]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/symfile.c
* symfile.c (syms_from_objfile_1): Use correct section count when
[thirdparty/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
28e7fd62 3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
529480d0 59#include "cli/cli-utils.h"
c906108c 60
c906108c
SS
61#include <sys/types.h>
62#include <fcntl.h>
63#include "gdb_string.h"
64#include "gdb_stat.h"
65#include <ctype.h>
66#include <time.h>
2b71414d 67#include <sys/time.h>
c906108c 68
ccefe4c4 69#include "psymtab.h"
c906108c 70
3e43a32a
MS
71int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
9a4105ab 73void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
c2d11a7d 77 unsigned long total_size);
769d7dc4
AC
78void (*deprecated_pre_add_symbol_hook) (const char *);
79void (*deprecated_post_add_symbol_hook) (void);
c906108c 80
74b7792f
AC
81static void clear_symtab_users_cleanup (void *ignore);
82
c378eb4e
MS
83/* Global variables owned by this file. */
84int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 85
c378eb4e 86/* Functions this file defines. */
c906108c 87
a14ed312 88static void load_command (char *, int);
c906108c 89
d7db6da9
FN
90static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
91
a14ed312 92static void add_symbol_file_command (char *, int);
c906108c 93
a14ed312 94bfd *symfile_bfd_open (char *);
c906108c 95
0e931cf0
JB
96int get_section_index (struct objfile *, char *);
97
00b5771c 98static const struct sym_fns *find_sym_fns (bfd *);
c906108c 99
a14ed312 100static void decrement_reading_symtab (void *);
c906108c 101
a14ed312 102static void overlay_invalidate_all (void);
c906108c 103
a14ed312 104static void overlay_auto_command (char *, int);
c906108c 105
a14ed312 106static void overlay_manual_command (char *, int);
c906108c 107
a14ed312 108static void overlay_off_command (char *, int);
c906108c 109
a14ed312 110static void overlay_load_command (char *, int);
c906108c 111
a14ed312 112static void overlay_command (char *, int);
c906108c 113
a14ed312 114static void simple_free_overlay_table (void);
c906108c 115
e17a4113
UW
116static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
117 enum bfd_endian);
c906108c 118
a14ed312 119static int simple_read_overlay_table (void);
c906108c 120
a14ed312 121static int simple_overlay_update_1 (struct obj_section *);
c906108c 122
a14ed312 123static void add_filename_language (char *ext, enum language lang);
392a587b 124
a14ed312 125static void info_ext_lang_command (char *args, int from_tty);
392a587b 126
a14ed312 127static void init_filename_language_table (void);
392a587b 128
31d99776
DJ
129static void symfile_find_segment_sections (struct objfile *objfile);
130
a14ed312 131void _initialize_symfile (void);
c906108c
SS
132
133/* List of all available sym_fns. On gdb startup, each object file reader
134 calls add_symtab_fns() to register information on each format it is
c378eb4e 135 prepared to read. */
c906108c 136
00b5771c
TT
137typedef const struct sym_fns *sym_fns_ptr;
138DEF_VEC_P (sym_fns_ptr);
139
140static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c 141
b7209cb4
FF
142/* If non-zero, shared library symbols will be added automatically
143 when the inferior is created, new libraries are loaded, or when
144 attaching to the inferior. This is almost always what users will
145 want to have happen; but for very large programs, the startup time
146 will be excessive, and so if this is a problem, the user can clear
147 this flag and then add the shared library symbols as needed. Note
148 that there is a potential for confusion, since if the shared
c906108c 149 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 150 report all the functions that are actually present. */
c906108c
SS
151
152int auto_solib_add = 1;
c906108c 153\f
c5aa993b 154
0d14a781 155/* True if we are reading a symbol table. */
c906108c
SS
156
157int currently_reading_symtab = 0;
158
159static void
fba45db2 160decrement_reading_symtab (void *dummy)
c906108c
SS
161{
162 currently_reading_symtab--;
163}
164
ccefe4c4
TT
165/* Increment currently_reading_symtab and return a cleanup that can be
166 used to decrement it. */
167struct cleanup *
168increment_reading_symtab (void)
c906108c 169{
ccefe4c4
TT
170 ++currently_reading_symtab;
171 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
172}
173
5417f6dc
RM
174/* Remember the lowest-addressed loadable section we've seen.
175 This function is called via bfd_map_over_sections.
c906108c
SS
176
177 In case of equal vmas, the section with the largest size becomes the
178 lowest-addressed loadable section.
179
180 If the vmas and sizes are equal, the last section is considered the
181 lowest-addressed loadable section. */
182
183void
4efb68b1 184find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 185{
c5aa993b 186 asection **lowest = (asection **) obj;
c906108c 187
eb73e134 188 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
189 return;
190 if (!*lowest)
191 *lowest = sect; /* First loadable section */
192 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
193 *lowest = sect; /* A lower loadable section */
194 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
195 && (bfd_section_size (abfd, (*lowest))
196 <= bfd_section_size (abfd, sect)))
197 *lowest = sect;
198}
199
d76488d8
TT
200/* Create a new section_addr_info, with room for NUM_SECTIONS. The
201 new object's 'num_sections' field is set to 0; it must be updated
202 by the caller. */
a39a16c4
MM
203
204struct section_addr_info *
205alloc_section_addr_info (size_t num_sections)
206{
207 struct section_addr_info *sap;
208 size_t size;
209
210 size = (sizeof (struct section_addr_info)
211 + sizeof (struct other_sections) * (num_sections - 1));
212 sap = (struct section_addr_info *) xmalloc (size);
213 memset (sap, 0, size);
a39a16c4
MM
214
215 return sap;
216}
62557bbc
KB
217
218/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 219 an existing section table. */
62557bbc
KB
220
221extern struct section_addr_info *
0542c86d
PA
222build_section_addr_info_from_section_table (const struct target_section *start,
223 const struct target_section *end)
62557bbc
KB
224{
225 struct section_addr_info *sap;
0542c86d 226 const struct target_section *stp;
62557bbc
KB
227 int oidx;
228
a39a16c4 229 sap = alloc_section_addr_info (end - start);
62557bbc
KB
230
231 for (stp = start, oidx = 0; stp != end; stp++)
232 {
5417f6dc 233 if (bfd_get_section_flags (stp->bfd,
fbd35540 234 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 235 && oidx < end - start)
62557bbc
KB
236 {
237 sap->other[oidx].addr = stp->addr;
5417f6dc 238 sap->other[oidx].name
fbd35540 239 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
65cf3563
TT
240 sap->other[oidx].sectindex
241 = gdb_bfd_section_index (stp->bfd, stp->the_bfd_section);
62557bbc
KB
242 oidx++;
243 }
244 }
245
d76488d8
TT
246 sap->num_sections = oidx;
247
62557bbc
KB
248 return sap;
249}
250
82ccf5a5 251/* Create a section_addr_info from section offsets in ABFD. */
089b4803 252
82ccf5a5
JK
253static struct section_addr_info *
254build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
255{
256 struct section_addr_info *sap;
257 int i;
258 struct bfd_section *sec;
259
82ccf5a5
JK
260 sap = alloc_section_addr_info (bfd_count_sections (abfd));
261 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
262 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 263 {
82ccf5a5
JK
264 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
265 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 266 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
267 i++;
268 }
d76488d8
TT
269
270 sap->num_sections = i;
271
089b4803
TG
272 return sap;
273}
274
82ccf5a5
JK
275/* Create a section_addr_info from section offsets in OBJFILE. */
276
277struct section_addr_info *
278build_section_addr_info_from_objfile (const struct objfile *objfile)
279{
280 struct section_addr_info *sap;
281 int i;
282
283 /* Before reread_symbols gets rewritten it is not safe to call:
284 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
285 */
286 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 287 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
288 {
289 int sectindex = sap->other[i].sectindex;
290
291 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
292 }
293 return sap;
294}
62557bbc 295
c378eb4e 296/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
297
298extern void
299free_section_addr_info (struct section_addr_info *sap)
300{
301 int idx;
302
a39a16c4 303 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 304 xfree (sap->other[idx].name);
b8c9b27d 305 xfree (sap);
62557bbc
KB
306}
307
308
e8289572
JB
309/* Initialize OBJFILE's sect_index_* members. */
310static void
311init_objfile_sect_indices (struct objfile *objfile)
c906108c 312{
e8289572 313 asection *sect;
c906108c 314 int i;
5417f6dc 315
b8fbeb18 316 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 317 if (sect)
b8fbeb18
EZ
318 objfile->sect_index_text = sect->index;
319
320 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 321 if (sect)
b8fbeb18
EZ
322 objfile->sect_index_data = sect->index;
323
324 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 325 if (sect)
b8fbeb18
EZ
326 objfile->sect_index_bss = sect->index;
327
328 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 329 if (sect)
b8fbeb18
EZ
330 objfile->sect_index_rodata = sect->index;
331
bbcd32ad
FF
332 /* This is where things get really weird... We MUST have valid
333 indices for the various sect_index_* members or gdb will abort.
334 So if for example, there is no ".text" section, we have to
31d99776
DJ
335 accomodate that. First, check for a file with the standard
336 one or two segments. */
337
338 symfile_find_segment_sections (objfile);
339
340 /* Except when explicitly adding symbol files at some address,
341 section_offsets contains nothing but zeros, so it doesn't matter
342 which slot in section_offsets the individual sect_index_* members
343 index into. So if they are all zero, it is safe to just point
344 all the currently uninitialized indices to the first slot. But
345 beware: if this is the main executable, it may be relocated
346 later, e.g. by the remote qOffsets packet, and then this will
347 be wrong! That's why we try segments first. */
bbcd32ad
FF
348
349 for (i = 0; i < objfile->num_sections; i++)
350 {
351 if (ANOFFSET (objfile->section_offsets, i) != 0)
352 {
353 break;
354 }
355 }
356 if (i == objfile->num_sections)
357 {
358 if (objfile->sect_index_text == -1)
359 objfile->sect_index_text = 0;
360 if (objfile->sect_index_data == -1)
361 objfile->sect_index_data = 0;
362 if (objfile->sect_index_bss == -1)
363 objfile->sect_index_bss = 0;
364 if (objfile->sect_index_rodata == -1)
365 objfile->sect_index_rodata = 0;
366 }
b8fbeb18 367}
c906108c 368
c1bd25fd
DJ
369/* The arguments to place_section. */
370
371struct place_section_arg
372{
373 struct section_offsets *offsets;
374 CORE_ADDR lowest;
375};
376
377/* Find a unique offset to use for loadable section SECT if
378 the user did not provide an offset. */
379
2c0b251b 380static void
c1bd25fd
DJ
381place_section (bfd *abfd, asection *sect, void *obj)
382{
383 struct place_section_arg *arg = obj;
384 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
385 int done;
3bd72c6f 386 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 387
2711e456
DJ
388 /* We are only interested in allocated sections. */
389 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
390 return;
391
392 /* If the user specified an offset, honor it. */
65cf3563 393 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
394 return;
395
396 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
397 start_addr = (arg->lowest + align - 1) & -align;
398
c1bd25fd
DJ
399 do {
400 asection *cur_sec;
c1bd25fd 401
c1bd25fd
DJ
402 done = 1;
403
404 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
405 {
406 int indx = cur_sec->index;
c1bd25fd
DJ
407
408 /* We don't need to compare against ourself. */
409 if (cur_sec == sect)
410 continue;
411
2711e456
DJ
412 /* We can only conflict with allocated sections. */
413 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
414 continue;
415
416 /* If the section offset is 0, either the section has not been placed
417 yet, or it was the lowest section placed (in which case LOWEST
418 will be past its end). */
419 if (offsets[indx] == 0)
420 continue;
421
422 /* If this section would overlap us, then we must move up. */
423 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
424 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
425 {
426 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
427 start_addr = (start_addr + align - 1) & -align;
428 done = 0;
3bd72c6f 429 break;
c1bd25fd
DJ
430 }
431
432 /* Otherwise, we appear to be OK. So far. */
433 }
434 }
435 while (!done);
436
65cf3563 437 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 438 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 439}
e8289572 440
75242ef4
JK
441/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
442 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
443 entries. */
e8289572
JB
444
445void
75242ef4
JK
446relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
447 int num_sections,
448 struct section_addr_info *addrs)
e8289572
JB
449{
450 int i;
451
75242ef4 452 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 453
c378eb4e 454 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 455 for (i = 0; i < addrs->num_sections; i++)
e8289572 456 {
75242ef4 457 struct other_sections *osp;
e8289572 458
75242ef4 459 osp = &addrs->other[i];
5488dafb 460 if (osp->sectindex == -1)
e8289572
JB
461 continue;
462
c378eb4e 463 /* Record all sections in offsets. */
e8289572 464 /* The section_offsets in the objfile are here filled in using
c378eb4e 465 the BFD index. */
75242ef4
JK
466 section_offsets->offsets[osp->sectindex] = osp->addr;
467 }
468}
469
1276c759
JK
470/* Transform section name S for a name comparison. prelink can split section
471 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
472 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
473 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
474 (`.sbss') section has invalid (increased) virtual address. */
475
476static const char *
477addr_section_name (const char *s)
478{
479 if (strcmp (s, ".dynbss") == 0)
480 return ".bss";
481 if (strcmp (s, ".sdynbss") == 0)
482 return ".sbss";
483
484 return s;
485}
486
82ccf5a5
JK
487/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
488 their (name, sectindex) pair. sectindex makes the sort by name stable. */
489
490static int
491addrs_section_compar (const void *ap, const void *bp)
492{
493 const struct other_sections *a = *((struct other_sections **) ap);
494 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 495 int retval;
82ccf5a5 496
1276c759 497 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
498 if (retval)
499 return retval;
500
5488dafb 501 return a->sectindex - b->sectindex;
82ccf5a5
JK
502}
503
504/* Provide sorted array of pointers to sections of ADDRS. The array is
505 terminated by NULL. Caller is responsible to call xfree for it. */
506
507static struct other_sections **
508addrs_section_sort (struct section_addr_info *addrs)
509{
510 struct other_sections **array;
511 int i;
512
513 /* `+ 1' for the NULL terminator. */
514 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
d76488d8 515 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
516 array[i] = &addrs->other[i];
517 array[i] = NULL;
518
519 qsort (array, i, sizeof (*array), addrs_section_compar);
520
521 return array;
522}
523
75242ef4 524/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
525 also SECTINDEXes specific to ABFD there. This function can be used to
526 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
527
528void
529addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
530{
531 asection *lower_sect;
75242ef4
JK
532 CORE_ADDR lower_offset;
533 int i;
82ccf5a5
JK
534 struct cleanup *my_cleanup;
535 struct section_addr_info *abfd_addrs;
536 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
537 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
538
539 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
540 continguous sections. */
541 lower_sect = NULL;
542 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
543 if (lower_sect == NULL)
544 {
545 warning (_("no loadable sections found in added symbol-file %s"),
546 bfd_get_filename (abfd));
547 lower_offset = 0;
e8289572 548 }
75242ef4
JK
549 else
550 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
551
82ccf5a5
JK
552 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
553 in ABFD. Section names are not unique - there can be multiple sections of
554 the same name. Also the sections of the same name do not have to be
555 adjacent to each other. Some sections may be present only in one of the
556 files. Even sections present in both files do not have to be in the same
557 order.
558
559 Use stable sort by name for the sections in both files. Then linearly
560 scan both lists matching as most of the entries as possible. */
561
562 addrs_sorted = addrs_section_sort (addrs);
563 my_cleanup = make_cleanup (xfree, addrs_sorted);
564
565 abfd_addrs = build_section_addr_info_from_bfd (abfd);
566 make_cleanup_free_section_addr_info (abfd_addrs);
567 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
568 make_cleanup (xfree, abfd_addrs_sorted);
569
c378eb4e
MS
570 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
571 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
572
573 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
574 * addrs->num_sections);
575 make_cleanup (xfree, addrs_to_abfd_addrs);
576
577 while (*addrs_sorted)
578 {
1276c759 579 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
580
581 while (*abfd_addrs_sorted
1276c759
JK
582 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
583 sect_name) < 0)
82ccf5a5
JK
584 abfd_addrs_sorted++;
585
586 if (*abfd_addrs_sorted
1276c759
JK
587 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
588 sect_name) == 0)
82ccf5a5
JK
589 {
590 int index_in_addrs;
591
592 /* Make the found item directly addressable from ADDRS. */
593 index_in_addrs = *addrs_sorted - addrs->other;
594 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
595 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
596
597 /* Never use the same ABFD entry twice. */
598 abfd_addrs_sorted++;
599 }
600
601 addrs_sorted++;
602 }
603
75242ef4
JK
604 /* Calculate offsets for the loadable sections.
