]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/symfile.c
relocate the entry point address when used
[thirdparty/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
ecd75fc8 3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
529480d0 59#include "cli/cli-utils.h"
c906108c 60
c906108c
SS
61#include <sys/types.h>
62#include <fcntl.h>
0e9f083f 63#include <string.h>
53ce3c39 64#include <sys/stat.h>
c906108c
SS
65#include <ctype.h>
66#include <time.h>
2b71414d 67#include <sys/time.h>
c906108c 68
ccefe4c4 69#include "psymtab.h"
c906108c 70
3e43a32a
MS
71int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
9a4105ab 73void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
c2d11a7d 77 unsigned long total_size);
769d7dc4
AC
78void (*deprecated_pre_add_symbol_hook) (const char *);
79void (*deprecated_post_add_symbol_hook) (void);
c906108c 80
74b7792f
AC
81static void clear_symtab_users_cleanup (void *ignore);
82
c378eb4e
MS
83/* Global variables owned by this file. */
84int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 85
c378eb4e 86/* Functions this file defines. */
c906108c 87
a14ed312 88static void load_command (char *, int);
c906108c 89
69150c3d 90static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
d7db6da9 91
a14ed312 92static void add_symbol_file_command (char *, int);
c906108c 93
00b5771c 94static const struct sym_fns *find_sym_fns (bfd *);
c906108c 95
a14ed312 96static void decrement_reading_symtab (void *);
c906108c 97
a14ed312 98static void overlay_invalidate_all (void);
c906108c 99
a14ed312 100static void overlay_auto_command (char *, int);
c906108c 101
a14ed312 102static void overlay_manual_command (char *, int);
c906108c 103
a14ed312 104static void overlay_off_command (char *, int);
c906108c 105
a14ed312 106static void overlay_load_command (char *, int);
c906108c 107
a14ed312 108static void overlay_command (char *, int);
c906108c 109
a14ed312 110static void simple_free_overlay_table (void);
c906108c 111
e17a4113
UW
112static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
113 enum bfd_endian);
c906108c 114
a14ed312 115static int simple_read_overlay_table (void);
c906108c 116
a14ed312 117static int simple_overlay_update_1 (struct obj_section *);
c906108c 118
a14ed312 119static void add_filename_language (char *ext, enum language lang);
392a587b 120
a14ed312 121static void info_ext_lang_command (char *args, int from_tty);
392a587b 122
a14ed312 123static void init_filename_language_table (void);
392a587b 124
31d99776
DJ
125static void symfile_find_segment_sections (struct objfile *objfile);
126
a14ed312 127void _initialize_symfile (void);
c906108c
SS
128
129/* List of all available sym_fns. On gdb startup, each object file reader
130 calls add_symtab_fns() to register information on each format it is
c378eb4e 131 prepared to read. */
c906108c 132
c256e171
DE
133typedef struct
134{
135 /* BFD flavour that we handle. */
136 enum bfd_flavour sym_flavour;
137
138 /* The "vtable" of symbol functions. */
139 const struct sym_fns *sym_fns;
140} registered_sym_fns;
00b5771c 141
c256e171
DE
142DEF_VEC_O (registered_sym_fns);
143
144static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 145
b7209cb4
FF
146/* If non-zero, shared library symbols will be added automatically
147 when the inferior is created, new libraries are loaded, or when
148 attaching to the inferior. This is almost always what users will
149 want to have happen; but for very large programs, the startup time
150 will be excessive, and so if this is a problem, the user can clear
151 this flag and then add the shared library symbols as needed. Note
152 that there is a potential for confusion, since if the shared
c906108c 153 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 154 report all the functions that are actually present. */
c906108c
SS
155
156int auto_solib_add = 1;
c906108c 157\f
c5aa993b 158
0d14a781 159/* True if we are reading a symbol table. */
c906108c
SS
160
161int currently_reading_symtab = 0;
162
163static void
fba45db2 164decrement_reading_symtab (void *dummy)
c906108c
SS
165{
166 currently_reading_symtab--;
2cb9c859 167 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
168}
169
ccefe4c4
TT
170/* Increment currently_reading_symtab and return a cleanup that can be
171 used to decrement it. */
3b7bacac 172
ccefe4c4
TT
173struct cleanup *
174increment_reading_symtab (void)
c906108c 175{
ccefe4c4 176 ++currently_reading_symtab;
2cb9c859 177 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 178 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
179}
180
5417f6dc
RM
181/* Remember the lowest-addressed loadable section we've seen.
182 This function is called via bfd_map_over_sections.
c906108c
SS
183
184 In case of equal vmas, the section with the largest size becomes the
185 lowest-addressed loadable section.
186
187 If the vmas and sizes are equal, the last section is considered the
188 lowest-addressed loadable section. */
189
190void
4efb68b1 191find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 192{
c5aa993b 193 asection **lowest = (asection **) obj;
c906108c 194
eb73e134 195 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
196 return;
197 if (!*lowest)
198 *lowest = sect; /* First loadable section */
199 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
200 *lowest = sect; /* A lower loadable section */
201 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
202 && (bfd_section_size (abfd, (*lowest))
203 <= bfd_section_size (abfd, sect)))
204 *lowest = sect;
205}
206
d76488d8
TT
207/* Create a new section_addr_info, with room for NUM_SECTIONS. The
208 new object's 'num_sections' field is set to 0; it must be updated
209 by the caller. */
a39a16c4
MM
210
211struct section_addr_info *
212alloc_section_addr_info (size_t num_sections)
213{
214 struct section_addr_info *sap;
215 size_t size;
216
217 size = (sizeof (struct section_addr_info)
218 + sizeof (struct other_sections) * (num_sections - 1));
219 sap = (struct section_addr_info *) xmalloc (size);
220 memset (sap, 0, size);
a39a16c4
MM
221
222 return sap;
223}
62557bbc
KB
224
225/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 226 an existing section table. */
62557bbc
KB
227
228extern struct section_addr_info *
0542c86d
PA
229build_section_addr_info_from_section_table (const struct target_section *start,
230 const struct target_section *end)
62557bbc
KB
231{
232 struct section_addr_info *sap;
0542c86d 233 const struct target_section *stp;
62557bbc
KB
234 int oidx;
235
a39a16c4 236 sap = alloc_section_addr_info (end - start);
62557bbc
KB
237
238 for (stp = start, oidx = 0; stp != end; stp++)
239 {
2b2848e2
DE
240 struct bfd_section *asect = stp->the_bfd_section;
241 bfd *abfd = asect->owner;
242
243 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 244 && oidx < end - start)
62557bbc
KB
245 {
246 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
247 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
248 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
249 oidx++;
250 }
251 }
252
d76488d8
TT
253 sap->num_sections = oidx;
254
62557bbc
KB
255 return sap;
256}
257
82ccf5a5 258/* Create a section_addr_info from section offsets in ABFD. */
089b4803 259
82ccf5a5
JK
260static struct section_addr_info *
261build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
262{
263 struct section_addr_info *sap;
264 int i;
265 struct bfd_section *sec;
266
82ccf5a5
JK
267 sap = alloc_section_addr_info (bfd_count_sections (abfd));
268 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
269 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 270 {
82ccf5a5
JK
271 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
272 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 273 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
274 i++;
275 }
d76488d8
TT
276
277 sap->num_sections = i;
278
089b4803
TG
279 return sap;
280}
281
82ccf5a5
JK
282/* Create a section_addr_info from section offsets in OBJFILE. */
283
284struct section_addr_info *
285build_section_addr_info_from_objfile (const struct objfile *objfile)
286{
287 struct section_addr_info *sap;
288 int i;
289
290 /* Before reread_symbols gets rewritten it is not safe to call:
291 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
292 */
293 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 294 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
295 {
296 int sectindex = sap->other[i].sectindex;
297
298 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
299 }
300 return sap;
301}
62557bbc 302
c378eb4e 303/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
304
305extern void
306free_section_addr_info (struct section_addr_info *sap)
307{
308 int idx;
309
a39a16c4 310 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 311 xfree (sap->other[idx].name);
b8c9b27d 312 xfree (sap);
62557bbc
KB
313}
314
e8289572 315/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 316
e8289572
JB
317static void
318init_objfile_sect_indices (struct objfile *objfile)
c906108c 319{
e8289572 320 asection *sect;
c906108c 321 int i;
5417f6dc 322
b8fbeb18 323 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 324 if (sect)
b8fbeb18
EZ
325 objfile->sect_index_text = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 328 if (sect)
b8fbeb18
EZ
329 objfile->sect_index_data = sect->index;
330
331 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 332 if (sect)
b8fbeb18
EZ
333 objfile->sect_index_bss = sect->index;
334
335 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 336 if (sect)
b8fbeb18
EZ
337 objfile->sect_index_rodata = sect->index;
338
bbcd32ad
FF
339 /* This is where things get really weird... We MUST have valid
340 indices for the various sect_index_* members or gdb will abort.
341 So if for example, there is no ".text" section, we have to
31d99776
DJ
342 accomodate that. First, check for a file with the standard
343 one or two segments. */
344
345 symfile_find_segment_sections (objfile);
346
347 /* Except when explicitly adding symbol files at some address,
348 section_offsets contains nothing but zeros, so it doesn't matter
349 which slot in section_offsets the individual sect_index_* members
350 index into. So if they are all zero, it is safe to just point
351 all the currently uninitialized indices to the first slot. But
352 beware: if this is the main executable, it may be relocated
353 later, e.g. by the remote qOffsets packet, and then this will
354 be wrong! That's why we try segments first. */
bbcd32ad
FF
355
356 for (i = 0; i < objfile->num_sections; i++)
357 {
358 if (ANOFFSET (objfile->section_offsets, i) != 0)
359 {
360 break;
361 }
362 }
363 if (i == objfile->num_sections)
364 {
365 if (objfile->sect_index_text == -1)
366 objfile->sect_index_text = 0;
367 if (objfile->sect_index_data == -1)
368 objfile->sect_index_data = 0;
369 if (objfile->sect_index_bss == -1)
370 objfile->sect_index_bss = 0;
371 if (objfile->sect_index_rodata == -1)
372 objfile->sect_index_rodata = 0;
373 }
b8fbeb18 374}
c906108c 375
c1bd25fd
DJ
376/* The arguments to place_section. */
377
378struct place_section_arg
379{
380 struct section_offsets *offsets;
381 CORE_ADDR lowest;
382};
383
384/* Find a unique offset to use for loadable section SECT if
385 the user did not provide an offset. */
386
2c0b251b 387static void
c1bd25fd
DJ
388place_section (bfd *abfd, asection *sect, void *obj)
389{
390 struct place_section_arg *arg = obj;
391 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
392 int done;
3bd72c6f 393 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 394
2711e456
DJ
395 /* We are only interested in allocated sections. */
396 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
397 return;
398
399 /* If the user specified an offset, honor it. */
65cf3563 400 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
401 return;
402
403 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
404 start_addr = (arg->lowest + align - 1) & -align;
405
c1bd25fd
DJ
406 do {
407 asection *cur_sec;
c1bd25fd 408
c1bd25fd
DJ
409 done = 1;
410
411 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
412 {
413 int indx = cur_sec->index;
c1bd25fd
DJ
414
415 /* We don't need to compare against ourself. */
416 if (cur_sec == sect)
417 continue;
418
2711e456
DJ
419 /* We can only conflict with allocated sections. */
420 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
421 continue;
422
423 /* If the section offset is 0, either the section has not been placed
424 yet, or it was the lowest section placed (in which case LOWEST
425 will be past its end). */
426 if (offsets[indx] == 0)
427 continue;
428
429 /* If this section would overlap us, then we must move up. */
430 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
431 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
432 {
433 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
434 start_addr = (start_addr + align - 1) & -align;
435 done = 0;
3bd72c6f 436 break;
c1bd25fd
DJ
437 }
438
439 /* Otherwise, we appear to be OK. So far. */
440 }
441 }
442 while (!done);
443
65cf3563 444 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 445 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 446}
e8289572 447
75242ef4
JK
448/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
449 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
450 entries. */
e8289572
JB
451
452void
75242ef4
JK
453relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
454 int num_sections,
3189cb12 455 const struct section_addr_info *addrs)
e8289572
JB
456{
457 int i;
458
75242ef4 459 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 460
c378eb4e 461 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 462 for (i = 0; i < addrs->num_sections; i++)
e8289572 463 {
3189cb12 464 const struct other_sections *osp;
e8289572 465
75242ef4 466 osp = &addrs->other[i];
5488dafb 467 if (osp->sectindex == -1)
e8289572
JB
468 continue;
469
c378eb4e 470 /* Record all sections in offsets. */
e8289572 471 /* The section_offsets in the objfile are here filled in using
c378eb4e 472 the BFD index. */
75242ef4
JK
473 section_offsets->offsets[osp->sectindex] = osp->addr;
474 }
475}
476
1276c759
JK
477/* Transform section name S for a name comparison. prelink can split section
478 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
479 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
480 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
481 (`.sbss') section has invalid (increased) virtual address. */
482
483static const char *
484addr_section_name (const char *s)
485{
486 if (strcmp (s, ".dynbss") == 0)
487 return ".bss";
488 if (strcmp (s, ".sdynbss") == 0)
489 return ".sbss";
490
491 return s;
492}
493
82ccf5a5
JK
494/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
495 their (name, sectindex) pair. sectindex makes the sort by name stable. */
496
497static int
498addrs_section_compar (const void *ap, const void *bp)
499{
500 const struct other_sections *a = *((struct other_sections **) ap);
501 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 502 int retval;
82ccf5a5 503
1276c759 504 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
505 if (retval)
506 return retval;
507
5488dafb 508 return a->sectindex - b->sectindex;
82ccf5a5
JK
509}
510
511/* Provide sorted array of pointers to sections of ADDRS. The array is
512 terminated by NULL. Caller is responsible to call xfree for it. */
513
514static struct other_sections **
515addrs_section_sort (struct section_addr_info *addrs)
516{
517 struct other_sections **array;
518 int i;
519
520 /* `+ 1' for the NULL terminator. */
521 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
d76488d8 522 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
523 array[i] = &addrs->other[i];
524 array[i] = NULL;
525
526 qsort (array, i, sizeof (*array), addrs_section_compar);
527
528 return array;
529}
530
75242ef4 531/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
532 also SECTINDEXes specific to ABFD there. This function can be used to
533 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
534
535void
536addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
537{
538 asection *lower_sect;
75242ef4
JK
539 CORE_ADDR lower_offset;
540 int i;
82ccf5a5
JK
541 struct cleanup *my_cleanup;
542 struct section_addr_info *abfd_addrs;
543 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
544 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
545
546 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
547 continguous sections. */
548 lower_sect = NULL;
549 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
550 if (lower_sect == NULL)
551 {
552 warning (_("no loadable sections found in added symbol-file %s"),
553 bfd_get_filename (abfd));
554 lower_offset = 0;
e8289572 555 }
75242ef4
JK
556 else
557 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
558
82ccf5a5
JK
559 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
560 in ABFD. Section names are not unique - there can be multiple sections of
561 the same name. Also the sections of the same name do not have to be
562 adjacent to each other. Some sections may be present only in one of the
563 files. Even sections present in both files do not have to be in the same
564 order.
565
566 Use stable sort by name for the sections in both files. Then linearly
567 scan both lists matching as most of the entries as possible. */
568
569 addrs_sorted = addrs_section_sort (addrs);
570 my_cleanup = make_cleanup (xfree, addrs_sorted);
571
572 abfd_addrs = build_section_addr_info_from_bfd (abfd);
573 make_cleanup_free_section_addr_info (abfd_addrs);
574 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
575 make_cleanup (xfree, abfd_addrs_sorted);
576
c378eb4e
MS
577 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
578 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
579
580 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
581 * addrs->num_sections);
582 make_cleanup (xfree, addrs_to_abfd_addrs);
583
584 while (*addrs_sorted)
585 {
1276c759 586 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
587
588 while (*abfd_addrs_sorted
1276c759
JK
589 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
590 sect_name) < 0)
82ccf5a5
JK
591 abfd_addrs_sorted++;
592
593 if (*abfd_addrs_sorted
1276c759
JK
594 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
595 sect_name) == 0)
82ccf5a5
JK
596 {
597 int index_in_addrs;
598
599 /* Make the found item directly addressable from ADDRS. */
600 index_in_addrs = *addrs_sorted - addrs->other;
601 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
602 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
603
604 /* Never use the same ABFD entry twice. */
605 abfd_addrs_sorted++;
606 }
607
608 addrs_sorted++;
609 }
610
75242ef4
JK
611 /* Calculate offsets for the loadable sections.
