]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/symfile.c
Remove unused declarations
[thirdparty/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
61baf725 3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c 63#include <ctype.h>
dcb07cfa 64#include <chrono>
c906108c 65
ccefe4c4 66#include "psymtab.h"
c906108c 67
3e43a32a
MS
68int (*deprecated_ui_load_progress_hook) (const char *section,
69 unsigned long num);
9a4105ab 70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c378eb4e
MS
80/* Global variables owned by this file. */
81int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 82
c378eb4e 83/* Functions this file defines. */
c906108c 84
a14ed312 85static void load_command (char *, int);
c906108c 86
ecf45d2c 87static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 88 objfile_flags flags);
d7db6da9 89
00b5771c 90static const struct sym_fns *find_sym_fns (bfd *);
c906108c 91
a14ed312 92static void overlay_invalidate_all (void);
c906108c 93
a14ed312 94static void overlay_command (char *, int);
c906108c 95
a14ed312 96static void simple_free_overlay_table (void);
c906108c 97
e17a4113
UW
98static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
c906108c 100
a14ed312 101static int simple_read_overlay_table (void);
c906108c 102
a14ed312 103static int simple_overlay_update_1 (struct obj_section *);
c906108c 104
a14ed312 105static void info_ext_lang_command (char *args, int from_tty);
392a587b 106
31d99776
DJ
107static void symfile_find_segment_sections (struct objfile *objfile);
108
c906108c
SS
109/* List of all available sym_fns. On gdb startup, each object file reader
110 calls add_symtab_fns() to register information on each format it is
c378eb4e 111 prepared to read. */
c906108c 112
c256e171
DE
113typedef struct
114{
115 /* BFD flavour that we handle. */
116 enum bfd_flavour sym_flavour;
117
118 /* The "vtable" of symbol functions. */
119 const struct sym_fns *sym_fns;
120} registered_sym_fns;
00b5771c 121
c256e171
DE
122DEF_VEC_O (registered_sym_fns);
123
124static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 125
770e7fc7
DE
126/* Values for "set print symbol-loading". */
127
128const char print_symbol_loading_off[] = "off";
129const char print_symbol_loading_brief[] = "brief";
130const char print_symbol_loading_full[] = "full";
131static const char *print_symbol_loading_enums[] =
132{
133 print_symbol_loading_off,
134 print_symbol_loading_brief,
135 print_symbol_loading_full,
136 NULL
137};
138static const char *print_symbol_loading = print_symbol_loading_full;
139
b7209cb4
FF
140/* If non-zero, shared library symbols will be added automatically
141 when the inferior is created, new libraries are loaded, or when
142 attaching to the inferior. This is almost always what users will
143 want to have happen; but for very large programs, the startup time
144 will be excessive, and so if this is a problem, the user can clear
145 this flag and then add the shared library symbols as needed. Note
146 that there is a potential for confusion, since if the shared
c906108c 147 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 148 report all the functions that are actually present. */
c906108c
SS
149
150int auto_solib_add = 1;
c906108c 151\f
c5aa993b 152
770e7fc7
DE
153/* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161int
162print_symbol_loading_p (int from_tty, int exec, int full)
163{
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176}
177
0d14a781 178/* True if we are reading a symbol table. */
c906108c
SS
179
180int currently_reading_symtab = 0;
181
ccefe4c4
TT
182/* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
3b7bacac 184
c83dd867 185scoped_restore_tmpl<int>
ccefe4c4 186increment_reading_symtab (void)
c906108c 187{
c83dd867
TT
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
c906108c
SS
191}
192
5417f6dc
RM
193/* Remember the lowest-addressed loadable section we've seen.
194 This function is called via bfd_map_over_sections.
c906108c
SS
195
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
198
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
201
202void
4efb68b1 203find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 204{
c5aa993b 205 asection **lowest = (asection **) obj;
c906108c 206
eb73e134 207 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
208 return;
209 if (!*lowest)
210 *lowest = sect; /* First loadable section */
211 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
212 *lowest = sect; /* A lower loadable section */
213 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
214 && (bfd_section_size (abfd, (*lowest))
215 <= bfd_section_size (abfd, sect)))
216 *lowest = sect;
217}
218
d76488d8
TT
219/* Create a new section_addr_info, with room for NUM_SECTIONS. The
220 new object's 'num_sections' field is set to 0; it must be updated
221 by the caller. */
a39a16c4
MM
222
223struct section_addr_info *
224alloc_section_addr_info (size_t num_sections)
225{
226 struct section_addr_info *sap;
227 size_t size;
228
229 size = (sizeof (struct section_addr_info)
230 + sizeof (struct other_sections) * (num_sections - 1));
231 sap = (struct section_addr_info *) xmalloc (size);
232 memset (sap, 0, size);
a39a16c4
MM
233
234 return sap;
235}
62557bbc
KB
236
237/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 238 an existing section table. */
62557bbc
KB
239
240extern struct section_addr_info *
0542c86d
PA
241build_section_addr_info_from_section_table (const struct target_section *start,
242 const struct target_section *end)
62557bbc
KB
243{
244 struct section_addr_info *sap;
0542c86d 245 const struct target_section *stp;
62557bbc
KB
246 int oidx;
247
a39a16c4 248 sap = alloc_section_addr_info (end - start);
62557bbc
KB
249
250 for (stp = start, oidx = 0; stp != end; stp++)
251 {
2b2848e2
DE
252 struct bfd_section *asect = stp->the_bfd_section;
253 bfd *abfd = asect->owner;
254
255 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 256 && oidx < end - start)
62557bbc
KB
257 {
258 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
259 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
260 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
261 oidx++;
262 }
263 }
264
d76488d8
TT
265 sap->num_sections = oidx;
266
62557bbc
KB
267 return sap;
268}
269
82ccf5a5 270/* Create a section_addr_info from section offsets in ABFD. */
089b4803 271
82ccf5a5
JK
272static struct section_addr_info *
273build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
274{
275 struct section_addr_info *sap;
276 int i;
277 struct bfd_section *sec;
278
82ccf5a5
JK
279 sap = alloc_section_addr_info (bfd_count_sections (abfd));
280 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
281 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 282 {
82ccf5a5
JK
283 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
284 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 285 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
286 i++;
287 }
d76488d8
TT
288
289 sap->num_sections = i;
290
089b4803
TG
291 return sap;
292}
293
82ccf5a5
JK
294/* Create a section_addr_info from section offsets in OBJFILE. */
295
296struct section_addr_info *
297build_section_addr_info_from_objfile (const struct objfile *objfile)
298{
299 struct section_addr_info *sap;
300 int i;
301
302 /* Before reread_symbols gets rewritten it is not safe to call:
303 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
304 */
305 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 306 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
307 {
308 int sectindex = sap->other[i].sectindex;
309
310 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
311 }
312 return sap;
313}
62557bbc 314
c378eb4e 315/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
316
317extern void
318free_section_addr_info (struct section_addr_info *sap)
319{
320 int idx;
321
a39a16c4 322 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 323 xfree (sap->other[idx].name);
b8c9b27d 324 xfree (sap);
62557bbc
KB
325}
326
e8289572 327/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 328
e8289572
JB
329static void
330init_objfile_sect_indices (struct objfile *objfile)
c906108c 331{
e8289572 332 asection *sect;
c906108c 333 int i;
5417f6dc 334
b8fbeb18 335 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 336 if (sect)
b8fbeb18
EZ
337 objfile->sect_index_text = sect->index;
338
339 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 340 if (sect)
b8fbeb18
EZ
341 objfile->sect_index_data = sect->index;
342
343 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 344 if (sect)
b8fbeb18
EZ
345 objfile->sect_index_bss = sect->index;
346
347 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 348 if (sect)
b8fbeb18
EZ
349 objfile->sect_index_rodata = sect->index;
350
bbcd32ad
FF
351 /* This is where things get really weird... We MUST have valid
352 indices for the various sect_index_* members or gdb will abort.
353 So if for example, there is no ".text" section, we have to
31d99776
DJ
354 accomodate that. First, check for a file with the standard
355 one or two segments. */
356
357 symfile_find_segment_sections (objfile);
358
359 /* Except when explicitly adding symbol files at some address,
360 section_offsets contains nothing but zeros, so it doesn't matter
361 which slot in section_offsets the individual sect_index_* members
362 index into. So if they are all zero, it is safe to just point
363 all the currently uninitialized indices to the first slot. But
364 beware: if this is the main executable, it may be relocated
365 later, e.g. by the remote qOffsets packet, and then this will
366 be wrong! That's why we try segments first. */
bbcd32ad
FF
367
368 for (i = 0; i < objfile->num_sections; i++)
369 {
370 if (ANOFFSET (objfile->section_offsets, i) != 0)
371 {
372 break;
373 }
374 }
375 if (i == objfile->num_sections)
376 {
377 if (objfile->sect_index_text == -1)
378 objfile->sect_index_text = 0;
379 if (objfile->sect_index_data == -1)
380 objfile->sect_index_data = 0;
381 if (objfile->sect_index_bss == -1)
382 objfile->sect_index_bss = 0;
383 if (objfile->sect_index_rodata == -1)
384 objfile->sect_index_rodata = 0;
385 }
b8fbeb18 386}
c906108c 387
c1bd25fd
DJ
388/* The arguments to place_section. */
389
390struct place_section_arg
391{
392 struct section_offsets *offsets;
393 CORE_ADDR lowest;
394};
395
396/* Find a unique offset to use for loadable section SECT if
397 the user did not provide an offset. */
398
2c0b251b 399static void
c1bd25fd
DJ
400place_section (bfd *abfd, asection *sect, void *obj)
401{
19ba03f4 402 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
403 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
404 int done;
3bd72c6f 405 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 406
2711e456
DJ
407 /* We are only interested in allocated sections. */
408 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
409 return;
410
411 /* If the user specified an offset, honor it. */
65cf3563 412 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
413 return;
414
415 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
416 start_addr = (arg->lowest + align - 1) & -align;
417
c1bd25fd
DJ
418 do {
419 asection *cur_sec;
c1bd25fd 420
c1bd25fd
DJ
421 done = 1;
422
423 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
424 {
425 int indx = cur_sec->index;
c1bd25fd
DJ
426
427 /* We don't need to compare against ourself. */
428 if (cur_sec == sect)
429 continue;
430
2711e456
DJ
431 /* We can only conflict with allocated sections. */
432 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
433 continue;
434
435 /* If the section offset is 0, either the section has not been placed
436 yet, or it was the lowest section placed (in which case LOWEST
437 will be past its end). */
438 if (offsets[indx] == 0)
439 continue;
440
441 /* If this section would overlap us, then we must move up. */
442 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
443 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
444 {
445 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
446 start_addr = (start_addr + align - 1) & -align;
447 done = 0;
3bd72c6f 448 break;
c1bd25fd
DJ
449 }
450
451 /* Otherwise, we appear to be OK. So far. */
452 }
453 }
454 while (!done);
455
65cf3563 456 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 457 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 458}
e8289572 459
75242ef4
JK
460/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
461 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
462 entries. */
e8289572
JB
463
464void
75242ef4
JK
465relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
466 int num_sections,
3189cb12 467 const struct section_addr_info *addrs)
e8289572
JB
468{
469 int i;
470
75242ef4 471 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 472
c378eb4e 473 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 474 for (i = 0; i < addrs->num_sections; i++)
e8289572 475 {
3189cb12 476 const struct other_sections *osp;
e8289572 477
75242ef4 478 osp = &addrs->other[i];
5488dafb 479 if (osp->sectindex == -1)
e8289572
JB
480 continue;
481
c378eb4e 482 /* Record all sections in offsets. */
e8289572 483 /* The section_offsets in the objfile are here filled in using
c378eb4e 484 the BFD index. */
75242ef4
JK
485 section_offsets->offsets[osp->sectindex] = osp->addr;
486 }
487}
488
1276c759
JK
489/* Transform section name S for a name comparison. prelink can split section
490 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
491 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
492 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
493 (`.sbss') section has invalid (increased) virtual address. */
494
495static const char *
496addr_section_name (const char *s)
497{
498 if (strcmp (s, ".dynbss") == 0)
499 return ".bss";
500 if (strcmp (s, ".sdynbss") == 0)
501 return ".sbss";
502
503 return s;
504}
505
82ccf5a5
JK
506/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
507 their (name, sectindex) pair. sectindex makes the sort by name stable. */
508
509static int
510addrs_section_compar (const void *ap, const void *bp)
511{
512 const struct other_sections *a = *((struct other_sections **) ap);
513 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 514 int retval;
82ccf5a5 515
1276c759 516 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
517 if (retval)
518 return retval;
519
5488dafb 520 return a->sectindex - b->sectindex;
82ccf5a5
JK
521}
522
523/* Provide sorted array of pointers to sections of ADDRS. The array is
524 terminated by NULL. Caller is responsible to call xfree for it. */
525
526static struct other_sections **
527addrs_section_sort (struct section_addr_info *addrs)
528{
529 struct other_sections **array;
530 int i;
531
532 /* `+ 1' for the NULL terminator. */
8d749320 533 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 534 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
535 array[i] = &addrs->other[i];
536 array[i] = NULL;
537
538 qsort (array, i, sizeof (*array), addrs_section_compar);
539
540 return array;
541}
542
75242ef4 543/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
544 also SECTINDEXes specific to ABFD there. This function can be used to
545 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
546
547void
548addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
549{
550 asection *lower_sect;
75242ef4
JK
551 CORE_ADDR lower_offset;
552 int i;
82ccf5a5
JK
553 struct cleanup *my_cleanup;
554 struct section_addr_info *abfd_addrs;
555 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
556 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
557
558 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
559 continguous sections. */
560 lower_sect = NULL;
561 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
562 if (lower_sect == NULL)
563 {
564 warning (_("no loadable sections found in added symbol-file %s"),
565 bfd_get_filename (abfd));
566 lower_offset = 0;
e8289572 567 }
75242ef4
JK
568 else
569 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
570
82ccf5a5
JK
571 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
572 in ABFD. Section names are not unique - there can be multiple sections of
573 the same name. Also the sections of the same name do not have to be
574 adjacent to each other. Some sections may be present only in one of the
575 files. Even sections present in both files do not have to be in the same
576 order.
577
578 Use stable sort by name for the sections in both files. Then linearly
579 scan both lists matching as most of the entries as possible. */
580
581 addrs_sorted = addrs_section_sort (addrs);
582 my_cleanup = make_cleanup (xfree, addrs_sorted);
583
584 abfd_addrs = build_section_addr_info_from_bfd (abfd);
585 make_cleanup_free_section_addr_info (abfd_addrs);
586 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
587 make_cleanup (xfree, abfd_addrs_sorted);
588
c378eb4e
MS
589 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
590 ABFD_ADDRS_SORTED. */
82ccf5a5 591
8d749320 592 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
593 make_cleanup (xfree, addrs_to_abfd_addrs);
594
595 while (*addrs_sorted)
596 {
1276c759 597 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
598
599 while (*abfd_addrs_sorted
1276c759
JK
600 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
601 sect_name) < 0)
82ccf5a5
JK
602 abfd_addrs_sorted++;
603
604 if (*abfd_addrs_sorted
1276c759
JK
605 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
606 sect_name) == 0)
82ccf5a5
JK
607 {
608 int index_in_addrs;
609
610 /* Make the found item directly addressable from ADDRS. */
611 index_in_addrs = *addrs_sorted - addrs->other;
612 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
613 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
614
615 /* Never use the same ABFD entry twice. */
616 abfd_addrs_sorted++;
617 }
618
619 addrs_sorted++;
620 }
621
75242ef4
JK
622 /* Calculate offsets for the loadable sections.
623 FIXME! Sections must be in order of increasing loadable section
624 so that contiguous sections can use the lower-offset!!!
625
626 Adjust offsets if the segments are not contiguous.
627 If the section is contiguous, its offset should be set to
628 the offset of the highest loadable section lower than it
629 (the loadable section directly below it in memory).
