]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/symfile.c
* config/tc-mips.c (mips_fix_loongson2f, mips_fix_loongson2f_nop,
[thirdparty/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4c38e0a4 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
c906108c 68
9a4105ab
AC
69int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c906108c 80/* Global variables owned by this file */
c5aa993b 81int readnow_symbol_files; /* Read full symbols immediately */
c906108c 82
c906108c
SS
83/* External variables and functions referenced. */
84
a14ed312 85extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
86
87/* Functions this file defines */
88
89#if 0
a14ed312
KB
90static int simple_read_overlay_region_table (void);
91static void simple_free_overlay_region_table (void);
c906108c
SS
92#endif
93
a14ed312 94static void load_command (char *, int);
c906108c 95
d7db6da9
FN
96static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
a14ed312 98static void add_symbol_file_command (char *, int);
c906108c 99
a14ed312 100bfd *symfile_bfd_open (char *);
c906108c 101
0e931cf0
JB
102int get_section_index (struct objfile *, char *);
103
31d99776 104static struct sym_fns *find_sym_fns (bfd *);
c906108c 105
a14ed312 106static void decrement_reading_symtab (void *);
c906108c 107
a14ed312 108static void overlay_invalidate_all (void);
c906108c 109
a14ed312 110void list_overlays_command (char *, int);
c906108c 111
a14ed312 112void map_overlay_command (char *, int);
c906108c 113
a14ed312 114void unmap_overlay_command (char *, int);
c906108c 115
a14ed312 116static void overlay_auto_command (char *, int);
c906108c 117
a14ed312 118static void overlay_manual_command (char *, int);
c906108c 119
a14ed312 120static void overlay_off_command (char *, int);
c906108c 121
a14ed312 122static void overlay_load_command (char *, int);
c906108c 123
a14ed312 124static void overlay_command (char *, int);
c906108c 125
a14ed312 126static void simple_free_overlay_table (void);
c906108c 127
e17a4113
UW
128static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
129 enum bfd_endian);
c906108c 130
a14ed312 131static int simple_read_overlay_table (void);
c906108c 132
a14ed312 133static int simple_overlay_update_1 (struct obj_section *);
c906108c 134
a14ed312 135static void add_filename_language (char *ext, enum language lang);
392a587b 136
a14ed312 137static void info_ext_lang_command (char *args, int from_tty);
392a587b 138
a14ed312 139static void init_filename_language_table (void);
392a587b 140
31d99776
DJ
141static void symfile_find_segment_sections (struct objfile *objfile);
142
a14ed312 143void _initialize_symfile (void);
c906108c
SS
144
145/* List of all available sym_fns. On gdb startup, each object file reader
146 calls add_symtab_fns() to register information on each format it is
147 prepared to read. */
148
149static struct sym_fns *symtab_fns = NULL;
150
151/* Flag for whether user will be reloading symbols multiple times.
152 Defaults to ON for VxWorks, otherwise OFF. */
153
154#ifdef SYMBOL_RELOADING_DEFAULT
155int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
156#else
157int symbol_reloading = 0;
158#endif
920d2a44
AC
159static void
160show_symbol_reloading (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
163 fprintf_filtered (file, _("\
164Dynamic symbol table reloading multiple times in one run is %s.\n"),
165 value);
166}
167
b7209cb4
FF
168/* If non-zero, shared library symbols will be added automatically
169 when the inferior is created, new libraries are loaded, or when
170 attaching to the inferior. This is almost always what users will
171 want to have happen; but for very large programs, the startup time
172 will be excessive, and so if this is a problem, the user can clear
173 this flag and then add the shared library symbols as needed. Note
174 that there is a potential for confusion, since if the shared
c906108c 175 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 176 report all the functions that are actually present. */
c906108c
SS
177
178int auto_solib_add = 1;
b7209cb4
FF
179
180/* For systems that support it, a threshold size in megabytes. If
181 automatically adding a new library's symbol table to those already
182 known to the debugger would cause the total shared library symbol
183 size to exceed this threshhold, then the shlib's symbols are not
184 added. The threshold is ignored if the user explicitly asks for a
185 shlib to be added, such as when using the "sharedlibrary"
186 command. */
187
188int auto_solib_limit;
c906108c 189\f
c5aa993b 190
0fe19209
DC
191/* This compares two partial symbols by names, using strcmp_iw_ordered
192 for the comparison. */
c906108c
SS
193
194static int
0cd64fe2 195compare_psymbols (const void *s1p, const void *s2p)
c906108c 196{
0fe19209
DC
197 struct partial_symbol *const *s1 = s1p;
198 struct partial_symbol *const *s2 = s2p;
199
4725b721
PH
200 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
201 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
202}
203
204void
fba45db2 205sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
206{
207 /* Sort the global list; don't sort the static list */
208
c5aa993b
JM
209 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
210 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
211 compare_psymbols);
212}
213
c906108c
SS
214/* Make a null terminated copy of the string at PTR with SIZE characters in
215 the obstack pointed to by OBSTACKP . Returns the address of the copy.
216 Note that the string at PTR does not have to be null terminated, I.E. it
217 may be part of a larger string and we are only saving a substring. */
218
219char *
63ca651f 220obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 221{
52f0bd74 222 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
223 /* Open-coded memcpy--saves function call time. These strings are usually
224 short. FIXME: Is this really still true with a compiler that can
225 inline memcpy? */
226 {
aa1ee363
AC
227 const char *p1 = ptr;
228 char *p2 = p;
63ca651f 229 const char *end = ptr + size;
c906108c
SS
230 while (p1 != end)
231 *p2++ = *p1++;
232 }
233 p[size] = 0;
234 return p;
235}
236
237/* Concatenate strings S1, S2 and S3; return the new string. Space is found
238 in the obstack pointed to by OBSTACKP. */
239
240char *
fba45db2
KB
241obconcat (struct obstack *obstackp, const char *s1, const char *s2,
242 const char *s3)
c906108c 243{
52f0bd74
AC
244 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
245 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
246 strcpy (val, s1);
247 strcat (val, s2);
248 strcat (val, s3);
249 return val;
250}
251
252/* True if we are nested inside psymtab_to_symtab. */
253
254int currently_reading_symtab = 0;
255
256static void
fba45db2 257decrement_reading_symtab (void *dummy)
c906108c
SS
258{
259 currently_reading_symtab--;
260}
261
262/* Get the symbol table that corresponds to a partial_symtab.
263 This is fast after the first time you do it. In fact, there
264 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
265 case inline. */
266
267struct symtab *
aa1ee363 268psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
269{
270 /* If it's been looked up before, return it. */
271 if (pst->symtab)
272 return pst->symtab;
273
274 /* If it has not yet been read in, read it. */
275 if (!pst->readin)
c5aa993b 276 {
c906108c
SS
277 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
278 currently_reading_symtab++;
279 (*pst->read_symtab) (pst);
280 do_cleanups (back_to);
281 }
282
283 return pst->symtab;
284}
285
5417f6dc
RM
286/* Remember the lowest-addressed loadable section we've seen.
287 This function is called via bfd_map_over_sections.
c906108c
SS
288
289 In case of equal vmas, the section with the largest size becomes the
290 lowest-addressed loadable section.
291
292 If the vmas and sizes are equal, the last section is considered the
293 lowest-addressed loadable section. */
294
295void
4efb68b1 296find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 297{
c5aa993b 298 asection **lowest = (asection **) obj;
c906108c
SS
299
300 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
301 return;
302 if (!*lowest)
303 *lowest = sect; /* First loadable section */
304 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
305 *lowest = sect; /* A lower loadable section */
306 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
307 && (bfd_section_size (abfd, (*lowest))
308 <= bfd_section_size (abfd, sect)))
309 *lowest = sect;
310}
311
a39a16c4
MM
312/* Create a new section_addr_info, with room for NUM_SECTIONS. */
313
314struct section_addr_info *
315alloc_section_addr_info (size_t num_sections)
316{
317 struct section_addr_info *sap;
318 size_t size;
319
320 size = (sizeof (struct section_addr_info)
321 + sizeof (struct other_sections) * (num_sections - 1));
322 sap = (struct section_addr_info *) xmalloc (size);
323 memset (sap, 0, size);
324 sap->num_sections = num_sections;
325
326 return sap;
327}
62557bbc
KB
328
329/* Build (allocate and populate) a section_addr_info struct from
330 an existing section table. */
331
332extern struct section_addr_info *
0542c86d
PA
333build_section_addr_info_from_section_table (const struct target_section *start,
334 const struct target_section *end)
62557bbc
KB
335{
336 struct section_addr_info *sap;
0542c86d 337 const struct target_section *stp;
62557bbc
KB
338 int oidx;
339
a39a16c4 340 sap = alloc_section_addr_info (end - start);
62557bbc
KB
341
342 for (stp = start, oidx = 0; stp != end; stp++)
343 {
5417f6dc 344 if (bfd_get_section_flags (stp->bfd,
fbd35540 345 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 346 && oidx < end - start)
62557bbc
KB
347 {
348 sap->other[oidx].addr = stp->addr;
5417f6dc 349 sap->other[oidx].name
fbd35540 350 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
351 sap->other[oidx].sectindex = stp->the_bfd_section->index;
352 oidx++;
353 }
354 }
355
356 return sap;
357}
358
089b4803
TG
359/* Create a section_addr_info from section offsets in OBJFILE. */
360
567995e1 361struct section_addr_info *
089b4803
TG
362build_section_addr_info_from_objfile (const struct objfile *objfile)
363{
364 struct section_addr_info *sap;
365 int i;
366 struct bfd_section *sec;
567995e1
JK
367 int addr_bit = gdbarch_addr_bit (objfile->gdbarch);
368 CORE_ADDR mask = CORE_ADDR_MAX;
369
370 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
371 mask = ((CORE_ADDR) 1 << addr_bit) - 1;
089b4803
TG
372
373 sap = alloc_section_addr_info (objfile->num_sections);
012836ea
JK
374 for (i = 0, sec = objfile->obfd->sections; sec != NULL; sec = sec->next)
375 if (bfd_get_section_flags (objfile->obfd, sec) & (SEC_ALLOC | SEC_LOAD))
376 {
377 sap->other[i].addr = (bfd_get_section_vma (objfile->obfd, sec)
378 + objfile->section_offsets->offsets[i]) & mask;
379 sap->other[i].name = xstrdup (bfd_get_section_name (objfile->obfd,
380 sec));
381 sap->other[i].sectindex = sec->index;
382 i++;
383 }
089b4803
TG
384 return sap;
385}
386
62557bbc
KB
387
388/* Free all memory allocated by build_section_addr_info_from_section_table. */
389
390extern void
391free_section_addr_info (struct section_addr_info *sap)
392{
393 int idx;
394
a39a16c4 395 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 396 if (sap->other[idx].name)
b8c9b27d
KB
397 xfree (sap->other[idx].name);
398 xfree (sap);
62557bbc
KB
399}
400
401
e8289572
JB
402/* Initialize OBJFILE's sect_index_* members. */
403static void
404init_objfile_sect_indices (struct objfile *objfile)
c906108c 405{
e8289572 406 asection *sect;
c906108c 407 int i;
5417f6dc 408
b8fbeb18 409 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 410 if (sect)
b8fbeb18
EZ
411 objfile->sect_index_text = sect->index;
412
413 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 414 if (sect)
b8fbeb18
EZ
415 objfile->sect_index_data = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 418 if (sect)
b8fbeb18
EZ
419 objfile->sect_index_bss = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 422 if (sect)
b8fbeb18
EZ
423 objfile->sect_index_rodata = sect->index;
424
bbcd32ad
FF
425 /* This is where things get really weird... We MUST have valid
426 indices for the various sect_index_* members or gdb will abort.