612 FIXME! Sections must be in order of increasing loadable section
613 so that contiguous sections can use the lower-offset!!!
614
615 Adjust offsets if the segments are not contiguous.
616 If the section is contiguous, its offset should be set to
617 the offset of the highest loadable section lower than it
618 (the loadable section directly below it in memory).
619 this_offset = lower_offset = lower_addr - lower_orig_addr */
620
d76488d8 621 for (i = 0; i < addrs->num_sections; i++)
75242ef4 622 {
82ccf5a5 623 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
624
625 if (sect)
75242ef4 626 {
c378eb4e 627 /* This is the index used by BFD. */
82ccf5a5 628 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
629
630 if (addrs->other[i].addr != 0)
75242ef4 631 {
82ccf5a5 632 addrs->other[i].addr -= sect->addr;
75242ef4 633 lower_offset = addrs->other[i].addr;
75242ef4
JK
634 }
635 else
672d9c23 636 addrs->other[i].addr = lower_offset;
75242ef4
JK
637 }
638 else
672d9c23 639 {
1276c759
JK
640 /* addr_section_name transformation is not used for SECT_NAME. */
641 const char *sect_name = addrs->other[i].name;
642
b0fcb67f
JK
643 /* This section does not exist in ABFD, which is normally
644 unexpected and we want to issue a warning.
645
4d9743af
JK
646 However, the ELF prelinker does create a few sections which are
647 marked in the main executable as loadable (they are loaded in
648 memory from the DYNAMIC segment) and yet are not present in
649 separate debug info files. This is fine, and should not cause
650 a warning. Shared libraries contain just the section
651 ".gnu.liblist" but it is not marked as loadable there. There is
652 no other way to identify them than by their name as the sections
1276c759
JK
653 created by prelink have no special flags.
654
655 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
656
657 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 658 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
659 || (strcmp (sect_name, ".bss") == 0
660 && i > 0
661 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
662 && addrs_to_abfd_addrs[i - 1] != NULL)
663 || (strcmp (sect_name, ".sbss") == 0
664 && i > 0
665 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
666 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
667 warning (_("section %s not found in %s"), sect_name,
668 bfd_get_filename (abfd));
669
672d9c23 670 addrs->other[i].addr = 0;
5488dafb 671 addrs->other[i].sectindex = -1;
672d9c23 672 }
75242ef4 673 }
82ccf5a5
JK
674
675 do_cleanups (my_cleanup);
75242ef4
JK
676}
677
678/* Parse the user's idea of an offset for dynamic linking, into our idea
679 of how to represent it for fast symbol reading. This is the default
680 version of the sym_fns.sym_offsets function for symbol readers that
681 don't need to do anything special. It allocates a section_offsets table
682 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
683
684void
685default_symfile_offsets (struct objfile *objfile,
3189cb12 686 const struct section_addr_info *addrs)
75242ef4 687{
d445b2f6 688 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
689 objfile->section_offsets = (struct section_offsets *)
690 obstack_alloc (&objfile->objfile_obstack,
691 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
692 relative_addr_info_to_section_offsets (objfile->section_offsets,
693 objfile->num_sections, addrs);
e8289572 694
c1bd25fd
DJ
695 /* For relocatable files, all loadable sections will start at zero.
696 The zero is meaningless, so try to pick arbitrary addresses such
697 that no loadable sections overlap. This algorithm is quadratic,
698 but the number of sections in a single object file is generally
699 small. */
700 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
701 {
702 struct place_section_arg arg;
2711e456
DJ
703 bfd *abfd = objfile->obfd;
704 asection *cur_sec;
2711e456
DJ
705
706 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
707 /* We do not expect this to happen; just skip this step if the
708 relocatable file has a section with an assigned VMA. */
709 if (bfd_section_vma (abfd, cur_sec) != 0)
710 break;
711
712 if (cur_sec == NULL)
713 {
714 CORE_ADDR *offsets = objfile->section_offsets->offsets;
715
716 /* Pick non-overlapping offsets for sections the user did not
717 place explicitly. */
718 arg.offsets = objfile->section_offsets;
719 arg.lowest = 0;
720 bfd_map_over_sections (objfile->obfd, place_section, &arg);
721
722 /* Correctly filling in the section offsets is not quite
723 enough. Relocatable files have two properties that
724 (most) shared objects do not:
725
726 - Their debug information will contain relocations. Some
727 shared libraries do also, but many do not, so this can not
728 be assumed.
729
730 - If there are multiple code sections they will be loaded
731 at different relative addresses in memory than they are
732 in the objfile, since all sections in the file will start
733 at address zero.
734
735 Because GDB has very limited ability to map from an
736 address in debug info to the correct code section,
737 it relies on adding SECT_OFF_TEXT to things which might be
738 code. If we clear all the section offsets, and set the
739 section VMAs instead, then symfile_relocate_debug_section
740 will return meaningful debug information pointing at the
741 correct sections.
742
743 GDB has too many different data structures for section
744 addresses - a bfd, objfile, and so_list all have section
745 tables, as does exec_ops. Some of these could probably
746 be eliminated. */
747
748 for (cur_sec = abfd->sections; cur_sec != NULL;
749 cur_sec = cur_sec->next)
750 {
751 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
752 continue;
753
754 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
755 exec_set_section_address (bfd_get_filename (abfd),
756 cur_sec->index,
30510692 757 offsets[cur_sec->index]);
2711e456
DJ
758 offsets[cur_sec->index] = 0;
759 }
760 }
c1bd25fd
DJ
761 }
762
e8289572 763 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 764 .rodata sections. */
e8289572
JB
765 init_objfile_sect_indices (objfile);
766}
767
31d99776
DJ
768/* Divide the file into segments, which are individual relocatable units.
769 This is the default version of the sym_fns.sym_segments function for
770 symbol readers that do not have an explicit representation of segments.
771 It assumes that object files do not have segments, and fully linked
772 files have a single segment. */
773
774struct symfile_segment_data *
775default_symfile_segments (bfd *abfd)
776{
777 int num_sections, i;
778 asection *sect;
779 struct symfile_segment_data *data;
780 CORE_ADDR low, high;
781
782 /* Relocatable files contain enough information to position each
783 loadable section independently; they should not be relocated
784 in segments. */
785 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
786 return NULL;
787
788 /* Make sure there is at least one loadable section in the file. */
789 for (sect = abfd->sections; sect != NULL; sect = sect->next)
790 {
791 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
792 continue;
793
794 break;
795 }
796 if (sect == NULL)
797 return NULL;
798
799 low = bfd_get_section_vma (abfd, sect);
800 high = low + bfd_get_section_size (sect);
801
41bf6aca 802 data = XCNEW (struct symfile_segment_data);
31d99776 803 data->num_segments = 1;
fc270c35
TT
804 data->segment_bases = XCNEW (CORE_ADDR);
805 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
806
807 num_sections = bfd_count_sections (abfd);
fc270c35 808 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
809
810 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
811 {
812 CORE_ADDR vma;
813
814 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
815 continue;
816
817 vma = bfd_get_section_vma (abfd, sect);
818 if (vma < low)
819 low = vma;
820 if (vma + bfd_get_section_size (sect) > high)
821 high = vma + bfd_get_section_size (sect);
822
823 data->segment_info[i] = 1;
824 }
825
826 data->segment_bases[0] = low;
827 data->segment_sizes[0] = high - low;
828
829 return data;
830}
831
608e2dbb
TT
832/* This is a convenience function to call sym_read for OBJFILE and
833 possibly force the partial symbols to be read. */
834
835static void
836read_symbols (struct objfile *objfile, int add_flags)
837{
838 (*objfile->sf->sym_read) (objfile, add_flags);
8a92335b
JK
839
840 /* find_separate_debug_file_in_section should be called only if there is
841 single binary with no existing separate debug info file. */
842 if (!objfile_has_partial_symbols (objfile)
843 && objfile->separate_debug_objfile == NULL
844 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
845 {
846 bfd *abfd = find_separate_debug_file_in_section (objfile);
847 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
848
849 if (abfd != NULL)
24ba069a
JK
850 {
851 /* find_separate_debug_file_in_section uses the same filename for the
852 virtual section-as-bfd like the bfd filename containing the
853 section. Therefore use also non-canonical name form for the same
854 file containing the section. */
855 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
856 objfile);
857 }
608e2dbb
TT
858
859 do_cleanups (cleanup);
860 }
861 if ((add_flags & SYMFILE_NO_READ) == 0)
862 require_partial_symbols (objfile, 0);
863}
864
3d6e24f0
JB
865/* Initialize entry point information for this objfile. */
866
867static void
868init_entry_point_info (struct objfile *objfile)
869{
870 /* Save startup file's range of PC addresses to help blockframe.c
871 decide where the bottom of the stack is. */
872
873 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
874 {
875 /* Executable file -- record its entry point so we'll recognize
876 the startup file because it contains the entry point. */
877 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
878 objfile->ei.entry_point_p = 1;
879 }
880 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
881 && bfd_get_start_address (objfile->obfd) != 0)
882 {
883 /* Some shared libraries may have entry points set and be
884 runnable. There's no clear way to indicate this, so just check
885 for values other than zero. */
886 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
887 objfile->ei.entry_point_p = 1;
888 }
889 else
890 {
891 /* Examination of non-executable.o files. Short-circuit this stuff. */
892 objfile->ei.entry_point_p = 0;
893 }
894
895 if (objfile->ei.entry_point_p)
896 {
53eddfa6 897 struct obj_section *osect;
3d6e24f0 898 CORE_ADDR entry_point = objfile->ei.entry_point;
53eddfa6 899 int found;
3d6e24f0
JB
900
901 /* Make certain that the address points at real code, and not a
902 function descriptor. */
903 entry_point
df6d5441 904 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
905 entry_point,
906 &current_target);
907
908 /* Remove any ISA markers, so that this matches entries in the
909 symbol table. */
910 objfile->ei.entry_point
df6d5441 911 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
912
913 found = 0;
914 ALL_OBJFILE_OSECTIONS (objfile, osect)
915 {
916 struct bfd_section *sect = osect->the_bfd_section;
917
918 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
919 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
920 + bfd_get_section_size (sect)))
921 {
922 objfile->ei.the_bfd_section_index
923 = gdb_bfd_section_index (objfile->obfd, sect);
924 found = 1;
925 break;
926 }
927 }
928
929 if (!found)
930 objfile->ei.the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
931 }
932}
933
c906108c
SS
934/* Process a symbol file, as either the main file or as a dynamically
935 loaded file.
936
36e4d068
JB
937 This function does not set the OBJFILE's entry-point info.
938
96baa820
JM
939 OBJFILE is where the symbols are to be read from.
940
7e8580c1
JB
941 ADDRS is the list of section load addresses. If the user has given
942 an 'add-symbol-file' command, then this is the list of offsets and
943 addresses he or she provided as arguments to the command; or, if
944 we're handling a shared library, these are the actual addresses the
945 sections are loaded at, according to the inferior's dynamic linker
946 (as gleaned by GDB's shared library code). We convert each address
947 into an offset from the section VMA's as it appears in the object
948 file, and then call the file's sym_offsets function to convert this
949 into a format-specific offset table --- a `struct section_offsets'.
96baa820 950
7eedccfa
PP
951 ADD_FLAGS encodes verbosity level, whether this is main symbol or
952 an extra symbol file such as dynamically loaded code, and wether
953 breakpoint reset should be deferred. */
c906108c 954
36e4d068
JB
955static void
956syms_from_objfile_1 (struct objfile *objfile,
957 struct section_addr_info *addrs,
36e4d068 958 int add_flags)
c906108c 959{
a39a16c4 960 struct section_addr_info *local_addr = NULL;
c906108c 961 struct cleanup *old_chain;
7eedccfa 962 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 963
8fb8eb5c 964 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 965
75245b24 966 if (objfile->sf == NULL)
36e4d068
JB
967 {
968 /* No symbols to load, but we still need to make sure
969 that the section_offsets table is allocated. */
d445b2f6 970 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 971 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
972
973 objfile->num_sections = num_sections;
974 objfile->section_offsets
975 = obstack_alloc (&objfile->objfile_obstack, size);
976 memset (objfile->section_offsets, 0, size);
977 return;
978 }
75245b24 979
c906108c
SS
980 /* Make sure that partially constructed symbol tables will be cleaned up
981 if an error occurs during symbol reading. */
74b7792f 982 old_chain = make_cleanup_free_objfile (objfile);
c906108c 983
6bf667bb
DE
984 /* If ADDRS is NULL, put together a dummy address list.
985 We now establish the convention that an addr of zero means
c378eb4e 986 no load address was specified. */
6bf667bb 987 if (! addrs)
a39a16c4 988 {
d445b2f6 989 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
990 make_cleanup (xfree, local_addr);
991 addrs = local_addr;
992 }
993
c5aa993b 994 if (mainline)
c906108c
SS
995 {
996 /* We will modify the main symbol table, make sure that all its users
c5aa993b 997 will be cleaned up if an error occurs during symbol reading. */
74b7792f 998 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
999
1000 /* Since no error yet, throw away the old symbol table. */
1001
1002 if (symfile_objfile != NULL)
1003 {
1004 free_objfile (symfile_objfile);
adb7f338 1005 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1006 }
1007
1008 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1009 If the user wants to get rid of them, they should do "symbol-file"
1010 without arguments first. Not sure this is the best behavior
1011 (PR 2207). */
c906108c 1012
c5aa993b 1013 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1014 }
1015
1016 /* Convert addr into an offset rather than an absolute address.
1017 We find the lowest address of a loaded segment in the objfile,
53a5351d 1018 and assume that <addr> is where that got loaded.
c906108c 1019
53a5351d
JM
1020 We no longer warn if the lowest section is not a text segment (as
1021 happens for the PA64 port. */
6bf667bb 1022 if (addrs->num_sections > 0)
75242ef4 1023 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1024
1025 /* Initialize symbol reading routines for this objfile, allow complaints to
1026 appear for this new file, and record how verbose to be, then do the
c378eb4e 1027 initial symbol reading for this file. */
c906108c 1028
c5aa993b 1029 (*objfile->sf->sym_init) (objfile);
7eedccfa 1030 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1031
6bf667bb 1032 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1033
608e2dbb 1034 read_symbols (objfile, add_flags);
b11896a5 1035
c906108c
SS
1036 /* Discard cleanups as symbol reading was successful. */
1037
1038 discard_cleanups (old_chain);
f7545552 1039 xfree (local_addr);
c906108c
SS
1040}
1041
36e4d068
JB
1042/* Same as syms_from_objfile_1, but also initializes the objfile
1043 entry-point info. */
1044
6bf667bb 1045static void
36e4d068
JB
1046syms_from_objfile (struct objfile *objfile,
1047 struct section_addr_info *addrs,
36e4d068
JB
1048 int add_flags)
1049{
6bf667bb 1050 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1051 init_entry_point_info (objfile);
1052}
1053
c906108c
SS
1054/* Perform required actions after either reading in the initial
1055 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1056 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1057
c906108c 1058void
7eedccfa 1059new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1060{
c906108c 1061 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1062 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1063 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1064 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1065 {
1066 /* OK, make it the "real" symbol file. */
1067 symfile_objfile = objfile;
1068
c1e56572 1069 clear_symtab_users (add_flags);
c906108c 1070 }
7eedccfa 1071 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1072 {
69de3c6a 1073 breakpoint_re_set ();
c906108c
SS
1074 }
1075
1076 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1077 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1078}
1079
1080/* Process a symbol file, as either the main file or as a dynamically
1081 loaded file.
1082
5417f6dc 1083 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1084 A new reference is acquired by this function.