630 this_offset = lower_offset = lower_addr - lower_orig_addr */
631
d76488d8 632 for (i = 0; i < addrs->num_sections; i++)
75242ef4 633 {
82ccf5a5 634 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
635
636 if (sect)
75242ef4 637 {
c378eb4e 638 /* This is the index used by BFD. */
82ccf5a5 639 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
640
641 if (addrs->other[i].addr != 0)
75242ef4 642 {
82ccf5a5 643 addrs->other[i].addr -= sect->addr;
75242ef4 644 lower_offset = addrs->other[i].addr;
75242ef4
JK
645 }
646 else
672d9c23 647 addrs->other[i].addr = lower_offset;
75242ef4
JK
648 }
649 else
672d9c23 650 {
1276c759
JK
651 /* addr_section_name transformation is not used for SECT_NAME. */
652 const char *sect_name = addrs->other[i].name;
653
b0fcb67f
JK
654 /* This section does not exist in ABFD, which is normally
655 unexpected and we want to issue a warning.
656
4d9743af
JK
657 However, the ELF prelinker does create a few sections which are
658 marked in the main executable as loadable (they are loaded in
659 memory from the DYNAMIC segment) and yet are not present in
660 separate debug info files. This is fine, and should not cause
661 a warning. Shared libraries contain just the section
662 ".gnu.liblist" but it is not marked as loadable there. There is
663 no other way to identify them than by their name as the sections
1276c759
JK
664 created by prelink have no special flags.
665
666 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
667
668 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 669 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
670 || (strcmp (sect_name, ".bss") == 0
671 && i > 0
672 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
673 && addrs_to_abfd_addrs[i - 1] != NULL)
674 || (strcmp (sect_name, ".sbss") == 0
675 && i > 0
676 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
677 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
678 warning (_("section %s not found in %s"), sect_name,
679 bfd_get_filename (abfd));
680
672d9c23 681 addrs->other[i].addr = 0;
5488dafb 682 addrs->other[i].sectindex = -1;
672d9c23 683 }
75242ef4 684 }
82ccf5a5
JK
685
686 do_cleanups (my_cleanup);
75242ef4
JK
687}
688
689/* Parse the user's idea of an offset for dynamic linking, into our idea
690 of how to represent it for fast symbol reading. This is the default
691 version of the sym_fns.sym_offsets function for symbol readers that
692 don't need to do anything special. It allocates a section_offsets table
693 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
694
695void
696default_symfile_offsets (struct objfile *objfile,
3189cb12 697 const struct section_addr_info *addrs)
75242ef4 698{
d445b2f6 699 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
700 objfile->section_offsets = (struct section_offsets *)
701 obstack_alloc (&objfile->objfile_obstack,
702 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
703 relative_addr_info_to_section_offsets (objfile->section_offsets,
704 objfile->num_sections, addrs);
e8289572 705
c1bd25fd
DJ
706 /* For relocatable files, all loadable sections will start at zero.
707 The zero is meaningless, so try to pick arbitrary addresses such
708 that no loadable sections overlap. This algorithm is quadratic,
709 but the number of sections in a single object file is generally
710 small. */
711 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
712 {
713 struct place_section_arg arg;
2711e456
DJ
714 bfd *abfd = objfile->obfd;
715 asection *cur_sec;
2711e456
DJ
716
717 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
718 /* We do not expect this to happen; just skip this step if the
719 relocatable file has a section with an assigned VMA. */
720 if (bfd_section_vma (abfd, cur_sec) != 0)
721 break;
722
723 if (cur_sec == NULL)
724 {
725 CORE_ADDR *offsets = objfile->section_offsets->offsets;
726
727 /* Pick non-overlapping offsets for sections the user did not
728 place explicitly. */
729 arg.offsets = objfile->section_offsets;
730 arg.lowest = 0;
731 bfd_map_over_sections (objfile->obfd, place_section, &arg);
732
733 /* Correctly filling in the section offsets is not quite
734 enough. Relocatable files have two properties that
735 (most) shared objects do not:
736
737 - Their debug information will contain relocations. Some
738 shared libraries do also, but many do not, so this can not
739 be assumed.
740
741 - If there are multiple code sections they will be loaded
742 at different relative addresses in memory than they are
743 in the objfile, since all sections in the file will start
744 at address zero.
745
746 Because GDB has very limited ability to map from an
747 address in debug info to the correct code section,
748 it relies on adding SECT_OFF_TEXT to things which might be
749 code. If we clear all the section offsets, and set the
750 section VMAs instead, then symfile_relocate_debug_section
751 will return meaningful debug information pointing at the
752 correct sections.
753
754 GDB has too many different data structures for section
755 addresses - a bfd, objfile, and so_list all have section
756 tables, as does exec_ops. Some of these could probably
757 be eliminated. */
758
759 for (cur_sec = abfd->sections; cur_sec != NULL;
760 cur_sec = cur_sec->next)
761 {
762 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
763 continue;
764
765 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
766 exec_set_section_address (bfd_get_filename (abfd),
767 cur_sec->index,
30510692 768 offsets[cur_sec->index]);
2711e456
DJ
769 offsets[cur_sec->index] = 0;
770 }
771 }
c1bd25fd
DJ
772 }
773
e8289572 774 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 775 .rodata sections. */
e8289572
JB
776 init_objfile_sect_indices (objfile);
777}
778
31d99776
DJ
779/* Divide the file into segments, which are individual relocatable units.
780 This is the default version of the sym_fns.sym_segments function for
781 symbol readers that do not have an explicit representation of segments.
782 It assumes that object files do not have segments, and fully linked
783 files have a single segment. */
784
785struct symfile_segment_data *
786default_symfile_segments (bfd *abfd)
787{
788 int num_sections, i;
789 asection *sect;
790 struct symfile_segment_data *data;
791 CORE_ADDR low, high;
792
793 /* Relocatable files contain enough information to position each
794 loadable section independently; they should not be relocated
795 in segments. */
796 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
797 return NULL;
798
799 /* Make sure there is at least one loadable section in the file. */
800 for (sect = abfd->sections; sect != NULL; sect = sect->next)
801 {
802 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
803 continue;
804
805 break;
806 }
807 if (sect == NULL)
808 return NULL;
809
810 low = bfd_get_section_vma (abfd, sect);
811 high = low + bfd_get_section_size (sect);
812
41bf6aca 813 data = XCNEW (struct symfile_segment_data);
31d99776 814 data->num_segments = 1;
fc270c35
TT
815 data->segment_bases = XCNEW (CORE_ADDR);
816 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
817
818 num_sections = bfd_count_sections (abfd);
fc270c35 819 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
820
821 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
822 {
823 CORE_ADDR vma;
824
825 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
826 continue;
827
828 vma = bfd_get_section_vma (abfd, sect);
829 if (vma < low)
830 low = vma;
831 if (vma + bfd_get_section_size (sect) > high)
832 high = vma + bfd_get_section_size (sect);
833
834 data->segment_info[i] = 1;
835 }
836
837 data->segment_bases[0] = low;
838 data->segment_sizes[0] = high - low;
839
840 return data;
841}
842
608e2dbb
TT
843/* This is a convenience function to call sym_read for OBJFILE and
844 possibly force the partial symbols to be read. */
845
846static void
b15cc25c 847read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
848{
849 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 850 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
851
852 /* find_separate_debug_file_in_section should be called only if there is
853 single binary with no existing separate debug info file. */
854 if (!objfile_has_partial_symbols (objfile)
855 && objfile->separate_debug_objfile == NULL
856 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 857 {
192b62ce 858 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
859
860 if (abfd != NULL)
24ba069a
JK
861 {
862 /* find_separate_debug_file_in_section uses the same filename for the
863 virtual section-as-bfd like the bfd filename containing the
864 section. Therefore use also non-canonical name form for the same
865 file containing the section. */
192b62ce
TT
866 symbol_file_add_separate (abfd.get (), objfile->original_name,
867 add_flags, objfile);
24ba069a 868 }
608e2dbb
TT
869 }
870 if ((add_flags & SYMFILE_NO_READ) == 0)
871 require_partial_symbols (objfile, 0);
872}
873
3d6e24f0
JB
874/* Initialize entry point information for this objfile. */
875
876static void
877init_entry_point_info (struct objfile *objfile)
878{
6ef55de7
TT
879 struct entry_info *ei = &objfile->per_bfd->ei;
880
881 if (ei->initialized)
882 return;
883 ei->initialized = 1;
884
3d6e24f0
JB
885 /* Save startup file's range of PC addresses to help blockframe.c
886 decide where the bottom of the stack is. */
887
888 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
889 {
890 /* Executable file -- record its entry point so we'll recognize
891 the startup file because it contains the entry point. */
6ef55de7
TT
892 ei->entry_point = bfd_get_start_address (objfile->obfd);
893 ei->entry_point_p = 1;
3d6e24f0
JB
894 }
895 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
896 && bfd_get_start_address (objfile->obfd) != 0)
897 {
898 /* Some shared libraries may have entry points set and be
899 runnable. There's no clear way to indicate this, so just check
900 for values other than zero. */
6ef55de7
TT
901 ei->entry_point = bfd_get_start_address (objfile->obfd);
902 ei->entry_point_p = 1;
3d6e24f0
JB
903 }
904 else
905 {
906 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 907 ei->entry_point_p = 0;
3d6e24f0
JB
908 }
909
6ef55de7 910 if (ei->entry_point_p)
3d6e24f0 911 {
53eddfa6 912 struct obj_section *osect;
6ef55de7 913 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 914 int found;
3d6e24f0
JB
915
916 /* Make certain that the address points at real code, and not a
917 function descriptor. */
918 entry_point
df6d5441 919 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
920 entry_point,
921 &current_target);
922
923 /* Remove any ISA markers, so that this matches entries in the
924 symbol table. */
6ef55de7 925 ei->entry_point
df6d5441 926 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
927
928 found = 0;
929 ALL_OBJFILE_OSECTIONS (objfile, osect)
930 {
931 struct bfd_section *sect = osect->the_bfd_section;
932
933 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
934 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
935 + bfd_get_section_size (sect)))
936 {
6ef55de7 937 ei->the_bfd_section_index
53eddfa6
TT
938 = gdb_bfd_section_index (objfile->obfd, sect);
939 found = 1;
940 break;
941 }
942 }
943
944 if (!found)
6ef55de7 945 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
946 }
947}
948
c906108c
SS
949/* Process a symbol file, as either the main file or as a dynamically
950 loaded file.
951
36e4d068
JB
952 This function does not set the OBJFILE's entry-point info.
953
96baa820
JM
954 OBJFILE is where the symbols are to be read from.
955
7e8580c1
JB
956 ADDRS is the list of section load addresses. If the user has given
957 an 'add-symbol-file' command, then this is the list of offsets and
958 addresses he or she provided as arguments to the command; or, if
959 we're handling a shared library, these are the actual addresses the
960 sections are loaded at, according to the inferior's dynamic linker
961 (as gleaned by GDB's shared library code). We convert each address
962 into an offset from the section VMA's as it appears in the object
963 file, and then call the file's sym_offsets function to convert this
964 into a format-specific offset table --- a `struct section_offsets'.
96baa820 965
7eedccfa
PP
966 ADD_FLAGS encodes verbosity level, whether this is main symbol or
967 an extra symbol file such as dynamically loaded code, and wether
968 breakpoint reset should be deferred. */
c906108c 969
36e4d068
JB
970static void
971syms_from_objfile_1 (struct objfile *objfile,
972 struct section_addr_info *addrs,
b15cc25c 973 symfile_add_flags add_flags)
c906108c 974{
a39a16c4 975 struct section_addr_info *local_addr = NULL;
c906108c 976 struct cleanup *old_chain;
7eedccfa 977 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 978
8fb8eb5c 979 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 980
75245b24 981 if (objfile->sf == NULL)
36e4d068
JB
982 {
983 /* No symbols to load, but we still need to make sure
984 that the section_offsets table is allocated. */
d445b2f6 985 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 986 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
987
988 objfile->num_sections = num_sections;
989 objfile->section_offsets
224c3ddb
SM
990 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
991 size);
36e4d068
JB
992 memset (objfile->section_offsets, 0, size);
993 return;
994 }
75245b24 995
c906108c
SS
996 /* Make sure that partially constructed symbol tables will be cleaned up
997 if an error occurs during symbol reading. */
74b7792f 998 old_chain = make_cleanup_free_objfile (objfile);
c906108c 999
6bf667bb
DE
1000 /* If ADDRS is NULL, put together a dummy address list.
1001 We now establish the convention that an addr of zero means
c378eb4e 1002 no load address was specified. */
6bf667bb 1003 if (! addrs)
a39a16c4 1004 {
d445b2f6 1005 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1006 make_cleanup (xfree, local_addr);
1007 addrs = local_addr;
1008 }
1009
c5aa993b 1010 if (mainline)
c906108c
SS
1011 {
1012 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1013 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1014 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1015
1016 /* Since no error yet, throw away the old symbol table. */
1017
1018 if (symfile_objfile != NULL)
1019 {
1020 free_objfile (symfile_objfile);
adb7f338 1021 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1022 }
1023
1024 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1025 If the user wants to get rid of them, they should do "symbol-file"
1026 without arguments first. Not sure this is the best behavior
1027 (PR 2207). */
c906108c 1028
c5aa993b 1029 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1030 }
1031
1032 /* Convert addr into an offset rather than an absolute address.
1033 We find the lowest address of a loaded segment in the objfile,
53a5351d 1034 and assume that <addr> is where that got loaded.
c906108c 1035
53a5351d
JM
1036 We no longer warn if the lowest section is not a text segment (as
1037 happens for the PA64 port. */
6bf667bb 1038 if (addrs->num_sections > 0)
75242ef4 1039 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1040
1041 /* Initialize symbol reading routines for this objfile, allow complaints to
1042 appear for this new file, and record how verbose to be, then do the
c378eb4e 1043 initial symbol reading for this file. */
c906108c 1044
c5aa993b 1045 (*objfile->sf->sym_init) (objfile);
7eedccfa 1046 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1047
6bf667bb 1048 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1049
608e2dbb 1050 read_symbols (objfile, add_flags);
b11896a5 1051
c906108c
SS
1052 /* Discard cleanups as symbol reading was successful. */
1053
1054 discard_cleanups (old_chain);
f7545552 1055 xfree (local_addr);
c906108c
SS
1056}
1057
36e4d068
JB
1058/* Same as syms_from_objfile_1, but also initializes the objfile
1059 entry-point info. */
1060
6bf667bb 1061static void
36e4d068
JB
1062syms_from_objfile (struct objfile *objfile,
1063 struct section_addr_info *addrs,
b15cc25c 1064 symfile_add_flags add_flags)
36e4d068 1065{
6bf667bb 1066 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1067 init_entry_point_info (objfile);
1068}
1069
c906108c
SS
1070/* Perform required actions after either reading in the initial
1071 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1072 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1073
e7d52ed3 1074static void
b15cc25c 1075finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1076{
c906108c 1077 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1078 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1079 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1080 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1081 {
1082 /* OK, make it the "real" symbol file. */
1083 symfile_objfile = objfile;
1084
c1e56572 1085 clear_symtab_users (add_flags);
c906108c 1086 }
7eedccfa 1087 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1088 {
69de3c6a 1089 breakpoint_re_set ();
c906108c
SS
1090 }
1091
1092 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1093 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1094}
1095
1096/* Process a symbol file, as either the main file or as a dynamically
1097 loaded file.
1098
5417f6dc 1099 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1100 A new reference is acquired by this function.