427 So if for example, there is no ".text" section, we have to
31d99776
DJ
428 accomodate that. First, check for a file with the standard
429 one or two segments. */
430
431 symfile_find_segment_sections (objfile);
432
433 /* Except when explicitly adding symbol files at some address,
434 section_offsets contains nothing but zeros, so it doesn't matter
435 which slot in section_offsets the individual sect_index_* members
436 index into. So if they are all zero, it is safe to just point
437 all the currently uninitialized indices to the first slot. But
438 beware: if this is the main executable, it may be relocated
439 later, e.g. by the remote qOffsets packet, and then this will
440 be wrong! That's why we try segments first. */
bbcd32ad
FF
441
442 for (i = 0; i < objfile->num_sections; i++)
443 {
444 if (ANOFFSET (objfile->section_offsets, i) != 0)
445 {
446 break;
447 }
448 }
449 if (i == objfile->num_sections)
450 {
451 if (objfile->sect_index_text == -1)
452 objfile->sect_index_text = 0;
453 if (objfile->sect_index_data == -1)
454 objfile->sect_index_data = 0;
455 if (objfile->sect_index_bss == -1)
456 objfile->sect_index_bss = 0;
457 if (objfile->sect_index_rodata == -1)
458 objfile->sect_index_rodata = 0;
459 }
b8fbeb18 460}
c906108c 461
c1bd25fd
DJ
462/* The arguments to place_section. */
463
464struct place_section_arg
465{
466 struct section_offsets *offsets;
467 CORE_ADDR lowest;
468};
469
470/* Find a unique offset to use for loadable section SECT if
471 the user did not provide an offset. */
472
2c0b251b 473static void
c1bd25fd
DJ
474place_section (bfd *abfd, asection *sect, void *obj)
475{
476 struct place_section_arg *arg = obj;
477 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
478 int done;
3bd72c6f 479 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 480
2711e456
DJ
481 /* We are only interested in allocated sections. */
482 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
483 return;
484
485 /* If the user specified an offset, honor it. */
486 if (offsets[sect->index] != 0)
487 return;
488
489 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
490 start_addr = (arg->lowest + align - 1) & -align;
491
c1bd25fd
DJ
492 do {
493 asection *cur_sec;
c1bd25fd 494
c1bd25fd
DJ
495 done = 1;
496
497 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
498 {
499 int indx = cur_sec->index;
500 CORE_ADDR cur_offset;
501
502 /* We don't need to compare against ourself. */
503 if (cur_sec == sect)
504 continue;
505
2711e456
DJ
506 /* We can only conflict with allocated sections. */
507 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
508 continue;
509
510 /* If the section offset is 0, either the section has not been placed
511 yet, or it was the lowest section placed (in which case LOWEST
512 will be past its end). */
513 if (offsets[indx] == 0)
514 continue;
515
516 /* If this section would overlap us, then we must move up. */
517 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
518 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
519 {
520 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
521 start_addr = (start_addr + align - 1) & -align;
522 done = 0;
3bd72c6f 523 break;
c1bd25fd
DJ
524 }
525
526 /* Otherwise, we appear to be OK. So far. */
527 }
528 }
529 while (!done);
530
531 offsets[sect->index] = start_addr;
532 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 533}
e8289572 534
75242ef4
JK
535/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
536 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
537 entries. */
e8289572
JB
538
539void
75242ef4
JK
540relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
541 int num_sections,
542 struct section_addr_info *addrs)
e8289572
JB
543{
544 int i;
545
75242ef4 546 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 547
75242ef4 548 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 549 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 550 {
75242ef4 551 struct other_sections *osp;
e8289572 552
75242ef4 553 osp = &addrs->other[i];
e8289572
JB
554 if (osp->addr == 0)
555 continue;
556
557 /* Record all sections in offsets */
558 /* The section_offsets in the objfile are here filled in using
559 the BFD index. */
75242ef4
JK
560 section_offsets->offsets[osp->sectindex] = osp->addr;
561 }
562}
563
564/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
565 also SECTINDEXes specific to ABFD there. This function can be used to
566 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
567
568void
569addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
570{
571 asection *lower_sect;
75242ef4
JK
572 CORE_ADDR lower_offset;
573 int i;
574
575 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
576 continguous sections. */
577 lower_sect = NULL;
578 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
579 if (lower_sect == NULL)
580 {
581 warning (_("no loadable sections found in added symbol-file %s"),
582 bfd_get_filename (abfd));
583 lower_offset = 0;
e8289572 584 }
75242ef4
JK
585 else
586 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
587
588 /* Calculate offsets for the loadable sections.
589 FIXME! Sections must be in order of increasing loadable section
590 so that contiguous sections can use the lower-offset!!!
591
592 Adjust offsets if the segments are not contiguous.
593 If the section is contiguous, its offset should be set to
594 the offset of the highest loadable section lower than it
595 (the loadable section directly below it in memory).
596 this_offset = lower_offset = lower_addr - lower_orig_addr */
597
598 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
599 {
672d9c23
JK
600 asection *sect = bfd_get_section_by_name (abfd, addrs->other[i].name);
601
602 if (sect)
75242ef4 603 {
672d9c23
JK
604 /* This is the index used by BFD. */
605 addrs->other[i].sectindex = sect->index;
606
607 if (addrs->other[i].addr != 0)
75242ef4
JK
608 {
609 addrs->other[i].addr -= bfd_section_vma (abfd, sect);
610 lower_offset = addrs->other[i].addr;
75242ef4
JK
611 }
612 else
672d9c23 613 addrs->other[i].addr = lower_offset;
75242ef4
JK
614 }
615 else
672d9c23
JK
616 {
617 warning (_("section %s not found in %s"), addrs->other[i].name,
618 bfd_get_filename (abfd));
619 addrs->other[i].addr = 0;
620
621 /* SECTINDEX is invalid if ADDR is zero. */
622 }
75242ef4
JK
623 }
624}
625
626/* Parse the user's idea of an offset for dynamic linking, into our idea
627 of how to represent it for fast symbol reading. This is the default
628 version of the sym_fns.sym_offsets function for symbol readers that
629 don't need to do anything special. It allocates a section_offsets table
630 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
631
632void
633default_symfile_offsets (struct objfile *objfile,
634 struct section_addr_info *addrs)
635{
636 objfile->num_sections = bfd_count_sections (objfile->obfd);
637 objfile->section_offsets = (struct section_offsets *)
638 obstack_alloc (&objfile->objfile_obstack,
639 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
640 relative_addr_info_to_section_offsets (objfile->section_offsets,
641 objfile->num_sections, addrs);
e8289572 642
c1bd25fd
DJ
643 /* For relocatable files, all loadable sections will start at zero.
644 The zero is meaningless, so try to pick arbitrary addresses such
645 that no loadable sections overlap. This algorithm is quadratic,
646 but the number of sections in a single object file is generally
647 small. */
648 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
649 {
650 struct place_section_arg arg;
2711e456
DJ
651 bfd *abfd = objfile->obfd;
652 asection *cur_sec;
653 CORE_ADDR lowest = 0;
654
655 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
656 /* We do not expect this to happen; just skip this step if the
657 relocatable file has a section with an assigned VMA. */
658 if (bfd_section_vma (abfd, cur_sec) != 0)
659 break;
660
661 if (cur_sec == NULL)
662 {
663 CORE_ADDR *offsets = objfile->section_offsets->offsets;
664
665 /* Pick non-overlapping offsets for sections the user did not
666 place explicitly. */
667 arg.offsets = objfile->section_offsets;
668 arg.lowest = 0;
669 bfd_map_over_sections (objfile->obfd, place_section, &arg);
670
671 /* Correctly filling in the section offsets is not quite
672 enough. Relocatable files have two properties that
673 (most) shared objects do not:
674
675 - Their debug information will contain relocations. Some
676 shared libraries do also, but many do not, so this can not
677 be assumed.
678
679 - If there are multiple code sections they will be loaded
680 at different relative addresses in memory than they are
681 in the objfile, since all sections in the file will start
682 at address zero.
683
684 Because GDB has very limited ability to map from an
685 address in debug info to the correct code section,
686 it relies on adding SECT_OFF_TEXT to things which might be
687 code. If we clear all the section offsets, and set the
688 section VMAs instead, then symfile_relocate_debug_section
689 will return meaningful debug information pointing at the
690 correct sections.
691
692 GDB has too many different data structures for section
693 addresses - a bfd, objfile, and so_list all have section
694 tables, as does exec_ops. Some of these could probably
695 be eliminated. */
696
697 for (cur_sec = abfd->sections; cur_sec != NULL;
698 cur_sec = cur_sec->next)
699 {
700 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
701 continue;
702
703 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
704 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
705 offsets[cur_sec->index]);
2711e456
DJ
706 offsets[cur_sec->index] = 0;
707 }
708 }
c1bd25fd
DJ
709 }
710
e8289572
JB
711 /* Remember the bfd indexes for the .text, .data, .bss and
712 .rodata sections. */
713 init_objfile_sect_indices (objfile);
714}
715
716
31d99776
DJ
717/* Divide the file into segments, which are individual relocatable units.
718 This is the default version of the sym_fns.sym_segments function for
719 symbol readers that do not have an explicit representation of segments.