7904e09f 1085
24ba069a
JK
1086 For NAME description see allocate_objfile's definition.
1087
7eedccfa
PP
1088 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1089 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1090
6bf667bb 1091 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1092 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1093
63524580
JK
1094 PARENT is the original objfile if ABFD is a separate debug info file.
1095 Otherwise PARENT is NULL.
1096
c906108c 1097 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1098 Upon failure, jumps back to command level (never returns). */
7eedccfa 1099
7904e09f 1100static struct objfile *
24ba069a 1101symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
6bf667bb
DE
1102 struct section_addr_info *addrs,
1103 int flags, struct objfile *parent)
c906108c
SS
1104{
1105 struct objfile *objfile;
7eedccfa 1106 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1107 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1108 const int should_print = ((from_tty || info_verbose)
1109 && (readnow_symbol_files
1110 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1111
9291a0cd 1112 if (readnow_symbol_files)
b11896a5
TT
1113 {
1114 flags |= OBJF_READNOW;
1115 add_flags &= ~SYMFILE_NO_READ;
1116 }
9291a0cd 1117
5417f6dc
RM
1118 /* Give user a chance to burp if we'd be
1119 interactively wiping out any existing symbols. */
c906108c
SS
1120
1121 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1122 && mainline
c906108c 1123 && from_tty
9e2f0ad4 1124 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1125 error (_("Not confirmed."));
c906108c 1126
24ba069a
JK
1127 objfile = allocate_objfile (abfd, name,
1128 flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1129
63524580
JK
1130 if (parent)
1131 add_separate_debug_objfile (objfile, parent);
1132
78a4a9b9
AC
1133 /* We either created a new mapped symbol table, mapped an existing
1134 symbol table file which has not had initial symbol reading
c378eb4e 1135 performed, or need to read an unmapped symbol table. */
b11896a5 1136 if (should_print)
c906108c 1137 {
769d7dc4
AC
1138 if (deprecated_pre_add_symbol_hook)
1139 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1140 else
c906108c 1141 {
55333a84
DE
1142 printf_unfiltered (_("Reading symbols from %s..."), name);
1143 wrap_here ("");
1144 gdb_flush (gdb_stdout);
c906108c 1145 }
c906108c 1146 }
6bf667bb 1147 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1148
1149 /* We now have at least a partial symbol table. Check to see if the
1150 user requested that all symbols be read on initial access via either
1151 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1152 all partial symbol tables for this objfile if so. */
c906108c 1153
9291a0cd 1154 if ((flags & OBJF_READNOW))
c906108c 1155 {
b11896a5 1156 if (should_print)
c906108c 1157 {
a3f17187 1158 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1159 wrap_here ("");
1160 gdb_flush (gdb_stdout);
1161 }
1162
ccefe4c4
TT
1163 if (objfile->sf)
1164 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1165 }
1166
b11896a5 1167 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1168 {
1169 wrap_here ("");
55333a84 1170 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1171 wrap_here ("");
1172 }
1173
b11896a5 1174 if (should_print)
c906108c 1175 {
769d7dc4
AC
1176 if (deprecated_post_add_symbol_hook)
1177 deprecated_post_add_symbol_hook ();
c906108c 1178 else
55333a84 1179 printf_unfiltered (_("done.\n"));
c906108c
SS
1180 }
1181
481d0f41
JB
1182 /* We print some messages regardless of whether 'from_tty ||
1183 info_verbose' is true, so make sure they go out at the right
1184 time. */
1185 gdb_flush (gdb_stdout);
1186
109f874e 1187 if (objfile->sf == NULL)
8caee43b
PP
1188 {
1189 observer_notify_new_objfile (objfile);
c378eb4e 1190 return objfile; /* No symbols. */
8caee43b 1191 }
109f874e 1192
7eedccfa 1193 new_symfile_objfile (objfile, add_flags);
c906108c 1194
06d3b283 1195 observer_notify_new_objfile (objfile);
c906108c 1196
ce7d4522 1197 bfd_cache_close_all ();
c906108c
SS
1198 return (objfile);
1199}
1200
24ba069a
JK
1201/* Add BFD as a separate debug file for OBJFILE. For NAME description
1202 see allocate_objfile's definition. */
9cce227f
TG
1203
1204void
24ba069a
JK
1205symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1206 struct objfile *objfile)
9cce227f 1207{
15d123c9 1208 struct objfile *new_objfile;
089b4803
TG
1209 struct section_addr_info *sap;
1210 struct cleanup *my_cleanup;
1211
1212 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1213 because sections of BFD may not match sections of OBJFILE and because
1214 vma may have been modified by tools such as prelink. */
1215 sap = build_section_addr_info_from_objfile (objfile);
1216 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1217
6bf667bb 1218 new_objfile = symbol_file_add_with_addrs
24ba069a 1219 (bfd, name, symfile_flags, sap,
9cce227f 1220 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1221 | OBJF_USERLOADED),
1222 objfile);
089b4803
TG
1223
1224 do_cleanups (my_cleanup);
9cce227f 1225}
7904e09f 1226
eb4556d7
JB
1227/* Process the symbol file ABFD, as either the main file or as a
1228 dynamically loaded file.
6bf667bb 1229 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1230
eb4556d7 1231struct objfile *
24ba069a 1232symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
eb4556d7 1233 struct section_addr_info *addrs,
63524580 1234 int flags, struct objfile *parent)
eb4556d7 1235{
24ba069a
JK
1236 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1237 parent);
eb4556d7
JB
1238}
1239
7904e09f 1240/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1241 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1242
7904e09f 1243struct objfile *
69150c3d
JK
1244symbol_file_add (const char *name, int add_flags,
1245 struct section_addr_info *addrs, int flags)
7904e09f 1246{
8ac244b4
TT
1247 bfd *bfd = symfile_bfd_open (name);
1248 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1249 struct objfile *objf;
1250
24ba069a 1251 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
8ac244b4
TT
1252 do_cleanups (cleanup);
1253 return objf;
7904e09f
JB
1254}
1255
d7db6da9
FN
1256/* Call symbol_file_add() with default values and update whatever is
1257 affected by the loading of a new main().
1258 Used when the file is supplied in the gdb command line
1259 and by some targets with special loading requirements.
1260 The auxiliary function, symbol_file_add_main_1(), has the flags
1261 argument for the switches that can only be specified in the symbol_file
1262 command itself. */
5417f6dc 1263
1adeb98a 1264void
69150c3d 1265symbol_file_add_main (const char *args, int from_tty)
1adeb98a 1266{
d7db6da9
FN
1267 symbol_file_add_main_1 (args, from_tty, 0);
1268}
1269
1270static void
69150c3d 1271symbol_file_add_main_1 (const char *args, int from_tty, int flags)
d7db6da9 1272{
7dcd53a0
TT
1273 const int add_flags = (current_inferior ()->symfile_flags
1274 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1275
7eedccfa 1276 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1277
d7db6da9
FN
1278 /* Getting new symbols may change our opinion about
1279 what is frameless. */
1280 reinit_frame_cache ();
1281
7dcd53a0
TT
1282 if ((flags & SYMFILE_NO_READ) == 0)
1283 set_initial_language ();
1adeb98a
FN
1284}
1285
1286void
1287symbol_file_clear (int from_tty)
1288{
1289 if ((have_full_symbols () || have_partial_symbols ())
1290 && from_tty
0430b0d6
AS
1291 && (symfile_objfile
1292 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1293 objfile_name (symfile_objfile))
0430b0d6 1294 : !query (_("Discard symbol table? "))))
8a3fe4f8 1295 error (_("Not confirmed."));
1adeb98a 1296
0133421a
JK
1297 /* solib descriptors may have handles to objfiles. Wipe them before their
1298 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1299 no_shared_libraries (NULL, from_tty);
1300
0133421a
JK
1301 free_all_objfiles ();
1302
adb7f338 1303 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1304 if (from_tty)
1305 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1306}
1307
5b5d99cf 1308static int
287ccc17 1309separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1310 struct objfile *parent_objfile)
5b5d99cf 1311{
904578ed
JK
1312 unsigned long file_crc;
1313 int file_crc_p;
f1838a98 1314 bfd *abfd;
32a0e547 1315 struct stat parent_stat, abfd_stat;
904578ed 1316 int verified_as_different;
32a0e547
JK
1317
1318 /* Find a separate debug info file as if symbols would be present in
1319 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1320 section can contain just the basename of PARENT_OBJFILE without any
1321 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1322 the separate debug infos with the same basename can exist. */
32a0e547 1323
4262abfb 1324 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1325 return 0;
5b5d99cf 1326
08d2cd74 1327 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1328
1329 if (!abfd)
5b5d99cf
JB
1330 return 0;
1331
0ba1096a 1332 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1333
1334 Some operating systems, e.g. Windows, do not provide a meaningful
1335 st_ino; they always set it to zero. (Windows does provide a
1336 meaningful st_dev.) Do not indicate a duplicate library in that
1337 case. While there is no guarantee that a system that provides
1338 meaningful inode numbers will never set st_ino to zero, this is
1339 merely an optimization, so we do not need to worry about false
1340 negatives. */
1341
1342 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1343 && abfd_stat.st_ino != 0
1344 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1345 {
904578ed
JK
1346 if (abfd_stat.st_dev == parent_stat.st_dev
1347 && abfd_stat.st_ino == parent_stat.st_ino)
1348 {
cbb099e8 1349 gdb_bfd_unref (abfd);
904578ed
JK
1350 return 0;
1351 }
1352 verified_as_different = 1;
32a0e547 1353 }
904578ed
JK
1354 else
1355 verified_as_different = 0;
32a0e547 1356
dccee2de 1357 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1358
cbb099e8 1359 gdb_bfd_unref (abfd);
5b5d99cf 1360
904578ed
JK
1361 if (!file_crc_p)
1362 return 0;
1363
287ccc17
JK
1364 if (crc != file_crc)
1365 {
dccee2de
TT
1366 unsigned long parent_crc;
1367
904578ed
JK
1368 /* If one (or both) the files are accessed for example the via "remote:"
1369 gdbserver way it does not support the bfd_stat operation. Verify
1370 whether those two files are not the same manually. */
1371
dccee2de 1372 if (!verified_as_different)
904578ed 1373 {
dccee2de 1374 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1375 return 0;
1376 }
1377
dccee2de 1378 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1379 warning (_("the debug information found in \"%s\""
1380 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1381 name, objfile_name (parent_objfile));
904578ed 1382
287ccc17
JK
1383 return 0;
1384 }
1385
1386 return 1;
5b5d99cf
JB
1387}
1388
aa28a74e 1389char *debug_file_directory = NULL;
920d2a44
AC
1390static void
1391show_debug_file_directory (struct ui_file *file, int from_tty,
1392 struct cmd_list_element *c, const char *value)
1393{
3e43a32a
MS
1394 fprintf_filtered (file,
1395 _("The directory where separate debug "
1396 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1397 value);
1398}
5b5d99cf
JB
1399
1400#if ! defined (DEBUG_SUBDIRECTORY)
1401#define DEBUG_SUBDIRECTORY ".debug"
1402#endif
1403
1db33378
PP
1404/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1405 where the original file resides (may not be the same as
1406 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1407 looking for. CANON_DIR is the "realpath" form of DIR.
1408 DIR must contain a trailing '/'.
1409 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1410
1411static char *
1412find_separate_debug_file (const char *dir,
1413 const char *canon_dir,
1414 const char *debuglink,
1415 unsigned long crc32, struct objfile *objfile)
9cce227f 1416{
1db33378
PP
1417 char *debugdir;
1418 char *debugfile;
9cce227f 1419 int i;
e4ab2fad
JK
1420 VEC (char_ptr) *debugdir_vec;
1421 struct cleanup *back_to;
1422 int ix;
5b5d99cf 1423
1db33378 1424 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1425 i = strlen (dir);
1db33378
PP
1426 if (canon_dir != NULL && strlen (canon_dir) > i)
1427 i = strlen (canon_dir);
1ffa32ee 1428
25522fae
JK
1429 debugfile = xmalloc (strlen (debug_file_directory) + 1
1430 + i
1431 + strlen (DEBUG_SUBDIRECTORY)
1432 + strlen ("/")
1db33378 1433 + strlen (debuglink)
25522fae 1434 + 1);
5b5d99cf
JB
1435
1436 /* First try in the same directory as the original file. */
1437 strcpy (debugfile, dir);
1db33378 1438 strcat (debugfile, debuglink);
5b5d99cf 1439
32a0e547 1440 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1441 return debugfile;
5417f6dc 1442
5b5d99cf
JB
1443 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1444 strcpy (debugfile, dir);
1445 strcat (debugfile, DEBUG_SUBDIRECTORY);
1446 strcat (debugfile, "/");
1db33378 1447 strcat (debugfile, debuglink);
5b5d99cf 1448
32a0e547 1449 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1450 return debugfile;
5417f6dc 1451
24ddea62 1452 /* Then try in the global debugfile directories.
f888f159 1453
24ddea62
JK
1454 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1455 cause "/..." lookups. */
5417f6dc 1456
e4ab2fad
JK
1457 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1458 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1459
e4ab2fad
JK
1460 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1461 {
1462 strcpy (debugfile, debugdir);
aa28a74e 1463 strcat (debugfile, "/");
24ddea62 1464 strcat (debugfile, dir);
1db33378 1465 strcat (debugfile, debuglink);
aa28a74e 1466
32a0e547 1467 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1468 {
1469 do_cleanups (back_to);
1470 return debugfile;
1471 }
24ddea62
JK
1472
1473 /* If the file is in the sysroot, try using its base path in the
1474 global debugfile directory. */
1db33378
PP
1475 if (canon_dir != NULL
1476 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1477 strlen (gdb_sysroot)) == 0
1db33378 1478 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1479 {
e4ab2fad 1480 strcpy (debugfile, debugdir);
1db33378 1481 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1482 strcat (debugfile, "/");
1db33378 1483 strcat (debugfile, debuglink);
24ddea62 1484
32a0e547 1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1486 {
1487 do_cleanups (back_to);
1488 return debugfile;
1489 }
24ddea62 1490 }
aa28a74e 1491 }
f888f159 1492
e4ab2fad 1493 do_cleanups (back_to);
25522fae 1494 xfree (debugfile);
1db33378
PP
1495 return NULL;
1496}
1497
7edbb660 1498/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1499 If there were no directory separators in PATH, PATH will be empty
1500 string on return. */
1501
1502static void
1503terminate_after_last_dir_separator (char *path)
1504{
1505 int i;
1506
1507 /* Strip off the final filename part, leaving the directory name,
1508 followed by a slash. The directory can be relative or absolute. */
1509 for (i = strlen(path) - 1; i >= 0; i--)
1510 if (IS_DIR_SEPARATOR (path[i]))
1511 break;
1512
1513 /* If I is -1 then no directory is present there and DIR will be "". */
1514 path[i + 1] = '\0';
1515}
1516
1517/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1518 Returns pathname, or NULL. */
1519
1520char *
1521find_separate_debug_file_by_debuglink (struct objfile *objfile)
1522{
1523 char *debuglink;
1524 char *dir, *canon_dir;
1525 char *debugfile;
1526 unsigned long crc32;
1527 struct cleanup *cleanups;
1528
cc0ea93c 1529 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1530
1531 if (debuglink == NULL)
1532 {
1533 /* There's no separate debug info, hence there's no way we could
1534 load it => no warning. */
1535 return NULL;
1536 }
1537
71bdabee 1538 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1539 dir = xstrdup (objfile_name (objfile));
71bdabee 1540 make_cleanup (xfree, dir);
1db33378
PP
1541 terminate_after_last_dir_separator (dir);
1542 canon_dir = lrealpath (dir);
1543
1544 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1545 crc32, objfile);
1546 xfree (canon_dir);
1547
1548 if (debugfile == NULL)
1549 {
1550#ifdef HAVE_LSTAT
1551 /* For PR gdb/9538, try again with realpath (if different from the
1552 original). */
1553
1554 struct stat st_buf;
1555
4262abfb
JK
1556 if (lstat (objfile_name (objfile), &st_buf) == 0
1557 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1558 {
1559 char *symlink_dir;
1560
4262abfb 1561 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1562 if (symlink_dir != NULL)
1563 {
1564 make_cleanup (xfree, symlink_dir);
1565 terminate_after_last_dir_separator (symlink_dir);
1566 if (strcmp (dir, symlink_dir) != 0)
1567 {
1568 /* Different directory, so try using it. */
1569 debugfile = find_separate_debug_file (symlink_dir,
1570 symlink_dir,
1571 debuglink,
1572 crc32,
1573 objfile);
1574 }
1575 }
1576 }
1577#endif /* HAVE_LSTAT */
1578 }
aa28a74e 1579
1db33378 1580 do_cleanups (cleanups);
25522fae 1581 return debugfile;
5b5d99cf
JB
1582}
1583
c906108c
SS
1584/* This is the symbol-file command. Read the file, analyze its
1585 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1586 the command is rather bizarre:
1587
1588 1. The function buildargv implements various quoting conventions
1589 which are undocumented and have little or nothing in common with
1590 the way things are quoted (or not quoted) elsewhere in GDB.
