]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/symfile.c
2005-02-15 Andrew Cagney <cagney@gnu.org>
[thirdparty/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c
AC
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
cf5b2f1b 4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
8926118c 5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
c5aa993b 41#include "inferior.h" /* for write_pc */
5b5d99cf 42#include "filenames.h" /* for DOSish file names */
c906108c 43#include "gdb-stabs.h"
04ea0df1 44#include "gdb_obstack.h"
d75b5104 45#include "completer.h"
af5f3db6 46#include "bcache.h"
2de7ced7 47#include "hashtab.h"
dbda9972 48#include "readline/readline.h"
7e8580c1 49#include "gdb_assert.h"
fe898f56 50#include "block.h"
c906108c 51
c906108c
SS
52#include <sys/types.h>
53#include <fcntl.h>
54#include "gdb_string.h"
55#include "gdb_stat.h"
56#include <ctype.h>
57#include <time.h>
c906108c
SS
58
59#ifndef O_BINARY
60#define O_BINARY 0
61#endif
62
9a4105ab
AC
63int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
64void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
65 unsigned long section_sent,
66 unsigned long section_size,
67 unsigned long total_sent,
c2d11a7d 68 unsigned long total_size);
769d7dc4
AC
69void (*deprecated_pre_add_symbol_hook) (const char *);
70void (*deprecated_post_add_symbol_hook) (void);
9a4105ab 71void (*deprecated_target_new_objfile_hook) (struct objfile *);
c906108c 72
74b7792f
AC
73static void clear_symtab_users_cleanup (void *ignore);
74
c906108c 75/* Global variables owned by this file */
c5aa993b 76int readnow_symbol_files; /* Read full symbols immediately */
c906108c 77
c906108c
SS
78/* External variables and functions referenced. */
79
a14ed312 80extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
81
82/* Functions this file defines */
83
84#if 0
a14ed312
KB
85static int simple_read_overlay_region_table (void);
86static void simple_free_overlay_region_table (void);
c906108c
SS
87#endif
88
a14ed312 89static void set_initial_language (void);
c906108c 90
a14ed312 91static void load_command (char *, int);
c906108c 92
d7db6da9
FN
93static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
a14ed312 95static void add_symbol_file_command (char *, int);
c906108c 96
a14ed312 97static void add_shared_symbol_files_command (char *, int);
c906108c 98
5b5d99cf
JB
99static void reread_separate_symbols (struct objfile *objfile);
100
a14ed312 101static void cashier_psymtab (struct partial_symtab *);
c906108c 102
a14ed312 103bfd *symfile_bfd_open (char *);
c906108c 104
0e931cf0
JB
105int get_section_index (struct objfile *, char *);
106
a14ed312 107static void find_sym_fns (struct objfile *);
c906108c 108
a14ed312 109static void decrement_reading_symtab (void *);
c906108c 110
a14ed312 111static void overlay_invalidate_all (void);
c906108c 112
a14ed312 113static int overlay_is_mapped (struct obj_section *);
c906108c 114
a14ed312 115void list_overlays_command (char *, int);
c906108c 116
a14ed312 117void map_overlay_command (char *, int);
c906108c 118
a14ed312 119void unmap_overlay_command (char *, int);
c906108c 120
a14ed312 121static void overlay_auto_command (char *, int);
c906108c 122
a14ed312 123static void overlay_manual_command (char *, int);
c906108c 124
a14ed312 125static void overlay_off_command (char *, int);
c906108c 126
a14ed312 127static void overlay_load_command (char *, int);
c906108c 128
a14ed312 129static void overlay_command (char *, int);
c906108c 130
a14ed312 131static void simple_free_overlay_table (void);
c906108c 132
a14ed312 133static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 134
a14ed312 135static int simple_read_overlay_table (void);
c906108c 136
a14ed312 137static int simple_overlay_update_1 (struct obj_section *);
c906108c 138
a14ed312 139static void add_filename_language (char *ext, enum language lang);
392a587b 140
a14ed312 141static void set_ext_lang_command (char *args, int from_tty);
392a587b 142
a14ed312 143static void info_ext_lang_command (char *args, int from_tty);
392a587b 144
5b5d99cf
JB
145static char *find_separate_debug_file (struct objfile *objfile);
146
a14ed312 147static void init_filename_language_table (void);
392a587b 148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
165
b7209cb4
FF
166/* If non-zero, shared library symbols will be added automatically
167 when the inferior is created, new libraries are loaded, or when
168 attaching to the inferior. This is almost always what users will
169 want to have happen; but for very large programs, the startup time
170 will be excessive, and so if this is a problem, the user can clear
171 this flag and then add the shared library symbols as needed. Note
172 that there is a potential for confusion, since if the shared
c906108c 173 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 174 report all the functions that are actually present. */
c906108c
SS
175
176int auto_solib_add = 1;
b7209cb4
FF
177
178/* For systems that support it, a threshold size in megabytes. If
179 automatically adding a new library's symbol table to those already
180 known to the debugger would cause the total shared library symbol
181 size to exceed this threshhold, then the shlib's symbols are not
182 added. The threshold is ignored if the user explicitly asks for a
183 shlib to be added, such as when using the "sharedlibrary"
184 command. */
185
186int auto_solib_limit;
c906108c 187\f
c5aa993b 188
0fe19209
DC
189/* This compares two partial symbols by names, using strcmp_iw_ordered
190 for the comparison. */
c906108c
SS
191
192static int
0cd64fe2 193compare_psymbols (const void *s1p, const void *s2p)
c906108c 194{
0fe19209
DC
195 struct partial_symbol *const *s1 = s1p;
196 struct partial_symbol *const *s2 = s2p;
197
4725b721
PH
198 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
199 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
200}
201
202void
fba45db2 203sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
204{
205 /* Sort the global list; don't sort the static list */
206
c5aa993b
JM
207 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
208 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
209 compare_psymbols);
210}
211
c906108c
SS
212/* Make a null terminated copy of the string at PTR with SIZE characters in
213 the obstack pointed to by OBSTACKP . Returns the address of the copy.
214 Note that the string at PTR does not have to be null terminated, I.E. it
215 may be part of a larger string and we are only saving a substring. */
216
217char *
63ca651f 218obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 219{
52f0bd74 220 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
221 /* Open-coded memcpy--saves function call time. These strings are usually
222 short. FIXME: Is this really still true with a compiler that can
223 inline memcpy? */
224 {
aa1ee363
AC
225 const char *p1 = ptr;
226 char *p2 = p;
63ca651f 227 const char *end = ptr + size;
c906108c
SS
228 while (p1 != end)
229 *p2++ = *p1++;
230 }
231 p[size] = 0;
232 return p;
233}
234
235/* Concatenate strings S1, S2 and S3; return the new string. Space is found
236 in the obstack pointed to by OBSTACKP. */
237
238char *
fba45db2
KB
239obconcat (struct obstack *obstackp, const char *s1, const char *s2,
240 const char *s3)
c906108c 241{
52f0bd74
AC
242 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
243 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
244 strcpy (val, s1);
245 strcat (val, s2);
246 strcat (val, s3);
247 return val;
248}
249
250/* True if we are nested inside psymtab_to_symtab. */
251
252int currently_reading_symtab = 0;
253
254static void
fba45db2 255decrement_reading_symtab (void *dummy)
c906108c
SS
256{
257 currently_reading_symtab--;
258}
259
260/* Get the symbol table that corresponds to a partial_symtab.
261 This is fast after the first time you do it. In fact, there
262 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
263 case inline. */
264
265struct symtab *
aa1ee363 266psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
267{
268 /* If it's been looked up before, return it. */
269 if (pst->symtab)
270 return pst->symtab;
271
272 /* If it has not yet been read in, read it. */
273 if (!pst->readin)
c5aa993b 274 {
c906108c
SS
275 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
276 currently_reading_symtab++;
277 (*pst->read_symtab) (pst);
278 do_cleanups (back_to);
279 }
280
281 return pst->symtab;
282}
283
5417f6dc
RM
284/* Remember the lowest-addressed loadable section we've seen.
285 This function is called via bfd_map_over_sections.
c906108c
SS
286
287 In case of equal vmas, the section with the largest size becomes the
288 lowest-addressed loadable section.
289
290 If the vmas and sizes are equal, the last section is considered the
291 lowest-addressed loadable section. */
292
293void
4efb68b1 294find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 295{
c5aa993b 296 asection **lowest = (asection **) obj;
c906108c
SS
297
298 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
299 return;
300 if (!*lowest)
301 *lowest = sect; /* First loadable section */
302 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
303 *lowest = sect; /* A lower loadable section */
304 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
305 && (bfd_section_size (abfd, (*lowest))
306 <= bfd_section_size (abfd, sect)))
307 *lowest = sect;
308}
309
a39a16c4
MM
310/* Create a new section_addr_info, with room for NUM_SECTIONS. */
311
312struct section_addr_info *
313alloc_section_addr_info (size_t num_sections)
314{
315 struct section_addr_info *sap;
316 size_t size;
317
318 size = (sizeof (struct section_addr_info)
319 + sizeof (struct other_sections) * (num_sections - 1));
320 sap = (struct section_addr_info *) xmalloc (size);
321 memset (sap, 0, size);
322 sap->num_sections = num_sections;
323
324 return sap;
325}
62557bbc 326
7b90c3f9
JB
327
328/* Return a freshly allocated copy of ADDRS. The section names, if
329 any, are also freshly allocated copies of those in ADDRS. */
330struct section_addr_info *
331copy_section_addr_info (struct section_addr_info *addrs)
332{
333 struct section_addr_info *copy
334 = alloc_section_addr_info (addrs->num_sections);
335 int i;
336
337 copy->num_sections = addrs->num_sections;
338 for (i = 0; i < addrs->num_sections; i++)
339 {
340 copy->other[i].addr = addrs->other[i].addr;
341 if (addrs->other[i].name)
342 copy->other[i].name = xstrdup (addrs->other[i].name);
343 else
344 copy->other[i].name = NULL;
345 copy->other[i].sectindex = addrs->other[i].sectindex;
346 }
347
348 return copy;
349}
350
351
352
62557bbc
KB
353/* Build (allocate and populate) a section_addr_info struct from
354 an existing section table. */
355
356extern struct section_addr_info *
357build_section_addr_info_from_section_table (const struct section_table *start,
358 const struct section_table *end)
359{
360 struct section_addr_info *sap;
361 const struct section_table *stp;
362 int oidx;
363
a39a16c4 364 sap = alloc_section_addr_info (end - start);
62557bbc
KB
365
366 for (stp = start, oidx = 0; stp != end; stp++)
367 {
5417f6dc 368 if (bfd_get_section_flags (stp->bfd,
fbd35540 369 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 370 && oidx < end - start)
62557bbc
KB
371 {
372 sap->other[oidx].addr = stp->addr;
5417f6dc 373 sap->other[oidx].name
fbd35540 374 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
375 sap->other[oidx].sectindex = stp->the_bfd_section->index;
376 oidx++;
377 }
378 }
379
380 return sap;
381}
382
383
384/* Free all memory allocated by build_section_addr_info_from_section_table. */
385
386extern void
387free_section_addr_info (struct section_addr_info *sap)
388{
389 int idx;
390
a39a16c4 391 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 392 if (sap->other[idx].name)
b8c9b27d
KB
393 xfree (sap->other[idx].name);
394 xfree (sap);
62557bbc
KB
395}
396
397
e8289572
JB
398/* Initialize OBJFILE's sect_index_* members. */
399static void
400init_objfile_sect_indices (struct objfile *objfile)
c906108c 401{
e8289572 402 asection *sect;
c906108c 403 int i;
5417f6dc 404
b8fbeb18 405 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 406 if (sect)
b8fbeb18
EZ
407 objfile->sect_index_text = sect->index;
408
409 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 410 if (sect)
b8fbeb18
EZ
411 objfile->sect_index_data = sect->index;
412
413 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 414 if (sect)
b8fbeb18
EZ
415 objfile->sect_index_bss = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 418 if (sect)
b8fbeb18
EZ
419 objfile->sect_index_rodata = sect->index;
420
bbcd32ad
FF
421 /* This is where things get really weird... We MUST have valid
422 indices for the various sect_index_* members or gdb will abort.
423 So if for example, there is no ".text" section, we have to
424 accomodate that. Except when explicitly adding symbol files at
425 some address, section_offsets contains nothing but zeros, so it
426 doesn't matter which slot in section_offsets the individual
427 sect_index_* members index into. So if they are all zero, it is
428 safe to just point all the currently uninitialized indices to the
429 first slot. */
430
431 for (i = 0; i < objfile->num_sections; i++)
432 {
433 if (ANOFFSET (objfile->section_offsets, i) != 0)
434 {
435 break;
436 }
437 }
438 if (i == objfile->num_sections)
439 {
440 if (objfile->sect_index_text == -1)
441 objfile->sect_index_text = 0;
442 if (objfile->sect_index_data == -1)
443 objfile->sect_index_data = 0;
444 if (objfile->sect_index_bss == -1)
445 objfile->sect_index_bss = 0;
446 if (objfile->sect_index_rodata == -1)
447 objfile->sect_index_rodata = 0;
448 }
b8fbeb18 449}
c906108c 450
e8289572
JB
451
452/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 453 of how to represent it for fast symbol reading. This is the default
e8289572
JB
454 version of the sym_fns.sym_offsets function for symbol readers that
455 don't need to do anything special. It allocates a section_offsets table
456 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
457
458void
459default_symfile_offsets (struct objfile *objfile,
460 struct section_addr_info *addrs)
461{
462 int i;
463
a39a16c4 464 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 465 objfile->section_offsets = (struct section_offsets *)
5417f6dc 466 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 467 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 468 memset (objfile->section_offsets, 0,
a39a16c4 469 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
470
471 /* Now calculate offsets for section that were specified by the
472 caller. */
a39a16c4 473 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
474 {
475 struct other_sections *osp ;
476
477 osp = &addrs->other[i] ;
478 if (osp->addr == 0)
479 continue;
480
481 /* Record all sections in offsets */
482 /* The section_offsets in the objfile are here filled in using
483 the BFD index. */
484 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
485 }
486
487 /* Remember the bfd indexes for the .text, .data, .bss and
488 .rodata sections. */
489 init_objfile_sect_indices (objfile);
490}
491
492
c906108c
SS
493/* Process a symbol file, as either the main file or as a dynamically
494 loaded file.
495
96baa820
JM
496 OBJFILE is where the symbols are to be read from.
497
7e8580c1
JB
498 ADDRS is the list of section load addresses. If the user has given
499 an 'add-symbol-file' command, then this is the list of offsets and
500 addresses he or she provided as arguments to the command; or, if
501 we're handling a shared library, these are the actual addresses the
502 sections are loaded at, according to the inferior's dynamic linker
503 (as gleaned by GDB's shared library code). We convert each address
504 into an offset from the section VMA's as it appears in the object
505 file, and then call the file's sym_offsets function to convert this
506 into a format-specific offset table --- a `struct section_offsets'.
507 If ADDRS is non-zero, OFFSETS must be zero.
508
509 OFFSETS is a table of section offsets already in the right
510 format-specific representation. NUM_OFFSETS is the number of
511 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
512 assume this is the proper table the call to sym_offsets described
513 above would produce. Instead of calling sym_offsets, we just dump
514 it right into objfile->section_offsets. (When we're re-reading
515 symbols from an objfile, we don't have the original load address
516 list any more; all we have is the section offset table.) If
517 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
518
519 MAINLINE is nonzero if this is the main symbol file, or zero if
520 it's an extra symbol file such as dynamically loaded code.