720 It assumes that object files do not have segments, and fully linked
721 files have a single segment. */
722
723struct symfile_segment_data *
724default_symfile_segments (bfd *abfd)
725{
726 int num_sections, i;
727 asection *sect;
728 struct symfile_segment_data *data;
729 CORE_ADDR low, high;
730
731 /* Relocatable files contain enough information to position each
732 loadable section independently; they should not be relocated
733 in segments. */
734 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
735 return NULL;
736
737 /* Make sure there is at least one loadable section in the file. */
738 for (sect = abfd->sections; sect != NULL; sect = sect->next)
739 {
740 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
741 continue;
742
743 break;
744 }
745 if (sect == NULL)
746 return NULL;
747
748 low = bfd_get_section_vma (abfd, sect);
749 high = low + bfd_get_section_size (sect);
750
751 data = XZALLOC (struct symfile_segment_data);
752 data->num_segments = 1;
753 data->segment_bases = XCALLOC (1, CORE_ADDR);
754 data->segment_sizes = XCALLOC (1, CORE_ADDR);
755
756 num_sections = bfd_count_sections (abfd);
757 data->segment_info = XCALLOC (num_sections, int);
758
759 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
760 {
761 CORE_ADDR vma;
762
763 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
764 continue;
765
766 vma = bfd_get_section_vma (abfd, sect);
767 if (vma < low)
768 low = vma;
769 if (vma + bfd_get_section_size (sect) > high)
770 high = vma + bfd_get_section_size (sect);
771
772 data->segment_info[i] = 1;
773 }
774
775 data->segment_bases[0] = low;
776 data->segment_sizes[0] = high - low;
777
778 return data;
779}
780
c906108c
SS
781/* Process a symbol file, as either the main file or as a dynamically
782 loaded file.
783
96baa820
JM
784 OBJFILE is where the symbols are to be read from.
785
7e8580c1
JB
786 ADDRS is the list of section load addresses. If the user has given
787 an 'add-symbol-file' command, then this is the list of offsets and
788 addresses he or she provided as arguments to the command; or, if
789 we're handling a shared library, these are the actual addresses the
790 sections are loaded at, according to the inferior's dynamic linker
791 (as gleaned by GDB's shared library code). We convert each address
792 into an offset from the section VMA's as it appears in the object
793 file, and then call the file's sym_offsets function to convert this
794 into a format-specific offset table --- a `struct section_offsets'.
795 If ADDRS is non-zero, OFFSETS must be zero.
796
797 OFFSETS is a table of section offsets already in the right
798 format-specific representation. NUM_OFFSETS is the number of
799 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
800 assume this is the proper table the call to sym_offsets described
801 above would produce. Instead of calling sym_offsets, we just dump
802 it right into objfile->section_offsets. (When we're re-reading
803 symbols from an objfile, we don't have the original load address
804 list any more; all we have is the section offset table.) If
805 OFFSETS is non-zero, ADDRS must be zero.
96baa820 806
7eedccfa
PP
807 ADD_FLAGS encodes verbosity level, whether this is main symbol or
808 an extra symbol file such as dynamically loaded code, and wether
809 breakpoint reset should be deferred. */
c906108c
SS
810
811void
7e8580c1
JB
812syms_from_objfile (struct objfile *objfile,
813 struct section_addr_info *addrs,
814 struct section_offsets *offsets,
815 int num_offsets,
7eedccfa 816 int add_flags)
c906108c 817{
a39a16c4 818 struct section_addr_info *local_addr = NULL;
c906108c 819 struct cleanup *old_chain;
7eedccfa 820 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 821
7e8580c1 822 gdb_assert (! (addrs && offsets));
2acceee2 823
c906108c 824 init_entry_point_info (objfile);
31d99776 825 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 826
75245b24
MS
827 if (objfile->sf == NULL)
828 return; /* No symbols. */
829
c906108c
SS
830 /* Make sure that partially constructed symbol tables will be cleaned up
831 if an error occurs during symbol reading. */
74b7792f 832 old_chain = make_cleanup_free_objfile (objfile);
c906108c 833
a39a16c4
MM
834 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
835 list. We now establish the convention that an addr of zero means
836 no load address was specified. */
837 if (! addrs && ! offsets)
838 {
5417f6dc 839 local_addr
a39a16c4
MM
840 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
841 make_cleanup (xfree, local_addr);
842 addrs = local_addr;
843 }
844
845 /* Now either addrs or offsets is non-zero. */
846
c5aa993b 847 if (mainline)
c906108c
SS
848 {
849 /* We will modify the main symbol table, make sure that all its users
c5aa993b 850 will be cleaned up if an error occurs during symbol reading. */
74b7792f 851 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
852
853 /* Since no error yet, throw away the old symbol table. */
854
855 if (symfile_objfile != NULL)
856 {
857 free_objfile (symfile_objfile);
adb7f338 858 gdb_assert (symfile_objfile == NULL);
c906108c
SS
859 }
860
861 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
862 If the user wants to get rid of them, they should do "symbol-file"
863 without arguments first. Not sure this is the best behavior
864 (PR 2207). */
c906108c 865
c5aa993b 866 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
867 }
868
869 /* Convert addr into an offset rather than an absolute address.
870 We find the lowest address of a loaded segment in the objfile,
53a5351d 871 and assume that <addr> is where that got loaded.
c906108c 872
53a5351d
JM
873 We no longer warn if the lowest section is not a text segment (as
874 happens for the PA64 port. */
0d15807d 875 if (addrs && addrs->other[0].name)
75242ef4 876 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
877
878 /* Initialize symbol reading routines for this objfile, allow complaints to
879 appear for this new file, and record how verbose to be, then do the
880 initial symbol reading for this file. */
881
c5aa993b 882 (*objfile->sf->sym_init) (objfile);
7eedccfa 883 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 884
7e8580c1
JB
885 if (addrs)
886 (*objfile->sf->sym_offsets) (objfile, addrs);
887 else
888 {
889 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
890
891 /* Just copy in the offset table directly as given to us. */
892 objfile->num_sections = num_offsets;
893 objfile->section_offsets
894 = ((struct section_offsets *)
8b92e4d5 895 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
896 memcpy (objfile->section_offsets, offsets, size);
897
898 init_objfile_sect_indices (objfile);
899 }
c906108c 900
f4352531 901 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 902
c906108c
SS
903 /* Discard cleanups as symbol reading was successful. */
904
905 discard_cleanups (old_chain);
f7545552 906 xfree (local_addr);
c906108c
SS
907}
908
909/* Perform required actions after either reading in the initial
910 symbols for a new objfile, or mapping in the symbols from a reusable
911 objfile. */
c5aa993b 912
c906108c 913void
7eedccfa 914new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c
SS
915{
916
917 /* If this is the main symbol file we have to clean up all users of the
918 old main symbol file. Otherwise it is sufficient to fixup all the
919 breakpoints that may have been redefined by this symbol file. */
7eedccfa 920 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
921 {
922 /* OK, make it the "real" symbol file. */
923 symfile_objfile = objfile;
924
925 clear_symtab_users ();
926 }
7eedccfa 927 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 928 {
69de3c6a 929 breakpoint_re_set ();
c906108c
SS
930 }
931
932 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 933 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
934}
935
936/* Process a symbol file, as either the main file or as a dynamically
937 loaded file.
938
5417f6dc
RM
939 ABFD is a BFD already open on the file, as from symfile_bfd_open.
940 This BFD will be closed on error, and is always consumed by this function.
7904e09f 941
7eedccfa
PP
942 ADD_FLAGS encodes verbosity, whether this is main symbol file or
943 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
944
945 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
946 syms_from_objfile, above.
947 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 948
c906108c
SS
949 Upon success, returns a pointer to the objfile that was added.
950 Upon failure, jumps back to command level (never returns). */
7eedccfa 951
7904e09f 952static struct objfile *
7eedccfa
PP
953symbol_file_add_with_addrs_or_offsets (bfd *abfd,
954 int add_flags,
7904e09f
JB
955 struct section_addr_info *addrs,
956 struct section_offsets *offsets,
957 int num_offsets,
7eedccfa 958 int flags)
c906108c
SS
959{
960 struct objfile *objfile;
961 struct partial_symtab *psymtab;
a39a16c4 962 struct cleanup *my_cleanups;
5417f6dc 963 const char *name = bfd_get_filename (abfd);
7eedccfa 964 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 965
5417f6dc 966 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 967
5417f6dc
RM
968 /* Give user a chance to burp if we'd be
969 interactively wiping out any existing symbols. */
c906108c
SS
970
971 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 972 && (add_flags & SYMFILE_MAINLINE)
c906108c 973 && from_tty
9e2f0ad4 974 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 975 error (_("Not confirmed."));
c906108c 976
2df3850c 977 objfile = allocate_objfile (abfd, flags);
5417f6dc 978 discard_cleanups (my_cleanups);
c906108c 979
78a4a9b9
AC
980 /* We either created a new mapped symbol table, mapped an existing
981 symbol table file which has not had initial symbol reading
982 performed, or need to read an unmapped symbol table. */
983 if (from_tty || info_verbose)
c906108c 984 {
769d7dc4
AC
985 if (deprecated_pre_add_symbol_hook)
986 deprecated_pre_add_symbol_hook (name);
78a4a9b9 987 else
c906108c 988 {
55333a84
DE
989 printf_unfiltered (_("Reading symbols from %s..."), name);
990 wrap_here ("");
991 gdb_flush (gdb_stdout);
c906108c 992 }
c906108c 993 }
78a4a9b9 994 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 995 add_flags);
c906108c
SS
996
997 /* We now have at least a partial symbol table. Check to see if the
998 user requested that all symbols be read on initial access via either
999 the gdb startup command line or on a per symbol file basis. Expand
1000 all partial symbol tables for this objfile if so. */
1001
2acceee2 1002 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 1003 {
55333a84 1004 if (from_tty || info_verbose)
c906108c 1005 {
a3f17187 1006 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1007 wrap_here ("");
1008 gdb_flush (gdb_stdout);
1009 }
1010
c5aa993b 1011 for (psymtab = objfile->psymtabs;
c906108c 1012 psymtab != NULL;
c5aa993b 1013 psymtab = psymtab->next)
c906108c
SS
1014 {
1015 psymtab_to_symtab (psymtab);
1016 }
1017 }
1018
55333a84 1019 if ((from_tty || info_verbose)
e361b228 1020 && !objfile_has_symbols (objfile))
cb3c37b2
JB
1021 {
1022 wrap_here ("");
55333a84 1023 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1024 wrap_here ("");
1025 }
1026
c906108c
SS
1027 if (from_tty || info_verbose)
1028 {
769d7dc4
AC
1029 if (deprecated_post_add_symbol_hook)
1030 deprecated_post_add_symbol_hook ();
c906108c 1031 else
55333a84 1032 printf_unfiltered (_("done.\n"));
c906108c
SS
1033 }
1034
481d0f41
JB
1035 /* We print some messages regardless of whether 'from_tty ||
1036 info_verbose' is true, so make sure they go out at the right
1037 time. */
1038 gdb_flush (gdb_stdout);
1039
a39a16c4
MM
1040 do_cleanups (my_cleanups);
1041
109f874e 1042 if (objfile->sf == NULL)
8caee43b
PP
1043 {
1044 observer_notify_new_objfile (objfile);
1045 return objfile; /* No symbols. */
1046 }
109f874e 1047
7eedccfa 1048 new_symfile_objfile (objfile, add_flags);
c906108c 1049
06d3b283 1050 observer_notify_new_objfile (objfile);
c906108c 1051
ce7d4522 1052 bfd_cache_close_all ();
c906108c
SS
1053 return (objfile);
1054}
1055
9cce227f
TG
1056/* Add BFD as a separate debug file for OBJFILE. */
1057
1058void
1059symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1060{
15d123c9 1061 struct objfile *new_objfile;
089b4803
TG
1062 struct section_addr_info *sap;
1063 struct cleanup *my_cleanup;
1064
1065 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1066 because sections of BFD may not match sections of OBJFILE and because
1067 vma may have been modified by tools such as prelink. */
1068 sap = build_section_addr_info_from_objfile (objfile);
1069 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1070
15d123c9 1071 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1072 (bfd, symfile_flags,
089b4803 1073 sap, NULL, 0,
9cce227f
TG
1074 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1075 | OBJF_USERLOADED));
089b4803
TG
1076
1077 do_cleanups (my_cleanup);
9cce227f 1078
15d123c9 1079 add_separate_debug_objfile (new_objfile, objfile);
9cce227f 1080}
7904e09f 1081
eb4556d7
JB
1082/* Process the symbol file ABFD, as either the main file or as a
1083 dynamically loaded file.
