)
478 if (sap->other[idx].name)
b8c9b27d
KB
479 xfree (sap->other[idx].name);
480 xfree (sap);
62557bbc
KB
481}
482
483
e8289572
JB
484/* Initialize OBJFILE's sect_index_* members. */
485static void
486init_objfile_sect_indices (struct objfile *objfile)
c906108c 487{
e8289572 488 asection *sect;
c906108c 489 int i;
e8289572 490
b8fbeb18
EZ
491 sect = bfd_get_section_by_name (objfile->obfd, ".text");
492 if (sect)
493 objfile->sect_index_text = sect->index;
494
495 sect = bfd_get_section_by_name (objfile->obfd, ".data");
496 if (sect)
497 objfile->sect_index_data = sect->index;
498
499 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
500 if (sect)
501 objfile->sect_index_bss = sect->index;
502
503 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
504 if (sect)
505 objfile->sect_index_rodata = sect->index;
506
bbcd32ad
FF
507 /* This is where things get really weird... We MUST have valid
508 indices for the various sect_index_* members or gdb will abort.
509 So if for example, there is no ".text" section, we have to
510 accomodate that. Except when explicitly adding symbol files at
511 some address, section_offsets contains nothing but zeros, so it
512 doesn't matter which slot in section_offsets the individual
513 sect_index_* members index into. So if they are all zero, it is
514 safe to just point all the currently uninitialized indices to the
515 first slot. */
516
517 for (i = 0; i < objfile->num_sections; i++)
518 {
519 if (ANOFFSET (objfile->section_offsets, i) != 0)
520 {
521 break;
522 }
523 }
524 if (i == objfile->num_sections)
525 {
526 if (objfile->sect_index_text == -1)
527 objfile->sect_index_text = 0;
528 if (objfile->sect_index_data == -1)
529 objfile->sect_index_data = 0;
530 if (objfile->sect_index_bss == -1)
531 objfile->sect_index_bss = 0;
532 if (objfile->sect_index_rodata == -1)
533 objfile->sect_index_rodata = 0;
534 }
b8fbeb18 535}
c906108c 536
e8289572
JB
537
538/* Parse the user's idea of an offset for dynamic linking, into our idea
539 of how to represent it for fast symbol reading. This is the default
540 version of the sym_fns.sym_offsets function for symbol readers that
541 don't need to do anything special. It allocates a section_offsets table
542 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
543
544void
545default_symfile_offsets (struct objfile *objfile,
546 struct section_addr_info *addrs)
547{
548 int i;
549
550 objfile->num_sections = SECT_OFF_MAX;
551 objfile->section_offsets = (struct section_offsets *)
552 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
553 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
554
555 /* Now calculate offsets for section that were specified by the
556 caller. */
557 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
558 {
559 struct other_sections *osp ;
560
561 osp = &addrs->other[i] ;
562 if (osp->addr == 0)
563 continue;
564
565 /* Record all sections in offsets */
566 /* The section_offsets in the objfile are here filled in using
567 the BFD index. */
568 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
569 }
570
571 /* Remember the bfd indexes for the .text, .data, .bss and
572 .rodata sections. */
573 init_objfile_sect_indices (objfile);
574}
575
576
c906108c
SS
577/* Process a symbol file, as either the main file or as a dynamically
578 loaded file.
579
96baa820
JM
580 OBJFILE is where the symbols are to be read from.
581
7e8580c1
JB
582 ADDRS is the list of section load addresses. If the user has given
583 an 'add-symbol-file' command, then this is the list of offsets and
584 addresses he or she provided as arguments to the command; or, if
585 we're handling a shared library, these are the actual addresses the
586 sections are loaded at, according to the inferior's dynamic linker
587 (as gleaned by GDB's shared library code). We convert each address
588 into an offset from the section VMA's as it appears in the object
589 file, and then call the file's sym_offsets function to convert this
590 into a format-specific offset table --- a `struct section_offsets'.
591 If ADDRS is non-zero, OFFSETS must be zero.
592
593 OFFSETS is a table of section offsets already in the right
594 format-specific representation. NUM_OFFSETS is the number of
595 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
596 assume this is the proper table the call to sym_offsets described
597 above would produce. Instead of calling sym_offsets, we just dump
598 it right into objfile->section_offsets. (When we're re-reading
599 symbols from an objfile, we don't have the original load address
600 list any more; all we have is the section offset table.) If
601 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
602
603 MAINLINE is nonzero if this is the main symbol file, or zero if
604 it's an extra symbol file such as dynamically loaded code.
605
606 VERBO is nonzero if the caller has printed a verbose message about
607 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
608
609void
7e8580c1
JB
610syms_from_objfile (struct objfile *objfile,
611 struct section_addr_info *addrs,
612 struct section_offsets *offsets,
613 int num_offsets,
614 int mainline,
615 int verbo)
c906108c 616{
2acceee2
JM
617 asection *lower_sect;
618 asection *sect;
619 CORE_ADDR lower_offset;
620 struct section_addr_info local_addr;
c906108c 621 struct cleanup *old_chain;
2acceee2
JM
622 int i;
623
7e8580c1 624 gdb_assert (! (addrs && offsets));
2acceee2 625
7e8580c1
JB
626 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
627 list. We now establish the convention that an addr of zero means
628 no load address was specified. */
629 if (! addrs && ! offsets)
2acceee2
JM
630 {
631 memset (&local_addr, 0, sizeof (local_addr));
632 addrs = &local_addr;
633 }
c906108c 634
7e8580c1
JB
635 /* Now either addrs or offsets is non-zero. */
636
c906108c
SS
637 init_entry_point_info (objfile);
638 find_sym_fns (objfile);
639
75245b24
MS
640 if (objfile->sf == NULL)
641 return; /* No symbols. */
642
c906108c
SS
643 /* Make sure that partially constructed symbol tables will be cleaned up
644 if an error occurs during symbol reading. */
74b7792f 645 old_chain = make_cleanup_free_objfile (objfile);
c906108c 646
c5aa993b 647 if (mainline)
c906108c
SS
648 {
649 /* We will modify the main symbol table, make sure that all its users
c5aa993b 650 will be cleaned up if an error occurs during symbol reading. */
74b7792f 651 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
652
653 /* Since no error yet, throw away the old symbol table. */
654
655 if (symfile_objfile != NULL)
656 {
657 free_objfile (symfile_objfile);
658 symfile_objfile = NULL;
659 }
660
661 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
662 If the user wants to get rid of them, they should do "symbol-file"
663 without arguments first. Not sure this is the best behavior
664 (PR 2207). */
c906108c 665
c5aa993b 666 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
667 }
668
669 /* Convert addr into an offset rather than an absolute address.
670 We find the lowest address of a loaded segment in the objfile,
53a5351d 671 and assume that <addr> is where that got loaded.
c906108c 672
53a5351d
JM
673 We no longer warn if the lowest section is not a text segment (as
674 happens for the PA64 port. */
e7cf9df1 675 if (!mainline)
c906108c 676 {
2acceee2
JM
677 /* Find lowest loadable section to be used as starting point for
678 continguous sections. FIXME!! won't work without call to find
679 .text first, but this assumes text is lowest section. */
680 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
681 if (lower_sect == NULL)
c906108c 682 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 683 &lower_sect);
2acceee2 684 if (lower_sect == NULL)
c906108c
SS
685 warning ("no loadable sections found in added symbol-file %s",
686 objfile->name);
b8fbeb18
EZ
687 else
688 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
689 warning ("Lowest section in %s is %s at %s",
690 objfile->name,
691 bfd_section_name (objfile->obfd, lower_sect),
692 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
693 if (lower_sect != NULL)
694 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
695 else
696 lower_offset = 0;
697
13de58df 698 /* Calculate offsets for the loadable sections.
2acceee2
JM
699 FIXME! Sections must be in order of increasing loadable section
700 so that contiguous sections can use the lower-offset!!!
701
13de58df
JB
702 Adjust offsets if the segments are not contiguous.
703 If the section is contiguous, its offset should be set to
2acceee2
JM
704 the offset of the highest loadable section lower than it
705 (the loadable section directly below it in memory).
706 this_offset = lower_offset = lower_addr - lower_orig_addr */
707
13de58df 708 /* Calculate offsets for sections. */
7e8580c1
JB
709 if (addrs)
710 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
711 {
712 if (addrs->other[i].addr != 0)
713 {
714 sect = bfd_get_section_by_name (objfile->obfd,
715 addrs->other[i].name);
716 if (sect)
717 {
718 addrs->other[i].addr
719 -= bfd_section_vma (objfile->obfd, sect);
720 lower_offset = addrs->other[i].addr;
721 /* This is the index used by BFD. */
722 addrs->other[i].sectindex = sect->index ;
723 }
724 else
725 {
726 warning ("section %s not found in %s",
727 addrs->other[i].name,
728 objfile->name);
729 addrs->other[i].addr = 0;
730 }
731 }
732 else
733 addrs->other[i].addr = lower_offset;
734 }
c906108c
SS
735 }
736
737 /* Initialize symbol reading routines for this objfile, allow complaints to
738 appear for this new file, and record how verbose to be, then do the
739 initial symbol reading for this file. */
740
c5aa993b 741 (*objfile->sf->sym_init) (objfile);
b9caf505 742 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 743
7e8580c1
JB
744 if (addrs)
745 (*objfile->sf->sym_offsets) (objfile, addrs);
746 else
747 {
748 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
749
750 /* Just copy in the offset table directly as given to us. */
751 objfile->num_sections = num_offsets;
752 objfile->section_offsets
753 = ((struct section_offsets *)
754 obstack_alloc (&objfile->psymbol_obstack, size));
755 memcpy (objfile->section_offsets, offsets, size);
756
757 init_objfile_sect_indices (objfile);
758 }
c906108c
SS
759
760#ifndef IBM6000_TARGET
761 /* This is a SVR4/SunOS specific hack, I think. In any event, it
762 screws RS/6000. sym_offsets should be doing this sort of thing,
763 because it knows the mapping between bfd sections and
764 section_offsets. */
765 /* This is a hack. As far as I can tell, section offsets are not
766 target dependent. They are all set to addr with a couple of
767 exceptions. The exceptions are sysvr4 shared libraries, whose
768 offsets are kept in solib structures anyway and rs6000 xcoff
769 which handles shared libraries in a completely unique way.
770
771 Section offsets are built similarly, except that they are built
772 by adding addr in all cases because there is no clear mapping
773 from section_offsets into actual sections. Note that solib.c
96baa820 774 has a different algorithm for finding section offsets.
c906108c
SS
775
776 These should probably all be collapsed into some target
777 independent form of shared library support. FIXME. */
778
2acceee2 779 if (addrs)
c906108c
SS
780 {
781 struct obj_section *s;
782
2acceee2
JM
783 /* Map section offsets in "addr" back to the object's
784 sections by comparing the section names with bfd's
785 section names. Then adjust the section address by
786 the offset. */ /* for gdb/13815 */
787
96baa820 788 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 789 {
2acceee2
JM
790 CORE_ADDR s_addr = 0;
791 int i;
792
62557bbc
KB
793 for (i = 0;
794 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
795 i++)
fbd35540
MS
796 if (strcmp (bfd_section_name (s->objfile->obfd,
797 s->the_bfd_section),
798 addrs->other[i].name) == 0)
2acceee2
JM
799 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
800
c906108c 801 s->addr -= s->offset;
2acceee2 802 s->addr += s_addr;
c906108c 803 s->endaddr -= s->offset;
2acceee2
JM
804 s->endaddr += s_addr;
805 s->offset += s_addr;
c906108c
SS
806 }
807 }
808#endif /* not IBM6000_TARGET */
809
96baa820 810 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 811
c906108c
SS
812 /* Don't allow char * to have a typename (else would get caddr_t).
813 Ditto void *. FIXME: Check whether this is now done by all the
814 symbol readers themselves (many of them now do), and if so remove
815 it from here. */
816
817 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
818 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
819
820 /* Mark the objfile has having had initial symbol read attempted. Note
821 that this does not mean we found any symbols... */
822
c5aa993b 823 objfile->flags |= OBJF_SYMS;
c906108c
SS
824
825 /* Discard cleanups as symbol reading was successful. */
826
827 discard_cleanups (old_chain);
828
96baa820 829 /* Call this after reading in a new symbol table to give target
38c2ef12 830 dependent code a crack at the new symbols. For instance, this
96baa820
JM
831 could be used to update the values of target-specific symbols GDB
832 needs to keep track of (such as _sigtramp, or whatever). */
c906108c
SS
833
834 TARGET_SYMFILE_POSTREAD (objfile);
835}
836
837/* Perform required actions after either reading in the initial
838 symbols for a new objfile, or mapping in the symbols from a reusable
839 objfile. */
c5aa993b 840
c906108c 841void
fba45db2 842new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
843{
844
845 /* If this is the main symbol file we have to clean up all users of the
846 old main symbol file. Otherwise it is sufficient to fixup all the
847 breakpoints that may have been redefined by this symbol file. */
848 if (mainline)
849 {
850 /* OK, make it the "real" symbol file. */
851 symfile_objfile = objfile;
852
853 clear_symtab_users ();
854 }
855 else
856 {
857 breakpoint_re_set ();
858 }
859
860 /* We're done reading the symbol file; finish off complaints. */
b9caf505 861 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
862}
863
864/* Process a symbol file, as either the main file or as a dynamically
865 loaded file.
866
867 NAME is the file name (which will be tilde-expanded and made
868 absolute herein) (but we don't free or modify NAME itself).
7904e09f
JB
869
870 FROM_TTY says how verbose to be.
871
872 MAINLINE specifies whether this is the main symbol file, or whether
873 it's an extra symbol file such as dynamically loaded code.