605 FIXME! Sections must be in order of increasing loadable section
606 so that contiguous sections can use the lower-offset!!!
607
608 Adjust offsets if the segments are not contiguous.
609 If the section is contiguous, its offset should be set to
610 the offset of the highest loadable section lower than it
611 (the loadable section directly below it in memory).
612 this_offset = lower_offset = lower_addr - lower_orig_addr */
613
d76488d8 614 for (i = 0; i < addrs->num_sections; i++)
75242ef4 615 {
82ccf5a5 616 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
617
618 if (sect)
75242ef4 619 {
c378eb4e 620 /* This is the index used by BFD. */
82ccf5a5 621 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
622
623 if (addrs->other[i].addr != 0)
75242ef4 624 {
82ccf5a5 625 addrs->other[i].addr -= sect->addr;
75242ef4 626 lower_offset = addrs->other[i].addr;
75242ef4
JK
627 }
628 else
672d9c23 629 addrs->other[i].addr = lower_offset;
75242ef4
JK
630 }
631 else
672d9c23 632 {
1276c759
JK
633 /* addr_section_name transformation is not used for SECT_NAME. */
634 const char *sect_name = addrs->other[i].name;
635
b0fcb67f
JK
636 /* This section does not exist in ABFD, which is normally
637 unexpected and we want to issue a warning.
638
4d9743af
JK
639 However, the ELF prelinker does create a few sections which are
640 marked in the main executable as loadable (they are loaded in
641 memory from the DYNAMIC segment) and yet are not present in
642 separate debug info files. This is fine, and should not cause
643 a warning. Shared libraries contain just the section
644 ".gnu.liblist" but it is not marked as loadable there. There is
645 no other way to identify them than by their name as the sections
1276c759
JK
646 created by prelink have no special flags.
647
648 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
649
650 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 651 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
652 || (strcmp (sect_name, ".bss") == 0
653 && i > 0
654 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
655 && addrs_to_abfd_addrs[i - 1] != NULL)
656 || (strcmp (sect_name, ".sbss") == 0
657 && i > 0
658 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
659 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
660 warning (_("section %s not found in %s"), sect_name,
661 bfd_get_filename (abfd));
662
672d9c23 663 addrs->other[i].addr = 0;
5488dafb 664 addrs->other[i].sectindex = -1;
672d9c23 665 }
75242ef4 666 }
82ccf5a5
JK
667
668 do_cleanups (my_cleanup);
75242ef4
JK
669}
670
671/* Parse the user's idea of an offset for dynamic linking, into our idea
672 of how to represent it for fast symbol reading. This is the default
673 version of the sym_fns.sym_offsets function for symbol readers that
674 don't need to do anything special. It allocates a section_offsets table
675 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
676
677void
678default_symfile_offsets (struct objfile *objfile,
679 struct section_addr_info *addrs)
680{
d445b2f6 681 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
682 objfile->section_offsets = (struct section_offsets *)
683 obstack_alloc (&objfile->objfile_obstack,
684 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
685 relative_addr_info_to_section_offsets (objfile->section_offsets,
686 objfile->num_sections, addrs);
e8289572 687
c1bd25fd
DJ
688 /* For relocatable files, all loadable sections will start at zero.
689 The zero is meaningless, so try to pick arbitrary addresses such
690 that no loadable sections overlap. This algorithm is quadratic,
691 but the number of sections in a single object file is generally
692 small. */
693 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
694 {
695 struct place_section_arg arg;
2711e456
DJ
696 bfd *abfd = objfile->obfd;
697 asection *cur_sec;
2711e456
DJ
698
699 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
700 /* We do not expect this to happen; just skip this step if the
701 relocatable file has a section with an assigned VMA. */
702 if (bfd_section_vma (abfd, cur_sec) != 0)
703 break;
704
705 if (cur_sec == NULL)
706 {
707 CORE_ADDR *offsets = objfile->section_offsets->offsets;
708
709 /* Pick non-overlapping offsets for sections the user did not
710 place explicitly. */
711 arg.offsets = objfile->section_offsets;
712 arg.lowest = 0;
713 bfd_map_over_sections (objfile->obfd, place_section, &arg);
714
715 /* Correctly filling in the section offsets is not quite
716 enough. Relocatable files have two properties that
717 (most) shared objects do not:
718
719 - Their debug information will contain relocations. Some
720 shared libraries do also, but many do not, so this can not
721 be assumed.
722
723 - If there are multiple code sections they will be loaded
724 at different relative addresses in memory than they are
725 in the objfile, since all sections in the file will start
726 at address zero.
727
728 Because GDB has very limited ability to map from an
729 address in debug info to the correct code section,
730 it relies on adding SECT_OFF_TEXT to things which might be
731 code. If we clear all the section offsets, and set the
732 section VMAs instead, then symfile_relocate_debug_section
733 will return meaningful debug information pointing at the
734 correct sections.
735
736 GDB has too many different data structures for section
737 addresses - a bfd, objfile, and so_list all have section
738 tables, as does exec_ops. Some of these could probably
739 be eliminated. */
740
741 for (cur_sec = abfd->sections; cur_sec != NULL;
742 cur_sec = cur_sec->next)
743 {
744 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
745 continue;
746
747 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
748 exec_set_section_address (bfd_get_filename (abfd),
749 cur_sec->index,
30510692 750 offsets[cur_sec->index]);
2711e456
DJ
751 offsets[cur_sec->index] = 0;
752 }
753 }
c1bd25fd
DJ
754 }
755
e8289572 756 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 757 .rodata sections. */
e8289572
JB
758 init_objfile_sect_indices (objfile);
759}
760
761
31d99776
DJ
762/* Divide the file into segments, which are individual relocatable units.
763 This is the default version of the sym_fns.sym_segments function for
764 symbol readers that do not have an explicit representation of segments.
765 It assumes that object files do not have segments, and fully linked
766 files have a single segment. */
767
768struct symfile_segment_data *
769default_symfile_segments (bfd *abfd)
770{
771 int num_sections, i;
772 asection *sect;
773 struct symfile_segment_data *data;
774 CORE_ADDR low, high;
775
776 /* Relocatable files contain enough information to position each
777 loadable section independently; they should not be relocated
778 in segments. */
779 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
780 return NULL;
781
782 /* Make sure there is at least one loadable section in the file. */
783 for (sect = abfd->sections; sect != NULL; sect = sect->next)
784 {
785 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
786 continue;
787
788 break;
789 }
790 if (sect == NULL)
791 return NULL;
792
793 low = bfd_get_section_vma (abfd, sect);
794 high = low + bfd_get_section_size (sect);
795
796 data = XZALLOC (struct symfile_segment_data);
797 data->num_segments = 1;
798 data->segment_bases = XCALLOC (1, CORE_ADDR);
799 data->segment_sizes = XCALLOC (1, CORE_ADDR);
800
801 num_sections = bfd_count_sections (abfd);
802 data->segment_info = XCALLOC (num_sections, int);
803
804 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
805 {
806 CORE_ADDR vma;
807
808 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
809 continue;
810
811 vma = bfd_get_section_vma (abfd, sect);
812 if (vma < low)
813 low = vma;
814 if (vma + bfd_get_section_size (sect) > high)
815 high = vma + bfd_get_section_size (sect);
816
817 data->segment_info[i] = 1;
818 }
819
820 data->segment_bases[0] = low;
821 data->segment_sizes[0] = high - low;
822
823 return data;
824}
825
608e2dbb
TT
826/* This is a convenience function to call sym_read for OBJFILE and
827 possibly force the partial symbols to be read. */
828
829static void
830read_symbols (struct objfile *objfile, int add_flags)
831{
832 (*objfile->sf->sym_read) (objfile, add_flags);
8a92335b
JK
833
834 /* find_separate_debug_file_in_section should be called only if there is
835 single binary with no existing separate debug info file. */
836 if (!objfile_has_partial_symbols (objfile)
837 && objfile->separate_debug_objfile == NULL
838 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
839 {
840 bfd *abfd = find_separate_debug_file_in_section (objfile);
841 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
842
843 if (abfd != NULL)
844 symbol_file_add_separate (abfd, add_flags, objfile);
845
846 do_cleanups (cleanup);
847 }
848 if ((add_flags & SYMFILE_NO_READ) == 0)
849 require_partial_symbols (objfile, 0);
850}
851
3d6e24f0
JB
852/* Initialize entry point information for this objfile. */
853
854static void
855init_entry_point_info (struct objfile *objfile)
856{
857 /* Save startup file's range of PC addresses to help blockframe.c
858 decide where the bottom of the stack is. */
859
860 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
861 {
862 /* Executable file -- record its entry point so we'll recognize
863 the startup file because it contains the entry point. */
864 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
865 objfile->ei.entry_point_p = 1;
866 }
867 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
868 && bfd_get_start_address (objfile->obfd) != 0)
869 {
870 /* Some shared libraries may have entry points set and be
871 runnable. There's no clear way to indicate this, so just check
872 for values other than zero. */
873 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
874 objfile->ei.entry_point_p = 1;
875 }
876 else
877 {
878 /* Examination of non-executable.o files. Short-circuit this stuff. */
879 objfile->ei.entry_point_p = 0;
880 }
881
882 if (objfile->ei.entry_point_p)
883 {
884 CORE_ADDR entry_point = objfile->ei.entry_point;
885
886 /* Make certain that the address points at real code, and not a
887 function descriptor. */
888 entry_point
889 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
890 entry_point,
891 &current_target);
892
893 /* Remove any ISA markers, so that this matches entries in the
894 symbol table. */
895 objfile->ei.entry_point
896 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
897 }
898}
899
c906108c
SS
900/* Process a symbol file, as either the main file or as a dynamically
901 loaded file.
902
36e4d068
JB
903 This function does not set the OBJFILE's entry-point info.
904
96baa820
JM
905 OBJFILE is where the symbols are to be read from.
906
7e8580c1
JB
907 ADDRS is the list of section load addresses. If the user has given
908 an 'add-symbol-file' command, then this is the list of offsets and
909 addresses he or she provided as arguments to the command; or, if
910 we're handling a shared library, these are the actual addresses the
911 sections are loaded at, according to the inferior's dynamic linker
912 (as gleaned by GDB's shared library code). We convert each address
913 into an offset from the section VMA's as it appears in the object
914 file, and then call the file's sym_offsets function to convert this
915 into a format-specific offset table --- a `struct section_offsets'.
916 If ADDRS is non-zero, OFFSETS must be zero.
917
918 OFFSETS is a table of section offsets already in the right
919 format-specific representation. NUM_OFFSETS is the number of
920 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
921 assume this is the proper table the call to sym_offsets described
922 above would produce. Instead of calling sym_offsets, we just dump
923 it right into objfile->section_offsets. (When we're re-reading
924 symbols from an objfile, we don't have the original load address
925 list any more; all we have is the section offset table.) If
926 OFFSETS is non-zero, ADDRS must be zero.
96baa820 927
7eedccfa
PP
928 ADD_FLAGS encodes verbosity level, whether this is main symbol or
929 an extra symbol file such as dynamically loaded code, and wether
930 breakpoint reset should be deferred. */
c906108c 931
36e4d068
JB
932static void
933syms_from_objfile_1 (struct objfile *objfile,
934 struct section_addr_info *addrs,
935 struct section_offsets *offsets,
936 int num_offsets,
937 int add_flags)
c906108c 938{
a39a16c4 939 struct section_addr_info *local_addr = NULL;
c906108c 940 struct cleanup *old_chain;
7eedccfa 941 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 942
7e8580c1 943 gdb_assert (! (addrs && offsets));
2acceee2 944
31d99776 945 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 946
75245b24 947 if (objfile->sf == NULL)
36e4d068
JB
948 {
949 /* No symbols to load, but we still need to make sure
950 that the section_offsets table is allocated. */
d445b2f6 951 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 952 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
953
954 objfile->num_sections = num_sections;
955 objfile->section_offsets
956 = obstack_alloc (&objfile->objfile_obstack, size);
957 memset (objfile->section_offsets, 0, size);
958 return;
959 }
75245b24 960
c906108c
SS
961 /* Make sure that partially constructed symbol tables will be cleaned up
962 if an error occurs during symbol reading. */
74b7792f 963 old_chain = make_cleanup_free_objfile (objfile);
c906108c 964
a39a16c4
MM
965 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
966 list. We now establish the convention that an addr of zero means
c378eb4e 967 no load address was specified. */
a39a16c4
MM
968 if (! addrs && ! offsets)
969 {
d445b2f6 970 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
971 make_cleanup (xfree, local_addr);
972 addrs = local_addr;
973 }
974
975 /* Now either addrs or offsets is non-zero. */
976
c5aa993b 977 if (mainline)
c906108c
SS
978 {
979 /* We will modify the main symbol table, make sure that all its users
c5aa993b 980 will be cleaned up if an error occurs during symbol reading. */
74b7792f 981 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
982
983 /* Since no error yet, throw away the old symbol table. */
984
985 if (symfile_objfile != NULL)
986 {
987 free_objfile (symfile_objfile);
adb7f338 988 gdb_assert (symfile_objfile == NULL);
c906108c
SS
989 }
990
991 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
992 If the user wants to get rid of them, they should do "symbol-file"
993 without arguments first. Not sure this is the best behavior
994 (PR 2207). */
c906108c 995
c5aa993b 996 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
997 }
998
999 /* Convert addr into an offset rather than an absolute address.
1000 We find the lowest address of a loaded segment in the objfile,
53a5351d 1001 and assume that <addr> is where that got loaded.
c906108c 1002
53a5351d
JM
1003 We no longer warn if the lowest section is not a text segment (as
1004 happens for the PA64 port. */
d76488d8 1005 if (addrs && addrs->num_sections > 0)
75242ef4 1006 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1007
1008 /* Initialize symbol reading routines for this objfile, allow complaints to
1009 appear for this new file, and record how verbose to be, then do the
c378eb4e 1010 initial symbol reading for this file. */
c906108c 1011
c5aa993b 1012 (*objfile->sf->sym_init) (objfile);
7eedccfa 1013 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1014
7e8580c1
JB
1015 if (addrs)
1016 (*objfile->sf->sym_offsets) (objfile, addrs);
1017 else
1018 {
1019 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1020
1021 /* Just copy in the offset table directly as given to us. */
1022 objfile->num_sections = num_offsets;
1023 objfile->section_offsets
1024 = ((struct section_offsets *)
8b92e4d5 1025 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
1026 memcpy (objfile->section_offsets, offsets, size);
1027
1028 init_objfile_sect_indices (objfile);
1029 }
c906108c 1030
608e2dbb 1031 read_symbols (objfile, add_flags);
b11896a5 1032
c906108c
SS
1033 /* Discard cleanups as symbol reading was successful. */
1034
1035 discard_cleanups (old_chain);
f7545552 1036 xfree (local_addr);
c906108c
SS
1037}
1038
36e4d068
JB
1039/* Same as syms_from_objfile_1, but also initializes the objfile
1040 entry-point info. */
1041
1042void
1043syms_from_objfile (struct objfile *objfile,
1044 struct section_addr_info *addrs,
1045 struct section_offsets *offsets,
1046 int num_offsets,
1047 int add_flags)
1048{
1049 syms_from_objfile_1 (objfile, addrs, offsets, num_offsets, add_flags);
1050 init_entry_point_info (objfile);
1051}
1052
c906108c
SS
1053/* Perform required actions after either reading in the initial
1054 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1055 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1056
c906108c 1057void
7eedccfa 1058new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1059{
c906108c 1060 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1061 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1062 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1063 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1064 {
1065 /* OK, make it the "real" symbol file. */
1066 symfile_objfile = objfile;
1067
c1e56572 1068 clear_symtab_users (add_flags);
c906108c 1069 }
7eedccfa 1070 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1071 {
69de3c6a 1072 breakpoint_re_set ();
c906108c
SS
1073 }
1074
1075 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1076 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1077}
1078
1079/* Process a symbol file, as either the main file or as a dynamically
1080 loaded file.
