]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/symfile.c
run copyright.sh for 2011.
[thirdparty/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
7b6bb8da 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
9a4105ab
AC
70int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c906108c 81/* Global variables owned by this file */
c5aa993b 82int readnow_symbol_files; /* Read full symbols immediately */
c906108c 83
c906108c
SS
84/* External variables and functions referenced. */
85
a14ed312 86extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
87
88/* Functions this file defines */
89
a14ed312 90static void load_command (char *, int);
c906108c 91
d7db6da9
FN
92static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
93
a14ed312 94static void add_symbol_file_command (char *, int);
c906108c 95
a14ed312 96bfd *symfile_bfd_open (char *);
c906108c 97
0e931cf0
JB
98int get_section_index (struct objfile *, char *);
99
00b5771c 100static const struct sym_fns *find_sym_fns (bfd *);
c906108c 101
a14ed312 102static void decrement_reading_symtab (void *);
c906108c 103
a14ed312 104static void overlay_invalidate_all (void);
c906108c 105
a14ed312 106void list_overlays_command (char *, int);
c906108c 107
a14ed312 108void map_overlay_command (char *, int);
c906108c 109
a14ed312 110void unmap_overlay_command (char *, int);
c906108c 111
a14ed312 112static void overlay_auto_command (char *, int);
c906108c 113
a14ed312 114static void overlay_manual_command (char *, int);
c906108c 115
a14ed312 116static void overlay_off_command (char *, int);
c906108c 117
a14ed312 118static void overlay_load_command (char *, int);
c906108c 119
a14ed312 120static void overlay_command (char *, int);
c906108c 121
a14ed312 122static void simple_free_overlay_table (void);
c906108c 123
e17a4113
UW
124static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
125 enum bfd_endian);
c906108c 126
a14ed312 127static int simple_read_overlay_table (void);
c906108c 128
a14ed312 129static int simple_overlay_update_1 (struct obj_section *);
c906108c 130
a14ed312 131static void add_filename_language (char *ext, enum language lang);
392a587b 132
a14ed312 133static void info_ext_lang_command (char *args, int from_tty);
392a587b 134
a14ed312 135static void init_filename_language_table (void);
392a587b 136
31d99776
DJ
137static void symfile_find_segment_sections (struct objfile *objfile);
138
a14ed312 139void _initialize_symfile (void);
c906108c
SS
140
141/* List of all available sym_fns. On gdb startup, each object file reader
142 calls add_symtab_fns() to register information on each format it is
143 prepared to read. */
144
00b5771c
TT
145typedef const struct sym_fns *sym_fns_ptr;
146DEF_VEC_P (sym_fns_ptr);
147
148static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c
SS
149
150/* Flag for whether user will be reloading symbols multiple times.
151 Defaults to ON for VxWorks, otherwise OFF. */
152
153#ifdef SYMBOL_RELOADING_DEFAULT
154int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
155#else
156int symbol_reloading = 0;
157#endif
920d2a44
AC
158static void
159show_symbol_reloading (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161{
162 fprintf_filtered (file, _("\
163Dynamic symbol table reloading multiple times in one run is %s.\n"),
164 value);
165}
166
b7209cb4
FF
167/* If non-zero, shared library symbols will be added automatically
168 when the inferior is created, new libraries are loaded, or when
169 attaching to the inferior. This is almost always what users will
170 want to have happen; but for very large programs, the startup time
171 will be excessive, and so if this is a problem, the user can clear
172 this flag and then add the shared library symbols as needed. Note
173 that there is a potential for confusion, since if the shared
c906108c 174 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 175 report all the functions that are actually present. */
c906108c
SS
176
177int auto_solib_add = 1;
b7209cb4
FF
178
179/* For systems that support it, a threshold size in megabytes. If
180 automatically adding a new library's symbol table to those already
181 known to the debugger would cause the total shared library symbol
182 size to exceed this threshhold, then the shlib's symbols are not
183 added. The threshold is ignored if the user explicitly asks for a
184 shlib to be added, such as when using the "sharedlibrary"
0d14a781 185 command. */
b7209cb4
FF
186
187int auto_solib_limit;
c906108c 188\f
c5aa993b 189
c906108c
SS
190/* Make a null terminated copy of the string at PTR with SIZE characters in
191 the obstack pointed to by OBSTACKP . Returns the address of the copy.
192 Note that the string at PTR does not have to be null terminated, I.E. it
0d14a781 193 may be part of a larger string and we are only saving a substring. */
c906108c
SS
194
195char *
63ca651f 196obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 197{
52f0bd74 198 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
199 /* Open-coded memcpy--saves function call time. These strings are usually
200 short. FIXME: Is this really still true with a compiler that can
201 inline memcpy? */
202 {
aa1ee363
AC
203 const char *p1 = ptr;
204 char *p2 = p;
63ca651f 205 const char *end = ptr + size;
433759f7 206
c906108c
SS
207 while (p1 != end)
208 *p2++ = *p1++;
209 }
210 p[size] = 0;
211 return p;
212}
213
48cb83fd
JK
214/* Concatenate NULL terminated variable argument list of `const char *' strings;
215 return the new string. Space is found in the OBSTACKP. Argument list must
216 be terminated by a sentinel expression `(char *) NULL'. */
c906108c
SS
217
218char *
48cb83fd 219obconcat (struct obstack *obstackp, ...)
c906108c 220{
48cb83fd
JK
221 va_list ap;
222
223 va_start (ap, obstackp);
224 for (;;)
225 {
226 const char *s = va_arg (ap, const char *);
227
228 if (s == NULL)
229 break;
230
231 obstack_grow_str (obstackp, s);
232 }
233 va_end (ap);
234 obstack_1grow (obstackp, 0);
235
236 return obstack_finish (obstackp);
c906108c
SS
237}
238
0d14a781 239/* True if we are reading a symbol table. */
c906108c
SS
240
241int currently_reading_symtab = 0;
242
243static void
fba45db2 244decrement_reading_symtab (void *dummy)
c906108c
SS
245{
246 currently_reading_symtab--;
247}
248
ccefe4c4
TT
249/* Increment currently_reading_symtab and return a cleanup that can be
250 used to decrement it. */
251struct cleanup *
252increment_reading_symtab (void)
c906108c 253{
ccefe4c4
TT
254 ++currently_reading_symtab;
255 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
256}
257
5417f6dc
RM
258/* Remember the lowest-addressed loadable section we've seen.
259 This function is called via bfd_map_over_sections.
c906108c
SS
260
261 In case of equal vmas, the section with the largest size becomes the
262 lowest-addressed loadable section.
263
264 If the vmas and sizes are equal, the last section is considered the
265 lowest-addressed loadable section. */
266
267void
4efb68b1 268find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 269{
c5aa993b 270 asection **lowest = (asection **) obj;
c906108c 271
eb73e134 272 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
273 return;
274 if (!*lowest)
275 *lowest = sect; /* First loadable section */
276 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
277 *lowest = sect; /* A lower loadable section */
278 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
279 && (bfd_section_size (abfd, (*lowest))
280 <= bfd_section_size (abfd, sect)))
281 *lowest = sect;
282}
283
a39a16c4
MM
284/* Create a new section_addr_info, with room for NUM_SECTIONS. */
285
286struct section_addr_info *
287alloc_section_addr_info (size_t num_sections)
288{
289 struct section_addr_info *sap;
290 size_t size;
291
292 size = (sizeof (struct section_addr_info)
293 + sizeof (struct other_sections) * (num_sections - 1));
294 sap = (struct section_addr_info *) xmalloc (size);
295 memset (sap, 0, size);
296 sap->num_sections = num_sections;
297
298 return sap;
299}
62557bbc
KB
300
301/* Build (allocate and populate) a section_addr_info struct from
302 an existing section table. */
303
304extern struct section_addr_info *
0542c86d
PA
305build_section_addr_info_from_section_table (const struct target_section *start,
306 const struct target_section *end)
62557bbc
KB
307{
308 struct section_addr_info *sap;
0542c86d 309 const struct target_section *stp;
62557bbc
KB
310 int oidx;
311
a39a16c4 312 sap = alloc_section_addr_info (end - start);
62557bbc
KB
313
314 for (stp = start, oidx = 0; stp != end; stp++)
315 {
5417f6dc 316 if (bfd_get_section_flags (stp->bfd,
fbd35540 317 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 318 && oidx < end - start)
62557bbc
KB
319 {
320 sap->other[oidx].addr = stp->addr;
5417f6dc 321 sap->other[oidx].name
fbd35540 322 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
323 sap->other[oidx].sectindex = stp->the_bfd_section->index;
324 oidx++;
325 }
326 }
327
328 return sap;
329}
330
82ccf5a5 331/* Create a section_addr_info from section offsets in ABFD. */
089b4803 332
82ccf5a5
JK
333static struct section_addr_info *
334build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
335{
336 struct section_addr_info *sap;
337 int i;
338 struct bfd_section *sec;
339
82ccf5a5
JK
340 sap = alloc_section_addr_info (bfd_count_sections (abfd));
341 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
342 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 343 {
82ccf5a5
JK
344 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
345 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
346 sap->other[i].sectindex = sec->index;
347 i++;
348 }
089b4803
TG
349 return sap;
350}
351
82ccf5a5
JK
352/* Create a section_addr_info from section offsets in OBJFILE. */
353
354struct section_addr_info *
355build_section_addr_info_from_objfile (const struct objfile *objfile)
356{
357 struct section_addr_info *sap;
358 int i;
359
360 /* Before reread_symbols gets rewritten it is not safe to call:
361 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
362 */
363 sap = build_section_addr_info_from_bfd (objfile->obfd);
364 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
365 {
366 int sectindex = sap->other[i].sectindex;
367
368 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
369 }
370 return sap;
371}
62557bbc
KB
372
373/* Free all memory allocated by build_section_addr_info_from_section_table. */
374
375extern void
376free_section_addr_info (struct section_addr_info *sap)
377{
378 int idx;
379
a39a16c4 380 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 381 if (sap->other[idx].name)
b8c9b27d
KB
382 xfree (sap->other[idx].name);
383 xfree (sap);
62557bbc
KB
384}
385
386
e8289572
JB
387/* Initialize OBJFILE's sect_index_* members. */
388static void
389init_objfile_sect_indices (struct objfile *objfile)
c906108c 390{
e8289572 391 asection *sect;
c906108c 392 int i;
5417f6dc 393
b8fbeb18 394 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 395 if (sect)
b8fbeb18
EZ
396 objfile->sect_index_text = sect->index;
397
398 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 399 if (sect)
b8fbeb18
EZ
400 objfile->sect_index_data = sect->index;
401
402 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 403 if (sect)
b8fbeb18
EZ
404 objfile->sect_index_bss = sect->index;
405
406 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 407 if (sect)
b8fbeb18
EZ
408 objfile->sect_index_rodata = sect->index;
409
bbcd32ad
FF
410 /* This is where things get really weird... We MUST have valid
411 indices for the various sect_index_* members or gdb will abort.
412 So if for example, there is no ".text" section, we have to
31d99776
DJ
413 accomodate that. First, check for a file with the standard
414 one or two segments. */
415
416 symfile_find_segment_sections (objfile);
417
418 /* Except when explicitly adding symbol files at some address,
419 section_offsets contains nothing but zeros, so it doesn't matter
420 which slot in section_offsets the individual sect_index_* members
421 index into. So if they are all zero, it is safe to just point
422 all the currently uninitialized indices to the first slot. But
423 beware: if this is the main executable, it may be relocated
424 later, e.g. by the remote qOffsets packet, and then this will
425 be wrong! That's why we try segments first. */
bbcd32ad
FF
426
427 for (i = 0; i < objfile->num_sections; i++)
428 {
429 if (ANOFFSET (objfile->section_offsets, i) != 0)
430 {
431 break;
432 }
433 }
434 if (i == objfile->num_sections)
435 {
436 if (objfile->sect_index_text == -1)
437 objfile->sect_index_text = 0;
438 if (objfile->sect_index_data == -1)
439 objfile->sect_index_data = 0;
440 if (objfile->sect_index_bss == -1)
441 objfile->sect_index_bss = 0;
442 if (objfile->sect_index_rodata == -1)
443 objfile->sect_index_rodata = 0;
444 }
b8fbeb18 445}
c906108c 446
c1bd25fd
DJ
447/* The arguments to place_section. */
448
449struct place_section_arg
450{
451 struct section_offsets *offsets;
452 CORE_ADDR lowest;
453};
454
455/* Find a unique offset to use for loadable section SECT if
456 the user did not provide an offset. */
457
2c0b251b 458static void
c1bd25fd
DJ
459place_section (bfd *abfd, asection *sect, void *obj)
460{
461 struct place_section_arg *arg = obj;
462 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
463 int done;
3bd72c6f 464 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 465
2711e456
DJ
466 /* We are only interested in allocated sections. */
467 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
468 return;
469
470 /* If the user specified an offset, honor it. */
471 if (offsets[sect->index] != 0)
472 return;
473
474 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
475 start_addr = (arg->lowest + align - 1) & -align;
476
c1bd25fd
DJ
477 do {
478 asection *cur_sec;
c1bd25fd 479
c1bd25fd
DJ
480 done = 1;
481
482 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
483 {
484 int indx = cur_sec->index;
c1bd25fd
DJ
485
486 /* We don't need to compare against ourself. */
487 if (cur_sec == sect)
488 continue;
489
2711e456
DJ
490 /* We can only conflict with allocated sections. */
491 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
492 continue;
493
494 /* If the section offset is 0, either the section has not been placed
495 yet, or it was the lowest section placed (in which case LOWEST
496 will be past its end). */
497 if (offsets[indx] == 0)
498 continue;
499
500 /* If this section would overlap us, then we must move up. */
501 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
502 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
503 {
504 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
505 start_addr = (start_addr + align - 1) & -align;
506 done = 0;
3bd72c6f 507 break;
c1bd25fd
DJ
508 }
509
510 /* Otherwise, we appear to be OK. So far. */
511 }
512 }
513 while (!done);
514
515 offsets[sect->index] = start_addr;
516 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 517}
e8289572 518
75242ef4
JK
519/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
520 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
521 entries. */
e8289572
JB
522
523void
75242ef4
JK
524relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
525 int num_sections,
526 struct section_addr_info *addrs)
e8289572
JB
527{
528 int i;
529
75242ef4 530 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 531
75242ef4 532 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 533 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 534 {
75242ef4 535 struct other_sections *osp;
e8289572 536
75242ef4 537 osp = &addrs->other[i];
e8289572
JB
538 if (osp->addr == 0)
539 continue;
540
541 /* Record all sections in offsets */
542 /* The section_offsets in the objfile are here filled in using
543 the BFD index. */
75242ef4
JK
544 section_offsets->offsets[osp->sectindex] = osp->addr;
545 }
546}
547
1276c759
JK
548/* Transform section name S for a name comparison. prelink can split section
549 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
550 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
551 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
552 (`.sbss') section has invalid (increased) virtual address. */
553
554static const char *
555addr_section_name (const char *s)
556{
557 if (strcmp (s, ".dynbss") == 0)
558 return ".bss";
559 if (strcmp (s, ".sdynbss") == 0)
560 return ".sbss";
561
562 return s;
563}
564
82ccf5a5
JK
565/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
566 their (name, sectindex) pair. sectindex makes the sort by name stable. */
567
568static int
569addrs_section_compar (const void *ap, const void *bp)
570{
571 const struct other_sections *a = *((struct other_sections **) ap);
572 const struct other_sections *b = *((struct other_sections **) bp);
573 int retval, a_idx, b_idx;
574
1276c759 575 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
576 if (retval)
577 return retval;
578
579 /* SECTINDEX is undefined iff ADDR is zero. */
580 a_idx = a->addr == 0 ? 0 : a->sectindex;
581 b_idx = b->addr == 0 ? 0 : b->sectindex;
582 return a_idx - b_idx;
583}
584
585/* Provide sorted array of pointers to sections of ADDRS. The array is
586 terminated by NULL. Caller is responsible to call xfree for it. */
587
588static struct other_sections **
589addrs_section_sort (struct section_addr_info *addrs)
590{
591 struct other_sections **array;
592 int i;
593
594 /* `+ 1' for the NULL terminator. */
595 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
596 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
597 array[i] = &addrs->other[i];
598 array[i] = NULL;
599
600 qsort (array, i, sizeof (*array), addrs_section_compar);
601
602 return array;
603}
604
75242ef4 605/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
606 also SECTINDEXes specific to ABFD there. This function can be used to
607 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
608
609void
610addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
611{
612 asection *lower_sect;
75242ef4
JK
613 CORE_ADDR lower_offset;
614 int i;
82ccf5a5
JK
615 struct cleanup *my_cleanup;
616 struct section_addr_info *abfd_addrs;
617 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
618 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
619
620 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
621 continguous sections. */
622 lower_sect = NULL;
623 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
624 if (lower_sect == NULL)
625 {
626 warning (_("no loadable sections found in added symbol-file %s"),
627 bfd_get_filename (abfd));
628 lower_offset = 0;
e8289572 629 }
75242ef4
JK
630 else
631 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
632
82ccf5a5
JK
633 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
634 in ABFD. Section names are not unique - there can be multiple sections of
635 the same name. Also the sections of the same name do not have to be
636 adjacent to each other. Some sections may be present only in one of the
637 files. Even sections present in both files do not have to be in the same
638 order.