1591
1592 2. Options are used, which are not generally used in GDB (perhaps
1593 "set mapped on", "set readnow on" would be better)
1594
1595 3. The order of options matters, which is contrary to GNU
c906108c
SS
1596 conventions (because it is confusing and inconvenient). */
1597
1598void
fba45db2 1599symbol_file_command (char *args, int from_tty)
c906108c 1600{
c906108c
SS
1601 dont_repeat ();
1602
1603 if (args == NULL)
1604 {
1adeb98a 1605 symbol_file_clear (from_tty);
c906108c
SS
1606 }
1607 else
1608 {
d1a41061 1609 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1610 int flags = OBJF_USERLOADED;
1611 struct cleanup *cleanups;
1612 char *name = NULL;
1613
7a292a7a 1614 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1615 while (*argv != NULL)
1616 {
78a4a9b9
AC
1617 if (strcmp (*argv, "-readnow") == 0)
1618 flags |= OBJF_READNOW;
1619 else if (**argv == '-')
8a3fe4f8 1620 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1621 else
1622 {
cb2f3a29 1623 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1624 name = *argv;
78a4a9b9 1625 }
cb2f3a29 1626
c906108c
SS
1627 argv++;
1628 }
1629
1630 if (name == NULL)
cb2f3a29
MK
1631 error (_("no symbol file name was specified"));
1632
c906108c
SS
1633 do_cleanups (cleanups);
1634 }
1635}
1636
1637/* Set the initial language.
1638
cb2f3a29
MK
1639 FIXME: A better solution would be to record the language in the
1640 psymtab when reading partial symbols, and then use it (if known) to
1641 set the language. This would be a win for formats that encode the
1642 language in an easily discoverable place, such as DWARF. For
1643 stabs, we can jump through hoops looking for specially named
1644 symbols or try to intuit the language from the specific type of
1645 stabs we find, but we can't do that until later when we read in
1646 full symbols. */
c906108c 1647
8b60591b 1648void
fba45db2 1649set_initial_language (void)
c906108c 1650{
c5aa993b 1651 enum language lang = language_unknown;
c906108c 1652
01f8c46d
JK
1653 if (language_of_main != language_unknown)
1654 lang = language_of_main;
1655 else
1656 {
bf6d8a91
TT
1657 char *name = main_name ();
1658 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
f888f159 1659
bf6d8a91
TT
1660 if (sym != NULL)
1661 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1662 }
cb2f3a29 1663
ccefe4c4
TT
1664 if (lang == language_unknown)
1665 {
1666 /* Make C the default language */
1667 lang = language_c;
c906108c 1668 }
ccefe4c4
TT
1669
1670 set_language (lang);
1671 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1672}
1673
874f5765 1674/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1675 open it normally. Returns a new reference to the BFD. On error,
1676 returns NULL with the BFD error set. */
874f5765
TG
1677
1678bfd *
08d2cd74 1679gdb_bfd_open_maybe_remote (const char *name)
874f5765 1680{
520b0001
TT
1681 bfd *result;
1682
874f5765 1683 if (remote_filename_p (name))
520b0001 1684 result = remote_bfd_open (name, gnutarget);
874f5765 1685 else
1c00ec6b 1686 result = gdb_bfd_open (name, gnutarget, -1);
520b0001 1687
520b0001 1688 return result;
874f5765
TG
1689}
1690
cb2f3a29
MK
1691/* Open the file specified by NAME and hand it off to BFD for
1692 preliminary analysis. Return a newly initialized bfd *, which
1693 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1694 absolute). In case of trouble, error() is called. */
c906108c
SS
1695
1696bfd *
69150c3d 1697symfile_bfd_open (const char *cname)
c906108c
SS
1698{
1699 bfd *sym_bfd;
1700 int desc;
69150c3d 1701 char *name, *absolute_name;
faab9922 1702 struct cleanup *back_to;
c906108c 1703
69150c3d 1704 if (remote_filename_p (cname))
f1838a98 1705 {
69150c3d 1706 sym_bfd = remote_bfd_open (cname, gnutarget);
f1838a98 1707 if (!sym_bfd)
69150c3d 1708 error (_("`%s': can't open to read symbols: %s."), cname,
a4453b7e 1709 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1710
1711 if (!bfd_check_format (sym_bfd, bfd_object))
1712 {
f9a062ff 1713 make_cleanup_bfd_unref (sym_bfd);
69150c3d 1714 error (_("`%s': can't read symbols: %s."), cname,
f1838a98
UW
1715 bfd_errmsg (bfd_get_error ()));
1716 }
1717
1718 return sym_bfd;
1719 }
1720
69150c3d 1721 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
c906108c
SS
1722
1723 /* Look down path for it, allocate 2nd new malloc'd copy. */
492c0ab7 1724 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
fbdebf46 1725 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1726#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1727 if (desc < 0)
1728 {
1729 char *exename = alloca (strlen (name) + 5);
433759f7 1730
c906108c 1731 strcat (strcpy (exename, name), ".exe");
492c0ab7
JK
1732 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1733 exename, O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1734 }
1735#endif
1736 if (desc < 0)
1737 {
b8c9b27d 1738 make_cleanup (xfree, name);
c906108c
SS
1739 perror_with_name (name);
1740 }
cb2f3a29 1741
cb2f3a29
MK
1742 xfree (name);
1743 name = absolute_name;
faab9922 1744 back_to = make_cleanup (xfree, name);
c906108c 1745
1c00ec6b 1746 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1747 if (!sym_bfd)
faab9922
JK
1748 error (_("`%s': can't open to read symbols: %s."), name,
1749 bfd_errmsg (bfd_get_error ()));
549c1eea 1750 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1751
1752 if (!bfd_check_format (sym_bfd, bfd_object))
1753 {
f9a062ff 1754 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1755 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1756 bfd_errmsg (bfd_get_error ()));
1757 }
cb2f3a29 1758
faab9922
JK
1759 do_cleanups (back_to);
1760
cb2f3a29 1761 return sym_bfd;
c906108c
SS
1762}
1763
cb2f3a29
MK
1764/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1765 the section was not found. */
1766
0e931cf0
JB
1767int
1768get_section_index (struct objfile *objfile, char *section_name)
1769{
1770 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1771
0e931cf0
JB
1772 if (sect)
1773 return sect->index;
1774 else
1775 return -1;
1776}
1777
c256e171
DE
1778/* Link SF into the global symtab_fns list.
1779 FLAVOUR is the file format that SF handles.
1780 Called on startup by the _initialize routine in each object file format
1781 reader, to register information about each format the reader is prepared
1782 to handle. */
c906108c
SS
1783
1784void
c256e171 1785add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1786{
c256e171
DE
1787 registered_sym_fns fns = { flavour, sf };
1788
1789 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1790}
1791
cb2f3a29
MK
1792/* Initialize OBJFILE to read symbols from its associated BFD. It
1793 either returns or calls error(). The result is an initialized
1794 struct sym_fns in the objfile structure, that contains cached
1795 information about the symbol file. */
c906108c 1796
00b5771c 1797static const struct sym_fns *
31d99776 1798find_sym_fns (bfd *abfd)
c906108c 1799{
c256e171 1800 registered_sym_fns *rsf;
31d99776 1801 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1802 int i;
c906108c 1803
75245b24
MS
1804 if (our_flavour == bfd_target_srec_flavour
1805 || our_flavour == bfd_target_ihex_flavour
1806 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1807 return NULL; /* No symbols. */
75245b24 1808
c256e171
DE
1809 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1810 if (our_flavour == rsf->sym_flavour)
1811 return rsf->sym_fns;
cb2f3a29 1812
8a3fe4f8 1813 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1814 bfd_get_target (abfd));
c906108c
SS
1815}
1816\f
cb2f3a29 1817
c906108c
SS
1818/* This function runs the load command of our current target. */
1819
1820static void
fba45db2 1821load_command (char *arg, int from_tty)
c906108c 1822{
5b3fca71
TT
1823 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1824
e5cc9f32
JB
1825 dont_repeat ();
1826
4487aabf
PA
1827 /* The user might be reloading because the binary has changed. Take
1828 this opportunity to check. */
1829 reopen_exec_file ();
1830 reread_symbols ();
1831
c906108c 1832 if (arg == NULL)
1986bccd
AS
1833 {
1834 char *parg;
1835 int count = 0;
1836
1837 parg = arg = get_exec_file (1);
1838
1839 /* Count how many \ " ' tab space there are in the name. */
1840 while ((parg = strpbrk (parg, "\\\"'\t ")))
1841 {
1842 parg++;
1843 count++;
1844 }
1845
1846 if (count)
1847 {
1848 /* We need to quote this string so buildargv can pull it apart. */
1849 char *temp = xmalloc (strlen (arg) + count + 1 );
1850 char *ptemp = temp;
1851 char *prev;
1852
1853 make_cleanup (xfree, temp);
1854
1855 prev = parg = arg;
1856 while ((parg = strpbrk (parg, "\\\"'\t ")))
1857 {
1858 strncpy (ptemp, prev, parg - prev);
1859 ptemp += parg - prev;
1860 prev = parg++;
1861 *ptemp++ = '\\';
1862 }
1863 strcpy (ptemp, prev);
1864
1865 arg = temp;
1866 }
1867 }
1868
c906108c 1869 target_load (arg, from_tty);
2889e661
JB
1870
1871 /* After re-loading the executable, we don't really know which
1872 overlays are mapped any more. */
1873 overlay_cache_invalid = 1;
5b3fca71
TT
1874
1875 do_cleanups (cleanup);
c906108c
SS
1876}
1877
1878/* This version of "load" should be usable for any target. Currently
1879 it is just used for remote targets, not inftarg.c or core files,
1880 on the theory that only in that case is it useful.
1881
1882 Avoiding xmodem and the like seems like a win (a) because we don't have
1883 to worry about finding it, and (b) On VMS, fork() is very slow and so
1884 we don't want to run a subprocess. On the other hand, I'm not sure how
1885 performance compares. */
917317f4 1886
917317f4
JM
1887static int validate_download = 0;
1888
e4f9b4d5
MS
1889/* Callback service function for generic_load (bfd_map_over_sections). */
1890
1891static void
1892add_section_size_callback (bfd *abfd, asection *asec, void *data)
1893{
1894 bfd_size_type *sum = data;
1895
2c500098 1896 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1897}
1898
1899/* Opaque data for load_section_callback. */
1900struct load_section_data {
f698ca8e 1901 CORE_ADDR load_offset;
a76d924d
DJ
1902 struct load_progress_data *progress_data;
1903 VEC(memory_write_request_s) *requests;
1904};
1905
1906/* Opaque data for load_progress. */
1907struct load_progress_data {
1908 /* Cumulative data. */
e4f9b4d5
MS
1909 unsigned long write_count;
1910 unsigned long data_count;
1911 bfd_size_type total_size;
a76d924d
DJ
1912};
1913
1914/* Opaque data for load_progress for a single section. */
1915struct load_progress_section_data {
1916 struct load_progress_data *cumulative;
cf7a04e8 1917
a76d924d 1918 /* Per-section data. */
cf7a04e8
DJ
1919 const char *section_name;
1920 ULONGEST section_sent;
1921 ULONGEST section_size;
1922 CORE_ADDR lma;
1923 gdb_byte *buffer;
e4f9b4d5
MS
1924};
1925
a76d924d 1926/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1927
1928static void
1929load_progress (ULONGEST bytes, void *untyped_arg)
1930{
a76d924d
DJ
1931 struct load_progress_section_data *args = untyped_arg;
1932 struct load_progress_data *totals;
1933
1934 if (args == NULL)
1935 /* Writing padding data. No easy way to get at the cumulative
1936 stats, so just ignore this. */
1937 return;
1938
1939 totals = args->cumulative;
1940
1941 if (bytes == 0 && args->section_sent == 0)
1942 {
1943 /* The write is just starting. Let the user know we've started
1944 this section. */
79a45e25 1945 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1946 args->section_name, hex_string (args->section_size),
f5656ead 1947 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1948 return;
1949 }
cf7a04e8
DJ
1950
1951 if (validate_download)
1952 {
1953 /* Broken memories and broken monitors manifest themselves here
1954 when bring new computers to life. This doubles already slow
1955 downloads. */
1956 /* NOTE: cagney/1999-10-18: A more efficient implementation
1957 might add a verify_memory() method to the target vector and
1958 then use that. remote.c could implement that method using
1959 the ``qCRC'' packet. */
1960 gdb_byte *check = xmalloc (bytes);
1961 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1962
1963 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1964 error (_("Download verify read failed at %s"),
f5656ead 1965 paddress (target_gdbarch (), args->lma));
cf7a04e8 1966 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1967 error (_("Download verify compare failed at %s"),
f5656ead 1968 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1969 do_cleanups (verify_cleanups);
1970 }
a76d924d 1971 totals->data_count += bytes;
cf7a04e8
DJ
1972 args->lma += bytes;
1973 args->buffer += bytes;
a76d924d 1974 totals->write_count += 1;
cf7a04e8 1975 args->section_sent += bytes;
522002f9 1976 if (check_quit_flag ()
cf7a04e8
DJ
1977 || (deprecated_ui_load_progress_hook != NULL
1978 && deprecated_ui_load_progress_hook (args->section_name,
1979 args->section_sent)))
1980 error (_("Canceled the download"));
1981
1982 if (deprecated_show_load_progress != NULL)
1983 deprecated_show_load_progress (args->section_name,
1984 args->section_sent,
1985 args->section_size,
a76d924d
DJ
1986 totals->data_count,
1987 totals->total_size);
cf7a04e8
DJ
1988}
1989
e4f9b4d5
MS
1990/* Callback service function for generic_load (bfd_map_over_sections). */
1991
1992static void
1993load_section_callback (bfd *abfd, asection *asec, void *data)
1994{
a76d924d 1995 struct memory_write_request *new_request;
e4f9b4d5 1996 struct load_section_data *args = data;
a76d924d 1997 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1998 bfd_size_type size = bfd_get_section_size (asec);
1999 gdb_byte *buffer;
cf7a04e8 2000 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2001
cf7a04e8
DJ
2002 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2003 return;
e4f9b4d5 2004
cf7a04e8
DJ
2005 if (size == 0)
2006 return;
e4f9b4d5 2007
a76d924d
DJ
2008 new_request = VEC_safe_push (memory_write_request_s,
2009 args->requests, NULL);
2010 memset (new_request, 0, sizeof (struct memory_write_request));
2011 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2012 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2013 new_request->end = new_request->begin + size; /* FIXME Should size
2014 be in instead? */
a76d924d
DJ
2015 new_request->data = xmalloc (size);
2016 new_request->baton = section_data;
cf7a04e8 2017
a76d924d 2018 buffer = new_request->data;
cf7a04e8 2019
a76d924d
DJ
2020 section_data->cumulative = args->progress_data;
2021 section_data->section_name = sect_name;
2022 section_data->section_size = size;
2023 section_data->lma = new_request->begin;
2024 section_data->buffer = buffer;
cf7a04e8
DJ
2025
2026 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2027}
2028
2029/* Clean up an entire memory request vector, including load
2030 data and progress records. */
cf7a04e8 2031
a76d924d
DJ
2032static void
2033clear_memory_write_data (void *arg)
2034{
2035 VEC(memory_write_request_s) **vec_p = arg;
2036 VEC(memory_write_request_s) *vec = *vec_p;
2037 int i;
2038 struct memory_write_request *mr;
cf7a04e8 2039
a76d924d
DJ
2040 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2041 {
2042 xfree (mr->data);
2043 xfree (mr->baton);
2044 }
2045 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2046}
2047
c906108c 2048void
917317f4 2049generic_load (char *args, int from_tty)
c906108c 2050{
c906108c 2051 bfd *loadfile_bfd;
2b71414d 2052 struct timeval start_time, end_time;
917317f4 2053 char *filename;
1986bccd 2054 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2055 struct load_section_data cbdata;
a76d924d 2056 struct load_progress_data total_progress;
79a45e25 2057 struct ui_out *uiout = current_uiout;
a76d924d 2058
e4f9b4d5 2059 CORE_ADDR entry;
1986bccd 2060 char **argv;
e4f9b4d5 2061
a76d924d
DJ
2062 memset (&cbdata, 0, sizeof (cbdata));
2063 memset (&total_progress, 0, sizeof (total_progress));
2064 cbdata.progress_data = &total_progress;
2065
2066 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2067
d1a41061
PP
2068 if (args == NULL)
2069 error_no_arg (_("file to load"));
1986bccd 2070
d1a41061 2071 argv = gdb_buildargv (args);
1986bccd
AS
2072 make_cleanup_freeargv (argv);
2073
2074 filename = tilde_expand (argv[0]);
2075 make_cleanup (xfree, filename);
2076
2077 if (argv[1] != NULL)
917317f4 2078 {
f698ca8e 2079 const char *endptr;
ba5f2f8a 2080
f698ca8e 2081 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2082
2083 /* If the last word was not a valid number then
2084 treat it as a file name with spaces in. */
2085 if (argv[1] == endptr)
2086 error (_("Invalid download offset:%s."), argv[1]);
2087
2088 if (argv[2] != NULL)
2089 error (_("Too many parameters."));
917317f4 2090 }
c906108c 2091
c378eb4e 2092 /* Open the file for loading. */
1c00ec6b 2093 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2094 if (loadfile_bfd == NULL)
2095 {
2096 perror_with_name (filename);
2097 return;
2098 }
917317f4 2099
f9a062ff 2100 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2101
c5aa993b 2102 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2103 {
8a3fe4f8 2104 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2105 bfd_errmsg (bfd_get_error ()));
2106 }
c5aa993b 2107
5417f6dc 2108 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2109 (void *) &total_progress.total_size);
2110
2111 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2112
2b71414d 2113 gettimeofday (&start_time, NULL);
c906108c 2114
a76d924d
DJ
2115 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2116 load_progress) != 0)
2117 error (_("Load failed"));
c906108c 2118
2b71414d 2119 gettimeofday (&end_time, NULL);
ba5f2f8a 2120
e4f9b4d5 2121 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2122 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2123 ui_out_text (uiout, "Start address ");
f5656ead 2124 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2125 ui_out_text (uiout, ", load size ");
a76d924d 2126 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2127 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2128 /* We were doing this in remote-mips.c, I suspect it is right
2129 for other targets too. */
fb14de7b 2130 regcache_write_pc (get_current_regcache (), entry);
c906108c 2131
38963c97
DJ
2132 /* Reset breakpoints, now that we have changed the load image. For
2133 instance, breakpoints may have been set (or reset, by
2134 post_create_inferior) while connected to the target but before we
2135 loaded the program. In that case, the prologue analyzer could
2136 have read instructions from the target to find the right
2137 breakpoint locations. Loading has changed the contents of that
2138 memory. */
2139
2140 breakpoint_re_set ();
2141
7ca9f392
AC
2142 /* FIXME: are we supposed to call symbol_file_add or not? According
2143 to a comment from remote-mips.c (where a call to symbol_file_add
2144 was commented out), making the call confuses GDB if more than one
2145 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2146 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2147
a76d924d
DJ
2148 print_transfer_performance (gdb_stdout, total_progress.data_count,
2149 total_progress.write_count,
2150 &start_time, &end_time);
c906108c
SS
2151
2152 do_cleanups (old_cleanups);
2153}
2154
c378eb4e 2155/* Report how fast the transfer went. */
c906108c 2156
917317f4 2157void
d9fcf2fb 2158print_transfer_performance (struct ui_file *stream,
917317f4
JM
2159 unsigned long data_count,
2160 unsigned long write_count,
2b71414d
DJ
2161 const struct timeval *start_time,
2162 const struct timeval *end_time)
917317f4 2163{
9f43d28c 2164 ULONGEST time_count;
79a45e25 2165 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2166
2167 /* Compute the elapsed time in milliseconds, as a tradeoff between
2168 accuracy and overflow. */
2169 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2170 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2171
8b93c638
JM
2172 ui_out_text (uiout, "Transfer rate: ");
2173 if (time_count > 0)
2174 {
9f43d28c
DJ
2175 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2176
2177 if (ui_out_is_mi_like_p (uiout))
2178 {
2179 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2180 ui_out_text (uiout, " bits/sec");
2181 }
2182 else if (rate < 1024)
2183 {
2184 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2185 ui_out_text (uiout, " bytes/sec");
2186 }
2187 else
2188 {
2189 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2190 ui_out_text (uiout, " KB/sec");
2191 }
8b93c638
JM
2192 }
2193 else
2194 {
ba5f2f8a 2195 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2196 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2197 }
2198 if (write_count > 0)
2199 {
2200 ui_out_text (uiout, ", ");
ba5f2f8a 2201 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2202 ui_out_text (uiout, " bytes/write");
2203 }
2204 ui_out_text (uiout, ".\n");
c906108c
SS
2205}
2206
2207/* This function allows the addition of incrementally linked object files.