7904e09f 1101
24ba069a
JK
1102 For NAME description see allocate_objfile's definition.
1103
7eedccfa
PP
1104 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1105 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1106
6bf667bb 1107 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1108 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1109
63524580
JK
1110 PARENT is the original objfile if ABFD is a separate debug info file.
1111 Otherwise PARENT is NULL.
1112
c906108c 1113 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1114 Upon failure, jumps back to command level (never returns). */
7eedccfa 1115
7904e09f 1116static struct objfile *
b15cc25c
PA
1117symbol_file_add_with_addrs (bfd *abfd, const char *name,
1118 symfile_add_flags add_flags,
6bf667bb 1119 struct section_addr_info *addrs,
b15cc25c 1120 objfile_flags flags, struct objfile *parent)
c906108c
SS
1121{
1122 struct objfile *objfile;
7eedccfa 1123 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1124 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1125 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1126 && (readnow_symbol_files
1127 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1128
9291a0cd 1129 if (readnow_symbol_files)
b11896a5
TT
1130 {
1131 flags |= OBJF_READNOW;
1132 add_flags &= ~SYMFILE_NO_READ;
1133 }
9291a0cd 1134
5417f6dc
RM
1135 /* Give user a chance to burp if we'd be
1136 interactively wiping out any existing symbols. */
c906108c
SS
1137
1138 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1139 && mainline
c906108c 1140 && from_tty
9e2f0ad4 1141 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1142 error (_("Not confirmed."));
c906108c 1143
b15cc25c
PA
1144 if (mainline)
1145 flags |= OBJF_MAINLINE;
1146 objfile = allocate_objfile (abfd, name, flags);
c906108c 1147
63524580
JK
1148 if (parent)
1149 add_separate_debug_objfile (objfile, parent);
1150
78a4a9b9
AC
1151 /* We either created a new mapped symbol table, mapped an existing
1152 symbol table file which has not had initial symbol reading
c378eb4e 1153 performed, or need to read an unmapped symbol table. */
b11896a5 1154 if (should_print)
c906108c 1155 {
769d7dc4
AC
1156 if (deprecated_pre_add_symbol_hook)
1157 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1158 else
c906108c 1159 {
55333a84
DE
1160 printf_unfiltered (_("Reading symbols from %s..."), name);
1161 wrap_here ("");
1162 gdb_flush (gdb_stdout);
c906108c 1163 }
c906108c 1164 }
6bf667bb 1165 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1166
1167 /* We now have at least a partial symbol table. Check to see if the
1168 user requested that all symbols be read on initial access via either
1169 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1170 all partial symbol tables for this objfile if so. */
c906108c 1171
9291a0cd 1172 if ((flags & OBJF_READNOW))
c906108c 1173 {
b11896a5 1174 if (should_print)
c906108c 1175 {
a3f17187 1176 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1177 wrap_here ("");
1178 gdb_flush (gdb_stdout);
1179 }
1180
ccefe4c4
TT
1181 if (objfile->sf)
1182 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1183 }
1184
b11896a5 1185 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1186 {
1187 wrap_here ("");
55333a84 1188 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1189 wrap_here ("");
1190 }
1191
b11896a5 1192 if (should_print)
c906108c 1193 {
769d7dc4
AC
1194 if (deprecated_post_add_symbol_hook)
1195 deprecated_post_add_symbol_hook ();
c906108c 1196 else
55333a84 1197 printf_unfiltered (_("done.\n"));
c906108c
SS
1198 }
1199
481d0f41
JB
1200 /* We print some messages regardless of whether 'from_tty ||
1201 info_verbose' is true, so make sure they go out at the right
1202 time. */
1203 gdb_flush (gdb_stdout);
1204
109f874e 1205 if (objfile->sf == NULL)
8caee43b
PP
1206 {
1207 observer_notify_new_objfile (objfile);
c378eb4e 1208 return objfile; /* No symbols. */
8caee43b 1209 }
109f874e 1210
e7d52ed3 1211 finish_new_objfile (objfile, add_flags);
c906108c 1212
06d3b283 1213 observer_notify_new_objfile (objfile);
c906108c 1214
ce7d4522 1215 bfd_cache_close_all ();
c906108c
SS
1216 return (objfile);
1217}
1218
24ba069a
JK
1219/* Add BFD as a separate debug file for OBJFILE. For NAME description
1220 see allocate_objfile's definition. */
9cce227f
TG
1221
1222void
b15cc25c
PA
1223symbol_file_add_separate (bfd *bfd, const char *name,
1224 symfile_add_flags symfile_flags,
24ba069a 1225 struct objfile *objfile)
9cce227f 1226{
089b4803
TG
1227 struct section_addr_info *sap;
1228 struct cleanup *my_cleanup;
1229
1230 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1231 because sections of BFD may not match sections of OBJFILE and because
1232 vma may have been modified by tools such as prelink. */
1233 sap = build_section_addr_info_from_objfile (objfile);
1234 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1235
870f88f7 1236 symbol_file_add_with_addrs
24ba069a 1237 (bfd, name, symfile_flags, sap,
9cce227f 1238 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1239 | OBJF_USERLOADED),
1240 objfile);
089b4803
TG
1241
1242 do_cleanups (my_cleanup);
9cce227f 1243}
7904e09f 1244
eb4556d7
JB
1245/* Process the symbol file ABFD, as either the main file or as a
1246 dynamically loaded file.
6bf667bb 1247 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1248
eb4556d7 1249struct objfile *
b15cc25c
PA
1250symbol_file_add_from_bfd (bfd *abfd, const char *name,
1251 symfile_add_flags add_flags,
eb4556d7 1252 struct section_addr_info *addrs,
b15cc25c 1253 objfile_flags flags, struct objfile *parent)
eb4556d7 1254{
24ba069a
JK
1255 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1256 parent);
eb4556d7
JB
1257}
1258
7904e09f 1259/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1260 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1261
7904e09f 1262struct objfile *
b15cc25c
PA
1263symbol_file_add (const char *name, symfile_add_flags add_flags,
1264 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1265{
192b62ce 1266 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1267
192b62ce
TT
1268 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1269 flags, NULL);
7904e09f
JB
1270}
1271
d7db6da9
FN
1272/* Call symbol_file_add() with default values and update whatever is
1273 affected by the loading of a new main().
1274 Used when the file is supplied in the gdb command line
1275 and by some targets with special loading requirements.
1276 The auxiliary function, symbol_file_add_main_1(), has the flags
1277 argument for the switches that can only be specified in the symbol_file
1278 command itself. */
5417f6dc 1279
1adeb98a 1280void
ecf45d2c 1281symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1282{
ecf45d2c 1283 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1284}
1285
1286static void
ecf45d2c
SL
1287symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1288 objfile_flags flags)
d7db6da9 1289{
ecf45d2c 1290 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1291
7eedccfa 1292 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1293
d7db6da9
FN
1294 /* Getting new symbols may change our opinion about
1295 what is frameless. */
1296 reinit_frame_cache ();
1297
b15cc25c 1298 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1299 set_initial_language ();
1adeb98a
FN
1300}
1301
1302void
1303symbol_file_clear (int from_tty)
1304{
1305 if ((have_full_symbols () || have_partial_symbols ())
1306 && from_tty
0430b0d6
AS
1307 && (symfile_objfile
1308 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1309 objfile_name (symfile_objfile))
0430b0d6 1310 : !query (_("Discard symbol table? "))))
8a3fe4f8 1311 error (_("Not confirmed."));
1adeb98a 1312
0133421a
JK
1313 /* solib descriptors may have handles to objfiles. Wipe them before their
1314 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1315 no_shared_libraries (NULL, from_tty);
1316
0133421a
JK
1317 free_all_objfiles ();
1318
adb7f338 1319 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1320 if (from_tty)
1321 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1322}
1323
c4dcb155
SM
1324/* See symfile.h. */
1325
1326int separate_debug_file_debug = 0;
1327
5b5d99cf 1328static int
287ccc17 1329separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1330 struct objfile *parent_objfile)
5b5d99cf 1331{
904578ed
JK
1332 unsigned long file_crc;
1333 int file_crc_p;
32a0e547 1334 struct stat parent_stat, abfd_stat;
904578ed 1335 int verified_as_different;
32a0e547
JK
1336
1337 /* Find a separate debug info file as if symbols would be present in
1338 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1339 section can contain just the basename of PARENT_OBJFILE without any
1340 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1341 the separate debug infos with the same basename can exist. */
32a0e547 1342
4262abfb 1343 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1344 return 0;
5b5d99cf 1345
c4dcb155
SM
1346 if (separate_debug_file_debug)
1347 printf_unfiltered (_(" Trying %s\n"), name);
1348
192b62ce 1349 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
f1838a98 1350
192b62ce 1351 if (abfd == NULL)
5b5d99cf
JB
1352 return 0;
1353
0ba1096a 1354 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1355
1356 Some operating systems, e.g. Windows, do not provide a meaningful
1357 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1358 meaningful st_dev.) Files accessed from gdbservers that do not
1359 support the vFile:fstat packet will also have st_ino set to zero.
1360 Do not indicate a duplicate library in either case. While there
1361 is no guarantee that a system that provides meaningful inode
1362 numbers will never set st_ino to zero, this is merely an
1363 optimization, so we do not need to worry about false negatives. */
32a0e547 1364
192b62ce 1365 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1366 && abfd_stat.st_ino != 0
1367 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1368 {
904578ed
JK
1369 if (abfd_stat.st_dev == parent_stat.st_dev
1370 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1371 return 0;
904578ed 1372 verified_as_different = 1;
32a0e547 1373 }
904578ed
JK
1374 else
1375 verified_as_different = 0;
32a0e547 1376
192b62ce 1377 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1378
904578ed
JK
1379 if (!file_crc_p)
1380 return 0;
1381
287ccc17
JK
1382 if (crc != file_crc)
1383 {
dccee2de
TT
1384 unsigned long parent_crc;
1385
0a93529c
GB
1386 /* If the files could not be verified as different with
1387 bfd_stat then we need to calculate the parent's CRC
1388 to verify whether the files are different or not. */
904578ed 1389
dccee2de 1390 if (!verified_as_different)
904578ed 1391 {
dccee2de 1392 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1393 return 0;
1394 }
1395
dccee2de 1396 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1397 warning (_("the debug information found in \"%s\""
1398 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1399 name, objfile_name (parent_objfile));
904578ed 1400
287ccc17
JK
1401 return 0;
1402 }
1403
1404 return 1;
5b5d99cf
JB
1405}
1406
aa28a74e 1407char *debug_file_directory = NULL;
920d2a44
AC
1408static void
1409show_debug_file_directory (struct ui_file *file, int from_tty,
1410 struct cmd_list_element *c, const char *value)
1411{
3e43a32a
MS
1412 fprintf_filtered (file,
1413 _("The directory where separate debug "
1414 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1415 value);
1416}
5b5d99cf
JB
1417
1418#if ! defined (DEBUG_SUBDIRECTORY)
1419#define DEBUG_SUBDIRECTORY ".debug"
1420#endif
1421
1db33378
PP
1422/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1423 where the original file resides (may not be the same as
1424 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1425 looking for. CANON_DIR is the "realpath" form of DIR.
1426 DIR must contain a trailing '/'.
1427 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1428
1429static char *
1430find_separate_debug_file (const char *dir,
1431 const char *canon_dir,
1432 const char *debuglink,
1433 unsigned long crc32, struct objfile *objfile)
9cce227f 1434{
1db33378
PP
1435 char *debugdir;
1436 char *debugfile;
9cce227f 1437 int i;
e4ab2fad
JK
1438 VEC (char_ptr) *debugdir_vec;
1439 struct cleanup *back_to;
1440 int ix;
5b5d99cf 1441
c4dcb155
SM
1442 if (separate_debug_file_debug)
1443 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1444 "%s\n"), objfile_name (objfile));
1445
325fac50 1446 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1447 i = strlen (dir);
1db33378
PP
1448 if (canon_dir != NULL && strlen (canon_dir) > i)
1449 i = strlen (canon_dir);
1ffa32ee 1450
224c3ddb
SM
1451 debugfile
1452 = (char *) xmalloc (strlen (debug_file_directory) + 1
1453 + i
1454 + strlen (DEBUG_SUBDIRECTORY)
1455 + strlen ("/")
1456 + strlen (debuglink)
1457 + 1);
5b5d99cf
JB
1458
1459 /* First try in the same directory as the original file. */
1460 strcpy (debugfile, dir);
1db33378 1461 strcat (debugfile, debuglink);
5b5d99cf 1462
32a0e547 1463 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1464 return debugfile;
5417f6dc 1465
5b5d99cf
JB
1466 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1467 strcpy (debugfile, dir);
1468 strcat (debugfile, DEBUG_SUBDIRECTORY);
1469 strcat (debugfile, "/");
1db33378 1470 strcat (debugfile, debuglink);
5b5d99cf 1471
32a0e547 1472 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1473 return debugfile;
5417f6dc 1474
24ddea62 1475 /* Then try in the global debugfile directories.
f888f159 1476
24ddea62
JK
1477 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1478 cause "/..." lookups. */
5417f6dc 1479
e4ab2fad
JK
1480 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1481 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1482
e4ab2fad
JK
1483 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1484 {
1485 strcpy (debugfile, debugdir);
aa28a74e 1486 strcat (debugfile, "/");
24ddea62 1487 strcat (debugfile, dir);
1db33378 1488 strcat (debugfile, debuglink);
aa28a74e 1489
32a0e547 1490 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1491 {
1492 do_cleanups (back_to);
1493 return debugfile;
1494 }
24ddea62
JK
1495
1496 /* If the file is in the sysroot, try using its base path in the
1497 global debugfile directory. */
1db33378
PP
1498 if (canon_dir != NULL
1499 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1500 strlen (gdb_sysroot)) == 0
1db33378 1501 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1502 {
e4ab2fad 1503 strcpy (debugfile, debugdir);
1db33378 1504 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1505 strcat (debugfile, "/");
1db33378 1506 strcat (debugfile, debuglink);
24ddea62 1507
32a0e547 1508 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1509 {
1510 do_cleanups (back_to);
1511 return debugfile;
1512 }
24ddea62 1513 }
aa28a74e 1514 }
f888f159 1515
e4ab2fad 1516 do_cleanups (back_to);
25522fae 1517 xfree (debugfile);
1db33378
PP
1518 return NULL;
1519}
1520
7edbb660 1521/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1522 If there were no directory separators in PATH, PATH will be empty
1523 string on return. */
1524
1525static void
1526terminate_after_last_dir_separator (char *path)
1527{
1528 int i;
1529
1530 /* Strip off the final filename part, leaving the directory name,
1531 followed by a slash. The directory can be relative or absolute. */
1532 for (i = strlen(path) - 1; i >= 0; i--)
1533 if (IS_DIR_SEPARATOR (path[i]))
1534 break;
1535
1536 /* If I is -1 then no directory is present there and DIR will be "". */
1537 path[i + 1] = '\0';
1538}
1539
1540/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1541 Returns pathname, or NULL. */
1542
1543char *
1544find_separate_debug_file_by_debuglink (struct objfile *objfile)
1545{
1546 char *debuglink;
1547 char *dir, *canon_dir;
1548 char *debugfile;
1549 unsigned long crc32;
1550 struct cleanup *cleanups;
1551
cc0ea93c 1552 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1553
1554 if (debuglink == NULL)
1555 {
1556 /* There's no separate debug info, hence there's no way we could
1557 load it => no warning. */
1558 return NULL;
1559 }
1560
71bdabee 1561 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1562 dir = xstrdup (objfile_name (objfile));
71bdabee 1563 make_cleanup (xfree, dir);
1db33378
PP
1564 terminate_after_last_dir_separator (dir);
1565 canon_dir = lrealpath (dir);
1566
1567 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1568 crc32, objfile);
1569 xfree (canon_dir);
1570
1571 if (debugfile == NULL)
1572 {
1db33378
PP
1573 /* For PR gdb/9538, try again with realpath (if different from the
1574 original). */
1575
1576 struct stat st_buf;
1577
4262abfb
JK
1578 if (lstat (objfile_name (objfile), &st_buf) == 0
1579 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1580 {
1581 char *symlink_dir;
1582
4262abfb 1583 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1584 if (symlink_dir != NULL)
1585 {
1586 make_cleanup (xfree, symlink_dir);
1587 terminate_after_last_dir_separator (symlink_dir);
1588 if (strcmp (dir, symlink_dir) != 0)
1589 {
1590 /* Different directory, so try using it. */
1591 debugfile = find_separate_debug_file (symlink_dir,
1592 symlink_dir,
1593 debuglink,
1594 crc32,
1595 objfile);
1596 }
1597 }
1598 }
1db33378 1599 }
aa28a74e 1600
1db33378 1601 do_cleanups (cleanups);
25522fae 1602 return debugfile;
5b5d99cf
JB
1603}
1604
c906108c
SS
1605/* This is the symbol-file command. Read the file, analyze its
1606 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1607 the command is rather bizarre:
1608
1609 1. The function buildargv implements various quoting conventions
1610 which are undocumented and have little or nothing in common with
1611 the way things are quoted (or not quoted) elsewhere in GDB.