639
640 Use stable sort by name for the sections in both files. Then linearly
641 scan both lists matching as most of the entries as possible. */
642
643 addrs_sorted = addrs_section_sort (addrs);
644 my_cleanup = make_cleanup (xfree, addrs_sorted);
645
646 abfd_addrs = build_section_addr_info_from_bfd (abfd);
647 make_cleanup_free_section_addr_info (abfd_addrs);
648 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
649 make_cleanup (xfree, abfd_addrs_sorted);
650
651 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
652
653 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
654 * addrs->num_sections);
655 make_cleanup (xfree, addrs_to_abfd_addrs);
656
657 while (*addrs_sorted)
658 {
1276c759 659 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
660
661 while (*abfd_addrs_sorted
1276c759
JK
662 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
663 sect_name) < 0)
82ccf5a5
JK
664 abfd_addrs_sorted++;
665
666 if (*abfd_addrs_sorted
1276c759
JK
667 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
668 sect_name) == 0)
82ccf5a5
JK
669 {
670 int index_in_addrs;
671
672 /* Make the found item directly addressable from ADDRS. */
673 index_in_addrs = *addrs_sorted - addrs->other;
674 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
675 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
676
677 /* Never use the same ABFD entry twice. */
678 abfd_addrs_sorted++;
679 }
680
681 addrs_sorted++;
682 }
683
75242ef4
JK
684 /* Calculate offsets for the loadable sections.
685 FIXME! Sections must be in order of increasing loadable section
686 so that contiguous sections can use the lower-offset!!!
687
688 Adjust offsets if the segments are not contiguous.
689 If the section is contiguous, its offset should be set to
690 the offset of the highest loadable section lower than it
691 (the loadable section directly below it in memory).
692 this_offset = lower_offset = lower_addr - lower_orig_addr */
693
694 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
695 {
82ccf5a5 696 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
697
698 if (sect)
75242ef4 699 {
672d9c23 700 /* This is the index used by BFD. */
82ccf5a5 701 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
702
703 if (addrs->other[i].addr != 0)
75242ef4 704 {
82ccf5a5 705 addrs->other[i].addr -= sect->addr;
75242ef4 706 lower_offset = addrs->other[i].addr;
75242ef4
JK
707 }
708 else
672d9c23 709 addrs->other[i].addr = lower_offset;
75242ef4
JK
710 }
711 else
672d9c23 712 {
1276c759
JK
713 /* addr_section_name transformation is not used for SECT_NAME. */
714 const char *sect_name = addrs->other[i].name;
715
b0fcb67f
JK
716 /* This section does not exist in ABFD, which is normally
717 unexpected and we want to issue a warning.
718
4d9743af
JK
719 However, the ELF prelinker does create a few sections which are
720 marked in the main executable as loadable (they are loaded in
721 memory from the DYNAMIC segment) and yet are not present in
722 separate debug info files. This is fine, and should not cause
723 a warning. Shared libraries contain just the section
724 ".gnu.liblist" but it is not marked as loadable there. There is
725 no other way to identify them than by their name as the sections
1276c759
JK
726 created by prelink have no special flags.
727
728 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
729
730 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 731 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
732 || (strcmp (sect_name, ".bss") == 0
733 && i > 0
734 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
735 && addrs_to_abfd_addrs[i - 1] != NULL)
736 || (strcmp (sect_name, ".sbss") == 0
737 && i > 0
738 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
739 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
740 warning (_("section %s not found in %s"), sect_name,
741 bfd_get_filename (abfd));
742
672d9c23
JK
743 addrs->other[i].addr = 0;
744
745 /* SECTINDEX is invalid if ADDR is zero. */
746 }
75242ef4 747 }
82ccf5a5
JK
748
749 do_cleanups (my_cleanup);
75242ef4
JK
750}
751
752/* Parse the user's idea of an offset for dynamic linking, into our idea
753 of how to represent it for fast symbol reading. This is the default
754 version of the sym_fns.sym_offsets function for symbol readers that
755 don't need to do anything special. It allocates a section_offsets table
756 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
757
758void
759default_symfile_offsets (struct objfile *objfile,
760 struct section_addr_info *addrs)
761{
762 objfile->num_sections = bfd_count_sections (objfile->obfd);
763 objfile->section_offsets = (struct section_offsets *)
764 obstack_alloc (&objfile->objfile_obstack,
765 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
766 relative_addr_info_to_section_offsets (objfile->section_offsets,
767 objfile->num_sections, addrs);
e8289572 768
c1bd25fd
DJ
769 /* For relocatable files, all loadable sections will start at zero.
770 The zero is meaningless, so try to pick arbitrary addresses such
771 that no loadable sections overlap. This algorithm is quadratic,
772 but the number of sections in a single object file is generally
773 small. */
774 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
775 {
776 struct place_section_arg arg;
2711e456
DJ
777 bfd *abfd = objfile->obfd;
778 asection *cur_sec;
2711e456
DJ
779
780 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
781 /* We do not expect this to happen; just skip this step if the
782 relocatable file has a section with an assigned VMA. */
783 if (bfd_section_vma (abfd, cur_sec) != 0)
784 break;
785
786 if (cur_sec == NULL)
787 {
788 CORE_ADDR *offsets = objfile->section_offsets->offsets;
789
790 /* Pick non-overlapping offsets for sections the user did not
791 place explicitly. */
792 arg.offsets = objfile->section_offsets;
793 arg.lowest = 0;
794 bfd_map_over_sections (objfile->obfd, place_section, &arg);
795
796 /* Correctly filling in the section offsets is not quite
797 enough. Relocatable files have two properties that
798 (most) shared objects do not:
799
800 - Their debug information will contain relocations. Some
801 shared libraries do also, but many do not, so this can not
802 be assumed.
803
804 - If there are multiple code sections they will be loaded
805 at different relative addresses in memory than they are
806 in the objfile, since all sections in the file will start
807 at address zero.
808
809 Because GDB has very limited ability to map from an
810 address in debug info to the correct code section,
811 it relies on adding SECT_OFF_TEXT to things which might be
812 code. If we clear all the section offsets, and set the
813 section VMAs instead, then symfile_relocate_debug_section
814 will return meaningful debug information pointing at the
815 correct sections.
816
817 GDB has too many different data structures for section
818 addresses - a bfd, objfile, and so_list all have section
819 tables, as does exec_ops. Some of these could probably
820 be eliminated. */
821
822 for (cur_sec = abfd->sections; cur_sec != NULL;
823 cur_sec = cur_sec->next)
824 {
825 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
826 continue;
827
828 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
829 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
830 offsets[cur_sec->index]);
2711e456
DJ
831 offsets[cur_sec->index] = 0;
832 }
833 }
c1bd25fd
DJ
834 }
835
e8289572
JB
836 /* Remember the bfd indexes for the .text, .data, .bss and
837 .rodata sections. */
838 init_objfile_sect_indices (objfile);
839}
840
841
31d99776
DJ
842/* Divide the file into segments, which are individual relocatable units.
843 This is the default version of the sym_fns.sym_segments function for
844 symbol readers that do not have an explicit representation of segments.
845 It assumes that object files do not have segments, and fully linked
846 files have a single segment. */
847
848struct symfile_segment_data *
849default_symfile_segments (bfd *abfd)
850{
851 int num_sections, i;
852 asection *sect;
853 struct symfile_segment_data *data;
854 CORE_ADDR low, high;
855
856 /* Relocatable files contain enough information to position each
857 loadable section independently; they should not be relocated
858 in segments. */
859 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
860 return NULL;
861
862 /* Make sure there is at least one loadable section in the file. */
863 for (sect = abfd->sections; sect != NULL; sect = sect->next)
864 {
865 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
866 continue;
867
868 break;
869 }
870 if (sect == NULL)
871 return NULL;
872
873 low = bfd_get_section_vma (abfd, sect);
874 high = low + bfd_get_section_size (sect);
875
876 data = XZALLOC (struct symfile_segment_data);
877 data->num_segments = 1;
878 data->segment_bases = XCALLOC (1, CORE_ADDR);
879 data->segment_sizes = XCALLOC (1, CORE_ADDR);
880
881 num_sections = bfd_count_sections (abfd);
882 data->segment_info = XCALLOC (num_sections, int);
883
884 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
885 {
886 CORE_ADDR vma;
887
888 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
889 continue;
890
891 vma = bfd_get_section_vma (abfd, sect);
892 if (vma < low)
893 low = vma;
894 if (vma + bfd_get_section_size (sect) > high)
895 high = vma + bfd_get_section_size (sect);
896
897 data->segment_info[i] = 1;
898 }
899
900 data->segment_bases[0] = low;
901 data->segment_sizes[0] = high - low;
902
903 return data;
904}
905
c906108c
SS
906/* Process a symbol file, as either the main file or as a dynamically
907 loaded file.
908
96baa820
JM
909 OBJFILE is where the symbols are to be read from.
910
7e8580c1
JB
911 ADDRS is the list of section load addresses. If the user has given
912 an 'add-symbol-file' command, then this is the list of offsets and
913 addresses he or she provided as arguments to the command; or, if
914 we're handling a shared library, these are the actual addresses the
915 sections are loaded at, according to the inferior's dynamic linker
916 (as gleaned by GDB's shared library code). We convert each address
917 into an offset from the section VMA's as it appears in the object
918 file, and then call the file's sym_offsets function to convert this
919 into a format-specific offset table --- a `struct section_offsets'.
920 If ADDRS is non-zero, OFFSETS must be zero.
921
922 OFFSETS is a table of section offsets already in the right
923 format-specific representation. NUM_OFFSETS is the number of
924 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
925 assume this is the proper table the call to sym_offsets described
926 above would produce. Instead of calling sym_offsets, we just dump
927 it right into objfile->section_offsets. (When we're re-reading
928 symbols from an objfile, we don't have the original load address
929 list any more; all we have is the section offset table.) If
930 OFFSETS is non-zero, ADDRS must be zero.
96baa820 931
7eedccfa
PP
932 ADD_FLAGS encodes verbosity level, whether this is main symbol or
933 an extra symbol file such as dynamically loaded code, and wether
934 breakpoint reset should be deferred. */
c906108c
SS
935
936void
7e8580c1
JB
937syms_from_objfile (struct objfile *objfile,
938 struct section_addr_info *addrs,
939 struct section_offsets *offsets,
940 int num_offsets,
7eedccfa 941 int add_flags)
c906108c 942{
a39a16c4 943 struct section_addr_info *local_addr = NULL;
c906108c 944 struct cleanup *old_chain;
7eedccfa 945 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 946
7e8580c1 947 gdb_assert (! (addrs && offsets));
2acceee2 948
c906108c 949 init_entry_point_info (objfile);
31d99776 950 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 951
75245b24
MS
952 if (objfile->sf == NULL)
953 return; /* No symbols. */
954
c906108c
SS
955 /* Make sure that partially constructed symbol tables will be cleaned up
956 if an error occurs during symbol reading. */
74b7792f 957 old_chain = make_cleanup_free_objfile (objfile);
c906108c 958
a39a16c4
MM
959 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
960 list. We now establish the convention that an addr of zero means
961 no load address was specified. */
962 if (! addrs && ! offsets)
963 {
5417f6dc 964 local_addr
a39a16c4
MM
965 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
966 make_cleanup (xfree, local_addr);
967 addrs = local_addr;
968 }
969
970 /* Now either addrs or offsets is non-zero. */
971
c5aa993b 972 if (mainline)
c906108c
SS
973 {
974 /* We will modify the main symbol table, make sure that all its users
c5aa993b 975 will be cleaned up if an error occurs during symbol reading. */
74b7792f 976 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
977
978 /* Since no error yet, throw away the old symbol table. */
979
980 if (symfile_objfile != NULL)
981 {
982 free_objfile (symfile_objfile);
adb7f338 983 gdb_assert (symfile_objfile == NULL);
c906108c
SS
984 }
985
986 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
987 If the user wants to get rid of them, they should do "symbol-file"
988 without arguments first. Not sure this is the best behavior
989 (PR 2207). */
c906108c 990
c5aa993b 991 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
992 }
993
994 /* Convert addr into an offset rather than an absolute address.
995 We find the lowest address of a loaded segment in the objfile,
53a5351d 996 and assume that <addr> is where that got loaded.
c906108c 997
53a5351d
JM
998 We no longer warn if the lowest section is not a text segment (as
999 happens for the PA64 port. */
0d15807d 1000 if (addrs && addrs->other[0].name)
75242ef4 1001 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1002
1003 /* Initialize symbol reading routines for this objfile, allow complaints to
1004 appear for this new file, and record how verbose to be, then do the
1005 initial symbol reading for this file. */
1006
c5aa993b 1007 (*objfile->sf->sym_init) (objfile);
7eedccfa 1008 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1009
7e8580c1
JB
1010 if (addrs)
1011 (*objfile->sf->sym_offsets) (objfile, addrs);
1012 else
1013 {
1014 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1015
1016 /* Just copy in the offset table directly as given to us. */
1017 objfile->num_sections = num_offsets;
1018 objfile->section_offsets
1019 = ((struct section_offsets *)
8b92e4d5 1020 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
1021 memcpy (objfile->section_offsets, offsets, size);
1022
1023 init_objfile_sect_indices (objfile);
1024 }
c906108c 1025
f4352531 1026 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 1027
c906108c
SS
1028 /* Discard cleanups as symbol reading was successful. */
1029
1030 discard_cleanups (old_chain);
f7545552 1031 xfree (local_addr);
c906108c
SS
1032}
1033
1034/* Perform required actions after either reading in the initial
1035 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1036 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1037
c906108c 1038void
7eedccfa 1039new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1040{
c906108c
SS
1041 /* If this is the main symbol file we have to clean up all users of the
1042 old main symbol file. Otherwise it is sufficient to fixup all the
1043 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1044 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1045 {
1046 /* OK, make it the "real" symbol file. */
1047 symfile_objfile = objfile;
1048
c1e56572 1049 clear_symtab_users (add_flags);
c906108c 1050 }
7eedccfa 1051 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1052 {
69de3c6a 1053 breakpoint_re_set ();
c906108c
SS
1054 }
1055
1056 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1057 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1058}
1059
1060/* Process a symbol file, as either the main file or as a dynamically
1061 loaded file.