521
522 VERBO is nonzero if the caller has printed a verbose message about
523 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
524
525void
7e8580c1
JB
526syms_from_objfile (struct objfile *objfile,
527 struct section_addr_info *addrs,
528 struct section_offsets *offsets,
529 int num_offsets,
530 int mainline,
531 int verbo)
c906108c 532{
a39a16c4 533 struct section_addr_info *local_addr = NULL;
c906108c 534 struct cleanup *old_chain;
2acceee2 535
7e8580c1 536 gdb_assert (! (addrs && offsets));
2acceee2 537
c906108c
SS
538 init_entry_point_info (objfile);
539 find_sym_fns (objfile);
540
75245b24
MS
541 if (objfile->sf == NULL)
542 return; /* No symbols. */
543
c906108c
SS
544 /* Make sure that partially constructed symbol tables will be cleaned up
545 if an error occurs during symbol reading. */
74b7792f 546 old_chain = make_cleanup_free_objfile (objfile);
c906108c 547
a39a16c4
MM
548 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
549 list. We now establish the convention that an addr of zero means
550 no load address was specified. */
551 if (! addrs && ! offsets)
552 {
5417f6dc 553 local_addr
a39a16c4
MM
554 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
555 make_cleanup (xfree, local_addr);
556 addrs = local_addr;
557 }
558
559 /* Now either addrs or offsets is non-zero. */
560
c5aa993b 561 if (mainline)
c906108c
SS
562 {
563 /* We will modify the main symbol table, make sure that all its users
c5aa993b 564 will be cleaned up if an error occurs during symbol reading. */
74b7792f 565 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
566
567 /* Since no error yet, throw away the old symbol table. */
568
569 if (symfile_objfile != NULL)
570 {
571 free_objfile (symfile_objfile);
572 symfile_objfile = NULL;
573 }
574
575 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
576 If the user wants to get rid of them, they should do "symbol-file"
577 without arguments first. Not sure this is the best behavior
578 (PR 2207). */
c906108c 579
c5aa993b 580 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
581 }
582
583 /* Convert addr into an offset rather than an absolute address.
584 We find the lowest address of a loaded segment in the objfile,
53a5351d 585 and assume that <addr> is where that got loaded.
c906108c 586
53a5351d
JM
587 We no longer warn if the lowest section is not a text segment (as
588 happens for the PA64 port. */
1549f619 589 if (!mainline && addrs && addrs->other[0].name)
c906108c 590 {
1549f619
EZ
591 asection *lower_sect;
592 asection *sect;
593 CORE_ADDR lower_offset;
594 int i;
595
5417f6dc 596 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
597 continguous sections. FIXME!! won't work without call to find
598 .text first, but this assumes text is lowest section. */
599 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
600 if (lower_sect == NULL)
c906108c 601 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 602 &lower_sect);
2acceee2 603 if (lower_sect == NULL)
8a3fe4f8 604 warning (_("no loadable sections found in added symbol-file %s"),
c906108c 605 objfile->name);
5417f6dc 606 else
b8fbeb18 607 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
8a3fe4f8 608 warning (_("Lowest section in %s is %s at %s"),
b8fbeb18
EZ
609 objfile->name,
610 bfd_section_name (objfile->obfd, lower_sect),
611 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
612 if (lower_sect != NULL)
613 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
614 else
615 lower_offset = 0;
5417f6dc 616
13de58df 617 /* Calculate offsets for the loadable sections.
2acceee2
JM
618 FIXME! Sections must be in order of increasing loadable section
619 so that contiguous sections can use the lower-offset!!!
5417f6dc 620
13de58df
JB
621 Adjust offsets if the segments are not contiguous.
622 If the section is contiguous, its offset should be set to
2acceee2
JM
623 the offset of the highest loadable section lower than it
624 (the loadable section directly below it in memory).
625 this_offset = lower_offset = lower_addr - lower_orig_addr */
626
1549f619 627 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
628 {
629 if (addrs->other[i].addr != 0)
630 {
631 sect = bfd_get_section_by_name (objfile->obfd,
632 addrs->other[i].name);
633 if (sect)
634 {
635 addrs->other[i].addr
636 -= bfd_section_vma (objfile->obfd, sect);
637 lower_offset = addrs->other[i].addr;
638 /* This is the index used by BFD. */
639 addrs->other[i].sectindex = sect->index ;
640 }
641 else
642 {
8a3fe4f8 643 warning (_("section %s not found in %s"),
5417f6dc 644 addrs->other[i].name,
7e8580c1
JB
645 objfile->name);
646 addrs->other[i].addr = 0;
647 }
648 }
649 else
650 addrs->other[i].addr = lower_offset;
651 }
c906108c
SS
652 }
653
654 /* Initialize symbol reading routines for this objfile, allow complaints to
655 appear for this new file, and record how verbose to be, then do the
656 initial symbol reading for this file. */
657
c5aa993b 658 (*objfile->sf->sym_init) (objfile);
b9caf505 659 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 660
7e8580c1
JB
661 if (addrs)
662 (*objfile->sf->sym_offsets) (objfile, addrs);
663 else
664 {
665 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
666
667 /* Just copy in the offset table directly as given to us. */
668 objfile->num_sections = num_offsets;
669 objfile->section_offsets
670 = ((struct section_offsets *)
8b92e4d5 671 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
672 memcpy (objfile->section_offsets, offsets, size);
673
674 init_objfile_sect_indices (objfile);
675 }
c906108c 676
52d16ba8 677#ifndef DEPRECATED_IBM6000_TARGET
c906108c
SS
678 /* This is a SVR4/SunOS specific hack, I think. In any event, it
679 screws RS/6000. sym_offsets should be doing this sort of thing,
680 because it knows the mapping between bfd sections and
681 section_offsets. */
682 /* This is a hack. As far as I can tell, section offsets are not
683 target dependent. They are all set to addr with a couple of
684 exceptions. The exceptions are sysvr4 shared libraries, whose
685 offsets are kept in solib structures anyway and rs6000 xcoff
686 which handles shared libraries in a completely unique way.
687
688 Section offsets are built similarly, except that they are built
689 by adding addr in all cases because there is no clear mapping
690 from section_offsets into actual sections. Note that solib.c
96baa820 691 has a different algorithm for finding section offsets.
c906108c
SS
692
693 These should probably all be collapsed into some target
694 independent form of shared library support. FIXME. */
695
2acceee2 696 if (addrs)
c906108c
SS
697 {
698 struct obj_section *s;
699
5417f6dc
RM
700 /* Map section offsets in "addr" back to the object's
701 sections by comparing the section names with bfd's
2acceee2
JM
702 section names. Then adjust the section address by
703 the offset. */ /* for gdb/13815 */
5417f6dc 704
96baa820 705 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 706 {
2acceee2
JM
707 CORE_ADDR s_addr = 0;
708 int i;
709
5417f6dc 710 for (i = 0;
a39a16c4 711 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 712 i++)
5417f6dc
RM
713 if (strcmp (bfd_section_name (s->objfile->obfd,
714 s->the_bfd_section),
fbd35540 715 addrs->other[i].name) == 0)
2acceee2 716 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
5417f6dc 717
c906108c 718 s->addr -= s->offset;
2acceee2 719 s->addr += s_addr;
c906108c 720 s->endaddr -= s->offset;
2acceee2
JM
721 s->endaddr += s_addr;
722 s->offset += s_addr;
c906108c
SS
723 }
724 }
52d16ba8 725#endif /* not DEPRECATED_IBM6000_TARGET */
c906108c 726
96baa820 727 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 728
c906108c
SS
729 /* Don't allow char * to have a typename (else would get caddr_t).
730 Ditto void *. FIXME: Check whether this is now done by all the
731 symbol readers themselves (many of them now do), and if so remove
732 it from here. */
733
734 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
735 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
736
737 /* Mark the objfile has having had initial symbol read attempted. Note
738 that this does not mean we found any symbols... */
739
c5aa993b 740 objfile->flags |= OBJF_SYMS;
c906108c
SS
741
742 /* Discard cleanups as symbol reading was successful. */
743
744 discard_cleanups (old_chain);
c906108c
SS
745}
746
747/* Perform required actions after either reading in the initial
748 symbols for a new objfile, or mapping in the symbols from a reusable
749 objfile. */
c5aa993b 750
c906108c 751void
fba45db2 752new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
753{
754
755 /* If this is the main symbol file we have to clean up all users of the
756 old main symbol file. Otherwise it is sufficient to fixup all the
757 breakpoints that may have been redefined by this symbol file. */
758 if (mainline)
759 {
760 /* OK, make it the "real" symbol file. */
761 symfile_objfile = objfile;
762
763 clear_symtab_users ();
764 }
765 else
766 {
767 breakpoint_re_set ();
768 }
769
770 /* We're done reading the symbol file; finish off complaints. */
b9caf505 771 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
772}
773
774/* Process a symbol file, as either the main file or as a dynamically
775 loaded file.
776
5417f6dc
RM
777 ABFD is a BFD already open on the file, as from symfile_bfd_open.
778 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
779
780 FROM_TTY says how verbose to be.
781
782 MAINLINE specifies whether this is the main symbol file, or whether
783 it's an extra symbol file such as dynamically loaded code.
784
785 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
786 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
787 non-zero.
c906108c 788
c906108c
SS
789 Upon success, returns a pointer to the objfile that was added.
790 Upon failure, jumps back to command level (never returns). */
7904e09f 791static struct objfile *
5417f6dc 792symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
793 struct section_addr_info *addrs,
794 struct section_offsets *offsets,
795 int num_offsets,
796 int mainline, int flags)
c906108c
SS
797{
798 struct objfile *objfile;
799 struct partial_symtab *psymtab;
5b5d99cf 800 char *debugfile;
7b90c3f9 801 struct section_addr_info *orig_addrs = NULL;
a39a16c4 802 struct cleanup *my_cleanups;
5417f6dc 803 const char *name = bfd_get_filename (abfd);
c906108c 804
5417f6dc 805 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 806
5417f6dc
RM
807 /* Give user a chance to burp if we'd be
808 interactively wiping out any existing symbols. */
c906108c
SS
809
810 if ((have_full_symbols () || have_partial_symbols ())
811 && mainline
812 && from_tty
813 && !query ("Load new symbol table from \"%s\"? ", name))
8a3fe4f8 814 error (_("Not confirmed."));
c906108c 815
2df3850c 816 objfile = allocate_objfile (abfd, flags);
5417f6dc 817 discard_cleanups (my_cleanups);
c906108c 818
a39a16c4 819 if (addrs)
63cd24fe 820 {
7b90c3f9
JB
821 orig_addrs = copy_section_addr_info (addrs);
822 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 823 }
a39a16c4 824
78a4a9b9
AC
825 /* We either created a new mapped symbol table, mapped an existing
826 symbol table file which has not had initial symbol reading
827 performed, or need to read an unmapped symbol table. */
828 if (from_tty || info_verbose)
c906108c 829 {
769d7dc4
AC
830 if (deprecated_pre_add_symbol_hook)
831 deprecated_pre_add_symbol_hook (name);
78a4a9b9 832 else
c906108c 833 {
a3f17187 834 printf_unfiltered (_("Reading symbols from %s..."), name);
c906108c
SS
835 wrap_here ("");
836 gdb_flush (gdb_stdout);
837 }
c906108c 838 }
78a4a9b9
AC
839 syms_from_objfile (objfile, addrs, offsets, num_offsets,
840 mainline, from_tty);
c906108c
SS
841
842 /* We now have at least a partial symbol table. Check to see if the
843 user requested that all symbols be read on initial access via either
844 the gdb startup command line or on a per symbol file basis. Expand
845 all partial symbol tables for this objfile if so. */
846
2acceee2 847 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
848 {
849 if (from_tty || info_verbose)
850 {
a3f17187 851 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
852 wrap_here ("");
853 gdb_flush (gdb_stdout);
854 }
855
c5aa993b 856 for (psymtab = objfile->psymtabs;
c906108c 857 psymtab != NULL;
c5aa993b 858 psymtab = psymtab->next)
c906108c
SS
859 {
860 psymtab_to_symtab (psymtab);
861 }
862 }
863
5b5d99cf
JB
864 debugfile = find_separate_debug_file (objfile);
865 if (debugfile)
866 {
5b5d99cf
JB
867 if (addrs != NULL)
868 {
869 objfile->separate_debug_objfile
a39a16c4 870 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
871 }
872 else
873 {
874 objfile->separate_debug_objfile
875 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
876 }
877 objfile->separate_debug_objfile->separate_debug_objfile_backlink
878 = objfile;
5417f6dc 879
5b5d99cf
JB
880 /* Put the separate debug object before the normal one, this is so that
881 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
882 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 883
5b5d99cf
JB
884 xfree (debugfile);
885 }
5417f6dc 886
cb3c37b2
JB
887 if (!have_partial_symbols () && !have_full_symbols ())
888 {
889 wrap_here ("");
a3f17187 890 printf_filtered (_("(no debugging symbols found)"));
8f5ba92b
JG
891 if (from_tty || info_verbose)
892 printf_filtered ("...");
893 else
894 printf_filtered ("\n");
cb3c37b2
JB
895 wrap_here ("");
896 }
897
c906108c
SS
898 if (from_tty || info_verbose)
899 {
769d7dc4
AC
900 if (deprecated_post_add_symbol_hook)
901 deprecated_post_add_symbol_hook ();
c906108c 902 else
c5aa993b 903 {
a3f17187 904 printf_unfiltered (_("done.\n"));
c5aa993b 905 }
c906108c
SS
906 }
907
481d0f41
JB
908 /* We print some messages regardless of whether 'from_tty ||
909 info_verbose' is true, so make sure they go out at the right
910 time. */
911 gdb_flush (gdb_stdout);
912
a39a16c4
MM
913 do_cleanups (my_cleanups);
914
109f874e
MS
915 if (objfile->sf == NULL)
916 return objfile; /* No symbols. */
917
c906108c
SS
918 new_symfile_objfile (objfile, mainline, from_tty);
919
9a4105ab
AC
920 if (deprecated_target_new_objfile_hook)
921 deprecated_target_new_objfile_hook (objfile);
c906108c 922
ce7d4522 923 bfd_cache_close_all ();
c906108c
SS
924 return (objfile);
925}
926
7904e09f 927
eb4556d7
JB
928/* Process the symbol file ABFD, as either the main file or as a
929 dynamically loaded file.
930
931 See symbol_file_add_with_addrs_or_offsets's comments for
932 details. */
933struct objfile *
934symbol_file_add_from_bfd (bfd *abfd, int from_tty,
935 struct section_addr_info *addrs,
936 int mainline, int flags)
937{
938 return symbol_file_add_with_addrs_or_offsets (abfd,
939 from_tty, addrs, 0, 0,
940 mainline, flags);
941}
942
943
7904e09f
JB
944/* Process a symbol file, as either the main file or as a dynamically
945 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
946 for details. */
947struct objfile *
948symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
949 int mainline, int flags)
950{
eb4556d7
JB
951 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
952 addrs, mainline, flags);
7904e09f
JB
953}
954
955
d7db6da9
FN
956/* Call symbol_file_add() with default values and update whatever is
957 affected by the loading of a new main().
958 Used when the file is supplied in the gdb command line
959 and by some targets with special loading requirements.