1084
1085 See symbol_file_add_with_addrs_or_offsets's comments for
1086 details. */
1087struct objfile *
7eedccfa 1088symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1089 struct section_addr_info *addrs,
7eedccfa 1090 int flags)
eb4556d7 1091{
7eedccfa
PP
1092 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1093 flags);
eb4556d7
JB
1094}
1095
1096
7904e09f
JB
1097/* Process a symbol file, as either the main file or as a dynamically
1098 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1099 for details. */
1100struct objfile *
7eedccfa
PP
1101symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1102 int flags)
7904e09f 1103{
7eedccfa
PP
1104 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1105 flags);
7904e09f
JB
1106}
1107
1108
d7db6da9
FN
1109/* Call symbol_file_add() with default values and update whatever is
1110 affected by the loading of a new main().
1111 Used when the file is supplied in the gdb command line
1112 and by some targets with special loading requirements.
1113 The auxiliary function, symbol_file_add_main_1(), has the flags
1114 argument for the switches that can only be specified in the symbol_file
1115 command itself. */
5417f6dc 1116
1adeb98a
FN
1117void
1118symbol_file_add_main (char *args, int from_tty)
1119{
d7db6da9
FN
1120 symbol_file_add_main_1 (args, from_tty, 0);
1121}
1122
1123static void
1124symbol_file_add_main_1 (char *args, int from_tty, int flags)
1125{
7eedccfa
PP
1126 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1127 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1128
d7db6da9
FN
1129 /* Getting new symbols may change our opinion about
1130 what is frameless. */
1131 reinit_frame_cache ();
1132
1133 set_initial_language ();
1adeb98a
FN
1134}
1135
1136void
1137symbol_file_clear (int from_tty)
1138{
1139 if ((have_full_symbols () || have_partial_symbols ())
1140 && from_tty
0430b0d6
AS
1141 && (symfile_objfile
1142 ? !query (_("Discard symbol table from `%s'? "),
1143 symfile_objfile->name)
1144 : !query (_("Discard symbol table? "))))
8a3fe4f8 1145 error (_("Not confirmed."));
1adeb98a 1146
d10c338d 1147 free_all_objfiles ();
1adeb98a 1148
d10c338d
DE
1149 /* solib descriptors may have handles to objfiles. Since their
1150 storage has just been released, we'd better wipe the solib
1151 descriptors as well. */
1152 no_shared_libraries (NULL, from_tty);
1153
adb7f338 1154 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1155 if (from_tty)
1156 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1157}
1158
5b5d99cf
JB
1159static char *
1160get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1161{
1162 asection *sect;
1163 bfd_size_type debuglink_size;
1164 unsigned long crc32;
1165 char *contents;
1166 int crc_offset;
1167 unsigned char *p;
5417f6dc 1168
5b5d99cf
JB
1169 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1170
1171 if (sect == NULL)
1172 return NULL;
1173
1174 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1175
5b5d99cf
JB
1176 contents = xmalloc (debuglink_size);
1177 bfd_get_section_contents (objfile->obfd, sect, contents,
1178 (file_ptr)0, (bfd_size_type)debuglink_size);
1179
1180 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1181 crc_offset = strlen (contents) + 1;
1182 crc_offset = (crc_offset + 3) & ~3;
1183
1184 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1185
5b5d99cf
JB
1186 *crc32_out = crc32;
1187 return contents;
1188}
1189
1190static int
287ccc17 1191separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1192 struct objfile *parent_objfile)
5b5d99cf
JB
1193{
1194 unsigned long file_crc = 0;
f1838a98 1195 bfd *abfd;
777ea8f1 1196 gdb_byte buffer[8*1024];
5b5d99cf 1197 int count;
32a0e547
JK
1198 struct stat parent_stat, abfd_stat;
1199
1200 /* Find a separate debug info file as if symbols would be present in
1201 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1202 section can contain just the basename of PARENT_OBJFILE without any
1203 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1204 the separate debug infos with the same basename can exist. */
1205
1206 if (strcmp (name, parent_objfile->name) == 0)
1207 return 0;
5b5d99cf 1208
874f5765 1209 abfd = bfd_open_maybe_remote (name);
f1838a98
UW
1210
1211 if (!abfd)
5b5d99cf
JB
1212 return 0;
1213
32a0e547
JK
1214 /* Verify symlinks were not the cause of strcmp name difference above.
1215
1216 Some operating systems, e.g. Windows, do not provide a meaningful
1217 st_ino; they always set it to zero. (Windows does provide a
1218 meaningful st_dev.) Do not indicate a duplicate library in that
1219 case. While there is no guarantee that a system that provides
1220 meaningful inode numbers will never set st_ino to zero, this is
1221 merely an optimization, so we do not need to worry about false
1222 negatives. */
1223
1224 if (bfd_stat (abfd, &abfd_stat) == 0
1225 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1226 && abfd_stat.st_dev == parent_stat.st_dev
1227 && abfd_stat.st_ino == parent_stat.st_ino
1228 && abfd_stat.st_ino != 0)
1229 {
1230 bfd_close (abfd);
1231 return 0;
1232 }
1233
f1838a98 1234 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1235 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1236
f1838a98 1237 bfd_close (abfd);
5b5d99cf 1238
287ccc17
JK
1239 if (crc != file_crc)
1240 {
1241 warning (_("the debug information found in \"%s\""
1242 " does not match \"%s\" (CRC mismatch).\n"),
32a0e547 1243 name, parent_objfile->name);
287ccc17
JK
1244 return 0;
1245 }
1246
1247 return 1;
5b5d99cf
JB
1248}
1249
aa28a74e 1250char *debug_file_directory = NULL;
920d2a44
AC
1251static void
1252show_debug_file_directory (struct ui_file *file, int from_tty,
1253 struct cmd_list_element *c, const char *value)
1254{
1255 fprintf_filtered (file, _("\
1256The directory where separate debug symbols are searched for is \"%s\".\n"),
1257 value);
1258}
5b5d99cf
JB
1259
1260#if ! defined (DEBUG_SUBDIRECTORY)
1261#define DEBUG_SUBDIRECTORY ".debug"
1262#endif
1263
9cce227f
TG
1264char *
1265find_separate_debug_file_by_debuglink (struct objfile *objfile)
1266{
1267 asection *sect;
1268 char *basename, *name_copy, *debugdir;
1269 char *dir = NULL;
1270 char *debugfile = NULL;
1271 char *canon_name = NULL;
1272 bfd_size_type debuglink_size;
1273 unsigned long crc32;
1274 int i;
5b5d99cf
JB
1275
1276 basename = get_debug_link_info (objfile, &crc32);
1277
1278 if (basename == NULL)
287ccc17
JK
1279 /* There's no separate debug info, hence there's no way we could
1280 load it => no warning. */
25522fae 1281 goto cleanup_return_debugfile;
5417f6dc 1282
5b5d99cf
JB
1283 dir = xstrdup (objfile->name);
1284
fe36c4f4
JB
1285 /* Strip off the final filename part, leaving the directory name,
1286 followed by a slash. Objfile names should always be absolute and
1287 tilde-expanded, so there should always be a slash in there
1288 somewhere. */
5b5d99cf
JB
1289 for (i = strlen(dir) - 1; i >= 0; i--)
1290 {
1291 if (IS_DIR_SEPARATOR (dir[i]))
1292 break;
1293 }
fe36c4f4 1294 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1295 dir[i+1] = '\0';
5417f6dc 1296
1ffa32ee
JK
1297 /* Set I to max (strlen (canon_name), strlen (dir)). */
1298 canon_name = lrealpath (dir);
1299 i = strlen (dir);
1300 if (canon_name && strlen (canon_name) > i)
1301 i = strlen (canon_name);
1302
25522fae
JK
1303 debugfile = xmalloc (strlen (debug_file_directory) + 1
1304 + i
1305 + strlen (DEBUG_SUBDIRECTORY)
1306 + strlen ("/")
1307 + strlen (basename)
1308 + 1);
5b5d99cf
JB
1309
1310 /* First try in the same directory as the original file. */
1311 strcpy (debugfile, dir);
1312 strcat (debugfile, basename);
1313
32a0e547 1314 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1315 goto cleanup_return_debugfile;
5417f6dc 1316
5b5d99cf
JB
1317 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1318 strcpy (debugfile, dir);
1319 strcat (debugfile, DEBUG_SUBDIRECTORY);
1320 strcat (debugfile, "/");
1321 strcat (debugfile, basename);
1322
32a0e547 1323 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1324 goto cleanup_return_debugfile;
5417f6dc 1325
24ddea62
JK
1326 /* Then try in the global debugfile directories.