1062
5417f6dc
RM
1063 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1064 This BFD will be closed on error, and is always consumed by this function.
7904e09f 1065
7eedccfa
PP
1066 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1067 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1068
1069 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1070 syms_from_objfile, above.
1071 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1072
c906108c
SS
1073 Upon success, returns a pointer to the objfile that was added.
1074 Upon failure, jumps back to command level (never returns). */
7eedccfa 1075
7904e09f 1076static struct objfile *
7eedccfa
PP
1077symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1078 int add_flags,
7904e09f
JB
1079 struct section_addr_info *addrs,
1080 struct section_offsets *offsets,
1081 int num_offsets,
7eedccfa 1082 int flags)
c906108c
SS
1083{
1084 struct objfile *objfile;
a39a16c4 1085 struct cleanup *my_cleanups;
5417f6dc 1086 const char *name = bfd_get_filename (abfd);
7eedccfa 1087 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 1088
9291a0cd
TT
1089 if (readnow_symbol_files)
1090 flags |= OBJF_READNOW;
1091
5417f6dc 1092 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 1093
5417f6dc
RM
1094 /* Give user a chance to burp if we'd be
1095 interactively wiping out any existing symbols. */
c906108c
SS
1096
1097 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 1098 && (add_flags & SYMFILE_MAINLINE)
c906108c 1099 && from_tty
9e2f0ad4 1100 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1101 error (_("Not confirmed."));
c906108c 1102
2df3850c 1103 objfile = allocate_objfile (abfd, flags);
5417f6dc 1104 discard_cleanups (my_cleanups);
c906108c 1105
78a4a9b9
AC
1106 /* We either created a new mapped symbol table, mapped an existing
1107 symbol table file which has not had initial symbol reading
1108 performed, or need to read an unmapped symbol table. */
1109 if (from_tty || info_verbose)
c906108c 1110 {
769d7dc4
AC
1111 if (deprecated_pre_add_symbol_hook)
1112 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1113 else
c906108c 1114 {
55333a84
DE
1115 printf_unfiltered (_("Reading symbols from %s..."), name);
1116 wrap_here ("");
1117 gdb_flush (gdb_stdout);
c906108c 1118 }
c906108c 1119 }
78a4a9b9 1120 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1121 add_flags);
c906108c
SS
1122
1123 /* We now have at least a partial symbol table. Check to see if the
1124 user requested that all symbols be read on initial access via either
1125 the gdb startup command line or on a per symbol file basis. Expand
1126 all partial symbol tables for this objfile if so. */
1127
9291a0cd 1128 if ((flags & OBJF_READNOW))
c906108c 1129 {
55333a84 1130 if (from_tty || info_verbose)
c906108c 1131 {
a3f17187 1132 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1133 wrap_here ("");
1134 gdb_flush (gdb_stdout);
1135 }
1136
ccefe4c4
TT
1137 if (objfile->sf)
1138 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1139 }
1140
55333a84 1141 if ((from_tty || info_verbose)
e361b228 1142 && !objfile_has_symbols (objfile))
cb3c37b2
JB
1143 {
1144 wrap_here ("");
55333a84 1145 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1146 wrap_here ("");
1147 }
1148
c906108c
SS
1149 if (from_tty || info_verbose)
1150 {
769d7dc4
AC
1151 if (deprecated_post_add_symbol_hook)
1152 deprecated_post_add_symbol_hook ();
c906108c 1153 else
55333a84 1154 printf_unfiltered (_("done.\n"));
c906108c
SS
1155 }
1156
481d0f41
JB
1157 /* We print some messages regardless of whether 'from_tty ||
1158 info_verbose' is true, so make sure they go out at the right
1159 time. */
1160 gdb_flush (gdb_stdout);
1161
a39a16c4
MM
1162 do_cleanups (my_cleanups);
1163
109f874e 1164 if (objfile->sf == NULL)
8caee43b
PP
1165 {
1166 observer_notify_new_objfile (objfile);
1167 return objfile; /* No symbols. */
1168 }
109f874e 1169
7eedccfa 1170 new_symfile_objfile (objfile, add_flags);
c906108c 1171
06d3b283 1172 observer_notify_new_objfile (objfile);
c906108c 1173
ce7d4522 1174 bfd_cache_close_all ();
c906108c
SS
1175 return (objfile);
1176}
1177
9cce227f
TG
1178/* Add BFD as a separate debug file for OBJFILE. */
1179
1180void
1181symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1182{
15d123c9 1183 struct objfile *new_objfile;
089b4803
TG
1184 struct section_addr_info *sap;
1185 struct cleanup *my_cleanup;
1186
1187 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1188 because sections of BFD may not match sections of OBJFILE and because
1189 vma may have been modified by tools such as prelink. */
1190 sap = build_section_addr_info_from_objfile (objfile);
1191 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1192
15d123c9 1193 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1194 (bfd, symfile_flags,
089b4803 1195 sap, NULL, 0,
9cce227f
TG
1196 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1197 | OBJF_USERLOADED));
089b4803
TG
1198
1199 do_cleanups (my_cleanup);
9cce227f 1200
15d123c9 1201 add_separate_debug_objfile (new_objfile, objfile);
9cce227f 1202}
7904e09f 1203
eb4556d7
JB
1204/* Process the symbol file ABFD, as either the main file or as a
1205 dynamically loaded file.
1206
1207 See symbol_file_add_with_addrs_or_offsets's comments for
1208 details. */
1209struct objfile *
7eedccfa 1210symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1211 struct section_addr_info *addrs,
7eedccfa 1212 int flags)
eb4556d7 1213{
7eedccfa
PP
1214 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1215 flags);
eb4556d7
JB
1216}
1217
1218
7904e09f
JB
1219/* Process a symbol file, as either the main file or as a dynamically
1220 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1221 for details. */
1222struct objfile *
7eedccfa
PP
1223symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1224 int flags)
7904e09f 1225{
7eedccfa
PP
1226 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1227 flags);
7904e09f
JB
1228}
1229
1230
d7db6da9
FN
1231/* Call symbol_file_add() with default values and update whatever is
1232 affected by the loading of a new main().
1233 Used when the file is supplied in the gdb command line
1234 and by some targets with special loading requirements.
1235 The auxiliary function, symbol_file_add_main_1(), has the flags
1236 argument for the switches that can only be specified in the symbol_file
1237 command itself. */
5417f6dc 1238
1adeb98a
FN
1239void
1240symbol_file_add_main (char *args, int from_tty)
1241{
d7db6da9
FN
1242 symbol_file_add_main_1 (args, from_tty, 0);
1243}
1244
1245static void
1246symbol_file_add_main_1 (char *args, int from_tty, int flags)
1247{
7eedccfa
PP
1248 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1249 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1250
d7db6da9
FN
1251 /* Getting new symbols may change our opinion about
1252 what is frameless. */
1253 reinit_frame_cache ();
1254
1255 set_initial_language ();
1adeb98a
FN
1256}
1257
1258void
1259symbol_file_clear (int from_tty)
1260{
1261 if ((have_full_symbols () || have_partial_symbols ())
1262 && from_tty
0430b0d6
AS
1263 && (symfile_objfile
1264 ? !query (_("Discard symbol table from `%s'? "),
1265 symfile_objfile->name)
1266 : !query (_("Discard symbol table? "))))
8a3fe4f8 1267 error (_("Not confirmed."));
1adeb98a 1268
0133421a
JK
1269 /* solib descriptors may have handles to objfiles. Wipe them before their
1270 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1271 no_shared_libraries (NULL, from_tty);
1272
0133421a
JK
1273 free_all_objfiles ();
1274
adb7f338 1275 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1276 if (from_tty)
1277 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1278}
1279
5b5d99cf
JB
1280static char *
1281get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1282{
1283 asection *sect;
1284 bfd_size_type debuglink_size;
1285 unsigned long crc32;
1286 char *contents;
1287 int crc_offset;
5417f6dc 1288
5b5d99cf
JB
1289 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1290
1291 if (sect == NULL)
1292 return NULL;
1293
1294 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1295
5b5d99cf
JB
1296 contents = xmalloc (debuglink_size);
1297 bfd_get_section_contents (objfile->obfd, sect, contents,
1298 (file_ptr)0, (bfd_size_type)debuglink_size);
1299
1300 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1301 crc_offset = strlen (contents) + 1;
1302 crc_offset = (crc_offset + 3) & ~3;
1303
1304 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1305
5b5d99cf
JB
1306 *crc32_out = crc32;
1307 return contents;
1308}
1309
1310static int
287ccc17 1311separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1312 struct objfile *parent_objfile)
5b5d99cf
JB
1313{
1314 unsigned long file_crc = 0;
f1838a98 1315 bfd *abfd;
777ea8f1 1316 gdb_byte buffer[8*1024];
5b5d99cf 1317 int count;
32a0e547
JK
1318 struct stat parent_stat, abfd_stat;
1319
1320 /* Find a separate debug info file as if symbols would be present in
1321 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1322 section can contain just the basename of PARENT_OBJFILE without any
1323 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1324 the separate debug infos with the same basename can exist. */
1325
1326 if (strcmp (name, parent_objfile->name) == 0)
1327 return 0;
5b5d99cf 1328
874f5765 1329 abfd = bfd_open_maybe_remote (name);
f1838a98
UW
1330
1331 if (!abfd)
5b5d99cf
JB
1332 return 0;
1333
32a0e547
JK
1334 /* Verify symlinks were not the cause of strcmp name difference above.
1335
1336 Some operating systems, e.g. Windows, do not provide a meaningful
1337 st_ino; they always set it to zero. (Windows does provide a
1338 meaningful st_dev.) Do not indicate a duplicate library in that
1339 case. While there is no guarantee that a system that provides
1340 meaningful inode numbers will never set st_ino to zero, this is
1341 merely an optimization, so we do not need to worry about false
1342 negatives. */
1343
1344 if (bfd_stat (abfd, &abfd_stat) == 0
1345 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1346 && abfd_stat.st_dev == parent_stat.st_dev
1347 && abfd_stat.st_ino == parent_stat.st_ino
1348 && abfd_stat.st_ino != 0)
1349 {
1350 bfd_close (abfd);
1351 return 0;
1352 }
1353
f1838a98 1354 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1355 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1356
f1838a98 1357 bfd_close (abfd);
5b5d99cf 1358
287ccc17
JK
1359 if (crc != file_crc)
1360 {
1361 warning (_("the debug information found in \"%s\""
1362 " does not match \"%s\" (CRC mismatch).\n"),
32a0e547 1363 name, parent_objfile->name);
287ccc17
JK
1364 return 0;
1365 }
1366
1367 return 1;
5b5d99cf
JB
1368}
1369
aa28a74e 1370char *debug_file_directory = NULL;
920d2a44
AC
1371static void
1372show_debug_file_directory (struct ui_file *file, int from_tty,
1373 struct cmd_list_element *c, const char *value)
1374{
1375 fprintf_filtered (file, _("\
1376The directory where separate debug symbols are searched for is \"%s\".\n"),
1377 value);
1378}
5b5d99cf
JB
1379
1380#if ! defined (DEBUG_SUBDIRECTORY)
1381#define DEBUG_SUBDIRECTORY ".debug"
1382#endif
1383
9cce227f
TG
1384char *
1385find_separate_debug_file_by_debuglink (struct objfile *objfile)
1386{
952a6d41 1387 char *basename, *debugdir;
9cce227f
TG
1388 char *dir = NULL;
1389 char *debugfile = NULL;
1390 char *canon_name = NULL;
9cce227f
TG
1391 unsigned long crc32;
1392 int i;
5b5d99cf
JB
1393
1394 basename = get_debug_link_info (objfile, &crc32);
1395
1396 if (basename == NULL)
287ccc17
JK
1397 /* There's no separate debug info, hence there's no way we could
1398 load it => no warning. */
25522fae 1399 goto cleanup_return_debugfile;
5417f6dc 1400
5b5d99cf
JB
1401 dir = xstrdup (objfile->name);
1402
fe36c4f4 1403 /* Strip off the final filename part, leaving the directory name,
569b05a5 1404 followed by a slash. The directory can be relative or absolute. */
5b5d99cf
JB
1405 for (i = strlen(dir) - 1; i >= 0; i--)
1406 {
1407 if (IS_DIR_SEPARATOR (dir[i]))
1408 break;
1409 }
569b05a5 1410 /* If I is -1 then no directory is present there and DIR will be "". */
5b5d99cf 1411 dir[i+1] = '\0';
5417f6dc 1412
1ffa32ee
JK
1413 /* Set I to max (strlen (canon_name), strlen (dir)). */
1414 canon_name = lrealpath (dir);
1415 i = strlen (dir);
1416 if (canon_name && strlen (canon_name) > i)
1417 i = strlen (canon_name);
1418
25522fae
JK
1419 debugfile = xmalloc (strlen (debug_file_directory) + 1
1420 + i
1421 + strlen (DEBUG_SUBDIRECTORY)
1422 + strlen ("/")
1423 + strlen (basename)
1424 + 1);
5b5d99cf
JB
1425
1426 /* First try in the same directory as the original file. */
1427 strcpy (debugfile, dir);
1428 strcat (debugfile, basename);
1429
32a0e547 1430 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1431 goto cleanup_return_debugfile;
5417f6dc 1432
5b5d99cf
JB
1433 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1434 strcpy (debugfile, dir);
1435 strcat (debugfile, DEBUG_SUBDIRECTORY);
1436 strcat (debugfile, "/");
1437 strcat (debugfile, basename);
1438
32a0e547 1439 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1440 goto cleanup_return_debugfile;
5417f6dc 1441
24ddea62
JK
1442 /* Then try in the global debugfile directories.
1443
1444 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1445 cause "/..." lookups. */
5417f6dc 1446
24ddea62
JK
1447 debugdir = debug_file_directory;
1448 do
aa28a74e 1449 {
24ddea62
JK
1450 char *debugdir_end;
1451
1452 while (*debugdir == DIRNAME_SEPARATOR)
1453 debugdir++;
1454
1455 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1456 if (debugdir_end == NULL)
1457 debugdir_end = &debugdir[strlen (debugdir)];
1458
1459 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1460 debugfile[debugdir_end - debugdir] = 0;
aa28a74e 1461 strcat (debugfile, "/");
24ddea62 1462 strcat (debugfile, dir);
aa28a74e
DJ
1463 strcat (debugfile, basename);
1464
32a0e547 1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1466 goto cleanup_return_debugfile;
24ddea62
JK
1467
1468 /* If the file is in the sysroot, try using its base path in the
1469 global debugfile directory. */
1470 if (canon_name
1471 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1472 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1473 {
1474 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1475 debugfile[debugdir_end - debugdir] = 0;
1476 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1477 strcat (debugfile, "/");
1478 strcat (debugfile, basename);
1479
32a0e547 1480 if (separate_debug_file_exists (debugfile, crc32, objfile))
24ddea62
JK
1481 goto cleanup_return_debugfile;
1482 }
1483
1484 debugdir = debugdir_end;
aa28a74e 1485 }
24ddea62 1486 while (*debugdir != 0);
aa28a74e 1487
25522fae
JK
1488 xfree (debugfile);
1489 debugfile = NULL;
aa28a74e 1490
25522fae
JK
1491cleanup_return_debugfile:
1492 xfree (canon_name);
5b5d99cf
JB
1493 xfree (basename);
1494 xfree (dir);
25522fae 1495 return debugfile;
5b5d99cf
JB
1496}
1497
1498
c906108c
SS
1499/* This is the symbol-file command. Read the file, analyze its
1500 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1501 the command is rather bizarre:
1502
1503 1. The function buildargv implements various quoting conventions
1504 which are undocumented and have little or nothing in common with
1505 the way things are quoted (or not quoted) elsewhere in GDB.