960 The auxiliary function, symbol_file_add_main_1(), has the flags
961 argument for the switches that can only be specified in the symbol_file
962 command itself. */
5417f6dc 963
1adeb98a
FN
964void
965symbol_file_add_main (char *args, int from_tty)
966{
d7db6da9
FN
967 symbol_file_add_main_1 (args, from_tty, 0);
968}
969
970static void
971symbol_file_add_main_1 (char *args, int from_tty, int flags)
972{
973 symbol_file_add (args, from_tty, NULL, 1, flags);
974
d7db6da9
FN
975 /* Getting new symbols may change our opinion about
976 what is frameless. */
977 reinit_frame_cache ();
978
979 set_initial_language ();
1adeb98a
FN
980}
981
982void
983symbol_file_clear (int from_tty)
984{
985 if ((have_full_symbols () || have_partial_symbols ())
986 && from_tty
987 && !query ("Discard symbol table from `%s'? ",
988 symfile_objfile->name))
8a3fe4f8 989 error (_("Not confirmed."));
1adeb98a
FN
990 free_all_objfiles ();
991
992 /* solib descriptors may have handles to objfiles. Since their
993 storage has just been released, we'd better wipe the solib
994 descriptors as well.
995 */
996#if defined(SOLIB_RESTART)
997 SOLIB_RESTART ();
998#endif
999
1000 symfile_objfile = NULL;
1001 if (from_tty)
a3f17187 1002 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1003}
1004
5b5d99cf
JB
1005static char *
1006get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1007{
1008 asection *sect;
1009 bfd_size_type debuglink_size;
1010 unsigned long crc32;
1011 char *contents;
1012 int crc_offset;
1013 unsigned char *p;
5417f6dc 1014
5b5d99cf
JB
1015 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1016
1017 if (sect == NULL)
1018 return NULL;
1019
1020 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1021
5b5d99cf
JB
1022 contents = xmalloc (debuglink_size);
1023 bfd_get_section_contents (objfile->obfd, sect, contents,
1024 (file_ptr)0, (bfd_size_type)debuglink_size);
1025
1026 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1027 crc_offset = strlen (contents) + 1;
1028 crc_offset = (crc_offset + 3) & ~3;
1029
1030 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1031
5b5d99cf
JB
1032 *crc32_out = crc32;
1033 return contents;
1034}
1035
1036static int
1037separate_debug_file_exists (const char *name, unsigned long crc)
1038{
1039 unsigned long file_crc = 0;
1040 int fd;
1041 char buffer[8*1024];
1042 int count;
1043
1044 fd = open (name, O_RDONLY | O_BINARY);
1045 if (fd < 0)
1046 return 0;
1047
1048 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1049 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1050
1051 close (fd);
1052
1053 return crc == file_crc;
1054}
1055
1056static char *debug_file_directory = NULL;
1057
1058#if ! defined (DEBUG_SUBDIRECTORY)
1059#define DEBUG_SUBDIRECTORY ".debug"
1060#endif
1061
1062static char *
1063find_separate_debug_file (struct objfile *objfile)
1064{
1065 asection *sect;
1066 char *basename;
1067 char *dir;
1068 char *debugfile;
1069 char *name_copy;
1070 bfd_size_type debuglink_size;
1071 unsigned long crc32;
1072 int i;
1073
1074 basename = get_debug_link_info (objfile, &crc32);
1075
1076 if (basename == NULL)
1077 return NULL;
5417f6dc 1078
5b5d99cf
JB
1079 dir = xstrdup (objfile->name);
1080
fe36c4f4
JB
1081 /* Strip off the final filename part, leaving the directory name,
1082 followed by a slash. Objfile names should always be absolute and
1083 tilde-expanded, so there should always be a slash in there
1084 somewhere. */
5b5d99cf
JB
1085 for (i = strlen(dir) - 1; i >= 0; i--)
1086 {
1087 if (IS_DIR_SEPARATOR (dir[i]))
1088 break;
1089 }
fe36c4f4 1090 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1091 dir[i+1] = '\0';
5417f6dc 1092
5b5d99cf
JB
1093 debugfile = alloca (strlen (debug_file_directory) + 1
1094 + strlen (dir)
1095 + strlen (DEBUG_SUBDIRECTORY)
1096 + strlen ("/")
5417f6dc 1097 + strlen (basename)
5b5d99cf
JB
1098 + 1);
1099
1100 /* First try in the same directory as the original file. */
1101 strcpy (debugfile, dir);
1102 strcat (debugfile, basename);
1103
1104 if (separate_debug_file_exists (debugfile, crc32))
1105 {
1106 xfree (basename);
1107 xfree (dir);
1108 return xstrdup (debugfile);
1109 }
5417f6dc 1110
5b5d99cf
JB
1111 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1112 strcpy (debugfile, dir);
1113 strcat (debugfile, DEBUG_SUBDIRECTORY);
1114 strcat (debugfile, "/");
1115 strcat (debugfile, basename);
1116
1117 if (separate_debug_file_exists (debugfile, crc32))
1118 {
1119 xfree (basename);
1120 xfree (dir);
1121 return xstrdup (debugfile);
1122 }
5417f6dc 1123
5b5d99cf
JB
1124 /* Then try in the global debugfile directory. */
1125 strcpy (debugfile, debug_file_directory);
1126 strcat (debugfile, "/");
1127 strcat (debugfile, dir);
5b5d99cf
JB
1128 strcat (debugfile, basename);
1129
1130 if (separate_debug_file_exists (debugfile, crc32))
1131 {
1132 xfree (basename);
1133 xfree (dir);
1134 return xstrdup (debugfile);
1135 }
5417f6dc 1136
5b5d99cf
JB
1137 xfree (basename);
1138 xfree (dir);
1139 return NULL;
1140}
1141
1142
c906108c
SS
1143/* This is the symbol-file command. Read the file, analyze its
1144 symbols, and add a struct symtab to a symtab list. The syntax of
1145 the command is rather bizarre--(1) buildargv implements various
1146 quoting conventions which are undocumented and have little or
1147 nothing in common with the way things are quoted (or not quoted)
1148 elsewhere in GDB, (2) options are used, which are not generally
1149 used in GDB (perhaps "set mapped on", "set readnow on" would be
1150 better), (3) the order of options matters, which is contrary to GNU
1151 conventions (because it is confusing and inconvenient). */
4da95fc4
EZ
1152/* Note: ezannoni 2000-04-17. This function used to have support for
1153 rombug (see remote-os9k.c). It consisted of a call to target_link()
1154 (target.c) to get the address of the text segment from the target,
1155 and pass that to symbol_file_add(). This is no longer supported. */
c906108c
SS
1156
1157void
fba45db2 1158symbol_file_command (char *args, int from_tty)
c906108c
SS
1159{
1160 char **argv;
1161 char *name = NULL;
c906108c 1162 struct cleanup *cleanups;
2df3850c 1163 int flags = OBJF_USERLOADED;
c906108c
SS
1164
1165 dont_repeat ();
1166
1167 if (args == NULL)
1168 {
1adeb98a 1169 symbol_file_clear (from_tty);
c906108c
SS
1170 }
1171 else
1172 {
1173 if ((argv = buildargv (args)) == NULL)
1174 {
1175 nomem (0);
1176 }
7a292a7a 1177 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1178 while (*argv != NULL)
1179 {
78a4a9b9
AC
1180 if (strcmp (*argv, "-readnow") == 0)
1181 flags |= OBJF_READNOW;
1182 else if (**argv == '-')
8a3fe4f8 1183 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1184 else
1185 {
1186 name = *argv;
5417f6dc 1187
78a4a9b9
AC
1188 symbol_file_add_main_1 (name, from_tty, flags);
1189 }
c906108c
SS
1190 argv++;
1191 }
1192
1193 if (name == NULL)
1194 {
8a3fe4f8 1195 error (_("no symbol file name was specified"));
c906108c 1196 }
c906108c
SS
1197 do_cleanups (cleanups);
1198 }
1199}
1200
1201/* Set the initial language.
1202
1203 A better solution would be to record the language in the psymtab when reading
1204 partial symbols, and then use it (if known) to set the language. This would
1205 be a win for formats that encode the language in an easily discoverable place,
1206 such as DWARF. For stabs, we can jump through hoops looking for specially
1207 named symbols or try to intuit the language from the specific type of stabs
1208 we find, but we can't do that until later when we read in full symbols.
1209 FIXME. */
1210
1211static void
fba45db2 1212set_initial_language (void)
c906108c
SS
1213{
1214 struct partial_symtab *pst;
c5aa993b 1215 enum language lang = language_unknown;
c906108c
SS
1216
1217 pst = find_main_psymtab ();
1218 if (pst != NULL)
1219 {
c5aa993b 1220 if (pst->filename != NULL)
c906108c 1221 {
c5aa993b
JM
1222 lang = deduce_language_from_filename (pst->filename);
1223 }
c906108c
SS
1224 if (lang == language_unknown)
1225 {
c5aa993b
JM
1226 /* Make C the default language */
1227 lang = language_c;
c906108c
SS
1228 }
1229 set_language (lang);
1230 expected_language = current_language; /* Don't warn the user */
1231 }
1232}
1233
1234/* Open file specified by NAME and hand it off to BFD for preliminary
1235 analysis. Result is a newly initialized bfd *, which includes a newly
1236 malloc'd` copy of NAME (tilde-expanded and made absolute).
1237 In case of trouble, error() is called. */
1238
1239bfd *
fba45db2 1240symfile_bfd_open (char *name)
c906108c
SS
1241{
1242 bfd *sym_bfd;
1243 int desc;
1244 char *absolute_name;
1245
1246
1247
1248 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1249
1250 /* Look down path for it, allocate 2nd new malloc'd copy. */
014d698b
EZ
1251 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name, O_RDONLY | O_BINARY,
1252 0, &absolute_name);
608506ed 1253#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1254 if (desc < 0)
1255 {
1256 char *exename = alloca (strlen (name) + 5);
1257 strcat (strcpy (exename, name), ".exe");
014d698b
EZ
1258 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1259 O_RDONLY | O_BINARY, 0, &absolute_name);
c906108c
SS
1260 }
1261#endif
1262 if (desc < 0)
1263 {
b8c9b27d 1264 make_cleanup (xfree, name);
c906108c
SS
1265 perror_with_name (name);
1266 }
b8c9b27d 1267 xfree (name); /* Free 1st new malloc'd copy */
c906108c 1268 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
c5aa993b 1269 /* It'll be freed in free_objfile(). */
c906108c
SS
1270
1271 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1272 if (!sym_bfd)
1273 {
1274 close (desc);
b8c9b27d 1275 make_cleanup (xfree, name);
8a3fe4f8 1276 error (_("\"%s\": can't open to read symbols: %s."), name,
c906108c
SS
1277 bfd_errmsg (bfd_get_error ()));
1278 }
549c1eea 1279 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1280
1281 if (!bfd_check_format (sym_bfd, bfd_object))
1282 {
1283 /* FIXME: should be checking for errors from bfd_close (for one thing,
c5aa993b
JM
1284 on error it does not free all the storage associated with the
1285 bfd). */
c906108c 1286 bfd_close (sym_bfd); /* This also closes desc */
b8c9b27d 1287 make_cleanup (xfree, name);
8a3fe4f8 1288 error (_("\"%s\": can't read symbols: %s."), name,
c906108c
SS
1289 bfd_errmsg (bfd_get_error ()));
1290 }
1291 return (sym_bfd);
1292}
1293
0e931cf0
JB
1294/* Return the section index for the given section name. Return -1 if
1295 the section was not found. */
1296int
1297get_section_index (struct objfile *objfile, char *section_name)
1298{
1299 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1300 if (sect)
1301 return sect->index;
1302 else
1303 return -1;
1304}
1305
c906108c
SS
1306/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1307 startup by the _initialize routine in each object file format reader,
1308 to register information about each format the the reader is prepared
1309 to handle. */
1310
1311void
fba45db2 1312add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1313{
1314 sf->next = symtab_fns;
1315 symtab_fns = sf;
1316}
1317
1318
1319/* Initialize to read symbols from the symbol file sym_bfd. It either
1320 returns or calls error(). The result is an initialized struct sym_fns
1321 in the objfile structure, that contains cached information about the
1322 symbol file. */
1323
1324static void
fba45db2 1325find_sym_fns (struct objfile *objfile)
c906108c
SS
1326{
1327 struct sym_fns *sf;
c5aa993b
JM
1328 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1329 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1330
75245b24
MS
1331 if (our_flavour == bfd_target_srec_flavour
1332 || our_flavour == bfd_target_ihex_flavour
1333 || our_flavour == bfd_target_tekhex_flavour)
1334 return; /* No symbols. */
1335
c5aa993b 1336 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1337 {
c5aa993b 1338 if (our_flavour == sf->sym_flavour)
c906108c 1339 {
c5aa993b 1340 objfile->sf = sf;
c906108c
SS
1341 return;
1342 }
1343 }
8a3fe4f8 1344 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
c5aa993b 1345 bfd_get_target (objfile->obfd));
c906108c
SS
1346}
1347\f
1348/* This function runs the load command of our current target. */
1349
1350static void
fba45db2 1351load_command (char *arg, int from_tty)
c906108c
SS
1352{
1353 if (arg == NULL)
1354 arg = get_exec_file (1);
1355 target_load (arg, from_tty);
2889e661
JB
1356
1357 /* After re-loading the executable, we don't really know which
1358 overlays are mapped any more. */
1359 overlay_cache_invalid = 1;
c906108c
SS
1360}
1361
1362/* This version of "load" should be usable for any target. Currently
1363 it is just used for remote targets, not inftarg.c or core files,
1364 on the theory that only in that case is it useful.