1612
1613 2. Options are used, which are not generally used in GDB (perhaps
1614 "set mapped on", "set readnow on" would be better)
1615
1616 3. The order of options matters, which is contrary to GNU
c906108c
SS
1617 conventions (because it is confusing and inconvenient). */
1618
1619void
1d8b34a7 1620symbol_file_command (const char *args, int from_tty)
c906108c 1621{
c906108c
SS
1622 dont_repeat ();
1623
1624 if (args == NULL)
1625 {
1adeb98a 1626 symbol_file_clear (from_tty);
c906108c
SS
1627 }
1628 else
1629 {
b15cc25c 1630 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1631 symfile_add_flags add_flags = 0;
cb2f3a29
MK
1632 char *name = NULL;
1633
ecf45d2c
SL
1634 if (from_tty)
1635 add_flags |= SYMFILE_VERBOSE;
1636
773a1edc
TT
1637 gdb_argv built_argv (args);
1638 for (char *arg : built_argv)
c906108c 1639 {
773a1edc 1640 if (strcmp (arg, "-readnow") == 0)
78a4a9b9 1641 flags |= OBJF_READNOW;
773a1edc
TT
1642 else if (*arg == '-')
1643 error (_("unknown option `%s'"), arg);
78a4a9b9
AC
1644 else
1645 {
773a1edc
TT
1646 symbol_file_add_main_1 (arg, add_flags, flags);
1647 name = arg;
78a4a9b9 1648 }
c906108c
SS
1649 }
1650
1651 if (name == NULL)
cb2f3a29 1652 error (_("no symbol file name was specified"));
c906108c
SS
1653 }
1654}
1655
1656/* Set the initial language.
1657
cb2f3a29
MK
1658 FIXME: A better solution would be to record the language in the
1659 psymtab when reading partial symbols, and then use it (if known) to
1660 set the language. This would be a win for formats that encode the
1661 language in an easily discoverable place, such as DWARF. For
1662 stabs, we can jump through hoops looking for specially named
1663 symbols or try to intuit the language from the specific type of
1664 stabs we find, but we can't do that until later when we read in
1665 full symbols. */
c906108c 1666
8b60591b 1667void
fba45db2 1668set_initial_language (void)
c906108c 1669{
9e6c82ad 1670 enum language lang = main_language ();
c906108c 1671
9e6c82ad 1672 if (lang == language_unknown)
01f8c46d 1673 {
bf6d8a91 1674 char *name = main_name ();
d12307c1 1675 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1676
bf6d8a91
TT
1677 if (sym != NULL)
1678 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1679 }
cb2f3a29 1680
ccefe4c4
TT
1681 if (lang == language_unknown)
1682 {
1683 /* Make C the default language */
1684 lang = language_c;
c906108c 1685 }
ccefe4c4
TT
1686
1687 set_language (lang);
1688 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1689}
1690
cb2f3a29
MK
1691/* Open the file specified by NAME and hand it off to BFD for
1692 preliminary analysis. Return a newly initialized bfd *, which
1693 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1694 absolute). In case of trouble, error() is called. */
c906108c 1695
192b62ce 1696gdb_bfd_ref_ptr
97a41605 1697symfile_bfd_open (const char *name)
c906108c 1698{
97a41605
GB
1699 int desc = -1;
1700 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1701
97a41605 1702 if (!is_target_filename (name))
f1838a98 1703 {
ee0c3293 1704 char *absolute_name;
f1838a98 1705
ee0c3293 1706 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1707
97a41605
GB
1708 /* Look down path for it, allocate 2nd new malloc'd copy. */
1709 desc = openp (getenv ("PATH"),
1710 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1711 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1712#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1713 if (desc < 0)
1714 {
ee0c3293 1715 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1716
ee0c3293 1717 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1718 desc = openp (getenv ("PATH"),
1719 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1720 exename, O_RDONLY | O_BINARY, &absolute_name);
1721 }
c906108c 1722#endif
97a41605 1723 if (desc < 0)
ee0c3293 1724 perror_with_name (expanded_name.get ());
cb2f3a29 1725
97a41605
GB
1726 make_cleanup (xfree, absolute_name);
1727 name = absolute_name;
1728 }
c906108c 1729
192b62ce
TT
1730 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1731 if (sym_bfd == NULL)
faab9922
JK
1732 error (_("`%s': can't open to read symbols: %s."), name,
1733 bfd_errmsg (bfd_get_error ()));
97a41605 1734
192b62ce
TT
1735 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1736 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1737
192b62ce
TT
1738 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1739 error (_("`%s': can't read symbols: %s."), name,
1740 bfd_errmsg (bfd_get_error ()));
cb2f3a29 1741
faab9922
JK
1742 do_cleanups (back_to);
1743
cb2f3a29 1744 return sym_bfd;
c906108c
SS
1745}
1746
cb2f3a29
MK
1747/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1748 the section was not found. */
1749
0e931cf0 1750int
a121b7c1 1751get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1752{
1753 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1754
0e931cf0
JB
1755 if (sect)
1756 return sect->index;
1757 else
1758 return -1;
1759}
1760
c256e171
DE
1761/* Link SF into the global symtab_fns list.
1762 FLAVOUR is the file format that SF handles.
1763 Called on startup by the _initialize routine in each object file format
1764 reader, to register information about each format the reader is prepared
1765 to handle. */
c906108c
SS
1766
1767void
c256e171 1768add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1769{
c256e171
DE
1770 registered_sym_fns fns = { flavour, sf };
1771
1772 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1773}
1774
cb2f3a29
MK
1775/* Initialize OBJFILE to read symbols from its associated BFD. It
1776 either returns or calls error(). The result is an initialized
1777 struct sym_fns in the objfile structure, that contains cached
1778 information about the symbol file. */
c906108c 1779
00b5771c 1780static const struct sym_fns *
31d99776 1781find_sym_fns (bfd *abfd)
c906108c 1782{
c256e171 1783 registered_sym_fns *rsf;
31d99776 1784 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1785 int i;
c906108c 1786
75245b24
MS
1787 if (our_flavour == bfd_target_srec_flavour
1788 || our_flavour == bfd_target_ihex_flavour
1789 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1790 return NULL; /* No symbols. */
75245b24 1791
c256e171
DE
1792 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1793 if (our_flavour == rsf->sym_flavour)
1794 return rsf->sym_fns;
cb2f3a29 1795
8a3fe4f8 1796 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1797 bfd_get_target (abfd));
c906108c
SS
1798}
1799\f
cb2f3a29 1800
c906108c
SS
1801/* This function runs the load command of our current target. */
1802
1803static void
fba45db2 1804load_command (char *arg, int from_tty)
c906108c 1805{
5b3fca71
TT
1806 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1807
e5cc9f32
JB
1808 dont_repeat ();
1809
4487aabf
PA
1810 /* The user might be reloading because the binary has changed. Take
1811 this opportunity to check. */
1812 reopen_exec_file ();
1813 reread_symbols ();
1814
c906108c 1815 if (arg == NULL)
1986bccd
AS
1816 {
1817 char *parg;
1818 int count = 0;
1819
1820 parg = arg = get_exec_file (1);
1821
1822 /* Count how many \ " ' tab space there are in the name. */
1823 while ((parg = strpbrk (parg, "\\\"'\t ")))
1824 {
1825 parg++;
1826 count++;
1827 }
1828
1829 if (count)
1830 {
1831 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1832 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd
AS
1833 char *ptemp = temp;
1834 char *prev;
1835
1836 make_cleanup (xfree, temp);
1837
1838 prev = parg = arg;
1839 while ((parg = strpbrk (parg, "\\\"'\t ")))
1840 {
1841 strncpy (ptemp, prev, parg - prev);
1842 ptemp += parg - prev;
1843 prev = parg++;
1844 *ptemp++ = '\\';
1845 }
1846 strcpy (ptemp, prev);
1847
1848 arg = temp;
1849 }
1850 }
1851
c906108c 1852 target_load (arg, from_tty);
2889e661
JB
1853
1854 /* After re-loading the executable, we don't really know which
1855 overlays are mapped any more. */
1856 overlay_cache_invalid = 1;
5b3fca71
TT
1857
1858 do_cleanups (cleanup);
c906108c
SS
1859}
1860
1861/* This version of "load" should be usable for any target. Currently
1862 it is just used for remote targets, not inftarg.c or core files,
1863 on the theory that only in that case is it useful.
1864
1865 Avoiding xmodem and the like seems like a win (a) because we don't have
1866 to worry about finding it, and (b) On VMS, fork() is very slow and so
1867 we don't want to run a subprocess. On the other hand, I'm not sure how
1868 performance compares. */
917317f4 1869
917317f4
JM
1870static int validate_download = 0;
1871
e4f9b4d5
MS
1872/* Callback service function for generic_load (bfd_map_over_sections). */
1873
1874static void
1875add_section_size_callback (bfd *abfd, asection *asec, void *data)
1876{
19ba03f4 1877 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1878
2c500098 1879 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1880}
1881
1882/* Opaque data for load_section_callback. */
1883struct load_section_data {
f698ca8e 1884 CORE_ADDR load_offset;
a76d924d
DJ
1885 struct load_progress_data *progress_data;
1886 VEC(memory_write_request_s) *requests;
1887};
1888
1889/* Opaque data for load_progress. */
1890struct load_progress_data {
1891 /* Cumulative data. */
e4f9b4d5
MS
1892 unsigned long write_count;
1893 unsigned long data_count;
1894 bfd_size_type total_size;
a76d924d
DJ
1895};
1896
1897/* Opaque data for load_progress for a single section. */
1898struct load_progress_section_data {
1899 struct load_progress_data *cumulative;
cf7a04e8 1900
a76d924d 1901 /* Per-section data. */
cf7a04e8
DJ
1902 const char *section_name;
1903 ULONGEST section_sent;
1904 ULONGEST section_size;
1905 CORE_ADDR lma;
1906 gdb_byte *buffer;
e4f9b4d5
MS
1907};
1908
a76d924d 1909/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1910
1911static void
1912load_progress (ULONGEST bytes, void *untyped_arg)
1913{
19ba03f4
SM
1914 struct load_progress_section_data *args
1915 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1916 struct load_progress_data *totals;
1917
1918 if (args == NULL)
1919 /* Writing padding data. No easy way to get at the cumulative
1920 stats, so just ignore this. */
1921 return;
1922
1923 totals = args->cumulative;
1924
1925 if (bytes == 0 && args->section_sent == 0)
1926 {
1927 /* The write is just starting. Let the user know we've started
1928 this section. */
112e8700
SM
1929 current_uiout->message ("Loading section %s, size %s lma %s\n",
1930 args->section_name,
1931 hex_string (args->section_size),
1932 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1933 return;
1934 }
cf7a04e8
DJ
1935
1936 if (validate_download)
1937 {
1938 /* Broken memories and broken monitors manifest themselves here
1939 when bring new computers to life. This doubles already slow
1940 downloads. */
1941 /* NOTE: cagney/1999-10-18: A more efficient implementation
1942 might add a verify_memory() method to the target vector and
1943 then use that. remote.c could implement that method using
1944 the ``qCRC'' packet. */
224c3ddb 1945 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
cf7a04e8
DJ
1946 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1947
1948 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1949 error (_("Download verify read failed at %s"),
f5656ead 1950 paddress (target_gdbarch (), args->lma));
cf7a04e8 1951 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1952 error (_("Download verify compare failed at %s"),
f5656ead 1953 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1954 do_cleanups (verify_cleanups);
1955 }
a76d924d 1956 totals->data_count += bytes;
cf7a04e8
DJ
1957 args->lma += bytes;
1958 args->buffer += bytes;
a76d924d 1959 totals->write_count += 1;
cf7a04e8 1960 args->section_sent += bytes;
522002f9 1961 if (check_quit_flag ()
cf7a04e8
DJ
1962 || (deprecated_ui_load_progress_hook != NULL
1963 && deprecated_ui_load_progress_hook (args->section_name,
1964 args->section_sent)))
1965 error (_("Canceled the download"));
1966
1967 if (deprecated_show_load_progress != NULL)
1968 deprecated_show_load_progress (args->section_name,
1969 args->section_sent,
1970 args->section_size,
a76d924d
DJ
1971 totals->data_count,
1972 totals->total_size);
cf7a04e8
DJ
1973}
1974
e4f9b4d5
MS
1975/* Callback service function for generic_load (bfd_map_over_sections). */
1976
1977static void
1978load_section_callback (bfd *abfd, asection *asec, void *data)
1979{
a76d924d 1980 struct memory_write_request *new_request;
19ba03f4 1981 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 1982 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1983 bfd_size_type size = bfd_get_section_size (asec);
1984 gdb_byte *buffer;
cf7a04e8 1985 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1986
cf7a04e8
DJ
1987 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1988 return;
e4f9b4d5 1989
cf7a04e8
DJ
1990 if (size == 0)
1991 return;
e4f9b4d5 1992
a76d924d
DJ
1993 new_request = VEC_safe_push (memory_write_request_s,
1994 args->requests, NULL);
1995 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 1996 section_data = XCNEW (struct load_progress_section_data);
a76d924d 1997 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
1998 new_request->end = new_request->begin + size; /* FIXME Should size
1999 be in instead? */
224c3ddb 2000 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2001 new_request->baton = section_data;
cf7a04e8 2002
a76d924d 2003 buffer = new_request->data;
cf7a04e8 2004
a76d924d
DJ
2005 section_data->cumulative = args->progress_data;
2006 section_data->section_name = sect_name;
2007 section_data->section_size = size;
2008 section_data->lma = new_request->begin;
2009 section_data->buffer = buffer;
cf7a04e8
DJ
2010
2011 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2012}
2013
2014/* Clean up an entire memory request vector, including load
2015 data and progress records. */
cf7a04e8 2016
a76d924d
DJ
2017static void
2018clear_memory_write_data (void *arg)
2019{
19ba03f4 2020 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2021 VEC(memory_write_request_s) *vec = *vec_p;
2022 int i;
2023 struct memory_write_request *mr;
cf7a04e8 2024
a76d924d
DJ
2025 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2026 {
2027 xfree (mr->data);
2028 xfree (mr->baton);
2029 }
2030 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2031}
2032
dcb07cfa
PA
2033static void print_transfer_performance (struct ui_file *stream,
2034 unsigned long data_count,
2035 unsigned long write_count,
2036 std::chrono::steady_clock::duration d);
2037
c906108c 2038void
9cbe5fff 2039generic_load (const char *args, int from_tty)
c906108c 2040{
773a1edc 2041 struct cleanup *old_cleanups;
e4f9b4d5 2042 struct load_section_data cbdata;
a76d924d 2043 struct load_progress_data total_progress;
79a45e25 2044 struct ui_out *uiout = current_uiout;
a76d924d 2045
e4f9b4d5
MS
2046 CORE_ADDR entry;
2047
a76d924d
DJ
2048 memset (&cbdata, 0, sizeof (cbdata));
2049 memset (&total_progress, 0, sizeof (total_progress));
2050 cbdata.progress_data = &total_progress;
2051
773a1edc 2052 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2053
d1a41061
PP
2054 if (args == NULL)
2055 error_no_arg (_("file to load"));
1986bccd 2056
773a1edc 2057 gdb_argv argv (args);
1986bccd 2058
ee0c3293 2059 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
2060
2061 if (argv[1] != NULL)
917317f4 2062 {
f698ca8e 2063 const char *endptr;
ba5f2f8a 2064
f698ca8e 2065 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2066
2067 /* If the last word was not a valid number then
2068 treat it as a file name with spaces in. */
2069 if (argv[1] == endptr)
2070 error (_("Invalid download offset:%s."), argv[1]);
2071
2072 if (argv[2] != NULL)
2073 error (_("Too many parameters."));
917317f4 2074 }
c906108c 2075
c378eb4e 2076 /* Open the file for loading. */
ee0c3293 2077 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 2078 if (loadfile_bfd == NULL)
ee0c3293 2079 perror_with_name (filename.get ());
917317f4 2080
192b62ce 2081 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2082 {
ee0c3293 2083 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
2084 bfd_errmsg (bfd_get_error ()));
2085 }
c5aa993b 2086
192b62ce 2087 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2088 (void *) &total_progress.total_size);
2089
192b62ce 2090 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2091
dcb07cfa
PA
2092 using namespace std::chrono;
2093
2094 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2095
a76d924d
DJ
2096 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2097 load_progress) != 0)
2098 error (_("Load failed"));
c906108c 2099
dcb07cfa 2100 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2101
192b62ce 2102 entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2103 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2104 uiout->text ("Start address ");
2105 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2106 uiout->text (", load size ");
2107 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2108 uiout->text ("\n");
fb14de7b 2109 regcache_write_pc (get_current_regcache (), entry);
c906108c 2110
38963c97
DJ
2111 /* Reset breakpoints, now that we have changed the load image. For
2112 instance, breakpoints may have been set (or reset, by
2113 post_create_inferior) while connected to the target but before we
2114 loaded the program. In that case, the prologue analyzer could
2115 have read instructions from the target to find the right
2116 breakpoint locations. Loading has changed the contents of that
2117 memory. */
2118
2119 breakpoint_re_set ();
2120
a76d924d
DJ
2121 print_transfer_performance (gdb_stdout, total_progress.data_count,
2122 total_progress.write_count,
dcb07cfa 2123 end_time - start_time);
c906108c
SS
2124
2125 do_cleanups (old_cleanups);
2126}
2127
dcb07cfa
PA
2128/* Report on STREAM the performance of a memory transfer operation,
2129 such as 'load'. DATA_COUNT is the number of bytes transferred.