1506
1507 2. Options are used, which are not generally used in GDB (perhaps
1508 "set mapped on", "set readnow on" would be better)
1509
1510 3. The order of options matters, which is contrary to GNU
c906108c
SS
1511 conventions (because it is confusing and inconvenient). */
1512
1513void
fba45db2 1514symbol_file_command (char *args, int from_tty)
c906108c 1515{
c906108c
SS
1516 dont_repeat ();
1517
1518 if (args == NULL)
1519 {
1adeb98a 1520 symbol_file_clear (from_tty);
c906108c
SS
1521 }
1522 else
1523 {
d1a41061 1524 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1525 int flags = OBJF_USERLOADED;
1526 struct cleanup *cleanups;
1527 char *name = NULL;
1528
7a292a7a 1529 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1530 while (*argv != NULL)
1531 {
78a4a9b9
AC
1532 if (strcmp (*argv, "-readnow") == 0)
1533 flags |= OBJF_READNOW;
1534 else if (**argv == '-')
8a3fe4f8 1535 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1536 else
1537 {
cb2f3a29 1538 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1539 name = *argv;
78a4a9b9 1540 }
cb2f3a29 1541
c906108c
SS
1542 argv++;
1543 }
1544
1545 if (name == NULL)
cb2f3a29
MK
1546 error (_("no symbol file name was specified"));
1547
c906108c
SS
1548 do_cleanups (cleanups);
1549 }
1550}
1551
1552/* Set the initial language.
1553
cb2f3a29
MK
1554 FIXME: A better solution would be to record the language in the
1555 psymtab when reading partial symbols, and then use it (if known) to
1556 set the language. This would be a win for formats that encode the
1557 language in an easily discoverable place, such as DWARF. For
1558 stabs, we can jump through hoops looking for specially named
1559 symbols or try to intuit the language from the specific type of
1560 stabs we find, but we can't do that until later when we read in
1561 full symbols. */
c906108c 1562
8b60591b 1563void
fba45db2 1564set_initial_language (void)
c906108c 1565{
c5aa993b 1566 enum language lang = language_unknown;
c906108c 1567
01f8c46d
JK
1568 if (language_of_main != language_unknown)
1569 lang = language_of_main;
1570 else
1571 {
1572 const char *filename;
1573
1574 filename = find_main_filename ();
1575 if (filename != NULL)
1576 lang = deduce_language_from_filename (filename);
1577 }
cb2f3a29 1578
ccefe4c4
TT
1579 if (lang == language_unknown)
1580 {
1581 /* Make C the default language */
1582 lang = language_c;
c906108c 1583 }
ccefe4c4
TT
1584
1585 set_language (lang);
1586 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1587}
1588
874f5765
TG
1589/* If NAME is a remote name open the file using remote protocol, otherwise
1590 open it normally. */
1591
1592bfd *
1593bfd_open_maybe_remote (const char *name)
1594{
1595 if (remote_filename_p (name))
1596 return remote_bfd_open (name, gnutarget);
1597 else
1598 return bfd_openr (name, gnutarget);
1599}
1600
1601
cb2f3a29
MK
1602/* Open the file specified by NAME and hand it off to BFD for
1603 preliminary analysis. Return a newly initialized bfd *, which
1604 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1605 absolute). In case of trouble, error() is called. */
c906108c
SS
1606
1607bfd *
fba45db2 1608symfile_bfd_open (char *name)
c906108c
SS
1609{
1610 bfd *sym_bfd;
1611 int desc;
1612 char *absolute_name;
1613
f1838a98
UW
1614 if (remote_filename_p (name))
1615 {
1616 name = xstrdup (name);
1617 sym_bfd = remote_bfd_open (name, gnutarget);
1618 if (!sym_bfd)
1619 {
1620 make_cleanup (xfree, name);
1621 error (_("`%s': can't open to read symbols: %s."), name,
1622 bfd_errmsg (bfd_get_error ()));
1623 }
1624
1625 if (!bfd_check_format (sym_bfd, bfd_object))
1626 {
1627 bfd_close (sym_bfd);
1628 make_cleanup (xfree, name);
1629 error (_("`%s': can't read symbols: %s."), name,
1630 bfd_errmsg (bfd_get_error ()));
1631 }
1632
1633 return sym_bfd;
1634 }
1635
cb2f3a29 1636 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1637
1638 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1639 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1640 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1641#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1642 if (desc < 0)
1643 {
1644 char *exename = alloca (strlen (name) + 5);
433759f7 1645
c906108c 1646 strcat (strcpy (exename, name), ".exe");
014d698b 1647 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1648 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1649 }
1650#endif
1651 if (desc < 0)
1652 {
b8c9b27d 1653 make_cleanup (xfree, name);
c906108c
SS
1654 perror_with_name (name);
1655 }
cb2f3a29
MK
1656
1657 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1658 bfd. It'll be freed in free_objfile(). */
1659 xfree (name);
1660 name = absolute_name;
c906108c 1661
9f76c2cd 1662 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1663 if (!sym_bfd)
1664 {
1665 close (desc);
b8c9b27d 1666 make_cleanup (xfree, name);
f1838a98 1667 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1668 bfd_errmsg (bfd_get_error ()));
1669 }
549c1eea 1670 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1671
1672 if (!bfd_check_format (sym_bfd, bfd_object))
1673 {
cb2f3a29
MK
1674 /* FIXME: should be checking for errors from bfd_close (for one
1675 thing, on error it does not free all the storage associated
1676 with the bfd). */
1677 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1678 make_cleanup (xfree, name);
f1838a98 1679 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1680 bfd_errmsg (bfd_get_error ()));
1681 }
cb2f3a29 1682
4f6f9936
JK
1683 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1684 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1685
cb2f3a29 1686 return sym_bfd;
c906108c
SS
1687}
1688
cb2f3a29
MK
1689/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1690 the section was not found. */
1691
0e931cf0
JB
1692int
1693get_section_index (struct objfile *objfile, char *section_name)
1694{
1695 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1696
0e931cf0
JB
1697 if (sect)
1698 return sect->index;
1699 else
1700 return -1;
1701}
1702
cb2f3a29
MK
1703/* Link SF into the global symtab_fns list. Called on startup by the
1704 _initialize routine in each object file format reader, to register
1705 information about each format the the reader is prepared to
1706 handle. */
c906108c
SS
1707
1708void
00b5771c 1709add_symtab_fns (const struct sym_fns *sf)
c906108c 1710{
00b5771c 1711 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1712}
1713
cb2f3a29
MK
1714/* Initialize OBJFILE to read symbols from its associated BFD. It
1715 either returns or calls error(). The result is an initialized
1716 struct sym_fns in the objfile structure, that contains cached
1717 information about the symbol file. */
c906108c 1718
00b5771c 1719static const struct sym_fns *
31d99776 1720find_sym_fns (bfd *abfd)
c906108c 1721{
00b5771c 1722 const struct sym_fns *sf;
31d99776 1723 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1724 int i;
c906108c 1725
75245b24
MS
1726 if (our_flavour == bfd_target_srec_flavour
1727 || our_flavour == bfd_target_ihex_flavour
1728 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1729 return NULL; /* No symbols. */
75245b24 1730
00b5771c 1731 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1732 if (our_flavour == sf->sym_flavour)
1733 return sf;
cb2f3a29 1734
8a3fe4f8 1735 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1736 bfd_get_target (abfd));
c906108c
SS
1737}
1738\f
cb2f3a29 1739
c906108c
SS
1740/* This function runs the load command of our current target. */
1741
1742static void
fba45db2 1743load_command (char *arg, int from_tty)
c906108c 1744{
4487aabf
PA
1745 /* The user might be reloading because the binary has changed. Take
1746 this opportunity to check. */
1747 reopen_exec_file ();
1748 reread_symbols ();
1749
c906108c 1750 if (arg == NULL)
1986bccd
AS
1751 {
1752 char *parg;
1753 int count = 0;
1754
1755 parg = arg = get_exec_file (1);
1756
1757 /* Count how many \ " ' tab space there are in the name. */
1758 while ((parg = strpbrk (parg, "\\\"'\t ")))
1759 {
1760 parg++;
1761 count++;
1762 }
1763
1764 if (count)
1765 {
1766 /* We need to quote this string so buildargv can pull it apart. */
1767 char *temp = xmalloc (strlen (arg) + count + 1 );
1768 char *ptemp = temp;
1769 char *prev;
1770
1771 make_cleanup (xfree, temp);
1772
1773 prev = parg = arg;
1774 while ((parg = strpbrk (parg, "\\\"'\t ")))
1775 {
1776 strncpy (ptemp, prev, parg - prev);
1777 ptemp += parg - prev;
1778 prev = parg++;
1779 *ptemp++ = '\\';
1780 }
1781 strcpy (ptemp, prev);
1782
1783 arg = temp;
1784 }
1785 }
1786
c906108c 1787 target_load (arg, from_tty);
2889e661
JB
1788
1789 /* After re-loading the executable, we don't really know which
1790 overlays are mapped any more. */
1791 overlay_cache_invalid = 1;
c906108c
SS
1792}
1793
1794/* This version of "load" should be usable for any target. Currently
1795 it is just used for remote targets, not inftarg.c or core files,
1796 on the theory that only in that case is it useful.
1797
1798 Avoiding xmodem and the like seems like a win (a) because we don't have
1799 to worry about finding it, and (b) On VMS, fork() is very slow and so
1800 we don't want to run a subprocess. On the other hand, I'm not sure how
1801 performance compares. */
917317f4 1802
917317f4
JM
1803static int validate_download = 0;
1804
e4f9b4d5
MS
1805/* Callback service function for generic_load (bfd_map_over_sections). */
1806
1807static void
1808add_section_size_callback (bfd *abfd, asection *asec, void *data)
1809{
1810 bfd_size_type *sum = data;
1811
2c500098 1812 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1813}
1814
1815/* Opaque data for load_section_callback. */
1816struct load_section_data {
1817 unsigned long load_offset;
a76d924d
DJ
1818 struct load_progress_data *progress_data;
1819 VEC(memory_write_request_s) *requests;
1820};
1821
1822/* Opaque data for load_progress. */
1823struct load_progress_data {
1824 /* Cumulative data. */
e4f9b4d5
MS
1825 unsigned long write_count;
1826 unsigned long data_count;
1827 bfd_size_type total_size;
a76d924d
DJ
1828};
1829
1830/* Opaque data for load_progress for a single section. */
1831struct load_progress_section_data {
1832 struct load_progress_data *cumulative;
cf7a04e8 1833
a76d924d 1834 /* Per-section data. */
cf7a04e8
DJ
1835 const char *section_name;
1836 ULONGEST section_sent;
1837 ULONGEST section_size;
1838 CORE_ADDR lma;
1839 gdb_byte *buffer;
e4f9b4d5
MS
1840};
1841
a76d924d 1842/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1843
1844static void
1845load_progress (ULONGEST bytes, void *untyped_arg)
1846{
a76d924d
DJ
1847 struct load_progress_section_data *args = untyped_arg;
1848 struct load_progress_data *totals;
1849
1850 if (args == NULL)
1851 /* Writing padding data. No easy way to get at the cumulative
1852 stats, so just ignore this. */
1853 return;
1854
1855 totals = args->cumulative;
1856
1857 if (bytes == 0 && args->section_sent == 0)
1858 {
1859 /* The write is just starting. Let the user know we've started
1860 this section. */
5af949e3
UW
1861 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1862 args->section_name, hex_string (args->section_size),
1863 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1864 return;
1865 }
cf7a04e8
DJ
1866
1867 if (validate_download)
1868 {
1869 /* Broken memories and broken monitors manifest themselves here
1870 when bring new computers to life. This doubles already slow
1871 downloads. */
1872 /* NOTE: cagney/1999-10-18: A more efficient implementation
1873 might add a verify_memory() method to the target vector and
1874 then use that. remote.c could implement that method using
1875 the ``qCRC'' packet. */
1876 gdb_byte *check = xmalloc (bytes);
1877 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1878
1879 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1880 error (_("Download verify read failed at %s"),
1881 paddress (target_gdbarch, args->lma));
cf7a04e8 1882 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1883 error (_("Download verify compare failed at %s"),
1884 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1885 do_cleanups (verify_cleanups);
1886 }
a76d924d 1887 totals->data_count += bytes;
cf7a04e8
DJ
1888 args->lma += bytes;
1889 args->buffer += bytes;
a76d924d 1890 totals->write_count += 1;
cf7a04e8
DJ
1891 args->section_sent += bytes;
1892 if (quit_flag
1893 || (deprecated_ui_load_progress_hook != NULL
1894 && deprecated_ui_load_progress_hook (args->section_name,
1895 args->section_sent)))
1896 error (_("Canceled the download"));
1897
1898 if (deprecated_show_load_progress != NULL)
1899 deprecated_show_load_progress (args->section_name,
1900 args->section_sent,
1901 args->section_size,
a76d924d
DJ
1902 totals->data_count,
1903 totals->total_size);
cf7a04e8
DJ
1904}
1905
e4f9b4d5
MS
1906/* Callback service function for generic_load (bfd_map_over_sections). */
1907
1908static void
1909load_section_callback (bfd *abfd, asection *asec, void *data)
1910{
a76d924d 1911 struct memory_write_request *new_request;
e4f9b4d5 1912 struct load_section_data *args = data;
a76d924d 1913 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1914 bfd_size_type size = bfd_get_section_size (asec);
1915 gdb_byte *buffer;
cf7a04e8 1916 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1917
cf7a04e8
DJ
1918 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1919 return;
e4f9b4d5 1920
cf7a04e8
DJ
1921 if (size == 0)
1922 return;
e4f9b4d5 1923
a76d924d
DJ
1924 new_request = VEC_safe_push (memory_write_request_s,
1925 args->requests, NULL);
1926 memset (new_request, 0, sizeof (struct memory_write_request));
1927 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1928 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1929 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1930 new_request->data = xmalloc (size);
1931 new_request->baton = section_data;
cf7a04e8 1932
a76d924d 1933 buffer = new_request->data;
cf7a04e8 1934
a76d924d
DJ
1935 section_data->cumulative = args->progress_data;
1936 section_data->section_name = sect_name;
1937 section_data->section_size = size;
1938 section_data->lma = new_request->begin;
1939 section_data->buffer = buffer;
cf7a04e8
DJ
1940
1941 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1942}
1943
1944/* Clean up an entire memory request vector, including load
1945 data and progress records. */
cf7a04e8 1946
a76d924d
DJ
1947static void
1948clear_memory_write_data (void *arg)
1949{
1950 VEC(memory_write_request_s) **vec_p = arg;
1951 VEC(memory_write_request_s) *vec = *vec_p;
1952 int i;
1953 struct memory_write_request *mr;
cf7a04e8 1954
a76d924d
DJ
1955 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1956 {
1957 xfree (mr->data);
1958 xfree (mr->baton);
1959 }
1960 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1961}
1962
c906108c 1963void
917317f4 1964generic_load (char *args, int from_tty)
c906108c 1965{
c906108c 1966 bfd *loadfile_bfd;
2b71414d 1967 struct timeval start_time, end_time;
917317f4 1968 char *filename;
1986bccd 1969 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1970 struct load_section_data cbdata;
a76d924d
DJ
1971 struct load_progress_data total_progress;
1972
e4f9b4d5 1973 CORE_ADDR entry;
1986bccd 1974 char **argv;
e4f9b4d5 1975
a76d924d
DJ
1976 memset (&cbdata, 0, sizeof (cbdata));
1977 memset (&total_progress, 0, sizeof (total_progress));
1978 cbdata.progress_data = &total_progress;
1979
1980 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1981
d1a41061
PP
1982 if (args == NULL)