1327
1328 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1329 cause "/..." lookups. */
5417f6dc 1330
24ddea62
JK
1331 debugdir = debug_file_directory;
1332 do
aa28a74e 1333 {
24ddea62
JK
1334 char *debugdir_end;
1335
1336 while (*debugdir == DIRNAME_SEPARATOR)
1337 debugdir++;
1338
1339 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1340 if (debugdir_end == NULL)
1341 debugdir_end = &debugdir[strlen (debugdir)];
1342
1343 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1344 debugfile[debugdir_end - debugdir] = 0;
aa28a74e 1345 strcat (debugfile, "/");
24ddea62 1346 strcat (debugfile, dir);
aa28a74e
DJ
1347 strcat (debugfile, basename);
1348
32a0e547 1349 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1350 goto cleanup_return_debugfile;
24ddea62
JK
1351
1352 /* If the file is in the sysroot, try using its base path in the
1353 global debugfile directory. */
1354 if (canon_name
1355 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1356 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1357 {
1358 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1359 debugfile[debugdir_end - debugdir] = 0;
1360 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1361 strcat (debugfile, "/");
1362 strcat (debugfile, basename);
1363
32a0e547 1364 if (separate_debug_file_exists (debugfile, crc32, objfile))
24ddea62
JK
1365 goto cleanup_return_debugfile;
1366 }
1367
1368 debugdir = debugdir_end;
aa28a74e 1369 }
24ddea62 1370 while (*debugdir != 0);
aa28a74e 1371
25522fae
JK
1372 xfree (debugfile);
1373 debugfile = NULL;
aa28a74e 1374
25522fae
JK
1375cleanup_return_debugfile:
1376 xfree (canon_name);
5b5d99cf
JB
1377 xfree (basename);
1378 xfree (dir);
25522fae 1379 return debugfile;
5b5d99cf
JB
1380}
1381
1382
c906108c
SS
1383/* This is the symbol-file command. Read the file, analyze its
1384 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1385 the command is rather bizarre:
1386
1387 1. The function buildargv implements various quoting conventions
1388 which are undocumented and have little or nothing in common with
1389 the way things are quoted (or not quoted) elsewhere in GDB.
1390
1391 2. Options are used, which are not generally used in GDB (perhaps
1392 "set mapped on", "set readnow on" would be better)
1393
1394 3. The order of options matters, which is contrary to GNU
c906108c
SS
1395 conventions (because it is confusing and inconvenient). */
1396
1397void
fba45db2 1398symbol_file_command (char *args, int from_tty)
c906108c 1399{
c906108c
SS
1400 dont_repeat ();
1401
1402 if (args == NULL)
1403 {
1adeb98a 1404 symbol_file_clear (from_tty);
c906108c
SS
1405 }
1406 else
1407 {
d1a41061 1408 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1409 int flags = OBJF_USERLOADED;
1410 struct cleanup *cleanups;
1411 char *name = NULL;
1412
7a292a7a 1413 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1414 while (*argv != NULL)
1415 {
78a4a9b9
AC
1416 if (strcmp (*argv, "-readnow") == 0)
1417 flags |= OBJF_READNOW;
1418 else if (**argv == '-')
8a3fe4f8 1419 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1420 else
1421 {
cb2f3a29 1422 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1423 name = *argv;
78a4a9b9 1424 }
cb2f3a29 1425
c906108c
SS
1426 argv++;
1427 }
1428
1429 if (name == NULL)
cb2f3a29
MK
1430 error (_("no symbol file name was specified"));
1431
c906108c
SS
1432 do_cleanups (cleanups);
1433 }
1434}
1435
1436/* Set the initial language.
1437
cb2f3a29
MK
1438 FIXME: A better solution would be to record the language in the
1439 psymtab when reading partial symbols, and then use it (if known) to
1440 set the language. This would be a win for formats that encode the
1441 language in an easily discoverable place, such as DWARF. For
1442 stabs, we can jump through hoops looking for specially named
1443 symbols or try to intuit the language from the specific type of
1444 stabs we find, but we can't do that until later when we read in
1445 full symbols. */
c906108c 1446
8b60591b 1447void
fba45db2 1448set_initial_language (void)
c906108c
SS
1449{
1450 struct partial_symtab *pst;
c5aa993b 1451 enum language lang = language_unknown;
c906108c
SS
1452
1453 pst = find_main_psymtab ();
1454 if (pst != NULL)
1455 {
c5aa993b 1456 if (pst->filename != NULL)
cb2f3a29
MK
1457 lang = deduce_language_from_filename (pst->filename);
1458
c906108c
SS
1459 if (lang == language_unknown)
1460 {
c5aa993b
JM
1461 /* Make C the default language */
1462 lang = language_c;
c906108c 1463 }
cb2f3a29 1464
c906108c 1465 set_language (lang);
cb2f3a29 1466 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1467 }
1468}
1469
874f5765
TG
1470/* If NAME is a remote name open the file using remote protocol, otherwise
1471 open it normally. */
1472
1473bfd *
1474bfd_open_maybe_remote (const char *name)
1475{
1476 if (remote_filename_p (name))
1477 return remote_bfd_open (name, gnutarget);
1478 else
1479 return bfd_openr (name, gnutarget);
1480}
1481
1482
cb2f3a29
MK
1483/* Open the file specified by NAME and hand it off to BFD for
1484 preliminary analysis. Return a newly initialized bfd *, which
1485 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1486 absolute). In case of trouble, error() is called. */
c906108c
SS
1487
1488bfd *
fba45db2 1489symfile_bfd_open (char *name)
c906108c
SS
1490{
1491 bfd *sym_bfd;
1492 int desc;
1493 char *absolute_name;
1494
f1838a98
UW
1495 if (remote_filename_p (name))
1496 {
1497 name = xstrdup (name);
1498 sym_bfd = remote_bfd_open (name, gnutarget);
1499 if (!sym_bfd)
1500 {
1501 make_cleanup (xfree, name);
1502 error (_("`%s': can't open to read symbols: %s."), name,
1503 bfd_errmsg (bfd_get_error ()));
1504 }
1505
1506 if (!bfd_check_format (sym_bfd, bfd_object))
1507 {
1508 bfd_close (sym_bfd);
1509 make_cleanup (xfree, name);
1510 error (_("`%s': can't read symbols: %s."), name,
1511 bfd_errmsg (bfd_get_error ()));
1512 }
1513
1514 return sym_bfd;
1515 }
1516
cb2f3a29 1517 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1518
1519 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1520 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1521 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1522#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1523 if (desc < 0)
1524 {
1525 char *exename = alloca (strlen (name) + 5);
1526 strcat (strcpy (exename, name), ".exe");
014d698b 1527 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1528 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1529 }
1530#endif
1531 if (desc < 0)
1532 {
b8c9b27d 1533 make_cleanup (xfree, name);
c906108c
SS
1534 perror_with_name (name);
1535 }
cb2f3a29
MK
1536
1537 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1538 bfd. It'll be freed in free_objfile(). */
1539 xfree (name);
1540 name = absolute_name;
c906108c 1541
9f76c2cd 1542 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1543 if (!sym_bfd)
1544 {
1545 close (desc);
b8c9b27d 1546 make_cleanup (xfree, name);
f1838a98 1547 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1548 bfd_errmsg (bfd_get_error ()));
1549 }
549c1eea 1550 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1551
1552 if (!bfd_check_format (sym_bfd, bfd_object))
1553 {
cb2f3a29
MK
1554 /* FIXME: should be checking for errors from bfd_close (for one
1555 thing, on error it does not free all the storage associated
1556 with the bfd). */
1557 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1558 make_cleanup (xfree, name);
f1838a98 1559 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1560 bfd_errmsg (bfd_get_error ()));
1561 }
cb2f3a29 1562
4f6f9936
JK
1563 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1564 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1565
cb2f3a29 1566 return sym_bfd;
c906108c
SS
1567}
1568
cb2f3a29
MK
1569/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1570 the section was not found. */
1571
0e931cf0
JB
1572int
1573get_section_index (struct objfile *objfile, char *section_name)
1574{
1575 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1576
0e931cf0
JB
1577 if (sect)
1578 return sect->index;
1579 else
1580 return -1;
1581}
1582
cb2f3a29
MK
1583/* Link SF into the global symtab_fns list. Called on startup by the
1584 _initialize routine in each object file format reader, to register
1585 information about each format the the reader is prepared to
1586 handle. */
c906108c
SS
1587
1588void
fba45db2 1589add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1590{
1591 sf->next = symtab_fns;
1592 symtab_fns = sf;
1593}
1594
cb2f3a29
MK
1595/* Initialize OBJFILE to read symbols from its associated BFD. It
1596 either returns or calls error(). The result is an initialized
1597 struct sym_fns in the objfile structure, that contains cached
1598 information about the symbol file. */
c906108c 1599
31d99776
DJ
1600static struct sym_fns *
1601find_sym_fns (bfd *abfd)
c906108c
SS
1602{
1603 struct sym_fns *sf;
31d99776 1604 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1605
75245b24
MS
1606 if (our_flavour == bfd_target_srec_flavour
1607 || our_flavour == bfd_target_ihex_flavour
1608 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1609 return NULL; /* No symbols. */
75245b24 1610
c5aa993b 1611 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1612 if (our_flavour == sf->sym_flavour)
1613 return sf;
cb2f3a29 1614
8a3fe4f8 1615 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1616 bfd_get_target (abfd));
c906108c
SS
1617}
1618\f
cb2f3a29 1619
c906108c
SS
1620/* This function runs the load command of our current target. */
1621
1622static void
fba45db2 1623load_command (char *arg, int from_tty)
c906108c 1624{
4487aabf
PA
1625 /* The user might be reloading because the binary has changed. Take
1626 this opportunity to check. */
1627 reopen_exec_file ();
1628 reread_symbols ();
1629
c906108c 1630 if (arg == NULL)
1986bccd
AS
1631 {
1632 char *parg;
1633 int count = 0;
1634
1635 parg = arg = get_exec_file (1);
1636
1637 /* Count how many \ " ' tab space there are in the name. */
1638 while ((parg = strpbrk (parg, "\\\"'\t ")))
1639 {
1640 parg++;
1641 count++;
1642 }
1643
1644 if (count)
1645 {
1646 /* We need to quote this string so buildargv can pull it apart. */
1647 char *temp = xmalloc (strlen (arg) + count + 1 );
1648 char *ptemp = temp;
1649 char *prev;
1650
1651 make_cleanup (xfree, temp);
1652
1653 prev = parg = arg;
1654 while ((parg = strpbrk (parg, "\\\"'\t ")))
1655 {
1656 strncpy (ptemp, prev, parg - prev);
1657 ptemp += parg - prev;
1658 prev = parg++;
1659 *ptemp++ = '\\';
1660 }
1661 strcpy (ptemp, prev);
1662
1663 arg = temp;
1664 }
1665 }
1666
c906108c 1667 target_load (arg, from_tty);
2889e661
JB
1668
1669 /* After re-loading the executable, we don't really know which
1670 overlays are mapped any more. */
1671 overlay_cache_invalid = 1;
c906108c
SS
1672}
1673
1674/* This version of "load" should be usable for any target. Currently
1675 it is just used for remote targets, not inftarg.c or core files,
1676 on the theory that only in that case is it useful.