2208 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2209/* Note: ezannoni 2000-04-13 This function/command used to have a
2210 special case syntax for the rombug target (Rombug is the boot
2211 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2212 rombug case, the user doesn't need to supply a text address,
2213 instead a call to target_link() (in target.c) would supply the
c378eb4e 2214 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2215
c906108c 2216static void
fba45db2 2217add_symbol_file_command (char *args, int from_tty)
c906108c 2218{
5af949e3 2219 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2220 char *filename = NULL;
2df3850c 2221 int flags = OBJF_USERLOADED;
c906108c 2222 char *arg;
db162d44 2223 int section_index = 0;
2acceee2
JM
2224 int argcnt = 0;
2225 int sec_num = 0;
2226 int i;
db162d44
EZ
2227 int expecting_sec_name = 0;
2228 int expecting_sec_addr = 0;
5b96932b 2229 char **argv;
76ad5e1e 2230 struct objfile *objf;
db162d44 2231
a39a16c4 2232 struct sect_opt
2acceee2 2233 {
2acceee2
JM
2234 char *name;
2235 char *value;
a39a16c4 2236 };
db162d44 2237
a39a16c4
MM
2238 struct section_addr_info *section_addrs;
2239 struct sect_opt *sect_opts = NULL;
2240 size_t num_sect_opts = 0;
3017564a 2241 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2242
a39a16c4 2243 num_sect_opts = 16;
5417f6dc 2244 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2245 * sizeof (struct sect_opt));
2246
c906108c
SS
2247 dont_repeat ();
2248
2249 if (args == NULL)
8a3fe4f8 2250 error (_("add-symbol-file takes a file name and an address"));
c906108c 2251
d1a41061 2252 argv = gdb_buildargv (args);
5b96932b 2253 make_cleanup_freeargv (argv);
db162d44 2254
5b96932b
AS
2255 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2256 {
c378eb4e 2257 /* Process the argument. */
db162d44 2258 if (argcnt == 0)
c906108c 2259 {
c378eb4e 2260 /* The first argument is the file name. */
db162d44 2261 filename = tilde_expand (arg);
3017564a 2262 make_cleanup (xfree, filename);
c906108c 2263 }
41dc8db8
MB
2264 else if (argcnt == 1)
2265 {
2266 /* The second argument is always the text address at which
2267 to load the program. */
2268 sect_opts[section_index].name = ".text";
2269 sect_opts[section_index].value = arg;
2270 if (++section_index >= num_sect_opts)
2271 {
2272 num_sect_opts *= 2;
2273 sect_opts = ((struct sect_opt *)
2274 xrealloc (sect_opts,
2275 num_sect_opts
2276 * sizeof (struct sect_opt)));
2277 }
2278 }
db162d44 2279 else
41dc8db8
MB
2280 {
2281 /* It's an option (starting with '-') or it's an argument
2282 to an option. */
41dc8db8
MB
2283 if (expecting_sec_name)
2284 {
2285 sect_opts[section_index].name = arg;
2286 expecting_sec_name = 0;
2287 }
2288 else if (expecting_sec_addr)
2289 {
2290 sect_opts[section_index].value = arg;
2291 expecting_sec_addr = 0;
2292 if (++section_index >= num_sect_opts)
2293 {
2294 num_sect_opts *= 2;
2295 sect_opts = ((struct sect_opt *)
2296 xrealloc (sect_opts,
2297 num_sect_opts
2298 * sizeof (struct sect_opt)));
2299 }
2300 }
2301 else if (strcmp (arg, "-readnow") == 0)
2302 flags |= OBJF_READNOW;
2303 else if (strcmp (arg, "-s") == 0)
2304 {
2305 expecting_sec_name = 1;
2306 expecting_sec_addr = 1;
2307 }
2308 else
2309 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2310 " [-readnow] [-s <secname> <addr>]*"));
2311 }
c906108c 2312 }
c906108c 2313
927890d0
JB
2314 /* This command takes at least two arguments. The first one is a
2315 filename, and the second is the address where this file has been
2316 loaded. Abort now if this address hasn't been provided by the
2317 user. */
2318 if (section_index < 1)
2319 error (_("The address where %s has been loaded is missing"), filename);
2320
c378eb4e 2321 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2322 a sect_addr_info structure to be passed around to other
2323 functions. We have to split this up into separate print
bb599908 2324 statements because hex_string returns a local static
c378eb4e 2325 string. */
5417f6dc 2326
a3f17187 2327 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2328 section_addrs = alloc_section_addr_info (section_index);
2329 make_cleanup (xfree, section_addrs);
db162d44 2330 for (i = 0; i < section_index; i++)
c906108c 2331 {
db162d44
EZ
2332 CORE_ADDR addr;
2333 char *val = sect_opts[i].value;
2334 char *sec = sect_opts[i].name;
5417f6dc 2335
ae822768 2336 addr = parse_and_eval_address (val);
db162d44 2337
db162d44 2338 /* Here we store the section offsets in the order they were
c378eb4e 2339 entered on the command line. */
a39a16c4
MM
2340 section_addrs->other[sec_num].name = sec;
2341 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2342 printf_unfiltered ("\t%s_addr = %s\n", sec,
2343 paddress (gdbarch, addr));
db162d44
EZ
2344 sec_num++;
2345
5417f6dc 2346 /* The object's sections are initialized when a
db162d44 2347 call is made to build_objfile_section_table (objfile).
5417f6dc 2348 This happens in reread_symbols.
db162d44
EZ
2349 At this point, we don't know what file type this is,
2350 so we can't determine what section names are valid. */
2acceee2 2351 }
d76488d8 2352 section_addrs->num_sections = sec_num;
db162d44 2353
2acceee2 2354 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2355 error (_("Not confirmed."));
c906108c 2356
76ad5e1e
NB
2357 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2358 section_addrs, flags);
2359
2360 add_target_sections_of_objfile (objf);
c906108c
SS
2361
2362 /* Getting new symbols may change our opinion about what is
2363 frameless. */
2364 reinit_frame_cache ();
db162d44 2365 do_cleanups (my_cleanups);
c906108c
SS
2366}
2367\f
70992597 2368
63644780
NB
2369/* This function removes a symbol file that was added via add-symbol-file. */
2370
2371static void
2372remove_symbol_file_command (char *args, int from_tty)
2373{
2374 char **argv;
2375 struct objfile *objf = NULL;
2376 struct cleanup *my_cleanups;
2377 struct program_space *pspace = current_program_space;
2378 struct gdbarch *gdbarch = get_current_arch ();
2379
2380 dont_repeat ();
2381
2382 if (args == NULL)
2383 error (_("remove-symbol-file: no symbol file provided"));
2384
2385 my_cleanups = make_cleanup (null_cleanup, NULL);
2386
2387 argv = gdb_buildargv (args);
2388
2389 if (strcmp (argv[0], "-a") == 0)
2390 {
2391 /* Interpret the next argument as an address. */
2392 CORE_ADDR addr;
2393
2394 if (argv[1] == NULL)
2395 error (_("Missing address argument"));
2396
2397 if (argv[2] != NULL)
2398 error (_("Junk after %s"), argv[1]);
2399
2400 addr = parse_and_eval_address (argv[1]);
2401
2402 ALL_OBJFILES (objf)
2403 {
2404 if (objf != 0
2405 && objf->flags & OBJF_USERLOADED
2406 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2407 break;
2408 }
2409 }
2410 else if (argv[0] != NULL)
2411 {
2412 /* Interpret the current argument as a file name. */
2413 char *filename;
2414
2415 if (argv[1] != NULL)
2416 error (_("Junk after %s"), argv[0]);
2417
2418 filename = tilde_expand (argv[0]);
2419 make_cleanup (xfree, filename);
2420
2421 ALL_OBJFILES (objf)
2422 {
2423 if (objf != 0
2424 && objf->flags & OBJF_USERLOADED
2425 && objf->pspace == pspace
2426 && filename_cmp (filename, objfile_name (objf)) == 0)
2427 break;
2428 }
2429 }
2430
2431 if (objf == NULL)
2432 error (_("No symbol file found"));
2433
2434 if (from_tty
2435 && !query (_("Remove symbol table from file \"%s\"? "),
2436 objfile_name (objf)))
2437 error (_("Not confirmed."));
2438
2439 free_objfile (objf);
2440 clear_symtab_users (0);
2441
2442 do_cleanups (my_cleanups);
2443}
2444
4ac39b97
JK
2445typedef struct objfile *objfilep;
2446
2447DEF_VEC_P (objfilep);
2448
c906108c 2449/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2450
c906108c 2451void
fba45db2 2452reread_symbols (void)
c906108c
SS
2453{
2454 struct objfile *objfile;
2455 long new_modtime;
c906108c
SS
2456 struct stat new_statbuf;
2457 int res;
4ac39b97
JK
2458 VEC (objfilep) *new_objfiles = NULL;
2459 struct cleanup *all_cleanups;
2460
2461 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2462
2463 /* With the addition of shared libraries, this should be modified,
2464 the load time should be saved in the partial symbol tables, since
2465 different tables may come from different source files. FIXME.
2466 This routine should then walk down each partial symbol table
c378eb4e 2467 and see if the symbol table that it originates from has been changed. */
c906108c 2468
c5aa993b
JM
2469 for (objfile = object_files; objfile; objfile = objfile->next)
2470 {
9cce227f
TG
2471 if (objfile->obfd == NULL)
2472 continue;
2473
2474 /* Separate debug objfiles are handled in the main objfile. */
2475 if (objfile->separate_debug_objfile_backlink)
2476 continue;
2477
02aeec7b
JB
2478 /* If this object is from an archive (what you usually create with
2479 `ar', often called a `static library' on most systems, though
2480 a `shared library' on AIX is also an archive), then you should
2481 stat on the archive name, not member name. */
9cce227f
TG
2482 if (objfile->obfd->my_archive)
2483 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2484 else
4262abfb 2485 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2486 if (res != 0)
2487 {
c378eb4e 2488 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2489 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2490 objfile_name (objfile));
9cce227f
TG
2491 continue;
2492 }
2493 new_modtime = new_statbuf.st_mtime;
2494 if (new_modtime != objfile->mtime)
2495 {
2496 struct cleanup *old_cleanups;
2497 struct section_offsets *offsets;
2498 int num_offsets;
24ba069a 2499 char *original_name;
9cce227f
TG
2500
2501 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2502 objfile_name (objfile));
9cce227f
TG
2503
2504 /* There are various functions like symbol_file_add,
2505 symfile_bfd_open, syms_from_objfile, etc., which might
2506 appear to do what we want. But they have various other
2507 effects which we *don't* want. So we just do stuff
2508 ourselves. We don't worry about mapped files (for one thing,
2509 any mapped file will be out of date). */
2510
2511 /* If we get an error, blow away this objfile (not sure if
2512 that is the correct response for things like shared
2513 libraries). */
2514 old_cleanups = make_cleanup_free_objfile (objfile);
2515 /* We need to do this whenever any symbols go away. */
2516 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2517
0ba1096a
KT
2518 if (exec_bfd != NULL
2519 && filename_cmp (bfd_get_filename (objfile->obfd),
2520 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2521 {
2522 /* Reload EXEC_BFD without asking anything. */
2523
2524 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2525 }
2526
f6eeced0
JK
2527 /* Keep the calls order approx. the same as in free_objfile. */
2528
2529 /* Free the separate debug objfiles. It will be
2530 automatically recreated by sym_read. */
2531 free_objfile_separate_debug (objfile);
2532
2533 /* Remove any references to this objfile in the global
2534 value lists. */
2535 preserve_values (objfile);
2536
2537 /* Nuke all the state that we will re-read. Much of the following
2538 code which sets things to NULL really is necessary to tell
2539 other parts of GDB that there is nothing currently there.