1983 error_no_arg (_("file to load"));
1986bccd 1984
d1a41061 1985 argv = gdb_buildargv (args);
1986bccd
AS
1986 make_cleanup_freeargv (argv);
1987
1988 filename = tilde_expand (argv[0]);
1989 make_cleanup (xfree, filename);
1990
1991 if (argv[1] != NULL)
917317f4
JM
1992 {
1993 char *endptr;
ba5f2f8a 1994
1986bccd
AS
1995 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1996
1997 /* If the last word was not a valid number then
1998 treat it as a file name with spaces in. */
1999 if (argv[1] == endptr)
2000 error (_("Invalid download offset:%s."), argv[1]);
2001
2002 if (argv[2] != NULL)
2003 error (_("Too many parameters."));
917317f4 2004 }
c906108c 2005
917317f4 2006 /* Open the file for loading. */
c906108c
SS
2007 loadfile_bfd = bfd_openr (filename, gnutarget);
2008 if (loadfile_bfd == NULL)
2009 {
2010 perror_with_name (filename);
2011 return;
2012 }
917317f4 2013
c906108c
SS
2014 /* FIXME: should be checking for errors from bfd_close (for one thing,
2015 on error it does not free all the storage associated with the
2016 bfd). */
5c65bbb6 2017 make_cleanup_bfd_close (loadfile_bfd);
c906108c 2018
c5aa993b 2019 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2020 {
8a3fe4f8 2021 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2022 bfd_errmsg (bfd_get_error ()));
2023 }
c5aa993b 2024
5417f6dc 2025 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2026 (void *) &total_progress.total_size);
2027
2028 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2029
2b71414d 2030 gettimeofday (&start_time, NULL);
c906108c 2031
a76d924d
DJ
2032 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2033 load_progress) != 0)
2034 error (_("Load failed"));
c906108c 2035
2b71414d 2036 gettimeofday (&end_time, NULL);
ba5f2f8a 2037
e4f9b4d5 2038 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 2039 ui_out_text (uiout, "Start address ");
5af949e3 2040 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2041 ui_out_text (uiout, ", load size ");
a76d924d 2042 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2043 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2044 /* We were doing this in remote-mips.c, I suspect it is right
2045 for other targets too. */
fb14de7b 2046 regcache_write_pc (get_current_regcache (), entry);
c906108c 2047
38963c97
DJ
2048 /* Reset breakpoints, now that we have changed the load image. For
2049 instance, breakpoints may have been set (or reset, by
2050 post_create_inferior) while connected to the target but before we
2051 loaded the program. In that case, the prologue analyzer could
2052 have read instructions from the target to find the right
2053 breakpoint locations. Loading has changed the contents of that
2054 memory. */
2055
2056 breakpoint_re_set ();
2057
7ca9f392
AC
2058 /* FIXME: are we supposed to call symbol_file_add or not? According
2059 to a comment from remote-mips.c (where a call to symbol_file_add
2060 was commented out), making the call confuses GDB if more than one
2061 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2062 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2063
a76d924d
DJ
2064 print_transfer_performance (gdb_stdout, total_progress.data_count,
2065 total_progress.write_count,
2066 &start_time, &end_time);
c906108c
SS
2067
2068 do_cleanups (old_cleanups);
2069}
2070
2071/* Report how fast the transfer went. */
2072
917317f4
JM
2073/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2074 replaced by print_transfer_performance (with a very different
2075 function signature). */
2076
c906108c 2077void
fba45db2
KB
2078report_transfer_performance (unsigned long data_count, time_t start_time,
2079 time_t end_time)
c906108c 2080{
2b71414d
DJ
2081 struct timeval start, end;
2082
2083 start.tv_sec = start_time;
2084 start.tv_usec = 0;
2085 end.tv_sec = end_time;
2086 end.tv_usec = 0;
2087
2088 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2089}
2090
2091void
d9fcf2fb 2092print_transfer_performance (struct ui_file *stream,
917317f4
JM
2093 unsigned long data_count,
2094 unsigned long write_count,
2b71414d
DJ
2095 const struct timeval *start_time,
2096 const struct timeval *end_time)
917317f4 2097{
9f43d28c 2098 ULONGEST time_count;
2b71414d
DJ
2099
2100 /* Compute the elapsed time in milliseconds, as a tradeoff between
2101 accuracy and overflow. */
2102 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2103 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2104
8b93c638
JM
2105 ui_out_text (uiout, "Transfer rate: ");
2106 if (time_count > 0)
2107 {
9f43d28c
DJ
2108 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2109
2110 if (ui_out_is_mi_like_p (uiout))
2111 {
2112 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2113 ui_out_text (uiout, " bits/sec");
2114 }
2115 else if (rate < 1024)
2116 {
2117 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2118 ui_out_text (uiout, " bytes/sec");
2119 }
2120 else
2121 {
2122 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2123 ui_out_text (uiout, " KB/sec");
2124 }
8b93c638
JM
2125 }
2126 else
2127 {
ba5f2f8a 2128 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2129 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2130 }
2131 if (write_count > 0)
2132 {
2133 ui_out_text (uiout, ", ");
ba5f2f8a 2134 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2135 ui_out_text (uiout, " bytes/write");
2136 }
2137 ui_out_text (uiout, ".\n");
c906108c
SS
2138}
2139
2140/* This function allows the addition of incrementally linked object files.
2141 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2142/* Note: ezannoni 2000-04-13 This function/command used to have a
2143 special case syntax for the rombug target (Rombug is the boot
2144 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2145 rombug case, the user doesn't need to supply a text address,
2146 instead a call to target_link() (in target.c) would supply the
2147 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2148
c906108c 2149static void
fba45db2 2150add_symbol_file_command (char *args, int from_tty)
c906108c 2151{
5af949e3 2152 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2153 char *filename = NULL;
2df3850c 2154 int flags = OBJF_USERLOADED;
c906108c 2155 char *arg;
db162d44 2156 int section_index = 0;
2acceee2
JM
2157 int argcnt = 0;
2158 int sec_num = 0;
2159 int i;
db162d44
EZ
2160 int expecting_sec_name = 0;
2161 int expecting_sec_addr = 0;
5b96932b 2162 char **argv;
db162d44 2163
a39a16c4 2164 struct sect_opt
2acceee2 2165 {
2acceee2
JM
2166 char *name;
2167 char *value;
a39a16c4 2168 };
db162d44 2169
a39a16c4
MM
2170 struct section_addr_info *section_addrs;
2171 struct sect_opt *sect_opts = NULL;
2172 size_t num_sect_opts = 0;
3017564a 2173 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2174
a39a16c4 2175 num_sect_opts = 16;
5417f6dc 2176 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2177 * sizeof (struct sect_opt));
2178
c906108c
SS
2179 dont_repeat ();
2180
2181 if (args == NULL)
8a3fe4f8 2182 error (_("add-symbol-file takes a file name and an address"));
c906108c 2183
d1a41061 2184 argv = gdb_buildargv (args);
5b96932b 2185 make_cleanup_freeargv (argv);
db162d44 2186
5b96932b
AS
2187 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2188 {
2189 /* Process the argument. */
db162d44 2190 if (argcnt == 0)
c906108c 2191 {
db162d44
EZ
2192 /* The first argument is the file name. */
2193 filename = tilde_expand (arg);
3017564a 2194 make_cleanup (xfree, filename);
c906108c 2195 }
db162d44 2196 else
7a78ae4e
ND
2197 if (argcnt == 1)
2198 {
2199 /* The second argument is always the text address at which
2200 to load the program. */
2201 sect_opts[section_index].name = ".text";
2202 sect_opts[section_index].value = arg;
f414f22f 2203 if (++section_index >= num_sect_opts)
a39a16c4
MM
2204 {
2205 num_sect_opts *= 2;
5417f6dc 2206 sect_opts = ((struct sect_opt *)
a39a16c4 2207 xrealloc (sect_opts,
5417f6dc 2208 num_sect_opts
a39a16c4
MM
2209 * sizeof (struct sect_opt)));
2210 }
7a78ae4e
ND
2211 }
2212 else
2213 {
2214 /* It's an option (starting with '-') or it's an argument
2215 to an option */
2216
2217 if (*arg == '-')
2218 {
78a4a9b9
AC
2219 if (strcmp (arg, "-readnow") == 0)
2220 flags |= OBJF_READNOW;
2221 else if (strcmp (arg, "-s") == 0)
2222 {
2223 expecting_sec_name = 1;
2224 expecting_sec_addr = 1;
2225 }
7a78ae4e
ND
2226 }
2227 else
2228 {
2229 if (expecting_sec_name)
db162d44 2230 {
7a78ae4e
ND
2231 sect_opts[section_index].name = arg;
2232 expecting_sec_name = 0;
db162d44
EZ
2233 }
2234 else
7a78ae4e
ND
2235 if (expecting_sec_addr)
2236 {
2237 sect_opts[section_index].value = arg;
2238 expecting_sec_addr = 0;
f414f22f 2239 if (++section_index >= num_sect_opts)
a39a16c4
MM
2240 {
2241 num_sect_opts *= 2;
5417f6dc 2242 sect_opts = ((struct sect_opt *)
a39a16c4 2243 xrealloc (sect_opts,
5417f6dc 2244 num_sect_opts
a39a16c4
MM
2245 * sizeof (struct sect_opt)));
2246 }
7a78ae4e
ND
2247 }
2248 else
8a3fe4f8 2249 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2250 }
2251 }
c906108c 2252 }
c906108c 2253
927890d0
JB
2254 /* This command takes at least two arguments. The first one is a
2255 filename, and the second is the address where this file has been
2256 loaded. Abort now if this address hasn't been provided by the
2257 user. */
2258 if (section_index < 1)
2259 error (_("The address where %s has been loaded is missing"), filename);
2260
db162d44
EZ
2261 /* Print the prompt for the query below. And save the arguments into
2262 a sect_addr_info structure to be passed around to other
2263 functions. We have to split this up into separate print
bb599908 2264 statements because hex_string returns a local static
db162d44 2265 string. */
5417f6dc 2266
a3f17187 2267 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2268 section_addrs = alloc_section_addr_info (section_index);
2269 make_cleanup (xfree, section_addrs);
db162d44 2270 for (i = 0; i < section_index; i++)
c906108c 2271 {
db162d44
EZ
2272 CORE_ADDR addr;
2273 char *val = sect_opts[i].value;
2274 char *sec = sect_opts[i].name;
5417f6dc 2275
ae822768 2276 addr = parse_and_eval_address (val);
db162d44 2277
db162d44
EZ
2278 /* Here we store the section offsets in the order they were
2279 entered on the command line. */
a39a16c4
MM
2280 section_addrs->other[sec_num].name = sec;
2281 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2282 printf_unfiltered ("\t%s_addr = %s\n", sec,
2283 paddress (gdbarch, addr));
db162d44
EZ
2284 sec_num++;
2285
5417f6dc 2286 /* The object's sections are initialized when a
db162d44 2287 call is made to build_objfile_section_table (objfile).
5417f6dc 2288 This happens in reread_symbols.
db162d44
EZ
2289 At this point, we don't know what file type this is,
2290 so we can't determine what section names are valid. */
2acceee2 2291 }
db162d44 2292
2acceee2 2293 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2294 error (_("Not confirmed."));
c906108c 2295
7eedccfa
PP
2296 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2297 section_addrs, flags);
c906108c
SS
2298
2299 /* Getting new symbols may change our opinion about what is
2300 frameless. */
2301 reinit_frame_cache ();
db162d44 2302 do_cleanups (my_cleanups);
c906108c
SS
2303}
2304\f
70992597 2305
c906108c
SS
2306/* Re-read symbols if a symbol-file has changed. */
2307void
fba45db2 2308reread_symbols (void)
c906108c
SS
2309{
2310 struct objfile *objfile;
2311 long new_modtime;
2312 int reread_one = 0;
2313 struct stat new_statbuf;
2314 int res;
2315
2316 /* With the addition of shared libraries, this should be modified,
2317 the load time should be saved in the partial symbol tables, since
2318 different tables may come from different source files. FIXME.
2319 This routine should then walk down each partial symbol table
2320 and see if the symbol table that it originates from has been changed */
2321
c5aa993b
JM
2322 for (objfile = object_files; objfile; objfile = objfile->next)
2323 {
9cce227f
TG
2324 /* solib-sunos.c creates one objfile with obfd. */
2325 if (objfile->obfd == NULL)
2326 continue;
2327
2328 /* Separate debug objfiles are handled in the main objfile. */
2329 if (objfile->separate_debug_objfile_backlink)
2330 continue;
2331
02aeec7b
JB
2332 /* If this object is from an archive (what you usually create with
2333 `ar', often called a `static library' on most systems, though
2334 a `shared library' on AIX is also an archive), then you should
2335 stat on the archive name, not member name. */
9cce227f
TG
2336 if (objfile->obfd->my_archive)
2337 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2338 else
9cce227f
TG
2339 res = stat (objfile->name, &new_statbuf);
2340 if (res != 0)
2341 {
2342 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2343 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2344 objfile->name);
2345 continue;
2346 }
2347 new_modtime = new_statbuf.st_mtime;
2348 if (new_modtime != objfile->mtime)
2349 {
2350 struct cleanup *old_cleanups;
2351 struct section_offsets *offsets;
2352 int num_offsets;
2353 char *obfd_filename;
2354
2355 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2356 objfile->name);
2357
2358 /* There are various functions like symbol_file_add,
2359 symfile_bfd_open, syms_from_objfile, etc., which might
2360 appear to do what we want. But they have various other
2361 effects which we *don't* want. So we just do stuff
2362 ourselves. We don't worry about mapped files (for one thing,
2363 any mapped file will be out of date). */
2364
2365 /* If we get an error, blow away this objfile (not sure if
2366 that is the correct response for things like shared
2367 libraries). */
2368 old_cleanups = make_cleanup_free_objfile (objfile);
2369 /* We need to do this whenever any symbols go away. */
2370 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2371
2372 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2373 bfd_get_filename (exec_bfd)) == 0)
2374 {
2375 /* Reload EXEC_BFD without asking anything. */
2376
2377 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2378 }
2379
2380 /* Clean up any state BFD has sitting around. We don't need
2381 to close the descriptor but BFD lacks a way of closing the
2382 BFD without closing the descriptor. */
2383 obfd_filename = bfd_get_filename (objfile->obfd);
2384 if (!bfd_close (objfile->obfd))
2385 error (_("Can't close BFD for %s: %s"), objfile->name,
2386 bfd_errmsg (bfd_get_error ()));
874f5765 2387 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
9cce227f
TG
2388 if (objfile->obfd == NULL)
2389 error (_("Can't open %s to read symbols."), objfile->name);
2390 else
2391 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2392 /* bfd_openr sets cacheable to true, which is what we want. */
2393 if (!bfd_check_format (objfile->obfd, bfd_object))
2394 error (_("Can't read symbols from %s: %s."), objfile->name,
2395 bfd_errmsg (bfd_get_error ()));
2396
2397 /* Save the offsets, we will nuke them with the rest of the
2398 objfile_obstack. */
2399 num_offsets = objfile->num_sections;
2400 offsets = ((struct section_offsets *)
2401 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2402 memcpy (offsets, objfile->section_offsets,
2403 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2404
2405 /* Remove any references to this objfile in the global
2406 value lists. */
2407 preserve_values (objfile);
2408
2409 /* Nuke all the state that we will re-read. Much of the following
2410 code which sets things to NULL really is necessary to tell
2411 other parts of GDB that there is nothing currently there.