1081
5417f6dc 1082 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1083 A new reference is acquired by this function.
7904e09f 1084
7eedccfa
PP
1085 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1086 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1087
1088 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1089 syms_from_objfile, above.
1090 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1091
63524580
JK
1092 PARENT is the original objfile if ABFD is a separate debug info file.
1093 Otherwise PARENT is NULL.
1094
c906108c 1095 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1096 Upon failure, jumps back to command level (never returns). */
7eedccfa 1097
7904e09f 1098static struct objfile *
7eedccfa
PP
1099symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1100 int add_flags,
7904e09f
JB
1101 struct section_addr_info *addrs,
1102 struct section_offsets *offsets,
1103 int num_offsets,
63524580 1104 int flags, struct objfile *parent)
c906108c
SS
1105{
1106 struct objfile *objfile;
5417f6dc 1107 const char *name = bfd_get_filename (abfd);
7eedccfa 1108 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1109 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1110 const int should_print = ((from_tty || info_verbose)
1111 && (readnow_symbol_files
1112 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1113
9291a0cd 1114 if (readnow_symbol_files)
b11896a5
TT
1115 {
1116 flags |= OBJF_READNOW;
1117 add_flags &= ~SYMFILE_NO_READ;
1118 }
9291a0cd 1119
5417f6dc
RM
1120 /* Give user a chance to burp if we'd be
1121 interactively wiping out any existing symbols. */
c906108c
SS
1122
1123 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1124 && mainline
c906108c 1125 && from_tty
9e2f0ad4 1126 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1127 error (_("Not confirmed."));
c906108c 1128
0838fb57 1129 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1130
63524580
JK
1131 if (parent)
1132 add_separate_debug_objfile (objfile, parent);
1133
78a4a9b9
AC
1134 /* We either created a new mapped symbol table, mapped an existing
1135 symbol table file which has not had initial symbol reading
c378eb4e 1136 performed, or need to read an unmapped symbol table. */
b11896a5 1137 if (should_print)
c906108c 1138 {
769d7dc4
AC
1139 if (deprecated_pre_add_symbol_hook)
1140 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1141 else
c906108c 1142 {
55333a84
DE
1143 printf_unfiltered (_("Reading symbols from %s..."), name);
1144 wrap_here ("");
1145 gdb_flush (gdb_stdout);
c906108c 1146 }
c906108c 1147 }
78a4a9b9 1148 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1149 add_flags);
c906108c
SS
1150
1151 /* We now have at least a partial symbol table. Check to see if the
1152 user requested that all symbols be read on initial access via either
1153 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1154 all partial symbol tables for this objfile if so. */
c906108c 1155
9291a0cd 1156 if ((flags & OBJF_READNOW))
c906108c 1157 {
b11896a5 1158 if (should_print)
c906108c 1159 {
a3f17187 1160 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1161 wrap_here ("");
1162 gdb_flush (gdb_stdout);
1163 }
1164
ccefe4c4
TT
1165 if (objfile->sf)
1166 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1167 }
1168
b11896a5 1169 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1170 {
1171 wrap_here ("");
55333a84 1172 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1173 wrap_here ("");
1174 }
1175
b11896a5 1176 if (should_print)
c906108c 1177 {
769d7dc4
AC
1178 if (deprecated_post_add_symbol_hook)
1179 deprecated_post_add_symbol_hook ();
c906108c 1180 else
55333a84 1181 printf_unfiltered (_("done.\n"));
c906108c
SS
1182 }
1183
481d0f41
JB
1184 /* We print some messages regardless of whether 'from_tty ||
1185 info_verbose' is true, so make sure they go out at the right
1186 time. */
1187 gdb_flush (gdb_stdout);
1188
109f874e 1189 if (objfile->sf == NULL)
8caee43b
PP
1190 {
1191 observer_notify_new_objfile (objfile);
c378eb4e 1192 return objfile; /* No symbols. */
8caee43b 1193 }
109f874e 1194
7eedccfa 1195 new_symfile_objfile (objfile, add_flags);
c906108c 1196
06d3b283 1197 observer_notify_new_objfile (objfile);
c906108c 1198
ce7d4522 1199 bfd_cache_close_all ();
c906108c
SS
1200 return (objfile);
1201}
1202
9cce227f
TG
1203/* Add BFD as a separate debug file for OBJFILE. */
1204
1205void
1206symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1207{
15d123c9 1208 struct objfile *new_objfile;
089b4803
TG
1209 struct section_addr_info *sap;
1210 struct cleanup *my_cleanup;
1211
1212 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1213 because sections of BFD may not match sections of OBJFILE and because
1214 vma may have been modified by tools such as prelink. */
1215 sap = build_section_addr_info_from_objfile (objfile);
1216 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1217
15d123c9 1218 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1219 (bfd, symfile_flags,
089b4803 1220 sap, NULL, 0,
9cce227f 1221 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1222 | OBJF_USERLOADED),
1223 objfile);
089b4803
TG
1224
1225 do_cleanups (my_cleanup);
9cce227f 1226}
7904e09f 1227
eb4556d7
JB
1228/* Process the symbol file ABFD, as either the main file or as a
1229 dynamically loaded file.
1230
1231 See symbol_file_add_with_addrs_or_offsets's comments for
1232 details. */
1233struct objfile *
7eedccfa 1234symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1235 struct section_addr_info *addrs,
63524580 1236 int flags, struct objfile *parent)
eb4556d7 1237{
7eedccfa 1238 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
63524580 1239 flags, parent);
eb4556d7
JB
1240}
1241
1242
7904e09f
JB
1243/* Process a symbol file, as either the main file or as a dynamically
1244 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1245 for details. */
1246struct objfile *
7eedccfa
PP
1247symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1248 int flags)
7904e09f 1249{
8ac244b4
TT
1250 bfd *bfd = symfile_bfd_open (name);
1251 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1252 struct objfile *objf;
1253
882f447f 1254 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
8ac244b4
TT
1255 do_cleanups (cleanup);
1256 return objf;
7904e09f
JB
1257}
1258
1259
d7db6da9
FN
1260/* Call symbol_file_add() with default values and update whatever is
1261 affected by the loading of a new main().
1262 Used when the file is supplied in the gdb command line
1263 and by some targets with special loading requirements.
1264 The auxiliary function, symbol_file_add_main_1(), has the flags
1265 argument for the switches that can only be specified in the symbol_file
1266 command itself. */
5417f6dc 1267
1adeb98a
FN
1268void
1269symbol_file_add_main (char *args, int from_tty)
1270{
d7db6da9
FN
1271 symbol_file_add_main_1 (args, from_tty, 0);
1272}
1273
1274static void
1275symbol_file_add_main_1 (char *args, int from_tty, int flags)
1276{
7dcd53a0
TT
1277 const int add_flags = (current_inferior ()->symfile_flags
1278 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1279
7eedccfa 1280 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1281
d7db6da9
FN
1282 /* Getting new symbols may change our opinion about
1283 what is frameless. */
1284 reinit_frame_cache ();
1285
7dcd53a0
TT
1286 if ((flags & SYMFILE_NO_READ) == 0)
1287 set_initial_language ();
1adeb98a
FN
1288}
1289
1290void
1291symbol_file_clear (int from_tty)
1292{
1293 if ((have_full_symbols () || have_partial_symbols ())
1294 && from_tty
0430b0d6
AS
1295 && (symfile_objfile
1296 ? !query (_("Discard symbol table from `%s'? "),
1297 symfile_objfile->name)
1298 : !query (_("Discard symbol table? "))))
8a3fe4f8 1299 error (_("Not confirmed."));
1adeb98a 1300
0133421a
JK
1301 /* solib descriptors may have handles to objfiles. Wipe them before their
1302 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1303 no_shared_libraries (NULL, from_tty);
1304
0133421a
JK
1305 free_all_objfiles ();
1306
adb7f338 1307 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1308 if (from_tty)
1309 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1310}
1311
5b5d99cf 1312static int
287ccc17 1313separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1314 struct objfile *parent_objfile)
5b5d99cf 1315{
904578ed
JK
1316 unsigned long file_crc;
1317 int file_crc_p;
f1838a98 1318 bfd *abfd;
32a0e547 1319 struct stat parent_stat, abfd_stat;
904578ed 1320 int verified_as_different;
32a0e547
JK
1321
1322 /* Find a separate debug info file as if symbols would be present in
1323 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1324 section can contain just the basename of PARENT_OBJFILE without any
1325 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1326 the separate debug infos with the same basename can exist. */
32a0e547 1327
0ba1096a 1328 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1329 return 0;
5b5d99cf 1330
08d2cd74 1331 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1332
1333 if (!abfd)
5b5d99cf
JB
1334 return 0;
1335
0ba1096a 1336 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1337
1338 Some operating systems, e.g. Windows, do not provide a meaningful
1339 st_ino; they always set it to zero. (Windows does provide a
1340 meaningful st_dev.) Do not indicate a duplicate library in that
1341 case. While there is no guarantee that a system that provides
1342 meaningful inode numbers will never set st_ino to zero, this is
1343 merely an optimization, so we do not need to worry about false
1344 negatives. */
1345
1346 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1347 && abfd_stat.st_ino != 0
1348 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1349 {
904578ed
JK
1350 if (abfd_stat.st_dev == parent_stat.st_dev
1351 && abfd_stat.st_ino == parent_stat.st_ino)
1352 {
cbb099e8 1353 gdb_bfd_unref (abfd);
904578ed
JK
1354 return 0;
1355 }
1356 verified_as_different = 1;
32a0e547 1357 }
904578ed
JK
1358 else
1359 verified_as_different = 0;
32a0e547 1360
dccee2de 1361 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1362
cbb099e8 1363 gdb_bfd_unref (abfd);
5b5d99cf 1364
904578ed
JK
1365 if (!file_crc_p)
1366 return 0;
1367
287ccc17
JK
1368 if (crc != file_crc)
1369 {
dccee2de
TT
1370 unsigned long parent_crc;
1371
904578ed
JK
1372 /* If one (or both) the files are accessed for example the via "remote:"
1373 gdbserver way it does not support the bfd_stat operation. Verify
1374 whether those two files are not the same manually. */
1375
dccee2de 1376 if (!verified_as_different)
904578ed 1377 {
dccee2de 1378 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1379 return 0;
1380 }
1381
dccee2de 1382 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1383 warning (_("the debug information found in \"%s\""
1384 " does not match \"%s\" (CRC mismatch).\n"),
1385 name, parent_objfile->name);
1386
287ccc17
JK
1387 return 0;
1388 }
1389
1390 return 1;
5b5d99cf
JB
1391}
1392
aa28a74e 1393char *debug_file_directory = NULL;
920d2a44
AC
1394static void
1395show_debug_file_directory (struct ui_file *file, int from_tty,
1396 struct cmd_list_element *c, const char *value)
1397{
3e43a32a
MS
1398 fprintf_filtered (file,
1399 _("The directory where separate debug "
1400 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1401 value);
1402}
5b5d99cf
JB
1403
1404#if ! defined (DEBUG_SUBDIRECTORY)
1405#define DEBUG_SUBDIRECTORY ".debug"
1406#endif
1407
1db33378
PP
1408/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1409 where the original file resides (may not be the same as
1410 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1411 looking for. CANON_DIR is the "realpath" form of DIR.
1412 DIR must contain a trailing '/'.
1413 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1414
1415static char *
1416find_separate_debug_file (const char *dir,
1417 const char *canon_dir,
1418 const char *debuglink,
1419 unsigned long crc32, struct objfile *objfile)
9cce227f 1420{
1db33378
PP
1421 char *debugdir;
1422 char *debugfile;
9cce227f 1423 int i;
e4ab2fad
JK
1424 VEC (char_ptr) *debugdir_vec;
1425 struct cleanup *back_to;
1426 int ix;
5b5d99cf 1427
1db33378 1428 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1429 i = strlen (dir);
1db33378
PP
1430 if (canon_dir != NULL && strlen (canon_dir) > i)
1431 i = strlen (canon_dir);
1ffa32ee 1432
25522fae
JK
1433 debugfile = xmalloc (strlen (debug_file_directory) + 1
1434 + i
1435 + strlen (DEBUG_SUBDIRECTORY)
1436 + strlen ("/")
1db33378 1437 + strlen (debuglink)
25522fae 1438 + 1);
5b5d99cf
JB
1439
1440 /* First try in the same directory as the original file. */
1441 strcpy (debugfile, dir);
1db33378 1442 strcat (debugfile, debuglink);
5b5d99cf 1443
32a0e547 1444 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1445 return debugfile;
5417f6dc 1446
5b5d99cf
JB
1447 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1448 strcpy (debugfile, dir);
1449 strcat (debugfile, DEBUG_SUBDIRECTORY);
1450 strcat (debugfile, "/");
1db33378 1451 strcat (debugfile, debuglink);
5b5d99cf 1452
32a0e547 1453 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1454 return debugfile;
5417f6dc 1455
24ddea62 1456 /* Then try in the global debugfile directories.
f888f159 1457
24ddea62
JK
1458 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1459 cause "/..." lookups. */
5417f6dc 1460
e4ab2fad
JK
1461 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1462 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1463
e4ab2fad
JK
1464 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1465 {
1466 strcpy (debugfile, debugdir);
aa28a74e 1467 strcat (debugfile, "/");
24ddea62 1468 strcat (debugfile, dir);
1db33378 1469 strcat (debugfile, debuglink);
aa28a74e 1470
32a0e547 1471 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1472 return debugfile;
24ddea62
JK
1473
1474 /* If the file is in the sysroot, try using its base path in the
1475 global debugfile directory. */
1db33378
PP
1476 if (canon_dir != NULL
1477 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1478 strlen (gdb_sysroot)) == 0
1db33378 1479 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1480 {
e4ab2fad 1481 strcpy (debugfile, debugdir);
1db33378 1482 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1483 strcat (debugfile, "/");
1db33378 1484 strcat (debugfile, debuglink);
24ddea62 1485
32a0e547 1486 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1487 return debugfile;
24ddea62 1488 }
aa28a74e 1489 }
f888f159 1490
e4ab2fad 1491 do_cleanups (back_to);
25522fae 1492 xfree (debugfile);
1db33378
PP
1493 return NULL;
1494}
1495
7edbb660 1496/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1497 If there were no directory separators in PATH, PATH will be empty
1498 string on return. */
1499
1500static void
1501terminate_after_last_dir_separator (char *path)
1502{
1503 int i;
1504
1505 /* Strip off the final filename part, leaving the directory name,
1506 followed by a slash. The directory can be relative or absolute. */
1507 for (i = strlen(path) - 1; i >= 0; i--)
1508 if (IS_DIR_SEPARATOR (path[i]))
1509 break;
1510
1511 /* If I is -1 then no directory is present there and DIR will be "". */
1512 path[i + 1] = '\0';
1513}
1514
1515/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1516 Returns pathname, or NULL. */
1517
1518char *
1519find_separate_debug_file_by_debuglink (struct objfile *objfile)
1520{
1521 char *debuglink;
1522 char *dir, *canon_dir;
1523 char *debugfile;
1524 unsigned long crc32;
1525 struct cleanup *cleanups;
1526
cc0ea93c 1527 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1528
1529 if (debuglink == NULL)
1530 {
1531 /* There's no separate debug info, hence there's no way we could
1532 load it => no warning. */
1533 return NULL;
1534 }
1535
71bdabee 1536 cleanups = make_cleanup (xfree, debuglink);
1db33378 1537 dir = xstrdup (objfile->name);
71bdabee 1538 make_cleanup (xfree, dir);
1db33378
PP
1539 terminate_after_last_dir_separator (dir);
1540 canon_dir = lrealpath (dir);
1541
1542 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1543 crc32, objfile);
1544 xfree (canon_dir);
1545
1546 if (debugfile == NULL)
1547 {
1548#ifdef HAVE_LSTAT
1549 /* For PR gdb/9538, try again with realpath (if different from the
1550 original). */
1551
1552 struct stat st_buf;
1553
1554 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1555 {
1556 char *symlink_dir;
1557
1558 symlink_dir = lrealpath (objfile->name);
1559 if (symlink_dir != NULL)
1560 {
1561 make_cleanup (xfree, symlink_dir);
1562 terminate_after_last_dir_separator (symlink_dir);
1563 if (strcmp (dir, symlink_dir) != 0)
1564 {
1565 /* Different directory, so try using it. */
1566 debugfile = find_separate_debug_file (symlink_dir,
1567 symlink_dir,
1568 debuglink,
1569 crc32,
1570 objfile);
1571 }
1572 }
1573 }
1574#endif /* HAVE_LSTAT */
1575 }
aa28a74e 1576
1db33378 1577 do_cleanups (cleanups);
25522fae 1578 return debugfile;
5b5d99cf
JB
1579}
1580
1581
c906108c
SS
1582/* This is the symbol-file command. Read the file, analyze its
1583 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1584 the command is rather bizarre:
1585
1586 1. The function buildargv implements various quoting conventions
1587 which are undocumented and have little or nothing in common with
1588 the way things are quoted (or not quoted) elsewhere in GDB.