2540
2541 Try to keep the freeing order compatible with free_objfile. */
2542
2543 if (objfile->sf != NULL)
2544 {
2545 (*objfile->sf->sym_finish) (objfile);
2546 }
2547
2548 clear_objfile_data (objfile);
2549
e1507e95 2550 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2551 {
2552 struct bfd *obfd = objfile->obfd;
d3846e71 2553 char *obfd_filename;
a4453b7e
TT
2554
2555 obfd_filename = bfd_get_filename (objfile->obfd);
2556 /* Open the new BFD before freeing the old one, so that
2557 the filename remains live. */
08d2cd74 2558 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
e1507e95
TT
2559 if (objfile->obfd == NULL)
2560 {
2561 /* We have to make a cleanup and error here, rather
2562 than erroring later, because once we unref OBFD,
2563 OBFD_FILENAME will be freed. */
2564 make_cleanup_bfd_unref (obfd);
2565 error (_("Can't open %s to read symbols."), obfd_filename);
2566 }
a4453b7e
TT
2567 gdb_bfd_unref (obfd);
2568 }
2569
24ba069a
JK
2570 original_name = xstrdup (objfile->original_name);
2571 make_cleanup (xfree, original_name);
2572
9cce227f
TG
2573 /* bfd_openr sets cacheable to true, which is what we want. */
2574 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2575 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2576 bfd_errmsg (bfd_get_error ()));
2577
2578 /* Save the offsets, we will nuke them with the rest of the
2579 objfile_obstack. */
2580 num_offsets = objfile->num_sections;
2581 offsets = ((struct section_offsets *)
2582 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2583 memcpy (offsets, objfile->section_offsets,
2584 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2585
9cce227f
TG
2586 /* FIXME: Do we have to free a whole linked list, or is this
2587 enough? */
2588 if (objfile->global_psymbols.list)
2589 xfree (objfile->global_psymbols.list);
2590 memset (&objfile->global_psymbols, 0,
2591 sizeof (objfile->global_psymbols));
2592 if (objfile->static_psymbols.list)
2593 xfree (objfile->static_psymbols.list);
2594 memset (&objfile->static_psymbols, 0,
2595 sizeof (objfile->static_psymbols));
2596
c378eb4e 2597 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2598 psymbol_bcache_free (objfile->psymbol_cache);
2599 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2600 obstack_free (&objfile->objfile_obstack, 0);
2601 objfile->sections = NULL;
2602 objfile->symtabs = NULL;
2603 objfile->psymtabs = NULL;
2604 objfile->psymtabs_addrmap = NULL;
2605 objfile->free_psymtabs = NULL;
34eaf542 2606 objfile->template_symbols = NULL;
9cce227f 2607 objfile->msymbols = NULL;
9cce227f
TG
2608 objfile->minimal_symbol_count = 0;
2609 memset (&objfile->msymbol_hash, 0,
2610 sizeof (objfile->msymbol_hash));
2611 memset (&objfile->msymbol_demangled_hash, 0,
2612 sizeof (objfile->msymbol_demangled_hash));
2613
9cce227f
TG
2614 /* obstack_init also initializes the obstack so it is
2615 empty. We could use obstack_specify_allocation but
d82ea6a8 2616 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2617 obstack_init (&objfile->objfile_obstack);
779bd270 2618
846060df
JB
2619 /* set_objfile_per_bfd potentially allocates the per-bfd
2620 data on the objfile's obstack (if sharing data across
2621 multiple users is not possible), so it's important to
2622 do it *after* the obstack has been initialized. */
2623 set_objfile_per_bfd (objfile);
2624
24ba069a
JK
2625 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2626 original_name,
2627 strlen (original_name));
2628
779bd270
DE
2629 /* Reset the sym_fns pointer. The ELF reader can change it
2630 based on whether .gdb_index is present, and we need it to
2631 start over. PR symtab/15885 */
8fb8eb5c 2632 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2633
d82ea6a8 2634 build_objfile_section_table (objfile);
9cce227f
TG
2635 terminate_minimal_symbol_table (objfile);
2636
2637 /* We use the same section offsets as from last time. I'm not
2638 sure whether that is always correct for shared libraries. */
2639 objfile->section_offsets = (struct section_offsets *)
2640 obstack_alloc (&objfile->objfile_obstack,
2641 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2642 memcpy (objfile->section_offsets, offsets,
2643 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2644 objfile->num_sections = num_offsets;
2645
2646 /* What the hell is sym_new_init for, anyway? The concept of
2647 distinguishing between the main file and additional files
2648 in this way seems rather dubious. */
2649 if (objfile == symfile_objfile)
c906108c 2650 {
9cce227f 2651 (*objfile->sf->sym_new_init) (objfile);
c906108c 2652 }
9cce227f
TG
2653
2654 (*objfile->sf->sym_init) (objfile);
2655 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2656
2657 objfile->flags &= ~OBJF_PSYMTABS_READ;
2658 read_symbols (objfile, 0);
b11896a5 2659
9cce227f 2660 if (!objfile_has_symbols (objfile))
c906108c 2661 {
9cce227f
TG
2662 wrap_here ("");
2663 printf_unfiltered (_("(no debugging symbols found)\n"));
2664 wrap_here ("");
c5aa993b 2665 }
9cce227f
TG
2666
2667 /* We're done reading the symbol file; finish off complaints. */
2668 clear_complaints (&symfile_complaints, 0, 1);
2669
2670 /* Getting new symbols may change our opinion about what is
2671 frameless. */
2672
2673 reinit_frame_cache ();
2674
2675 /* Discard cleanups as symbol reading was successful. */
2676 discard_cleanups (old_cleanups);
2677
2678 /* If the mtime has changed between the time we set new_modtime
2679 and now, we *want* this to be out of date, so don't call stat
2680 again now. */
2681 objfile->mtime = new_modtime;
9cce227f 2682 init_entry_point_info (objfile);
4ac39b97
JK
2683
2684 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2685 }
2686 }
c906108c 2687
4ac39b97 2688 if (new_objfiles)
ea53e89f 2689 {
4ac39b97
JK
2690 int ix;
2691
ff3536bc
UW
2692 /* Notify objfiles that we've modified objfile sections. */
2693 objfiles_changed ();
2694
c1e56572 2695 clear_symtab_users (0);
4ac39b97
JK
2696
2697 /* clear_objfile_data for each objfile was called before freeing it and
2698 observer_notify_new_objfile (NULL) has been called by
2699 clear_symtab_users above. Notify the new files now. */
2700 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2701 observer_notify_new_objfile (objfile);
2702
ea53e89f
JB
2703 /* At least one objfile has changed, so we can consider that
2704 the executable we're debugging has changed too. */
781b42b0 2705 observer_notify_executable_changed ();
ea53e89f 2706 }
4ac39b97
JK
2707
2708 do_cleanups (all_cleanups);
c906108c 2709}
c906108c
SS
2710\f
2711
c5aa993b
JM
2712typedef struct
2713{
2714 char *ext;
c906108c 2715 enum language lang;
c5aa993b
JM
2716}
2717filename_language;
c906108c 2718
c5aa993b 2719static filename_language *filename_language_table;
c906108c
SS
2720static int fl_table_size, fl_table_next;
2721
2722static void
fba45db2 2723add_filename_language (char *ext, enum language lang)
c906108c
SS
2724{
2725 if (fl_table_next >= fl_table_size)
2726 {
2727 fl_table_size += 10;
5417f6dc 2728 filename_language_table =
25bf3106
PM
2729 xrealloc (filename_language_table,
2730 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2731 }
2732
4fcf66da 2733 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2734 filename_language_table[fl_table_next].lang = lang;
2735 fl_table_next++;
2736}
2737
2738static char *ext_args;
920d2a44
AC
2739static void
2740show_ext_args (struct ui_file *file, int from_tty,
2741 struct cmd_list_element *c, const char *value)
2742{
3e43a32a
MS
2743 fprintf_filtered (file,
2744 _("Mapping between filename extension "
2745 "and source language is \"%s\".\n"),
920d2a44
AC
2746 value);
2747}
c906108c
SS
2748
2749static void
26c41df3 2750set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2751{
2752 int i;
2753 char *cp = ext_args;
2754 enum language lang;
2755
c378eb4e 2756 /* First arg is filename extension, starting with '.' */
c906108c 2757 if (*cp != '.')
8a3fe4f8 2758 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2759
2760 /* Find end of first arg. */
c5aa993b 2761 while (*cp && !isspace (*cp))
c906108c
SS
2762 cp++;
2763
2764 if (*cp == '\0')
3e43a32a
MS
2765 error (_("'%s': two arguments required -- "
2766 "filename extension and language"),
c906108c
SS
2767 ext_args);
2768
c378eb4e 2769 /* Null-terminate first arg. */
c5aa993b 2770 *cp++ = '\0';
c906108c
SS
2771
2772 /* Find beginning of second arg, which should be a source language. */
529480d0 2773 cp = skip_spaces (cp);
c906108c
SS
2774
2775 if (*cp == '\0')
3e43a32a
MS
2776 error (_("'%s': two arguments required -- "
2777 "filename extension and language"),
c906108c
SS
2778 ext_args);
2779
2780 /* Lookup the language from among those we know. */
2781 lang = language_enum (cp);
2782
2783 /* Now lookup the filename extension: do we already know it? */
2784 for (i = 0; i < fl_table_next; i++)
2785 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2786 break;
2787
2788 if (i >= fl_table_next)
2789 {
c378eb4e 2790 /* New file extension. */
c906108c
SS
2791 add_filename_language (ext_args, lang);
2792 }
2793 else
2794 {
c378eb4e 2795 /* Redefining a previously known filename extension. */
c906108c
SS
2796
2797 /* if (from_tty) */
2798 /* query ("Really make files of type %s '%s'?", */
2799 /* ext_args, language_str (lang)); */
2800
b8c9b27d 2801 xfree (filename_language_table[i].ext);
4fcf66da 2802 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2803 filename_language_table[i].lang = lang;
2804 }
2805}
2806
2807static void
fba45db2 2808info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2809{
2810 int i;
2811
a3f17187 2812 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2813 printf_filtered ("\n\n");
2814 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2815 printf_filtered ("\t%s\t- %s\n",
2816 filename_language_table[i].ext,
c906108c
SS
2817 language_str (filename_language_table[i].lang));
2818}
2819
2820static void
fba45db2 2821init_filename_language_table (void)
c906108c 2822{
c378eb4e 2823 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2824 {
2825 fl_table_size = 20;
2826 fl_table_next = 0;
c5aa993b 2827 filename_language_table =
c906108c 2828 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2829 add_filename_language (".c", language_c);
6aecb9c2 2830 add_filename_language (".d", language_d);
c5aa993b
JM
2831 add_filename_language (".C", language_cplus);
2832 add_filename_language (".cc", language_cplus);
2833 add_filename_language (".cp", language_cplus);
2834 add_filename_language (".cpp", language_cplus);
2835 add_filename_language (".cxx", language_cplus);
2836 add_filename_language (".c++", language_cplus);
2837 add_filename_language (".java", language_java);
c906108c 2838 add_filename_language (".class", language_java);
da2cf7e0 2839 add_filename_language (".m", language_objc);
c5aa993b
JM
2840 add_filename_language (".f", language_fortran);
2841 add_filename_language (".F", language_fortran);
fd5700c7
JK
2842 add_filename_language (".for", language_fortran);
2843 add_filename_language (".FOR", language_fortran);
2844 add_filename_language (".ftn", language_fortran);
2845 add_filename_language (".FTN", language_fortran);
2846 add_filename_language (".fpp", language_fortran);
2847 add_filename_language (".FPP", language_fortran);
2848 add_filename_language (".f90", language_fortran);
2849 add_filename_language (".F90", language_fortran);
2850 add_filename_language (".f95", language_fortran);
2851 add_filename_language (".F95", language_fortran);
2852 add_filename_language (".f03", language_fortran);
2853 add_filename_language (".F03", language_fortran);
2854 add_filename_language (".f08", language_fortran);
2855 add_filename_language (".F08", language_fortran);
c5aa993b 2856 add_filename_language (".s", language_asm);
aa707ed0 2857 add_filename_language (".sx", language_asm);
c5aa993b 2858 add_filename_language (".S", language_asm);
c6fd39cd
PM
2859 add_filename_language (".pas", language_pascal);
2860 add_filename_language (".p", language_pascal);
2861 add_filename_language (".pp", language_pascal);
963a6417
PH
2862 add_filename_language (".adb", language_ada);
2863 add_filename_language (".ads", language_ada);
2864 add_filename_language (".a", language_ada);
2865 add_filename_language (".ada", language_ada);
dde59185 2866 add_filename_language (".dg", language_ada);
c906108c
SS
2867 }
2868}
2869
2870enum language
dd786858 2871deduce_language_from_filename (const char *filename)
c906108c
SS
2872{
2873 int i;
2874 char *cp;
2875
2876 if (filename != NULL)
2877 if ((cp = strrchr (filename, '.')) != NULL)
2878 for (i = 0; i < fl_table_next; i++)
2879 if (strcmp (cp, filename_language_table[i].ext) == 0)
2880 return filename_language_table[i].lang;
2881
2882 return language_unknown;
2883}
2884\f
2885/* allocate_symtab:
2886
2887 Allocate and partly initialize a new symbol table. Return a pointer
2888 to it. error() if no space.
2889
2890 Caller must set these fields:
c5aa993b
JM
2891 LINETABLE(symtab)
2892 symtab->blockvector
2893 symtab->dirname
2894 symtab->free_code
2895 symtab->free_ptr
c906108c
SS
2896 */
2897
2898struct symtab *
72b9f47f 2899allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2900{
52f0bd74 2901 struct symtab *symtab;
c906108c
SS
2902
2903 symtab = (struct symtab *)
4a146b47 2904 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2905 memset (symtab, 0, sizeof (*symtab));
21ea9eec
TT
2906 symtab->filename = bcache (filename, strlen (filename) + 1,
2907 objfile->per_bfd->filename_cache);
c5aa993b
JM
2908 symtab->fullname = NULL;
2909 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2910 symtab->debugformat = "unknown";
c906108c 2911
c378eb4e 2912 /* Hook it to the objfile it comes from. */
c906108c 2913
c5aa993b
JM
2914 symtab->objfile = objfile;
2915 symtab->next = objfile->symtabs;
2916 objfile->symtabs = symtab;
c906108c 2917
db0fec5c
DE
2918 /* This can be very verbose with lots of headers.
2919 Only print at higher debug levels. */
2920 if (symtab_create_debug >= 2)
45cfd468
DE
2921 {
2922 /* Be a bit clever with debugging messages, and don't print objfile
2923 every time, only when it changes. */
2924 static char *last_objfile_name = NULL;
2925
2926 if (last_objfile_name == NULL
4262abfb 2927 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2928 {
2929 xfree (last_objfile_name);
4262abfb 2930 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2931 fprintf_unfiltered (gdb_stdlog,
2932 "Creating one or more symtabs for objfile %s ...\n",
2933 last_objfile_name);
2934 }
2935 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2936 "Created symtab %s for module %s.\n",
2937 host_address_to_string (symtab), filename);
45cfd468
DE
2938 }
2939
c906108c
SS
2940 return (symtab);
2941}
c906108c 2942\f
c5aa993b 2943
c906108c 2944/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2945 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2946
2947void
c1e56572 2948clear_symtab_users (int add_flags)
c906108c
SS
2949{
2950 /* Someday, we should do better than this, by only blowing away
2951 the things that really need to be blown. */
c0501be5
DJ
2952
2953 /* Clear the "current" symtab first, because it is no longer valid.
2954 breakpoint_re_set may try to access the current symtab. */
2955 clear_current_source_symtab_and_line ();
2956
c906108c 2957 clear_displays ();
c1e56572
JK
2958 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2959 breakpoint_re_set ();
1bfeeb0f 2960 clear_last_displayed_sal ();
c906108c 2961 clear_pc_function_cache ();
06d3b283 2962 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2963
2964 /* Clear globals which might have pointed into a removed objfile.
2965 FIXME: It's not clear which of these are supposed to persist
2966 between expressions and which ought to be reset each time. */
2967 expression_context_block = NULL;
2968 innermost_block = NULL;
8756216b
DP
2969
2970 /* Varobj may refer to old symbols, perform a cleanup. */
2971 varobj_invalidate ();
2972
c906108c
SS
2973}
2974
74b7792f
AC
2975static void
2976clear_symtab_users_cleanup (void *ignore)
2977{
c1e56572 2978 clear_symtab_users (0);
74b7792f 2979}
c906108c 2980\f
c906108c
SS
2981/* OVERLAYS:
2982 The following code implements an abstraction for debugging overlay sections.
2983
2984 The target model is as follows:
2985 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2986 same VMA, each with its own unique LMA (or load address).
c906108c 2987 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2988 sections, one by one, from the load address into the VMA address.
5417f6dc 2989 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2990 sections should be considered to be mapped from the VMA to the LMA.
2991 This information is used for symbol lookup, and memory read/write.
5417f6dc 2992 For instance, if a section has been mapped then its contents
c5aa993b 2993 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2994
2995 Two levels of debugger support for overlays are available. One is
2996 "manual", in which the debugger relies on the user to tell it which
2997 overlays are currently mapped. This level of support is
2998 implemented entirely in the core debugger, and the information about
2999 whether a section is mapped is kept in the objfile->obj_section table.
3000
3001 The second level of support is "automatic", and is only available if
3002 the target-specific code provides functionality to read the target's
3003 overlay mapping table, and translate its contents for the debugger
3004 (by updating the mapped state information in the obj_section tables).