1365
1366 Avoiding xmodem and the like seems like a win (a) because we don't have
1367 to worry about finding it, and (b) On VMS, fork() is very slow and so
1368 we don't want to run a subprocess. On the other hand, I'm not sure how
1369 performance compares. */
917317f4
JM
1370
1371static int download_write_size = 512;
1372static int validate_download = 0;
1373
e4f9b4d5
MS
1374/* Callback service function for generic_load (bfd_map_over_sections). */
1375
1376static void
1377add_section_size_callback (bfd *abfd, asection *asec, void *data)
1378{
1379 bfd_size_type *sum = data;
1380
2c500098 1381 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1382}
1383
1384/* Opaque data for load_section_callback. */
1385struct load_section_data {
1386 unsigned long load_offset;
1387 unsigned long write_count;
1388 unsigned long data_count;
1389 bfd_size_type total_size;
1390};
1391
1392/* Callback service function for generic_load (bfd_map_over_sections). */
1393
1394static void
1395load_section_callback (bfd *abfd, asection *asec, void *data)
1396{
1397 struct load_section_data *args = data;
1398
1399 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1400 {
2c500098 1401 bfd_size_type size = bfd_get_section_size (asec);
e4f9b4d5
MS
1402 if (size > 0)
1403 {
1404 char *buffer;
1405 struct cleanup *old_chain;
1406 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1407 bfd_size_type block_size;
1408 int err;
1409 const char *sect_name = bfd_get_section_name (abfd, asec);
1410 bfd_size_type sent;
1411
1412 if (download_write_size > 0 && size > download_write_size)
1413 block_size = download_write_size;
1414 else
1415 block_size = size;
1416
1417 buffer = xmalloc (size);
1418 old_chain = make_cleanup (xfree, buffer);
1419
1420 /* Is this really necessary? I guess it gives the user something
1421 to look at during a long download. */
e4f9b4d5
MS
1422 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1423 sect_name, paddr_nz (size), paddr_nz (lma));
e4f9b4d5
MS
1424
1425 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1426
1427 sent = 0;
1428 do
1429 {
1430 int len;
1431 bfd_size_type this_transfer = size - sent;
1432
1433 if (this_transfer >= block_size)
1434 this_transfer = block_size;
1435 len = target_write_memory_partial (lma, buffer,
1436 this_transfer, &err);
1437 if (err)
1438 break;
1439 if (validate_download)
1440 {
1441 /* Broken memories and broken monitors manifest
1442 themselves here when bring new computers to
1443 life. This doubles already slow downloads. */
1444 /* NOTE: cagney/1999-10-18: A more efficient
1445 implementation might add a verify_memory()
1446 method to the target vector and then use
1447 that. remote.c could implement that method
1448 using the ``qCRC'' packet. */
1449 char *check = xmalloc (len);
5417f6dc 1450 struct cleanup *verify_cleanups =
e4f9b4d5
MS
1451 make_cleanup (xfree, check);
1452
1453 if (target_read_memory (lma, check, len) != 0)
8a3fe4f8 1454 error (_("Download verify read failed at 0x%s"),
e4f9b4d5
MS
1455 paddr (lma));
1456 if (memcmp (buffer, check, len) != 0)
8a3fe4f8 1457 error (_("Download verify compare failed at 0x%s"),
e4f9b4d5
MS
1458 paddr (lma));
1459 do_cleanups (verify_cleanups);
1460 }
1461 args->data_count += len;
1462 lma += len;
1463 buffer += len;
1464 args->write_count += 1;
1465 sent += len;
1466 if (quit_flag
9a4105ab
AC
1467 || (deprecated_ui_load_progress_hook != NULL
1468 && deprecated_ui_load_progress_hook (sect_name, sent)))
8a3fe4f8 1469 error (_("Canceled the download"));
e4f9b4d5 1470
9a4105ab
AC
1471 if (deprecated_show_load_progress != NULL)
1472 deprecated_show_load_progress (sect_name, sent, size,
1473 args->data_count,
1474 args->total_size);
e4f9b4d5
MS
1475 }
1476 while (sent < size);
1477
1478 if (err != 0)
8a3fe4f8 1479 error (_("Memory access error while loading section %s."), sect_name);
e4f9b4d5
MS
1480
1481 do_cleanups (old_chain);
1482 }
1483 }
1484}
1485
c906108c 1486void
917317f4 1487generic_load (char *args, int from_tty)
c906108c 1488{
c906108c
SS
1489 asection *s;
1490 bfd *loadfile_bfd;
1491 time_t start_time, end_time; /* Start and end times of download */
917317f4
JM
1492 char *filename;
1493 struct cleanup *old_cleanups;
1494 char *offptr;
e4f9b4d5
MS
1495 struct load_section_data cbdata;
1496 CORE_ADDR entry;
1497
1498 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1499 cbdata.write_count = 0; /* Number of writes needed. */
1500 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1501 cbdata.total_size = 0; /* Total size of all bfd sectors. */
917317f4
JM
1502
1503 /* Parse the input argument - the user can specify a load offset as
1504 a second argument. */
1505 filename = xmalloc (strlen (args) + 1);
b8c9b27d 1506 old_cleanups = make_cleanup (xfree, filename);
917317f4
JM
1507 strcpy (filename, args);
1508 offptr = strchr (filename, ' ');
1509 if (offptr != NULL)
1510 {
1511 char *endptr;
ba5f2f8a 1512
e4f9b4d5 1513 cbdata.load_offset = strtoul (offptr, &endptr, 0);
917317f4 1514 if (offptr == endptr)
8a3fe4f8 1515 error (_("Invalid download offset:%s."), offptr);
917317f4
JM
1516 *offptr = '\0';
1517 }
c906108c 1518 else
e4f9b4d5 1519 cbdata.load_offset = 0;
c906108c 1520
917317f4 1521 /* Open the file for loading. */
c906108c
SS
1522 loadfile_bfd = bfd_openr (filename, gnutarget);
1523 if (loadfile_bfd == NULL)
1524 {
1525 perror_with_name (filename);
1526 return;
1527 }
917317f4 1528
c906108c
SS
1529 /* FIXME: should be checking for errors from bfd_close (for one thing,
1530 on error it does not free all the storage associated with the
1531 bfd). */
5c65bbb6 1532 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1533
c5aa993b 1534 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1535 {
8a3fe4f8 1536 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1537 bfd_errmsg (bfd_get_error ()));
1538 }
c5aa993b 1539
5417f6dc 1540 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
e4f9b4d5 1541 (void *) &cbdata.total_size);
c2d11a7d 1542
c906108c
SS
1543 start_time = time (NULL);
1544
e4f9b4d5 1545 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c906108c
SS
1546
1547 end_time = time (NULL);
ba5f2f8a 1548
e4f9b4d5 1549 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1550 ui_out_text (uiout, "Start address ");
1551 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1552 ui_out_text (uiout, ", load size ");
1553 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1554 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1555 /* We were doing this in remote-mips.c, I suspect it is right
1556 for other targets too. */
1557 write_pc (entry);
c906108c 1558
7ca9f392
AC
1559 /* FIXME: are we supposed to call symbol_file_add or not? According
1560 to a comment from remote-mips.c (where a call to symbol_file_add
1561 was commented out), making the call confuses GDB if more than one
1562 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1563 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1564
5417f6dc 1565 print_transfer_performance (gdb_stdout, cbdata.data_count,
e4f9b4d5 1566 cbdata.write_count, end_time - start_time);
c906108c
SS
1567
1568 do_cleanups (old_cleanups);
1569}
1570
1571/* Report how fast the transfer went. */
1572
917317f4
JM
1573/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1574 replaced by print_transfer_performance (with a very different
1575 function signature). */
1576
c906108c 1577void
fba45db2
KB
1578report_transfer_performance (unsigned long data_count, time_t start_time,
1579 time_t end_time)
c906108c 1580{
5417f6dc 1581 print_transfer_performance (gdb_stdout, data_count,
ba5f2f8a 1582 end_time - start_time, 0);
917317f4
JM
1583}
1584
1585void
d9fcf2fb 1586print_transfer_performance (struct ui_file *stream,
917317f4
JM
1587 unsigned long data_count,
1588 unsigned long write_count,
1589 unsigned long time_count)
1590{
8b93c638
JM
1591 ui_out_text (uiout, "Transfer rate: ");
1592 if (time_count > 0)
1593 {
5417f6dc 1594 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
8b93c638
JM
1595 (data_count * 8) / time_count);
1596 ui_out_text (uiout, " bits/sec");
1597 }
1598 else
1599 {
ba5f2f8a 1600 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 1601 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
1602 }
1603 if (write_count > 0)
1604 {
1605 ui_out_text (uiout, ", ");
ba5f2f8a 1606 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1607 ui_out_text (uiout, " bytes/write");
1608 }
1609 ui_out_text (uiout, ".\n");
c906108c
SS
1610}
1611
1612/* This function allows the addition of incrementally linked object files.
1613 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1614/* Note: ezannoni 2000-04-13 This function/command used to have a
1615 special case syntax for the rombug target (Rombug is the boot
1616 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1617 rombug case, the user doesn't need to supply a text address,
1618 instead a call to target_link() (in target.c) would supply the
1619 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 1620
c906108c 1621static void
fba45db2 1622add_symbol_file_command (char *args, int from_tty)
c906108c 1623{
db162d44 1624 char *filename = NULL;
2df3850c 1625 int flags = OBJF_USERLOADED;
c906108c 1626 char *arg;
2acceee2 1627 int expecting_option = 0;
db162d44 1628 int section_index = 0;
2acceee2
JM
1629 int argcnt = 0;
1630 int sec_num = 0;
1631 int i;
db162d44
EZ
1632 int expecting_sec_name = 0;
1633 int expecting_sec_addr = 0;
1634
a39a16c4 1635 struct sect_opt
2acceee2 1636 {
2acceee2
JM
1637 char *name;
1638 char *value;
a39a16c4 1639 };
db162d44 1640
a39a16c4
MM
1641 struct section_addr_info *section_addrs;
1642 struct sect_opt *sect_opts = NULL;
1643 size_t num_sect_opts = 0;
3017564a 1644 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1645
a39a16c4 1646 num_sect_opts = 16;
5417f6dc 1647 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
1648 * sizeof (struct sect_opt));
1649
c906108c
SS
1650 dont_repeat ();
1651
1652 if (args == NULL)
8a3fe4f8 1653 error (_("add-symbol-file takes a file name and an address"));
c906108c
SS
1654
1655 /* Make a copy of the string that we can safely write into. */
c2d11a7d 1656 args = xstrdup (args);
c906108c 1657
2acceee2 1658 while (*args != '\000')
c906108c 1659 {
db162d44 1660 /* Any leading spaces? */
c5aa993b 1661 while (isspace (*args))
db162d44
EZ
1662 args++;
1663
1664 /* Point arg to the beginning of the argument. */
c906108c 1665 arg = args;
db162d44
EZ
1666
1667 /* Move args pointer over the argument. */
c5aa993b 1668 while ((*args != '\000') && !isspace (*args))
db162d44
EZ
1669 args++;
1670
1671 /* If there are more arguments, terminate arg and
1672 proceed past it. */
c906108c 1673 if (*args != '\000')
db162d44
EZ
1674 *args++ = '\000';
1675
1676 /* Now process the argument. */
1677 if (argcnt == 0)
c906108c 1678 {
db162d44
EZ
1679 /* The first argument is the file name. */
1680 filename = tilde_expand (arg);
3017564a 1681 make_cleanup (xfree, filename);
c906108c 1682 }
db162d44 1683 else
7a78ae4e
ND
1684 if (argcnt == 1)
1685 {
1686 /* The second argument is always the text address at which
1687 to load the program. */
1688 sect_opts[section_index].name = ".text";
1689 sect_opts[section_index].value = arg;
5417f6dc 1690 if (++section_index > num_sect_opts)
a39a16c4
MM
1691 {
1692 num_sect_opts *= 2;
5417f6dc 1693 sect_opts = ((struct sect_opt *)
a39a16c4 1694 xrealloc (sect_opts,
5417f6dc 1695 num_sect_opts
a39a16c4
MM
1696 * sizeof (struct sect_opt)));
1697 }
7a78ae4e
ND
1698 }
1699 else
1700 {
1701 /* It's an option (starting with '-') or it's an argument
1702 to an option */
1703
1704 if (*arg == '-')
1705 {
78a4a9b9
AC
1706 if (strcmp (arg, "-readnow") == 0)
1707 flags |= OBJF_READNOW;
1708 else if (strcmp (arg, "-s") == 0)
1709 {
1710 expecting_sec_name = 1;
1711 expecting_sec_addr = 1;
1712 }
7a78ae4e
ND
1713 }
1714 else
1715 {
1716 if (expecting_sec_name)
db162d44 1717 {
7a78ae4e
ND
1718 sect_opts[section_index].name = arg;
1719 expecting_sec_name = 0;
db162d44
EZ
1720 }
1721 else
7a78ae4e
ND
1722 if (expecting_sec_addr)
1723 {
1724 sect_opts[section_index].value = arg;
1725 expecting_sec_addr = 0;
5417f6dc 1726 if (++section_index > num_sect_opts)
a39a16c4
MM
1727 {
1728 num_sect_opts *= 2;
5417f6dc 1729 sect_opts = ((struct sect_opt *)
a39a16c4 1730 xrealloc (sect_opts,
5417f6dc 1731 num_sect_opts
a39a16c4
MM
1732 * sizeof (struct sect_opt)));
1733 }
7a78ae4e
ND
1734 }
1735 else
8a3fe4f8 1736 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
1737 }
1738 }
db162d44 1739 argcnt++;
c906108c 1740 }
c906108c 1741
db162d44
EZ
1742 /* Print the prompt for the query below. And save the arguments into
1743 a sect_addr_info structure to be passed around to other
1744 functions. We have to split this up into separate print
bb599908 1745 statements because hex_string returns a local static
db162d44 1746 string. */
5417f6dc 1747
a3f17187 1748 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
1749 section_addrs = alloc_section_addr_info (section_index);
1750 make_cleanup (xfree, section_addrs);
db162d44 1751 for (i = 0; i < section_index; i++)
c906108c 1752 {
db162d44
EZ
1753 CORE_ADDR addr;
1754 char *val = sect_opts[i].value;
1755 char *sec = sect_opts[i].name;
5417f6dc 1756
ae822768 1757 addr = parse_and_eval_address (val);
db162d44 1758
db162d44
EZ
1759 /* Here we store the section offsets in the order they were
1760 entered on the command line. */
a39a16c4
MM
1761 section_addrs->other[sec_num].name = sec;
1762 section_addrs->other[sec_num].addr = addr;
46f45a4a 1763 printf_unfiltered ("\t%s_addr = %s\n",
bb599908 1764 sec, hex_string ((unsigned long)addr));
db162d44
EZ
1765 sec_num++;
1766
5417f6dc 1767 /* The object's sections are initialized when a
db162d44 1768 call is made to build_objfile_section_table (objfile).
5417f6dc 1769 This happens in reread_symbols.
db162d44
EZ
1770 At this point, we don't know what file type this is,
1771 so we can't determine what section names are valid. */
2acceee2 1772 }
db162d44 1773
2acceee2 1774 if (from_tty && (!query ("%s", "")))
8a3fe4f8 1775 error (_("Not confirmed."));
c906108c 1776
a39a16c4 1777 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
1778
1779 /* Getting new symbols may change our opinion about what is
1780 frameless. */
1781 reinit_frame_cache ();
db162d44 1782 do_cleanups (my_cleanups);
c906108c
SS
1783}
1784\f
1785static void
fba45db2 1786add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1787{
1788#ifdef ADD_SHARED_SYMBOL_FILES
1789 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1790#else
8a3fe4f8 1791 error (_("This command is not available in this configuration of GDB."));
c5aa993b 1792#endif
c906108c
SS
1793}
1794\f
1795/* Re-read symbols if a symbol-file has changed. */
1796void
fba45db2 1797reread_symbols (void)
c906108c
SS
1798{
1799 struct objfile *objfile;
1800 long new_modtime;
1801 int reread_one = 0;
1802 struct stat new_statbuf;
1803 int res;
1804
1805 /* With the addition of shared libraries, this should be modified,
1806 the load time should be saved in the partial symbol tables, since
1807 different tables may come from different source files. FIXME.