2130 WRITE_COUNT is the number of separate write operations, or 0, if
2131 that information is not available. TIME is how long the operation
2132 lasted. */
c906108c 2133
dcb07cfa 2134static void
d9fcf2fb 2135print_transfer_performance (struct ui_file *stream,
917317f4
JM
2136 unsigned long data_count,
2137 unsigned long write_count,
dcb07cfa 2138 std::chrono::steady_clock::duration time)
917317f4 2139{
dcb07cfa 2140 using namespace std::chrono;
79a45e25 2141 struct ui_out *uiout = current_uiout;
2b71414d 2142
dcb07cfa 2143 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2144
112e8700 2145 uiout->text ("Transfer rate: ");
dcb07cfa 2146 if (ms.count () > 0)
8b93c638 2147 {
dcb07cfa 2148 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2149
112e8700 2150 if (uiout->is_mi_like_p ())
9f43d28c 2151 {
112e8700
SM
2152 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2153 uiout->text (" bits/sec");
9f43d28c
DJ
2154 }
2155 else if (rate < 1024)
2156 {
112e8700
SM
2157 uiout->field_fmt ("transfer-rate", "%lu", rate);
2158 uiout->text (" bytes/sec");
9f43d28c
DJ
2159 }
2160 else
2161 {
112e8700
SM
2162 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2163 uiout->text (" KB/sec");
9f43d28c 2164 }
8b93c638
JM
2165 }
2166 else
2167 {
112e8700
SM
2168 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2169 uiout->text (" bits in <1 sec");
8b93c638
JM
2170 }
2171 if (write_count > 0)
2172 {
112e8700
SM
2173 uiout->text (", ");
2174 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2175 uiout->text (" bytes/write");
8b93c638 2176 }
112e8700 2177 uiout->text (".\n");
c906108c
SS
2178}
2179
2180/* This function allows the addition of incrementally linked object files.
2181 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2182/* Note: ezannoni 2000-04-13 This function/command used to have a
2183 special case syntax for the rombug target (Rombug is the boot
2184 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2185 rombug case, the user doesn't need to supply a text address,
2186 instead a call to target_link() (in target.c) would supply the
c378eb4e 2187 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2188
c906108c 2189static void
2cf311eb 2190add_symbol_file_command (const char *args, int from_tty)
c906108c 2191{
5af949e3 2192 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2193 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2194 char *arg;
2acceee2
JM
2195 int argcnt = 0;
2196 int sec_num = 0;
db162d44
EZ
2197 int expecting_sec_name = 0;
2198 int expecting_sec_addr = 0;
76ad5e1e 2199 struct objfile *objf;
b15cc25c
PA
2200 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2201 symfile_add_flags add_flags = 0;
2202
2203 if (from_tty)
2204 add_flags |= SYMFILE_VERBOSE;
db162d44 2205
a39a16c4 2206 struct sect_opt
2acceee2 2207 {
a121b7c1
PA
2208 const char *name;
2209 const char *value;
a39a16c4 2210 };
db162d44 2211
a39a16c4 2212 struct section_addr_info *section_addrs;
f978cb06 2213 std::vector<sect_opt> sect_opts;
3017564a 2214 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2215
c906108c
SS
2216 dont_repeat ();
2217
2218 if (args == NULL)
8a3fe4f8 2219 error (_("add-symbol-file takes a file name and an address"));
c906108c 2220
773a1edc 2221 gdb_argv argv (args);
db162d44 2222
5b96932b
AS
2223 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2224 {
c378eb4e 2225 /* Process the argument. */
db162d44 2226 if (argcnt == 0)
c906108c 2227 {
c378eb4e 2228 /* The first argument is the file name. */
ee0c3293 2229 filename.reset (tilde_expand (arg));
c906108c 2230 }
41dc8db8
MB
2231 else if (argcnt == 1)
2232 {
2233 /* The second argument is always the text address at which
2234 to load the program. */
f978cb06
TT
2235 sect_opt sect = { ".text", arg };
2236 sect_opts.push_back (sect);
41dc8db8 2237 }
db162d44 2238 else
41dc8db8
MB
2239 {
2240 /* It's an option (starting with '-') or it's an argument
2241 to an option. */
41dc8db8
MB
2242 if (expecting_sec_name)
2243 {
f978cb06
TT
2244 sect_opt sect = { arg, NULL };
2245 sect_opts.push_back (sect);
41dc8db8
MB
2246 expecting_sec_name = 0;
2247 }
2248 else if (expecting_sec_addr)
2249 {
f978cb06 2250 sect_opts.back ().value = arg;
41dc8db8 2251 expecting_sec_addr = 0;
41dc8db8
MB
2252 }
2253 else if (strcmp (arg, "-readnow") == 0)
2254 flags |= OBJF_READNOW;
2255 else if (strcmp (arg, "-s") == 0)
2256 {
2257 expecting_sec_name = 1;
2258 expecting_sec_addr = 1;
2259 }
2260 else
2261 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2262 " [-readnow] [-s <secname> <addr>]*"));
2263 }
c906108c 2264 }
c906108c 2265
927890d0
JB
2266 /* This command takes at least two arguments. The first one is a
2267 filename, and the second is the address where this file has been
2268 loaded. Abort now if this address hasn't been provided by the
2269 user. */
f978cb06 2270 if (sect_opts.empty ())
ee0c3293
TT
2271 error (_("The address where %s has been loaded is missing"),
2272 filename.get ());
927890d0 2273
c378eb4e 2274 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2275 a sect_addr_info structure to be passed around to other
2276 functions. We have to split this up into separate print
bb599908 2277 statements because hex_string returns a local static
c378eb4e 2278 string. */
5417f6dc 2279
ee0c3293
TT
2280 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2281 filename.get ());
f978cb06 2282 section_addrs = alloc_section_addr_info (sect_opts.size ());
a39a16c4 2283 make_cleanup (xfree, section_addrs);
f978cb06 2284 for (sect_opt &sect : sect_opts)
c906108c 2285 {
db162d44 2286 CORE_ADDR addr;
f978cb06
TT
2287 const char *val = sect.value;
2288 const char *sec = sect.name;
5417f6dc 2289
ae822768 2290 addr = parse_and_eval_address (val);
db162d44 2291
db162d44 2292 /* Here we store the section offsets in the order they were
c378eb4e 2293 entered on the command line. */
a121b7c1 2294 section_addrs->other[sec_num].name = (char *) sec;
a39a16c4 2295 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2296 printf_unfiltered ("\t%s_addr = %s\n", sec,
2297 paddress (gdbarch, addr));
db162d44
EZ
2298 sec_num++;
2299
5417f6dc 2300 /* The object's sections are initialized when a
db162d44 2301 call is made to build_objfile_section_table (objfile).
5417f6dc 2302 This happens in reread_symbols.
db162d44
EZ
2303 At this point, we don't know what file type this is,
2304 so we can't determine what section names are valid. */
2acceee2 2305 }
d76488d8 2306 section_addrs->num_sections = sec_num;
db162d44 2307
2acceee2 2308 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2309 error (_("Not confirmed."));
c906108c 2310
ee0c3293 2311 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
76ad5e1e
NB
2312
2313 add_target_sections_of_objfile (objf);
c906108c
SS
2314
2315 /* Getting new symbols may change our opinion about what is
2316 frameless. */
2317 reinit_frame_cache ();
db162d44 2318 do_cleanups (my_cleanups);
c906108c
SS
2319}
2320\f
70992597 2321
63644780
NB
2322/* This function removes a symbol file that was added via add-symbol-file. */
2323
2324static void
2cf311eb 2325remove_symbol_file_command (const char *args, int from_tty)
63644780 2326{
63644780 2327 struct objfile *objf = NULL;
63644780 2328 struct program_space *pspace = current_program_space;
63644780
NB
2329
2330 dont_repeat ();
2331
2332 if (args == NULL)
2333 error (_("remove-symbol-file: no symbol file provided"));
2334
773a1edc 2335 gdb_argv argv (args);
63644780
NB
2336
2337 if (strcmp (argv[0], "-a") == 0)
2338 {
2339 /* Interpret the next argument as an address. */
2340 CORE_ADDR addr;
2341
2342 if (argv[1] == NULL)
2343 error (_("Missing address argument"));
2344
2345 if (argv[2] != NULL)
2346 error (_("Junk after %s"), argv[1]);
2347
2348 addr = parse_and_eval_address (argv[1]);
2349
2350 ALL_OBJFILES (objf)
2351 {
d03de421
PA
2352 if ((objf->flags & OBJF_USERLOADED) != 0
2353 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2354 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2355 break;
2356 }
2357 }
2358 else if (argv[0] != NULL)
2359 {
2360 /* Interpret the current argument as a file name. */
63644780
NB
2361
2362 if (argv[1] != NULL)
2363 error (_("Junk after %s"), argv[0]);
2364
ee0c3293 2365 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2366
2367 ALL_OBJFILES (objf)
2368 {
d03de421
PA
2369 if ((objf->flags & OBJF_USERLOADED) != 0
2370 && (objf->flags & OBJF_SHARED) != 0
63644780 2371 && objf->pspace == pspace
ee0c3293 2372 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2373 break;
2374 }
2375 }
2376
2377 if (objf == NULL)
2378 error (_("No symbol file found"));
2379
2380 if (from_tty
2381 && !query (_("Remove symbol table from file \"%s\"? "),
2382 objfile_name (objf)))
2383 error (_("Not confirmed."));
2384
2385 free_objfile (objf);
2386 clear_symtab_users (0);
63644780
NB
2387}
2388
c906108c 2389/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2390
c906108c 2391void
fba45db2 2392reread_symbols (void)
c906108c
SS
2393{
2394 struct objfile *objfile;
2395 long new_modtime;
c906108c
SS
2396 struct stat new_statbuf;
2397 int res;
4c404b8b 2398 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2399
2400 /* With the addition of shared libraries, this should be modified,
2401 the load time should be saved in the partial symbol tables, since
2402 different tables may come from different source files. FIXME.
2403 This routine should then walk down each partial symbol table
c378eb4e 2404 and see if the symbol table that it originates from has been changed. */
c906108c 2405
c5aa993b
JM
2406 for (objfile = object_files; objfile; objfile = objfile->next)
2407 {
9cce227f
TG
2408 if (objfile->obfd == NULL)
2409 continue;
2410
2411 /* Separate debug objfiles are handled in the main objfile. */
2412 if (objfile->separate_debug_objfile_backlink)
2413 continue;
2414
02aeec7b
JB
2415 /* If this object is from an archive (what you usually create with
2416 `ar', often called a `static library' on most systems, though
2417 a `shared library' on AIX is also an archive), then you should
2418 stat on the archive name, not member name. */
9cce227f
TG
2419 if (objfile->obfd->my_archive)
2420 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2421 else
4262abfb 2422 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2423 if (res != 0)
2424 {
c378eb4e 2425 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2426 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2427 objfile_name (objfile));
9cce227f
TG
2428 continue;
2429 }
2430 new_modtime = new_statbuf.st_mtime;
2431 if (new_modtime != objfile->mtime)
2432 {
2433 struct cleanup *old_cleanups;
2434 struct section_offsets *offsets;
2435 int num_offsets;
24ba069a 2436 char *original_name;
9cce227f
TG
2437
2438 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2439 objfile_name (objfile));
9cce227f
TG
2440
2441 /* There are various functions like symbol_file_add,
2442 symfile_bfd_open, syms_from_objfile, etc., which might
2443 appear to do what we want. But they have various other
2444 effects which we *don't* want. So we just do stuff
2445 ourselves. We don't worry about mapped files (for one thing,
2446 any mapped file will be out of date). */
2447
2448 /* If we get an error, blow away this objfile (not sure if
2449 that is the correct response for things like shared
2450 libraries). */
2451 old_cleanups = make_cleanup_free_objfile (objfile);
2452 /* We need to do this whenever any symbols go away. */
2453 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2454
0ba1096a
KT
2455 if (exec_bfd != NULL
2456 && filename_cmp (bfd_get_filename (objfile->obfd),
2457 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2458 {
2459 /* Reload EXEC_BFD without asking anything. */
2460
2461 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2462 }
2463
f6eeced0
JK
2464 /* Keep the calls order approx. the same as in free_objfile. */
2465
2466 /* Free the separate debug objfiles. It will be
2467 automatically recreated by sym_read. */
2468 free_objfile_separate_debug (objfile);
2469
2470 /* Remove any references to this objfile in the global
2471 value lists. */
2472 preserve_values (objfile);
2473
2474 /* Nuke all the state that we will re-read. Much of the following
2475 code which sets things to NULL really is necessary to tell
2476 other parts of GDB that there is nothing currently there.
2477
2478 Try to keep the freeing order compatible with free_objfile. */
2479
2480 if (objfile->sf != NULL)
2481 {
2482 (*objfile->sf->sym_finish) (objfile);
2483 }
2484
2485 clear_objfile_data (objfile);
2486
e1507e95 2487 /* Clean up any state BFD has sitting around. */
a4453b7e 2488 {
192b62ce 2489 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2490 char *obfd_filename;
a4453b7e
TT
2491
2492 obfd_filename = bfd_get_filename (objfile->obfd);
2493 /* Open the new BFD before freeing the old one, so that
2494 the filename remains live. */
192b62ce
TT
2495 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2496 objfile->obfd = temp.release ();
e1507e95 2497 if (objfile->obfd == NULL)
192b62ce 2498 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2499 }
2500
24ba069a
JK
2501 original_name = xstrdup (objfile->original_name);
2502 make_cleanup (xfree, original_name);
2503
9cce227f
TG
2504 /* bfd_openr sets cacheable to true, which is what we want. */
2505 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2506 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2507 bfd_errmsg (bfd_get_error ()));
2508
2509 /* Save the offsets, we will nuke them with the rest of the
2510 objfile_obstack. */
2511 num_offsets = objfile->num_sections;
2512 offsets = ((struct section_offsets *)
2513 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2514 memcpy (offsets, objfile->section_offsets,
2515 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2516
9cce227f
TG
2517 /* FIXME: Do we have to free a whole linked list, or is this
2518 enough? */
2519 if (objfile->global_psymbols.list)
2520 xfree (objfile->global_psymbols.list);
2521 memset (&objfile->global_psymbols, 0,
2522 sizeof (objfile->global_psymbols));
2523 if (objfile->static_psymbols.list)
2524 xfree (objfile->static_psymbols.list);
2525 memset (&objfile->static_psymbols, 0,
2526 sizeof (objfile->static_psymbols));
2527
c378eb4e 2528 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2529 psymbol_bcache_free (objfile->psymbol_cache);
2530 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2531
2532 /* NB: after this call to obstack_free, objfiles_changed
2533 will need to be called (see discussion below). */
9cce227f
TG
2534 obstack_free (&objfile->objfile_obstack, 0);
2535 objfile->sections = NULL;
43f3e411 2536 objfile->compunit_symtabs = NULL;
9cce227f
TG
2537 objfile->psymtabs = NULL;
2538 objfile->psymtabs_addrmap = NULL;
2539 objfile->free_psymtabs = NULL;
34eaf542 2540 objfile->template_symbols = NULL;
9cce227f 2541
9cce227f
TG
2542 /* obstack_init also initializes the obstack so it is
2543 empty. We could use obstack_specify_allocation but
d82ea6a8 2544 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2545 obstack_init (&objfile->objfile_obstack);
779bd270 2546
846060df
JB
2547 /* set_objfile_per_bfd potentially allocates the per-bfd
2548 data on the objfile's obstack (if sharing data across
2549 multiple users is not possible), so it's important to
2550 do it *after* the obstack has been initialized. */
2551 set_objfile_per_bfd (objfile);
2552
224c3ddb
SM
2553 objfile->original_name
2554 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2555 strlen (original_name));
24ba069a 2556
779bd270
DE
2557 /* Reset the sym_fns pointer. The ELF reader can change it
2558 based on whether .gdb_index is present, and we need it to
2559 start over. PR symtab/15885 */
8fb8eb5c 2560 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2561
d82ea6a8 2562 build_objfile_section_table (objfile);
9cce227f
TG
2563 terminate_minimal_symbol_table (objfile);
2564
2565 /* We use the same section offsets as from last time. I'm not
2566 sure whether that is always correct for shared libraries. */
2567 objfile->section_offsets = (struct section_offsets *)
2568 obstack_alloc (&objfile->objfile_obstack,
2569 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2570 memcpy (objfile->section_offsets, offsets,
2571 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2572 objfile->num_sections = num_offsets;
2573
2574 /* What the hell is sym_new_init for, anyway? The concept of
2575 distinguishing between the main file and additional files
2576 in this way seems rather dubious. */
2577 if (objfile == symfile_objfile)
c906108c 2578 {
9cce227f 2579 (*objfile->sf->sym_new_init) (objfile);
c906108c 2580 }
9cce227f
TG
2581
2582 (*objfile->sf->sym_init) (objfile);
2583 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2584
2585 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2586
2587 /* We are about to read new symbols and potentially also
2588 DWARF information. Some targets may want to pass addresses
2589 read from DWARF DIE's through an adjustment function before
2590 saving them, like MIPS, which may call into
2591 "find_pc_section". When called, that function will make
2592 use of per-objfile program space data.