3005
3006 The interface is as follows:
c5aa993b
JM
3007 User commands:
3008 overlay map <name> -- tell gdb to consider this section mapped
3009 overlay unmap <name> -- tell gdb to consider this section unmapped
3010 overlay list -- list the sections that GDB thinks are mapped
3011 overlay read-target -- get the target's state of what's mapped
3012 overlay off/manual/auto -- set overlay debugging state
3013 Functional interface:
3014 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3015 section, return that section.
5417f6dc 3016 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3017 the pc, either in its VMA or its LMA
714835d5 3018 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3019 section_is_overlay(sect): true if section's VMA != LMA
3020 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3021 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3022 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3023 overlay_mapped_address(...): map an address from section's LMA to VMA
3024 overlay_unmapped_address(...): map an address from section's VMA to LMA
3025 symbol_overlayed_address(...): Return a "current" address for symbol:
3026 either in VMA or LMA depending on whether
c378eb4e 3027 the symbol's section is currently mapped. */
c906108c
SS
3028
3029/* Overlay debugging state: */
3030
d874f1e2 3031enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3032int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3033
c906108c 3034/* Function: section_is_overlay (SECTION)
5417f6dc 3035 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3036 SECTION is loaded at an address different from where it will "run". */
3037
3038int
714835d5 3039section_is_overlay (struct obj_section *section)
c906108c 3040{
714835d5
UW
3041 if (overlay_debugging && section)
3042 {
3043 bfd *abfd = section->objfile->obfd;
3044 asection *bfd_section = section->the_bfd_section;
f888f159 3045
714835d5
UW
3046 if (bfd_section_lma (abfd, bfd_section) != 0
3047 && bfd_section_lma (abfd, bfd_section)
3048 != bfd_section_vma (abfd, bfd_section))
3049 return 1;
3050 }
c906108c
SS
3051
3052 return 0;
3053}
3054
3055/* Function: overlay_invalidate_all (void)
3056 Invalidate the mapped state of all overlay sections (mark it as stale). */
3057
3058static void
fba45db2 3059overlay_invalidate_all (void)
c906108c 3060{
c5aa993b 3061 struct objfile *objfile;
c906108c
SS
3062 struct obj_section *sect;
3063
3064 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3065 if (section_is_overlay (sect))
3066 sect->ovly_mapped = -1;
c906108c
SS
3067}
3068
714835d5 3069/* Function: section_is_mapped (SECTION)
5417f6dc 3070 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3071
3072 Access to the ovly_mapped flag is restricted to this function, so
3073 that we can do automatic update. If the global flag
3074 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3075 overlay_invalidate_all. If the mapped state of the particular
3076 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3077
714835d5
UW
3078int
3079section_is_mapped (struct obj_section *osect)
c906108c 3080{
9216df95
UW
3081 struct gdbarch *gdbarch;
3082
714835d5 3083 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3084 return 0;
3085
c5aa993b 3086 switch (overlay_debugging)
c906108c
SS
3087 {
3088 default:
d874f1e2 3089 case ovly_off:
c5aa993b 3090 return 0; /* overlay debugging off */
d874f1e2 3091 case ovly_auto: /* overlay debugging automatic */
1c772458 3092 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3093 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3094 gdbarch = get_objfile_arch (osect->objfile);
3095 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3096 {
3097 if (overlay_cache_invalid)
3098 {
3099 overlay_invalidate_all ();
3100 overlay_cache_invalid = 0;
3101 }
3102 if (osect->ovly_mapped == -1)
9216df95 3103 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3104 }
3105 /* fall thru to manual case */
d874f1e2 3106 case ovly_on: /* overlay debugging manual */
c906108c
SS
3107 return osect->ovly_mapped == 1;
3108 }
3109}
3110
c906108c
SS
3111/* Function: pc_in_unmapped_range
3112 If PC falls into the lma range of SECTION, return true, else false. */
3113
3114CORE_ADDR
714835d5 3115pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3116{
714835d5
UW
3117 if (section_is_overlay (section))
3118 {
3119 bfd *abfd = section->objfile->obfd;
3120 asection *bfd_section = section->the_bfd_section;
fbd35540 3121
714835d5
UW
3122 /* We assume the LMA is relocated by the same offset as the VMA. */
3123 bfd_vma size = bfd_get_section_size (bfd_section);
3124 CORE_ADDR offset = obj_section_offset (section);
3125
3126 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3127 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3128 return 1;
3129 }
c906108c 3130
c906108c
SS
3131 return 0;
3132}
3133
3134/* Function: pc_in_mapped_range
3135 If PC falls into the vma range of SECTION, return true, else false. */
3136
3137CORE_ADDR
714835d5 3138pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3139{
714835d5
UW
3140 if (section_is_overlay (section))
3141 {
3142 if (obj_section_addr (section) <= pc
3143 && pc < obj_section_endaddr (section))
3144 return 1;
3145 }
c906108c 3146
c906108c
SS
3147 return 0;
3148}
3149
9ec8e6a0
JB
3150/* Return true if the mapped ranges of sections A and B overlap, false
3151 otherwise. */
3b7bacac 3152
b9362cc7 3153static int
714835d5 3154sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3155{
714835d5
UW
3156 CORE_ADDR a_start = obj_section_addr (a);
3157 CORE_ADDR a_end = obj_section_endaddr (a);
3158 CORE_ADDR b_start = obj_section_addr (b);
3159 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3160
3161 return (a_start < b_end && b_start < a_end);
3162}
3163
c906108c
SS
3164/* Function: overlay_unmapped_address (PC, SECTION)
3165 Returns the address corresponding to PC in the unmapped (load) range.
3166 May be the same as PC. */
3167
3168CORE_ADDR
714835d5 3169overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3170{
714835d5
UW
3171 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3172 {
3173 bfd *abfd = section->objfile->obfd;
3174 asection *bfd_section = section->the_bfd_section;
fbd35540 3175
714835d5
UW
3176 return pc + bfd_section_lma (abfd, bfd_section)
3177 - bfd_section_vma (abfd, bfd_section);
3178 }
c906108c
SS
3179
3180 return pc;
3181}
3182
3183/* Function: overlay_mapped_address (PC, SECTION)
3184 Returns the address corresponding to PC in the mapped (runtime) range.
3185 May be the same as PC. */
3186
3187CORE_ADDR
714835d5 3188overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3189{
714835d5
UW
3190 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3191 {
3192 bfd *abfd = section->objfile->obfd;
3193 asection *bfd_section = section->the_bfd_section;
fbd35540 3194
714835d5
UW
3195 return pc + bfd_section_vma (abfd, bfd_section)
3196 - bfd_section_lma (abfd, bfd_section);
3197 }
c906108c
SS
3198
3199 return pc;
3200}
3201
5417f6dc 3202/* Function: symbol_overlayed_address
c906108c
SS
3203 Return one of two addresses (relative to the VMA or to the LMA),
3204 depending on whether the section is mapped or not. */
3205
c5aa993b 3206CORE_ADDR
714835d5 3207symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3208{
3209 if (overlay_debugging)
3210 {
c378eb4e 3211 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3212 if (section == 0)
3213 return address;
c378eb4e
MS
3214 /* If the symbol's section is not an overlay, just return its
3215 address. */
c906108c
SS
3216 if (!section_is_overlay (section))
3217 return address;
c378eb4e 3218 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3219 if (section_is_mapped (section))
3220 return address;
3221 /*
3222 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3223 * then return its LOADED address rather than its vma address!!
3224 */
3225 return overlay_unmapped_address (address, section);
3226 }
3227 return address;
3228}
3229
5417f6dc 3230/* Function: find_pc_overlay (PC)
c906108c
SS
3231 Return the best-match overlay section for PC:
3232 If PC matches a mapped overlay section's VMA, return that section.
3233 Else if PC matches an unmapped section's VMA, return that section.
3234 Else if PC matches an unmapped section's LMA, return that section. */
3235
714835d5 3236struct obj_section *
fba45db2 3237find_pc_overlay (CORE_ADDR pc)
c906108c 3238{
c5aa993b 3239 struct objfile *objfile;
c906108c
SS
3240 struct obj_section *osect, *best_match = NULL;
3241
3242 if (overlay_debugging)
3243 ALL_OBJSECTIONS (objfile, osect)
714835d5 3244 if (section_is_overlay (osect))
c5aa993b 3245 {
714835d5 3246 if (pc_in_mapped_range (pc, osect))
c5aa993b 3247 {
714835d5
UW
3248 if (section_is_mapped (osect))
3249 return osect;
c5aa993b
JM
3250 else
3251 best_match = osect;
3252 }
714835d5 3253 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3254 best_match = osect;
3255 }
714835d5 3256 return best_match;
c906108c
SS
3257}
3258
3259/* Function: find_pc_mapped_section (PC)
5417f6dc 3260 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3261 currently marked as MAPPED, return that section. Else return NULL. */
3262
714835d5 3263struct obj_section *
fba45db2 3264find_pc_mapped_section (CORE_ADDR pc)
c906108c 3265{
c5aa993b 3266 struct objfile *objfile;
c906108c
SS
3267 struct obj_section *osect;
3268
3269 if (overlay_debugging)
3270 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3271 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3272 return osect;
c906108c
SS
3273
3274 return NULL;
3275}
3276
3277/* Function: list_overlays_command
c378eb4e 3278 Print a list of mapped sections and their PC ranges. */
c906108c 3279
5d3055ad 3280static void
fba45db2 3281list_overlays_command (char *args, int from_tty)
c906108c 3282{
c5aa993b
JM
3283 int nmapped = 0;
3284 struct objfile *objfile;
c906108c
SS
3285 struct obj_section *osect;
3286
3287 if (overlay_debugging)
3288 ALL_OBJSECTIONS (objfile, osect)
714835d5 3289 if (section_is_mapped (osect))
c5aa993b 3290 {
5af949e3 3291 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3292 const char *name;
3293 bfd_vma lma, vma;
3294 int size;
3295
3296 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3297 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3298 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3299 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3300
3301 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3302 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3303 puts_filtered (" - ");
5af949e3 3304 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3305 printf_filtered (", mapped at ");
5af949e3 3306 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3307 puts_filtered (" - ");
5af949e3 3308 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3309 puts_filtered ("\n");
3310
3311 nmapped++;
3312 }
c906108c 3313 if (nmapped == 0)
a3f17187 3314 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3315}
3316
3317/* Function: map_overlay_command
3318 Mark the named section as mapped (ie. residing at its VMA address). */
3319
5d3055ad 3320static void
fba45db2 3321map_overlay_command (char *args, int from_tty)
c906108c 3322{
c5aa993b
JM
3323 struct objfile *objfile, *objfile2;
3324 struct obj_section *sec, *sec2;
c906108c
SS
3325
3326 if (!overlay_debugging)
3e43a32a
MS
3327 error (_("Overlay debugging not enabled. Use "
3328 "either the 'overlay auto' or\n"
3329 "the 'overlay manual' command."));
c906108c
SS
3330
3331 if (args == 0 || *args == 0)
8a3fe4f8 3332 error (_("Argument required: name of an overlay section"));
c906108c 3333
c378eb4e 3334 /* First, find a section matching the user supplied argument. */
c906108c
SS
3335 ALL_OBJSECTIONS (objfile, sec)
3336 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3337 {
c378eb4e 3338 /* Now, check to see if the section is an overlay. */
714835d5 3339 if (!section_is_overlay (sec))
c5aa993b
JM
3340 continue; /* not an overlay section */
3341
c378eb4e 3342 /* Mark the overlay as "mapped". */
c5aa993b
JM
3343 sec->ovly_mapped = 1;
3344
3345 /* Next, make a pass and unmap any sections that are
3346 overlapped by this new section: */
3347 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3348 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3349 {
3350 if (info_verbose)
a3f17187 3351 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3352 bfd_section_name (objfile->obfd,
3353 sec2->the_bfd_section));
c378eb4e 3354 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3355 }
3356 return;
3357 }
8a3fe4f8 3358 error (_("No overlay section called %s"), args);
c906108c
SS
3359}
3360
3361/* Function: unmap_overlay_command
5417f6dc 3362 Mark the overlay section as unmapped
c906108c
SS
3363 (ie. resident in its LMA address range, rather than the VMA range). */
3364
5d3055ad 3365static void
fba45db2 3366unmap_overlay_command (char *args, int from_tty)
c906108c 3367{
c5aa993b 3368 struct objfile *objfile;
c906108c
SS
3369 struct obj_section *sec;
3370
3371 if (!overlay_debugging)
3e43a32a
MS
3372 error (_("Overlay debugging not enabled. "
3373 "Use either the 'overlay auto' or\n"
3374 "the 'overlay manual' command."));
c906108c
SS
3375
3376 if (args == 0 || *args == 0)
8a3fe4f8 3377 error (_("Argument required: name of an overlay section"));
c906108c 3378
c378eb4e 3379 /* First, find a section matching the user supplied argument. */
c906108c
SS
3380 ALL_OBJSECTIONS (objfile, sec)
3381 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3382 {
3383 if (!sec->ovly_mapped)
8a3fe4f8 3384 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3385 sec->ovly_mapped = 0;
3386 return;
3387 }
8a3fe4f8 3388 error (_("No overlay section called %s"), args);
c906108c
SS
3389}
3390
3391/* Function: overlay_auto_command
3392 A utility command to turn on overlay debugging.
c378eb4e 3393 Possibly this should be done via a set/show command. */
c906108c
SS
3394
3395static void
fba45db2 3396overlay_auto_command (char *args, int from_tty)
c906108c 3397{
d874f1e2 3398 overlay_debugging = ovly_auto;
1900040c 3399 enable_overlay_breakpoints ();
c906108c 3400 if (info_verbose)
a3f17187 3401 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3402}
3403
3404/* Function: overlay_manual_command
3405 A utility command to turn on overlay debugging.
c378eb4e 3406 Possibly this should be done via a set/show command. */
c906108c
SS
3407
3408static void
fba45db2 3409overlay_manual_command (char *args, int from_tty)
c906108c 3410{
d874f1e2 3411 overlay_debugging = ovly_on;
1900040c 3412 disable_overlay_breakpoints ();
c906108c 3413 if (info_verbose)
a3f17187 3414 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3415}
3416
3417/* Function: overlay_off_command
3418 A utility command to turn on overlay debugging.
c378eb4e 3419 Possibly this should be done via a set/show command. */
c906108c
SS
3420
3421static void
fba45db2 3422overlay_off_command (char *args, int from_tty)
c906108c 3423{
d874f1e2 3424 overlay_debugging = ovly_off;
1900040c 3425 disable_overlay_breakpoints ();
c906108c 3426 if (info_verbose)
a3f17187 3427 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3428}
3429
3430static void
fba45db2 3431overlay_load_command (char *args, int from_tty)
c906108c 3432{
e17c207e
UW
3433 struct gdbarch *gdbarch = get_current_arch ();
3434
3435 if (gdbarch_overlay_update_p (gdbarch))
3436 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3437 else
8a3fe4f8 3438 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3439}
3440
3441/* Function: overlay_command
c378eb4e 3442 A place-holder for a mis-typed command. */
c906108c 3443
c378eb4e 3444/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3445static struct cmd_list_element *overlaylist;
c906108c
SS
3446
3447static void
fba45db2 3448overlay_command (char *args, int from_tty)
c906108c 3449{
c5aa993b 3450 printf_unfiltered
c906108c
SS
3451 ("\"overlay\" must be followed by the name of an overlay command.\n");
3452 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3453}
3454
c906108c
SS
3455/* Target Overlays for the "Simplest" overlay manager:
3456
5417f6dc
RM
3457 This is GDB's default target overlay layer. It works with the
3458 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3459 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3460 so targets that use a different runtime overlay manager can
c906108c
SS
3461 substitute their own overlay_update function and take over the
3462 function pointer.
3463
3464 The overlay_update function pokes around in the target's data structures
3465 to see what overlays are mapped, and updates GDB's overlay mapping with
3466 this information.
3467
3468 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3469 unsigned _novlys; /# number of overlay sections #/
3470 unsigned _ovly_table[_novlys][4] = {
3471 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3472 {..., ..., ..., ...},
3473 }
3474 unsigned _novly_regions; /# number of overlay regions #/
3475 unsigned _ovly_region_table[_novly_regions][3] = {
3476 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3477 {..., ..., ...},
3478 }
c906108c
SS
3479 These functions will attempt to update GDB's mappedness state in the
3480 symbol section table, based on the target's mappedness state.