1589
1590 2. Options are used, which are not generally used in GDB (perhaps
1591 "set mapped on", "set readnow on" would be better)
1592
1593 3. The order of options matters, which is contrary to GNU
c906108c
SS
1594 conventions (because it is confusing and inconvenient). */
1595
1596void
fba45db2 1597symbol_file_command (char *args, int from_tty)
c906108c 1598{
c906108c
SS
1599 dont_repeat ();
1600
1601 if (args == NULL)
1602 {
1adeb98a 1603 symbol_file_clear (from_tty);
c906108c
SS
1604 }
1605 else
1606 {
d1a41061 1607 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1608 int flags = OBJF_USERLOADED;
1609 struct cleanup *cleanups;
1610 char *name = NULL;
1611
7a292a7a 1612 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1613 while (*argv != NULL)
1614 {
78a4a9b9
AC
1615 if (strcmp (*argv, "-readnow") == 0)
1616 flags |= OBJF_READNOW;
1617 else if (**argv == '-')
8a3fe4f8 1618 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1619 else
1620 {
cb2f3a29 1621 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1622 name = *argv;
78a4a9b9 1623 }
cb2f3a29 1624
c906108c
SS
1625 argv++;
1626 }
1627
1628 if (name == NULL)
cb2f3a29
MK
1629 error (_("no symbol file name was specified"));
1630
c906108c
SS
1631 do_cleanups (cleanups);
1632 }
1633}
1634
1635/* Set the initial language.
1636
cb2f3a29
MK
1637 FIXME: A better solution would be to record the language in the
1638 psymtab when reading partial symbols, and then use it (if known) to
1639 set the language. This would be a win for formats that encode the
1640 language in an easily discoverable place, such as DWARF. For
1641 stabs, we can jump through hoops looking for specially named
1642 symbols or try to intuit the language from the specific type of
1643 stabs we find, but we can't do that until later when we read in
1644 full symbols. */
c906108c 1645
8b60591b 1646void
fba45db2 1647set_initial_language (void)
c906108c 1648{
c5aa993b 1649 enum language lang = language_unknown;
c906108c 1650
01f8c46d
JK
1651 if (language_of_main != language_unknown)
1652 lang = language_of_main;
1653 else
1654 {
1655 const char *filename;
f888f159 1656
01f8c46d
JK
1657 filename = find_main_filename ();
1658 if (filename != NULL)
1659 lang = deduce_language_from_filename (filename);
1660 }
cb2f3a29 1661
ccefe4c4
TT
1662 if (lang == language_unknown)
1663 {
1664 /* Make C the default language */
1665 lang = language_c;
c906108c 1666 }
ccefe4c4
TT
1667
1668 set_language (lang);
1669 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1670}
1671
874f5765 1672/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1673 open it normally. Returns a new reference to the BFD. On error,
1674 returns NULL with the BFD error set. */
874f5765
TG
1675
1676bfd *
08d2cd74 1677gdb_bfd_open_maybe_remote (const char *name)
874f5765 1678{
520b0001
TT
1679 bfd *result;
1680
874f5765 1681 if (remote_filename_p (name))
520b0001 1682 result = remote_bfd_open (name, gnutarget);
874f5765 1683 else
1c00ec6b 1684 result = gdb_bfd_open (name, gnutarget, -1);
520b0001 1685
520b0001 1686 return result;
874f5765
TG
1687}
1688
1689
cb2f3a29
MK
1690/* Open the file specified by NAME and hand it off to BFD for
1691 preliminary analysis. Return a newly initialized bfd *, which
1692 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1693 absolute). In case of trouble, error() is called. */
c906108c
SS
1694
1695bfd *
fba45db2 1696symfile_bfd_open (char *name)
c906108c
SS
1697{
1698 bfd *sym_bfd;
1699 int desc;
1700 char *absolute_name;
faab9922 1701 struct cleanup *back_to;
c906108c 1702
f1838a98
UW
1703 if (remote_filename_p (name))
1704 {
520b0001 1705 sym_bfd = remote_bfd_open (name, gnutarget);
f1838a98 1706 if (!sym_bfd)
a4453b7e
TT
1707 error (_("`%s': can't open to read symbols: %s."), name,
1708 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1709
1710 if (!bfd_check_format (sym_bfd, bfd_object))
1711 {
f9a062ff 1712 make_cleanup_bfd_unref (sym_bfd);
f1838a98
UW
1713 error (_("`%s': can't read symbols: %s."), name,
1714 bfd_errmsg (bfd_get_error ()));
1715 }
1716
1717 return sym_bfd;
1718 }
1719
cb2f3a29 1720 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1721
1722 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1723 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1724 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1725#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1726 if (desc < 0)
1727 {
1728 char *exename = alloca (strlen (name) + 5);
433759f7 1729
c906108c 1730 strcat (strcpy (exename, name), ".exe");
014d698b 1731 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1732 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1733 }
1734#endif
1735 if (desc < 0)
1736 {
b8c9b27d 1737 make_cleanup (xfree, name);
c906108c
SS
1738 perror_with_name (name);
1739 }
cb2f3a29 1740
cb2f3a29
MK
1741 xfree (name);
1742 name = absolute_name;
faab9922 1743 back_to = make_cleanup (xfree, name);
c906108c 1744
1c00ec6b 1745 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1746 if (!sym_bfd)
faab9922
JK
1747 error (_("`%s': can't open to read symbols: %s."), name,
1748 bfd_errmsg (bfd_get_error ()));
549c1eea 1749 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1750
1751 if (!bfd_check_format (sym_bfd, bfd_object))
1752 {
f9a062ff 1753 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1754 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1755 bfd_errmsg (bfd_get_error ()));
1756 }
cb2f3a29 1757
faab9922
JK
1758 do_cleanups (back_to);
1759
cb2f3a29 1760 return sym_bfd;
c906108c
SS
1761}
1762
cb2f3a29
MK
1763/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1764 the section was not found. */
1765
0e931cf0
JB
1766int
1767get_section_index (struct objfile *objfile, char *section_name)
1768{
1769 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1770
0e931cf0
JB
1771 if (sect)
1772 return sect->index;
1773 else
1774 return -1;
1775}
1776
cb2f3a29
MK
1777/* Link SF into the global symtab_fns list. Called on startup by the
1778 _initialize routine in each object file format reader, to register
b021a221 1779 information about each format the reader is prepared to handle. */
c906108c
SS
1780
1781void
00b5771c 1782add_symtab_fns (const struct sym_fns *sf)
c906108c 1783{
00b5771c 1784 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1785}
1786
cb2f3a29
MK
1787/* Initialize OBJFILE to read symbols from its associated BFD. It
1788 either returns or calls error(). The result is an initialized
1789 struct sym_fns in the objfile structure, that contains cached
1790 information about the symbol file. */
c906108c 1791
00b5771c 1792static const struct sym_fns *
31d99776 1793find_sym_fns (bfd *abfd)
c906108c 1794{
00b5771c 1795 const struct sym_fns *sf;
31d99776 1796 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1797 int i;
c906108c 1798
75245b24
MS
1799 if (our_flavour == bfd_target_srec_flavour
1800 || our_flavour == bfd_target_ihex_flavour
1801 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1802 return NULL; /* No symbols. */
75245b24 1803
00b5771c 1804 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1805 if (our_flavour == sf->sym_flavour)
1806 return sf;
cb2f3a29 1807
8a3fe4f8 1808 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1809 bfd_get_target (abfd));
c906108c
SS
1810}
1811\f
cb2f3a29 1812
c906108c
SS
1813/* This function runs the load command of our current target. */
1814
1815static void
fba45db2 1816load_command (char *arg, int from_tty)
c906108c 1817{
e5cc9f32
JB
1818 dont_repeat ();
1819
4487aabf
PA
1820 /* The user might be reloading because the binary has changed. Take
1821 this opportunity to check. */
1822 reopen_exec_file ();
1823 reread_symbols ();
1824
c906108c 1825 if (arg == NULL)
1986bccd
AS
1826 {
1827 char *parg;
1828 int count = 0;
1829
1830 parg = arg = get_exec_file (1);
1831
1832 /* Count how many \ " ' tab space there are in the name. */
1833 while ((parg = strpbrk (parg, "\\\"'\t ")))
1834 {
1835 parg++;
1836 count++;
1837 }
1838
1839 if (count)
1840 {
1841 /* We need to quote this string so buildargv can pull it apart. */
1842 char *temp = xmalloc (strlen (arg) + count + 1 );
1843 char *ptemp = temp;
1844 char *prev;
1845
1846 make_cleanup (xfree, temp);
1847
1848 prev = parg = arg;
1849 while ((parg = strpbrk (parg, "\\\"'\t ")))
1850 {
1851 strncpy (ptemp, prev, parg - prev);
1852 ptemp += parg - prev;
1853 prev = parg++;
1854 *ptemp++ = '\\';
1855 }
1856 strcpy (ptemp, prev);
1857
1858 arg = temp;
1859 }
1860 }
1861
c906108c 1862 target_load (arg, from_tty);
2889e661
JB
1863
1864 /* After re-loading the executable, we don't really know which
1865 overlays are mapped any more. */
1866 overlay_cache_invalid = 1;
c906108c
SS
1867}
1868
1869/* This version of "load" should be usable for any target. Currently
1870 it is just used for remote targets, not inftarg.c or core files,
1871 on the theory that only in that case is it useful.
1872
1873 Avoiding xmodem and the like seems like a win (a) because we don't have
1874 to worry about finding it, and (b) On VMS, fork() is very slow and so
1875 we don't want to run a subprocess. On the other hand, I'm not sure how
1876 performance compares. */
917317f4 1877
917317f4
JM
1878static int validate_download = 0;
1879
e4f9b4d5
MS
1880/* Callback service function for generic_load (bfd_map_over_sections). */
1881
1882static void
1883add_section_size_callback (bfd *abfd, asection *asec, void *data)
1884{
1885 bfd_size_type *sum = data;
1886
2c500098 1887 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1888}
1889
1890/* Opaque data for load_section_callback. */
1891struct load_section_data {
f698ca8e 1892 CORE_ADDR load_offset;
a76d924d
DJ
1893 struct load_progress_data *progress_data;
1894 VEC(memory_write_request_s) *requests;
1895};
1896
1897/* Opaque data for load_progress. */
1898struct load_progress_data {
1899 /* Cumulative data. */
e4f9b4d5
MS
1900 unsigned long write_count;
1901 unsigned long data_count;
1902 bfd_size_type total_size;
a76d924d
DJ
1903};
1904
1905/* Opaque data for load_progress for a single section. */
1906struct load_progress_section_data {
1907 struct load_progress_data *cumulative;
cf7a04e8 1908
a76d924d 1909 /* Per-section data. */
cf7a04e8
DJ
1910 const char *section_name;
1911 ULONGEST section_sent;
1912 ULONGEST section_size;
1913 CORE_ADDR lma;
1914 gdb_byte *buffer;
e4f9b4d5
MS
1915};
1916
a76d924d 1917/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1918
1919static void
1920load_progress (ULONGEST bytes, void *untyped_arg)
1921{
a76d924d
DJ
1922 struct load_progress_section_data *args = untyped_arg;
1923 struct load_progress_data *totals;
1924
1925 if (args == NULL)
1926 /* Writing padding data. No easy way to get at the cumulative
1927 stats, so just ignore this. */
1928 return;
1929
1930 totals = args->cumulative;
1931
1932 if (bytes == 0 && args->section_sent == 0)
1933 {
1934 /* The write is just starting. Let the user know we've started
1935 this section. */
79a45e25 1936 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1937 args->section_name, hex_string (args->section_size),
f5656ead 1938 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1939 return;
1940 }
cf7a04e8
DJ
1941
1942 if (validate_download)
1943 {
1944 /* Broken memories and broken monitors manifest themselves here
1945 when bring new computers to life. This doubles already slow
1946 downloads. */
1947 /* NOTE: cagney/1999-10-18: A more efficient implementation
1948 might add a verify_memory() method to the target vector and
1949 then use that. remote.c could implement that method using
1950 the ``qCRC'' packet. */
1951 gdb_byte *check = xmalloc (bytes);
1952 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1953
1954 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1955 error (_("Download verify read failed at %s"),
f5656ead 1956 paddress (target_gdbarch (), args->lma));
cf7a04e8 1957 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1958 error (_("Download verify compare failed at %s"),
f5656ead 1959 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1960 do_cleanups (verify_cleanups);
1961 }
a76d924d 1962 totals->data_count += bytes;
cf7a04e8
DJ
1963 args->lma += bytes;
1964 args->buffer += bytes;
a76d924d 1965 totals->write_count += 1;
cf7a04e8 1966 args->section_sent += bytes;
522002f9 1967 if (check_quit_flag ()
cf7a04e8
DJ
1968 || (deprecated_ui_load_progress_hook != NULL
1969 && deprecated_ui_load_progress_hook (args->section_name,
1970 args->section_sent)))
1971 error (_("Canceled the download"));
1972
1973 if (deprecated_show_load_progress != NULL)
1974 deprecated_show_load_progress (args->section_name,
1975 args->section_sent,
1976 args->section_size,
a76d924d
DJ
1977 totals->data_count,
1978 totals->total_size);
cf7a04e8
DJ
1979}
1980
e4f9b4d5
MS
1981/* Callback service function for generic_load (bfd_map_over_sections). */
1982
1983static void
1984load_section_callback (bfd *abfd, asection *asec, void *data)
1985{
a76d924d 1986 struct memory_write_request *new_request;
e4f9b4d5 1987 struct load_section_data *args = data;
a76d924d 1988 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1989 bfd_size_type size = bfd_get_section_size (asec);
1990 gdb_byte *buffer;
cf7a04e8 1991 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1992
cf7a04e8
DJ
1993 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1994 return;
e4f9b4d5 1995
cf7a04e8
DJ
1996 if (size == 0)
1997 return;
e4f9b4d5 1998
a76d924d
DJ
1999 new_request = VEC_safe_push (memory_write_request_s,
2000 args->requests, NULL);
2001 memset (new_request, 0, sizeof (struct memory_write_request));
2002 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2003 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2004 new_request->end = new_request->begin + size; /* FIXME Should size
2005 be in instead? */
a76d924d
DJ
2006 new_request->data = xmalloc (size);
2007 new_request->baton = section_data;
cf7a04e8 2008
a76d924d 2009 buffer = new_request->data;
cf7a04e8 2010
a76d924d
DJ
2011 section_data->cumulative = args->progress_data;
2012 section_data->section_name = sect_name;
2013 section_data->section_size = size;
2014 section_data->lma = new_request->begin;
2015 section_data->buffer = buffer;
cf7a04e8
DJ
2016
2017 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2018}
2019
2020/* Clean up an entire memory request vector, including load
2021 data and progress records. */
cf7a04e8 2022
a76d924d
DJ
2023static void
2024clear_memory_write_data (void *arg)
2025{
2026 VEC(memory_write_request_s) **vec_p = arg;
2027 VEC(memory_write_request_s) *vec = *vec_p;
2028 int i;
2029 struct memory_write_request *mr;
cf7a04e8 2030
a76d924d
DJ
2031 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2032 {
2033 xfree (mr->data);
2034 xfree (mr->baton);
2035 }
2036 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2037}
2038
c906108c 2039void
917317f4 2040generic_load (char *args, int from_tty)
c906108c 2041{
c906108c 2042 bfd *loadfile_bfd;
2b71414d 2043 struct timeval start_time, end_time;
917317f4 2044 char *filename;