874
875 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
876 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
877 non-zero.
c906108c 878
c906108c
SS
879 Upon success, returns a pointer to the objfile that was added.
880 Upon failure, jumps back to command level (never returns). */
7904e09f
JB
881static struct objfile *
882symbol_file_add_with_addrs_or_offsets (char *name, int from_tty,
883 struct section_addr_info *addrs,
884 struct section_offsets *offsets,
885 int num_offsets,
886 int mainline, int flags)
c906108c
SS
887{
888 struct objfile *objfile;
889 struct partial_symtab *psymtab;
5b5d99cf 890 char *debugfile;
c906108c 891 bfd *abfd;
5b5d99cf
JB
892 struct section_addr_info orig_addrs;
893
894 if (addrs)
895 orig_addrs = *addrs;
c906108c
SS
896
897 /* Open a bfd for the file, and give user a chance to burp if we'd be
898 interactively wiping out any existing symbols. */
899
900 abfd = symfile_bfd_open (name);
901
902 if ((have_full_symbols () || have_partial_symbols ())
903 && mainline
904 && from_tty
905 && !query ("Load new symbol table from \"%s\"? ", name))
c5aa993b 906 error ("Not confirmed.");
c906108c 907
2df3850c 908 objfile = allocate_objfile (abfd, flags);
c906108c
SS
909
910 /* If the objfile uses a mapped symbol file, and we have a psymtab for
911 it, then skip reading any symbols at this time. */
912
c5aa993b 913 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
c906108c
SS
914 {
915 /* We mapped in an existing symbol table file that already has had
c5aa993b
JM
916 initial symbol reading performed, so we can skip that part. Notify
917 the user that instead of reading the symbols, they have been mapped.
918 */
c906108c
SS
919 if (from_tty || info_verbose)
920 {
921 printf_filtered ("Mapped symbols for %s...", name);
922 wrap_here ("");
923 gdb_flush (gdb_stdout);
924 }
925 init_entry_point_info (objfile);
926 find_sym_fns (objfile);
927 }
928 else
929 {
930 /* We either created a new mapped symbol table, mapped an existing
c5aa993b
JM
931 symbol table file which has not had initial symbol reading
932 performed, or need to read an unmapped symbol table. */
c906108c
SS
933 if (from_tty || info_verbose)
934 {
935 if (pre_add_symbol_hook)
936 pre_add_symbol_hook (name);
937 else
938 {
939 printf_filtered ("Reading symbols from %s...", name);
940 wrap_here ("");
941 gdb_flush (gdb_stdout);
942 }
943 }
7904e09f
JB
944 syms_from_objfile (objfile, addrs, offsets, num_offsets,
945 mainline, from_tty);
c906108c
SS
946 }
947
948 /* We now have at least a partial symbol table. Check to see if the
949 user requested that all symbols be read on initial access via either
950 the gdb startup command line or on a per symbol file basis. Expand
951 all partial symbol tables for this objfile if so. */
952
2acceee2 953 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
954 {
955 if (from_tty || info_verbose)
956 {
957 printf_filtered ("expanding to full symbols...");
958 wrap_here ("");
959 gdb_flush (gdb_stdout);
960 }
961
c5aa993b 962 for (psymtab = objfile->psymtabs;
c906108c 963 psymtab != NULL;
c5aa993b 964 psymtab = psymtab->next)
c906108c
SS
965 {
966 psymtab_to_symtab (psymtab);
967 }
968 }
969
5b5d99cf
JB
970 debugfile = find_separate_debug_file (objfile);
971 if (debugfile)
972 {
5b5d99cf
JB
973 if (addrs != NULL)
974 {
975 objfile->separate_debug_objfile
976 = symbol_file_add (debugfile, from_tty, &orig_addrs, 0, flags);
977 }
978 else
979 {
980 objfile->separate_debug_objfile
981 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
982 }
983 objfile->separate_debug_objfile->separate_debug_objfile_backlink
984 = objfile;
985
986 /* Put the separate debug object before the normal one, this is so that
987 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
988 put_objfile_before (objfile->separate_debug_objfile, objfile);
989
990 xfree (debugfile);
991 }
992
cb3c37b2
JB
993 if (!have_partial_symbols () && !have_full_symbols ())
994 {
995 wrap_here ("");
996 printf_filtered ("(no debugging symbols found)...");
997 wrap_here ("");
998 }
999
c906108c
SS
1000 if (from_tty || info_verbose)
1001 {
1002 if (post_add_symbol_hook)
c5aa993b 1003 post_add_symbol_hook ();
c906108c 1004 else
c5aa993b
JM
1005 {
1006 printf_filtered ("done.\n");
c5aa993b 1007 }
c906108c
SS
1008 }
1009
481d0f41
JB
1010 /* We print some messages regardless of whether 'from_tty ||
1011 info_verbose' is true, so make sure they go out at the right
1012 time. */
1013 gdb_flush (gdb_stdout);
1014
109f874e
MS
1015 if (objfile->sf == NULL)
1016 return objfile; /* No symbols. */
1017
c906108c
SS
1018 new_symfile_objfile (objfile, mainline, from_tty);
1019
11cf8741
JM
1020 if (target_new_objfile_hook)
1021 target_new_objfile_hook (objfile);
c906108c
SS
1022
1023 return (objfile);
1024}
1025
7904e09f
JB
1026
1027/* Process a symbol file, as either the main file or as a dynamically
1028 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1029 for details. */
1030struct objfile *
1031symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1032 int mainline, int flags)
1033{
1034 return symbol_file_add_with_addrs_or_offsets (name, from_tty, addrs, 0, 0,
1035 mainline, flags);
1036}
1037
1038
d7db6da9
FN
1039/* Call symbol_file_add() with default values and update whatever is
1040 affected by the loading of a new main().
1041 Used when the file is supplied in the gdb command line
1042 and by some targets with special loading requirements.
1043 The auxiliary function, symbol_file_add_main_1(), has the flags
1044 argument for the switches that can only be specified in the symbol_file
1045 command itself. */
1adeb98a
FN
1046
1047void
1048symbol_file_add_main (char *args, int from_tty)
1049{
d7db6da9
FN
1050 symbol_file_add_main_1 (args, from_tty, 0);
1051}
1052
1053static void
1054symbol_file_add_main_1 (char *args, int from_tty, int flags)
1055{
1056 symbol_file_add (args, from_tty, NULL, 1, flags);
1057
1058#ifdef HPUXHPPA
1059 RESET_HP_UX_GLOBALS ();
1060#endif
1061
1062 /* Getting new symbols may change our opinion about
1063 what is frameless. */
1064 reinit_frame_cache ();
1065
1066 set_initial_language ();
1adeb98a
FN
1067}
1068
1069void
1070symbol_file_clear (int from_tty)
1071{
1072 if ((have_full_symbols () || have_partial_symbols ())
1073 && from_tty
1074 && !query ("Discard symbol table from `%s'? ",
1075 symfile_objfile->name))
1076 error ("Not confirmed.");
1077 free_all_objfiles ();
1078
1079 /* solib descriptors may have handles to objfiles. Since their
1080 storage has just been released, we'd better wipe the solib
1081 descriptors as well.
1082 */
1083#if defined(SOLIB_RESTART)
1084 SOLIB_RESTART ();
1085#endif
1086
1087 symfile_objfile = NULL;
1088 if (from_tty)
1089 printf_unfiltered ("No symbol file now.\n");
1090#ifdef HPUXHPPA
1091 RESET_HP_UX_GLOBALS ();
1092#endif
1093}
1094
5b5d99cf
JB
1095static char *
1096get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1097{
1098 asection *sect;
1099 bfd_size_type debuglink_size;
1100 unsigned long crc32;
1101 char *contents;
1102 int crc_offset;
1103 unsigned char *p;
1104
1105 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1106
1107 if (sect == NULL)
1108 return NULL;
1109
1110 debuglink_size = bfd_section_size (objfile->obfd, sect);
1111
1112 contents = xmalloc (debuglink_size);
1113 bfd_get_section_contents (objfile->obfd, sect, contents,
1114 (file_ptr)0, (bfd_size_type)debuglink_size);
1115
1116 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1117 crc_offset = strlen (contents) + 1;
1118 crc_offset = (crc_offset + 3) & ~3;
1119
1120 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1121
1122 *crc32_out = crc32;
1123 return contents;
1124}
1125
1126static int
1127separate_debug_file_exists (const char *name, unsigned long crc)
1128{
1129 unsigned long file_crc = 0;
1130 int fd;
1131 char buffer[8*1024];
1132 int count;
1133
1134 fd = open (name, O_RDONLY | O_BINARY);
1135 if (fd < 0)
1136 return 0;
1137
1138 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1139 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1140
1141 close (fd);
1142
1143 return crc == file_crc;
1144}
1145
1146static char *debug_file_directory = NULL;
1147
1148#if ! defined (DEBUG_SUBDIRECTORY)
1149#define DEBUG_SUBDIRECTORY ".debug"
1150#endif
1151
1152static char *
1153find_separate_debug_file (struct objfile *objfile)
1154{
1155 asection *sect;
1156 char *basename;
1157 char *dir;
1158 char *debugfile;
1159 char *name_copy;
1160 bfd_size_type debuglink_size;
1161 unsigned long crc32;
1162 int i;
1163
1164 basename = get_debug_link_info (objfile, &crc32);
1165
1166 if (basename == NULL)
1167 return NULL;
1168
1169 dir = xstrdup (objfile->name);
1170
fe36c4f4
JB
1171 /* Strip off the final filename part, leaving the directory name,
1172 followed by a slash. Objfile names should always be absolute and
1173 tilde-expanded, so there should always be a slash in there
1174 somewhere. */
5b5d99cf
JB
1175 for (i = strlen(dir) - 1; i >= 0; i--)
1176 {
1177 if (IS_DIR_SEPARATOR (dir[i]))
1178 break;
1179 }
fe36c4f4 1180 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf
JB
1181 dir[i+1] = '\0';
1182
1183 debugfile = alloca (strlen (debug_file_directory) + 1
1184 + strlen (dir)
1185 + strlen (DEBUG_SUBDIRECTORY)
1186 + strlen ("/")
1187 + strlen (basename)
1188 + 1);
1189
1190 /* First try in the same directory as the original file. */
1191 strcpy (debugfile, dir);
1192 strcat (debugfile, basename);
1193
1194 if (separate_debug_file_exists (debugfile, crc32))
1195 {
1196 xfree (basename);
1197 xfree (dir);
1198 return xstrdup (debugfile);
1199 }
1200
1201 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1202 strcpy (debugfile, dir);
1203 strcat (debugfile, DEBUG_SUBDIRECTORY);
1204 strcat (debugfile, "/");
1205 strcat (debugfile, basename);
1206
1207 if (separate_debug_file_exists (debugfile, crc32))
1208 {
1209 xfree (basename);
1210 xfree (dir);
1211 return xstrdup (debugfile);
1212 }
1213
1214 /* Then try in the global debugfile directory. */
1215 strcpy (debugfile, debug_file_directory);
1216 strcat (debugfile, "/");
1217 strcat (debugfile, dir);
5b5d99cf
JB
1218 strcat (debugfile, basename);
1219
1220 if (separate_debug_file_exists (debugfile, crc32))
1221 {
1222 xfree (basename);
1223 xfree (dir);
1224 return xstrdup (debugfile);
1225 }
1226
1227 xfree (basename);
1228 xfree (dir);
1229 return NULL;
1230}
1231
1232
c906108c
SS
1233/* This is the symbol-file command. Read the file, analyze its
1234 symbols, and add a struct symtab to a symtab list. The syntax of
1235 the command is rather bizarre--(1) buildargv implements various
1236 quoting conventions which are undocumented and have little or
1237 nothing in common with the way things are quoted (or not quoted)
1238 elsewhere in GDB, (2) options are used, which are not generally
1239 used in GDB (perhaps "set mapped on", "set readnow on" would be
1240 better), (3) the order of options matters, which is contrary to GNU
1241 conventions (because it is confusing and inconvenient). */
4da95fc4
EZ
1242/* Note: ezannoni 2000-04-17. This function used to have support for
1243 rombug (see remote-os9k.c). It consisted of a call to target_link()
1244 (target.c) to get the address of the text segment from the target,
1245 and pass that to symbol_file_add(). This is no longer supported. */
c906108c
SS
1246
1247void
fba45db2 1248symbol_file_command (char *args, int from_tty)
c906108c
SS
1249{
1250 char **argv;
1251 char *name = NULL;
c906108c 1252 struct cleanup *cleanups;
2df3850c 1253 int flags = OBJF_USERLOADED;
c906108c
SS
1254
1255 dont_repeat ();
1256
1257 if (args == NULL)
1258 {
1adeb98a 1259 symbol_file_clear (from_tty);
c906108c
SS
1260 }
1261 else
1262 {
1263 if ((argv = buildargv (args)) == NULL)
1264 {
1265 nomem (0);
1266 }
7a292a7a 1267 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1268 while (*argv != NULL)
1269 {
1270 if (STREQ (*argv, "-mapped"))
4da95fc4
EZ
1271 flags |= OBJF_MAPPED;
1272 else
1273 if (STREQ (*argv, "-readnow"))
2acceee2 1274 flags |= OBJF_READNOW;
4da95fc4
EZ
1275 else
1276 if (**argv == '-')
1277 error ("unknown option `%s'", *argv);
c5aa993b 1278 else
c5aa993b 1279 {
4da95fc4 1280 name = *argv;
c906108c 1281
d7db6da9 1282 symbol_file_add_main_1 (name, from_tty, flags);
4da95fc4 1283 }
c906108c
SS
1284 argv++;
1285 }
1286
1287 if (name == NULL)
1288 {
1289 error ("no symbol file name was specified");
1290 }
c906108c
SS
1291 do_cleanups (cleanups);
1292 }
1293}
1294
1295/* Set the initial language.
1296
1297 A better solution would be to record the language in the psymtab when reading
1298 partial symbols, and then use it (if known) to set the language. This would
1299 be a win for formats that encode the language in an easily discoverable place,
1300 such as DWARF. For stabs, we can jump through hoops looking for specially
1301 named symbols or try to intuit the language from the specific type of stabs
1302 we find, but we can't do that until later when we read in full symbols.