2412
2413 Try to keep the freeing order compatible with free_objfile. */
2414
2415 if (objfile->sf != NULL)
2416 {
2417 (*objfile->sf->sym_finish) (objfile);
2418 }
2419
2420 clear_objfile_data (objfile);
2421
15d123c9 2422 /* Free the separate debug objfiles. It will be
9cce227f 2423 automatically recreated by sym_read. */
15d123c9 2424 free_objfile_separate_debug (objfile);
9cce227f
TG
2425
2426 /* FIXME: Do we have to free a whole linked list, or is this
2427 enough? */
2428 if (objfile->global_psymbols.list)
2429 xfree (objfile->global_psymbols.list);
2430 memset (&objfile->global_psymbols, 0,
2431 sizeof (objfile->global_psymbols));
2432 if (objfile->static_psymbols.list)
2433 xfree (objfile->static_psymbols.list);
2434 memset (&objfile->static_psymbols, 0,
2435 sizeof (objfile->static_psymbols));
2436
2437 /* Free the obstacks for non-reusable objfiles */
710e1a31
SW
2438 psymbol_bcache_free (objfile->psymbol_cache);
2439 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f 2440 bcache_xfree (objfile->macro_cache);
cbd70537 2441 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
9cce227f 2442 bcache_xfree (objfile->filename_cache);
cbd70537 2443 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
9cce227f
TG
2444 if (objfile->demangled_names_hash != NULL)
2445 {
2446 htab_delete (objfile->demangled_names_hash);
2447 objfile->demangled_names_hash = NULL;
2448 }
2449 obstack_free (&objfile->objfile_obstack, 0);
2450 objfile->sections = NULL;
2451 objfile->symtabs = NULL;
2452 objfile->psymtabs = NULL;
2453 objfile->psymtabs_addrmap = NULL;
2454 objfile->free_psymtabs = NULL;
2455 objfile->cp_namespace_symtab = NULL;
34eaf542 2456 objfile->template_symbols = NULL;
9cce227f
TG
2457 objfile->msymbols = NULL;
2458 objfile->deprecated_sym_private = NULL;
2459 objfile->minimal_symbol_count = 0;
2460 memset (&objfile->msymbol_hash, 0,
2461 sizeof (objfile->msymbol_hash));
2462 memset (&objfile->msymbol_demangled_hash, 0,
2463 sizeof (objfile->msymbol_demangled_hash));
2464
710e1a31 2465 objfile->psymbol_cache = psymbol_bcache_init ();
cbd70537
SW
2466 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2467 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
9cce227f
TG
2468 /* obstack_init also initializes the obstack so it is
2469 empty. We could use obstack_specify_allocation but
2470 gdb_obstack.h specifies the alloc/dealloc
2471 functions. */
2472 obstack_init (&objfile->objfile_obstack);
2473 if (build_objfile_section_table (objfile))
2474 {
2475 error (_("Can't find the file sections in `%s': %s"),
2476 objfile->name, bfd_errmsg (bfd_get_error ()));
2477 }
2478 terminate_minimal_symbol_table (objfile);
2479
2480 /* We use the same section offsets as from last time. I'm not
2481 sure whether that is always correct for shared libraries. */
2482 objfile->section_offsets = (struct section_offsets *)
2483 obstack_alloc (&objfile->objfile_obstack,
2484 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2485 memcpy (objfile->section_offsets, offsets,
2486 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2487 objfile->num_sections = num_offsets;
2488
2489 /* What the hell is sym_new_init for, anyway? The concept of
2490 distinguishing between the main file and additional files
2491 in this way seems rather dubious. */
2492 if (objfile == symfile_objfile)
c906108c 2493 {
9cce227f 2494 (*objfile->sf->sym_new_init) (objfile);
c906108c 2495 }
9cce227f
TG
2496
2497 (*objfile->sf->sym_init) (objfile);
2498 clear_complaints (&symfile_complaints, 1, 1);
2499 /* Do not set flags as this is safe and we don't want to be
2500 verbose. */
2501 (*objfile->sf->sym_read) (objfile, 0);
2502 if (!objfile_has_symbols (objfile))
c906108c 2503 {
9cce227f
TG
2504 wrap_here ("");
2505 printf_unfiltered (_("(no debugging symbols found)\n"));
2506 wrap_here ("");
c5aa993b 2507 }
9cce227f
TG
2508
2509 /* We're done reading the symbol file; finish off complaints. */
2510 clear_complaints (&symfile_complaints, 0, 1);
2511
2512 /* Getting new symbols may change our opinion about what is
2513 frameless. */
2514
2515 reinit_frame_cache ();
2516
2517 /* Discard cleanups as symbol reading was successful. */
2518 discard_cleanups (old_cleanups);
2519
2520 /* If the mtime has changed between the time we set new_modtime
2521 and now, we *want* this to be out of date, so don't call stat
2522 again now. */
2523 objfile->mtime = new_modtime;
2524 reread_one = 1;
2525 init_entry_point_info (objfile);
c906108c
SS
2526 }
2527 }
c906108c
SS
2528
2529 if (reread_one)
ea53e89f 2530 {
ff3536bc
UW
2531 /* Notify objfiles that we've modified objfile sections. */
2532 objfiles_changed ();
2533
c1e56572 2534 clear_symtab_users (0);
ea53e89f
JB
2535 /* At least one objfile has changed, so we can consider that
2536 the executable we're debugging has changed too. */
781b42b0 2537 observer_notify_executable_changed ();
ea53e89f 2538 }
c906108c 2539}
c906108c
SS
2540\f
2541
c5aa993b
JM
2542
2543typedef struct
2544{
2545 char *ext;
c906108c 2546 enum language lang;
c5aa993b
JM
2547}
2548filename_language;
c906108c 2549
c5aa993b 2550static filename_language *filename_language_table;
c906108c
SS
2551static int fl_table_size, fl_table_next;
2552
2553static void
fba45db2 2554add_filename_language (char *ext, enum language lang)
c906108c
SS
2555{
2556 if (fl_table_next >= fl_table_size)
2557 {
2558 fl_table_size += 10;
5417f6dc 2559 filename_language_table =
25bf3106
PM
2560 xrealloc (filename_language_table,
2561 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2562 }
2563
4fcf66da 2564 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2565 filename_language_table[fl_table_next].lang = lang;
2566 fl_table_next++;
2567}
2568
2569static char *ext_args;
920d2a44
AC
2570static void
2571show_ext_args (struct ui_file *file, int from_tty,
2572 struct cmd_list_element *c, const char *value)
2573{
2574 fprintf_filtered (file, _("\
2575Mapping between filename extension and source language is \"%s\".\n"),
2576 value);
2577}
c906108c
SS
2578
2579static void
26c41df3 2580set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2581{
2582 int i;
2583 char *cp = ext_args;
2584 enum language lang;
2585
2586 /* First arg is filename extension, starting with '.' */
2587 if (*cp != '.')
8a3fe4f8 2588 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2589
2590 /* Find end of first arg. */
c5aa993b 2591 while (*cp && !isspace (*cp))
c906108c
SS
2592 cp++;
2593
2594 if (*cp == '\0')
8a3fe4f8 2595 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2596 ext_args);
2597
2598 /* Null-terminate first arg */
c5aa993b 2599 *cp++ = '\0';
c906108c
SS
2600
2601 /* Find beginning of second arg, which should be a source language. */
2602 while (*cp && isspace (*cp))
2603 cp++;
2604
2605 if (*cp == '\0')
8a3fe4f8 2606 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2607 ext_args);
2608
2609 /* Lookup the language from among those we know. */
2610 lang = language_enum (cp);
2611
2612 /* Now lookup the filename extension: do we already know it? */
2613 for (i = 0; i < fl_table_next; i++)
2614 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2615 break;
2616
2617 if (i >= fl_table_next)
2618 {
2619 /* new file extension */
2620 add_filename_language (ext_args, lang);
2621 }
2622 else
2623 {
2624 /* redefining a previously known filename extension */
2625
2626 /* if (from_tty) */
2627 /* query ("Really make files of type %s '%s'?", */
2628 /* ext_args, language_str (lang)); */
2629
b8c9b27d 2630 xfree (filename_language_table[i].ext);
4fcf66da 2631 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2632 filename_language_table[i].lang = lang;
2633 }
2634}
2635
2636static void
fba45db2 2637info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2638{
2639 int i;
2640
a3f17187 2641 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2642 printf_filtered ("\n\n");
2643 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2644 printf_filtered ("\t%s\t- %s\n",
2645 filename_language_table[i].ext,
c906108c
SS
2646 language_str (filename_language_table[i].lang));
2647}
2648
2649static void
fba45db2 2650init_filename_language_table (void)
c906108c
SS
2651{
2652 if (fl_table_size == 0) /* protect against repetition */
2653 {
2654 fl_table_size = 20;
2655 fl_table_next = 0;
c5aa993b 2656 filename_language_table =
c906108c 2657 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2658 add_filename_language (".c", language_c);
6aecb9c2 2659 add_filename_language (".d", language_d);
c5aa993b
JM
2660 add_filename_language (".C", language_cplus);
2661 add_filename_language (".cc", language_cplus);
2662 add_filename_language (".cp", language_cplus);
2663 add_filename_language (".cpp", language_cplus);
2664 add_filename_language (".cxx", language_cplus);
2665 add_filename_language (".c++", language_cplus);
2666 add_filename_language (".java", language_java);
c906108c 2667 add_filename_language (".class", language_java);
da2cf7e0 2668 add_filename_language (".m", language_objc);
c5aa993b
JM
2669 add_filename_language (".f", language_fortran);
2670 add_filename_language (".F", language_fortran);
fd5700c7
JK
2671 add_filename_language (".for", language_fortran);
2672 add_filename_language (".FOR", language_fortran);
2673 add_filename_language (".ftn", language_fortran);
2674 add_filename_language (".FTN", language_fortran);
2675 add_filename_language (".fpp", language_fortran);
2676 add_filename_language (".FPP", language_fortran);
2677 add_filename_language (".f90", language_fortran);
2678 add_filename_language (".F90", language_fortran);
2679 add_filename_language (".f95", language_fortran);
2680 add_filename_language (".F95", language_fortran);
2681 add_filename_language (".f03", language_fortran);
2682 add_filename_language (".F03", language_fortran);
2683 add_filename_language (".f08", language_fortran);
2684 add_filename_language (".F08", language_fortran);
c5aa993b 2685 add_filename_language (".s", language_asm);
aa707ed0 2686 add_filename_language (".sx", language_asm);
c5aa993b 2687 add_filename_language (".S", language_asm);
c6fd39cd
PM
2688 add_filename_language (".pas", language_pascal);
2689 add_filename_language (".p", language_pascal);
2690 add_filename_language (".pp", language_pascal);
963a6417
PH
2691 add_filename_language (".adb", language_ada);
2692 add_filename_language (".ads", language_ada);
2693 add_filename_language (".a", language_ada);
2694 add_filename_language (".ada", language_ada);
dde59185 2695 add_filename_language (".dg", language_ada);
c906108c
SS
2696 }
2697}
2698
2699enum language
dd786858 2700deduce_language_from_filename (const char *filename)
c906108c
SS
2701{
2702 int i;
2703 char *cp;
2704
2705 if (filename != NULL)
2706 if ((cp = strrchr (filename, '.')) != NULL)
2707 for (i = 0; i < fl_table_next; i++)
2708 if (strcmp (cp, filename_language_table[i].ext) == 0)
2709 return filename_language_table[i].lang;
2710
2711 return language_unknown;
2712}
2713\f
2714/* allocate_symtab:
2715
2716 Allocate and partly initialize a new symbol table. Return a pointer
2717 to it. error() if no space.
2718
2719 Caller must set these fields:
c5aa993b
JM
2720 LINETABLE(symtab)
2721 symtab->blockvector
2722 symtab->dirname
2723 symtab->free_code
2724 symtab->free_ptr
c906108c
SS
2725 */
2726
2727struct symtab *
72b9f47f 2728allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2729{
52f0bd74 2730 struct symtab *symtab;
c906108c
SS
2731
2732 symtab = (struct symtab *)
4a146b47 2733 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2734 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2735 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2736 objfile->filename_cache);
c5aa993b
JM
2737 symtab->fullname = NULL;
2738 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2739 symtab->debugformat = "unknown";
c906108c
SS
2740
2741 /* Hook it to the objfile it comes from */
2742
c5aa993b
JM
2743 symtab->objfile = objfile;
2744 symtab->next = objfile->symtabs;
2745 objfile->symtabs = symtab;
c906108c 2746
c906108c
SS
2747 return (symtab);
2748}
c906108c 2749\f
c5aa993b 2750
c906108c 2751/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2752 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2753
2754void
c1e56572 2755clear_symtab_users (int add_flags)
c906108c
SS
2756{
2757 /* Someday, we should do better than this, by only blowing away
2758 the things that really need to be blown. */
c0501be5
DJ
2759
2760 /* Clear the "current" symtab first, because it is no longer valid.
2761 breakpoint_re_set may try to access the current symtab. */
2762 clear_current_source_symtab_and_line ();
2763
c906108c 2764 clear_displays ();
c1e56572
JK
2765 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2766 breakpoint_re_set ();
6c95b8df 2767 set_default_breakpoint (0, NULL, 0, 0, 0);
c906108c 2768 clear_pc_function_cache ();
06d3b283 2769 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2770
2771 /* Clear globals which might have pointed into a removed objfile.
2772 FIXME: It's not clear which of these are supposed to persist
2773 between expressions and which ought to be reset each time. */
2774 expression_context_block = NULL;
2775 innermost_block = NULL;
8756216b
DP
2776
2777 /* Varobj may refer to old symbols, perform a cleanup. */
2778 varobj_invalidate ();
2779
c906108c
SS
2780}
2781
74b7792f
AC
2782static void
2783clear_symtab_users_cleanup (void *ignore)
2784{
c1e56572 2785 clear_symtab_users (0);
74b7792f 2786}
c906108c 2787\f
c906108c
SS
2788/* OVERLAYS:
2789 The following code implements an abstraction for debugging overlay sections.
2790
2791 The target model is as follows:
2792 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2793 same VMA, each with its own unique LMA (or load address).
c906108c 2794 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2795 sections, one by one, from the load address into the VMA address.
5417f6dc 2796 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2797 sections should be considered to be mapped from the VMA to the LMA.