1808 This routine should then walk down each partial symbol table
1809 and see if the symbol table that it originates from has been changed */
1810
c5aa993b
JM
1811 for (objfile = object_files; objfile; objfile = objfile->next)
1812 {
1813 if (objfile->obfd)
1814 {
52d16ba8 1815#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
1816 /* If this object is from a shared library, then you should
1817 stat on the library name, not member name. */
c906108c 1818
c5aa993b
JM
1819 if (objfile->obfd->my_archive)
1820 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1821 else
c906108c 1822#endif
c5aa993b
JM
1823 res = stat (objfile->name, &new_statbuf);
1824 if (res != 0)
c906108c 1825 {
c5aa993b 1826 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 1827 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
1828 objfile->name);
1829 continue;
c906108c 1830 }
c5aa993b
JM
1831 new_modtime = new_statbuf.st_mtime;
1832 if (new_modtime != objfile->mtime)
c906108c 1833 {
c5aa993b
JM
1834 struct cleanup *old_cleanups;
1835 struct section_offsets *offsets;
1836 int num_offsets;
c5aa993b
JM
1837 char *obfd_filename;
1838
a3f17187 1839 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
1840 objfile->name);
1841
1842 /* There are various functions like symbol_file_add,
1843 symfile_bfd_open, syms_from_objfile, etc., which might
1844 appear to do what we want. But they have various other
1845 effects which we *don't* want. So we just do stuff
1846 ourselves. We don't worry about mapped files (for one thing,
1847 any mapped file will be out of date). */
1848
1849 /* If we get an error, blow away this objfile (not sure if
1850 that is the correct response for things like shared
1851 libraries). */
74b7792f 1852 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 1853 /* We need to do this whenever any symbols go away. */
74b7792f 1854 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
1855
1856 /* Clean up any state BFD has sitting around. We don't need
1857 to close the descriptor but BFD lacks a way of closing the
1858 BFD without closing the descriptor. */
1859 obfd_filename = bfd_get_filename (objfile->obfd);
1860 if (!bfd_close (objfile->obfd))
8a3fe4f8 1861 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b
JM
1862 bfd_errmsg (bfd_get_error ()));
1863 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1864 if (objfile->obfd == NULL)
8a3fe4f8 1865 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
1866 /* bfd_openr sets cacheable to true, which is what we want. */
1867 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 1868 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
1869 bfd_errmsg (bfd_get_error ()));
1870
1871 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 1872 objfile_obstack. */
c5aa993b 1873 num_offsets = objfile->num_sections;
5417f6dc 1874 offsets = ((struct section_offsets *)
a39a16c4 1875 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 1876 memcpy (offsets, objfile->section_offsets,
a39a16c4 1877 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
1878
1879 /* Nuke all the state that we will re-read. Much of the following
1880 code which sets things to NULL really is necessary to tell
1881 other parts of GDB that there is nothing currently there. */
1882
1883 /* FIXME: Do we have to free a whole linked list, or is this
1884 enough? */
1885 if (objfile->global_psymbols.list)
2dc74dc1 1886 xfree (objfile->global_psymbols.list);
c5aa993b
JM
1887 memset (&objfile->global_psymbols, 0,
1888 sizeof (objfile->global_psymbols));
1889 if (objfile->static_psymbols.list)
2dc74dc1 1890 xfree (objfile->static_psymbols.list);
c5aa993b
JM
1891 memset (&objfile->static_psymbols, 0,
1892 sizeof (objfile->static_psymbols));
1893
1894 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
1895 bcache_xfree (objfile->psymbol_cache);
1896 objfile->psymbol_cache = bcache_xmalloc ();
1897 bcache_xfree (objfile->macro_cache);
1898 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
1899 if (objfile->demangled_names_hash != NULL)
1900 {
1901 htab_delete (objfile->demangled_names_hash);
1902 objfile->demangled_names_hash = NULL;
1903 }
b99607ea 1904 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
1905 objfile->sections = NULL;
1906 objfile->symtabs = NULL;
1907 objfile->psymtabs = NULL;
1908 objfile->free_psymtabs = NULL;
a1b8c067 1909 objfile->cp_namespace_symtab = NULL;
c5aa993b 1910 objfile->msymbols = NULL;
0a6ddd08 1911 objfile->deprecated_sym_private = NULL;
c5aa993b 1912 objfile->minimal_symbol_count = 0;
0a83117a
MS
1913 memset (&objfile->msymbol_hash, 0,
1914 sizeof (objfile->msymbol_hash));
1915 memset (&objfile->msymbol_demangled_hash, 0,
1916 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 1917 objfile->fundamental_types = NULL;
7b097ae3 1918 clear_objfile_data (objfile);
c5aa993b
JM
1919 if (objfile->sf != NULL)
1920 {
1921 (*objfile->sf->sym_finish) (objfile);
1922 }
1923
1924 /* We never make this a mapped file. */
1925 objfile->md = NULL;
af5f3db6
AC
1926 objfile->psymbol_cache = bcache_xmalloc ();
1927 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
1928 /* obstack_init also initializes the obstack so it is
1929 empty. We could use obstack_specify_allocation but
1930 gdb_obstack.h specifies the alloc/dealloc
1931 functions. */
1932 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
1933 if (build_objfile_section_table (objfile))
1934 {
8a3fe4f8 1935 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
1936 objfile->name, bfd_errmsg (bfd_get_error ()));
1937 }
15831452 1938 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
1939
1940 /* We use the same section offsets as from last time. I'm not
1941 sure whether that is always correct for shared libraries. */
1942 objfile->section_offsets = (struct section_offsets *)
5417f6dc 1943 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 1944 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 1945 memcpy (objfile->section_offsets, offsets,
a39a16c4 1946 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
1947 objfile->num_sections = num_offsets;
1948
1949 /* What the hell is sym_new_init for, anyway? The concept of
1950 distinguishing between the main file and additional files
1951 in this way seems rather dubious. */
1952 if (objfile == symfile_objfile)
1953 {
1954 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
1955 }
1956
1957 (*objfile->sf->sym_init) (objfile);
b9caf505 1958 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
1959 /* The "mainline" parameter is a hideous hack; I think leaving it
1960 zero is OK since dbxread.c also does what it needs to do if
1961 objfile->global_psymbols.size is 0. */
96baa820 1962 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
1963 if (!have_partial_symbols () && !have_full_symbols ())
1964 {
1965 wrap_here ("");
a3f17187 1966 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
1967 wrap_here ("");
1968 }
1969 objfile->flags |= OBJF_SYMS;
1970
1971 /* We're done reading the symbol file; finish off complaints. */
b9caf505 1972 clear_complaints (&symfile_complaints, 0, 1);
c906108c 1973
c5aa993b
JM
1974 /* Getting new symbols may change our opinion about what is
1975 frameless. */
c906108c 1976
c5aa993b 1977 reinit_frame_cache ();
c906108c 1978
c5aa993b
JM
1979 /* Discard cleanups as symbol reading was successful. */
1980 discard_cleanups (old_cleanups);
c906108c 1981
c5aa993b
JM
1982 /* If the mtime has changed between the time we set new_modtime
1983 and now, we *want* this to be out of date, so don't call stat
1984 again now. */
1985 objfile->mtime = new_modtime;
1986 reread_one = 1;
5b5d99cf 1987 reread_separate_symbols (objfile);
c5aa993b 1988 }
c906108c
SS
1989 }
1990 }
c906108c
SS
1991
1992 if (reread_one)
1993 clear_symtab_users ();
1994}
5b5d99cf
JB
1995
1996
1997/* Handle separate debug info for OBJFILE, which has just been
1998 re-read:
1999 - If we had separate debug info before, but now we don't, get rid
2000 of the separated objfile.
2001 - If we didn't have separated debug info before, but now we do,
2002 read in the new separated debug info file.
2003 - If the debug link points to a different file, toss the old one
2004 and read the new one.
2005 This function does *not* handle the case where objfile is still
2006 using the same separate debug info file, but that file's timestamp
2007 has changed. That case should be handled by the loop in
2008 reread_symbols already. */
2009static void
2010reread_separate_symbols (struct objfile *objfile)
2011{
2012 char *debug_file;
2013 unsigned long crc32;
2014
2015 /* Does the updated objfile's debug info live in a
2016 separate file? */
2017 debug_file = find_separate_debug_file (objfile);
2018
2019 if (objfile->separate_debug_objfile)
2020 {
2021 /* There are two cases where we need to get rid of
2022 the old separated debug info objfile:
2023 - if the new primary objfile doesn't have
2024 separated debug info, or
2025 - if the new primary objfile has separate debug
2026 info, but it's under a different filename.
5417f6dc 2027
5b5d99cf
JB
2028 If the old and new objfiles both have separate
2029 debug info, under the same filename, then we're
2030 okay --- if the separated file's contents have
2031 changed, we will have caught that when we
2032 visited it in this function's outermost
2033 loop. */
2034 if (! debug_file
2035 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2036 free_objfile (objfile->separate_debug_objfile);
2037 }
2038
2039 /* If the new objfile has separate debug info, and we
2040 haven't loaded it already, do so now. */
2041 if (debug_file
2042 && ! objfile->separate_debug_objfile)
2043 {
2044 /* Use the same section offset table as objfile itself.
2045 Preserve the flags from objfile that make sense. */
2046 objfile->separate_debug_objfile
2047 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2048 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2049 info_verbose, /* from_tty: Don't override the default. */
2050 0, /* No addr table. */
2051 objfile->section_offsets, objfile->num_sections,
2052 0, /* Not mainline. See comments about this above. */
78a4a9b9 2053 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2054 | OBJF_USERLOADED)));
2055 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2056 = objfile;
2057 }
2058}
2059
2060
c906108c
SS
2061\f
2062
c5aa993b
JM
2063
2064typedef struct
2065{
2066 char *ext;
c906108c 2067 enum language lang;
c5aa993b
JM
2068}
2069filename_language;
c906108c 2070
c5aa993b 2071static filename_language *filename_language_table;
c906108c
SS
2072static int fl_table_size, fl_table_next;
2073
2074static void
fba45db2 2075add_filename_language (char *ext, enum language lang)
c906108c
SS
2076{
2077 if (fl_table_next >= fl_table_size)
2078 {
2079 fl_table_size += 10;
5417f6dc 2080 filename_language_table =
25bf3106
PM
2081 xrealloc (filename_language_table,
2082 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2083 }
2084
4fcf66da 2085 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2086 filename_language_table[fl_table_next].lang = lang;
2087 fl_table_next++;
2088}
2089
2090static char *ext_args;
2091
2092static void
fba45db2 2093set_ext_lang_command (char *args, int from_tty)
c906108c
SS
2094{
2095 int i;
2096 char *cp = ext_args;
2097 enum language lang;
2098
2099 /* First arg is filename extension, starting with '.' */
2100 if (*cp != '.')
8a3fe4f8 2101 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2102
2103 /* Find end of first arg. */
c5aa993b 2104 while (*cp && !isspace (*cp))
c906108c
SS
2105 cp++;
2106
2107 if (*cp == '\0')
8a3fe4f8 2108 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2109 ext_args);
2110
2111 /* Null-terminate first arg */
c5aa993b 2112 *cp++ = '\0';
c906108c
SS
2113
2114 /* Find beginning of second arg, which should be a source language. */
2115 while (*cp && isspace (*cp))
2116 cp++;
2117
2118 if (*cp == '\0')
8a3fe4f8 2119 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2120 ext_args);
2121
2122 /* Lookup the language from among those we know. */
2123 lang = language_enum (cp);
2124
2125 /* Now lookup the filename extension: do we already know it? */
2126 for (i = 0; i < fl_table_next; i++)
2127 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2128 break;
2129
2130 if (i >= fl_table_next)
2131 {
2132 /* new file extension */
2133 add_filename_language (ext_args, lang);
2134 }
2135 else
2136 {
2137 /* redefining a previously known filename extension */
2138
2139 /* if (from_tty) */
2140 /* query ("Really make files of type %s '%s'?", */
2141 /* ext_args, language_str (lang)); */
2142
b8c9b27d 2143 xfree (filename_language_table[i].ext);
4fcf66da 2144 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2145 filename_language_table[i].lang = lang;
2146 }
2147}
2148
2149static void
fba45db2 2150info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2151{
2152 int i;
2153
a3f17187 2154 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2155 printf_filtered ("\n\n");
2156 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2157 printf_filtered ("\t%s\t- %s\n",
2158 filename_language_table[i].ext,
c906108c
SS
2159 language_str (filename_language_table[i].lang));
2160}
2161
2162static void
fba45db2 2163init_filename_language_table (void)
c906108c
SS
2164{
2165 if (fl_table_size == 0) /* protect against repetition */
2166 {
2167 fl_table_size = 20;
2168 fl_table_next = 0;
c5aa993b 2169 filename_language_table =
c906108c 2170 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2171 add_filename_language (".c", language_c);
2172 add_filename_language (".C", language_cplus);
2173 add_filename_language (".cc", language_cplus);
2174 add_filename_language (".cp", language_cplus);
2175 add_filename_language (".cpp", language_cplus);
2176 add_filename_language (".cxx", language_cplus);
2177 add_filename_language (".c++", language_cplus);
2178 add_filename_language (".java", language_java);
c906108c 2179 add_filename_language (".class", language_java);
da2cf7e0 2180 add_filename_language (".m", language_objc);
c5aa993b
JM
2181 add_filename_language (".f", language_fortran);
2182 add_filename_language (".F", language_fortran);
2183 add_filename_language (".s", language_asm);
2184 add_filename_language (".S", language_asm);
c6fd39cd
PM
2185 add_filename_language (".pas", language_pascal);
2186 add_filename_language (".p", language_pascal);
2187 add_filename_language (".pp", language_pascal);
963a6417
PH
2188 add_filename_language (".adb", language_ada);
2189 add_filename_language (".ads", language_ada);
2190 add_filename_language (".a", language_ada);
2191 add_filename_language (".ada", language_ada);
c906108c
SS
2192 }
2193}
2194
2195enum language
fba45db2 2196deduce_language_from_filename (char *filename)
c906108c
SS
2197{
2198 int i;
2199 char *cp;
2200
2201 if (filename != NULL)
2202 if ((cp = strrchr (filename, '.')) != NULL)
2203 for (i = 0; i < fl_table_next; i++)
2204 if (strcmp (cp, filename_language_table[i].ext) == 0)
2205 return filename_language_table[i].lang;
2206
2207 return language_unknown;
2208}
2209\f
2210/* allocate_symtab:
2211
2212 Allocate and partly initialize a new symbol table. Return a pointer
2213 to it. error() if no space.
2214
2215 Caller must set these fields:
c5aa993b
JM
2216 LINETABLE(symtab)
2217 symtab->blockvector
2218 symtab->dirname
2219 symtab->free_code
2220 symtab->free_ptr
2221 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2222 */
2223
2224struct symtab *
fba45db2 2225allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2226{
52f0bd74 2227 struct symtab *symtab;
c906108c
SS
2228
2229 symtab = (struct symtab *)
4a146b47 2230 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2231 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2232 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2233 &objfile->objfile_obstack);
c5aa993b
JM
2234 symtab->fullname = NULL;
2235 symtab->language = deduce_language_from_filename (filename);
2236 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2237 &objfile->objfile_obstack);
c906108c
SS
2238
2239 /* Hook it to the objfile it comes from */
2240
c5aa993b
JM
2241 symtab->objfile = objfile;
2242 symtab->next = objfile->symtabs;
2243 objfile->symtabs = symtab;
c906108c
SS
2244
2245 /* FIXME: This should go away. It is only defined for the Z8000,
2246 and the Z8000 definition of this macro doesn't have anything to
2247 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2248 here for convenience. */
2249#ifdef INIT_EXTRA_SYMTAB_INFO
2250 INIT_EXTRA_SYMTAB_INFO (symtab);
2251#endif
2252
2253 return (symtab);
2254}
2255
2256struct partial_symtab *
fba45db2 2257allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2258{
2259 struct partial_symtab *psymtab;
2260
c5aa993b 2261 if (objfile->free_psymtabs)
c906108c 2262 {
c5aa993b
JM
2263 psymtab = objfile->free_psymtabs;
2264 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2265 }
2266 else
2267 psymtab = (struct partial_symtab *)
8b92e4d5 2268 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2269 sizeof (struct partial_symtab));
2270
2271 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2272 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2273 &objfile->objfile_obstack);
c5aa993b 2274 psymtab->symtab = NULL;
c906108c
SS
2275
2276 /* Prepend it to the psymtab list for the objfile it belongs to.