1303 FIXME. */
1304
1305static void
fba45db2 1306set_initial_language (void)
c906108c
SS
1307{
1308 struct partial_symtab *pst;
c5aa993b 1309 enum language lang = language_unknown;
c906108c
SS
1310
1311 pst = find_main_psymtab ();
1312 if (pst != NULL)
1313 {
c5aa993b 1314 if (pst->filename != NULL)
c906108c 1315 {
c5aa993b
JM
1316 lang = deduce_language_from_filename (pst->filename);
1317 }
c906108c
SS
1318 if (lang == language_unknown)
1319 {
c5aa993b
JM
1320 /* Make C the default language */
1321 lang = language_c;
c906108c
SS
1322 }
1323 set_language (lang);
1324 expected_language = current_language; /* Don't warn the user */
1325 }
1326}
1327
1328/* Open file specified by NAME and hand it off to BFD for preliminary
1329 analysis. Result is a newly initialized bfd *, which includes a newly
1330 malloc'd` copy of NAME (tilde-expanded and made absolute).
1331 In case of trouble, error() is called. */
1332
1333bfd *
fba45db2 1334symfile_bfd_open (char *name)
c906108c
SS
1335{
1336 bfd *sym_bfd;
1337 int desc;
1338 char *absolute_name;
1339
1340
1341
1342 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1343
1344 /* Look down path for it, allocate 2nd new malloc'd copy. */
1345 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1346#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1347 if (desc < 0)
1348 {
1349 char *exename = alloca (strlen (name) + 5);
1350 strcat (strcpy (exename, name), ".exe");
1351 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
c5aa993b 1352 0, &absolute_name);
c906108c
SS
1353 }
1354#endif
1355 if (desc < 0)
1356 {
b8c9b27d 1357 make_cleanup (xfree, name);
c906108c
SS
1358 perror_with_name (name);
1359 }
b8c9b27d 1360 xfree (name); /* Free 1st new malloc'd copy */
c906108c 1361 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
c5aa993b 1362 /* It'll be freed in free_objfile(). */
c906108c
SS
1363
1364 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1365 if (!sym_bfd)
1366 {
1367 close (desc);
b8c9b27d 1368 make_cleanup (xfree, name);
c906108c
SS
1369 error ("\"%s\": can't open to read symbols: %s.", name,
1370 bfd_errmsg (bfd_get_error ()));
1371 }
81a9a963 1372 sym_bfd->cacheable = 1;
c906108c
SS
1373
1374 if (!bfd_check_format (sym_bfd, bfd_object))
1375 {
1376 /* FIXME: should be checking for errors from bfd_close (for one thing,
c5aa993b
JM
1377 on error it does not free all the storage associated with the
1378 bfd). */
c906108c 1379 bfd_close (sym_bfd); /* This also closes desc */
b8c9b27d 1380 make_cleanup (xfree, name);
c906108c
SS
1381 error ("\"%s\": can't read symbols: %s.", name,
1382 bfd_errmsg (bfd_get_error ()));
1383 }
1384 return (sym_bfd);
1385}
1386
0e931cf0
JB
1387/* Return the section index for the given section name. Return -1 if
1388 the section was not found. */
1389int
1390get_section_index (struct objfile *objfile, char *section_name)
1391{
1392 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1393 if (sect)
1394 return sect->index;
1395 else
1396 return -1;
1397}
1398
c906108c
SS
1399/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1400 startup by the _initialize routine in each object file format reader,
1401 to register information about each format the the reader is prepared
1402 to handle. */
1403
1404void
fba45db2 1405add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1406{
1407 sf->next = symtab_fns;
1408 symtab_fns = sf;
1409}
1410
1411
1412/* Initialize to read symbols from the symbol file sym_bfd. It either
1413 returns or calls error(). The result is an initialized struct sym_fns
1414 in the objfile structure, that contains cached information about the
1415 symbol file. */
1416
1417static void
fba45db2 1418find_sym_fns (struct objfile *objfile)
c906108c
SS
1419{
1420 struct sym_fns *sf;
c5aa993b
JM
1421 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1422 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1423
75245b24
MS
1424 if (our_flavour == bfd_target_srec_flavour
1425 || our_flavour == bfd_target_ihex_flavour
1426 || our_flavour == bfd_target_tekhex_flavour)
1427 return; /* No symbols. */
1428
c906108c
SS
1429 /* Special kludge for apollo. See dstread.c. */
1430 if (STREQN (our_target, "apollo", 6))
c5aa993b 1431 our_flavour = (enum bfd_flavour) -2;
c906108c 1432
c5aa993b 1433 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1434 {
c5aa993b 1435 if (our_flavour == sf->sym_flavour)
c906108c 1436 {
c5aa993b 1437 objfile->sf = sf;
c906108c
SS
1438 return;
1439 }
1440 }
1441 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
c5aa993b 1442 bfd_get_target (objfile->obfd));
c906108c
SS
1443}
1444\f
1445/* This function runs the load command of our current target. */
1446
1447static void
fba45db2 1448load_command (char *arg, int from_tty)
c906108c
SS
1449{
1450 if (arg == NULL)
1451 arg = get_exec_file (1);
1452 target_load (arg, from_tty);
2889e661
JB
1453
1454 /* After re-loading the executable, we don't really know which
1455 overlays are mapped any more. */
1456 overlay_cache_invalid = 1;
c906108c
SS
1457}
1458
1459/* This version of "load" should be usable for any target. Currently
1460 it is just used for remote targets, not inftarg.c or core files,
1461 on the theory that only in that case is it useful.
1462
1463 Avoiding xmodem and the like seems like a win (a) because we don't have
1464 to worry about finding it, and (b) On VMS, fork() is very slow and so
1465 we don't want to run a subprocess. On the other hand, I'm not sure how
1466 performance compares. */
917317f4
JM
1467
1468static int download_write_size = 512;
1469static int validate_download = 0;
1470
e4f9b4d5
MS
1471/* Callback service function for generic_load (bfd_map_over_sections). */
1472
1473static void
1474add_section_size_callback (bfd *abfd, asection *asec, void *data)
1475{
1476 bfd_size_type *sum = data;
1477
1478 *sum += bfd_get_section_size_before_reloc (asec);
1479}
1480
1481/* Opaque data for load_section_callback. */
1482struct load_section_data {
1483 unsigned long load_offset;
1484 unsigned long write_count;
1485 unsigned long data_count;
1486 bfd_size_type total_size;
1487};
1488
1489/* Callback service function for generic_load (bfd_map_over_sections). */
1490
1491static void
1492load_section_callback (bfd *abfd, asection *asec, void *data)
1493{
1494 struct load_section_data *args = data;
1495
1496 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1497 {
1498 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1499 if (size > 0)
1500 {
1501 char *buffer;
1502 struct cleanup *old_chain;
1503 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1504 bfd_size_type block_size;
1505 int err;
1506 const char *sect_name = bfd_get_section_name (abfd, asec);
1507 bfd_size_type sent;
1508
1509 if (download_write_size > 0 && size > download_write_size)
1510 block_size = download_write_size;
1511 else
1512 block_size = size;
1513
1514 buffer = xmalloc (size);
1515 old_chain = make_cleanup (xfree, buffer);
1516
1517 /* Is this really necessary? I guess it gives the user something
1518 to look at during a long download. */
e4f9b4d5
MS
1519 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1520 sect_name, paddr_nz (size), paddr_nz (lma));
e4f9b4d5
MS
1521
1522 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1523
1524 sent = 0;
1525 do
1526 {
1527 int len;
1528 bfd_size_type this_transfer = size - sent;
1529
1530 if (this_transfer >= block_size)
1531 this_transfer = block_size;
1532 len = target_write_memory_partial (lma, buffer,
1533 this_transfer, &err);
1534 if (err)
1535 break;
1536 if (validate_download)
1537 {
1538 /* Broken memories and broken monitors manifest
1539 themselves here when bring new computers to
1540 life. This doubles already slow downloads. */
1541 /* NOTE: cagney/1999-10-18: A more efficient
1542 implementation might add a verify_memory()
1543 method to the target vector and then use
1544 that. remote.c could implement that method
1545 using the ``qCRC'' packet. */
1546 char *check = xmalloc (len);
1547 struct cleanup *verify_cleanups =
1548 make_cleanup (xfree, check);
1549
1550 if (target_read_memory (lma, check, len) != 0)
1551 error ("Download verify read failed at 0x%s",
1552 paddr (lma));
1553 if (memcmp (buffer, check, len) != 0)
1554 error ("Download verify compare failed at 0x%s",
1555 paddr (lma));
1556 do_cleanups (verify_cleanups);
1557 }
1558 args->data_count += len;
1559 lma += len;
1560 buffer += len;
1561 args->write_count += 1;
1562 sent += len;
1563 if (quit_flag
1564 || (ui_load_progress_hook != NULL
1565 && ui_load_progress_hook (sect_name, sent)))
1566 error ("Canceled the download");
1567
1568 if (show_load_progress != NULL)
1569 show_load_progress (sect_name, sent, size,
1570 args->data_count, args->total_size);
1571 }
1572 while (sent < size);
1573
1574 if (err != 0)
1575 error ("Memory access error while loading section %s.", sect_name);
1576
1577 do_cleanups (old_chain);
1578 }
1579 }
1580}
1581
c906108c 1582void
917317f4 1583generic_load (char *args, int from_tty)
c906108c 1584{
c906108c
SS
1585 asection *s;
1586 bfd *loadfile_bfd;
1587 time_t start_time, end_time; /* Start and end times of download */
917317f4
JM
1588 char *filename;
1589 struct cleanup *old_cleanups;
1590 char *offptr;
e4f9b4d5
MS
1591 struct load_section_data cbdata;
1592 CORE_ADDR entry;
1593
1594 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1595 cbdata.write_count = 0; /* Number of writes needed. */
1596 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1597 cbdata.total_size = 0; /* Total size of all bfd sectors. */
917317f4
JM
1598
1599 /* Parse the input argument - the user can specify a load offset as
1600 a second argument. */
1601 filename = xmalloc (strlen (args) + 1);
b8c9b27d 1602 old_cleanups = make_cleanup (xfree, filename);
917317f4
JM
1603 strcpy (filename, args);
1604 offptr = strchr (filename, ' ');
1605 if (offptr != NULL)
1606 {
1607 char *endptr;
ba5f2f8a 1608
e4f9b4d5 1609 cbdata.load_offset = strtoul (offptr, &endptr, 0);
917317f4
JM
1610 if (offptr == endptr)
1611 error ("Invalid download offset:%s\n", offptr);
1612 *offptr = '\0';
1613 }
c906108c 1614 else
e4f9b4d5 1615 cbdata.load_offset = 0;
c906108c 1616
917317f4 1617 /* Open the file for loading. */
c906108c
SS
1618 loadfile_bfd = bfd_openr (filename, gnutarget);
1619 if (loadfile_bfd == NULL)
1620 {
1621 perror_with_name (filename);
1622 return;
1623 }
917317f4 1624
c906108c
SS
1625 /* FIXME: should be checking for errors from bfd_close (for one thing,
1626 on error it does not free all the storage associated with the
1627 bfd). */
5c65bbb6 1628 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1629
c5aa993b 1630 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c
SS
1631 {
1632 error ("\"%s\" is not an object file: %s", filename,
1633 bfd_errmsg (bfd_get_error ()));
1634 }
c5aa993b 1635
e4f9b4d5
MS
1636 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1637 (void *) &cbdata.total_size);
c2d11a7d 1638
c906108c
SS
1639 start_time = time (NULL);
1640
e4f9b4d5 1641 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c906108c
SS
1642
1643 end_time = time (NULL);
ba5f2f8a 1644
e4f9b4d5 1645 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1646 ui_out_text (uiout, "Start address ");
1647 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1648 ui_out_text (uiout, ", load size ");
1649 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1650 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1651 /* We were doing this in remote-mips.c, I suspect it is right
1652 for other targets too. */
1653 write_pc (entry);
c906108c 1654
7ca9f392
AC
1655 /* FIXME: are we supposed to call symbol_file_add or not? According
1656 to a comment from remote-mips.c (where a call to symbol_file_add
1657 was commented out), making the call confuses GDB if more than one
1658 file is loaded in. Some targets do (e.g., remote-vx.c) but
1659 others don't (or didn't - perhaphs they have all been deleted). */
c906108c 1660
e4f9b4d5
MS
1661 print_transfer_performance (gdb_stdout, cbdata.data_count,
1662 cbdata.write_count, end_time - start_time);
c906108c
SS
1663
1664 do_cleanups (old_cleanups);
1665}
1666
1667/* Report how fast the transfer went. */
1668
917317f4
JM
1669/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1670 replaced by print_transfer_performance (with a very different
1671 function signature). */
1672
c906108c 1673void
fba45db2
KB
1674report_transfer_performance (unsigned long data_count, time_t start_time,
1675 time_t end_time)
c906108c 1676{
ba5f2f8a
MS
1677 print_transfer_performance (gdb_stdout, data_count,
1678 end_time - start_time, 0);
917317f4
JM
1679}
1680
1681void
d9fcf2fb 1682print_transfer_performance (struct ui_file *stream,
917317f4
JM
1683 unsigned long data_count,
1684 unsigned long write_count,
1685 unsigned long time_count)
1686{
8b93c638
JM
1687 ui_out_text (uiout, "Transfer rate: ");
1688 if (time_count > 0)
1689 {
ba5f2f8a 1690 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
8b93c638
JM
1691 (data_count * 8) / time_count);
1692 ui_out_text (uiout, " bits/sec");
1693 }
1694 else
1695 {
ba5f2f8a 1696 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
8b93c638
JM
1697 ui_out_text (uiout, " bits in <1 sec");
1698 }
1699 if (write_count > 0)
1700 {
1701 ui_out_text (uiout, ", ");
ba5f2f8a 1702 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1703 ui_out_text (uiout, " bytes/write");
1704 }
1705 ui_out_text (uiout, ".\n");
c906108c
SS
1706}
1707
1708/* This function allows the addition of incrementally linked object files.