2798 This information is used for symbol lookup, and memory read/write.
5417f6dc 2799 For instance, if a section has been mapped then its contents
c5aa993b 2800 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2801
2802 Two levels of debugger support for overlays are available. One is
2803 "manual", in which the debugger relies on the user to tell it which
2804 overlays are currently mapped. This level of support is
2805 implemented entirely in the core debugger, and the information about
2806 whether a section is mapped is kept in the objfile->obj_section table.
2807
2808 The second level of support is "automatic", and is only available if
2809 the target-specific code provides functionality to read the target's
2810 overlay mapping table, and translate its contents for the debugger
2811 (by updating the mapped state information in the obj_section tables).
2812
2813 The interface is as follows:
c5aa993b
JM
2814 User commands:
2815 overlay map <name> -- tell gdb to consider this section mapped
2816 overlay unmap <name> -- tell gdb to consider this section unmapped
2817 overlay list -- list the sections that GDB thinks are mapped
2818 overlay read-target -- get the target's state of what's mapped
2819 overlay off/manual/auto -- set overlay debugging state
2820 Functional interface:
2821 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2822 section, return that section.
5417f6dc 2823 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2824 the pc, either in its VMA or its LMA
714835d5 2825 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2826 section_is_overlay(sect): true if section's VMA != LMA
2827 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2828 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2829 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2830 overlay_mapped_address(...): map an address from section's LMA to VMA
2831 overlay_unmapped_address(...): map an address from section's VMA to LMA
2832 symbol_overlayed_address(...): Return a "current" address for symbol:
2833 either in VMA or LMA depending on whether
2834 the symbol's section is currently mapped
c906108c
SS
2835 */
2836
2837/* Overlay debugging state: */
2838
d874f1e2 2839enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2840int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2841
c906108c 2842/* Function: section_is_overlay (SECTION)
5417f6dc 2843 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2844 SECTION is loaded at an address different from where it will "run". */
2845
2846int
714835d5 2847section_is_overlay (struct obj_section *section)
c906108c 2848{
714835d5
UW
2849 if (overlay_debugging && section)
2850 {
2851 bfd *abfd = section->objfile->obfd;
2852 asection *bfd_section = section->the_bfd_section;
2853
2854 if (bfd_section_lma (abfd, bfd_section) != 0
2855 && bfd_section_lma (abfd, bfd_section)
2856 != bfd_section_vma (abfd, bfd_section))
2857 return 1;
2858 }
c906108c
SS
2859
2860 return 0;
2861}
2862
2863/* Function: overlay_invalidate_all (void)
2864 Invalidate the mapped state of all overlay sections (mark it as stale). */
2865
2866static void
fba45db2 2867overlay_invalidate_all (void)
c906108c 2868{
c5aa993b 2869 struct objfile *objfile;
c906108c
SS
2870 struct obj_section *sect;
2871
2872 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2873 if (section_is_overlay (sect))
2874 sect->ovly_mapped = -1;
c906108c
SS
2875}
2876
714835d5 2877/* Function: section_is_mapped (SECTION)
5417f6dc 2878 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2879
2880 Access to the ovly_mapped flag is restricted to this function, so
2881 that we can do automatic update. If the global flag
2882 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2883 overlay_invalidate_all. If the mapped state of the particular
2884 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2885
714835d5
UW
2886int
2887section_is_mapped (struct obj_section *osect)
c906108c 2888{
9216df95
UW
2889 struct gdbarch *gdbarch;
2890
714835d5 2891 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2892 return 0;
2893
c5aa993b 2894 switch (overlay_debugging)
c906108c
SS
2895 {
2896 default:
d874f1e2 2897 case ovly_off:
c5aa993b 2898 return 0; /* overlay debugging off */
d874f1e2 2899 case ovly_auto: /* overlay debugging automatic */
1c772458 2900 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 2901 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
2902 gdbarch = get_objfile_arch (osect->objfile);
2903 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2904 {
2905 if (overlay_cache_invalid)
2906 {
2907 overlay_invalidate_all ();
2908 overlay_cache_invalid = 0;
2909 }
2910 if (osect->ovly_mapped == -1)
9216df95 2911 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2912 }
2913 /* fall thru to manual case */
d874f1e2 2914 case ovly_on: /* overlay debugging manual */
c906108c
SS
2915 return osect->ovly_mapped == 1;
2916 }
2917}
2918
c906108c
SS
2919/* Function: pc_in_unmapped_range
2920 If PC falls into the lma range of SECTION, return true, else false. */
2921
2922CORE_ADDR
714835d5 2923pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2924{
714835d5
UW
2925 if (section_is_overlay (section))
2926 {
2927 bfd *abfd = section->objfile->obfd;
2928 asection *bfd_section = section->the_bfd_section;
fbd35540 2929
714835d5
UW
2930 /* We assume the LMA is relocated by the same offset as the VMA. */
2931 bfd_vma size = bfd_get_section_size (bfd_section);
2932 CORE_ADDR offset = obj_section_offset (section);
2933
2934 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2935 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2936 return 1;
2937 }
c906108c 2938
c906108c
SS
2939 return 0;
2940}
2941
2942/* Function: pc_in_mapped_range
2943 If PC falls into the vma range of SECTION, return true, else false. */
2944
2945CORE_ADDR
714835d5 2946pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2947{
714835d5
UW
2948 if (section_is_overlay (section))
2949 {
2950 if (obj_section_addr (section) <= pc
2951 && pc < obj_section_endaddr (section))
2952 return 1;
2953 }
c906108c 2954
c906108c
SS
2955 return 0;
2956}
2957
9ec8e6a0
JB
2958
2959/* Return true if the mapped ranges of sections A and B overlap, false
2960 otherwise. */
b9362cc7 2961static int
714835d5 2962sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 2963{
714835d5
UW
2964 CORE_ADDR a_start = obj_section_addr (a);
2965 CORE_ADDR a_end = obj_section_endaddr (a);
2966 CORE_ADDR b_start = obj_section_addr (b);
2967 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
2968
2969 return (a_start < b_end && b_start < a_end);
2970}
2971
c906108c
SS
2972/* Function: overlay_unmapped_address (PC, SECTION)
2973 Returns the address corresponding to PC in the unmapped (load) range.
2974 May be the same as PC. */
2975
2976CORE_ADDR
714835d5 2977overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2978{
714835d5
UW
2979 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2980 {
2981 bfd *abfd = section->objfile->obfd;
2982 asection *bfd_section = section->the_bfd_section;
fbd35540 2983
714835d5
UW
2984 return pc + bfd_section_lma (abfd, bfd_section)
2985 - bfd_section_vma (abfd, bfd_section);
2986 }
c906108c
SS
2987
2988 return pc;
2989}
2990
2991/* Function: overlay_mapped_address (PC, SECTION)
2992 Returns the address corresponding to PC in the mapped (runtime) range.
2993 May be the same as PC. */
2994
2995CORE_ADDR
714835d5 2996overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2997{
714835d5
UW
2998 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2999 {
3000 bfd *abfd = section->objfile->obfd;
3001 asection *bfd_section = section->the_bfd_section;
fbd35540 3002
714835d5
UW
3003 return pc + bfd_section_vma (abfd, bfd_section)
3004 - bfd_section_lma (abfd, bfd_section);
3005 }
c906108c
SS
3006
3007 return pc;
3008}
3009
3010
5417f6dc 3011/* Function: symbol_overlayed_address
c906108c
SS
3012 Return one of two addresses (relative to the VMA or to the LMA),
3013 depending on whether the section is mapped or not. */
3014
c5aa993b 3015CORE_ADDR
714835d5 3016symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3017{
3018 if (overlay_debugging)
3019 {
3020 /* If the symbol has no section, just return its regular address. */
3021 if (section == 0)
3022 return address;
3023 /* If the symbol's section is not an overlay, just return its address */
3024 if (!section_is_overlay (section))
3025 return address;
3026 /* If the symbol's section is mapped, just return its address */
3027 if (section_is_mapped (section))
3028 return address;
3029 /*
3030 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3031 * then return its LOADED address rather than its vma address!!
3032 */
3033 return overlay_unmapped_address (address, section);
3034 }
3035 return address;
3036}
3037
5417f6dc 3038/* Function: find_pc_overlay (PC)
c906108c
SS
3039 Return the best-match overlay section for PC:
3040 If PC matches a mapped overlay section's VMA, return that section.
3041 Else if PC matches an unmapped section's VMA, return that section.
3042 Else if PC matches an unmapped section's LMA, return that section. */
3043
714835d5 3044struct obj_section *
fba45db2 3045find_pc_overlay (CORE_ADDR pc)
c906108c 3046{
c5aa993b 3047 struct objfile *objfile;
c906108c
SS
3048 struct obj_section *osect, *best_match = NULL;
3049
3050 if (overlay_debugging)
3051 ALL_OBJSECTIONS (objfile, osect)
714835d5 3052 if (section_is_overlay (osect))
c5aa993b 3053 {
714835d5 3054 if (pc_in_mapped_range (pc, osect))
c5aa993b 3055 {
714835d5
UW
3056 if (section_is_mapped (osect))
3057 return osect;
c5aa993b
JM
3058 else
3059 best_match = osect;
3060 }
714835d5 3061 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3062 best_match = osect;
3063 }
714835d5 3064 return best_match;
c906108c
SS
3065}
3066
3067/* Function: find_pc_mapped_section (PC)
5417f6dc 3068 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3069 currently marked as MAPPED, return that section. Else return NULL. */
3070
714835d5 3071struct obj_section *
fba45db2 3072find_pc_mapped_section (CORE_ADDR pc)
c906108c 3073{
c5aa993b 3074 struct objfile *objfile;
c906108c
SS
3075 struct obj_section *osect;
3076
3077 if (overlay_debugging)
3078 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3079 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3080 return osect;
c906108c
SS
3081
3082 return NULL;
3083}
3084
3085/* Function: list_overlays_command
3086 Print a list of mapped sections and their PC ranges */
3087
3088void
fba45db2 3089list_overlays_command (char *args, int from_tty)
c906108c 3090{
c5aa993b
JM
3091 int nmapped = 0;
3092 struct objfile *objfile;
c906108c
SS
3093 struct obj_section *osect;
3094
3095 if (overlay_debugging)
3096 ALL_OBJSECTIONS (objfile, osect)
714835d5 3097 if (section_is_mapped (osect))
c5aa993b 3098 {
5af949e3 3099 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3100 const char *name;
3101 bfd_vma lma, vma;
3102 int size;
3103
3104 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3105 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3106 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3107 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3108
3109 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3110 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3111 puts_filtered (" - ");
5af949e3 3112 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3113 printf_filtered (", mapped at ");
5af949e3 3114 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3115 puts_filtered (" - ");
5af949e3 3116 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3117 puts_filtered ("\n");
3118
3119 nmapped++;
3120 }
c906108c 3121 if (nmapped == 0)
a3f17187 3122 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3123}
3124
3125/* Function: map_overlay_command
3126 Mark the named section as mapped (ie. residing at its VMA address). */
3127
3128void
fba45db2 3129map_overlay_command (char *args, int from_tty)
c906108c 3130{
c5aa993b
JM
3131 struct objfile *objfile, *objfile2;
3132 struct obj_section *sec, *sec2;
c906108c
SS
3133
3134 if (!overlay_debugging)
8a3fe4f8 3135 error (_("\
515ad16c 3136Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3137the 'overlay manual' command."));
c906108c
SS
3138
3139 if (args == 0 || *args == 0)
8a3fe4f8 3140 error (_("Argument required: name of an overlay section"));
c906108c
SS
3141
3142 /* First, find a section matching the user supplied argument */
3143 ALL_OBJSECTIONS (objfile, sec)
3144 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3145 {
3146 /* Now, check to see if the section is an overlay. */
714835d5 3147 if (!section_is_overlay (sec))
c5aa993b
JM
3148 continue; /* not an overlay section */
3149
3150 /* Mark the overlay as "mapped" */
3151 sec->ovly_mapped = 1;
3152
3153 /* Next, make a pass and unmap any sections that are
3154 overlapped by this new section: */
3155 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3156 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3157 {
3158 if (info_verbose)
a3f17187 3159 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3160 bfd_section_name (objfile->obfd,
3161 sec2->the_bfd_section));
3162 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3163 }
3164 return;
3165 }
8a3fe4f8 3166 error (_("No overlay section called %s"), args);
c906108c
SS
3167}
3168
3169/* Function: unmap_overlay_command
5417f6dc 3170 Mark the overlay section as unmapped
c906108c
SS
3171 (ie. resident in its LMA address range, rather than the VMA range). */
3172
3173void
fba45db2 3174unmap_overlay_command (char *args, int from_tty)
c906108c 3175{
c5aa993b 3176 struct objfile *objfile;
c906108c
SS
3177 struct obj_section *sec;
3178
3179 if (!overlay_debugging)
8a3fe4f8 3180 error (_("\
515ad16c 3181Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3182the 'overlay manual' command."));
c906108c
SS
3183
3184 if (args == 0 || *args == 0)
8a3fe4f8 3185 error (_("Argument required: name of an overlay section"));
c906108c
SS
3186
3187 /* First, find a section matching the user supplied argument */
3188 ALL_OBJSECTIONS (objfile, sec)
3189 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3190 {
3191 if (!sec->ovly_mapped)
8a3fe4f8 3192 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3193 sec->ovly_mapped = 0;
3194 return;
3195 }
8a3fe4f8 3196 error (_("No overlay section called %s"), args);
c906108c
SS
3197}
3198
3199/* Function: overlay_auto_command
3200 A utility command to turn on overlay debugging.
3201 Possibly this should be done via a set/show command. */
3202
3203static void
fba45db2 3204overlay_auto_command (char *args, int from_tty)
c906108c 3205{
d874f1e2 3206 overlay_debugging = ovly_auto;
1900040c 3207 enable_overlay_breakpoints ();
c906108c 3208 if (info_verbose)
a3f17187 3209 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3210}
3211
3212/* Function: overlay_manual_command
3213 A utility command to turn on overlay debugging.
3214 Possibly this should be done via a set/show command. */
3215
3216static void
fba45db2 3217overlay_manual_command (char *args, int from_tty)
c906108c 3218{
d874f1e2 3219 overlay_debugging = ovly_on;
1900040c 3220 disable_overlay_breakpoints ();
c906108c 3221 if (info_verbose)
a3f17187 3222 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3223}
3224
3225/* Function: overlay_off_command
3226 A utility command to turn on overlay debugging.
3227 Possibly this should be done via a set/show command. */
3228
3229static void
fba45db2 3230overlay_off_command (char *args, int from_tty)
c906108c 3231{
d874f1e2 3232 overlay_debugging = ovly_off;
1900040c 3233 disable_overlay_breakpoints ();
c906108c 3234 if (info_verbose)
a3f17187 3235 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3236}
3237
3238static void
fba45db2 3239overlay_load_command (char *args, int from_tty)
c906108c 3240{
e17c207e
UW
3241 struct gdbarch *gdbarch = get_current_arch ();
3242
3243 if (gdbarch_overlay_update_p (gdbarch))
3244 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3245 else
8a3fe4f8 3246 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3247}
3248
3249/* Function: overlay_command
3250 A place-holder for a mis-typed command */
3251
3252/* Command list chain containing all defined "overlay" subcommands. */
3253struct cmd_list_element *overlaylist;
3254
3255static void
fba45db2 3256overlay_command (char *args, int from_tty)
c906108c 3257{
c5aa993b 3258 printf_unfiltered
c906108c
SS
3259 ("\"overlay\" must be followed by the name of an overlay command.\n");
3260 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3261}
3262
3263
3264/* Target Overlays for the "Simplest" overlay manager:
3265
5417f6dc
RM
3266 This is GDB's default target overlay layer. It works with the
3267 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3268 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3269 so targets that use a different runtime overlay manager can
c906108c
SS
3270 substitute their own overlay_update function and take over the
3271 function pointer.