2277 Psymtabs are searched in most recent inserted -> least recent
2278 inserted order. */
2279
c5aa993b
JM
2280 psymtab->objfile = objfile;
2281 psymtab->next = objfile->psymtabs;
2282 objfile->psymtabs = psymtab;
c906108c
SS
2283#if 0
2284 {
2285 struct partial_symtab **prev_pst;
c5aa993b
JM
2286 psymtab->objfile = objfile;
2287 psymtab->next = NULL;
2288 prev_pst = &(objfile->psymtabs);
c906108c 2289 while ((*prev_pst) != NULL)
c5aa993b 2290 prev_pst = &((*prev_pst)->next);
c906108c 2291 (*prev_pst) = psymtab;
c5aa993b 2292 }
c906108c 2293#endif
c5aa993b 2294
c906108c
SS
2295 return (psymtab);
2296}
2297
2298void
fba45db2 2299discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2300{
2301 struct partial_symtab **prev_pst;
2302
2303 /* From dbxread.c:
2304 Empty psymtabs happen as a result of header files which don't
2305 have any symbols in them. There can be a lot of them. But this
2306 check is wrong, in that a psymtab with N_SLINE entries but
2307 nothing else is not empty, but we don't realize that. Fixing
2308 that without slowing things down might be tricky. */
2309
2310 /* First, snip it out of the psymtab chain */
2311
2312 prev_pst = &(pst->objfile->psymtabs);
2313 while ((*prev_pst) != pst)
2314 prev_pst = &((*prev_pst)->next);
2315 (*prev_pst) = pst->next;
2316
2317 /* Next, put it on a free list for recycling */
2318
2319 pst->next = pst->objfile->free_psymtabs;
2320 pst->objfile->free_psymtabs = pst;
2321}
c906108c 2322\f
c5aa993b 2323
c906108c
SS
2324/* Reset all data structures in gdb which may contain references to symbol
2325 table data. */
2326
2327void
fba45db2 2328clear_symtab_users (void)
c906108c
SS
2329{
2330 /* Someday, we should do better than this, by only blowing away
2331 the things that really need to be blown. */
2332 clear_value_history ();
2333 clear_displays ();
2334 clear_internalvars ();
2335 breakpoint_re_set ();
2336 set_default_breakpoint (0, 0, 0, 0);
0378c332 2337 clear_current_source_symtab_and_line ();
c906108c 2338 clear_pc_function_cache ();
9a4105ab
AC
2339 if (deprecated_target_new_objfile_hook)
2340 deprecated_target_new_objfile_hook (NULL);
c906108c
SS
2341}
2342
74b7792f
AC
2343static void
2344clear_symtab_users_cleanup (void *ignore)
2345{
2346 clear_symtab_users ();
2347}
2348
c906108c
SS
2349/* clear_symtab_users_once:
2350
2351 This function is run after symbol reading, or from a cleanup.
2352 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2353 has been blown away, but the other GDB data structures that may
c906108c
SS
2354 reference it have not yet been cleared or re-directed. (The old
2355 symtab was zapped, and the cleanup queued, in free_named_symtab()
2356 below.)
2357
2358 This function can be queued N times as a cleanup, or called
2359 directly; it will do all the work the first time, and then will be a
2360 no-op until the next time it is queued. This works by bumping a
2361 counter at queueing time. Much later when the cleanup is run, or at
2362 the end of symbol processing (in case the cleanup is discarded), if
2363 the queued count is greater than the "done-count", we do the work
2364 and set the done-count to the queued count. If the queued count is
2365 less than or equal to the done-count, we just ignore the call. This
2366 is needed because reading a single .o file will often replace many
2367 symtabs (one per .h file, for example), and we don't want to reset
2368 the breakpoints N times in the user's face.
2369
2370 The reason we both queue a cleanup, and call it directly after symbol
2371 reading, is because the cleanup protects us in case of errors, but is
2372 discarded if symbol reading is successful. */
2373
2374#if 0
2375/* FIXME: As free_named_symtabs is currently a big noop this function
2376 is no longer needed. */
a14ed312 2377static void clear_symtab_users_once (void);
c906108c
SS
2378
2379static int clear_symtab_users_queued;
2380static int clear_symtab_users_done;
2381
2382static void
fba45db2 2383clear_symtab_users_once (void)
c906108c
SS
2384{
2385 /* Enforce once-per-`do_cleanups'-semantics */
2386 if (clear_symtab_users_queued <= clear_symtab_users_done)
2387 return;
2388 clear_symtab_users_done = clear_symtab_users_queued;
2389
2390 clear_symtab_users ();
2391}
2392#endif
2393
2394/* Delete the specified psymtab, and any others that reference it. */
2395
2396static void
fba45db2 2397cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2398{
2399 struct partial_symtab *ps, *pprev = NULL;
2400 int i;
2401
2402 /* Find its previous psymtab in the chain */
c5aa993b
JM
2403 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2404 {
2405 if (ps == pst)
2406 break;
2407 pprev = ps;
2408 }
c906108c 2409
c5aa993b
JM
2410 if (ps)
2411 {
2412 /* Unhook it from the chain. */
2413 if (ps == pst->objfile->psymtabs)
2414 pst->objfile->psymtabs = ps->next;
2415 else
2416 pprev->next = ps->next;
2417
2418 /* FIXME, we can't conveniently deallocate the entries in the
2419 partial_symbol lists (global_psymbols/static_psymbols) that
2420 this psymtab points to. These just take up space until all
2421 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2422 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2423
2424 /* We need to cashier any psymtab that has this one as a dependency... */
2425 again:
2426 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2427 {
2428 for (i = 0; i < ps->number_of_dependencies; i++)
2429 {
2430 if (ps->dependencies[i] == pst)
2431 {
2432 cashier_psymtab (ps);
2433 goto again; /* Must restart, chain has been munged. */
2434 }
2435 }
c906108c 2436 }
c906108c 2437 }
c906108c
SS
2438}
2439
2440/* If a symtab or psymtab for filename NAME is found, free it along
2441 with any dependent breakpoints, displays, etc.
2442 Used when loading new versions of object modules with the "add-file"
2443 command. This is only called on the top-level symtab or psymtab's name;
2444 it is not called for subsidiary files such as .h files.
2445
2446 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2447 FIXME. The return value appears to never be used.
c906108c
SS
2448
2449 FIXME. I think this is not the best way to do this. We should
2450 work on being gentler to the environment while still cleaning up
2451 all stray pointers into the freed symtab. */
2452
2453int
fba45db2 2454free_named_symtabs (char *name)
c906108c
SS
2455{
2456#if 0
2457 /* FIXME: With the new method of each objfile having it's own
2458 psymtab list, this function needs serious rethinking. In particular,
2459 why was it ever necessary to toss psymtabs with specific compilation
2460 unit filenames, as opposed to all psymtabs from a particular symbol
2461 file? -- fnf
2462 Well, the answer is that some systems permit reloading of particular
2463 compilation units. We want to blow away any old info about these
2464 compilation units, regardless of which objfiles they arrived in. --gnu. */
2465
52f0bd74
AC
2466 struct symtab *s;
2467 struct symtab *prev;
2468 struct partial_symtab *ps;
c906108c
SS
2469 struct blockvector *bv;
2470 int blewit = 0;
2471
2472 /* We only wack things if the symbol-reload switch is set. */
2473 if (!symbol_reloading)
2474 return 0;
2475
2476 /* Some symbol formats have trouble providing file names... */
2477 if (name == 0 || *name == '\0')
2478 return 0;
2479
2480 /* Look for a psymtab with the specified name. */
2481
2482again2:
c5aa993b
JM
2483 for (ps = partial_symtab_list; ps; ps = ps->next)
2484 {
6314a349 2485 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2486 {
2487 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2488 goto again2; /* Must restart, chain has been munged */
2489 }
c906108c 2490 }
c906108c
SS
2491
2492 /* Look for a symtab with the specified name. */
2493
2494 for (s = symtab_list; s; s = s->next)
2495 {
6314a349 2496 if (strcmp (name, s->filename) == 0)
c906108c
SS
2497 break;
2498 prev = s;
2499 }
2500
2501 if (s)
2502 {
2503 if (s == symtab_list)
2504 symtab_list = s->next;
2505 else
2506 prev->next = s->next;
2507
2508 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2509 or not they depend on the symtab being freed. This should be
2510 changed so that only those data structures affected are deleted. */
c906108c
SS
2511
2512 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2513 This test is necessary due to a bug in "dbxread.c" that
2514 causes empty symtabs to be created for N_SO symbols that
2515 contain the pathname of the object file. (This problem
2516 has been fixed in GDB 3.9x). */
c906108c
SS
2517
2518 bv = BLOCKVECTOR (s);
2519 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2520 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2521 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2522 {
e2e0b3e5 2523 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 2524 name);
c906108c
SS
2525 clear_symtab_users_queued++;
2526 make_cleanup (clear_symtab_users_once, 0);
2527 blewit = 1;
c5aa993b
JM
2528 }
2529 else
e2e0b3e5
AC
2530 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2531 name);
c906108c
SS
2532
2533 free_symtab (s);
2534 }
2535 else
2536 {
2537 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2538 even though no symtab was found, since the file might have
2539 been compiled without debugging, and hence not be associated
2540 with a symtab. In order to handle this correctly, we would need
2541 to keep a list of text address ranges for undebuggable files.
2542 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2543 ;
2544 }
2545
2546 /* FIXME, what about the minimal symbol table? */
2547 return blewit;
2548#else
2549 return (0);
2550#endif
2551}
2552\f
2553/* Allocate and partially fill a partial symtab. It will be
2554 completely filled at the end of the symbol list.
2555
d4f3574e 2556 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2557
2558struct partial_symtab *
fba45db2
KB
2559start_psymtab_common (struct objfile *objfile,
2560 struct section_offsets *section_offsets, char *filename,
2561 CORE_ADDR textlow, struct partial_symbol **global_syms,
2562 struct partial_symbol **static_syms)
c906108c
SS
2563{
2564 struct partial_symtab *psymtab;
2565
2566 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2567 psymtab->section_offsets = section_offsets;
2568 psymtab->textlow = textlow;
2569 psymtab->texthigh = psymtab->textlow; /* default */
2570 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2571 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2572 return (psymtab);
2573}
2574\f
2575/* Add a symbol with a long value to a psymtab.
5417f6dc 2576 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
2577 Return the partial symbol that has been added. */
2578
2579/* NOTE: carlton/2003-09-11: The reason why we return the partial
2580 symbol is so that callers can get access to the symbol's demangled
2581 name, which they don't have any cheap way to determine otherwise.
2582 (Currenly, dwarf2read.c is the only file who uses that information,
2583 though it's possible that other readers might in the future.)
2584 Elena wasn't thrilled about that, and I don't blame her, but we
2585 couldn't come up with a better way to get that information. If
2586 it's needed in other situations, we could consider breaking up
2587 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2588 cache. */
2589
2590const struct partial_symbol *
176620f1 2591add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
2592 enum address_class class,
2593 struct psymbol_allocation_list *list, long val, /* Value as a long */
2594 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2595 enum language language, struct objfile *objfile)
c906108c 2596{
52f0bd74 2597 struct partial_symbol *psym;
c906108c
SS
2598 char *buf = alloca (namelength + 1);
2599 /* psymbol is static so that there will be no uninitialized gaps in the
2600 structure which might contain random data, causing cache misses in
2601 bcache. */
2602 static struct partial_symbol psymbol;
2603
2604 /* Create local copy of the partial symbol */
2605 memcpy (buf, name, namelength);
2606 buf[namelength] = '\0';
c906108c
SS
2607 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2608 if (val != 0)
2609 {
2610 SYMBOL_VALUE (&psymbol) = val;
2611 }
2612 else
2613 {
2614 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2615 }
2616 SYMBOL_SECTION (&psymbol) = 0;
2617 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2618 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 2619 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
2620
2621 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
2622
2623 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2624 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2625 objfile->psymbol_cache);
c906108c
SS
2626
2627 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2628 if (list->next >= list->list + list->size)
2629 {
2630 extend_psymbol_list (list, objfile);
2631 }
2632 *list->next++ = psym;
2633 OBJSTAT (objfile, n_psyms++);
5c4e30ca
DC
2634
2635 return psym;
c906108c
SS
2636}
2637
2638/* Add a symbol with a long value to a psymtab. This differs from
2639 * add_psymbol_to_list above in taking both a mangled and a demangled
2640 * name. */
2641
2642void
fba45db2 2643add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
176620f1 2644 int dem_namelength, domain_enum domain,
fba45db2
KB
2645 enum address_class class,
2646 struct psymbol_allocation_list *list, long val, /* Value as a long */
2647 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2648 enum language language,
2649 struct objfile *objfile)
c906108c 2650{
52f0bd74 2651 struct partial_symbol *psym;
c906108c
SS
2652 char *buf = alloca (namelength + 1);
2653 /* psymbol is static so that there will be no uninitialized gaps in the
2654 structure which might contain random data, causing cache misses in
2655 bcache. */
2656 static struct partial_symbol psymbol;
2657
2658 /* Create local copy of the partial symbol */
2659
2660 memcpy (buf, name, namelength);
2661 buf[namelength] = '\0';
3a16a68c
AC
2662 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2663 objfile->psymbol_cache);
c906108c
SS
2664
2665 buf = alloca (dem_namelength + 1);
2666 memcpy (buf, dem_name, dem_namelength);
2667 buf[dem_namelength] = '\0';
c5aa993b 2668
c906108c
SS
2669 switch (language)
2670 {
c5aa993b
JM
2671 case language_c:
2672 case language_cplus:
2673 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
3a16a68c 2674 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
c5aa993b 2675 break;
c906108c
SS
2676 /* FIXME What should be done for the default case? Ignoring for now. */
2677 }
2678
2679 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2680 if (val != 0)
2681 {
2682 SYMBOL_VALUE (&psymbol) = val;
2683 }
2684 else
2685 {
2686 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2687 }
2688 SYMBOL_SECTION (&psymbol) = 0;
2689 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2690 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c
SS
2691 PSYMBOL_CLASS (&psymbol) = class;
2692 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2693
2694 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2695 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2696 objfile->psymbol_cache);
c906108c
SS
2697
2698 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2699 if (list->next >= list->list + list->size)
2700 {
2701 extend_psymbol_list (list, objfile);
2702 }
2703 *list->next++ = psym;
2704 OBJSTAT (objfile, n_psyms++);
2705}
2706
2707/* Initialize storage for partial symbols. */
2708
2709void
fba45db2 2710init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2711{
2712 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2713
2714 if (objfile->global_psymbols.list)
c906108c 2715 {
2dc74dc1 2716 xfree (objfile->global_psymbols.list);
c906108c 2717 }
c5aa993b 2718 if (objfile->static_psymbols.list)
c906108c 2719 {
2dc74dc1 2720 xfree (objfile->static_psymbols.list);
c906108c 2721 }
c5aa993b 2722
c906108c
SS
2723 /* Current best guess is that approximately a twentieth
2724 of the total symbols (in a debugging file) are global or static
2725 oriented symbols */
c906108c 2726
c5aa993b
JM
2727 objfile->global_psymbols.size = total_symbols / 10;
2728 objfile->static_psymbols.size = total_symbols / 10;
2729
2730 if (objfile->global_psymbols.size > 0)
c906108c 2731 {
c5aa993b
JM
2732 objfile->global_psymbols.next =
2733 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
2734 xmalloc ((objfile->global_psymbols.size
2735 * sizeof (struct partial_symbol *)));
c906108c 2736 }
c5aa993b 2737 if (objfile->static_psymbols.size > 0)
c906108c 2738 {
c5aa993b
JM
2739 objfile->static_psymbols.next =
2740 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
2741 xmalloc ((objfile->static_psymbols.size
2742 * sizeof (struct partial_symbol *)));
c906108c
SS
2743 }
2744}
2745
2746/* OVERLAYS:
2747 The following code implements an abstraction for debugging overlay sections.
2748
2749 The target model is as follows:
2750 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2751 same VMA, each with its own unique LMA (or load address).
c906108c 2752 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2753 sections, one by one, from the load address into the VMA address.