2593
2594 Since we discarded our section information above, we have
2595 dangling pointers in the per-objfile program space data
2596 structure. Force GDB to update the section mapping
2597 information by letting it know the objfile has changed,
2598 making the dangling pointers point to correct data
2599 again. */
2600
2601 objfiles_changed ();
2602
608e2dbb 2603 read_symbols (objfile, 0);
b11896a5 2604
9cce227f 2605 if (!objfile_has_symbols (objfile))
c906108c 2606 {
9cce227f
TG
2607 wrap_here ("");
2608 printf_unfiltered (_("(no debugging symbols found)\n"));
2609 wrap_here ("");
c5aa993b 2610 }
9cce227f
TG
2611
2612 /* We're done reading the symbol file; finish off complaints. */
2613 clear_complaints (&symfile_complaints, 0, 1);
2614
2615 /* Getting new symbols may change our opinion about what is
2616 frameless. */
2617
2618 reinit_frame_cache ();
2619
2620 /* Discard cleanups as symbol reading was successful. */
2621 discard_cleanups (old_cleanups);
2622
2623 /* If the mtime has changed between the time we set new_modtime
2624 and now, we *want* this to be out of date, so don't call stat
2625 again now. */
2626 objfile->mtime = new_modtime;
9cce227f 2627 init_entry_point_info (objfile);
4ac39b97 2628
4c404b8b 2629 new_objfiles.push_back (objfile);
c906108c
SS
2630 }
2631 }
c906108c 2632
4c404b8b 2633 if (!new_objfiles.empty ())
ea53e89f 2634 {
c1e56572 2635 clear_symtab_users (0);
4ac39b97
JK
2636
2637 /* clear_objfile_data for each objfile was called before freeing it and
2638 observer_notify_new_objfile (NULL) has been called by
2639 clear_symtab_users above. Notify the new files now. */
4c404b8b
TT
2640 for (auto iter : new_objfiles)
2641 observer_notify_new_objfile (iter);
4ac39b97 2642
ea53e89f
JB
2643 /* At least one objfile has changed, so we can consider that
2644 the executable we're debugging has changed too. */
781b42b0 2645 observer_notify_executable_changed ();
ea53e89f 2646 }
c906108c 2647}
c906108c
SS
2648\f
2649
c5aa993b
JM
2650typedef struct
2651{
2652 char *ext;
c906108c 2653 enum language lang;
3fcf0b0d
TT
2654} filename_language;
2655
2656DEF_VEC_O (filename_language);
c906108c 2657
3fcf0b0d 2658static VEC (filename_language) *filename_language_table;
c906108c 2659
56618e20
TT
2660/* See symfile.h. */
2661
2662void
2663add_filename_language (const char *ext, enum language lang)
c906108c 2664{
3fcf0b0d
TT
2665 filename_language entry;
2666
2667 entry.ext = xstrdup (ext);
2668 entry.lang = lang;
c906108c 2669
3fcf0b0d 2670 VEC_safe_push (filename_language, filename_language_table, &entry);
c906108c
SS
2671}
2672
2673static char *ext_args;
920d2a44
AC
2674static void
2675show_ext_args (struct ui_file *file, int from_tty,
2676 struct cmd_list_element *c, const char *value)
2677{
3e43a32a
MS
2678 fprintf_filtered (file,
2679 _("Mapping between filename extension "
2680 "and source language is \"%s\".\n"),
920d2a44
AC
2681 value);
2682}
c906108c
SS
2683
2684static void
26c41df3 2685set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2686{
2687 int i;
2688 char *cp = ext_args;
2689 enum language lang;
3fcf0b0d 2690 filename_language *entry;
c906108c 2691
c378eb4e 2692 /* First arg is filename extension, starting with '.' */
c906108c 2693 if (*cp != '.')
8a3fe4f8 2694 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2695
2696 /* Find end of first arg. */
c5aa993b 2697 while (*cp && !isspace (*cp))
c906108c
SS
2698 cp++;
2699
2700 if (*cp == '\0')
3e43a32a
MS
2701 error (_("'%s': two arguments required -- "
2702 "filename extension and language"),
c906108c
SS
2703 ext_args);
2704
c378eb4e 2705 /* Null-terminate first arg. */
c5aa993b 2706 *cp++ = '\0';
c906108c
SS
2707
2708 /* Find beginning of second arg, which should be a source language. */
529480d0 2709 cp = skip_spaces (cp);
c906108c
SS
2710
2711 if (*cp == '\0')
3e43a32a
MS
2712 error (_("'%s': two arguments required -- "
2713 "filename extension and language"),
c906108c
SS
2714 ext_args);
2715
2716 /* Lookup the language from among those we know. */
2717 lang = language_enum (cp);
2718
2719 /* Now lookup the filename extension: do we already know it? */
3fcf0b0d
TT
2720 for (i = 0;
2721 VEC_iterate (filename_language, filename_language_table, i, entry);
2722 ++i)
2723 {
2724 if (0 == strcmp (ext_args, entry->ext))
2725 break;
2726 }
c906108c 2727
3fcf0b0d 2728 if (entry == NULL)
c906108c 2729 {
c378eb4e 2730 /* New file extension. */
c906108c
SS
2731 add_filename_language (ext_args, lang);
2732 }
2733 else
2734 {
c378eb4e 2735 /* Redefining a previously known filename extension. */
c906108c
SS
2736
2737 /* if (from_tty) */
2738 /* query ("Really make files of type %s '%s'?", */
2739 /* ext_args, language_str (lang)); */
2740
3fcf0b0d
TT
2741 xfree (entry->ext);
2742 entry->ext = xstrdup (ext_args);
2743 entry->lang = lang;
c906108c
SS
2744 }
2745}
2746
2747static void
fba45db2 2748info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2749{
2750 int i;
3fcf0b0d 2751 filename_language *entry;
c906108c 2752
a3f17187 2753 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2754 printf_filtered ("\n\n");
3fcf0b0d
TT
2755 for (i = 0;
2756 VEC_iterate (filename_language, filename_language_table, i, entry);
2757 ++i)
2758 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
c906108c
SS
2759}
2760
c906108c 2761enum language
dd786858 2762deduce_language_from_filename (const char *filename)
c906108c
SS
2763{
2764 int i;
e6a959d6 2765 const char *cp;
c906108c
SS
2766
2767 if (filename != NULL)
2768 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d
TT
2769 {
2770 filename_language *entry;
2771
2772 for (i = 0;
2773 VEC_iterate (filename_language, filename_language_table, i, entry);
2774 ++i)
2775 if (strcmp (cp, entry->ext) == 0)
2776 return entry->lang;
2777 }
c906108c
SS
2778
2779 return language_unknown;
2780}
2781\f
43f3e411
DE
2782/* Allocate and initialize a new symbol table.
2783 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2784
2785struct symtab *
43f3e411 2786allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2787{
43f3e411
DE
2788 struct objfile *objfile = cust->objfile;
2789 struct symtab *symtab
2790 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2791
19ba03f4
SM
2792 symtab->filename
2793 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2794 objfile->per_bfd->filename_cache);
c5aa993b
JM
2795 symtab->fullname = NULL;
2796 symtab->language = deduce_language_from_filename (filename);
c906108c 2797
db0fec5c
DE
2798 /* This can be very verbose with lots of headers.
2799 Only print at higher debug levels. */
2800 if (symtab_create_debug >= 2)
45cfd468
DE
2801 {
2802 /* Be a bit clever with debugging messages, and don't print objfile
2803 every time, only when it changes. */
2804 static char *last_objfile_name = NULL;
2805
2806 if (last_objfile_name == NULL
4262abfb 2807 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2808 {
2809 xfree (last_objfile_name);
4262abfb 2810 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2811 fprintf_unfiltered (gdb_stdlog,
2812 "Creating one or more symtabs for objfile %s ...\n",
2813 last_objfile_name);
2814 }
2815 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2816 "Created symtab %s for module %s.\n",
2817 host_address_to_string (symtab), filename);
45cfd468
DE
2818 }
2819
43f3e411
DE
2820 /* Add it to CUST's list of symtabs. */
2821 if (cust->filetabs == NULL)
2822 {
2823 cust->filetabs = symtab;
2824 cust->last_filetab = symtab;
2825 }
2826 else
2827 {
2828 cust->last_filetab->next = symtab;
2829 cust->last_filetab = symtab;
2830 }
2831
2832 /* Backlink to the containing compunit symtab. */
2833 symtab->compunit_symtab = cust;
2834
2835 return symtab;
2836}
2837
2838/* Allocate and initialize a new compunit.
2839 NAME is the name of the main source file, if there is one, or some
2840 descriptive text if there are no source files. */
2841
2842struct compunit_symtab *
2843allocate_compunit_symtab (struct objfile *objfile, const char *name)
2844{
2845 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2846 struct compunit_symtab);
2847 const char *saved_name;
2848
2849 cu->objfile = objfile;
2850
2851 /* The name we record here is only for display/debugging purposes.
2852 Just save the basename to avoid path issues (too long for display,
2853 relative vs absolute, etc.). */
2854 saved_name = lbasename (name);
224c3ddb
SM
2855 cu->name
2856 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2857 strlen (saved_name));
43f3e411
DE
2858
2859 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2860
2861 if (symtab_create_debug)
2862 {
2863 fprintf_unfiltered (gdb_stdlog,
2864 "Created compunit symtab %s for %s.\n",
2865 host_address_to_string (cu),
2866 cu->name);
2867 }
2868
2869 return cu;
2870}
2871
2872/* Hook CU to the objfile it comes from. */
2873
2874void
2875add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2876{
2877 cu->next = cu->objfile->compunit_symtabs;
2878 cu->objfile->compunit_symtabs = cu;
c906108c 2879}
c906108c 2880\f
c5aa993b 2881
b15cc25c
PA
2882/* Reset all data structures in gdb which may contain references to
2883 symbol table data. */
c906108c
SS
2884
2885void
b15cc25c 2886clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2887{
2888 /* Someday, we should do better than this, by only blowing away
2889 the things that really need to be blown. */
c0501be5
DJ
2890
2891 /* Clear the "current" symtab first, because it is no longer valid.
2892 breakpoint_re_set may try to access the current symtab. */
2893 clear_current_source_symtab_and_line ();
2894
c906108c 2895 clear_displays ();
1bfeeb0f 2896 clear_last_displayed_sal ();
c906108c 2897 clear_pc_function_cache ();
06d3b283 2898 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2899
2900 /* Clear globals which might have pointed into a removed objfile.
2901 FIXME: It's not clear which of these are supposed to persist
2902 between expressions and which ought to be reset each time. */
2903 expression_context_block = NULL;
2904 innermost_block = NULL;
8756216b
DP
2905
2906 /* Varobj may refer to old symbols, perform a cleanup. */
2907 varobj_invalidate ();
2908
e700d1b2
JB
2909 /* Now that the various caches have been cleared, we can re_set
2910 our breakpoints without risking it using stale data. */
2911 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2912 breakpoint_re_set ();
c906108c
SS
2913}
2914
74b7792f
AC
2915static void
2916clear_symtab_users_cleanup (void *ignore)
2917{
c1e56572 2918 clear_symtab_users (0);
74b7792f 2919}
c906108c 2920\f
c906108c
SS
2921/* OVERLAYS:
2922 The following code implements an abstraction for debugging overlay sections.
2923
2924 The target model is as follows:
2925 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2926 same VMA, each with its own unique LMA (or load address).
c906108c 2927 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2928 sections, one by one, from the load address into the VMA address.
5417f6dc 2929 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2930 sections should be considered to be mapped from the VMA to the LMA.
2931 This information is used for symbol lookup, and memory read/write.
5417f6dc 2932 For instance, if a section has been mapped then its contents
c5aa993b 2933 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2934
2935 Two levels of debugger support for overlays are available. One is
2936 "manual", in which the debugger relies on the user to tell it which
2937 overlays are currently mapped. This level of support is
2938 implemented entirely in the core debugger, and the information about
2939 whether a section is mapped is kept in the objfile->obj_section table.
2940
2941 The second level of support is "automatic", and is only available if
2942 the target-specific code provides functionality to read the target's
2943 overlay mapping table, and translate its contents for the debugger
2944 (by updating the mapped state information in the obj_section tables).
2945
2946 The interface is as follows:
c5aa993b
JM
2947 User commands:
2948 overlay map <name> -- tell gdb to consider this section mapped
2949 overlay unmap <name> -- tell gdb to consider this section unmapped
2950 overlay list -- list the sections that GDB thinks are mapped
2951 overlay read-target -- get the target's state of what's mapped
2952 overlay off/manual/auto -- set overlay debugging state
2953 Functional interface:
2954 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2955 section, return that section.