1709 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1710/* Note: ezannoni 2000-04-13 This function/command used to have a
1711 special case syntax for the rombug target (Rombug is the boot
1712 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1713 rombug case, the user doesn't need to supply a text address,
1714 instead a call to target_link() (in target.c) would supply the
1715 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c
SS
1716
1717/* ARGSUSED */
1718static void
fba45db2 1719add_symbol_file_command (char *args, int from_tty)
c906108c 1720{
db162d44 1721 char *filename = NULL;
2df3850c 1722 int flags = OBJF_USERLOADED;
c906108c 1723 char *arg;
2acceee2 1724 int expecting_option = 0;
db162d44 1725 int section_index = 0;
2acceee2
JM
1726 int argcnt = 0;
1727 int sec_num = 0;
1728 int i;
db162d44
EZ
1729 int expecting_sec_name = 0;
1730 int expecting_sec_addr = 0;
1731
2acceee2
JM
1732 struct
1733 {
2acceee2
JM
1734 char *name;
1735 char *value;
db162d44
EZ
1736 } sect_opts[SECT_OFF_MAX];
1737
2acceee2 1738 struct section_addr_info section_addrs;
3017564a 1739 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1740
c906108c
SS
1741 dont_repeat ();
1742
1743 if (args == NULL)
db162d44 1744 error ("add-symbol-file takes a file name and an address");
c906108c
SS
1745
1746 /* Make a copy of the string that we can safely write into. */
c2d11a7d 1747 args = xstrdup (args);
c906108c 1748
2acceee2
JM
1749 /* Ensure section_addrs is initialized */
1750 memset (&section_addrs, 0, sizeof (section_addrs));
1751
2acceee2 1752 while (*args != '\000')
c906108c 1753 {
db162d44 1754 /* Any leading spaces? */
c5aa993b 1755 while (isspace (*args))
db162d44
EZ
1756 args++;
1757
1758 /* Point arg to the beginning of the argument. */
c906108c 1759 arg = args;
db162d44
EZ
1760
1761 /* Move args pointer over the argument. */
c5aa993b 1762 while ((*args != '\000') && !isspace (*args))
db162d44
EZ
1763 args++;
1764
1765 /* If there are more arguments, terminate arg and
1766 proceed past it. */
c906108c 1767 if (*args != '\000')
db162d44
EZ
1768 *args++ = '\000';
1769
1770 /* Now process the argument. */
1771 if (argcnt == 0)
c906108c 1772 {
db162d44
EZ
1773 /* The first argument is the file name. */
1774 filename = tilde_expand (arg);
3017564a 1775 make_cleanup (xfree, filename);
c906108c 1776 }
db162d44 1777 else
7a78ae4e
ND
1778 if (argcnt == 1)
1779 {
1780 /* The second argument is always the text address at which
1781 to load the program. */
1782 sect_opts[section_index].name = ".text";
1783 sect_opts[section_index].value = arg;
1784 section_index++;
1785 }
1786 else
1787 {
1788 /* It's an option (starting with '-') or it's an argument
1789 to an option */
1790
1791 if (*arg == '-')
1792 {
1793 if (strcmp (arg, "-mapped") == 0)
1794 flags |= OBJF_MAPPED;
1795 else
1796 if (strcmp (arg, "-readnow") == 0)
1797 flags |= OBJF_READNOW;
1798 else
1799 if (strcmp (arg, "-s") == 0)
1800 {
1801 if (section_index >= SECT_OFF_MAX)
1802 error ("Too many sections specified.");
1803 expecting_sec_name = 1;
1804 expecting_sec_addr = 1;
1805 }
1806 }
1807 else
1808 {
1809 if (expecting_sec_name)
db162d44 1810 {
7a78ae4e
ND
1811 sect_opts[section_index].name = arg;
1812 expecting_sec_name = 0;
db162d44
EZ
1813 }
1814 else
7a78ae4e
ND
1815 if (expecting_sec_addr)
1816 {
1817 sect_opts[section_index].value = arg;
1818 expecting_sec_addr = 0;
1819 section_index++;
1820 }
1821 else
1822 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1823 }
1824 }
db162d44 1825 argcnt++;
c906108c 1826 }
c906108c 1827
db162d44
EZ
1828 /* Print the prompt for the query below. And save the arguments into
1829 a sect_addr_info structure to be passed around to other
1830 functions. We have to split this up into separate print
1831 statements because local_hex_string returns a local static
1832 string. */
2acceee2 1833
db162d44
EZ
1834 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1835 for (i = 0; i < section_index; i++)
c906108c 1836 {
db162d44
EZ
1837 CORE_ADDR addr;
1838 char *val = sect_opts[i].value;
1839 char *sec = sect_opts[i].name;
1840
1841 val = sect_opts[i].value;
1842 if (val[0] == '0' && val[1] == 'x')
1843 addr = strtoul (val+2, NULL, 16);
1844 else
1845 addr = strtoul (val, NULL, 10);
1846
db162d44
EZ
1847 /* Here we store the section offsets in the order they were
1848 entered on the command line. */
1849 section_addrs.other[sec_num].name = sec;
1850 section_addrs.other[sec_num].addr = addr;
1851 printf_filtered ("\t%s_addr = %s\n",
1852 sec,
1853 local_hex_string ((unsigned long)addr));
1854 sec_num++;
1855
1856 /* The object's sections are initialized when a
1857 call is made to build_objfile_section_table (objfile).
1858 This happens in reread_symbols.
1859 At this point, we don't know what file type this is,
1860 so we can't determine what section names are valid. */
2acceee2 1861 }
db162d44 1862
2acceee2 1863 if (from_tty && (!query ("%s", "")))
c906108c
SS
1864 error ("Not confirmed.");
1865
db162d44 1866 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
c906108c
SS
1867
1868 /* Getting new symbols may change our opinion about what is
1869 frameless. */
1870 reinit_frame_cache ();
db162d44 1871 do_cleanups (my_cleanups);
c906108c
SS
1872}
1873\f
1874static void
fba45db2 1875add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1876{
1877#ifdef ADD_SHARED_SYMBOL_FILES
1878 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1879#else
1880 error ("This command is not available in this configuration of GDB.");
c5aa993b 1881#endif
c906108c
SS
1882}
1883\f
1884/* Re-read symbols if a symbol-file has changed. */
1885void
fba45db2 1886reread_symbols (void)
c906108c
SS
1887{
1888 struct objfile *objfile;
1889 long new_modtime;
1890 int reread_one = 0;
1891 struct stat new_statbuf;
1892 int res;
1893
1894 /* With the addition of shared libraries, this should be modified,
1895 the load time should be saved in the partial symbol tables, since
1896 different tables may come from different source files. FIXME.
1897 This routine should then walk down each partial symbol table
1898 and see if the symbol table that it originates from has been changed */
1899
c5aa993b
JM
1900 for (objfile = object_files; objfile; objfile = objfile->next)
1901 {
1902 if (objfile->obfd)
1903 {
c906108c 1904#ifdef IBM6000_TARGET
c5aa993b
JM
1905 /* If this object is from a shared library, then you should
1906 stat on the library name, not member name. */
c906108c 1907
c5aa993b
JM
1908 if (objfile->obfd->my_archive)
1909 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1910 else
c906108c 1911#endif
c5aa993b
JM
1912 res = stat (objfile->name, &new_statbuf);
1913 if (res != 0)
c906108c 1914 {
c5aa993b
JM
1915 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1916 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1917 objfile->name);
1918 continue;
c906108c 1919 }
c5aa993b
JM
1920 new_modtime = new_statbuf.st_mtime;
1921 if (new_modtime != objfile->mtime)
c906108c 1922 {
c5aa993b
JM
1923 struct cleanup *old_cleanups;
1924 struct section_offsets *offsets;
1925 int num_offsets;
c5aa993b
JM
1926 char *obfd_filename;
1927
1928 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1929 objfile->name);
1930
1931 /* There are various functions like symbol_file_add,
1932 symfile_bfd_open, syms_from_objfile, etc., which might
1933 appear to do what we want. But they have various other
1934 effects which we *don't* want. So we just do stuff
1935 ourselves. We don't worry about mapped files (for one thing,
1936 any mapped file will be out of date). */
1937
1938 /* If we get an error, blow away this objfile (not sure if
1939 that is the correct response for things like shared
1940 libraries). */
74b7792f 1941 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 1942 /* We need to do this whenever any symbols go away. */
74b7792f 1943 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
1944
1945 /* Clean up any state BFD has sitting around. We don't need
1946 to close the descriptor but BFD lacks a way of closing the
1947 BFD without closing the descriptor. */
1948 obfd_filename = bfd_get_filename (objfile->obfd);
1949 if (!bfd_close (objfile->obfd))
1950 error ("Can't close BFD for %s: %s", objfile->name,
1951 bfd_errmsg (bfd_get_error ()));
1952 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1953 if (objfile->obfd == NULL)
1954 error ("Can't open %s to read symbols.", objfile->name);
1955 /* bfd_openr sets cacheable to true, which is what we want. */
1956 if (!bfd_check_format (objfile->obfd, bfd_object))
1957 error ("Can't read symbols from %s: %s.", objfile->name,
1958 bfd_errmsg (bfd_get_error ()));
1959
1960 /* Save the offsets, we will nuke them with the rest of the
1961 psymbol_obstack. */
1962 num_offsets = objfile->num_sections;
d4f3574e
SS
1963 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1964 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
c5aa993b
JM
1965
1966 /* Nuke all the state that we will re-read. Much of the following
1967 code which sets things to NULL really is necessary to tell
1968 other parts of GDB that there is nothing currently there. */
1969
1970 /* FIXME: Do we have to free a whole linked list, or is this
1971 enough? */
1972 if (objfile->global_psymbols.list)
aac7f4ea 1973 xmfree (objfile->md, objfile->global_psymbols.list);
c5aa993b
JM
1974 memset (&objfile->global_psymbols, 0,
1975 sizeof (objfile->global_psymbols));
1976 if (objfile->static_psymbols.list)
aac7f4ea 1977 xmfree (objfile->md, objfile->static_psymbols.list);
c5aa993b
JM
1978 memset (&objfile->static_psymbols, 0,
1979 sizeof (objfile->static_psymbols));
1980
1981 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
1982 bcache_xfree (objfile->psymbol_cache);
1983 objfile->psymbol_cache = bcache_xmalloc ();
1984 bcache_xfree (objfile->macro_cache);
1985 objfile->macro_cache = bcache_xmalloc ();
c5aa993b
JM
1986 obstack_free (&objfile->psymbol_obstack, 0);
1987 obstack_free (&objfile->symbol_obstack, 0);
1988 obstack_free (&objfile->type_obstack, 0);
1989 objfile->sections = NULL;
1990 objfile->symtabs = NULL;
1991 objfile->psymtabs = NULL;
1992 objfile->free_psymtabs = NULL;
1993 objfile->msymbols = NULL;
1994 objfile->minimal_symbol_count = 0;
0a83117a
MS
1995 memset (&objfile->msymbol_hash, 0,
1996 sizeof (objfile->msymbol_hash));
1997 memset (&objfile->msymbol_demangled_hash, 0,
1998 sizeof (objfile->msymbol_demangled_hash));
c5aa993b
JM
1999 objfile->fundamental_types = NULL;
2000 if (objfile->sf != NULL)
2001 {
2002 (*objfile->sf->sym_finish) (objfile);
2003 }
2004
2005 /* We never make this a mapped file. */
2006 objfile->md = NULL;
2007 /* obstack_specify_allocation also initializes the obstack so
2008 it is empty. */
af5f3db6
AC
2009 objfile->psymbol_cache = bcache_xmalloc ();
2010 objfile->macro_cache = bcache_xmalloc ();
c5aa993b 2011 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
b8c9b27d 2012 xmalloc, xfree);
c5aa993b 2013 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
b8c9b27d 2014 xmalloc, xfree);
c5aa993b 2015 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
b8c9b27d 2016 xmalloc, xfree);
c5aa993b
JM
2017 if (build_objfile_section_table (objfile))
2018 {
2019 error ("Can't find the file sections in `%s': %s",
2020 objfile->name, bfd_errmsg (bfd_get_error ()));
2021 }
15831452 2022 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2023
2024 /* We use the same section offsets as from last time. I'm not
2025 sure whether that is always correct for shared libraries. */
2026 objfile->section_offsets = (struct section_offsets *)
d4f3574e
SS
2027 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
2028 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
c5aa993b
JM
2029 objfile->num_sections = num_offsets;
2030
2031 /* What the hell is sym_new_init for, anyway? The concept of
2032 distinguishing between the main file and additional files
2033 in this way seems rather dubious. */
2034 if (objfile == symfile_objfile)
2035 {
2036 (*objfile->sf->sym_new_init) (objfile);
c906108c 2037#ifdef HPUXHPPA
c5aa993b 2038 RESET_HP_UX_GLOBALS ();
c906108c 2039#endif
c5aa993b
JM
2040 }
2041
2042 (*objfile->sf->sym_init) (objfile);
b9caf505 2043 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2044 /* The "mainline" parameter is a hideous hack; I think leaving it
2045 zero is OK since dbxread.c also does what it needs to do if
2046 objfile->global_psymbols.size is 0. */
96baa820 2047 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2048 if (!have_partial_symbols () && !have_full_symbols ())
2049 {
2050 wrap_here ("");
2051 printf_filtered ("(no debugging symbols found)\n");
2052 wrap_here ("");
2053 }
2054 objfile->flags |= OBJF_SYMS;
2055
2056 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2057 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2058
c5aa993b
JM
2059 /* Getting new symbols may change our opinion about what is
2060 frameless. */
c906108c 2061
c5aa993b 2062 reinit_frame_cache ();
c906108c 2063
c5aa993b
JM
2064 /* Discard cleanups as symbol reading was successful. */
2065 discard_cleanups (old_cleanups);
c906108c 2066
c5aa993b
JM
2067 /* If the mtime has changed between the time we set new_modtime
2068 and now, we *want* this to be out of date, so don't call stat
2069 again now. */
2070 objfile->mtime = new_modtime;
2071 reread_one = 1;
c906108c 2072
c5aa993b 2073 /* Call this after reading in a new symbol table to give target
38c2ef12 2074 dependent code a crack at the new symbols. For instance, this
c5aa993b
JM
2075 could be used to update the values of target-specific symbols GDB
2076 needs to keep track of (such as _sigtramp, or whatever). */
c906108c 2077
c5aa993b 2078 TARGET_SYMFILE_POSTREAD (objfile);
5b5d99cf
JB
2079
2080 reread_separate_symbols (objfile);
c5aa993b 2081 }
c906108c
SS
2082 }
2083 }
c906108c
SS
2084
2085 if (reread_one)
2086 clear_symtab_users ();
2087}
5b5d99cf
JB
2088
2089
2090/* Handle separate debug info for OBJFILE, which has just been
2091 re-read:
2092 - If we had separate debug info before, but now we don't, get rid
2093 of the separated objfile.