5417f6dc 2754 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2755 sections should be considered to be mapped from the VMA to the LMA.
2756 This information is used for symbol lookup, and memory read/write.
5417f6dc 2757 For instance, if a section has been mapped then its contents
c5aa993b 2758 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2759
2760 Two levels of debugger support for overlays are available. One is
2761 "manual", in which the debugger relies on the user to tell it which
2762 overlays are currently mapped. This level of support is
2763 implemented entirely in the core debugger, and the information about
2764 whether a section is mapped is kept in the objfile->obj_section table.
2765
2766 The second level of support is "automatic", and is only available if
2767 the target-specific code provides functionality to read the target's
2768 overlay mapping table, and translate its contents for the debugger
2769 (by updating the mapped state information in the obj_section tables).
2770
2771 The interface is as follows:
c5aa993b
JM
2772 User commands:
2773 overlay map <name> -- tell gdb to consider this section mapped
2774 overlay unmap <name> -- tell gdb to consider this section unmapped
2775 overlay list -- list the sections that GDB thinks are mapped
2776 overlay read-target -- get the target's state of what's mapped
2777 overlay off/manual/auto -- set overlay debugging state
2778 Functional interface:
2779 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2780 section, return that section.
5417f6dc 2781 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
2782 the pc, either in its VMA or its LMA
2783 overlay_is_mapped(sect): true if overlay is marked as mapped
2784 section_is_overlay(sect): true if section's VMA != LMA
2785 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2786 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2787 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2788 overlay_mapped_address(...): map an address from section's LMA to VMA
2789 overlay_unmapped_address(...): map an address from section's VMA to LMA
2790 symbol_overlayed_address(...): Return a "current" address for symbol:
2791 either in VMA or LMA depending on whether
2792 the symbol's section is currently mapped
c906108c
SS
2793 */
2794
2795/* Overlay debugging state: */
2796
d874f1e2 2797enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2798int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2799
2800/* Target vector for refreshing overlay mapped state */
a14ed312 2801static void simple_overlay_update (struct obj_section *);
507f3c78 2802void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2803
2804/* Function: section_is_overlay (SECTION)
5417f6dc 2805 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2806 SECTION is loaded at an address different from where it will "run". */
2807
2808int
fba45db2 2809section_is_overlay (asection *section)
c906108c 2810{
fbd35540
MS
2811 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2812
c906108c
SS
2813 if (overlay_debugging)
2814 if (section && section->lma != 0 &&
2815 section->vma != section->lma)
2816 return 1;
2817
2818 return 0;
2819}
2820
2821/* Function: overlay_invalidate_all (void)
2822 Invalidate the mapped state of all overlay sections (mark it as stale). */
2823
2824static void
fba45db2 2825overlay_invalidate_all (void)
c906108c 2826{
c5aa993b 2827 struct objfile *objfile;
c906108c
SS
2828 struct obj_section *sect;
2829
2830 ALL_OBJSECTIONS (objfile, sect)
2831 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 2832 sect->ovly_mapped = -1;
c906108c
SS
2833}
2834
2835/* Function: overlay_is_mapped (SECTION)
5417f6dc 2836 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2837 Private: public access is thru function section_is_mapped.
2838
2839 Access to the ovly_mapped flag is restricted to this function, so
2840 that we can do automatic update. If the global flag
2841 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2842 overlay_invalidate_all. If the mapped state of the particular
2843 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2844
c5aa993b 2845static int
fba45db2 2846overlay_is_mapped (struct obj_section *osect)
c906108c
SS
2847{
2848 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2849 return 0;
2850
c5aa993b 2851 switch (overlay_debugging)
c906108c
SS
2852 {
2853 default:
d874f1e2 2854 case ovly_off:
c5aa993b 2855 return 0; /* overlay debugging off */
d874f1e2 2856 case ovly_auto: /* overlay debugging automatic */
5417f6dc 2857 /* Unles there is a target_overlay_update function,
c5aa993b 2858 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
2859 if (target_overlay_update)
2860 {
2861 if (overlay_cache_invalid)
2862 {
2863 overlay_invalidate_all ();
2864 overlay_cache_invalid = 0;
2865 }
2866 if (osect->ovly_mapped == -1)
2867 (*target_overlay_update) (osect);
2868 }
2869 /* fall thru to manual case */
d874f1e2 2870 case ovly_on: /* overlay debugging manual */
c906108c
SS
2871 return osect->ovly_mapped == 1;
2872 }
2873}
2874
2875/* Function: section_is_mapped
2876 Returns true if section is an overlay, and is currently mapped. */
2877
2878int
fba45db2 2879section_is_mapped (asection *section)
c906108c 2880{
c5aa993b 2881 struct objfile *objfile;
c906108c
SS
2882 struct obj_section *osect;
2883
2884 if (overlay_debugging)
2885 if (section && section_is_overlay (section))
2886 ALL_OBJSECTIONS (objfile, osect)
2887 if (osect->the_bfd_section == section)
c5aa993b 2888 return overlay_is_mapped (osect);
c906108c
SS
2889
2890 return 0;
2891}
2892
2893/* Function: pc_in_unmapped_range
2894 If PC falls into the lma range of SECTION, return true, else false. */
2895
2896CORE_ADDR
fba45db2 2897pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 2898{
fbd35540
MS
2899 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2900
c906108c
SS
2901 int size;
2902
2903 if (overlay_debugging)
2904 if (section && section_is_overlay (section))
2905 {
2c500098 2906 size = bfd_get_section_size (section);
c906108c
SS
2907 if (section->lma <= pc && pc < section->lma + size)
2908 return 1;
2909 }
2910 return 0;
2911}
2912
2913/* Function: pc_in_mapped_range
2914 If PC falls into the vma range of SECTION, return true, else false. */
2915
2916CORE_ADDR
fba45db2 2917pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 2918{
fbd35540
MS
2919 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2920
c906108c
SS
2921 int size;
2922
2923 if (overlay_debugging)
2924 if (section && section_is_overlay (section))
2925 {
2c500098 2926 size = bfd_get_section_size (section);
c906108c
SS
2927 if (section->vma <= pc && pc < section->vma + size)
2928 return 1;
2929 }
2930 return 0;
2931}
2932
9ec8e6a0
JB
2933
2934/* Return true if the mapped ranges of sections A and B overlap, false
2935 otherwise. */
b9362cc7 2936static int
9ec8e6a0
JB
2937sections_overlap (asection *a, asection *b)
2938{
fbd35540
MS
2939 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2940
9ec8e6a0 2941 CORE_ADDR a_start = a->vma;
2c500098 2942 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
9ec8e6a0 2943 CORE_ADDR b_start = b->vma;
2c500098 2944 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
9ec8e6a0
JB
2945
2946 return (a_start < b_end && b_start < a_end);
2947}
2948
c906108c
SS
2949/* Function: overlay_unmapped_address (PC, SECTION)
2950 Returns the address corresponding to PC in the unmapped (load) range.
2951 May be the same as PC. */
2952
2953CORE_ADDR
fba45db2 2954overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 2955{
fbd35540
MS
2956 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2957
c906108c
SS
2958 if (overlay_debugging)
2959 if (section && section_is_overlay (section) &&
2960 pc_in_mapped_range (pc, section))
2961 return pc + section->lma - section->vma;
2962
2963 return pc;
2964}
2965
2966/* Function: overlay_mapped_address (PC, SECTION)
2967 Returns the address corresponding to PC in the mapped (runtime) range.
2968 May be the same as PC. */
2969
2970CORE_ADDR
fba45db2 2971overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 2972{
fbd35540
MS
2973 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2974
c906108c
SS
2975 if (overlay_debugging)
2976 if (section && section_is_overlay (section) &&
2977 pc_in_unmapped_range (pc, section))
2978 return pc + section->vma - section->lma;
2979
2980 return pc;
2981}
2982
2983
5417f6dc 2984/* Function: symbol_overlayed_address
c906108c
SS
2985 Return one of two addresses (relative to the VMA or to the LMA),
2986 depending on whether the section is mapped or not. */
2987
c5aa993b 2988CORE_ADDR
fba45db2 2989symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
2990{
2991 if (overlay_debugging)
2992 {
2993 /* If the symbol has no section, just return its regular address. */
2994 if (section == 0)
2995 return address;
2996 /* If the symbol's section is not an overlay, just return its address */
2997 if (!section_is_overlay (section))
2998 return address;
2999 /* If the symbol's section is mapped, just return its address */
3000 if (section_is_mapped (section))
3001 return address;
3002 /*
3003 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3004 * then return its LOADED address rather than its vma address!!
3005 */
3006 return overlay_unmapped_address (address, section);
3007 }
3008 return address;
3009}
3010
5417f6dc 3011/* Function: find_pc_overlay (PC)
c906108c
SS
3012 Return the best-match overlay section for PC:
3013 If PC matches a mapped overlay section's VMA, return that section.
3014 Else if PC matches an unmapped section's VMA, return that section.
3015 Else if PC matches an unmapped section's LMA, return that section. */
3016
3017asection *
fba45db2 3018find_pc_overlay (CORE_ADDR pc)
c906108c 3019{
c5aa993b 3020 struct objfile *objfile;
c906108c
SS
3021 struct obj_section *osect, *best_match = NULL;
3022
3023 if (overlay_debugging)
3024 ALL_OBJSECTIONS (objfile, osect)
3025 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3026 {
3027 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3028 {
3029 if (overlay_is_mapped (osect))
3030 return osect->the_bfd_section;
3031 else
3032 best_match = osect;
3033 }
3034 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3035 best_match = osect;
3036 }
c906108c
SS
3037 return best_match ? best_match->the_bfd_section : NULL;
3038}
3039
3040/* Function: find_pc_mapped_section (PC)
5417f6dc 3041 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3042 currently marked as MAPPED, return that section. Else return NULL. */
3043
3044asection *
fba45db2 3045find_pc_mapped_section (CORE_ADDR pc)
c906108c 3046{
c5aa993b 3047 struct objfile *objfile;
c906108c
SS
3048 struct obj_section *osect;
3049
3050 if (overlay_debugging)
3051 ALL_OBJSECTIONS (objfile, osect)
3052 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3053 overlay_is_mapped (osect))
c5aa993b 3054 return osect->the_bfd_section;
c906108c
SS
3055
3056 return NULL;
3057}
3058
3059/* Function: list_overlays_command
3060 Print a list of mapped sections and their PC ranges */
3061
3062void
fba45db2 3063list_overlays_command (char *args, int from_tty)
c906108c 3064{
c5aa993b
JM
3065 int nmapped = 0;
3066 struct objfile *objfile;
c906108c
SS
3067 struct obj_section *osect;
3068
3069 if (overlay_debugging)
3070 ALL_OBJSECTIONS (objfile, osect)
3071 if (overlay_is_mapped (osect))
c5aa993b
JM
3072 {
3073 const char *name;
3074 bfd_vma lma, vma;
3075 int size;
3076
3077 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3078 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3079 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3080 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3081
3082 printf_filtered ("Section %s, loaded at ", name);
66bf4b3a 3083 deprecated_print_address_numeric (lma, 1, gdb_stdout);
c5aa993b 3084 puts_filtered (" - ");
66bf4b3a 3085 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
c5aa993b 3086 printf_filtered (", mapped at ");
66bf4b3a 3087 deprecated_print_address_numeric (vma, 1, gdb_stdout);
c5aa993b 3088 puts_filtered (" - ");
66bf4b3a 3089 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
c5aa993b
JM
3090 puts_filtered ("\n");
3091
3092 nmapped++;
3093 }
c906108c 3094 if (nmapped == 0)
a3f17187 3095 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3096}
3097
3098/* Function: map_overlay_command
3099 Mark the named section as mapped (ie. residing at its VMA address). */
3100
3101void
fba45db2 3102map_overlay_command (char *args, int from_tty)
c906108c 3103{
c5aa993b
JM
3104 struct objfile *objfile, *objfile2;
3105 struct obj_section *sec, *sec2;
3106 asection *bfdsec;
c906108c
SS
3107
3108 if (!overlay_debugging)
8a3fe4f8 3109 error (_("\
515ad16c 3110Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3111the 'overlay manual' command."));
c906108c
SS
3112
3113 if (args == 0 || *args == 0)
8a3fe4f8 3114 error (_("Argument required: name of an overlay section"));
c906108c
SS
3115
3116 /* First, find a section matching the user supplied argument */
3117 ALL_OBJSECTIONS (objfile, sec)
3118 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3119 {
3120 /* Now, check to see if the section is an overlay. */
3121 bfdsec = sec->the_bfd_section;
3122 if (!section_is_overlay (bfdsec))
3123 continue; /* not an overlay section */
3124
3125 /* Mark the overlay as "mapped" */
3126 sec->ovly_mapped = 1;
3127
3128 /* Next, make a pass and unmap any sections that are
3129 overlapped by this new section: */
3130 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3131 if (sec2->ovly_mapped
3132 && sec != sec2
3133 && sec->the_bfd_section != sec2->the_bfd_section
3134 && sections_overlap (sec->the_bfd_section,
3135 sec2->the_bfd_section))
c5aa993b
JM
3136 {
3137 if (info_verbose)
a3f17187 3138 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3139 bfd_section_name (objfile->obfd,
3140 sec2->the_bfd_section));
3141 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3142 }
3143 return;
3144 }
8a3fe4f8 3145 error (_("No overlay section called %s"), args);
c906108c
SS
3146}
3147
3148/* Function: unmap_overlay_command
5417f6dc 3149 Mark the overlay section as unmapped
c906108c
SS
3150 (ie. resident in its LMA address range, rather than the VMA range). */
3151
3152void
fba45db2 3153unmap_overlay_command (char *args, int from_tty)
c906108c 3154{
c5aa993b 3155 struct objfile *objfile;
c906108c
SS
3156 struct obj_section *sec;
3157
3158 if (!overlay_debugging)
8a3fe4f8 3159 error (_("\
515ad16c 3160Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3161the 'overlay manual' command."));
c906108c
SS
3162
3163 if (args == 0 || *args == 0)
8a3fe4f8 3164 error (_("Argument required: name of an overlay section"));
c906108c
SS
3165
3166 /* First, find a section matching the user supplied argument */
3167 ALL_OBJSECTIONS (objfile, sec)
3168 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3169 {
3170 if (!sec->ovly_mapped)
8a3fe4f8 3171 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3172 sec->ovly_mapped = 0;
3173 return;
3174 }
8a3fe4f8 3175 error (_("No overlay section called %s"), args);
c906108c
SS
3176}
3177
3178/* Function: overlay_auto_command
3179 A utility command to turn on overlay debugging.
3180 Possibly this should be done via a set/show command. */
3181
3182static void
fba45db2 3183overlay_auto_command (char *args, int from_tty)
c906108c 3184{
d874f1e2 3185 overlay_debugging = ovly_auto;
1900040c 3186 enable_overlay_breakpoints ();
c906108c 3187 if (info_verbose)
a3f17187 3188 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3189}
3190
3191/* Function: overlay_manual_command
3192 A utility command to turn on overlay debugging.
3193 Possibly this should be done via a set/show command. */
3194
3195static void
fba45db2 3196overlay_manual_command (char *args, int from_tty)
c906108c 3197{
d874f1e2 3198 overlay_debugging = ovly_on;
1900040c 3199 disable_overlay_breakpoints ();
c906108c 3200 if (info_verbose)
a3f17187 3201 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3202}
3203
3204/* Function: overlay_off_command
3205 A utility command to turn on overlay debugging.
3206 Possibly this should be done via a set/show command. */
3207
3208static void
fba45db2 3209overlay_off_command (char *args, int from_tty)
c906108c 3210{
d874f1e2 3211 overlay_debugging = ovly_off;
1900040c 3212 disable_overlay_breakpoints ();
c906108c 3213 if (info_verbose)
a3f17187 3214 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3215}
3216
3217static void
fba45db2 3218overlay_load_command (char *args, int from_tty)
c906108c
SS
3219{
3220 if (target_overlay_update)
3221 (*target_overlay_update) (NULL);
3222 else
8a3fe4f8 3223 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3224}
3225
3226/* Function: overlay_command
3227 A place-holder for a mis-typed command */
3228
3229/* Command list chain containing all defined "overlay" subcommands. */
3230struct cmd_list_element *overlaylist;
3231
3232static void
fba45db2 3233overlay_command (char *args, int from_tty)
c906108c 3234{
c5aa993b 3235 printf_unfiltered
c906108c
SS
3236 ("\"overlay\" must be followed by the name of an overlay command.\n");
3237 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3238}
3239
3240
3241/* Target Overlays for the "Simplest" overlay manager:
3242
5417f6dc
RM
3243 This is GDB's default target overlay layer. It works with the
3244 minimal overlay manager supplied as an example by Cygnus. The
3245 entry point is via a function pointer "target_overlay_update",
3246 so targets that use a different runtime overlay manager can
c906108c
SS
3247 substitute their own overlay_update function and take over the
3248 function pointer.