3481
3482 To do this, we keep a cached copy of the target's _ovly_table, and
3483 attempt to detect when the cached copy is invalidated. The main
3484 entry point is "simple_overlay_update(SECT), which looks up SECT in
3485 the cached table and re-reads only the entry for that section from
c378eb4e 3486 the target (whenever possible). */
c906108c
SS
3487
3488/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3489static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3490static unsigned cache_novlys = 0;
c906108c 3491static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3492enum ovly_index
3493 {
3494 VMA, SIZE, LMA, MAPPED
3495 };
c906108c 3496
c378eb4e 3497/* Throw away the cached copy of _ovly_table. */
3b7bacac 3498
c906108c 3499static void
fba45db2 3500simple_free_overlay_table (void)
c906108c
SS
3501{
3502 if (cache_ovly_table)
b8c9b27d 3503 xfree (cache_ovly_table);
c5aa993b 3504 cache_novlys = 0;
c906108c
SS
3505 cache_ovly_table = NULL;
3506 cache_ovly_table_base = 0;
3507}
3508
9216df95 3509/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3510 Convert to host order. int LEN is number of ints. */
3b7bacac 3511
c906108c 3512static void
9216df95 3513read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3514 int len, int size, enum bfd_endian byte_order)
c906108c 3515{
c378eb4e 3516 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3517 gdb_byte *buf = alloca (len * size);
c5aa993b 3518 int i;
c906108c 3519
9216df95 3520 read_memory (memaddr, buf, len * size);
c906108c 3521 for (i = 0; i < len; i++)
e17a4113 3522 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3523}
3524
3525/* Find and grab a copy of the target _ovly_table
c378eb4e 3526 (and _novlys, which is needed for the table's size). */
3b7bacac 3527
c5aa993b 3528static int
fba45db2 3529simple_read_overlay_table (void)
c906108c 3530{
7c7b6655
TT
3531 struct minimal_symbol *novlys_msym;
3532 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3533 struct gdbarch *gdbarch;
3534 int word_size;
e17a4113 3535 enum bfd_endian byte_order;
c906108c
SS
3536
3537 simple_free_overlay_table ();
9b27852e 3538 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3539 if (! novlys_msym)
c906108c 3540 {
8a3fe4f8 3541 error (_("Error reading inferior's overlay table: "
0d43edd1 3542 "couldn't find `_novlys' variable\n"
8a3fe4f8 3543 "in inferior. Use `overlay manual' mode."));
0d43edd1 3544 return 0;
c906108c 3545 }
0d43edd1 3546
7c7b6655
TT
3547 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3548 if (! ovly_table_msym.minsym)
0d43edd1 3549 {
8a3fe4f8 3550 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3551 "`_ovly_table' array\n"
8a3fe4f8 3552 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3553 return 0;
3554 }
3555
7c7b6655 3556 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3557 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3558 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3559
e17a4113
UW
3560 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3561 4, byte_order);
0d43edd1
JB
3562 cache_ovly_table
3563 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
7c7b6655 3564 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym.minsym);
0d43edd1 3565 read_target_long_array (cache_ovly_table_base,
777ea8f1 3566 (unsigned int *) cache_ovly_table,
e17a4113 3567 cache_novlys * 4, word_size, byte_order);
0d43edd1 3568
c5aa993b 3569 return 1; /* SUCCESS */
c906108c
SS
3570}
3571
5417f6dc 3572/* Function: simple_overlay_update_1
c906108c
SS
3573 A helper function for simple_overlay_update. Assuming a cached copy
3574 of _ovly_table exists, look through it to find an entry whose vma,
3575 lma and size match those of OSECT. Re-read the entry and make sure
3576 it still matches OSECT (else the table may no longer be valid).
3577 Set OSECT's mapped state to match the entry. Return: 1 for
3578 success, 0 for failure. */
3579
3580static int
fba45db2 3581simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3582{
3583 int i, size;
fbd35540
MS
3584 bfd *obfd = osect->objfile->obfd;
3585 asection *bsect = osect->the_bfd_section;
9216df95
UW
3586 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3587 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3588 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3589
2c500098 3590 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3591 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3592 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3593 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3594 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3595 {
9216df95
UW
3596 read_target_long_array (cache_ovly_table_base + i * word_size,
3597 (unsigned int *) cache_ovly_table[i],
e17a4113 3598 4, word_size, byte_order);
fbd35540
MS
3599 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3600 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3601 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3602 {
3603 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3604 return 1;
3605 }
c378eb4e 3606 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3607 return 0;
3608 }
3609 return 0;
3610}
3611
3612/* Function: simple_overlay_update
5417f6dc
RM
3613 If OSECT is NULL, then update all sections' mapped state
3614 (after re-reading the entire target _ovly_table).
3615 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3616 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3617 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3618 re-read the entire cache, and go ahead and update all sections. */
3619
1c772458 3620void
fba45db2 3621simple_overlay_update (struct obj_section *osect)
c906108c 3622{
c5aa993b 3623 struct objfile *objfile;
c906108c 3624
c378eb4e 3625 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3626 if (osect)
c378eb4e 3627 /* Have we got a cached copy of the target's overlay table? */
c906108c 3628 if (cache_ovly_table != NULL)
9cc89665
MS
3629 {
3630 /* Does its cached location match what's currently in the
3631 symtab? */
3632 struct minimal_symbol *minsym
3633 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3634
3635 if (minsym == NULL)
3636 error (_("Error reading inferior's overlay table: couldn't "
3637 "find `_ovly_table' array\n"
3638 "in inferior. Use `overlay manual' mode."));
3639
3640 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3641 /* Then go ahead and try to look up this single section in
3642 the cache. */
3643 if (simple_overlay_update_1 (osect))
3644 /* Found it! We're done. */
3645 return;
3646 }
c906108c
SS
3647
3648 /* Cached table no good: need to read the entire table anew.
3649 Or else we want all the sections, in which case it's actually
3650 more efficient to read the whole table in one block anyway. */
3651
0d43edd1
JB
3652 if (! simple_read_overlay_table ())
3653 return;
3654
c378eb4e 3655 /* Now may as well update all sections, even if only one was requested. */
c906108c 3656 ALL_OBJSECTIONS (objfile, osect)
714835d5 3657 if (section_is_overlay (osect))
c5aa993b
JM
3658 {
3659 int i, size;
fbd35540
MS
3660 bfd *obfd = osect->objfile->obfd;
3661 asection *bsect = osect->the_bfd_section;
c5aa993b 3662
2c500098 3663 size = bfd_get_section_size (bsect);
c5aa993b 3664 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3665 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3666 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3667 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3668 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3669 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3670 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3671 }
3672 }
c906108c
SS
3673}
3674
086df311
DJ
3675/* Set the output sections and output offsets for section SECTP in
3676 ABFD. The relocation code in BFD will read these offsets, so we
3677 need to be sure they're initialized. We map each section to itself,
3678 with no offset; this means that SECTP->vma will be honored. */
3679
3680static void
3681symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3682{
3683 sectp->output_section = sectp;
3684 sectp->output_offset = 0;
3685}
3686
ac8035ab
TG
3687/* Default implementation for sym_relocate. */
3688
ac8035ab
TG
3689bfd_byte *
3690default_symfile_relocate (struct objfile *objfile, asection *sectp,
3691 bfd_byte *buf)
3692{
3019eac3
DE
3693 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3694 DWO file. */
3695 bfd *abfd = sectp->owner;
ac8035ab
TG
3696
3697 /* We're only interested in sections with relocation
3698 information. */
3699 if ((sectp->flags & SEC_RELOC) == 0)
3700 return NULL;
3701
3702 /* We will handle section offsets properly elsewhere, so relocate as if
3703 all sections begin at 0. */
3704 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3705
3706 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3707}
3708
086df311
DJ
3709/* Relocate the contents of a debug section SECTP in ABFD. The
3710 contents are stored in BUF if it is non-NULL, or returned in a
3711 malloc'd buffer otherwise.
3712
3713 For some platforms and debug info formats, shared libraries contain
3714 relocations against the debug sections (particularly for DWARF-2;
3715 one affected platform is PowerPC GNU/Linux, although it depends on
3716 the version of the linker in use). Also, ELF object files naturally
3717 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3718 the relocations in order to get the locations of symbols correct.
3719 Another example that may require relocation processing, is the
3720 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3721 debug section. */
086df311
DJ
3722
3723bfd_byte *
ac8035ab
TG
3724symfile_relocate_debug_section (struct objfile *objfile,
3725 asection *sectp, bfd_byte *buf)
086df311 3726{
ac8035ab 3727 gdb_assert (objfile->sf->sym_relocate);
086df311 3728
ac8035ab 3729 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3730}
c906108c 3731
31d99776
DJ
3732struct symfile_segment_data *
3733get_symfile_segment_data (bfd *abfd)
3734{
00b5771c 3735 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3736
3737 if (sf == NULL)
3738 return NULL;
3739
3740 return sf->sym_segments (abfd);
3741}
3742
3743void
3744free_symfile_segment_data (struct symfile_segment_data *data)
3745{
3746 xfree (data->segment_bases);
3747 xfree (data->segment_sizes);
3748 xfree (data->segment_info);
3749 xfree (data);
3750}
3751
28c32713
JB
3752/* Given:
3753 - DATA, containing segment addresses from the object file ABFD, and
3754 the mapping from ABFD's sections onto the segments that own them,
3755 and
3756 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3757 segment addresses reported by the target,
3758 store the appropriate offsets for each section in OFFSETS.
3759
3760 If there are fewer entries in SEGMENT_BASES than there are segments
3761 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3762
8d385431
DJ
3763 If there are more entries, then ignore the extra. The target may
3764 not be able to distinguish between an empty data segment and a
3765 missing data segment; a missing text segment is less plausible. */
3b7bacac 3766
31d99776 3767int
3189cb12
DE
3768symfile_map_offsets_to_segments (bfd *abfd,
3769 const struct symfile_segment_data *data,
31d99776
DJ
3770 struct section_offsets *offsets,
3771 int num_segment_bases,
3772 const CORE_ADDR *segment_bases)
3773{
3774 int i;
3775 asection *sect;
3776
28c32713
JB
3777 /* It doesn't make sense to call this function unless you have some
3778 segment base addresses. */
202b96c1 3779 gdb_assert (num_segment_bases > 0);
28c32713 3780
31d99776
DJ
3781 /* If we do not have segment mappings for the object file, we
3782 can not relocate it by segments. */
3783 gdb_assert (data != NULL);
3784 gdb_assert (data->num_segments > 0);
3785
31d99776
DJ
3786 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3787 {
31d99776
DJ
3788 int which = data->segment_info[i];
3789
28c32713
JB
3790 gdb_assert (0 <= which && which <= data->num_segments);
3791
3792 /* Don't bother computing offsets for sections that aren't
3793 loaded as part of any segment. */
3794 if (! which)
3795 continue;
3796
3797 /* Use the last SEGMENT_BASES entry as the address of any extra
3798 segments mentioned in DATA->segment_info. */
31d99776 3799 if (which > num_segment_bases)
28c32713 3800 which = num_segment_bases;
31d99776 3801
28c32713
JB
3802 offsets->offsets[i] = (segment_bases[which - 1]
3803 - data->segment_bases[which - 1]);
31d99776
DJ
3804 }
3805
3806 return 1;
3807}
3808
3809static void
3810symfile_find_segment_sections (struct objfile *objfile)
3811{
3812 bfd *abfd = objfile->obfd;
3813 int i;
3814 asection *sect;
3815 struct symfile_segment_data *data;
3816
3817 data = get_symfile_segment_data (objfile->obfd);
3818 if (data == NULL)
3819 return;
3820
3821 if (data->num_segments != 1 && data->num_segments != 2)
3822 {
3823 free_symfile_segment_data (data);
3824 return;
3825 }
3826
3827 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3828 {
31d99776
DJ
3829 int which = data->segment_info[i];
3830
3831 if (which == 1)
3832 {
3833 if (objfile->sect_index_text == -1)
3834 objfile->sect_index_text = sect->index;
3835
3836 if (objfile->sect_index_rodata == -1)
3837 objfile->sect_index_rodata = sect->index;
3838 }
3839 else if (which == 2)
3840 {
3841 if (objfile->sect_index_data == -1)
3842 objfile->sect_index_data = sect->index;
3843
3844 if (objfile->sect_index_bss == -1)
3845 objfile->sect_index_bss = sect->index;
3846 }
3847 }
3848
3849 free_symfile_segment_data (data);
3850}
3851
76ad5e1e
NB
3852/* Listen for free_objfile events. */
3853
3854static void
3855symfile_free_objfile (struct objfile *objfile)
3856{
3857 /* Remove the target sections of user-added objfiles. */
3858 if (objfile != 0 && objfile->flags & OBJF_USERLOADED)
3859 remove_target_sections ((void *) objfile);
3860}
3861
540c2971
DE
3862/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3863 Expand all symtabs that match the specified criteria.
3864 See quick_symbol_functions.expand_symtabs_matching for details. */
3865
3866void
bb4142cf
DE
3867expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3868 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3869 enum search_domain kind,
3870 void *data)
540c2971
DE
3871{
3872 struct objfile *objfile;
3873
3874 ALL_OBJFILES (objfile)
3875 {
3876 if (objfile->sf)
bb4142cf
DE
3877 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3878 symbol_matcher, kind,
3879 data);
540c2971
DE
3880 }
3881}
3882
3883/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3884 Map function FUN over every file.
3885 See quick_symbol_functions.map_symbol_filenames for details. */
3886
3887void
bb4142cf
DE
3888map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3889 int need_fullname)
540c2971
DE
3890{
3891 struct objfile *objfile;
3892
3893 ALL_OBJFILES (objfile)
3894 {
3895 if (objfile->sf)
3896 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3897 need_fullname);
3898 }
3899}
3900
c906108c 3901void
fba45db2 3902_initialize_symfile (void)
c906108c
SS
3903{
3904 struct cmd_list_element *c;
c5aa993b 3905
76ad5e1e
NB
3906 observer_attach_free_objfile (symfile_free_objfile);
3907
1a966eab
AC
3908 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3909Load symbol table from executable file FILE.\n\
c906108c 3910The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3911to execute."), &cmdlist);
5ba2abeb 3912 set_cmd_completer (c, filename_completer);
c906108c 3913
1a966eab 3914 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3915Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3916Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3917 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3918The optional arguments are section-name section-address pairs and\n\
3919should be specified if the data and bss segments are not contiguous\n\
1a966eab 3920with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3921 &cmdlist);
5ba2abeb 3922 set_cmd_completer (c, filename_completer);
c906108c 3923
63644780
NB
3924 c = add_cmd ("remove-symbol-file", class_files,
3925 remove_symbol_file_command, _("\
3926Remove a symbol file added via the add-symbol-file command.\n\
3927Usage: remove-symbol-file FILENAME\n\
3928 remove-symbol-file -a ADDRESS\n\
3929The file to remove can be identified by its filename or by an address\n\
3930that lies within the boundaries of this symbol file in memory."),
3931 &cmdlist);
3932
1a966eab
AC
3933 c = add_cmd ("load", class_files, load_command, _("\
3934Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3935for access from GDB.\n\
3936A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3937 set_cmd_completer (c, filename_completer);
c906108c 3938
c5aa993b 3939 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3940 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3941 "overlay ", 0, &cmdlist);
3942
3943 add_com_alias ("ovly", "overlay", class_alias, 1);
3944 add_com_alias ("ov", "overlay", class_alias, 1);
3945
c5aa993b 3946 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3947 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3948
c5aa993b 3949 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3950 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3951
c5aa993b 3952 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3953 _("List mappings of overlay sections."), &overlaylist);
c906108c 3954
c5aa993b 3955 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3956 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3957 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3958 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3959 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3960 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3961 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3962 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3963
3964 /* Filename extension to source language lookup table: */
3965 init_filename_language_table ();
26c41df3
AC
3966 add_setshow_string_noescape_cmd ("extension-language", class_files,
3967 &ext_args, _("\
3968Set mapping between filename extension and source language."), _("\
3969Show mapping between filename extension and source language."), _("\
3970Usage: set extension-language .foo bar"),
3971 set_ext_lang_command,
920d2a44 3972 show_ext_args,
26c41df3 3973 &setlist, &showlist);
c906108c 3974
c5aa993b 3975 add_info ("extensions", info_ext_lang_command,
1bedd215 3976 _("All filename extensions associated with a source language."));
917317f4 3977
525226b5
AC
3978 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3979 &debug_file_directory, _("\
24ddea62
JK
3980Set the directories where separate debug symbols are searched for."), _("\
3981Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3982Separate debug symbols are first searched for in the same\n\
3983directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3984and lastly at the path of the directory of the binary with\n\
24ddea62 3985each global debug-file-directory component prepended."),
525226b5 3986 NULL,
920d2a44 3987 show_debug_file_directory,
525226b5 3988 &setlist, &showlist);
c906108c 3989}