1677
1678 Avoiding xmodem and the like seems like a win (a) because we don't have
1679 to worry about finding it, and (b) On VMS, fork() is very slow and so
1680 we don't want to run a subprocess. On the other hand, I'm not sure how
1681 performance compares. */
917317f4 1682
917317f4
JM
1683static int validate_download = 0;
1684
e4f9b4d5
MS
1685/* Callback service function for generic_load (bfd_map_over_sections). */
1686
1687static void
1688add_section_size_callback (bfd *abfd, asection *asec, void *data)
1689{
1690 bfd_size_type *sum = data;
1691
2c500098 1692 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1693}
1694
1695/* Opaque data for load_section_callback. */
1696struct load_section_data {
1697 unsigned long load_offset;
a76d924d
DJ
1698 struct load_progress_data *progress_data;
1699 VEC(memory_write_request_s) *requests;
1700};
1701
1702/* Opaque data for load_progress. */
1703struct load_progress_data {
1704 /* Cumulative data. */
e4f9b4d5
MS
1705 unsigned long write_count;
1706 unsigned long data_count;
1707 bfd_size_type total_size;
a76d924d
DJ
1708};
1709
1710/* Opaque data for load_progress for a single section. */
1711struct load_progress_section_data {
1712 struct load_progress_data *cumulative;
cf7a04e8 1713
a76d924d 1714 /* Per-section data. */
cf7a04e8
DJ
1715 const char *section_name;
1716 ULONGEST section_sent;
1717 ULONGEST section_size;
1718 CORE_ADDR lma;
1719 gdb_byte *buffer;
e4f9b4d5
MS
1720};
1721
a76d924d 1722/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1723
1724static void
1725load_progress (ULONGEST bytes, void *untyped_arg)
1726{
a76d924d
DJ
1727 struct load_progress_section_data *args = untyped_arg;
1728 struct load_progress_data *totals;
1729
1730 if (args == NULL)
1731 /* Writing padding data. No easy way to get at the cumulative
1732 stats, so just ignore this. */
1733 return;
1734
1735 totals = args->cumulative;
1736
1737 if (bytes == 0 && args->section_sent == 0)
1738 {
1739 /* The write is just starting. Let the user know we've started
1740 this section. */
5af949e3
UW
1741 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1742 args->section_name, hex_string (args->section_size),
1743 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1744 return;
1745 }
cf7a04e8
DJ
1746
1747 if (validate_download)
1748 {
1749 /* Broken memories and broken monitors manifest themselves here
1750 when bring new computers to life. This doubles already slow
1751 downloads. */
1752 /* NOTE: cagney/1999-10-18: A more efficient implementation
1753 might add a verify_memory() method to the target vector and
1754 then use that. remote.c could implement that method using
1755 the ``qCRC'' packet. */
1756 gdb_byte *check = xmalloc (bytes);
1757 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1758
1759 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1760 error (_("Download verify read failed at %s"),
1761 paddress (target_gdbarch, args->lma));
cf7a04e8 1762 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1763 error (_("Download verify compare failed at %s"),
1764 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1765 do_cleanups (verify_cleanups);
1766 }
a76d924d 1767 totals->data_count += bytes;
cf7a04e8
DJ
1768 args->lma += bytes;
1769 args->buffer += bytes;
a76d924d 1770 totals->write_count += 1;
cf7a04e8
DJ
1771 args->section_sent += bytes;
1772 if (quit_flag
1773 || (deprecated_ui_load_progress_hook != NULL
1774 && deprecated_ui_load_progress_hook (args->section_name,
1775 args->section_sent)))
1776 error (_("Canceled the download"));
1777
1778 if (deprecated_show_load_progress != NULL)
1779 deprecated_show_load_progress (args->section_name,
1780 args->section_sent,
1781 args->section_size,
a76d924d
DJ
1782 totals->data_count,
1783 totals->total_size);
cf7a04e8
DJ
1784}
1785
e4f9b4d5
MS
1786/* Callback service function for generic_load (bfd_map_over_sections). */
1787
1788static void
1789load_section_callback (bfd *abfd, asection *asec, void *data)
1790{
a76d924d 1791 struct memory_write_request *new_request;
e4f9b4d5 1792 struct load_section_data *args = data;
a76d924d 1793 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1794 bfd_size_type size = bfd_get_section_size (asec);
1795 gdb_byte *buffer;
cf7a04e8 1796 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1797
cf7a04e8
DJ
1798 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1799 return;
e4f9b4d5 1800
cf7a04e8
DJ
1801 if (size == 0)
1802 return;
e4f9b4d5 1803
a76d924d
DJ
1804 new_request = VEC_safe_push (memory_write_request_s,
1805 args->requests, NULL);
1806 memset (new_request, 0, sizeof (struct memory_write_request));
1807 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1808 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1809 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1810 new_request->data = xmalloc (size);
1811 new_request->baton = section_data;
cf7a04e8 1812
a76d924d 1813 buffer = new_request->data;
cf7a04e8 1814
a76d924d
DJ
1815 section_data->cumulative = args->progress_data;
1816 section_data->section_name = sect_name;
1817 section_data->section_size = size;
1818 section_data->lma = new_request->begin;
1819 section_data->buffer = buffer;
cf7a04e8
DJ
1820
1821 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1822}
1823
1824/* Clean up an entire memory request vector, including load
1825 data and progress records. */
cf7a04e8 1826
a76d924d
DJ
1827static void
1828clear_memory_write_data (void *arg)
1829{
1830 VEC(memory_write_request_s) **vec_p = arg;
1831 VEC(memory_write_request_s) *vec = *vec_p;
1832 int i;
1833 struct memory_write_request *mr;
cf7a04e8 1834
a76d924d
DJ
1835 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1836 {
1837 xfree (mr->data);
1838 xfree (mr->baton);
1839 }
1840 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1841}
1842
c906108c 1843void
917317f4 1844generic_load (char *args, int from_tty)
c906108c 1845{
c906108c 1846 bfd *loadfile_bfd;
2b71414d 1847 struct timeval start_time, end_time;
917317f4 1848 char *filename;
1986bccd 1849 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1850 struct load_section_data cbdata;
a76d924d
DJ
1851 struct load_progress_data total_progress;
1852
e4f9b4d5 1853 CORE_ADDR entry;
1986bccd 1854 char **argv;
e4f9b4d5 1855
a76d924d
DJ
1856 memset (&cbdata, 0, sizeof (cbdata));
1857 memset (&total_progress, 0, sizeof (total_progress));
1858 cbdata.progress_data = &total_progress;
1859
1860 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1861
d1a41061
PP
1862 if (args == NULL)
1863 error_no_arg (_("file to load"));
1986bccd 1864
d1a41061 1865 argv = gdb_buildargv (args);
1986bccd
AS
1866 make_cleanup_freeargv (argv);
1867
1868 filename = tilde_expand (argv[0]);
1869 make_cleanup (xfree, filename);
1870
1871 if (argv[1] != NULL)
917317f4
JM
1872 {
1873 char *endptr;
ba5f2f8a 1874
1986bccd
AS
1875 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1876
1877 /* If the last word was not a valid number then
1878 treat it as a file name with spaces in. */
1879 if (argv[1] == endptr)
1880 error (_("Invalid download offset:%s."), argv[1]);
1881
1882 if (argv[2] != NULL)
1883 error (_("Too many parameters."));
917317f4 1884 }
c906108c 1885
917317f4 1886 /* Open the file for loading. */
c906108c
SS
1887 loadfile_bfd = bfd_openr (filename, gnutarget);
1888 if (loadfile_bfd == NULL)
1889 {
1890 perror_with_name (filename);
1891 return;
1892 }
917317f4 1893
c906108c
SS
1894 /* FIXME: should be checking for errors from bfd_close (for one thing,
1895 on error it does not free all the storage associated with the
1896 bfd). */
5c65bbb6 1897 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1898
c5aa993b 1899 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1900 {
8a3fe4f8 1901 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1902 bfd_errmsg (bfd_get_error ()));
1903 }
c5aa993b 1904
5417f6dc 1905 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1906 (void *) &total_progress.total_size);
1907
1908 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1909
2b71414d 1910 gettimeofday (&start_time, NULL);
c906108c 1911
a76d924d
DJ
1912 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1913 load_progress) != 0)
1914 error (_("Load failed"));
c906108c 1915
2b71414d 1916 gettimeofday (&end_time, NULL);
ba5f2f8a 1917
e4f9b4d5 1918 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 1919 ui_out_text (uiout, "Start address ");
5af949e3 1920 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 1921 ui_out_text (uiout, ", load size ");
a76d924d 1922 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 1923 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1924 /* We were doing this in remote-mips.c, I suspect it is right
1925 for other targets too. */
fb14de7b 1926 regcache_write_pc (get_current_regcache (), entry);
c906108c 1927
7ca9f392
AC
1928 /* FIXME: are we supposed to call symbol_file_add or not? According
1929 to a comment from remote-mips.c (where a call to symbol_file_add
1930 was commented out), making the call confuses GDB if more than one
1931 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1932 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1933
a76d924d
DJ
1934 print_transfer_performance (gdb_stdout, total_progress.data_count,
1935 total_progress.write_count,
1936 &start_time, &end_time);
c906108c
SS
1937
1938 do_cleanups (old_cleanups);
1939}
1940
1941/* Report how fast the transfer went. */
1942
917317f4
JM
1943/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1944 replaced by print_transfer_performance (with a very different
1945 function signature). */
1946
c906108c 1947void
fba45db2
KB
1948report_transfer_performance (unsigned long data_count, time_t start_time,
1949 time_t end_time)
c906108c 1950{
2b71414d
DJ
1951 struct timeval start, end;
1952
1953 start.tv_sec = start_time;
1954 start.tv_usec = 0;
1955 end.tv_sec = end_time;
1956 end.tv_usec = 0;
1957
1958 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
1959}
1960
1961void
d9fcf2fb 1962print_transfer_performance (struct ui_file *stream,
917317f4
JM
1963 unsigned long data_count,
1964 unsigned long write_count,
2b71414d
DJ
1965 const struct timeval *start_time,
1966 const struct timeval *end_time)
917317f4 1967{
9f43d28c 1968 ULONGEST time_count;
2b71414d
DJ
1969
1970 /* Compute the elapsed time in milliseconds, as a tradeoff between
1971 accuracy and overflow. */
1972 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1973 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1974
8b93c638
JM
1975 ui_out_text (uiout, "Transfer rate: ");
1976 if (time_count > 0)
1977 {
9f43d28c
DJ
1978 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
1979
1980 if (ui_out_is_mi_like_p (uiout))
1981 {
1982 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
1983 ui_out_text (uiout, " bits/sec");
1984 }
1985 else if (rate < 1024)
1986 {
1987 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
1988 ui_out_text (uiout, " bytes/sec");
1989 }
1990 else
1991 {
1992 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
1993 ui_out_text (uiout, " KB/sec");
1994 }
8b93c638
JM
1995 }
1996 else
1997 {
ba5f2f8a 1998 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 1999 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2000 }
2001 if (write_count > 0)
2002 {
2003 ui_out_text (uiout, ", ");
ba5f2f8a 2004 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2005 ui_out_text (uiout, " bytes/write");
2006 }
2007 ui_out_text (uiout, ".\n");
c906108c
SS
2008}
2009
2010/* This function allows the addition of incrementally linked object files.