3249
3250 The overlay_update function pokes around in the target's data structures
3251 to see what overlays are mapped, and updates GDB's overlay mapping with
3252 this information.
3253
3254 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3255 unsigned _novlys; /# number of overlay sections #/
3256 unsigned _ovly_table[_novlys][4] = {
3257 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3258 {..., ..., ..., ...},
3259 }
3260 unsigned _novly_regions; /# number of overlay regions #/
3261 unsigned _ovly_region_table[_novly_regions][3] = {
3262 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3263 {..., ..., ...},
3264 }
c906108c
SS
3265 These functions will attempt to update GDB's mappedness state in the
3266 symbol section table, based on the target's mappedness state.
3267
3268 To do this, we keep a cached copy of the target's _ovly_table, and
3269 attempt to detect when the cached copy is invalidated. The main
3270 entry point is "simple_overlay_update(SECT), which looks up SECT in
3271 the cached table and re-reads only the entry for that section from
3272 the target (whenever possible).
3273 */
3274
3275/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3276static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3277#if 0
c5aa993b 3278static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3279#endif
c5aa993b 3280static unsigned cache_novlys = 0;
c906108c 3281#if 0
c5aa993b 3282static unsigned cache_novly_regions = 0;
c906108c
SS
3283#endif
3284static CORE_ADDR cache_ovly_table_base = 0;
3285#if 0
3286static CORE_ADDR cache_ovly_region_table_base = 0;
3287#endif
c5aa993b
JM
3288enum ovly_index
3289 {
3290 VMA, SIZE, LMA, MAPPED
3291 };
c906108c
SS
3292#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3293
3294/* Throw away the cached copy of _ovly_table */
3295static void
fba45db2 3296simple_free_overlay_table (void)
c906108c
SS
3297{
3298 if (cache_ovly_table)
b8c9b27d 3299 xfree (cache_ovly_table);
c5aa993b 3300 cache_novlys = 0;
c906108c
SS
3301 cache_ovly_table = NULL;
3302 cache_ovly_table_base = 0;
3303}
3304
3305#if 0
3306/* Throw away the cached copy of _ovly_region_table */
3307static void
fba45db2 3308simple_free_overlay_region_table (void)
c906108c
SS
3309{
3310 if (cache_ovly_region_table)
b8c9b27d 3311 xfree (cache_ovly_region_table);
c5aa993b 3312 cache_novly_regions = 0;
c906108c
SS
3313 cache_ovly_region_table = NULL;
3314 cache_ovly_region_table_base = 0;
3315}
3316#endif
3317
3318/* Read an array of ints from the target into a local buffer.
3319 Convert to host order. int LEN is number of ints */
3320static void
fba45db2 3321read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3322{
34c0bd93 3323 /* FIXME (alloca): Not safe if array is very large. */
c906108c 3324 char *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3325 int i;
c906108c
SS
3326
3327 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3328 for (i = 0; i < len; i++)
c5aa993b 3329 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3330 TARGET_LONG_BYTES);
3331}
3332
3333/* Find and grab a copy of the target _ovly_table
3334 (and _novlys, which is needed for the table's size) */
c5aa993b 3335static int
fba45db2 3336simple_read_overlay_table (void)
c906108c 3337{
0d43edd1 3338 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3339
3340 simple_free_overlay_table ();
9b27852e 3341 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3342 if (! novlys_msym)
c906108c 3343 {
8a3fe4f8 3344 error (_("Error reading inferior's overlay table: "
0d43edd1 3345 "couldn't find `_novlys' variable\n"
8a3fe4f8 3346 "in inferior. Use `overlay manual' mode."));
0d43edd1 3347 return 0;
c906108c 3348 }
0d43edd1 3349
9b27852e 3350 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3351 if (! ovly_table_msym)
3352 {
8a3fe4f8 3353 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3354 "`_ovly_table' array\n"
8a3fe4f8 3355 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3356 return 0;
3357 }
3358
3359 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3360 cache_ovly_table
3361 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3362 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3363 read_target_long_array (cache_ovly_table_base,
3364 (int *) cache_ovly_table,
3365 cache_novlys * 4);
3366
c5aa993b 3367 return 1; /* SUCCESS */
c906108c
SS
3368}
3369
3370#if 0
3371/* Find and grab a copy of the target _ovly_region_table
3372 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3373static int
fba45db2 3374simple_read_overlay_region_table (void)
c906108c
SS
3375{
3376 struct minimal_symbol *msym;
3377
3378 simple_free_overlay_region_table ();
9b27852e 3379 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3380 if (msym != NULL)
3381 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3382 else
3383 return 0; /* failure */
c906108c
SS
3384 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3385 if (cache_ovly_region_table != NULL)
3386 {
9b27852e 3387 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3388 if (msym != NULL)
3389 {
3390 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
3391 read_target_long_array (cache_ovly_region_table_base,
3392 (int *) cache_ovly_region_table,
c906108c
SS
3393 cache_novly_regions * 3);
3394 }
c5aa993b
JM
3395 else
3396 return 0; /* failure */
c906108c 3397 }
c5aa993b
JM
3398 else
3399 return 0; /* failure */
3400 return 1; /* SUCCESS */
c906108c
SS
3401}
3402#endif
3403
5417f6dc 3404/* Function: simple_overlay_update_1
c906108c
SS
3405 A helper function for simple_overlay_update. Assuming a cached copy
3406 of _ovly_table exists, look through it to find an entry whose vma,
3407 lma and size match those of OSECT. Re-read the entry and make sure
3408 it still matches OSECT (else the table may no longer be valid).
3409 Set OSECT's mapped state to match the entry. Return: 1 for
3410 success, 0 for failure. */
3411
3412static int
fba45db2 3413simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3414{
3415 int i, size;
fbd35540
MS
3416 bfd *obfd = osect->objfile->obfd;
3417 asection *bsect = osect->the_bfd_section;
c906108c 3418
2c500098 3419 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3420 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3421 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3422 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3423 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3424 {
3425 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3426 (int *) cache_ovly_table[i], 4);
fbd35540
MS
3427 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3428 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3429 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3430 {
3431 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3432 return 1;
3433 }
fbd35540 3434 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3435 return 0;
3436 }
3437 return 0;
3438}
3439
3440/* Function: simple_overlay_update
5417f6dc
RM
3441 If OSECT is NULL, then update all sections' mapped state
3442 (after re-reading the entire target _ovly_table).
3443 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3444 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3445 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3446 re-read the entire cache, and go ahead and update all sections. */
3447
3448static void
fba45db2 3449simple_overlay_update (struct obj_section *osect)
c906108c 3450{
c5aa993b 3451 struct objfile *objfile;
c906108c
SS
3452
3453 /* Were we given an osect to look up? NULL means do all of them. */
3454 if (osect)
3455 /* Have we got a cached copy of the target's overlay table? */
3456 if (cache_ovly_table != NULL)
3457 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3458 if (cache_ovly_table_base ==
9b27852e 3459 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3460 /* Then go ahead and try to look up this single section in the cache */
3461 if (simple_overlay_update_1 (osect))
3462 /* Found it! We're done. */
3463 return;
3464
3465 /* Cached table no good: need to read the entire table anew.
3466 Or else we want all the sections, in which case it's actually
3467 more efficient to read the whole table in one block anyway. */
3468
0d43edd1
JB
3469 if (! simple_read_overlay_table ())
3470 return;
3471
c906108c
SS
3472 /* Now may as well update all sections, even if only one was requested. */
3473 ALL_OBJSECTIONS (objfile, osect)
3474 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3475 {
3476 int i, size;
fbd35540
MS
3477 bfd *obfd = osect->objfile->obfd;
3478 asection *bsect = osect->the_bfd_section;
c5aa993b 3479
2c500098 3480 size = bfd_get_section_size (bsect);
c5aa993b 3481 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3482 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3483 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3484 /* && cache_ovly_table[i][SIZE] == size */ )
3485 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3486 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3487 break; /* finished with inner for loop: break out */
3488 }
3489 }
c906108c
SS
3490}
3491
086df311
DJ
3492/* Set the output sections and output offsets for section SECTP in
3493 ABFD. The relocation code in BFD will read these offsets, so we
3494 need to be sure they're initialized. We map each section to itself,
3495 with no offset; this means that SECTP->vma will be honored. */
3496
3497static void
3498symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3499{
3500 sectp->output_section = sectp;
3501 sectp->output_offset = 0;
3502}
3503
3504/* Relocate the contents of a debug section SECTP in ABFD. The
3505 contents are stored in BUF if it is non-NULL, or returned in a
3506 malloc'd buffer otherwise.
3507
3508 For some platforms and debug info formats, shared libraries contain
3509 relocations against the debug sections (particularly for DWARF-2;
3510 one affected platform is PowerPC GNU/Linux, although it depends on
3511 the version of the linker in use). Also, ELF object files naturally
3512 have unresolved relocations for their debug sections. We need to apply
3513 the relocations in order to get the locations of symbols correct. */
3514
3515bfd_byte *
3516symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3517{
3518 /* We're only interested in debugging sections with relocation
3519 information. */
3520 if ((sectp->flags & SEC_RELOC) == 0)
3521 return NULL;
3522 if ((sectp->flags & SEC_DEBUGGING) == 0)
3523 return NULL;
3524
3525 /* We will handle section offsets properly elsewhere, so relocate as if
3526 all sections begin at 0. */
3527 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3528
97606a13 3529 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3530}
c906108c
SS
3531
3532void
fba45db2 3533_initialize_symfile (void)
c906108c
SS
3534{
3535 struct cmd_list_element *c;
c5aa993b 3536
1a966eab
AC
3537 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3538Load symbol table from executable file FILE.\n\
c906108c 3539The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3540to execute."), &cmdlist);
5ba2abeb 3541 set_cmd_completer (c, filename_completer);
c906108c 3542
1a966eab
AC
3543 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3544Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
c906108c 3545Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2acceee2 3546ADDR is the starting address of the file's text.\n\
db162d44
EZ
3547The optional arguments are section-name section-address pairs and\n\
3548should be specified if the data and bss segments are not contiguous\n\
1a966eab 3549with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3550 &cmdlist);
5ba2abeb 3551 set_cmd_completer (c, filename_completer);
c906108c
SS
3552
3553 c = add_cmd ("add-shared-symbol-files", class_files,
1a966eab
AC
3554 add_shared_symbol_files_command, _("\
3555Load the symbols from shared objects in the dynamic linker's link map."),
c5aa993b 3556 &cmdlist);
c906108c
SS
3557 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3558 &cmdlist);
3559
1a966eab
AC
3560 c = add_cmd ("load", class_files, load_command, _("\
3561Dynamically load FILE into the running program, and record its symbols\n\
3562for access from GDB."), &cmdlist);
5ba2abeb 3563 set_cmd_completer (c, filename_completer);
c906108c 3564
cb1a6d5f 3565 deprecated_add_show_from_set
c906108c 3566 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
c5aa993b
JM
3567 (char *) &symbol_reloading,
3568 "Set dynamic symbol table reloading multiple times in one run.",
c906108c
SS
3569 &setlist),
3570 &showlist);
3571
c5aa993b 3572 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3573 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3574 "overlay ", 0, &cmdlist);
3575
3576 add_com_alias ("ovly", "overlay", class_alias, 1);
3577 add_com_alias ("ov", "overlay", class_alias, 1);
3578
c5aa993b 3579 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3580 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3581
c5aa993b 3582 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3583 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3584
c5aa993b 3585 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3586 _("List mappings of overlay sections."), &overlaylist);
c906108c 3587
c5aa993b 3588 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3589 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3590 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3591 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3592 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3593 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3594 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3595 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3596
3597 /* Filename extension to source language lookup table: */
3598 init_filename_language_table ();
3599 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
c5aa993b 3600 (char *) &ext_args,
c906108c
SS
3601 "Set mapping between filename extension and source language.\n\
3602Usage: set extension-language .foo bar",
c5aa993b 3603 &setlist);
9f60d481 3604 set_cmd_cfunc (c, set_ext_lang_command);
c906108c 3605
c5aa993b 3606 add_info ("extensions", info_ext_lang_command,
1bedd215 3607 _("All filename extensions associated with a source language."));
917317f4 3608
cb1a6d5f 3609 deprecated_add_show_from_set
917317f4
JM
3610 (add_set_cmd ("download-write-size", class_obscure,
3611 var_integer, (char *) &download_write_size,
3612 "Set the write size used when downloading a program.\n"
3613 "Only used when downloading a program onto a remote\n"
3614 "target. Specify zero, or a negative value, to disable\n"
3615 "blocked writes. The actual size of each transfer is also\n"
3616 "limited by the size of the target packet and the memory\n"
3617 "cache.\n",
3618 &setlist),
3619 &showlist);
5b5d99cf
JB
3620
3621 debug_file_directory = xstrdup (DEBUGDIR);
3622 c = (add_set_cmd
3623 ("debug-file-directory", class_support, var_string,
3624 (char *) &debug_file_directory,
3625 "Set the directory where separate debug symbols are searched for.\n"
3626 "Separate debug symbols are first searched for in the same\n"
5417f6dc 3627 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
5b5d99cf
JB
3628 "' subdirectory,\n"
3629 "and lastly at the path of the directory of the binary with\n"
3630 "the global debug-file directory prepended\n",
3631 &setlist));
cb1a6d5f 3632 deprecated_add_show_from_set (c, &showlist);
5b5d99cf 3633 set_cmd_completer (c, filename_completer);
c906108c 3634}