2094 - If we didn't have separated debug info before, but now we do,
2095 read in the new separated debug info file.
2096 - If the debug link points to a different file, toss the old one
2097 and read the new one.
2098 This function does *not* handle the case where objfile is still
2099 using the same separate debug info file, but that file's timestamp
2100 has changed. That case should be handled by the loop in
2101 reread_symbols already. */
2102static void
2103reread_separate_symbols (struct objfile *objfile)
2104{
2105 char *debug_file;
2106 unsigned long crc32;
2107
2108 /* Does the updated objfile's debug info live in a
2109 separate file? */
2110 debug_file = find_separate_debug_file (objfile);
2111
2112 if (objfile->separate_debug_objfile)
2113 {
2114 /* There are two cases where we need to get rid of
2115 the old separated debug info objfile:
2116 - if the new primary objfile doesn't have
2117 separated debug info, or
2118 - if the new primary objfile has separate debug
2119 info, but it's under a different filename.
2120
2121 If the old and new objfiles both have separate
2122 debug info, under the same filename, then we're
2123 okay --- if the separated file's contents have
2124 changed, we will have caught that when we
2125 visited it in this function's outermost
2126 loop. */
2127 if (! debug_file
2128 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2129 free_objfile (objfile->separate_debug_objfile);
2130 }
2131
2132 /* If the new objfile has separate debug info, and we
2133 haven't loaded it already, do so now. */
2134 if (debug_file
2135 && ! objfile->separate_debug_objfile)
2136 {
2137 /* Use the same section offset table as objfile itself.
2138 Preserve the flags from objfile that make sense. */
2139 objfile->separate_debug_objfile
2140 = (symbol_file_add_with_addrs_or_offsets
2141 (debug_file,
2142 info_verbose, /* from_tty: Don't override the default. */
2143 0, /* No addr table. */
2144 objfile->section_offsets, objfile->num_sections,
2145 0, /* Not mainline. See comments about this above. */
2146 objfile->flags & (OBJF_MAPPED | OBJF_REORDERED
2147 | OBJF_SHARED | OBJF_READNOW
2148 | OBJF_USERLOADED)));
2149 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2150 = objfile;
2151 }
2152}
2153
2154
c906108c
SS
2155\f
2156
c5aa993b
JM
2157
2158typedef struct
2159{
2160 char *ext;
c906108c 2161 enum language lang;
c5aa993b
JM
2162}
2163filename_language;
c906108c 2164
c5aa993b 2165static filename_language *filename_language_table;
c906108c
SS
2166static int fl_table_size, fl_table_next;
2167
2168static void
fba45db2 2169add_filename_language (char *ext, enum language lang)
c906108c
SS
2170{
2171 if (fl_table_next >= fl_table_size)
2172 {
2173 fl_table_size += 10;
25bf3106
PM
2174 filename_language_table =
2175 xrealloc (filename_language_table,
2176 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2177 }
2178
4fcf66da 2179 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2180 filename_language_table[fl_table_next].lang = lang;
2181 fl_table_next++;
2182}
2183
2184static char *ext_args;
2185
2186static void
fba45db2 2187set_ext_lang_command (char *args, int from_tty)
c906108c
SS
2188{
2189 int i;
2190 char *cp = ext_args;
2191 enum language lang;
2192
2193 /* First arg is filename extension, starting with '.' */
2194 if (*cp != '.')
2195 error ("'%s': Filename extension must begin with '.'", ext_args);
2196
2197 /* Find end of first arg. */
c5aa993b 2198 while (*cp && !isspace (*cp))
c906108c
SS
2199 cp++;
2200
2201 if (*cp == '\0')
2202 error ("'%s': two arguments required -- filename extension and language",
2203 ext_args);
2204
2205 /* Null-terminate first arg */
c5aa993b 2206 *cp++ = '\0';
c906108c
SS
2207
2208 /* Find beginning of second arg, which should be a source language. */
2209 while (*cp && isspace (*cp))
2210 cp++;
2211
2212 if (*cp == '\0')
2213 error ("'%s': two arguments required -- filename extension and language",
2214 ext_args);
2215
2216 /* Lookup the language from among those we know. */
2217 lang = language_enum (cp);
2218
2219 /* Now lookup the filename extension: do we already know it? */
2220 for (i = 0; i < fl_table_next; i++)
2221 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2222 break;
2223
2224 if (i >= fl_table_next)
2225 {
2226 /* new file extension */
2227 add_filename_language (ext_args, lang);
2228 }
2229 else
2230 {
2231 /* redefining a previously known filename extension */
2232
2233 /* if (from_tty) */
2234 /* query ("Really make files of type %s '%s'?", */
2235 /* ext_args, language_str (lang)); */
2236
b8c9b27d 2237 xfree (filename_language_table[i].ext);
4fcf66da 2238 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2239 filename_language_table[i].lang = lang;
2240 }
2241}
2242
2243static void
fba45db2 2244info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2245{
2246 int i;
2247
2248 printf_filtered ("Filename extensions and the languages they represent:");
2249 printf_filtered ("\n\n");
2250 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2251 printf_filtered ("\t%s\t- %s\n",
2252 filename_language_table[i].ext,
c906108c
SS
2253 language_str (filename_language_table[i].lang));
2254}
2255
2256static void
fba45db2 2257init_filename_language_table (void)
c906108c
SS
2258{
2259 if (fl_table_size == 0) /* protect against repetition */
2260 {
2261 fl_table_size = 20;
2262 fl_table_next = 0;
c5aa993b 2263 filename_language_table =
c906108c 2264 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2265 add_filename_language (".c", language_c);
2266 add_filename_language (".C", language_cplus);
2267 add_filename_language (".cc", language_cplus);
2268 add_filename_language (".cp", language_cplus);
2269 add_filename_language (".cpp", language_cplus);
2270 add_filename_language (".cxx", language_cplus);
2271 add_filename_language (".c++", language_cplus);
2272 add_filename_language (".java", language_java);
c906108c 2273 add_filename_language (".class", language_java);
da2cf7e0 2274 add_filename_language (".m", language_objc);
c5aa993b
JM
2275 add_filename_language (".f", language_fortran);
2276 add_filename_language (".F", language_fortran);
2277 add_filename_language (".s", language_asm);
2278 add_filename_language (".S", language_asm);
c6fd39cd
PM
2279 add_filename_language (".pas", language_pascal);
2280 add_filename_language (".p", language_pascal);
2281 add_filename_language (".pp", language_pascal);
c906108c
SS
2282 }
2283}
2284
2285enum language
fba45db2 2286deduce_language_from_filename (char *filename)
c906108c
SS
2287{
2288 int i;
2289 char *cp;
2290
2291 if (filename != NULL)
2292 if ((cp = strrchr (filename, '.')) != NULL)
2293 for (i = 0; i < fl_table_next; i++)
2294 if (strcmp (cp, filename_language_table[i].ext) == 0)
2295 return filename_language_table[i].lang;
2296
2297 return language_unknown;
2298}
2299\f
2300/* allocate_symtab:
2301
2302 Allocate and partly initialize a new symbol table. Return a pointer
2303 to it. error() if no space.
2304
2305 Caller must set these fields:
c5aa993b
JM
2306 LINETABLE(symtab)
2307 symtab->blockvector
2308 symtab->dirname
2309 symtab->free_code
2310 symtab->free_ptr
2311 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2312 */
2313
2314struct symtab *
fba45db2 2315allocate_symtab (char *filename, struct objfile *objfile)
c906108c
SS
2316{
2317 register struct symtab *symtab;
2318
2319 symtab = (struct symtab *)
c5aa993b 2320 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
c906108c 2321 memset (symtab, 0, sizeof (*symtab));
c5aa993b
JM
2322 symtab->filename = obsavestring (filename, strlen (filename),
2323 &objfile->symbol_obstack);
2324 symtab->fullname = NULL;
2325 symtab->language = deduce_language_from_filename (filename);
2326 symtab->debugformat = obsavestring ("unknown", 7,
2327 &objfile->symbol_obstack);
c906108c
SS
2328
2329 /* Hook it to the objfile it comes from */
2330
c5aa993b
JM
2331 symtab->objfile = objfile;
2332 symtab->next = objfile->symtabs;
2333 objfile->symtabs = symtab;
c906108c
SS
2334
2335 /* FIXME: This should go away. It is only defined for the Z8000,
2336 and the Z8000 definition of this macro doesn't have anything to
2337 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2338 here for convenience. */
2339#ifdef INIT_EXTRA_SYMTAB_INFO
2340 INIT_EXTRA_SYMTAB_INFO (symtab);
2341#endif
2342
2343 return (symtab);
2344}
2345
2346struct partial_symtab *
fba45db2 2347allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2348{
2349 struct partial_symtab *psymtab;
2350
c5aa993b 2351 if (objfile->free_psymtabs)
c906108c 2352 {
c5aa993b
JM
2353 psymtab = objfile->free_psymtabs;
2354 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2355 }
2356 else
2357 psymtab = (struct partial_symtab *)
c5aa993b 2358 obstack_alloc (&objfile->psymbol_obstack,
c906108c
SS
2359 sizeof (struct partial_symtab));
2360
2361 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b
JM
2362 psymtab->filename = obsavestring (filename, strlen (filename),
2363 &objfile->psymbol_obstack);
2364 psymtab->symtab = NULL;
c906108c
SS
2365
2366 /* Prepend it to the psymtab list for the objfile it belongs to.
2367 Psymtabs are searched in most recent inserted -> least recent
2368 inserted order. */
2369
c5aa993b
JM
2370 psymtab->objfile = objfile;
2371 psymtab->next = objfile->psymtabs;
2372 objfile->psymtabs = psymtab;
c906108c
SS
2373#if 0
2374 {
2375 struct partial_symtab **prev_pst;
c5aa993b
JM
2376 psymtab->objfile = objfile;
2377 psymtab->next = NULL;
2378 prev_pst = &(objfile->psymtabs);
c906108c 2379 while ((*prev_pst) != NULL)
c5aa993b 2380 prev_pst = &((*prev_pst)->next);
c906108c 2381 (*prev_pst) = psymtab;
c5aa993b 2382 }
c906108c 2383#endif
c5aa993b 2384
c906108c
SS
2385 return (psymtab);
2386}
2387
2388void
fba45db2 2389discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2390{
2391 struct partial_symtab **prev_pst;
2392
2393 /* From dbxread.c:
2394 Empty psymtabs happen as a result of header files which don't
2395 have any symbols in them. There can be a lot of them. But this
2396 check is wrong, in that a psymtab with N_SLINE entries but
2397 nothing else is not empty, but we don't realize that. Fixing
2398 that without slowing things down might be tricky. */
2399
2400 /* First, snip it out of the psymtab chain */
2401
2402 prev_pst = &(pst->objfile->psymtabs);
2403 while ((*prev_pst) != pst)
2404 prev_pst = &((*prev_pst)->next);
2405 (*prev_pst) = pst->next;
2406
2407 /* Next, put it on a free list for recycling */
2408
2409 pst->next = pst->objfile->free_psymtabs;
2410 pst->objfile->free_psymtabs = pst;
2411}
c906108c 2412\f
c5aa993b 2413
c906108c
SS
2414/* Reset all data structures in gdb which may contain references to symbol
2415 table data. */
2416
2417void
fba45db2 2418clear_symtab_users (void)
c906108c
SS
2419{
2420 /* Someday, we should do better than this, by only blowing away
2421 the things that really need to be blown. */
2422 clear_value_history ();
2423 clear_displays ();
2424 clear_internalvars ();
2425 breakpoint_re_set ();
2426 set_default_breakpoint (0, 0, 0, 0);
0378c332 2427 clear_current_source_symtab_and_line ();
c906108c 2428 clear_pc_function_cache ();
11cf8741
JM
2429 if (target_new_objfile_hook)
2430 target_new_objfile_hook (NULL);
c906108c
SS
2431}
2432
74b7792f
AC
2433static void
2434clear_symtab_users_cleanup (void *ignore)
2435{
2436 clear_symtab_users ();
2437}
2438
c906108c
SS
2439/* clear_symtab_users_once:
2440
2441 This function is run after symbol reading, or from a cleanup.
2442 If an old symbol table was obsoleted, the old symbol table
2443 has been blown away, but the other GDB data structures that may
2444 reference it have not yet been cleared or re-directed. (The old
2445 symtab was zapped, and the cleanup queued, in free_named_symtab()
2446 below.)
2447
2448 This function can be queued N times as a cleanup, or called
2449 directly; it will do all the work the first time, and then will be a
2450 no-op until the next time it is queued. This works by bumping a
2451 counter at queueing time. Much later when the cleanup is run, or at
2452 the end of symbol processing (in case the cleanup is discarded), if
2453 the queued count is greater than the "done-count", we do the work
2454 and set the done-count to the queued count. If the queued count is
2455 less than or equal to the done-count, we just ignore the call. This
2456 is needed because reading a single .o file will often replace many
2457 symtabs (one per .h file, for example), and we don't want to reset
2458 the breakpoints N times in the user's face.