1986bccd 2045 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2046 struct load_section_data cbdata;
a76d924d 2047 struct load_progress_data total_progress;
79a45e25 2048 struct ui_out *uiout = current_uiout;
a76d924d 2049
e4f9b4d5 2050 CORE_ADDR entry;
1986bccd 2051 char **argv;
e4f9b4d5 2052
a76d924d
DJ
2053 memset (&cbdata, 0, sizeof (cbdata));
2054 memset (&total_progress, 0, sizeof (total_progress));
2055 cbdata.progress_data = &total_progress;
2056
2057 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2058
d1a41061
PP
2059 if (args == NULL)
2060 error_no_arg (_("file to load"));
1986bccd 2061
d1a41061 2062 argv = gdb_buildargv (args);
1986bccd
AS
2063 make_cleanup_freeargv (argv);
2064
2065 filename = tilde_expand (argv[0]);
2066 make_cleanup (xfree, filename);
2067
2068 if (argv[1] != NULL)
917317f4 2069 {
f698ca8e 2070 const char *endptr;
ba5f2f8a 2071
f698ca8e 2072 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2073
2074 /* If the last word was not a valid number then
2075 treat it as a file name with spaces in. */
2076 if (argv[1] == endptr)
2077 error (_("Invalid download offset:%s."), argv[1]);
2078
2079 if (argv[2] != NULL)
2080 error (_("Too many parameters."));
917317f4 2081 }
c906108c 2082
c378eb4e 2083 /* Open the file for loading. */
1c00ec6b 2084 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2085 if (loadfile_bfd == NULL)
2086 {
2087 perror_with_name (filename);
2088 return;
2089 }
917317f4 2090
f9a062ff 2091 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2092
c5aa993b 2093 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2094 {
8a3fe4f8 2095 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2096 bfd_errmsg (bfd_get_error ()));
2097 }
c5aa993b 2098
5417f6dc 2099 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2100 (void *) &total_progress.total_size);
2101
2102 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2103
2b71414d 2104 gettimeofday (&start_time, NULL);
c906108c 2105
a76d924d
DJ
2106 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2107 load_progress) != 0)
2108 error (_("Load failed"));
c906108c 2109
2b71414d 2110 gettimeofday (&end_time, NULL);
ba5f2f8a 2111
e4f9b4d5 2112 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2113 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2114 ui_out_text (uiout, "Start address ");
f5656ead 2115 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2116 ui_out_text (uiout, ", load size ");
a76d924d 2117 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2118 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2119 /* We were doing this in remote-mips.c, I suspect it is right
2120 for other targets too. */
fb14de7b 2121 regcache_write_pc (get_current_regcache (), entry);
c906108c 2122
38963c97
DJ
2123 /* Reset breakpoints, now that we have changed the load image. For
2124 instance, breakpoints may have been set (or reset, by
2125 post_create_inferior) while connected to the target but before we
2126 loaded the program. In that case, the prologue analyzer could
2127 have read instructions from the target to find the right
2128 breakpoint locations. Loading has changed the contents of that
2129 memory. */
2130
2131 breakpoint_re_set ();
2132
7ca9f392
AC
2133 /* FIXME: are we supposed to call symbol_file_add or not? According
2134 to a comment from remote-mips.c (where a call to symbol_file_add
2135 was commented out), making the call confuses GDB if more than one
2136 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2137 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2138
a76d924d
DJ
2139 print_transfer_performance (gdb_stdout, total_progress.data_count,
2140 total_progress.write_count,
2141 &start_time, &end_time);
c906108c
SS
2142
2143 do_cleanups (old_cleanups);
2144}
2145
c378eb4e 2146/* Report how fast the transfer went. */
c906108c 2147
917317f4 2148void
d9fcf2fb 2149print_transfer_performance (struct ui_file *stream,
917317f4
JM
2150 unsigned long data_count,
2151 unsigned long write_count,
2b71414d
DJ
2152 const struct timeval *start_time,
2153 const struct timeval *end_time)
917317f4 2154{
9f43d28c 2155 ULONGEST time_count;
79a45e25 2156 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2157
2158 /* Compute the elapsed time in milliseconds, as a tradeoff between
2159 accuracy and overflow. */
2160 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2161 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2162
8b93c638
JM
2163 ui_out_text (uiout, "Transfer rate: ");
2164 if (time_count > 0)
2165 {
9f43d28c
DJ
2166 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2167
2168 if (ui_out_is_mi_like_p (uiout))
2169 {
2170 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2171 ui_out_text (uiout, " bits/sec");
2172 }
2173 else if (rate < 1024)
2174 {
2175 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2176 ui_out_text (uiout, " bytes/sec");
2177 }
2178 else
2179 {
2180 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2181 ui_out_text (uiout, " KB/sec");
2182 }
8b93c638
JM
2183 }
2184 else
2185 {
ba5f2f8a 2186 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2187 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2188 }
2189 if (write_count > 0)
2190 {
2191 ui_out_text (uiout, ", ");
ba5f2f8a 2192 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2193 ui_out_text (uiout, " bytes/write");
2194 }
2195 ui_out_text (uiout, ".\n");
c906108c
SS
2196}
2197
2198/* This function allows the addition of incrementally linked object files.
2199 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2200/* Note: ezannoni 2000-04-13 This function/command used to have a
2201 special case syntax for the rombug target (Rombug is the boot
2202 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2203 rombug case, the user doesn't need to supply a text address,
2204 instead a call to target_link() (in target.c) would supply the
c378eb4e 2205 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2206
c906108c 2207static void
fba45db2 2208add_symbol_file_command (char *args, int from_tty)
c906108c 2209{
5af949e3 2210 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2211 char *filename = NULL;
2df3850c 2212 int flags = OBJF_USERLOADED;
c906108c 2213 char *arg;
db162d44 2214 int section_index = 0;
2acceee2
JM
2215 int argcnt = 0;
2216 int sec_num = 0;
2217 int i;
db162d44
EZ
2218 int expecting_sec_name = 0;
2219 int expecting_sec_addr = 0;
5b96932b 2220 char **argv;
db162d44 2221
a39a16c4 2222 struct sect_opt
2acceee2 2223 {
2acceee2
JM
2224 char *name;
2225 char *value;
a39a16c4 2226 };
db162d44 2227
a39a16c4
MM
2228 struct section_addr_info *section_addrs;
2229 struct sect_opt *sect_opts = NULL;
2230 size_t num_sect_opts = 0;
3017564a 2231 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2232
a39a16c4 2233 num_sect_opts = 16;
5417f6dc 2234 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2235 * sizeof (struct sect_opt));
2236
c906108c
SS
2237 dont_repeat ();
2238
2239 if (args == NULL)
8a3fe4f8 2240 error (_("add-symbol-file takes a file name and an address"));
c906108c 2241
d1a41061 2242 argv = gdb_buildargv (args);
5b96932b 2243 make_cleanup_freeargv (argv);
db162d44 2244
5b96932b
AS
2245 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2246 {
c378eb4e 2247 /* Process the argument. */
db162d44 2248 if (argcnt == 0)
c906108c 2249 {
c378eb4e 2250 /* The first argument is the file name. */
db162d44 2251 filename = tilde_expand (arg);
3017564a 2252 make_cleanup (xfree, filename);
c906108c 2253 }
db162d44 2254 else
7a78ae4e
ND
2255 if (argcnt == 1)
2256 {
2257 /* The second argument is always the text address at which
c378eb4e 2258 to load the program. */
7a78ae4e
ND
2259 sect_opts[section_index].name = ".text";
2260 sect_opts[section_index].value = arg;
f414f22f 2261 if (++section_index >= num_sect_opts)
a39a16c4
MM
2262 {
2263 num_sect_opts *= 2;
5417f6dc 2264 sect_opts = ((struct sect_opt *)
a39a16c4 2265 xrealloc (sect_opts,
5417f6dc 2266 num_sect_opts
a39a16c4
MM
2267 * sizeof (struct sect_opt)));
2268 }
7a78ae4e
ND
2269 }
2270 else
2271 {
2272 /* It's an option (starting with '-') or it's an argument
c378eb4e 2273 to an option. */
7a78ae4e
ND
2274
2275 if (*arg == '-')
2276 {
78a4a9b9
AC
2277 if (strcmp (arg, "-readnow") == 0)
2278 flags |= OBJF_READNOW;
2279 else if (strcmp (arg, "-s") == 0)
2280 {
2281 expecting_sec_name = 1;
2282 expecting_sec_addr = 1;
2283 }
7a78ae4e
ND
2284 }
2285 else
2286 {
2287 if (expecting_sec_name)
db162d44 2288 {
7a78ae4e
ND
2289 sect_opts[section_index].name = arg;
2290 expecting_sec_name = 0;
db162d44
EZ
2291 }
2292 else
7a78ae4e
ND
2293 if (expecting_sec_addr)
2294 {
2295 sect_opts[section_index].value = arg;
2296 expecting_sec_addr = 0;
f414f22f 2297 if (++section_index >= num_sect_opts)
a39a16c4
MM
2298 {
2299 num_sect_opts *= 2;
5417f6dc 2300 sect_opts = ((struct sect_opt *)
a39a16c4 2301 xrealloc (sect_opts,
5417f6dc 2302 num_sect_opts
a39a16c4
MM
2303 * sizeof (struct sect_opt)));
2304 }
7a78ae4e
ND
2305 }
2306 else
3e43a32a 2307 error (_("USAGE: add-symbol-file <filename> <textaddress>"
412946b6 2308 " [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2309 }
2310 }
c906108c 2311 }
c906108c 2312
927890d0
JB
2313 /* This command takes at least two arguments. The first one is a
2314 filename, and the second is the address where this file has been
2315 loaded. Abort now if this address hasn't been provided by the
2316 user. */
2317 if (section_index < 1)
2318 error (_("The address where %s has been loaded is missing"), filename);
2319
c378eb4e 2320 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2321 a sect_addr_info structure to be passed around to other
2322 functions. We have to split this up into separate print
bb599908 2323 statements because hex_string returns a local static
c378eb4e 2324 string. */
5417f6dc 2325
a3f17187 2326 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2327 section_addrs = alloc_section_addr_info (section_index);
2328 make_cleanup (xfree, section_addrs);
db162d44 2329 for (i = 0; i < section_index; i++)
c906108c 2330 {
db162d44
EZ
2331 CORE_ADDR addr;
2332 char *val = sect_opts[i].value;
2333 char *sec = sect_opts[i].name;
5417f6dc 2334
ae822768 2335 addr = parse_and_eval_address (val);
db162d44 2336
db162d44 2337 /* Here we store the section offsets in the order they were
c378eb4e 2338 entered on the command line. */
a39a16c4
MM
2339 section_addrs->other[sec_num].name = sec;
2340 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2341 printf_unfiltered ("\t%s_addr = %s\n", sec,
2342 paddress (gdbarch, addr));
db162d44
EZ
2343 sec_num++;
2344
5417f6dc 2345 /* The object's sections are initialized when a
db162d44 2346 call is made to build_objfile_section_table (objfile).
5417f6dc 2347 This happens in reread_symbols.
db162d44
EZ
2348 At this point, we don't know what file type this is,
2349 so we can't determine what section names are valid. */
2acceee2 2350 }
d76488d8 2351 section_addrs->num_sections = sec_num;
db162d44 2352
2acceee2 2353 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2354 error (_("Not confirmed."));
c906108c 2355
7eedccfa
PP
2356 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2357 section_addrs, flags);
c906108c
SS
2358
2359 /* Getting new symbols may change our opinion about what is
2360 frameless. */
2361 reinit_frame_cache ();
db162d44 2362 do_cleanups (my_cleanups);
c906108c
SS
2363}
2364\f
70992597 2365
4ac39b97
JK
2366typedef struct objfile *objfilep;
2367
2368DEF_VEC_P (objfilep);
2369
c906108c
SS
2370/* Re-read symbols if a symbol-file has changed. */
2371void
fba45db2 2372reread_symbols (void)
c906108c
SS
2373{
2374 struct objfile *objfile;
2375 long new_modtime;
c906108c
SS
2376 struct stat new_statbuf;
2377 int res;
4ac39b97
JK
2378 VEC (objfilep) *new_objfiles = NULL;
2379 struct cleanup *all_cleanups;
2380
2381 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2382
2383 /* With the addition of shared libraries, this should be modified,
2384 the load time should be saved in the partial symbol tables, since
2385 different tables may come from different source files. FIXME.
2386 This routine should then walk down each partial symbol table
c378eb4e 2387 and see if the symbol table that it originates from has been changed. */
c906108c 2388
c5aa993b
JM
2389 for (objfile = object_files; objfile; objfile = objfile->next)
2390 {
9cce227f
TG
2391 /* solib-sunos.c creates one objfile with obfd. */
2392 if (objfile->obfd == NULL)
2393 continue;
2394
2395 /* Separate debug objfiles are handled in the main objfile. */
2396 if (objfile->separate_debug_objfile_backlink)
2397 continue;
2398
02aeec7b
JB
2399 /* If this object is from an archive (what you usually create with
2400 `ar', often called a `static library' on most systems, though
2401 a `shared library' on AIX is also an archive), then you should
2402 stat on the archive name, not member name. */
9cce227f
TG
2403 if (objfile->obfd->my_archive)
2404 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2405 else
9cce227f
TG
2406 res = stat (objfile->name, &new_statbuf);
2407 if (res != 0)
2408 {
c378eb4e 2409 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2410 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2411 objfile->name);
2412 continue;
2413 }
2414 new_modtime = new_statbuf.st_mtime;
2415 if (new_modtime != objfile->mtime)
2416 {
2417 struct cleanup *old_cleanups;
2418 struct section_offsets *offsets;
2419 int num_offsets;
2420 char *obfd_filename;
2421
2422 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2423 objfile->name);
2424
2425 /* There are various functions like symbol_file_add,
2426 symfile_bfd_open, syms_from_objfile, etc., which might
2427 appear to do what we want. But they have various other
2428 effects which we *don't* want. So we just do stuff
2429 ourselves. We don't worry about mapped files (for one thing,
2430 any mapped file will be out of date). */
2431
2432 /* If we get an error, blow away this objfile (not sure if
2433 that is the correct response for things like shared
2434 libraries). */
2435 old_cleanups = make_cleanup_free_objfile (objfile);
2436 /* We need to do this whenever any symbols go away. */
2437 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2438
0ba1096a
KT
2439 if (exec_bfd != NULL
2440 && filename_cmp (bfd_get_filename (objfile->obfd),
2441 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2442 {
2443 /* Reload EXEC_BFD without asking anything. */
2444
2445 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2446 }
2447
f6eeced0
JK
2448 /* Keep the calls order approx. the same as in free_objfile. */
2449
2450 /* Free the separate debug objfiles. It will be
2451 automatically recreated by sym_read. */
2452 free_objfile_separate_debug (objfile);
2453
2454 /* Remove any references to this objfile in the global
2455 value lists. */
2456 preserve_values (objfile);
2457
2458 /* Nuke all the state that we will re-read. Much of the following
2459 code which sets things to NULL really is necessary to tell
2460 other parts of GDB that there is nothing currently there.