5417f6dc 2956 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2957 the pc, either in its VMA or its LMA
714835d5 2958 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2959 section_is_overlay(sect): true if section's VMA != LMA
2960 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2961 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2962 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2963 overlay_mapped_address(...): map an address from section's LMA to VMA
2964 overlay_unmapped_address(...): map an address from section's VMA to LMA
2965 symbol_overlayed_address(...): Return a "current" address for symbol:
2966 either in VMA or LMA depending on whether
c378eb4e 2967 the symbol's section is currently mapped. */
c906108c
SS
2968
2969/* Overlay debugging state: */
2970
d874f1e2 2971enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2972int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2973
c906108c 2974/* Function: section_is_overlay (SECTION)
5417f6dc 2975 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2976 SECTION is loaded at an address different from where it will "run". */
2977
2978int
714835d5 2979section_is_overlay (struct obj_section *section)
c906108c 2980{
714835d5
UW
2981 if (overlay_debugging && section)
2982 {
2983 bfd *abfd = section->objfile->obfd;
2984 asection *bfd_section = section->the_bfd_section;
f888f159 2985
714835d5
UW
2986 if (bfd_section_lma (abfd, bfd_section) != 0
2987 && bfd_section_lma (abfd, bfd_section)
2988 != bfd_section_vma (abfd, bfd_section))
2989 return 1;
2990 }
c906108c
SS
2991
2992 return 0;
2993}
2994
2995/* Function: overlay_invalidate_all (void)
2996 Invalidate the mapped state of all overlay sections (mark it as stale). */
2997
2998static void
fba45db2 2999overlay_invalidate_all (void)
c906108c 3000{
c5aa993b 3001 struct objfile *objfile;
c906108c
SS
3002 struct obj_section *sect;
3003
3004 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3005 if (section_is_overlay (sect))
3006 sect->ovly_mapped = -1;
c906108c
SS
3007}
3008
714835d5 3009/* Function: section_is_mapped (SECTION)
5417f6dc 3010 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3011
3012 Access to the ovly_mapped flag is restricted to this function, so
3013 that we can do automatic update. If the global flag
3014 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3015 overlay_invalidate_all. If the mapped state of the particular
3016 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3017
714835d5
UW
3018int
3019section_is_mapped (struct obj_section *osect)
c906108c 3020{
9216df95
UW
3021 struct gdbarch *gdbarch;
3022
714835d5 3023 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3024 return 0;
3025
c5aa993b 3026 switch (overlay_debugging)
c906108c
SS
3027 {
3028 default:
d874f1e2 3029 case ovly_off:
c5aa993b 3030 return 0; /* overlay debugging off */
d874f1e2 3031 case ovly_auto: /* overlay debugging automatic */
1c772458 3032 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3033 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3034 gdbarch = get_objfile_arch (osect->objfile);
3035 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3036 {
3037 if (overlay_cache_invalid)
3038 {
3039 overlay_invalidate_all ();
3040 overlay_cache_invalid = 0;
3041 }
3042 if (osect->ovly_mapped == -1)
9216df95 3043 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3044 }
3045 /* fall thru to manual case */
d874f1e2 3046 case ovly_on: /* overlay debugging manual */
c906108c
SS
3047 return osect->ovly_mapped == 1;
3048 }
3049}
3050
c906108c
SS
3051/* Function: pc_in_unmapped_range
3052 If PC falls into the lma range of SECTION, return true, else false. */
3053
3054CORE_ADDR
714835d5 3055pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3056{
714835d5
UW
3057 if (section_is_overlay (section))
3058 {
3059 bfd *abfd = section->objfile->obfd;
3060 asection *bfd_section = section->the_bfd_section;
fbd35540 3061
714835d5
UW
3062 /* We assume the LMA is relocated by the same offset as the VMA. */
3063 bfd_vma size = bfd_get_section_size (bfd_section);
3064 CORE_ADDR offset = obj_section_offset (section);
3065
3066 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3067 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3068 return 1;
3069 }
c906108c 3070
c906108c
SS
3071 return 0;
3072}
3073
3074/* Function: pc_in_mapped_range
3075 If PC falls into the vma range of SECTION, return true, else false. */
3076
3077CORE_ADDR
714835d5 3078pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3079{
714835d5
UW
3080 if (section_is_overlay (section))
3081 {
3082 if (obj_section_addr (section) <= pc
3083 && pc < obj_section_endaddr (section))
3084 return 1;
3085 }
c906108c 3086
c906108c
SS
3087 return 0;
3088}
3089
9ec8e6a0
JB
3090/* Return true if the mapped ranges of sections A and B overlap, false
3091 otherwise. */
3b7bacac 3092
b9362cc7 3093static int
714835d5 3094sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3095{
714835d5
UW
3096 CORE_ADDR a_start = obj_section_addr (a);
3097 CORE_ADDR a_end = obj_section_endaddr (a);
3098 CORE_ADDR b_start = obj_section_addr (b);
3099 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3100
3101 return (a_start < b_end && b_start < a_end);
3102}
3103
c906108c
SS
3104/* Function: overlay_unmapped_address (PC, SECTION)
3105 Returns the address corresponding to PC in the unmapped (load) range.
3106 May be the same as PC. */
3107
3108CORE_ADDR
714835d5 3109overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3110{
714835d5
UW
3111 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3112 {
3113 bfd *abfd = section->objfile->obfd;
3114 asection *bfd_section = section->the_bfd_section;
fbd35540 3115
714835d5
UW
3116 return pc + bfd_section_lma (abfd, bfd_section)
3117 - bfd_section_vma (abfd, bfd_section);
3118 }
c906108c
SS
3119
3120 return pc;
3121}
3122
3123/* Function: overlay_mapped_address (PC, SECTION)
3124 Returns the address corresponding to PC in the mapped (runtime) range.
3125 May be the same as PC. */
3126
3127CORE_ADDR
714835d5 3128overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3129{
714835d5
UW
3130 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3131 {
3132 bfd *abfd = section->objfile->obfd;
3133 asection *bfd_section = section->the_bfd_section;
fbd35540 3134
714835d5
UW
3135 return pc + bfd_section_vma (abfd, bfd_section)
3136 - bfd_section_lma (abfd, bfd_section);
3137 }
c906108c
SS
3138
3139 return pc;
3140}
3141
5417f6dc 3142/* Function: symbol_overlayed_address
c906108c
SS
3143 Return one of two addresses (relative to the VMA or to the LMA),
3144 depending on whether the section is mapped or not. */
3145
c5aa993b 3146CORE_ADDR
714835d5 3147symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3148{
3149 if (overlay_debugging)
3150 {
c378eb4e 3151 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3152 if (section == 0)
3153 return address;
c378eb4e
MS
3154 /* If the symbol's section is not an overlay, just return its
3155 address. */
c906108c
SS
3156 if (!section_is_overlay (section))
3157 return address;
c378eb4e 3158 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3159 if (section_is_mapped (section))
3160 return address;
3161 /*
3162 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3163 * then return its LOADED address rather than its vma address!!
3164 */
3165 return overlay_unmapped_address (address, section);
3166 }
3167 return address;
3168}
3169
5417f6dc 3170/* Function: find_pc_overlay (PC)
c906108c
SS
3171 Return the best-match overlay section for PC:
3172 If PC matches a mapped overlay section's VMA, return that section.
3173 Else if PC matches an unmapped section's VMA, return that section.
3174 Else if PC matches an unmapped section's LMA, return that section. */
3175
714835d5 3176struct obj_section *
fba45db2 3177find_pc_overlay (CORE_ADDR pc)
c906108c 3178{
c5aa993b 3179 struct objfile *objfile;
c906108c
SS
3180 struct obj_section *osect, *best_match = NULL;
3181
3182 if (overlay_debugging)
b631e59b
KT
3183 {
3184 ALL_OBJSECTIONS (objfile, osect)
3185 if (section_is_overlay (osect))
c5aa993b 3186 {
b631e59b
KT
3187 if (pc_in_mapped_range (pc, osect))
3188 {
3189 if (section_is_mapped (osect))
3190 return osect;
3191 else
3192 best_match = osect;
3193 }
3194 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3195 best_match = osect;
3196 }
b631e59b 3197 }
714835d5 3198 return best_match;
c906108c
SS
3199}
3200
3201/* Function: find_pc_mapped_section (PC)
5417f6dc 3202 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3203 currently marked as MAPPED, return that section. Else return NULL. */
3204
714835d5 3205struct obj_section *
fba45db2 3206find_pc_mapped_section (CORE_ADDR pc)
c906108c 3207{
c5aa993b 3208 struct objfile *objfile;
c906108c
SS
3209 struct obj_section *osect;
3210
3211 if (overlay_debugging)
b631e59b
KT
3212 {
3213 ALL_OBJSECTIONS (objfile, osect)
3214 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3215 return osect;
3216 }
c906108c
SS
3217
3218 return NULL;
3219}
3220
3221/* Function: list_overlays_command
c378eb4e 3222 Print a list of mapped sections and their PC ranges. */
c906108c 3223
5d3055ad 3224static void
2cf311eb 3225list_overlays_command (const char *args, int from_tty)
c906108c 3226{
c5aa993b
JM
3227 int nmapped = 0;
3228 struct objfile *objfile;
c906108c
SS
3229 struct obj_section *osect;
3230
3231 if (overlay_debugging)
b631e59b
KT
3232 {
3233 ALL_OBJSECTIONS (objfile, osect)
714835d5 3234 if (section_is_mapped (osect))
b631e59b
KT
3235 {
3236 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3237 const char *name;
3238 bfd_vma lma, vma;
3239 int size;
3240
3241 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3242 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3243 size = bfd_get_section_size (osect->the_bfd_section);
3244 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3245
3246 printf_filtered ("Section %s, loaded at ", name);
3247 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3248 puts_filtered (" - ");
3249 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3250 printf_filtered (", mapped at ");
3251 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3252 puts_filtered (" - ");
3253 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3254 puts_filtered ("\n");
3255
3256 nmapped++;
3257 }
3258 }
c906108c 3259 if (nmapped == 0)
a3f17187 3260 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3261}
3262
3263/* Function: map_overlay_command
3264 Mark the named section as mapped (ie. residing at its VMA address). */
3265
5d3055ad 3266static void
2cf311eb 3267map_overlay_command (const char *args, int from_tty)
c906108c 3268{
c5aa993b
JM
3269 struct objfile *objfile, *objfile2;
3270 struct obj_section *sec, *sec2;
c906108c
SS
3271
3272 if (!overlay_debugging)
3e43a32a
MS
3273 error (_("Overlay debugging not enabled. Use "
3274 "either the 'overlay auto' or\n"
3275 "the 'overlay manual' command."));
c906108c
SS
3276
3277 if (args == 0 || *args == 0)
8a3fe4f8 3278 error (_("Argument required: name of an overlay section"));
c906108c 3279
c378eb4e 3280 /* First, find a section matching the user supplied argument. */
c906108c
SS
3281 ALL_OBJSECTIONS (objfile, sec)
3282 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3283 {
c378eb4e 3284 /* Now, check to see if the section is an overlay. */
714835d5 3285 if (!section_is_overlay (sec))
c5aa993b
JM
3286 continue; /* not an overlay section */
3287
c378eb4e 3288 /* Mark the overlay as "mapped". */
c5aa993b
JM
3289 sec->ovly_mapped = 1;
3290
3291 /* Next, make a pass and unmap any sections that are
3292 overlapped by this new section: */
3293 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3294 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3295 {
3296 if (info_verbose)
a3f17187 3297 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3298 bfd_section_name (objfile->obfd,
3299 sec2->the_bfd_section));
c378eb4e 3300 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3301 }
3302 return;
3303 }
8a3fe4f8 3304 error (_("No overlay section called %s"), args);
c906108c
SS
3305}
3306
3307/* Function: unmap_overlay_command
5417f6dc 3308 Mark the overlay section as unmapped
c906108c
SS
3309 (ie. resident in its LMA address range, rather than the VMA range). */
3310
5d3055ad 3311static void
2cf311eb 3312unmap_overlay_command (const char *args, int from_tty)
c906108c 3313{
c5aa993b 3314 struct objfile *objfile;
7a270e0c 3315 struct obj_section *sec = NULL;
c906108c
SS
3316
3317 if (!overlay_debugging)
3e43a32a
MS
3318 error (_("Overlay debugging not enabled. "
3319 "Use either the 'overlay auto' or\n"
3320 "the 'overlay manual' command."));
c906108c
SS
3321
3322 if (args == 0 || *args == 0)
8a3fe4f8 3323 error (_("Argument required: name of an overlay section"));
c906108c 3324
c378eb4e 3325 /* First, find a section matching the user supplied argument. */
c906108c
SS
3326 ALL_OBJSECTIONS (objfile, sec)
3327 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3328 {
3329 if (!sec->ovly_mapped)
8a3fe4f8 3330 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3331 sec->ovly_mapped = 0;
3332 return;
3333 }
8a3fe4f8 3334 error (_("No overlay section called %s"), args);
c906108c
SS
3335}
3336
3337/* Function: overlay_auto_command
3338 A utility command to turn on overlay debugging.
c378eb4e 3339 Possibly this should be done via a set/show command. */
c906108c
SS
3340
3341static void
2cf311eb 3342overlay_auto_command (const char *args, int from_tty)
c906108c 3343{
d874f1e2 3344 overlay_debugging = ovly_auto;
1900040c 3345 enable_overlay_breakpoints ();
c906108c 3346 if (info_verbose)
a3f17187 3347 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3348}
3349
3350/* Function: overlay_manual_command
3351 A utility command to turn on overlay debugging.
c378eb4e 3352 Possibly this should be done via a set/show command. */
c906108c
SS
3353
3354static void
2cf311eb 3355overlay_manual_command (const char *args, int from_tty)
c906108c 3356{
d874f1e2 3357 overlay_debugging = ovly_on;
1900040c 3358 disable_overlay_breakpoints ();
c906108c 3359 if (info_verbose)
a3f17187 3360 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3361}
3362
3363/* Function: overlay_off_command
3364 A utility command to turn on overlay debugging.
c378eb4e 3365 Possibly this should be done via a set/show command. */
c906108c
SS
3366
3367static void
2cf311eb 3368overlay_off_command (const char *args, int from_tty)
c906108c 3369{
d874f1e2 3370 overlay_debugging = ovly_off;
1900040c 3371 disable_overlay_breakpoints ();
c906108c 3372 if (info_verbose)
a3f17187 3373 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3374}
3375
3376static void
2cf311eb 3377overlay_load_command (const char *args, int from_tty)
c906108c 3378{
e17c207e
UW
3379 struct gdbarch *gdbarch = get_current_arch ();
3380
3381 if (gdbarch_overlay_update_p (gdbarch))
3382 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3383 else
8a3fe4f8 3384 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3385}
3386
3387/* Function: overlay_command
c378eb4e 3388 A place-holder for a mis-typed command. */
c906108c 3389
c378eb4e 3390/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3391static struct cmd_list_element *overlaylist;
c906108c
SS
3392
3393static void
fba45db2 3394overlay_command (char *args, int from_tty)
c906108c 3395{
c5aa993b 3396 printf_unfiltered
c906108c 3397 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3398 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3399}
3400
c906108c
SS
3401/* Target Overlays for the "Simplest" overlay manager:
3402
5417f6dc
RM
3403 This is GDB's default target overlay layer. It works with the
3404 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3405 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3406 so targets that use a different runtime overlay manager can
c906108c
SS
3407 substitute their own overlay_update function and take over the
3408 function pointer.
3409
3410 The overlay_update function pokes around in the target's data structures
3411 to see what overlays are mapped, and updates GDB's overlay mapping with
3412 this information.
3413
3414 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3415 unsigned _novlys; /# number of overlay sections #/
3416 unsigned _ovly_table[_novlys][4] = {
438e1e42 3417 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3418 {..., ..., ..., ...},
3419 }
3420 unsigned _novly_regions; /# number of overlay regions #/
3421 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3422 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3423 {..., ..., ...},
3424 }
c906108c
SS
3425 These functions will attempt to update GDB's mappedness state in the
3426 symbol section table, based on the target's mappedness state.
3427
3428 To do this, we keep a cached copy of the target's _ovly_table, and
3429 attempt to detect when the cached copy is invalidated. The main
3430 entry point is "simple_overlay_update(SECT), which looks up SECT in
3431 the cached table and re-reads only the entry for that section from
c378eb4e 3432 the target (whenever possible). */
c906108c
SS
3433
3434/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3435static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3436static unsigned cache_novlys = 0;
c906108c 3437static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3438enum ovly_index
3439 {
438e1e42 3440 VMA, OSIZE, LMA, MAPPED
c5aa993b 3441 };
c906108c 3442
c378eb4e 3443/* Throw away the cached copy of _ovly_table. */
3b7bacac 3444
c906108c 3445static void
fba45db2 3446simple_free_overlay_table (void)
c906108c
SS
3447{
3448 if (cache_ovly_table)
b8c9b27d 3449 xfree (cache_ovly_table);
c5aa993b 3450 cache_novlys = 0;
c906108c
SS
3451 cache_ovly_table = NULL;
3452 cache_ovly_table_base = 0;
3453}
3454
9216df95 3455/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3456 Convert to host order. int LEN is number of ints. */
3b7bacac 3457
c906108c 3458static void
9216df95 3459read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3460 int len, int size, enum bfd_endian byte_order)
c906108c 3461{
c378eb4e 3462 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3463 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3464 int i;
c906108c 3465
9216df95 3466 read_memory (memaddr, buf, len * size);
c906108c 3467 for (i = 0; i < len; i++)
e17a4113 3468 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3469}
3470
3471/* Find and grab a copy of the target _ovly_table
c378eb4e 3472 (and _novlys, which is needed for the table's size). */
3b7bacac 3473
c5aa993b 3474static int
fba45db2 3475simple_read_overlay_table (void)
c906108c 3476{
3b7344d5 3477 struct bound_minimal_symbol novlys_msym;
7c7b6655 3478 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3479 struct gdbarch *gdbarch;
3480 int word_size;
e17a4113 3481 enum bfd_endian byte_order;
c906108c
SS
3482
3483 simple_free_overlay_table ();
9b27852e 3484 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3485 if (! novlys_msym.minsym)
c906108c 3486 {
8a3fe4f8 3487 error (_("Error reading inferior's overlay table: "
0d43edd1 3488 "couldn't find `_novlys' variable\n"
8a3fe4f8 3489 "in inferior. Use `overlay manual' mode."));
0d43edd1 3490 return 0;
c906108c 3491 }
0d43edd1 3492
7c7b6655
TT
3493 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3494 if (! ovly_table_msym.minsym)
0d43edd1 3495 {
8a3fe4f8 3496 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3497 "`_ovly_table' array\n"
8a3fe4f8 3498 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3499 return 0;
3500 }
3501
7c7b6655 3502 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3503 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3504 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3505
77e371c0
TT
3506 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3507 4, byte_order);
0d43edd1 3508 cache_ovly_table
224c3ddb 3509 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3510 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3511 read_target_long_array (cache_ovly_table_base,
777ea8f1 3512 (unsigned int *) cache_ovly_table,
e17a4113 3513 cache_novlys * 4, word_size, byte_order);
0d43edd1 3514
c5aa993b 3515 return 1; /* SUCCESS */
c906108c
SS
3516}
3517
5417f6dc 3518/* Function: simple_overlay_update_1
c906108c
SS
3519 A helper function for simple_overlay_update. Assuming a cached copy
3520 of _ovly_table exists, look through it to find an entry whose vma,
3521 lma and size match those of OSECT. Re-read the entry and make sure
3522 it still matches OSECT (else the table may no longer be valid).