2459
2460 The reason we both queue a cleanup, and call it directly after symbol
2461 reading, is because the cleanup protects us in case of errors, but is
2462 discarded if symbol reading is successful. */
2463
2464#if 0
2465/* FIXME: As free_named_symtabs is currently a big noop this function
2466 is no longer needed. */
a14ed312 2467static void clear_symtab_users_once (void);
c906108c
SS
2468
2469static int clear_symtab_users_queued;
2470static int clear_symtab_users_done;
2471
2472static void
fba45db2 2473clear_symtab_users_once (void)
c906108c
SS
2474{
2475 /* Enforce once-per-`do_cleanups'-semantics */
2476 if (clear_symtab_users_queued <= clear_symtab_users_done)
2477 return;
2478 clear_symtab_users_done = clear_symtab_users_queued;
2479
2480 clear_symtab_users ();
2481}
2482#endif
2483
2484/* Delete the specified psymtab, and any others that reference it. */
2485
2486static void
fba45db2 2487cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2488{
2489 struct partial_symtab *ps, *pprev = NULL;
2490 int i;
2491
2492 /* Find its previous psymtab in the chain */
c5aa993b
JM
2493 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2494 {
2495 if (ps == pst)
2496 break;
2497 pprev = ps;
2498 }
c906108c 2499
c5aa993b
JM
2500 if (ps)
2501 {
2502 /* Unhook it from the chain. */
2503 if (ps == pst->objfile->psymtabs)
2504 pst->objfile->psymtabs = ps->next;
2505 else
2506 pprev->next = ps->next;
2507
2508 /* FIXME, we can't conveniently deallocate the entries in the
2509 partial_symbol lists (global_psymbols/static_psymbols) that
2510 this psymtab points to. These just take up space until all
2511 the psymtabs are reclaimed. Ditto the dependencies list and
2512 filename, which are all in the psymbol_obstack. */
2513
2514 /* We need to cashier any psymtab that has this one as a dependency... */
2515 again:
2516 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2517 {
2518 for (i = 0; i < ps->number_of_dependencies; i++)
2519 {
2520 if (ps->dependencies[i] == pst)
2521 {
2522 cashier_psymtab (ps);
2523 goto again; /* Must restart, chain has been munged. */
2524 }
2525 }
c906108c 2526 }
c906108c 2527 }
c906108c
SS
2528}
2529
2530/* If a symtab or psymtab for filename NAME is found, free it along
2531 with any dependent breakpoints, displays, etc.
2532 Used when loading new versions of object modules with the "add-file"
2533 command. This is only called on the top-level symtab or psymtab's name;
2534 it is not called for subsidiary files such as .h files.
2535
2536 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2537 FIXME. The return value appears to never be used.
c906108c
SS
2538
2539 FIXME. I think this is not the best way to do this. We should
2540 work on being gentler to the environment while still cleaning up
2541 all stray pointers into the freed symtab. */
2542
2543int
fba45db2 2544free_named_symtabs (char *name)
c906108c
SS
2545{
2546#if 0
2547 /* FIXME: With the new method of each objfile having it's own
2548 psymtab list, this function needs serious rethinking. In particular,
2549 why was it ever necessary to toss psymtabs with specific compilation
2550 unit filenames, as opposed to all psymtabs from a particular symbol
2551 file? -- fnf
2552 Well, the answer is that some systems permit reloading of particular
2553 compilation units. We want to blow away any old info about these
2554 compilation units, regardless of which objfiles they arrived in. --gnu. */
2555
2556 register struct symtab *s;
2557 register struct symtab *prev;
2558 register struct partial_symtab *ps;
2559 struct blockvector *bv;
2560 int blewit = 0;
2561
2562 /* We only wack things if the symbol-reload switch is set. */
2563 if (!symbol_reloading)
2564 return 0;
2565
2566 /* Some symbol formats have trouble providing file names... */
2567 if (name == 0 || *name == '\0')
2568 return 0;
2569
2570 /* Look for a psymtab with the specified name. */
2571
2572again2:
c5aa993b
JM
2573 for (ps = partial_symtab_list; ps; ps = ps->next)
2574 {
2575 if (STREQ (name, ps->filename))
2576 {
2577 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2578 goto again2; /* Must restart, chain has been munged */
2579 }
c906108c 2580 }
c906108c
SS
2581
2582 /* Look for a symtab with the specified name. */
2583
2584 for (s = symtab_list; s; s = s->next)
2585 {
2586 if (STREQ (name, s->filename))
2587 break;
2588 prev = s;
2589 }
2590
2591 if (s)
2592 {
2593 if (s == symtab_list)
2594 symtab_list = s->next;
2595 else
2596 prev->next = s->next;
2597
2598 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2599 or not they depend on the symtab being freed. This should be
2600 changed so that only those data structures affected are deleted. */
c906108c
SS
2601
2602 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2603 This test is necessary due to a bug in "dbxread.c" that
2604 causes empty symtabs to be created for N_SO symbols that
2605 contain the pathname of the object file. (This problem
2606 has been fixed in GDB 3.9x). */
c906108c
SS
2607
2608 bv = BLOCKVECTOR (s);
2609 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2610 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2611 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2612 {
b9caf505
AC
2613 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2614 name);
c906108c
SS
2615 clear_symtab_users_queued++;
2616 make_cleanup (clear_symtab_users_once, 0);
2617 blewit = 1;
c5aa993b
JM
2618 }
2619 else
2620 {
b9caf505
AC
2621 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2622 name);
c906108c
SS
2623 }
2624
2625 free_symtab (s);
2626 }
2627 else
2628 {
2629 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2630 even though no symtab was found, since the file might have
2631 been compiled without debugging, and hence not be associated
2632 with a symtab. In order to handle this correctly, we would need
2633 to keep a list of text address ranges for undebuggable files.
2634 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2635 ;
2636 }
2637
2638 /* FIXME, what about the minimal symbol table? */
2639 return blewit;
2640#else
2641 return (0);
2642#endif
2643}
2644\f
2645/* Allocate and partially fill a partial symtab. It will be
2646 completely filled at the end of the symbol list.
2647
d4f3574e 2648 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2649
2650struct partial_symtab *
fba45db2
KB
2651start_psymtab_common (struct objfile *objfile,
2652 struct section_offsets *section_offsets, char *filename,
2653 CORE_ADDR textlow, struct partial_symbol **global_syms,
2654 struct partial_symbol **static_syms)
c906108c
SS
2655{
2656 struct partial_symtab *psymtab;
2657
2658 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2659 psymtab->section_offsets = section_offsets;
2660 psymtab->textlow = textlow;
2661 psymtab->texthigh = psymtab->textlow; /* default */
2662 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2663 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2664 return (psymtab);
2665}
2666\f
2667/* Add a symbol with a long value to a psymtab.
2668 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2669
2670void
fba45db2
KB
2671add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2672 enum address_class class,
2673 struct psymbol_allocation_list *list, long val, /* Value as a long */
2674 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2675 enum language language, struct objfile *objfile)
c906108c
SS
2676{
2677 register struct partial_symbol *psym;
2678 char *buf = alloca (namelength + 1);
2679 /* psymbol is static so that there will be no uninitialized gaps in the
2680 structure which might contain random data, causing cache misses in
2681 bcache. */
2682 static struct partial_symbol psymbol;
2683
2684 /* Create local copy of the partial symbol */
2685 memcpy (buf, name, namelength);
2686 buf[namelength] = '\0';
af5f3db6 2687 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
c906108c
SS
2688 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2689 if (val != 0)
2690 {
2691 SYMBOL_VALUE (&psymbol) = val;
2692 }
2693 else
2694 {
2695 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2696 }
2697 SYMBOL_SECTION (&psymbol) = 0;
2698 SYMBOL_LANGUAGE (&psymbol) = language;
2699 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2700 PSYMBOL_CLASS (&psymbol) = class;
2701 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2702
2703 /* Stash the partial symbol away in the cache */
af5f3db6 2704 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
c906108c
SS
2705
2706 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2707 if (list->next >= list->list + list->size)
2708 {
2709 extend_psymbol_list (list, objfile);
2710 }
2711 *list->next++ = psym;
2712 OBJSTAT (objfile, n_psyms++);
2713}
2714
2715/* Add a symbol with a long value to a psymtab. This differs from
2716 * add_psymbol_to_list above in taking both a mangled and a demangled
2717 * name. */
2718
2719void
fba45db2
KB
2720add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2721 int dem_namelength, namespace_enum namespace,
2722 enum address_class class,
2723 struct psymbol_allocation_list *list, long val, /* Value as a long */
2724 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2725 enum language language,
2726 struct objfile *objfile)
c906108c
SS
2727{
2728 register struct partial_symbol *psym;
2729 char *buf = alloca (namelength + 1);
2730 /* psymbol is static so that there will be no uninitialized gaps in the
2731 structure which might contain random data, causing cache misses in
2732 bcache. */
2733 static struct partial_symbol psymbol;
2734
2735 /* Create local copy of the partial symbol */
2736
2737 memcpy (buf, name, namelength);
2738 buf[namelength] = '\0';
af5f3db6 2739 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
c906108c
SS
2740
2741 buf = alloca (dem_namelength + 1);
2742 memcpy (buf, dem_name, dem_namelength);
2743 buf[dem_namelength] = '\0';
c5aa993b 2744
c906108c
SS
2745 switch (language)
2746 {
c5aa993b
JM
2747 case language_c:
2748 case language_cplus:
2749 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
af5f3db6 2750 bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
c5aa993b 2751 break;
c906108c
SS
2752 /* FIXME What should be done for the default case? Ignoring for now. */
2753 }
2754
2755 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2756 if (val != 0)
2757 {
2758 SYMBOL_VALUE (&psymbol) = val;
2759 }
2760 else
2761 {
2762 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2763 }
2764 SYMBOL_SECTION (&psymbol) = 0;
2765 SYMBOL_LANGUAGE (&psymbol) = language;
2766 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2767 PSYMBOL_CLASS (&psymbol) = class;
2768 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2769
2770 /* Stash the partial symbol away in the cache */
af5f3db6 2771 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
c906108c
SS
2772
2773 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2774 if (list->next >= list->list + list->size)
2775 {
2776 extend_psymbol_list (list, objfile);
2777 }
2778 *list->next++ = psym;
2779 OBJSTAT (objfile, n_psyms++);
2780}
2781
2782/* Initialize storage for partial symbols. */
2783
2784void
fba45db2 2785init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2786{
2787 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2788
2789 if (objfile->global_psymbols.list)
c906108c 2790 {
4efb68b1 2791 xmfree (objfile->md, objfile->global_psymbols.list);
c906108c 2792 }
c5aa993b 2793 if (objfile->static_psymbols.list)
c906108c 2794 {
4efb68b1 2795 xmfree (objfile->md, objfile->static_psymbols.list);
c906108c 2796 }
c5aa993b 2797
c906108c
SS
2798 /* Current best guess is that approximately a twentieth
2799 of the total symbols (in a debugging file) are global or static
2800 oriented symbols */
c906108c 2801
c5aa993b
JM
2802 objfile->global_psymbols.size = total_symbols / 10;
2803 objfile->static_psymbols.size = total_symbols / 10;
2804
2805 if (objfile->global_psymbols.size > 0)
c906108c 2806 {
c5aa993b
JM
2807 objfile->global_psymbols.next =
2808 objfile->global_psymbols.list = (struct partial_symbol **)
2809 xmmalloc (objfile->md, (objfile->global_psymbols.size
2810 * sizeof (struct partial_symbol *)));
c906108c 2811 }
c5aa993b 2812 if (objfile->static_psymbols.size > 0)
c906108c 2813 {
c5aa993b
JM
2814 objfile->static_psymbols.next =
2815 objfile->static_psymbols.list = (struct partial_symbol **)
2816 xmmalloc (objfile->md, (objfile->static_psymbols.size
2817 * sizeof (struct partial_symbol *)));
c906108c
SS
2818 }
2819}
2820
2821/* OVERLAYS:
2822 The following code implements an abstraction for debugging overlay sections.
2823
2824 The target model is as follows:
2825 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2826 same VMA, each with its own unique LMA (or load address).
c906108c 2827 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2828 sections, one by one, from the load address into the VMA address.
c906108c 2829 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2830 sections should be considered to be mapped from the VMA to the LMA.
2831 This information is used for symbol lookup, and memory read/write.
2832 For instance, if a section has been mapped then its contents
2833 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2834
2835 Two levels of debugger support for overlays are available. One is
2836 "manual", in which the debugger relies on the user to tell it which
2837 overlays are currently mapped. This level of support is
2838 implemented entirely in the core debugger, and the information about
2839 whether a section is mapped is kept in the objfile->obj_section table.
2840
2841 The second level of support is "automatic", and is only available if
2842 the target-specific code provides functionality to read the target's
2843 overlay mapping table, and translate its contents for the debugger
2844 (by updating the mapped state information in the obj_section tables).
2845
2846 The interface is as follows:
c5aa993b
JM
2847 User commands:
2848 overlay map <name> -- tell gdb to consider this section mapped
2849 overlay unmap <name> -- tell gdb to consider this section unmapped
2850 overlay list -- list the sections that GDB thinks are mapped
2851 overlay read-target -- get the target's state of what's mapped
2852 overlay off/manual/auto -- set overlay debugging state
2853 Functional interface:
2854 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2855 section, return that section.