2461
2462 Try to keep the freeing order compatible with free_objfile. */
2463
2464 if (objfile->sf != NULL)
2465 {
2466 (*objfile->sf->sym_finish) (objfile);
2467 }
2468
2469 clear_objfile_data (objfile);
2470
e1507e95 2471 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2472 {
2473 struct bfd *obfd = objfile->obfd;
2474
2475 obfd_filename = bfd_get_filename (objfile->obfd);
2476 /* Open the new BFD before freeing the old one, so that
2477 the filename remains live. */
08d2cd74 2478 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
e1507e95
TT
2479 if (objfile->obfd == NULL)
2480 {
2481 /* We have to make a cleanup and error here, rather
2482 than erroring later, because once we unref OBFD,
2483 OBFD_FILENAME will be freed. */
2484 make_cleanup_bfd_unref (obfd);
2485 error (_("Can't open %s to read symbols."), obfd_filename);
2486 }
a4453b7e
TT
2487 gdb_bfd_unref (obfd);
2488 }
2489
e1507e95 2490 objfile->name = bfd_get_filename (objfile->obfd);
9cce227f
TG
2491 /* bfd_openr sets cacheable to true, which is what we want. */
2492 if (!bfd_check_format (objfile->obfd, bfd_object))
2493 error (_("Can't read symbols from %s: %s."), objfile->name,
2494 bfd_errmsg (bfd_get_error ()));
2495
2496 /* Save the offsets, we will nuke them with the rest of the
2497 objfile_obstack. */
2498 num_offsets = objfile->num_sections;
2499 offsets = ((struct section_offsets *)
2500 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2501 memcpy (offsets, objfile->section_offsets,
2502 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2503
9cce227f
TG
2504 /* FIXME: Do we have to free a whole linked list, or is this
2505 enough? */
2506 if (objfile->global_psymbols.list)
2507 xfree (objfile->global_psymbols.list);
2508 memset (&objfile->global_psymbols, 0,
2509 sizeof (objfile->global_psymbols));
2510 if (objfile->static_psymbols.list)
2511 xfree (objfile->static_psymbols.list);
2512 memset (&objfile->static_psymbols, 0,
2513 sizeof (objfile->static_psymbols));
2514
c378eb4e 2515 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2516 psymbol_bcache_free (objfile->psymbol_cache);
2517 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2518 if (objfile->demangled_names_hash != NULL)
2519 {
2520 htab_delete (objfile->demangled_names_hash);
2521 objfile->demangled_names_hash = NULL;
2522 }
2523 obstack_free (&objfile->objfile_obstack, 0);
2524 objfile->sections = NULL;
2525 objfile->symtabs = NULL;
2526 objfile->psymtabs = NULL;
2527 objfile->psymtabs_addrmap = NULL;
2528 objfile->free_psymtabs = NULL;
34eaf542 2529 objfile->template_symbols = NULL;
9cce227f 2530 objfile->msymbols = NULL;
9cce227f
TG
2531 objfile->minimal_symbol_count = 0;
2532 memset (&objfile->msymbol_hash, 0,
2533 sizeof (objfile->msymbol_hash));
2534 memset (&objfile->msymbol_demangled_hash, 0,
2535 sizeof (objfile->msymbol_demangled_hash));
2536
706e3705
TT
2537 set_objfile_per_bfd (objfile);
2538
9cce227f
TG
2539 /* obstack_init also initializes the obstack so it is
2540 empty. We could use obstack_specify_allocation but
d82ea6a8 2541 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2542 obstack_init (&objfile->objfile_obstack);
d82ea6a8 2543 build_objfile_section_table (objfile);
9cce227f
TG
2544 terminate_minimal_symbol_table (objfile);
2545
2546 /* We use the same section offsets as from last time. I'm not
2547 sure whether that is always correct for shared libraries. */
2548 objfile->section_offsets = (struct section_offsets *)
2549 obstack_alloc (&objfile->objfile_obstack,
2550 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2551 memcpy (objfile->section_offsets, offsets,
2552 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2553 objfile->num_sections = num_offsets;
2554
2555 /* What the hell is sym_new_init for, anyway? The concept of
2556 distinguishing between the main file and additional files
2557 in this way seems rather dubious. */
2558 if (objfile == symfile_objfile)
c906108c 2559 {
9cce227f 2560 (*objfile->sf->sym_new_init) (objfile);
c906108c 2561 }
9cce227f
TG
2562
2563 (*objfile->sf->sym_init) (objfile);
2564 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2565
2566 objfile->flags &= ~OBJF_PSYMTABS_READ;
2567 read_symbols (objfile, 0);
b11896a5 2568
9cce227f 2569 if (!objfile_has_symbols (objfile))
c906108c 2570 {
9cce227f
TG
2571 wrap_here ("");
2572 printf_unfiltered (_("(no debugging symbols found)\n"));
2573 wrap_here ("");
c5aa993b 2574 }
9cce227f
TG
2575
2576 /* We're done reading the symbol file; finish off complaints. */
2577 clear_complaints (&symfile_complaints, 0, 1);
2578
2579 /* Getting new symbols may change our opinion about what is
2580 frameless. */
2581
2582 reinit_frame_cache ();
2583
2584 /* Discard cleanups as symbol reading was successful. */
2585 discard_cleanups (old_cleanups);
2586
2587 /* If the mtime has changed between the time we set new_modtime
2588 and now, we *want* this to be out of date, so don't call stat
2589 again now. */
2590 objfile->mtime = new_modtime;
9cce227f 2591 init_entry_point_info (objfile);
4ac39b97
JK
2592
2593 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2594 }
2595 }
c906108c 2596
4ac39b97 2597 if (new_objfiles)
ea53e89f 2598 {
4ac39b97
JK
2599 int ix;
2600
ff3536bc
UW
2601 /* Notify objfiles that we've modified objfile sections. */
2602 objfiles_changed ();
2603
c1e56572 2604 clear_symtab_users (0);
4ac39b97
JK
2605
2606 /* clear_objfile_data for each objfile was called before freeing it and
2607 observer_notify_new_objfile (NULL) has been called by
2608 clear_symtab_users above. Notify the new files now. */
2609 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2610 observer_notify_new_objfile (objfile);
2611
ea53e89f
JB
2612 /* At least one objfile has changed, so we can consider that
2613 the executable we're debugging has changed too. */
781b42b0 2614 observer_notify_executable_changed ();
ea53e89f 2615 }
4ac39b97
JK
2616
2617 do_cleanups (all_cleanups);
c906108c 2618}
c906108c
SS
2619\f
2620
c5aa993b
JM
2621
2622typedef struct
2623{
2624 char *ext;
c906108c 2625 enum language lang;
c5aa993b
JM
2626}
2627filename_language;
c906108c 2628
c5aa993b 2629static filename_language *filename_language_table;
c906108c
SS
2630static int fl_table_size, fl_table_next;
2631
2632static void
fba45db2 2633add_filename_language (char *ext, enum language lang)
c906108c
SS
2634{
2635 if (fl_table_next >= fl_table_size)
2636 {
2637 fl_table_size += 10;
5417f6dc 2638 filename_language_table =
25bf3106
PM
2639 xrealloc (filename_language_table,
2640 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2641 }
2642
4fcf66da 2643 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2644 filename_language_table[fl_table_next].lang = lang;
2645 fl_table_next++;
2646}
2647
2648static char *ext_args;
920d2a44
AC
2649static void
2650show_ext_args (struct ui_file *file, int from_tty,
2651 struct cmd_list_element *c, const char *value)
2652{
3e43a32a
MS
2653 fprintf_filtered (file,
2654 _("Mapping between filename extension "
2655 "and source language is \"%s\".\n"),
920d2a44
AC
2656 value);
2657}
c906108c
SS
2658
2659static void
26c41df3 2660set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2661{
2662 int i;
2663 char *cp = ext_args;
2664 enum language lang;
2665
c378eb4e 2666 /* First arg is filename extension, starting with '.' */
c906108c 2667 if (*cp != '.')
8a3fe4f8 2668 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2669
2670 /* Find end of first arg. */
c5aa993b 2671 while (*cp && !isspace (*cp))
c906108c
SS
2672 cp++;
2673
2674 if (*cp == '\0')
3e43a32a
MS
2675 error (_("'%s': two arguments required -- "
2676 "filename extension and language"),
c906108c
SS
2677 ext_args);
2678
c378eb4e 2679 /* Null-terminate first arg. */
c5aa993b 2680 *cp++ = '\0';
c906108c
SS
2681
2682 /* Find beginning of second arg, which should be a source language. */
529480d0 2683 cp = skip_spaces (cp);
c906108c
SS
2684
2685 if (*cp == '\0')
3e43a32a
MS
2686 error (_("'%s': two arguments required -- "
2687 "filename extension and language"),
c906108c
SS
2688 ext_args);
2689
2690 /* Lookup the language from among those we know. */
2691 lang = language_enum (cp);
2692
2693 /* Now lookup the filename extension: do we already know it? */
2694 for (i = 0; i < fl_table_next; i++)
2695 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2696 break;
2697
2698 if (i >= fl_table_next)
2699 {
c378eb4e 2700 /* New file extension. */
c906108c
SS
2701 add_filename_language (ext_args, lang);
2702 }
2703 else
2704 {
c378eb4e 2705 /* Redefining a previously known filename extension. */
c906108c
SS
2706
2707 /* if (from_tty) */
2708 /* query ("Really make files of type %s '%s'?", */
2709 /* ext_args, language_str (lang)); */
2710
b8c9b27d 2711 xfree (filename_language_table[i].ext);
4fcf66da 2712 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2713 filename_language_table[i].lang = lang;
2714 }
2715}
2716
2717static void
fba45db2 2718info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2719{
2720 int i;
2721
a3f17187 2722 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2723 printf_filtered ("\n\n");
2724 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2725 printf_filtered ("\t%s\t- %s\n",
2726 filename_language_table[i].ext,
c906108c
SS
2727 language_str (filename_language_table[i].lang));
2728}
2729
2730static void
fba45db2 2731init_filename_language_table (void)
c906108c 2732{
c378eb4e 2733 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2734 {
2735 fl_table_size = 20;
2736 fl_table_next = 0;
c5aa993b 2737 filename_language_table =
c906108c 2738 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2739 add_filename_language (".c", language_c);
6aecb9c2 2740 add_filename_language (".d", language_d);
c5aa993b
JM
2741 add_filename_language (".C", language_cplus);
2742 add_filename_language (".cc", language_cplus);
2743 add_filename_language (".cp", language_cplus);
2744 add_filename_language (".cpp", language_cplus);
2745 add_filename_language (".cxx", language_cplus);
2746 add_filename_language (".c++", language_cplus);
2747 add_filename_language (".java", language_java);
c906108c 2748 add_filename_language (".class", language_java);
da2cf7e0 2749 add_filename_language (".m", language_objc);
c5aa993b
JM
2750 add_filename_language (".f", language_fortran);
2751 add_filename_language (".F", language_fortran);
fd5700c7
JK
2752 add_filename_language (".for", language_fortran);
2753 add_filename_language (".FOR", language_fortran);
2754 add_filename_language (".ftn", language_fortran);
2755 add_filename_language (".FTN", language_fortran);
2756 add_filename_language (".fpp", language_fortran);
2757 add_filename_language (".FPP", language_fortran);
2758 add_filename_language (".f90", language_fortran);
2759 add_filename_language (".F90", language_fortran);
2760 add_filename_language (".f95", language_fortran);
2761 add_filename_language (".F95", language_fortran);
2762 add_filename_language (".f03", language_fortran);
2763 add_filename_language (".F03", language_fortran);
2764 add_filename_language (".f08", language_fortran);
2765 add_filename_language (".F08", language_fortran);
c5aa993b 2766 add_filename_language (".s", language_asm);
aa707ed0 2767 add_filename_language (".sx", language_asm);
c5aa993b 2768 add_filename_language (".S", language_asm);
c6fd39cd
PM
2769 add_filename_language (".pas", language_pascal);
2770 add_filename_language (".p", language_pascal);
2771 add_filename_language (".pp", language_pascal);
963a6417
PH
2772 add_filename_language (".adb", language_ada);
2773 add_filename_language (".ads", language_ada);
2774 add_filename_language (".a", language_ada);
2775 add_filename_language (".ada", language_ada);
dde59185 2776 add_filename_language (".dg", language_ada);
c906108c
SS
2777 }
2778}
2779
2780enum language
dd786858 2781deduce_language_from_filename (const char *filename)
c906108c
SS
2782{
2783 int i;
2784 char *cp;
2785
2786 if (filename != NULL)
2787 if ((cp = strrchr (filename, '.')) != NULL)
2788 for (i = 0; i < fl_table_next; i++)
2789 if (strcmp (cp, filename_language_table[i].ext) == 0)
2790 return filename_language_table[i].lang;
2791
2792 return language_unknown;
2793}
2794\f
2795/* allocate_symtab:
2796
2797 Allocate and partly initialize a new symbol table. Return a pointer
2798 to it. error() if no space.
2799
2800 Caller must set these fields:
c5aa993b
JM
2801 LINETABLE(symtab)
2802 symtab->blockvector
2803 symtab->dirname
2804 symtab->free_code
2805 symtab->free_ptr
c906108c
SS
2806 */
2807
2808struct symtab *
72b9f47f 2809allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2810{
52f0bd74 2811 struct symtab *symtab;
c906108c
SS
2812
2813 symtab = (struct symtab *)
4a146b47 2814 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2815 memset (symtab, 0, sizeof (*symtab));
10abe6bf 2816 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
706e3705 2817 objfile->per_bfd->filename_cache);
c5aa993b
JM
2818 symtab->fullname = NULL;
2819 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2820 symtab->debugformat = "unknown";
c906108c 2821
c378eb4e 2822 /* Hook it to the objfile it comes from. */
c906108c 2823
c5aa993b
JM
2824 symtab->objfile = objfile;
2825 symtab->next = objfile->symtabs;
2826 objfile->symtabs = symtab;
c906108c 2827
45cfd468
DE
2828 if (symtab_create_debug)
2829 {
2830 /* Be a bit clever with debugging messages, and don't print objfile
2831 every time, only when it changes. */
2832 static char *last_objfile_name = NULL;
2833
2834 if (last_objfile_name == NULL
2835 || strcmp (last_objfile_name, objfile->name) != 0)
2836 {
2837 xfree (last_objfile_name);
2838 last_objfile_name = xstrdup (objfile->name);
2839 fprintf_unfiltered (gdb_stdlog,
2840 "Creating one or more symtabs for objfile %s ...\n",
2841 last_objfile_name);
2842 }
2843 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2844 "Created symtab %s for module %s.\n",
2845 host_address_to_string (symtab), filename);
45cfd468
DE
2846 }
2847
c906108c
SS
2848 return (symtab);
2849}
c906108c 2850\f
c5aa993b 2851
c906108c 2852/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2853 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2854
2855void
c1e56572 2856clear_symtab_users (int add_flags)
c906108c
SS
2857{
2858 /* Someday, we should do better than this, by only blowing away
2859 the things that really need to be blown. */
c0501be5
DJ
2860
2861 /* Clear the "current" symtab first, because it is no longer valid.
2862 breakpoint_re_set may try to access the current symtab. */
2863 clear_current_source_symtab_and_line ();
2864
c906108c 2865 clear_displays ();
c1e56572
JK
2866 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2867 breakpoint_re_set ();
1bfeeb0f 2868 clear_last_displayed_sal ();
c906108c 2869 clear_pc_function_cache ();
06d3b283 2870 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2871
2872 /* Clear globals which might have pointed into a removed objfile.
2873 FIXME: It's not clear which of these are supposed to persist
2874 between expressions and which ought to be reset each time. */
2875 expression_context_block = NULL;
2876 innermost_block = NULL;
8756216b
DP
2877
2878 /* Varobj may refer to old symbols, perform a cleanup. */
2879 varobj_invalidate ();
2880
c906108c
SS
2881}
2882
74b7792f
AC
2883static void
2884clear_symtab_users_cleanup (void *ignore)
2885{
c1e56572 2886 clear_symtab_users (0);
74b7792f 2887}
c906108c 2888\f
c906108c
SS
2889/* OVERLAYS:
2890 The following code implements an abstraction for debugging overlay sections.
2891
2892 The target model is as follows:
2893 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2894 same VMA, each with its own unique LMA (or load address).
c906108c 2895 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2896 sections, one by one, from the load address into the VMA address.