2011 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2012/* Note: ezannoni 2000-04-13 This function/command used to have a
2013 special case syntax for the rombug target (Rombug is the boot
2014 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2015 rombug case, the user doesn't need to supply a text address,
2016 instead a call to target_link() (in target.c) would supply the
2017 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2018
c906108c 2019static void
fba45db2 2020add_symbol_file_command (char *args, int from_tty)
c906108c 2021{
5af949e3 2022 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2023 char *filename = NULL;
2df3850c 2024 int flags = OBJF_USERLOADED;
c906108c 2025 char *arg;
2acceee2 2026 int expecting_option = 0;
db162d44 2027 int section_index = 0;
2acceee2
JM
2028 int argcnt = 0;
2029 int sec_num = 0;
2030 int i;
db162d44
EZ
2031 int expecting_sec_name = 0;
2032 int expecting_sec_addr = 0;
5b96932b 2033 char **argv;
db162d44 2034
a39a16c4 2035 struct sect_opt
2acceee2 2036 {
2acceee2
JM
2037 char *name;
2038 char *value;
a39a16c4 2039 };
db162d44 2040
a39a16c4
MM
2041 struct section_addr_info *section_addrs;
2042 struct sect_opt *sect_opts = NULL;
2043 size_t num_sect_opts = 0;
3017564a 2044 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2045
a39a16c4 2046 num_sect_opts = 16;
5417f6dc 2047 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2048 * sizeof (struct sect_opt));
2049
c906108c
SS
2050 dont_repeat ();
2051
2052 if (args == NULL)
8a3fe4f8 2053 error (_("add-symbol-file takes a file name and an address"));
c906108c 2054
d1a41061 2055 argv = gdb_buildargv (args);
5b96932b 2056 make_cleanup_freeargv (argv);
db162d44 2057
5b96932b
AS
2058 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2059 {
2060 /* Process the argument. */
db162d44 2061 if (argcnt == 0)
c906108c 2062 {
db162d44
EZ
2063 /* The first argument is the file name. */
2064 filename = tilde_expand (arg);
3017564a 2065 make_cleanup (xfree, filename);
c906108c 2066 }
db162d44 2067 else
7a78ae4e
ND
2068 if (argcnt == 1)
2069 {
2070 /* The second argument is always the text address at which
2071 to load the program. */
2072 sect_opts[section_index].name = ".text";
2073 sect_opts[section_index].value = arg;
f414f22f 2074 if (++section_index >= num_sect_opts)
a39a16c4
MM
2075 {
2076 num_sect_opts *= 2;
5417f6dc 2077 sect_opts = ((struct sect_opt *)
a39a16c4 2078 xrealloc (sect_opts,
5417f6dc 2079 num_sect_opts
a39a16c4
MM
2080 * sizeof (struct sect_opt)));
2081 }
7a78ae4e
ND
2082 }
2083 else
2084 {
2085 /* It's an option (starting with '-') or it's an argument
2086 to an option */
2087
2088 if (*arg == '-')
2089 {
78a4a9b9
AC
2090 if (strcmp (arg, "-readnow") == 0)
2091 flags |= OBJF_READNOW;
2092 else if (strcmp (arg, "-s") == 0)
2093 {
2094 expecting_sec_name = 1;
2095 expecting_sec_addr = 1;
2096 }
7a78ae4e
ND
2097 }
2098 else
2099 {
2100 if (expecting_sec_name)
db162d44 2101 {
7a78ae4e
ND
2102 sect_opts[section_index].name = arg;
2103 expecting_sec_name = 0;
db162d44
EZ
2104 }
2105 else
7a78ae4e
ND
2106 if (expecting_sec_addr)
2107 {
2108 sect_opts[section_index].value = arg;
2109 expecting_sec_addr = 0;
f414f22f 2110 if (++section_index >= num_sect_opts)
a39a16c4
MM
2111 {
2112 num_sect_opts *= 2;
5417f6dc 2113 sect_opts = ((struct sect_opt *)
a39a16c4 2114 xrealloc (sect_opts,
5417f6dc 2115 num_sect_opts
a39a16c4
MM
2116 * sizeof (struct sect_opt)));
2117 }
7a78ae4e
ND
2118 }
2119 else
8a3fe4f8 2120 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2121 }
2122 }
c906108c 2123 }
c906108c 2124
927890d0
JB
2125 /* This command takes at least two arguments. The first one is a
2126 filename, and the second is the address where this file has been
2127 loaded. Abort now if this address hasn't been provided by the
2128 user. */
2129 if (section_index < 1)
2130 error (_("The address where %s has been loaded is missing"), filename);
2131
db162d44
EZ
2132 /* Print the prompt for the query below. And save the arguments into
2133 a sect_addr_info structure to be passed around to other
2134 functions. We have to split this up into separate print
bb599908 2135 statements because hex_string returns a local static
db162d44 2136 string. */
5417f6dc 2137
a3f17187 2138 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2139 section_addrs = alloc_section_addr_info (section_index);
2140 make_cleanup (xfree, section_addrs);
db162d44 2141 for (i = 0; i < section_index; i++)
c906108c 2142 {
db162d44
EZ
2143 CORE_ADDR addr;
2144 char *val = sect_opts[i].value;
2145 char *sec = sect_opts[i].name;
5417f6dc 2146
ae822768 2147 addr = parse_and_eval_address (val);
db162d44 2148
db162d44
EZ
2149 /* Here we store the section offsets in the order they were
2150 entered on the command line. */
a39a16c4
MM
2151 section_addrs->other[sec_num].name = sec;
2152 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2153 printf_unfiltered ("\t%s_addr = %s\n", sec,
2154 paddress (gdbarch, addr));
db162d44
EZ
2155 sec_num++;
2156
5417f6dc 2157 /* The object's sections are initialized when a
db162d44 2158 call is made to build_objfile_section_table (objfile).
5417f6dc 2159 This happens in reread_symbols.
db162d44
EZ
2160 At this point, we don't know what file type this is,
2161 so we can't determine what section names are valid. */
2acceee2 2162 }
db162d44 2163
2acceee2 2164 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2165 error (_("Not confirmed."));
c906108c 2166
7eedccfa
PP
2167 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2168 section_addrs, flags);
c906108c
SS
2169
2170 /* Getting new symbols may change our opinion about what is
2171 frameless. */
2172 reinit_frame_cache ();
db162d44 2173 do_cleanups (my_cleanups);
c906108c
SS
2174}
2175\f
70992597 2176
c906108c
SS
2177/* Re-read symbols if a symbol-file has changed. */
2178void
fba45db2 2179reread_symbols (void)
c906108c
SS
2180{
2181 struct objfile *objfile;
2182 long new_modtime;
2183 int reread_one = 0;
2184 struct stat new_statbuf;
2185 int res;
2186
2187 /* With the addition of shared libraries, this should be modified,
2188 the load time should be saved in the partial symbol tables, since
2189 different tables may come from different source files. FIXME.
2190 This routine should then walk down each partial symbol table
2191 and see if the symbol table that it originates from has been changed */
2192
c5aa993b
JM
2193 for (objfile = object_files; objfile; objfile = objfile->next)
2194 {
9cce227f
TG
2195 /* solib-sunos.c creates one objfile with obfd. */
2196 if (objfile->obfd == NULL)
2197 continue;
2198
2199 /* Separate debug objfiles are handled in the main objfile. */
2200 if (objfile->separate_debug_objfile_backlink)
2201 continue;
2202
52d16ba8 2203#ifdef DEPRECATED_IBM6000_TARGET
9cce227f
TG
2204 /* If this object is from a shared library, then you should
2205 stat on the library name, not member name. */
c906108c 2206
9cce227f
TG
2207 if (objfile->obfd->my_archive)
2208 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2209 else
c906108c 2210#endif
9cce227f
TG
2211 res = stat (objfile->name, &new_statbuf);
2212 if (res != 0)
2213 {
2214 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2215 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2216 objfile->name);
2217 continue;
2218 }
2219 new_modtime = new_statbuf.st_mtime;
2220 if (new_modtime != objfile->mtime)
2221 {
2222 struct cleanup *old_cleanups;
2223 struct section_offsets *offsets;
2224 int num_offsets;
2225 char *obfd_filename;
2226
2227 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2228 objfile->name);
2229
2230 /* There are various functions like symbol_file_add,
2231 symfile_bfd_open, syms_from_objfile, etc., which might
2232 appear to do what we want. But they have various other
2233 effects which we *don't* want. So we just do stuff
2234 ourselves. We don't worry about mapped files (for one thing,
2235 any mapped file will be out of date). */
2236
2237 /* If we get an error, blow away this objfile (not sure if
2238 that is the correct response for things like shared
2239 libraries). */
2240 old_cleanups = make_cleanup_free_objfile (objfile);
2241 /* We need to do this whenever any symbols go away. */
2242 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2243
2244 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2245 bfd_get_filename (exec_bfd)) == 0)
2246 {
2247 /* Reload EXEC_BFD without asking anything. */
2248
2249 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2250 }
2251
2252 /* Clean up any state BFD has sitting around. We don't need
2253 to close the descriptor but BFD lacks a way of closing the
2254 BFD without closing the descriptor. */
2255 obfd_filename = bfd_get_filename (objfile->obfd);
2256 if (!bfd_close (objfile->obfd))
2257 error (_("Can't close BFD for %s: %s"), objfile->name,
2258 bfd_errmsg (bfd_get_error ()));
874f5765 2259 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
9cce227f
TG
2260 if (objfile->obfd == NULL)
2261 error (_("Can't open %s to read symbols."), objfile->name);
2262 else
2263 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2264 /* bfd_openr sets cacheable to true, which is what we want. */
2265 if (!bfd_check_format (objfile->obfd, bfd_object))
2266 error (_("Can't read symbols from %s: %s."), objfile->name,
2267 bfd_errmsg (bfd_get_error ()));
2268
2269 /* Save the offsets, we will nuke them with the rest of the
2270 objfile_obstack. */
2271 num_offsets = objfile->num_sections;
2272 offsets = ((struct section_offsets *)
2273 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2274 memcpy (offsets, objfile->section_offsets,
2275 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2276
2277 /* Remove any references to this objfile in the global
2278 value lists. */
2279 preserve_values (objfile);
2280
2281 /* Nuke all the state that we will re-read. Much of the following
2282 code which sets things to NULL really is necessary to tell
2283 other parts of GDB that there is nothing currently there.