2856 find_pc_overlay(pc): find any overlay section that contains
2857 the pc, either in its VMA or its LMA
2858 overlay_is_mapped(sect): true if overlay is marked as mapped
2859 section_is_overlay(sect): true if section's VMA != LMA
2860 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2861 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2862 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2863 overlay_mapped_address(...): map an address from section's LMA to VMA
2864 overlay_unmapped_address(...): map an address from section's VMA to LMA
2865 symbol_overlayed_address(...): Return a "current" address for symbol:
2866 either in VMA or LMA depending on whether
2867 the symbol's section is currently mapped
c906108c
SS
2868 */
2869
2870/* Overlay debugging state: */
2871
d874f1e2 2872enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2873int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2874
2875/* Target vector for refreshing overlay mapped state */
a14ed312 2876static void simple_overlay_update (struct obj_section *);
507f3c78 2877void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2878
2879/* Function: section_is_overlay (SECTION)
2880 Returns true if SECTION has VMA not equal to LMA, ie.
2881 SECTION is loaded at an address different from where it will "run". */
2882
2883int
fba45db2 2884section_is_overlay (asection *section)
c906108c 2885{
fbd35540
MS
2886 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2887
c906108c
SS
2888 if (overlay_debugging)
2889 if (section && section->lma != 0 &&
2890 section->vma != section->lma)
2891 return 1;
2892
2893 return 0;
2894}
2895
2896/* Function: overlay_invalidate_all (void)
2897 Invalidate the mapped state of all overlay sections (mark it as stale). */
2898
2899static void
fba45db2 2900overlay_invalidate_all (void)
c906108c 2901{
c5aa993b 2902 struct objfile *objfile;
c906108c
SS
2903 struct obj_section *sect;
2904
2905 ALL_OBJSECTIONS (objfile, sect)
2906 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 2907 sect->ovly_mapped = -1;
c906108c
SS
2908}
2909
2910/* Function: overlay_is_mapped (SECTION)
2911 Returns true if section is an overlay, and is currently mapped.
2912 Private: public access is thru function section_is_mapped.
2913
2914 Access to the ovly_mapped flag is restricted to this function, so
2915 that we can do automatic update. If the global flag
2916 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2917 overlay_invalidate_all. If the mapped state of the particular
2918 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2919
c5aa993b 2920static int
fba45db2 2921overlay_is_mapped (struct obj_section *osect)
c906108c
SS
2922{
2923 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2924 return 0;
2925
c5aa993b 2926 switch (overlay_debugging)
c906108c
SS
2927 {
2928 default:
d874f1e2 2929 case ovly_off:
c5aa993b 2930 return 0; /* overlay debugging off */
d874f1e2 2931 case ovly_auto: /* overlay debugging automatic */
c906108c 2932 /* Unles there is a target_overlay_update function,
c5aa993b 2933 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
2934 if (target_overlay_update)
2935 {
2936 if (overlay_cache_invalid)
2937 {
2938 overlay_invalidate_all ();
2939 overlay_cache_invalid = 0;
2940 }
2941 if (osect->ovly_mapped == -1)
2942 (*target_overlay_update) (osect);
2943 }
2944 /* fall thru to manual case */
d874f1e2 2945 case ovly_on: /* overlay debugging manual */
c906108c
SS
2946 return osect->ovly_mapped == 1;
2947 }
2948}
2949
2950/* Function: section_is_mapped
2951 Returns true if section is an overlay, and is currently mapped. */
2952
2953int
fba45db2 2954section_is_mapped (asection *section)
c906108c 2955{
c5aa993b 2956 struct objfile *objfile;
c906108c
SS
2957 struct obj_section *osect;
2958
2959 if (overlay_debugging)
2960 if (section && section_is_overlay (section))
2961 ALL_OBJSECTIONS (objfile, osect)
2962 if (osect->the_bfd_section == section)
c5aa993b 2963 return overlay_is_mapped (osect);
c906108c
SS
2964
2965 return 0;
2966}
2967
2968/* Function: pc_in_unmapped_range
2969 If PC falls into the lma range of SECTION, return true, else false. */
2970
2971CORE_ADDR
fba45db2 2972pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 2973{
fbd35540
MS
2974 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2975
c906108c
SS
2976 int size;
2977
2978 if (overlay_debugging)
2979 if (section && section_is_overlay (section))
2980 {
2981 size = bfd_get_section_size_before_reloc (section);
2982 if (section->lma <= pc && pc < section->lma + size)
2983 return 1;
2984 }
2985 return 0;
2986}
2987
2988/* Function: pc_in_mapped_range
2989 If PC falls into the vma range of SECTION, return true, else false. */
2990
2991CORE_ADDR
fba45db2 2992pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 2993{
fbd35540
MS
2994 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2995
c906108c
SS
2996 int size;
2997
2998 if (overlay_debugging)
2999 if (section && section_is_overlay (section))
3000 {
3001 size = bfd_get_section_size_before_reloc (section);
3002 if (section->vma <= pc && pc < section->vma + size)
3003 return 1;
3004 }
3005 return 0;
3006}
3007
9ec8e6a0
JB
3008
3009/* Return true if the mapped ranges of sections A and B overlap, false
3010 otherwise. */
3011int
3012sections_overlap (asection *a, asection *b)
3013{
fbd35540
MS
3014 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3015
9ec8e6a0
JB
3016 CORE_ADDR a_start = a->vma;
3017 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
3018 CORE_ADDR b_start = b->vma;
3019 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
3020
3021 return (a_start < b_end && b_start < a_end);
3022}
3023
c906108c
SS
3024/* Function: overlay_unmapped_address (PC, SECTION)
3025 Returns the address corresponding to PC in the unmapped (load) range.
3026 May be the same as PC. */
3027
3028CORE_ADDR
fba45db2 3029overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3030{
fbd35540
MS
3031 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3032
c906108c
SS
3033 if (overlay_debugging)
3034 if (section && section_is_overlay (section) &&
3035 pc_in_mapped_range (pc, section))
3036 return pc + section->lma - section->vma;
3037
3038 return pc;
3039}
3040
3041/* Function: overlay_mapped_address (PC, SECTION)
3042 Returns the address corresponding to PC in the mapped (runtime) range.
3043 May be the same as PC. */
3044
3045CORE_ADDR
fba45db2 3046overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3047{
fbd35540
MS
3048 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3049
c906108c
SS
3050 if (overlay_debugging)
3051 if (section && section_is_overlay (section) &&
3052 pc_in_unmapped_range (pc, section))
3053 return pc + section->vma - section->lma;
3054
3055 return pc;
3056}
3057
3058
3059/* Function: symbol_overlayed_address
3060 Return one of two addresses (relative to the VMA or to the LMA),
3061 depending on whether the section is mapped or not. */
3062
c5aa993b 3063CORE_ADDR
fba45db2 3064symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3065{
3066 if (overlay_debugging)
3067 {
3068 /* If the symbol has no section, just return its regular address. */
3069 if (section == 0)
3070 return address;
3071 /* If the symbol's section is not an overlay, just return its address */
3072 if (!section_is_overlay (section))
3073 return address;
3074 /* If the symbol's section is mapped, just return its address */
3075 if (section_is_mapped (section))
3076 return address;
3077 /*
3078 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3079 * then return its LOADED address rather than its vma address!!
3080 */
3081 return overlay_unmapped_address (address, section);
3082 }
3083 return address;
3084}
3085
3086/* Function: find_pc_overlay (PC)
3087 Return the best-match overlay section for PC:
3088 If PC matches a mapped overlay section's VMA, return that section.
3089 Else if PC matches an unmapped section's VMA, return that section.
3090 Else if PC matches an unmapped section's LMA, return that section. */
3091
3092asection *
fba45db2 3093find_pc_overlay (CORE_ADDR pc)
c906108c 3094{
c5aa993b 3095 struct objfile *objfile;
c906108c
SS
3096 struct obj_section *osect, *best_match = NULL;
3097
3098 if (overlay_debugging)
3099 ALL_OBJSECTIONS (objfile, osect)
3100 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3101 {
3102 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3103 {
3104 if (overlay_is_mapped (osect))
3105 return osect->the_bfd_section;
3106 else
3107 best_match = osect;
3108 }
3109 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3110 best_match = osect;
3111 }
c906108c
SS
3112 return best_match ? best_match->the_bfd_section : NULL;
3113}
3114
3115/* Function: find_pc_mapped_section (PC)
3116 If PC falls into the VMA address range of an overlay section that is
3117 currently marked as MAPPED, return that section. Else return NULL. */
3118
3119asection *
fba45db2 3120find_pc_mapped_section (CORE_ADDR pc)
c906108c 3121{
c5aa993b 3122 struct objfile *objfile;
c906108c
SS
3123 struct obj_section *osect;
3124
3125 if (overlay_debugging)
3126 ALL_OBJSECTIONS (objfile, osect)
3127 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3128 overlay_is_mapped (osect))
c5aa993b 3129 return osect->the_bfd_section;
c906108c
SS
3130
3131 return NULL;
3132}
3133
3134/* Function: list_overlays_command
3135 Print a list of mapped sections and their PC ranges */
3136
3137void
fba45db2 3138list_overlays_command (char *args, int from_tty)
c906108c 3139{
c5aa993b
JM
3140 int nmapped = 0;
3141 struct objfile *objfile;
c906108c
SS
3142 struct obj_section *osect;
3143
3144 if (overlay_debugging)
3145 ALL_OBJSECTIONS (objfile, osect)
3146 if (overlay_is_mapped (osect))
c5aa993b
JM
3147 {
3148 const char *name;
3149 bfd_vma lma, vma;
3150 int size;
3151
3152 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3153 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3154 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3155 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3156
3157 printf_filtered ("Section %s, loaded at ", name);
3158 print_address_numeric (lma, 1, gdb_stdout);
3159 puts_filtered (" - ");
3160 print_address_numeric (lma + size, 1, gdb_stdout);
3161 printf_filtered (", mapped at ");
3162 print_address_numeric (vma, 1, gdb_stdout);
3163 puts_filtered (" - ");
3164 print_address_numeric (vma + size, 1, gdb_stdout);
3165 puts_filtered ("\n");
3166
3167 nmapped++;
3168 }
c906108c
SS
3169 if (nmapped == 0)
3170 printf_filtered ("No sections are mapped.\n");
3171}
3172
3173/* Function: map_overlay_command
3174 Mark the named section as mapped (ie. residing at its VMA address). */
3175
3176void
fba45db2 3177map_overlay_command (char *args, int from_tty)
c906108c 3178{
c5aa993b
JM
3179 struct objfile *objfile, *objfile2;
3180 struct obj_section *sec, *sec2;
3181 asection *bfdsec;
c906108c
SS
3182
3183 if (!overlay_debugging)
515ad16c
EZ
3184 error ("\
3185Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3186the 'overlay manual' command.");
c906108c
SS
3187
3188 if (args == 0 || *args == 0)
3189 error ("Argument required: name of an overlay section");
3190
3191 /* First, find a section matching the user supplied argument */
3192 ALL_OBJSECTIONS (objfile, sec)
3193 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3194 {
3195 /* Now, check to see if the section is an overlay. */
3196 bfdsec = sec->the_bfd_section;
3197 if (!section_is_overlay (bfdsec))
3198 continue; /* not an overlay section */
3199
3200 /* Mark the overlay as "mapped" */
3201 sec->ovly_mapped = 1;
3202
3203 /* Next, make a pass and unmap any sections that are
3204 overlapped by this new section: */
3205 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3206 if (sec2->ovly_mapped
3207 && sec != sec2
3208 && sec->the_bfd_section != sec2->the_bfd_section
3209 && sections_overlap (sec->the_bfd_section,
3210 sec2->the_bfd_section))
c5aa993b
JM
3211 {
3212 if (info_verbose)
3213 printf_filtered ("Note: section %s unmapped by overlap\n",
3214 bfd_section_name (objfile->obfd,
3215 sec2->the_bfd_section));
3216 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3217 }
3218 return;
3219 }
c906108c
SS
3220 error ("No overlay section called %s", args);
3221}
3222
3223/* Function: unmap_overlay_command
3224 Mark the overlay section as unmapped
3225 (ie. resident in its LMA address range, rather than the VMA range). */
3226
3227void
fba45db2 3228unmap_overlay_command (char *args, int from_tty)
c906108c 3229{
c5aa993b 3230 struct objfile *objfile;
c906108c
SS
3231 struct obj_section *sec;
3232
3233 if (!overlay_debugging)
515ad16c
EZ
3234 error ("\
3235Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3236the 'overlay manual' command.");
c906108c
SS
3237
3238 if (args == 0 || *args == 0)
3239 error ("Argument required: name of an overlay section");
3240
3241 /* First, find a section matching the user supplied argument */
3242 ALL_OBJSECTIONS (objfile, sec)
3243 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3244 {
3245 if (!sec->ovly_mapped)
3246 error ("Section %s is not mapped", args);
3247 sec->ovly_mapped = 0;
3248 return;
3249 }
c906108c
SS
3250 error ("No overlay section called %s", args);
3251}
3252
3253/* Function: overlay_auto_command
3254 A utility command to turn on overlay debugging.
3255 Possibly this should be done via a set/show command. */
3256
3257static void
fba45db2 3258overlay_auto_command (char *args, int from_tty)
c906108c 3259{
d874f1e2 3260 overlay_debugging = ovly_auto;
1900040c 3261 enable_overlay_breakpoints ();
c906108c
SS
3262 if (info_verbose)
3263 printf_filtered ("Automatic overlay debugging enabled.");
3264}
3265
3266/* Function: overlay_manual_command
3267 A utility command to turn on overlay debugging.
3268 Possibly this should be done via a set/show command. */
3269
3270static void
fba45db2 3271overlay_manual_command (char *args, int from_tty)
c906108c 3272{
d874f1e2 3273 overlay_debugging = ovly_on;
1900040c 3274 disable_overlay_breakpoints ();
c906108c
SS
3275 if (info_verbose)
3276 printf_filtered ("Overlay debugging enabled.");
3277}
3278
3279/* Function: overlay_off_command
3280 A utility command to turn on overlay debugging.
3281 Possibly this should be done via a set/show command. */
3282
3283static void
fba45db2 3284overlay_off_command (char *args, int from_tty)
c906108c 3285{
d874f1e2 3286 overlay_debugging = ovly_off;
1900040c 3287 disable_overlay_breakpoints ();
c906108c
SS
3288 if (info_verbose)
3289 printf_filtered ("Overlay debugging disabled.");
3290}
3291
3292static void
fba45db2 3293overlay_load_command (char *args, int from_tty)
c906108c
SS
3294{
3295 if (target_overlay_update)
3296 (*target_overlay_update) (NULL);
3297 else
3298 error ("This target does not know how to read its overlay state.");
3299}
3300
3301/* Function: overlay_command
3302 A place-holder for a mis-typed command */
3303
3304/* Command list chain containing all defined "overlay" subcommands. */
3305struct cmd_list_element *overlaylist;
3306
3307static void
fba45db2 3308overlay_command (char *args, int from_tty)
c906108c 3309{
c5aa993b 3310 printf_unfiltered
c906108c
SS
3311 ("\"overlay\" must be followed by the name of an overlay command.\n");
3312 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3313}
3314
3315
3316/* Target Overlays for the "Simplest" overlay manager:
3317
3318 This is GDB's default target overlay layer. It works with the
3319 minimal overlay manager supplied as an example by Cygnus. The
3320 entry point is via a function pointer "target_overlay_update",
3321 so targets that use a different runtime overlay manager can
3322 substitute their own overlay_update function and take over the
3323 function pointer.
3324
3325 The overlay_update function pokes around in the target's data structures
3326 to see what overlays are mapped, and updates GDB's overlay mapping with
3327 this information.