5417f6dc 2897 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2898 sections should be considered to be mapped from the VMA to the LMA.
2899 This information is used for symbol lookup, and memory read/write.
5417f6dc 2900 For instance, if a section has been mapped then its contents
c5aa993b 2901 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2902
2903 Two levels of debugger support for overlays are available. One is
2904 "manual", in which the debugger relies on the user to tell it which
2905 overlays are currently mapped. This level of support is
2906 implemented entirely in the core debugger, and the information about
2907 whether a section is mapped is kept in the objfile->obj_section table.
2908
2909 The second level of support is "automatic", and is only available if
2910 the target-specific code provides functionality to read the target's
2911 overlay mapping table, and translate its contents for the debugger
2912 (by updating the mapped state information in the obj_section tables).
2913
2914 The interface is as follows:
c5aa993b
JM
2915 User commands:
2916 overlay map <name> -- tell gdb to consider this section mapped
2917 overlay unmap <name> -- tell gdb to consider this section unmapped
2918 overlay list -- list the sections that GDB thinks are mapped
2919 overlay read-target -- get the target's state of what's mapped
2920 overlay off/manual/auto -- set overlay debugging state
2921 Functional interface:
2922 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2923 section, return that section.
5417f6dc 2924 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2925 the pc, either in its VMA or its LMA
714835d5 2926 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2927 section_is_overlay(sect): true if section's VMA != LMA
2928 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2929 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2930 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2931 overlay_mapped_address(...): map an address from section's LMA to VMA
2932 overlay_unmapped_address(...): map an address from section's VMA to LMA
2933 symbol_overlayed_address(...): Return a "current" address for symbol:
2934 either in VMA or LMA depending on whether
c378eb4e 2935 the symbol's section is currently mapped. */
c906108c
SS
2936
2937/* Overlay debugging state: */
2938
d874f1e2 2939enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2940int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2941
c906108c 2942/* Function: section_is_overlay (SECTION)
5417f6dc 2943 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2944 SECTION is loaded at an address different from where it will "run". */
2945
2946int
714835d5 2947section_is_overlay (struct obj_section *section)
c906108c 2948{
714835d5
UW
2949 if (overlay_debugging && section)
2950 {
2951 bfd *abfd = section->objfile->obfd;
2952 asection *bfd_section = section->the_bfd_section;
f888f159 2953
714835d5
UW
2954 if (bfd_section_lma (abfd, bfd_section) != 0
2955 && bfd_section_lma (abfd, bfd_section)
2956 != bfd_section_vma (abfd, bfd_section))
2957 return 1;
2958 }
c906108c
SS
2959
2960 return 0;
2961}
2962
2963/* Function: overlay_invalidate_all (void)
2964 Invalidate the mapped state of all overlay sections (mark it as stale). */
2965
2966static void
fba45db2 2967overlay_invalidate_all (void)
c906108c 2968{
c5aa993b 2969 struct objfile *objfile;
c906108c
SS
2970 struct obj_section *sect;
2971
2972 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2973 if (section_is_overlay (sect))
2974 sect->ovly_mapped = -1;
c906108c
SS
2975}
2976
714835d5 2977/* Function: section_is_mapped (SECTION)
5417f6dc 2978 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2979
2980 Access to the ovly_mapped flag is restricted to this function, so
2981 that we can do automatic update. If the global flag
2982 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2983 overlay_invalidate_all. If the mapped state of the particular
2984 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2985
714835d5
UW
2986int
2987section_is_mapped (struct obj_section *osect)
c906108c 2988{
9216df95
UW
2989 struct gdbarch *gdbarch;
2990
714835d5 2991 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2992 return 0;
2993
c5aa993b 2994 switch (overlay_debugging)
c906108c
SS
2995 {
2996 default:
d874f1e2 2997 case ovly_off:
c5aa993b 2998 return 0; /* overlay debugging off */
d874f1e2 2999 case ovly_auto: /* overlay debugging automatic */
1c772458 3000 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3001 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3002 gdbarch = get_objfile_arch (osect->objfile);
3003 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3004 {
3005 if (overlay_cache_invalid)
3006 {
3007 overlay_invalidate_all ();
3008 overlay_cache_invalid = 0;
3009 }
3010 if (osect->ovly_mapped == -1)
9216df95 3011 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3012 }
3013 /* fall thru to manual case */
d874f1e2 3014 case ovly_on: /* overlay debugging manual */
c906108c
SS
3015 return osect->ovly_mapped == 1;
3016 }
3017}
3018
c906108c
SS
3019/* Function: pc_in_unmapped_range
3020 If PC falls into the lma range of SECTION, return true, else false. */
3021
3022CORE_ADDR
714835d5 3023pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3024{
714835d5
UW
3025 if (section_is_overlay (section))
3026 {
3027 bfd *abfd = section->objfile->obfd;
3028 asection *bfd_section = section->the_bfd_section;
fbd35540 3029
714835d5
UW
3030 /* We assume the LMA is relocated by the same offset as the VMA. */
3031 bfd_vma size = bfd_get_section_size (bfd_section);
3032 CORE_ADDR offset = obj_section_offset (section);
3033
3034 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3035 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3036 return 1;
3037 }
c906108c 3038
c906108c
SS
3039 return 0;
3040}
3041
3042/* Function: pc_in_mapped_range
3043 If PC falls into the vma range of SECTION, return true, else false. */
3044
3045CORE_ADDR
714835d5 3046pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3047{
714835d5
UW
3048 if (section_is_overlay (section))
3049 {
3050 if (obj_section_addr (section) <= pc
3051 && pc < obj_section_endaddr (section))
3052 return 1;
3053 }
c906108c 3054
c906108c
SS
3055 return 0;
3056}
3057
9ec8e6a0
JB
3058
3059/* Return true if the mapped ranges of sections A and B overlap, false
3060 otherwise. */
b9362cc7 3061static int
714835d5 3062sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3063{
714835d5
UW
3064 CORE_ADDR a_start = obj_section_addr (a);
3065 CORE_ADDR a_end = obj_section_endaddr (a);
3066 CORE_ADDR b_start = obj_section_addr (b);
3067 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3068
3069 return (a_start < b_end && b_start < a_end);
3070}
3071
c906108c
SS
3072/* Function: overlay_unmapped_address (PC, SECTION)
3073 Returns the address corresponding to PC in the unmapped (load) range.
3074 May be the same as PC. */
3075
3076CORE_ADDR
714835d5 3077overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3078{
714835d5
UW
3079 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3080 {
3081 bfd *abfd = section->objfile->obfd;
3082 asection *bfd_section = section->the_bfd_section;
fbd35540 3083
714835d5
UW
3084 return pc + bfd_section_lma (abfd, bfd_section)
3085 - bfd_section_vma (abfd, bfd_section);
3086 }
c906108c
SS
3087
3088 return pc;
3089}
3090
3091/* Function: overlay_mapped_address (PC, SECTION)
3092 Returns the address corresponding to PC in the mapped (runtime) range.
3093 May be the same as PC. */
3094
3095CORE_ADDR
714835d5 3096overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3097{
714835d5
UW
3098 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3099 {
3100 bfd *abfd = section->objfile->obfd;
3101 asection *bfd_section = section->the_bfd_section;
fbd35540 3102
714835d5
UW
3103 return pc + bfd_section_vma (abfd, bfd_section)
3104 - bfd_section_lma (abfd, bfd_section);
3105 }
c906108c
SS
3106
3107 return pc;
3108}
3109
3110
5417f6dc 3111/* Function: symbol_overlayed_address
c906108c
SS
3112 Return one of two addresses (relative to the VMA or to the LMA),
3113 depending on whether the section is mapped or not. */
3114
c5aa993b 3115CORE_ADDR
714835d5 3116symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3117{
3118 if (overlay_debugging)
3119 {
c378eb4e 3120 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3121 if (section == 0)
3122 return address;
c378eb4e
MS
3123 /* If the symbol's section is not an overlay, just return its
3124 address. */
c906108c
SS
3125 if (!section_is_overlay (section))
3126 return address;
c378eb4e 3127 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3128 if (section_is_mapped (section))
3129 return address;
3130 /*
3131 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3132 * then return its LOADED address rather than its vma address!!
3133 */
3134 return overlay_unmapped_address (address, section);
3135 }
3136 return address;
3137}
3138
5417f6dc 3139/* Function: find_pc_overlay (PC)
c906108c
SS
3140 Return the best-match overlay section for PC:
3141 If PC matches a mapped overlay section's VMA, return that section.
3142 Else if PC matches an unmapped section's VMA, return that section.
3143 Else if PC matches an unmapped section's LMA, return that section. */
3144
714835d5 3145struct obj_section *
fba45db2 3146find_pc_overlay (CORE_ADDR pc)
c906108c 3147{
c5aa993b 3148 struct objfile *objfile;
c906108c
SS
3149 struct obj_section *osect, *best_match = NULL;
3150
3151 if (overlay_debugging)
3152 ALL_OBJSECTIONS (objfile, osect)
714835d5 3153 if (section_is_overlay (osect))
c5aa993b 3154 {
714835d5 3155 if (pc_in_mapped_range (pc, osect))
c5aa993b 3156 {
714835d5
UW
3157 if (section_is_mapped (osect))
3158 return osect;
c5aa993b
JM
3159 else
3160 best_match = osect;
3161 }
714835d5 3162 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3163 best_match = osect;
3164 }
714835d5 3165 return best_match;
c906108c
SS
3166}
3167
3168/* Function: find_pc_mapped_section (PC)
5417f6dc 3169 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3170 currently marked as MAPPED, return that section. Else return NULL. */
3171
714835d5 3172struct obj_section *
fba45db2 3173find_pc_mapped_section (CORE_ADDR pc)
c906108c 3174{
c5aa993b 3175 struct objfile *objfile;
c906108c
SS
3176 struct obj_section *osect;
3177
3178 if (overlay_debugging)
3179 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3180 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3181 return osect;
c906108c
SS
3182
3183 return NULL;
3184}
3185
3186/* Function: list_overlays_command
c378eb4e 3187 Print a list of mapped sections and their PC ranges. */
c906108c 3188
5d3055ad 3189static void
fba45db2 3190list_overlays_command (char *args, int from_tty)
c906108c 3191{
c5aa993b
JM
3192 int nmapped = 0;
3193 struct objfile *objfile;
c906108c
SS
3194 struct obj_section *osect;
3195
3196 if (overlay_debugging)
3197 ALL_OBJSECTIONS (objfile, osect)
714835d5 3198 if (section_is_mapped (osect))
c5aa993b 3199 {
5af949e3 3200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3201 const char *name;
3202 bfd_vma lma, vma;
3203 int size;
3204
3205 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3206 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3207 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3208 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3209
3210 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3211 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3212 puts_filtered (" - ");
5af949e3 3213 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3214 printf_filtered (", mapped at ");
5af949e3 3215 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3216 puts_filtered (" - ");
5af949e3 3217 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3218 puts_filtered ("\n");
3219
3220 nmapped++;
3221 }
c906108c 3222 if (nmapped == 0)
a3f17187 3223 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3224}
3225
3226/* Function: map_overlay_command
3227 Mark the named section as mapped (ie. residing at its VMA address). */
3228
5d3055ad 3229static void
fba45db2 3230map_overlay_command (char *args, int from_tty)
c906108c 3231{
c5aa993b
JM
3232 struct objfile *objfile, *objfile2;
3233 struct obj_section *sec, *sec2;
c906108c
SS
3234
3235 if (!overlay_debugging)
3e43a32a
MS
3236 error (_("Overlay debugging not enabled. Use "
3237 "either the 'overlay auto' or\n"
3238 "the 'overlay manual' command."));
c906108c
SS
3239
3240 if (args == 0 || *args == 0)
8a3fe4f8 3241 error (_("Argument required: name of an overlay section"));
c906108c 3242
c378eb4e 3243 /* First, find a section matching the user supplied argument. */
c906108c
SS
3244 ALL_OBJSECTIONS (objfile, sec)
3245 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3246 {
c378eb4e 3247 /* Now, check to see if the section is an overlay. */
714835d5 3248 if (!section_is_overlay (sec))
c5aa993b
JM
3249 continue; /* not an overlay section */
3250
c378eb4e 3251 /* Mark the overlay as "mapped". */
c5aa993b
JM
3252 sec->ovly_mapped = 1;
3253
3254 /* Next, make a pass and unmap any sections that are
3255 overlapped by this new section: */
3256 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3257 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3258 {
3259 if (info_verbose)
a3f17187 3260 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3261 bfd_section_name (objfile->obfd,
3262 sec2->the_bfd_section));
c378eb4e 3263 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3264 }
3265 return;
3266 }
8a3fe4f8 3267 error (_("No overlay section called %s"), args);
c906108c
SS
3268}
3269
3270/* Function: unmap_overlay_command
5417f6dc 3271 Mark the overlay section as unmapped
c906108c
SS
3272 (ie. resident in its LMA address range, rather than the VMA range). */
3273
5d3055ad 3274static void
fba45db2 3275unmap_overlay_command (char *args, int from_tty)
c906108c 3276{
c5aa993b 3277 struct objfile *objfile;
c906108c
SS
3278 struct obj_section *sec;
3279
3280 if (!overlay_debugging)
3e43a32a
MS
3281 error (_("Overlay debugging not enabled. "
3282 "Use either the 'overlay auto' or\n"
3283 "the 'overlay manual' command."));
c906108c
SS
3284
3285 if (args == 0 || *args == 0)
8a3fe4f8 3286 error (_("Argument required: name of an overlay section"));
c906108c 3287
c378eb4e 3288 /* First, find a section matching the user supplied argument. */
c906108c
SS
3289 ALL_OBJSECTIONS (objfile, sec)
3290 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3291 {
3292 if (!sec->ovly_mapped)
8a3fe4f8 3293 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3294 sec->ovly_mapped = 0;
3295 return;
3296 }
8a3fe4f8 3297 error (_("No overlay section called %s"), args);
c906108c
SS
3298}
3299
3300/* Function: overlay_auto_command
3301 A utility command to turn on overlay debugging.
c378eb4e 3302 Possibly this should be done via a set/show command. */
c906108c
SS
3303
3304static void
fba45db2 3305overlay_auto_command (char *args, int from_tty)
c906108c 3306{
d874f1e2 3307 overlay_debugging = ovly_auto;
1900040c 3308 enable_overlay_breakpoints ();
c906108c 3309 if (info_verbose)
a3f17187 3310 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3311}
3312
3313/* Function: overlay_manual_command
3314 A utility command to turn on overlay debugging.
c378eb4e 3315 Possibly this should be done via a set/show command. */
c906108c
SS
3316
3317static void
fba45db2 3318overlay_manual_command (char *args, int from_tty)
c906108c 3319{
d874f1e2 3320 overlay_debugging = ovly_on;
1900040c 3321 disable_overlay_breakpoints ();
c906108c 3322 if (info_verbose)
a3f17187 3323 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3324}
3325
3326/* Function: overlay_off_command
3327 A utility command to turn on overlay debugging.
c378eb4e 3328 Possibly this should be done via a set/show command. */
c906108c
SS
3329
3330static void
fba45db2 3331overlay_off_command (char *args, int from_tty)
c906108c 3332{
d874f1e2 3333 overlay_debugging = ovly_off;
1900040c 3334 disable_overlay_breakpoints ();
c906108c 3335 if (info_verbose)
a3f17187 3336 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3337}
3338
3339static void
fba45db2 3340overlay_load_command (char *args, int from_tty)
c906108c 3341{
e17c207e
UW
3342 struct gdbarch *gdbarch = get_current_arch ();
3343
3344 if (gdbarch_overlay_update_p (gdbarch))
3345 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3346 else
8a3fe4f8 3347 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3348}
3349
3350/* Function: overlay_command
c378eb4e 3351 A place-holder for a mis-typed command. */
c906108c 3352
c378eb4e 3353/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3354static struct cmd_list_element *overlaylist;
c906108c
SS
3355
3356static void
fba45db2 3357overlay_command (char *args, int from_tty)
c906108c 3358{
c5aa993b 3359 printf_unfiltered
c906108c
SS
3360 ("\"overlay\" must be followed by the name of an overlay command.\n");
3361 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3362}
3363
3364
3365/* Target Overlays for the "Simplest" overlay manager:
3366
5417f6dc
RM
3367 This is GDB's default target overlay layer. It works with the
3368 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3369 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3370 so targets that use a different runtime overlay manager can
c906108c
SS
3371 substitute their own overlay_update function and take over the
3372 function pointer.