3523 Set OSECT's mapped state to match the entry. Return: 1 for
3524 success, 0 for failure. */
3525
3526static int
fba45db2 3527simple_overlay_update_1 (struct obj_section *osect)
c906108c 3528{
764c99c1 3529 int i;
fbd35540
MS
3530 bfd *obfd = osect->objfile->obfd;
3531 asection *bsect = osect->the_bfd_section;
9216df95
UW
3532 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3533 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3534 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3535
c906108c 3536 for (i = 0; i < cache_novlys; i++)
fbd35540 3537 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3538 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3539 {
9216df95
UW
3540 read_target_long_array (cache_ovly_table_base + i * word_size,
3541 (unsigned int *) cache_ovly_table[i],
e17a4113 3542 4, word_size, byte_order);
fbd35540 3543 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3544 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3545 {
3546 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3547 return 1;
3548 }
c378eb4e 3549 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3550 return 0;
3551 }
3552 return 0;
3553}
3554
3555/* Function: simple_overlay_update
5417f6dc
RM
3556 If OSECT is NULL, then update all sections' mapped state
3557 (after re-reading the entire target _ovly_table).
3558 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3559 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3560 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3561 re-read the entire cache, and go ahead and update all sections. */
3562
1c772458 3563void
fba45db2 3564simple_overlay_update (struct obj_section *osect)
c906108c 3565{
c5aa993b 3566 struct objfile *objfile;
c906108c 3567
c378eb4e 3568 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3569 if (osect)
c378eb4e 3570 /* Have we got a cached copy of the target's overlay table? */
c906108c 3571 if (cache_ovly_table != NULL)
9cc89665
MS
3572 {
3573 /* Does its cached location match what's currently in the
3574 symtab? */
3b7344d5 3575 struct bound_minimal_symbol minsym
9cc89665
MS
3576 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3577
3b7344d5 3578 if (minsym.minsym == NULL)
9cc89665
MS
3579 error (_("Error reading inferior's overlay table: couldn't "
3580 "find `_ovly_table' array\n"
3581 "in inferior. Use `overlay manual' mode."));
3582
77e371c0 3583 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3584 /* Then go ahead and try to look up this single section in
3585 the cache. */
3586 if (simple_overlay_update_1 (osect))
3587 /* Found it! We're done. */
3588 return;
3589 }
c906108c
SS
3590
3591 /* Cached table no good: need to read the entire table anew.
3592 Or else we want all the sections, in which case it's actually
3593 more efficient to read the whole table in one block anyway. */
3594
0d43edd1
JB
3595 if (! simple_read_overlay_table ())
3596 return;
3597
c378eb4e 3598 /* Now may as well update all sections, even if only one was requested. */
c906108c 3599 ALL_OBJSECTIONS (objfile, osect)
714835d5 3600 if (section_is_overlay (osect))
c5aa993b 3601 {
764c99c1 3602 int i;
fbd35540
MS
3603 bfd *obfd = osect->objfile->obfd;
3604 asection *bsect = osect->the_bfd_section;
c5aa993b 3605
c5aa993b 3606 for (i = 0; i < cache_novlys; i++)
fbd35540 3607 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3608 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3609 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3610 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3611 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3612 }
3613 }
c906108c
SS
3614}
3615
086df311
DJ
3616/* Set the output sections and output offsets for section SECTP in
3617 ABFD. The relocation code in BFD will read these offsets, so we
3618 need to be sure they're initialized. We map each section to itself,
3619 with no offset; this means that SECTP->vma will be honored. */
3620
3621static void
3622symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3623{
3624 sectp->output_section = sectp;
3625 sectp->output_offset = 0;
3626}
3627
ac8035ab
TG
3628/* Default implementation for sym_relocate. */
3629
ac8035ab
TG
3630bfd_byte *
3631default_symfile_relocate (struct objfile *objfile, asection *sectp,
3632 bfd_byte *buf)
3633{
3019eac3
DE
3634 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3635 DWO file. */
3636 bfd *abfd = sectp->owner;
ac8035ab
TG
3637
3638 /* We're only interested in sections with relocation
3639 information. */
3640 if ((sectp->flags & SEC_RELOC) == 0)
3641 return NULL;
3642
3643 /* We will handle section offsets properly elsewhere, so relocate as if
3644 all sections begin at 0. */
3645 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3646
3647 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3648}
3649
086df311
DJ
3650/* Relocate the contents of a debug section SECTP in ABFD. The
3651 contents are stored in BUF if it is non-NULL, or returned in a
3652 malloc'd buffer otherwise.
3653
3654 For some platforms and debug info formats, shared libraries contain
3655 relocations against the debug sections (particularly for DWARF-2;
3656 one affected platform is PowerPC GNU/Linux, although it depends on
3657 the version of the linker in use). Also, ELF object files naturally
3658 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3659 the relocations in order to get the locations of symbols correct.
3660 Another example that may require relocation processing, is the
3661 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3662 debug section. */
086df311
DJ
3663
3664bfd_byte *
ac8035ab
TG
3665symfile_relocate_debug_section (struct objfile *objfile,
3666 asection *sectp, bfd_byte *buf)
086df311 3667{
ac8035ab 3668 gdb_assert (objfile->sf->sym_relocate);
086df311 3669
ac8035ab 3670 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3671}
c906108c 3672
31d99776
DJ
3673struct symfile_segment_data *
3674get_symfile_segment_data (bfd *abfd)
3675{
00b5771c 3676 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3677
3678 if (sf == NULL)
3679 return NULL;
3680
3681 return sf->sym_segments (abfd);
3682}
3683
3684void
3685free_symfile_segment_data (struct symfile_segment_data *data)
3686{
3687 xfree (data->segment_bases);
3688 xfree (data->segment_sizes);
3689 xfree (data->segment_info);
3690 xfree (data);
3691}
3692
28c32713
JB
3693/* Given:
3694 - DATA, containing segment addresses from the object file ABFD, and
3695 the mapping from ABFD's sections onto the segments that own them,
3696 and
3697 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3698 segment addresses reported by the target,
3699 store the appropriate offsets for each section in OFFSETS.
3700
3701 If there are fewer entries in SEGMENT_BASES than there are segments
3702 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3703
8d385431
DJ
3704 If there are more entries, then ignore the extra. The target may
3705 not be able to distinguish between an empty data segment and a
3706 missing data segment; a missing text segment is less plausible. */
3b7bacac 3707
31d99776 3708int
3189cb12
DE
3709symfile_map_offsets_to_segments (bfd *abfd,
3710 const struct symfile_segment_data *data,
31d99776
DJ
3711 struct section_offsets *offsets,
3712 int num_segment_bases,
3713 const CORE_ADDR *segment_bases)
3714{
3715 int i;
3716 asection *sect;
3717
28c32713
JB
3718 /* It doesn't make sense to call this function unless you have some
3719 segment base addresses. */
202b96c1 3720 gdb_assert (num_segment_bases > 0);
28c32713 3721
31d99776
DJ
3722 /* If we do not have segment mappings for the object file, we
3723 can not relocate it by segments. */
3724 gdb_assert (data != NULL);
3725 gdb_assert (data->num_segments > 0);
3726
31d99776
DJ
3727 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3728 {
31d99776
DJ
3729 int which = data->segment_info[i];
3730
28c32713
JB
3731 gdb_assert (0 <= which && which <= data->num_segments);
3732
3733 /* Don't bother computing offsets for sections that aren't
3734 loaded as part of any segment. */
3735 if (! which)
3736 continue;
3737
3738 /* Use the last SEGMENT_BASES entry as the address of any extra
3739 segments mentioned in DATA->segment_info. */
31d99776 3740 if (which > num_segment_bases)
28c32713 3741 which = num_segment_bases;
31d99776 3742
28c32713
JB
3743 offsets->offsets[i] = (segment_bases[which - 1]
3744 - data->segment_bases[which - 1]);
31d99776
DJ
3745 }
3746
3747 return 1;
3748}
3749
3750static void
3751symfile_find_segment_sections (struct objfile *objfile)
3752{
3753 bfd *abfd = objfile->obfd;
3754 int i;
3755 asection *sect;
3756 struct symfile_segment_data *data;
3757
3758 data = get_symfile_segment_data (objfile->obfd);
3759 if (data == NULL)
3760 return;
3761
3762 if (data->num_segments != 1 && data->num_segments != 2)
3763 {
3764 free_symfile_segment_data (data);
3765 return;
3766 }
3767
3768 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3769 {
31d99776
DJ
3770 int which = data->segment_info[i];
3771
3772 if (which == 1)
3773 {
3774 if (objfile->sect_index_text == -1)
3775 objfile->sect_index_text = sect->index;
3776
3777 if (objfile->sect_index_rodata == -1)
3778 objfile->sect_index_rodata = sect->index;
3779 }
3780 else if (which == 2)
3781 {
3782 if (objfile->sect_index_data == -1)
3783 objfile->sect_index_data = sect->index;
3784
3785 if (objfile->sect_index_bss == -1)
3786 objfile->sect_index_bss = sect->index;
3787 }
3788 }
3789
3790 free_symfile_segment_data (data);
3791}
3792
76ad5e1e
NB
3793/* Listen for free_objfile events. */
3794
3795static void
3796symfile_free_objfile (struct objfile *objfile)
3797{
c33b2f12
MM
3798 /* Remove the target sections owned by this objfile. */
3799 if (objfile != NULL)
76ad5e1e
NB
3800 remove_target_sections ((void *) objfile);
3801}
3802
540c2971
DE
3803/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3804 Expand all symtabs that match the specified criteria.
3805 See quick_symbol_functions.expand_symtabs_matching for details. */
3806
3807void
14bc53a8
PA
3808expand_symtabs_matching
3809 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3810 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3811 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3812 enum search_domain kind)
540c2971
DE
3813{
3814 struct objfile *objfile;
3815
3816 ALL_OBJFILES (objfile)
3817 {
3818 if (objfile->sf)
bb4142cf 3819 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b 3820 symbol_matcher,
14bc53a8 3821 expansion_notify, kind);
540c2971
DE
3822 }
3823}
3824
3825/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3826 Map function FUN over every file.
3827 See quick_symbol_functions.map_symbol_filenames for details. */
3828
3829void
bb4142cf
DE
3830map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3831 int need_fullname)
540c2971
DE
3832{
3833 struct objfile *objfile;
3834
3835 ALL_OBJFILES (objfile)
3836 {
3837 if (objfile->sf)
3838 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3839 need_fullname);
3840 }
3841}
3842
c906108c 3843void
fba45db2 3844_initialize_symfile (void)
c906108c
SS
3845{
3846 struct cmd_list_element *c;
c5aa993b 3847
76ad5e1e
NB
3848 observer_attach_free_objfile (symfile_free_objfile);
3849
1a966eab
AC
3850 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3851Load symbol table from executable file FILE.\n\
c906108c 3852The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3853to execute."), &cmdlist);
5ba2abeb 3854 set_cmd_completer (c, filename_completer);
c906108c 3855
1a966eab 3856 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3857Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3858Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3859 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3860The optional arguments are section-name section-address pairs and\n\
3861should be specified if the data and bss segments are not contiguous\n\
1a966eab 3862with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3863 &cmdlist);
5ba2abeb 3864 set_cmd_completer (c, filename_completer);
c906108c 3865
63644780
NB
3866 c = add_cmd ("remove-symbol-file", class_files,
3867 remove_symbol_file_command, _("\
3868Remove a symbol file added via the add-symbol-file command.\n\
3869Usage: remove-symbol-file FILENAME\n\
3870 remove-symbol-file -a ADDRESS\n\
3871The file to remove can be identified by its filename or by an address\n\
3872that lies within the boundaries of this symbol file in memory."),
3873 &cmdlist);
3874
1a966eab
AC
3875 c = add_cmd ("load", class_files, load_command, _("\
3876Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3877for access from GDB.\n\
5cf30ebf
LM
3878An optional load OFFSET may also be given as a literal address.\n\
3879When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3880on its own.\n\
3881Usage: load [FILE] [OFFSET]"), &cmdlist);
5ba2abeb 3882 set_cmd_completer (c, filename_completer);
c906108c 3883
c5aa993b 3884 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3885 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3886 "overlay ", 0, &cmdlist);
3887
3888 add_com_alias ("ovly", "overlay", class_alias, 1);
3889 add_com_alias ("ov", "overlay", class_alias, 1);
3890
c5aa993b 3891 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3892 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3893
c5aa993b 3894 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3895 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3896
c5aa993b 3897 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3898 _("List mappings of overlay sections."), &overlaylist);
c906108c 3899
c5aa993b 3900 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3901 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3902 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3903 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3904 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3905 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3906 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3907 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3908
3909 /* Filename extension to source language lookup table: */
26c41df3
AC
3910 add_setshow_string_noescape_cmd ("extension-language", class_files,
3911 &ext_args, _("\
3912Set mapping between filename extension and source language."), _("\
3913Show mapping between filename extension and source language."), _("\
3914Usage: set extension-language .foo bar"),
3915 set_ext_lang_command,
920d2a44 3916 show_ext_args,
26c41df3 3917 &setlist, &showlist);
c906108c 3918
c5aa993b 3919 add_info ("extensions", info_ext_lang_command,
1bedd215 3920 _("All filename extensions associated with a source language."));
917317f4 3921
525226b5
AC
3922 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3923 &debug_file_directory, _("\
24ddea62
JK
3924Set the directories where separate debug symbols are searched for."), _("\
3925Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3926Separate debug symbols are first searched for in the same\n\
3927directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3928and lastly at the path of the directory of the binary with\n\
24ddea62 3929each global debug-file-directory component prepended."),
525226b5 3930 NULL,
920d2a44 3931 show_debug_file_directory,
525226b5 3932 &setlist, &showlist);
770e7fc7
DE
3933
3934 add_setshow_enum_cmd ("symbol-loading", no_class,
3935 print_symbol_loading_enums, &print_symbol_loading,
3936 _("\
3937Set printing of symbol loading messages."), _("\
3938Show printing of symbol loading messages."), _("\
3939off == turn all messages off\n\
3940brief == print messages for the executable,\n\
3941 and brief messages for shared libraries\n\
3942full == print messages for the executable,\n\
3943 and messages for each shared library."),
3944 NULL,
3945 NULL,
3946 &setprintlist, &showprintlist);
c4dcb155
SM
3947
3948 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3949 &separate_debug_file_debug, _("\
3950Set printing of separate debug info file search debug."), _("\
3951Show printing of separate debug info file search debug."), _("\
3952When on, GDB prints the searched locations while looking for separate debug \
3953info files."), NULL, NULL, &setdebuglist, &showdebuglist);
c906108c 3954}