3328
3329 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3330 unsigned _novlys; /# number of overlay sections #/
3331 unsigned _ovly_table[_novlys][4] = {
3332 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3333 {..., ..., ..., ...},
3334 }
3335 unsigned _novly_regions; /# number of overlay regions #/
3336 unsigned _ovly_region_table[_novly_regions][3] = {
3337 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3338 {..., ..., ...},
3339 }
c906108c
SS
3340 These functions will attempt to update GDB's mappedness state in the
3341 symbol section table, based on the target's mappedness state.
3342
3343 To do this, we keep a cached copy of the target's _ovly_table, and
3344 attempt to detect when the cached copy is invalidated. The main
3345 entry point is "simple_overlay_update(SECT), which looks up SECT in
3346 the cached table and re-reads only the entry for that section from
3347 the target (whenever possible).
3348 */
3349
3350/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3351static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3352#if 0
c5aa993b 3353static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3354#endif
c5aa993b 3355static unsigned cache_novlys = 0;
c906108c 3356#if 0
c5aa993b 3357static unsigned cache_novly_regions = 0;
c906108c
SS
3358#endif
3359static CORE_ADDR cache_ovly_table_base = 0;
3360#if 0
3361static CORE_ADDR cache_ovly_region_table_base = 0;
3362#endif
c5aa993b
JM
3363enum ovly_index
3364 {
3365 VMA, SIZE, LMA, MAPPED
3366 };
c906108c
SS
3367#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3368
3369/* Throw away the cached copy of _ovly_table */
3370static void
fba45db2 3371simple_free_overlay_table (void)
c906108c
SS
3372{
3373 if (cache_ovly_table)
b8c9b27d 3374 xfree (cache_ovly_table);
c5aa993b 3375 cache_novlys = 0;
c906108c
SS
3376 cache_ovly_table = NULL;
3377 cache_ovly_table_base = 0;
3378}
3379
3380#if 0
3381/* Throw away the cached copy of _ovly_region_table */
3382static void
fba45db2 3383simple_free_overlay_region_table (void)
c906108c
SS
3384{
3385 if (cache_ovly_region_table)
b8c9b27d 3386 xfree (cache_ovly_region_table);
c5aa993b 3387 cache_novly_regions = 0;
c906108c
SS
3388 cache_ovly_region_table = NULL;
3389 cache_ovly_region_table_base = 0;
3390}
3391#endif
3392
3393/* Read an array of ints from the target into a local buffer.
3394 Convert to host order. int LEN is number of ints */
3395static void
fba45db2 3396read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3397{
34c0bd93 3398 /* FIXME (alloca): Not safe if array is very large. */
c906108c 3399 char *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3400 int i;
c906108c
SS
3401
3402 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3403 for (i = 0; i < len; i++)
c5aa993b 3404 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3405 TARGET_LONG_BYTES);
3406}
3407
3408/* Find and grab a copy of the target _ovly_table
3409 (and _novlys, which is needed for the table's size) */
c5aa993b 3410static int
fba45db2 3411simple_read_overlay_table (void)
c906108c 3412{
0d43edd1 3413 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3414
3415 simple_free_overlay_table ();
9b27852e 3416 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3417 if (! novlys_msym)
c906108c 3418 {
0d43edd1
JB
3419 error ("Error reading inferior's overlay table: "
3420 "couldn't find `_novlys' variable\n"
3421 "in inferior. Use `overlay manual' mode.");
3422 return 0;
c906108c 3423 }
0d43edd1 3424
9b27852e 3425 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3426 if (! ovly_table_msym)
3427 {
3428 error ("Error reading inferior's overlay table: couldn't find "
3429 "`_ovly_table' array\n"
3430 "in inferior. Use `overlay manual' mode.");
3431 return 0;
3432 }
3433
3434 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3435 cache_ovly_table
3436 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3437 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3438 read_target_long_array (cache_ovly_table_base,
3439 (int *) cache_ovly_table,
3440 cache_novlys * 4);
3441
c5aa993b 3442 return 1; /* SUCCESS */
c906108c
SS
3443}
3444
3445#if 0
3446/* Find and grab a copy of the target _ovly_region_table
3447 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3448static int
fba45db2 3449simple_read_overlay_region_table (void)
c906108c
SS
3450{
3451 struct minimal_symbol *msym;
3452
3453 simple_free_overlay_region_table ();
9b27852e 3454 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3455 if (msym != NULL)
3456 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3457 else
3458 return 0; /* failure */
c906108c
SS
3459 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3460 if (cache_ovly_region_table != NULL)
3461 {
9b27852e 3462 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3463 if (msym != NULL)
3464 {
3465 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
3466 read_target_long_array (cache_ovly_region_table_base,
3467 (int *) cache_ovly_region_table,
c906108c
SS
3468 cache_novly_regions * 3);
3469 }
c5aa993b
JM
3470 else
3471 return 0; /* failure */
c906108c 3472 }
c5aa993b
JM
3473 else
3474 return 0; /* failure */
3475 return 1; /* SUCCESS */
c906108c
SS
3476}
3477#endif
3478
3479/* Function: simple_overlay_update_1
3480 A helper function for simple_overlay_update. Assuming a cached copy
3481 of _ovly_table exists, look through it to find an entry whose vma,
3482 lma and size match those of OSECT. Re-read the entry and make sure
3483 it still matches OSECT (else the table may no longer be valid).
3484 Set OSECT's mapped state to match the entry. Return: 1 for
3485 success, 0 for failure. */
3486
3487static int
fba45db2 3488simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3489{
3490 int i, size;
fbd35540
MS
3491 bfd *obfd = osect->objfile->obfd;
3492 asection *bsect = osect->the_bfd_section;
c906108c
SS
3493
3494 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3495 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3496 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3497 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3498 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3499 {
3500 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3501 (int *) cache_ovly_table[i], 4);
fbd35540
MS
3502 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3503 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3504 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3505 {
3506 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3507 return 1;
3508 }
fbd35540 3509 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3510 return 0;
3511 }
3512 return 0;
3513}
3514
3515/* Function: simple_overlay_update
3516 If OSECT is NULL, then update all sections' mapped state
3517 (after re-reading the entire target _ovly_table).
3518 If OSECT is non-NULL, then try to find a matching entry in the
3519 cached ovly_table and update only OSECT's mapped state.
3520 If a cached entry can't be found or the cache isn't valid, then
3521 re-read the entire cache, and go ahead and update all sections. */
3522
3523static void
fba45db2 3524simple_overlay_update (struct obj_section *osect)
c906108c 3525{
c5aa993b 3526 struct objfile *objfile;
c906108c
SS
3527
3528 /* Were we given an osect to look up? NULL means do all of them. */
3529 if (osect)
3530 /* Have we got a cached copy of the target's overlay table? */
3531 if (cache_ovly_table != NULL)
3532 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3533 if (cache_ovly_table_base ==
9b27852e 3534 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3535 /* Then go ahead and try to look up this single section in the cache */
3536 if (simple_overlay_update_1 (osect))
3537 /* Found it! We're done. */
3538 return;
3539
3540 /* Cached table no good: need to read the entire table anew.
3541 Or else we want all the sections, in which case it's actually
3542 more efficient to read the whole table in one block anyway. */
3543
0d43edd1
JB
3544 if (! simple_read_overlay_table ())
3545 return;
3546
c906108c
SS
3547 /* Now may as well update all sections, even if only one was requested. */
3548 ALL_OBJSECTIONS (objfile, osect)
3549 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3550 {
3551 int i, size;
fbd35540
MS
3552 bfd *obfd = osect->objfile->obfd;
3553 asection *bsect = osect->the_bfd_section;
c5aa993b
JM
3554
3555 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3556 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3557 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3558 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3559 /* && cache_ovly_table[i][SIZE] == size */ )
3560 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3561 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3562 break; /* finished with inner for loop: break out */
3563 }
3564 }
c906108c
SS
3565}
3566
086df311
DJ
3567/* Set the output sections and output offsets for section SECTP in
3568 ABFD. The relocation code in BFD will read these offsets, so we
3569 need to be sure they're initialized. We map each section to itself,
3570 with no offset; this means that SECTP->vma will be honored. */
3571
3572static void
3573symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3574{
3575 sectp->output_section = sectp;
3576 sectp->output_offset = 0;
3577}
3578
3579/* Relocate the contents of a debug section SECTP in ABFD. The
3580 contents are stored in BUF if it is non-NULL, or returned in a
3581 malloc'd buffer otherwise.
3582
3583 For some platforms and debug info formats, shared libraries contain
3584 relocations against the debug sections (particularly for DWARF-2;
3585 one affected platform is PowerPC GNU/Linux, although it depends on
3586 the version of the linker in use). Also, ELF object files naturally
3587 have unresolved relocations for their debug sections. We need to apply
3588 the relocations in order to get the locations of symbols correct. */
3589
3590bfd_byte *
3591symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3592{
3593 /* We're only interested in debugging sections with relocation
3594 information. */
3595 if ((sectp->flags & SEC_RELOC) == 0)
3596 return NULL;
3597 if ((sectp->flags & SEC_DEBUGGING) == 0)
3598 return NULL;
3599
3600 /* We will handle section offsets properly elsewhere, so relocate as if
3601 all sections begin at 0. */
3602 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3603
3604 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf);
3605}
c906108c
SS
3606
3607void
fba45db2 3608_initialize_symfile (void)
c906108c
SS
3609{
3610 struct cmd_list_element *c;
c5aa993b 3611
c906108c 3612 c = add_cmd ("symbol-file", class_files, symbol_file_command,
c5aa993b 3613 "Load symbol table from executable file FILE.\n\
c906108c
SS
3614The `file' command can also load symbol tables, as well as setting the file\n\
3615to execute.", &cmdlist);
5ba2abeb 3616 set_cmd_completer (c, filename_completer);
c906108c
SS
3617
3618 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
db162d44 3619 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
c906108c 3620Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2acceee2 3621ADDR is the starting address of the file's text.\n\
db162d44
EZ
3622The optional arguments are section-name section-address pairs and\n\
3623should be specified if the data and bss segments are not contiguous\n\
d4654627 3624with the text. SECT is a section name to be loaded at SECT_ADDR.",
c906108c 3625 &cmdlist);
5ba2abeb 3626 set_cmd_completer (c, filename_completer);
c906108c
SS
3627
3628 c = add_cmd ("add-shared-symbol-files", class_files,
3629 add_shared_symbol_files_command,
3630 "Load the symbols from shared objects in the dynamic linker's link map.",
c5aa993b 3631 &cmdlist);
c906108c
SS
3632 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3633 &cmdlist);
3634
3635 c = add_cmd ("load", class_files, load_command,
c5aa993b 3636 "Dynamically load FILE into the running program, and record its symbols\n\
c906108c 3637for access from GDB.", &cmdlist);
5ba2abeb 3638 set_cmd_completer (c, filename_completer);
c906108c
SS
3639
3640 add_show_from_set
3641 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
c5aa993b
JM
3642 (char *) &symbol_reloading,
3643 "Set dynamic symbol table reloading multiple times in one run.",
c906108c
SS
3644 &setlist),
3645 &showlist);
3646
c5aa993b
JM
3647 add_prefix_cmd ("overlay", class_support, overlay_command,
3648 "Commands for debugging overlays.", &overlaylist,
c906108c
SS
3649 "overlay ", 0, &cmdlist);
3650
3651 add_com_alias ("ovly", "overlay", class_alias, 1);
3652 add_com_alias ("ov", "overlay", class_alias, 1);
3653
c5aa993b 3654 add_cmd ("map-overlay", class_support, map_overlay_command,
c906108c
SS
3655 "Assert that an overlay section is mapped.", &overlaylist);
3656
c5aa993b 3657 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
c906108c
SS
3658 "Assert that an overlay section is unmapped.", &overlaylist);
3659
c5aa993b 3660 add_cmd ("list-overlays", class_support, list_overlays_command,
c906108c
SS
3661 "List mappings of overlay sections.", &overlaylist);
3662
c5aa993b 3663 add_cmd ("manual", class_support, overlay_manual_command,
c906108c 3664 "Enable overlay debugging.", &overlaylist);
c5aa993b 3665 add_cmd ("off", class_support, overlay_off_command,
c906108c 3666 "Disable overlay debugging.", &overlaylist);
c5aa993b 3667 add_cmd ("auto", class_support, overlay_auto_command,
c906108c 3668 "Enable automatic overlay debugging.", &overlaylist);
c5aa993b 3669 add_cmd ("load-target", class_support, overlay_load_command,
c906108c
SS
3670 "Read the overlay mapping state from the target.", &overlaylist);
3671
3672 /* Filename extension to source language lookup table: */
3673 init_filename_language_table ();
3674 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
c5aa993b 3675 (char *) &ext_args,
c906108c
SS
3676 "Set mapping between filename extension and source language.\n\
3677Usage: set extension-language .foo bar",
c5aa993b 3678 &setlist);
9f60d481 3679 set_cmd_cfunc (c, set_ext_lang_command);
c906108c 3680
c5aa993b 3681 add_info ("extensions", info_ext_lang_command,
c906108c 3682 "All filename extensions associated with a source language.");
917317f4
JM
3683
3684 add_show_from_set
3685 (add_set_cmd ("download-write-size", class_obscure,
3686 var_integer, (char *) &download_write_size,
3687 "Set the write size used when downloading a program.\n"
3688 "Only used when downloading a program onto a remote\n"
3689 "target. Specify zero, or a negative value, to disable\n"
3690 "blocked writes. The actual size of each transfer is also\n"
3691 "limited by the size of the target packet and the memory\n"
3692 "cache.\n",
3693 &setlist),
3694 &showlist);
5b5d99cf
JB
3695
3696 debug_file_directory = xstrdup (DEBUGDIR);
3697 c = (add_set_cmd
3698 ("debug-file-directory", class_support, var_string,
3699 (char *) &debug_file_directory,
3700 "Set the directory where separate debug symbols are searched for.\n"
3701 "Separate debug symbols are first searched for in the same\n"
3702 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3703 "' subdirectory,\n"
3704 "and lastly at the path of the directory of the binary with\n"
3705 "the global debug-file directory prepended\n",
3706 &setlist));
3707 add_show_from_set (c, &showlist);
3708 set_cmd_completer (c, filename_completer);
3709
c906108c 3710}