3272
3273 The overlay_update function pokes around in the target's data structures
3274 to see what overlays are mapped, and updates GDB's overlay mapping with
3275 this information.
3276
3277 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3278 unsigned _novlys; /# number of overlay sections #/
3279 unsigned _ovly_table[_novlys][4] = {
3280 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3281 {..., ..., ..., ...},
3282 }
3283 unsigned _novly_regions; /# number of overlay regions #/
3284 unsigned _ovly_region_table[_novly_regions][3] = {
3285 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3286 {..., ..., ...},
3287 }
c906108c
SS
3288 These functions will attempt to update GDB's mappedness state in the
3289 symbol section table, based on the target's mappedness state.
3290
3291 To do this, we keep a cached copy of the target's _ovly_table, and
3292 attempt to detect when the cached copy is invalidated. The main
3293 entry point is "simple_overlay_update(SECT), which looks up SECT in
3294 the cached table and re-reads only the entry for that section from
3295 the target (whenever possible).
3296 */
3297
3298/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3299static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3300static unsigned cache_novlys = 0;
c906108c 3301static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3302enum ovly_index
3303 {
3304 VMA, SIZE, LMA, MAPPED
3305 };
c906108c
SS
3306
3307/* Throw away the cached copy of _ovly_table */
3308static void
fba45db2 3309simple_free_overlay_table (void)
c906108c
SS
3310{
3311 if (cache_ovly_table)
b8c9b27d 3312 xfree (cache_ovly_table);
c5aa993b 3313 cache_novlys = 0;
c906108c
SS
3314 cache_ovly_table = NULL;
3315 cache_ovly_table_base = 0;
3316}
3317
9216df95 3318/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3319 Convert to host order. int LEN is number of ints */
3320static void
9216df95 3321read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3322 int len, int size, enum bfd_endian byte_order)
c906108c 3323{
34c0bd93 3324 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3325 gdb_byte *buf = alloca (len * size);
c5aa993b 3326 int i;
c906108c 3327
9216df95 3328 read_memory (memaddr, buf, len * size);
c906108c 3329 for (i = 0; i < len; i++)
e17a4113 3330 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3331}
3332
3333/* Find and grab a copy of the target _ovly_table
3334 (and _novlys, which is needed for the table's size) */
c5aa993b 3335static int
fba45db2 3336simple_read_overlay_table (void)
c906108c 3337{
0d43edd1 3338 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3339 struct gdbarch *gdbarch;
3340 int word_size;
e17a4113 3341 enum bfd_endian byte_order;
c906108c
SS
3342
3343 simple_free_overlay_table ();
9b27852e 3344 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3345 if (! novlys_msym)
c906108c 3346 {
8a3fe4f8 3347 error (_("Error reading inferior's overlay table: "
0d43edd1 3348 "couldn't find `_novlys' variable\n"
8a3fe4f8 3349 "in inferior. Use `overlay manual' mode."));
0d43edd1 3350 return 0;
c906108c 3351 }
0d43edd1 3352
9b27852e 3353 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3354 if (! ovly_table_msym)
3355 {
8a3fe4f8 3356 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3357 "`_ovly_table' array\n"
8a3fe4f8 3358 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3359 return 0;
3360 }
3361
9216df95
UW
3362 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3363 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3364 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3365
e17a4113
UW
3366 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3367 4, byte_order);
0d43edd1
JB
3368 cache_ovly_table
3369 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3370 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3371 read_target_long_array (cache_ovly_table_base,
777ea8f1 3372 (unsigned int *) cache_ovly_table,
e17a4113 3373 cache_novlys * 4, word_size, byte_order);
0d43edd1 3374
c5aa993b 3375 return 1; /* SUCCESS */
c906108c
SS
3376}
3377
5417f6dc 3378/* Function: simple_overlay_update_1
c906108c
SS
3379 A helper function for simple_overlay_update. Assuming a cached copy
3380 of _ovly_table exists, look through it to find an entry whose vma,
3381 lma and size match those of OSECT. Re-read the entry and make sure
3382 it still matches OSECT (else the table may no longer be valid).
3383 Set OSECT's mapped state to match the entry. Return: 1 for
3384 success, 0 for failure. */
3385
3386static int
fba45db2 3387simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3388{
3389 int i, size;
fbd35540
MS
3390 bfd *obfd = osect->objfile->obfd;
3391 asection *bsect = osect->the_bfd_section;
9216df95
UW
3392 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3393 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3394 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3395
2c500098 3396 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3397 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3398 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3399 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3400 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3401 {
9216df95
UW
3402 read_target_long_array (cache_ovly_table_base + i * word_size,
3403 (unsigned int *) cache_ovly_table[i],
e17a4113 3404 4, word_size, byte_order);
fbd35540
MS
3405 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3406 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3407 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3408 {
3409 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3410 return 1;
3411 }
fbd35540 3412 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3413 return 0;
3414 }
3415 return 0;
3416}
3417
3418/* Function: simple_overlay_update
5417f6dc
RM
3419 If OSECT is NULL, then update all sections' mapped state
3420 (after re-reading the entire target _ovly_table).
3421 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3422 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3423 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3424 re-read the entire cache, and go ahead and update all sections. */
3425
1c772458 3426void
fba45db2 3427simple_overlay_update (struct obj_section *osect)
c906108c 3428{
c5aa993b 3429 struct objfile *objfile;
c906108c
SS
3430
3431 /* Were we given an osect to look up? NULL means do all of them. */
3432 if (osect)
3433 /* Have we got a cached copy of the target's overlay table? */
3434 if (cache_ovly_table != NULL)
3435 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3436 if (cache_ovly_table_base ==
9b27852e 3437 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3438 /* Then go ahead and try to look up this single section in the cache */
3439 if (simple_overlay_update_1 (osect))
3440 /* Found it! We're done. */
3441 return;
3442
3443 /* Cached table no good: need to read the entire table anew.
3444 Or else we want all the sections, in which case it's actually
3445 more efficient to read the whole table in one block anyway. */
3446
0d43edd1
JB
3447 if (! simple_read_overlay_table ())
3448 return;
3449
c906108c
SS
3450 /* Now may as well update all sections, even if only one was requested. */
3451 ALL_OBJSECTIONS (objfile, osect)
714835d5 3452 if (section_is_overlay (osect))
c5aa993b
JM
3453 {
3454 int i, size;
fbd35540
MS
3455 bfd *obfd = osect->objfile->obfd;
3456 asection *bsect = osect->the_bfd_section;
c5aa993b 3457
2c500098 3458 size = bfd_get_section_size (bsect);
c5aa993b 3459 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3460 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3461 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3462 /* && cache_ovly_table[i][SIZE] == size */ )
3463 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3464 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3465 break; /* finished with inner for loop: break out */
3466 }
3467 }
c906108c
SS
3468}
3469
086df311
DJ
3470/* Set the output sections and output offsets for section SECTP in
3471 ABFD. The relocation code in BFD will read these offsets, so we
3472 need to be sure they're initialized. We map each section to itself,
3473 with no offset; this means that SECTP->vma will be honored. */
3474
3475static void
3476symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3477{
3478 sectp->output_section = sectp;
3479 sectp->output_offset = 0;
3480}
3481
ac8035ab
TG
3482/* Default implementation for sym_relocate. */
3483
3484
3485bfd_byte *
3486default_symfile_relocate (struct objfile *objfile, asection *sectp,
3487 bfd_byte *buf)
3488{
3489 bfd *abfd = objfile->obfd;
3490
3491 /* We're only interested in sections with relocation
3492 information. */
3493 if ((sectp->flags & SEC_RELOC) == 0)
3494 return NULL;
3495
3496 /* We will handle section offsets properly elsewhere, so relocate as if
3497 all sections begin at 0. */
3498 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3499
3500 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3501}
3502
086df311
DJ
3503/* Relocate the contents of a debug section SECTP in ABFD. The
3504 contents are stored in BUF if it is non-NULL, or returned in a
3505 malloc'd buffer otherwise.
3506
3507 For some platforms and debug info formats, shared libraries contain
3508 relocations against the debug sections (particularly for DWARF-2;
3509 one affected platform is PowerPC GNU/Linux, although it depends on
3510 the version of the linker in use). Also, ELF object files naturally
3511 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3512 the relocations in order to get the locations of symbols correct.
3513 Another example that may require relocation processing, is the
3514 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3515 debug section. */
086df311
DJ
3516
3517bfd_byte *
ac8035ab
TG
3518symfile_relocate_debug_section (struct objfile *objfile,
3519 asection *sectp, bfd_byte *buf)
086df311 3520{
ac8035ab 3521 gdb_assert (objfile->sf->sym_relocate);
086df311 3522
ac8035ab 3523 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3524}
c906108c 3525
31d99776
DJ
3526struct symfile_segment_data *
3527get_symfile_segment_data (bfd *abfd)
3528{
00b5771c 3529 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3530
3531 if (sf == NULL)
3532 return NULL;
3533
3534 return sf->sym_segments (abfd);
3535}
3536
3537void
3538free_symfile_segment_data (struct symfile_segment_data *data)
3539{
3540 xfree (data->segment_bases);
3541 xfree (data->segment_sizes);
3542 xfree (data->segment_info);
3543 xfree (data);
3544}
3545
28c32713
JB
3546
3547/* Given:
3548 - DATA, containing segment addresses from the object file ABFD, and
3549 the mapping from ABFD's sections onto the segments that own them,
3550 and
3551 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3552 segment addresses reported by the target,
3553 store the appropriate offsets for each section in OFFSETS.
3554
3555 If there are fewer entries in SEGMENT_BASES than there are segments
3556 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3557
8d385431
DJ
3558 If there are more entries, then ignore the extra. The target may
3559 not be able to distinguish between an empty data segment and a
3560 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3561int
3562symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3563 struct section_offsets *offsets,
3564 int num_segment_bases,
3565 const CORE_ADDR *segment_bases)
3566{
3567 int i;
3568 asection *sect;
3569
28c32713
JB
3570 /* It doesn't make sense to call this function unless you have some
3571 segment base addresses. */
202b96c1 3572 gdb_assert (num_segment_bases > 0);
28c32713 3573
31d99776
DJ
3574 /* If we do not have segment mappings for the object file, we
3575 can not relocate it by segments. */
3576 gdb_assert (data != NULL);
3577 gdb_assert (data->num_segments > 0);
3578
31d99776
DJ
3579 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3580 {
31d99776
DJ
3581 int which = data->segment_info[i];
3582
28c32713
JB
3583 gdb_assert (0 <= which && which <= data->num_segments);
3584
3585 /* Don't bother computing offsets for sections that aren't
3586 loaded as part of any segment. */
3587 if (! which)
3588 continue;
3589
3590 /* Use the last SEGMENT_BASES entry as the address of any extra
3591 segments mentioned in DATA->segment_info. */
31d99776 3592 if (which > num_segment_bases)
28c32713 3593 which = num_segment_bases;
31d99776 3594
28c32713
JB
3595 offsets->offsets[i] = (segment_bases[which - 1]
3596 - data->segment_bases[which - 1]);
31d99776
DJ
3597 }
3598
3599 return 1;
3600}
3601
3602static void
3603symfile_find_segment_sections (struct objfile *objfile)
3604{
3605 bfd *abfd = objfile->obfd;
3606 int i;
3607 asection *sect;
3608 struct symfile_segment_data *data;
3609
3610 data = get_symfile_segment_data (objfile->obfd);
3611 if (data == NULL)
3612 return;
3613
3614 if (data->num_segments != 1 && data->num_segments != 2)
3615 {
3616 free_symfile_segment_data (data);
3617 return;
3618 }
3619
3620 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3621 {
31d99776
DJ
3622 int which = data->segment_info[i];
3623
3624 if (which == 1)
3625 {
3626 if (objfile->sect_index_text == -1)
3627 objfile->sect_index_text = sect->index;
3628
3629 if (objfile->sect_index_rodata == -1)
3630 objfile->sect_index_rodata = sect->index;
3631 }
3632 else if (which == 2)
3633 {
3634 if (objfile->sect_index_data == -1)
3635 objfile->sect_index_data = sect->index;
3636
3637 if (objfile->sect_index_bss == -1)
3638 objfile->sect_index_bss = sect->index;
3639 }
3640 }
3641
3642 free_symfile_segment_data (data);
3643}
3644
c906108c 3645void
fba45db2 3646_initialize_symfile (void)
c906108c
SS
3647{
3648 struct cmd_list_element *c;
c5aa993b 3649
1a966eab
AC
3650 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3651Load symbol table from executable file FILE.\n\
c906108c 3652The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3653to execute."), &cmdlist);
5ba2abeb 3654 set_cmd_completer (c, filename_completer);
c906108c 3655
1a966eab 3656 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3657Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 3658Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 3659ADDR is the starting address of the file's text.\n\
db162d44
EZ
3660The optional arguments are section-name section-address pairs and\n\
3661should be specified if the data and bss segments are not contiguous\n\
1a966eab 3662with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3663 &cmdlist);
5ba2abeb 3664 set_cmd_completer (c, filename_completer);
c906108c 3665
1a966eab
AC
3666 c = add_cmd ("load", class_files, load_command, _("\
3667Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3668for access from GDB.\n\
3669A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3670 set_cmd_completer (c, filename_completer);
c906108c 3671
5bf193a2
AC
3672 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3673 &symbol_reloading, _("\
3674Set dynamic symbol table reloading multiple times in one run."), _("\
3675Show dynamic symbol table reloading multiple times in one run."), NULL,
3676 NULL,
920d2a44 3677 show_symbol_reloading,
5bf193a2 3678 &setlist, &showlist);
c906108c 3679
c5aa993b 3680 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3681 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3682 "overlay ", 0, &cmdlist);
3683
3684 add_com_alias ("ovly", "overlay", class_alias, 1);
3685 add_com_alias ("ov", "overlay", class_alias, 1);
3686
c5aa993b 3687 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3688 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3689
c5aa993b 3690 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3691 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3692
c5aa993b 3693 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3694 _("List mappings of overlay sections."), &overlaylist);
c906108c 3695
c5aa993b 3696 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3697 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3698 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3699 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3700 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3701 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3702 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3703 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3704
3705 /* Filename extension to source language lookup table: */
3706 init_filename_language_table ();
26c41df3
AC
3707 add_setshow_string_noescape_cmd ("extension-language", class_files,
3708 &ext_args, _("\
3709Set mapping between filename extension and source language."), _("\
3710Show mapping between filename extension and source language."), _("\
3711Usage: set extension-language .foo bar"),
3712 set_ext_lang_command,
920d2a44 3713 show_ext_args,
26c41df3 3714 &setlist, &showlist);
c906108c 3715
c5aa993b 3716 add_info ("extensions", info_ext_lang_command,
1bedd215 3717 _("All filename extensions associated with a source language."));
917317f4 3718
525226b5
AC
3719 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3720 &debug_file_directory, _("\
24ddea62
JK
3721Set the directories where separate debug symbols are searched for."), _("\
3722Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3723Separate debug symbols are first searched for in the same\n\
3724directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3725and lastly at the path of the directory of the binary with\n\
24ddea62 3726each global debug-file-directory component prepended."),
525226b5 3727 NULL,
920d2a44 3728 show_debug_file_directory,
525226b5 3729 &setlist, &showlist);
c906108c 3730}