3373
3374 The overlay_update function pokes around in the target's data structures
3375 to see what overlays are mapped, and updates GDB's overlay mapping with
3376 this information.
3377
3378 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3379 unsigned _novlys; /# number of overlay sections #/
3380 unsigned _ovly_table[_novlys][4] = {
3381 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3382 {..., ..., ..., ...},
3383 }
3384 unsigned _novly_regions; /# number of overlay regions #/
3385 unsigned _ovly_region_table[_novly_regions][3] = {
3386 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3387 {..., ..., ...},
3388 }
c906108c
SS
3389 These functions will attempt to update GDB's mappedness state in the
3390 symbol section table, based on the target's mappedness state.
3391
3392 To do this, we keep a cached copy of the target's _ovly_table, and
3393 attempt to detect when the cached copy is invalidated. The main
3394 entry point is "simple_overlay_update(SECT), which looks up SECT in
3395 the cached table and re-reads only the entry for that section from
c378eb4e 3396 the target (whenever possible). */
c906108c
SS
3397
3398/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3399static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3400static unsigned cache_novlys = 0;
c906108c 3401static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3402enum ovly_index
3403 {
3404 VMA, SIZE, LMA, MAPPED
3405 };
c906108c 3406
c378eb4e 3407/* Throw away the cached copy of _ovly_table. */
c906108c 3408static void
fba45db2 3409simple_free_overlay_table (void)
c906108c
SS
3410{
3411 if (cache_ovly_table)
b8c9b27d 3412 xfree (cache_ovly_table);
c5aa993b 3413 cache_novlys = 0;
c906108c
SS
3414 cache_ovly_table = NULL;
3415 cache_ovly_table_base = 0;
3416}
3417
9216df95 3418/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3419 Convert to host order. int LEN is number of ints. */
c906108c 3420static void
9216df95 3421read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3422 int len, int size, enum bfd_endian byte_order)
c906108c 3423{
c378eb4e 3424 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3425 gdb_byte *buf = alloca (len * size);
c5aa993b 3426 int i;
c906108c 3427
9216df95 3428 read_memory (memaddr, buf, len * size);
c906108c 3429 for (i = 0; i < len; i++)
e17a4113 3430 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3431}
3432
3433/* Find and grab a copy of the target _ovly_table
c378eb4e 3434 (and _novlys, which is needed for the table's size). */
c5aa993b 3435static int
fba45db2 3436simple_read_overlay_table (void)
c906108c 3437{
0d43edd1 3438 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3439 struct gdbarch *gdbarch;
3440 int word_size;
e17a4113 3441 enum bfd_endian byte_order;
c906108c
SS
3442
3443 simple_free_overlay_table ();
9b27852e 3444 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3445 if (! novlys_msym)
c906108c 3446 {
8a3fe4f8 3447 error (_("Error reading inferior's overlay table: "
0d43edd1 3448 "couldn't find `_novlys' variable\n"
8a3fe4f8 3449 "in inferior. Use `overlay manual' mode."));
0d43edd1 3450 return 0;
c906108c 3451 }
0d43edd1 3452
9b27852e 3453 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3454 if (! ovly_table_msym)
3455 {
8a3fe4f8 3456 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3457 "`_ovly_table' array\n"
8a3fe4f8 3458 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3459 return 0;
3460 }
3461
9216df95
UW
3462 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3463 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3464 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3465
e17a4113
UW
3466 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3467 4, byte_order);
0d43edd1
JB
3468 cache_ovly_table
3469 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3470 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3471 read_target_long_array (cache_ovly_table_base,
777ea8f1 3472 (unsigned int *) cache_ovly_table,
e17a4113 3473 cache_novlys * 4, word_size, byte_order);
0d43edd1 3474
c5aa993b 3475 return 1; /* SUCCESS */
c906108c
SS
3476}
3477
5417f6dc 3478/* Function: simple_overlay_update_1
c906108c
SS
3479 A helper function for simple_overlay_update. Assuming a cached copy
3480 of _ovly_table exists, look through it to find an entry whose vma,
3481 lma and size match those of OSECT. Re-read the entry and make sure
3482 it still matches OSECT (else the table may no longer be valid).
3483 Set OSECT's mapped state to match the entry. Return: 1 for
3484 success, 0 for failure. */
3485
3486static int
fba45db2 3487simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3488{
3489 int i, size;
fbd35540
MS
3490 bfd *obfd = osect->objfile->obfd;
3491 asection *bsect = osect->the_bfd_section;
9216df95
UW
3492 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3493 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3494 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3495
2c500098 3496 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3497 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3498 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3499 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3500 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3501 {
9216df95
UW
3502 read_target_long_array (cache_ovly_table_base + i * word_size,
3503 (unsigned int *) cache_ovly_table[i],
e17a4113 3504 4, word_size, byte_order);
fbd35540
MS
3505 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3506 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3507 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3508 {
3509 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3510 return 1;
3511 }
c378eb4e 3512 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3513 return 0;
3514 }
3515 return 0;
3516}
3517
3518/* Function: simple_overlay_update
5417f6dc
RM
3519 If OSECT is NULL, then update all sections' mapped state
3520 (after re-reading the entire target _ovly_table).
3521 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3522 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3523 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3524 re-read the entire cache, and go ahead and update all sections. */
3525
1c772458 3526void
fba45db2 3527simple_overlay_update (struct obj_section *osect)
c906108c 3528{
c5aa993b 3529 struct objfile *objfile;
c906108c 3530
c378eb4e 3531 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3532 if (osect)
c378eb4e 3533 /* Have we got a cached copy of the target's overlay table? */
c906108c 3534 if (cache_ovly_table != NULL)
9cc89665
MS
3535 {
3536 /* Does its cached location match what's currently in the
3537 symtab? */
3538 struct minimal_symbol *minsym
3539 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3540
3541 if (minsym == NULL)
3542 error (_("Error reading inferior's overlay table: couldn't "
3543 "find `_ovly_table' array\n"
3544 "in inferior. Use `overlay manual' mode."));
3545
3546 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3547 /* Then go ahead and try to look up this single section in
3548 the cache. */
3549 if (simple_overlay_update_1 (osect))
3550 /* Found it! We're done. */
3551 return;
3552 }
c906108c
SS
3553
3554 /* Cached table no good: need to read the entire table anew.
3555 Or else we want all the sections, in which case it's actually
3556 more efficient to read the whole table in one block anyway. */
3557
0d43edd1
JB
3558 if (! simple_read_overlay_table ())
3559 return;
3560
c378eb4e 3561 /* Now may as well update all sections, even if only one was requested. */
c906108c 3562 ALL_OBJSECTIONS (objfile, osect)
714835d5 3563 if (section_is_overlay (osect))
c5aa993b
JM
3564 {
3565 int i, size;
fbd35540
MS
3566 bfd *obfd = osect->objfile->obfd;
3567 asection *bsect = osect->the_bfd_section;
c5aa993b 3568
2c500098 3569 size = bfd_get_section_size (bsect);
c5aa993b 3570 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3571 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3572 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3573 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3574 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3575 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3576 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3577 }
3578 }
c906108c
SS
3579}
3580
086df311
DJ
3581/* Set the output sections and output offsets for section SECTP in
3582 ABFD. The relocation code in BFD will read these offsets, so we
3583 need to be sure they're initialized. We map each section to itself,
3584 with no offset; this means that SECTP->vma will be honored. */
3585
3586static void
3587symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3588{
3589 sectp->output_section = sectp;
3590 sectp->output_offset = 0;
3591}
3592
ac8035ab
TG
3593/* Default implementation for sym_relocate. */
3594
3595
3596bfd_byte *
3597default_symfile_relocate (struct objfile *objfile, asection *sectp,
3598 bfd_byte *buf)
3599{
3019eac3
DE
3600 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3601 DWO file. */
3602 bfd *abfd = sectp->owner;
ac8035ab
TG
3603
3604 /* We're only interested in sections with relocation
3605 information. */
3606 if ((sectp->flags & SEC_RELOC) == 0)
3607 return NULL;
3608
3609 /* We will handle section offsets properly elsewhere, so relocate as if
3610 all sections begin at 0. */
3611 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3612
3613 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3614}
3615
086df311
DJ
3616/* Relocate the contents of a debug section SECTP in ABFD. The
3617 contents are stored in BUF if it is non-NULL, or returned in a
3618 malloc'd buffer otherwise.
3619
3620 For some platforms and debug info formats, shared libraries contain
3621 relocations against the debug sections (particularly for DWARF-2;
3622 one affected platform is PowerPC GNU/Linux, although it depends on
3623 the version of the linker in use). Also, ELF object files naturally
3624 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3625 the relocations in order to get the locations of symbols correct.
3626 Another example that may require relocation processing, is the
3627 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3628 debug section. */
086df311
DJ
3629
3630bfd_byte *
ac8035ab
TG
3631symfile_relocate_debug_section (struct objfile *objfile,
3632 asection *sectp, bfd_byte *buf)
086df311 3633{
ac8035ab 3634 gdb_assert (objfile->sf->sym_relocate);
086df311 3635
ac8035ab 3636 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3637}
c906108c 3638
31d99776
DJ
3639struct symfile_segment_data *
3640get_symfile_segment_data (bfd *abfd)
3641{
00b5771c 3642 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3643
3644 if (sf == NULL)
3645 return NULL;
3646
3647 return sf->sym_segments (abfd);
3648}
3649
3650void
3651free_symfile_segment_data (struct symfile_segment_data *data)
3652{
3653 xfree (data->segment_bases);
3654 xfree (data->segment_sizes);
3655 xfree (data->segment_info);
3656 xfree (data);
3657}
3658
28c32713
JB
3659
3660/* Given:
3661 - DATA, containing segment addresses from the object file ABFD, and
3662 the mapping from ABFD's sections onto the segments that own them,
3663 and
3664 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3665 segment addresses reported by the target,
3666 store the appropriate offsets for each section in OFFSETS.
3667
3668 If there are fewer entries in SEGMENT_BASES than there are segments
3669 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3670
8d385431
DJ
3671 If there are more entries, then ignore the extra. The target may
3672 not be able to distinguish between an empty data segment and a
3673 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3674int
3675symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3676 struct section_offsets *offsets,
3677 int num_segment_bases,
3678 const CORE_ADDR *segment_bases)
3679{
3680 int i;
3681 asection *sect;
3682
28c32713
JB
3683 /* It doesn't make sense to call this function unless you have some
3684 segment base addresses. */
202b96c1 3685 gdb_assert (num_segment_bases > 0);
28c32713 3686
31d99776
DJ
3687 /* If we do not have segment mappings for the object file, we
3688 can not relocate it by segments. */
3689 gdb_assert (data != NULL);
3690 gdb_assert (data->num_segments > 0);
3691
31d99776
DJ
3692 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3693 {
31d99776
DJ
3694 int which = data->segment_info[i];
3695
28c32713
JB
3696 gdb_assert (0 <= which && which <= data->num_segments);
3697
3698 /* Don't bother computing offsets for sections that aren't
3699 loaded as part of any segment. */
3700 if (! which)
3701 continue;
3702
3703 /* Use the last SEGMENT_BASES entry as the address of any extra
3704 segments mentioned in DATA->segment_info. */
31d99776 3705 if (which > num_segment_bases)
28c32713 3706 which = num_segment_bases;
31d99776 3707
28c32713
JB
3708 offsets->offsets[i] = (segment_bases[which - 1]
3709 - data->segment_bases[which - 1]);
31d99776
DJ
3710 }
3711
3712 return 1;
3713}
3714
3715static void
3716symfile_find_segment_sections (struct objfile *objfile)
3717{
3718 bfd *abfd = objfile->obfd;
3719 int i;
3720 asection *sect;
3721 struct symfile_segment_data *data;
3722
3723 data = get_symfile_segment_data (objfile->obfd);
3724 if (data == NULL)
3725 return;
3726
3727 if (data->num_segments != 1 && data->num_segments != 2)
3728 {
3729 free_symfile_segment_data (data);
3730 return;
3731 }
3732
3733 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3734 {
31d99776
DJ
3735 int which = data->segment_info[i];
3736
3737 if (which == 1)
3738 {
3739 if (objfile->sect_index_text == -1)
3740 objfile->sect_index_text = sect->index;
3741
3742 if (objfile->sect_index_rodata == -1)
3743 objfile->sect_index_rodata = sect->index;
3744 }
3745 else if (which == 2)
3746 {
3747 if (objfile->sect_index_data == -1)
3748 objfile->sect_index_data = sect->index;
3749
3750 if (objfile->sect_index_bss == -1)
3751 objfile->sect_index_bss = sect->index;
3752 }
3753 }
3754
3755 free_symfile_segment_data (data);
3756}
3757
c906108c 3758void
fba45db2 3759_initialize_symfile (void)
c906108c
SS
3760{
3761 struct cmd_list_element *c;
c5aa993b 3762
1a966eab
AC
3763 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3764Load symbol table from executable file FILE.\n\
c906108c 3765The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3766to execute."), &cmdlist);
5ba2abeb 3767 set_cmd_completer (c, filename_completer);
c906108c 3768
1a966eab 3769 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3770Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3771Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3772 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3773The optional arguments are section-name section-address pairs and\n\
3774should be specified if the data and bss segments are not contiguous\n\
1a966eab 3775with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3776 &cmdlist);
5ba2abeb 3777 set_cmd_completer (c, filename_completer);
c906108c 3778
1a966eab
AC
3779 c = add_cmd ("load", class_files, load_command, _("\
3780Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3781for access from GDB.\n\
3782A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3783 set_cmd_completer (c, filename_completer);
c906108c 3784
c5aa993b 3785 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3786 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3787 "overlay ", 0, &cmdlist);
3788
3789 add_com_alias ("ovly", "overlay", class_alias, 1);
3790 add_com_alias ("ov", "overlay", class_alias, 1);
3791
c5aa993b 3792 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3793 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3794
c5aa993b 3795 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3796 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3797
c5aa993b 3798 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3799 _("List mappings of overlay sections."), &overlaylist);
c906108c 3800
c5aa993b 3801 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3802 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3803 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3804 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3805 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3806 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3807 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3808 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3809
3810 /* Filename extension to source language lookup table: */
3811 init_filename_language_table ();
26c41df3
AC
3812 add_setshow_string_noescape_cmd ("extension-language", class_files,
3813 &ext_args, _("\
3814Set mapping between filename extension and source language."), _("\
3815Show mapping between filename extension and source language."), _("\
3816Usage: set extension-language .foo bar"),
3817 set_ext_lang_command,
920d2a44 3818 show_ext_args,
26c41df3 3819 &setlist, &showlist);
c906108c 3820
c5aa993b 3821 add_info ("extensions", info_ext_lang_command,
1bedd215 3822 _("All filename extensions associated with a source language."));
917317f4 3823
525226b5
AC
3824 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3825 &debug_file_directory, _("\
24ddea62
JK
3826Set the directories where separate debug symbols are searched for."), _("\
3827Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3828Separate debug symbols are first searched for in the same\n\
3829directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3830and lastly at the path of the directory of the binary with\n\
24ddea62 3831each global debug-file-directory component prepended."),
525226b5 3832 NULL,
920d2a44 3833 show_debug_file_directory,
525226b5 3834 &setlist, &showlist);
c906108c 3835}