2284
2285 Try to keep the freeing order compatible with free_objfile. */
2286
2287 if (objfile->sf != NULL)
2288 {
2289 (*objfile->sf->sym_finish) (objfile);
2290 }
2291
2292 clear_objfile_data (objfile);
2293
15d123c9 2294 /* Free the separate debug objfiles. It will be
9cce227f 2295 automatically recreated by sym_read. */
15d123c9 2296 free_objfile_separate_debug (objfile);
9cce227f
TG
2297
2298 /* FIXME: Do we have to free a whole linked list, or is this
2299 enough? */
2300 if (objfile->global_psymbols.list)
2301 xfree (objfile->global_psymbols.list);
2302 memset (&objfile->global_psymbols, 0,
2303 sizeof (objfile->global_psymbols));
2304 if (objfile->static_psymbols.list)
2305 xfree (objfile->static_psymbols.list);
2306 memset (&objfile->static_psymbols, 0,
2307 sizeof (objfile->static_psymbols));
2308
2309 /* Free the obstacks for non-reusable objfiles */
2310 bcache_xfree (objfile->psymbol_cache);
2311 objfile->psymbol_cache = bcache_xmalloc ();
2312 bcache_xfree (objfile->macro_cache);
2313 objfile->macro_cache = bcache_xmalloc ();
2314 bcache_xfree (objfile->filename_cache);
2315 objfile->filename_cache = bcache_xmalloc ();
2316 if (objfile->demangled_names_hash != NULL)
2317 {
2318 htab_delete (objfile->demangled_names_hash);
2319 objfile->demangled_names_hash = NULL;
2320 }
2321 obstack_free (&objfile->objfile_obstack, 0);
2322 objfile->sections = NULL;
2323 objfile->symtabs = NULL;
2324 objfile->psymtabs = NULL;
2325 objfile->psymtabs_addrmap = NULL;
2326 objfile->free_psymtabs = NULL;
2327 objfile->cp_namespace_symtab = NULL;
2328 objfile->msymbols = NULL;
2329 objfile->deprecated_sym_private = NULL;
2330 objfile->minimal_symbol_count = 0;
2331 memset (&objfile->msymbol_hash, 0,
2332 sizeof (objfile->msymbol_hash));
2333 memset (&objfile->msymbol_demangled_hash, 0,
2334 sizeof (objfile->msymbol_demangled_hash));
2335
2336 objfile->psymbol_cache = bcache_xmalloc ();
2337 objfile->macro_cache = bcache_xmalloc ();
2338 objfile->filename_cache = bcache_xmalloc ();
2339 /* obstack_init also initializes the obstack so it is
2340 empty. We could use obstack_specify_allocation but
2341 gdb_obstack.h specifies the alloc/dealloc
2342 functions. */
2343 obstack_init (&objfile->objfile_obstack);
2344 if (build_objfile_section_table (objfile))
2345 {
2346 error (_("Can't find the file sections in `%s': %s"),
2347 objfile->name, bfd_errmsg (bfd_get_error ()));
2348 }
2349 terminate_minimal_symbol_table (objfile);
2350
2351 /* We use the same section offsets as from last time. I'm not
2352 sure whether that is always correct for shared libraries. */
2353 objfile->section_offsets = (struct section_offsets *)
2354 obstack_alloc (&objfile->objfile_obstack,
2355 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2356 memcpy (objfile->section_offsets, offsets,
2357 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2358 objfile->num_sections = num_offsets;
2359
2360 /* What the hell is sym_new_init for, anyway? The concept of
2361 distinguishing between the main file and additional files
2362 in this way seems rather dubious. */
2363 if (objfile == symfile_objfile)
c906108c 2364 {
9cce227f 2365 (*objfile->sf->sym_new_init) (objfile);
c906108c 2366 }
9cce227f
TG
2367
2368 (*objfile->sf->sym_init) (objfile);
2369 clear_complaints (&symfile_complaints, 1, 1);
2370 /* Do not set flags as this is safe and we don't want to be
2371 verbose. */
2372 (*objfile->sf->sym_read) (objfile, 0);
2373 if (!objfile_has_symbols (objfile))
c906108c 2374 {
9cce227f
TG
2375 wrap_here ("");
2376 printf_unfiltered (_("(no debugging symbols found)\n"));
2377 wrap_here ("");
c5aa993b 2378 }
9cce227f
TG
2379
2380 /* We're done reading the symbol file; finish off complaints. */
2381 clear_complaints (&symfile_complaints, 0, 1);
2382
2383 /* Getting new symbols may change our opinion about what is
2384 frameless. */
2385
2386 reinit_frame_cache ();
2387
2388 /* Discard cleanups as symbol reading was successful. */
2389 discard_cleanups (old_cleanups);
2390
2391 /* If the mtime has changed between the time we set new_modtime
2392 and now, we *want* this to be out of date, so don't call stat
2393 again now. */
2394 objfile->mtime = new_modtime;
2395 reread_one = 1;
2396 init_entry_point_info (objfile);
c906108c
SS
2397 }
2398 }
c906108c
SS
2399
2400 if (reread_one)
ea53e89f 2401 {
ff3536bc
UW
2402 /* Notify objfiles that we've modified objfile sections. */
2403 objfiles_changed ();
2404
ea53e89f
JB
2405 clear_symtab_users ();
2406 /* At least one objfile has changed, so we can consider that
2407 the executable we're debugging has changed too. */
781b42b0 2408 observer_notify_executable_changed ();
ea53e89f 2409 }
c906108c 2410}
c906108c
SS
2411\f
2412
c5aa993b
JM
2413
2414typedef struct
2415{
2416 char *ext;
c906108c 2417 enum language lang;
c5aa993b
JM
2418}
2419filename_language;
c906108c 2420
c5aa993b 2421static filename_language *filename_language_table;
c906108c
SS
2422static int fl_table_size, fl_table_next;
2423
2424static void
fba45db2 2425add_filename_language (char *ext, enum language lang)
c906108c
SS
2426{
2427 if (fl_table_next >= fl_table_size)
2428 {
2429 fl_table_size += 10;
5417f6dc 2430 filename_language_table =
25bf3106
PM
2431 xrealloc (filename_language_table,
2432 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2433 }
2434
4fcf66da 2435 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2436 filename_language_table[fl_table_next].lang = lang;
2437 fl_table_next++;
2438}
2439
2440static char *ext_args;
920d2a44
AC
2441static void
2442show_ext_args (struct ui_file *file, int from_tty,
2443 struct cmd_list_element *c, const char *value)
2444{
2445 fprintf_filtered (file, _("\
2446Mapping between filename extension and source language is \"%s\".\n"),
2447 value);
2448}
c906108c
SS
2449
2450static void
26c41df3 2451set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2452{
2453 int i;
2454 char *cp = ext_args;
2455 enum language lang;
2456
2457 /* First arg is filename extension, starting with '.' */
2458 if (*cp != '.')
8a3fe4f8 2459 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2460
2461 /* Find end of first arg. */
c5aa993b 2462 while (*cp && !isspace (*cp))
c906108c
SS
2463 cp++;
2464
2465 if (*cp == '\0')
8a3fe4f8 2466 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2467 ext_args);
2468
2469 /* Null-terminate first arg */
c5aa993b 2470 *cp++ = '\0';
c906108c
SS
2471
2472 /* Find beginning of second arg, which should be a source language. */
2473 while (*cp && isspace (*cp))
2474 cp++;
2475
2476 if (*cp == '\0')
8a3fe4f8 2477 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2478 ext_args);
2479
2480 /* Lookup the language from among those we know. */
2481 lang = language_enum (cp);
2482
2483 /* Now lookup the filename extension: do we already know it? */
2484 for (i = 0; i < fl_table_next; i++)
2485 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2486 break;
2487
2488 if (i >= fl_table_next)
2489 {
2490 /* new file extension */
2491 add_filename_language (ext_args, lang);
2492 }
2493 else
2494 {
2495 /* redefining a previously known filename extension */
2496
2497 /* if (from_tty) */
2498 /* query ("Really make files of type %s '%s'?", */
2499 /* ext_args, language_str (lang)); */
2500
b8c9b27d 2501 xfree (filename_language_table[i].ext);
4fcf66da 2502 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2503 filename_language_table[i].lang = lang;
2504 }
2505}
2506
2507static void
fba45db2 2508info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2509{
2510 int i;
2511
a3f17187 2512 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2513 printf_filtered ("\n\n");
2514 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2515 printf_filtered ("\t%s\t- %s\n",
2516 filename_language_table[i].ext,
c906108c
SS
2517 language_str (filename_language_table[i].lang));
2518}
2519
2520static void
fba45db2 2521init_filename_language_table (void)
c906108c
SS
2522{
2523 if (fl_table_size == 0) /* protect against repetition */
2524 {
2525 fl_table_size = 20;
2526 fl_table_next = 0;
c5aa993b 2527 filename_language_table =
c906108c 2528 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2529 add_filename_language (".c", language_c);
2530 add_filename_language (".C", language_cplus);
2531 add_filename_language (".cc", language_cplus);
2532 add_filename_language (".cp", language_cplus);
2533 add_filename_language (".cpp", language_cplus);
2534 add_filename_language (".cxx", language_cplus);
2535 add_filename_language (".c++", language_cplus);
2536 add_filename_language (".java", language_java);
c906108c 2537 add_filename_language (".class", language_java);
da2cf7e0 2538 add_filename_language (".m", language_objc);
c5aa993b
JM
2539 add_filename_language (".f", language_fortran);
2540 add_filename_language (".F", language_fortran);
2541 add_filename_language (".s", language_asm);
aa707ed0 2542 add_filename_language (".sx", language_asm);
c5aa993b 2543 add_filename_language (".S", language_asm);
c6fd39cd
PM
2544 add_filename_language (".pas", language_pascal);
2545 add_filename_language (".p", language_pascal);
2546 add_filename_language (".pp", language_pascal);
963a6417
PH
2547 add_filename_language (".adb", language_ada);
2548 add_filename_language (".ads", language_ada);
2549 add_filename_language (".a", language_ada);
2550 add_filename_language (".ada", language_ada);
c906108c
SS
2551 }
2552}
2553
2554enum language
fba45db2 2555deduce_language_from_filename (char *filename)
c906108c
SS
2556{
2557 int i;
2558 char *cp;
2559
2560 if (filename != NULL)
2561 if ((cp = strrchr (filename, '.')) != NULL)
2562 for (i = 0; i < fl_table_next; i++)
2563 if (strcmp (cp, filename_language_table[i].ext) == 0)
2564 return filename_language_table[i].lang;
2565
2566 return language_unknown;
2567}
2568\f
2569/* allocate_symtab:
2570
2571 Allocate and partly initialize a new symbol table. Return a pointer
2572 to it. error() if no space.
2573
2574 Caller must set these fields:
c5aa993b
JM
2575 LINETABLE(symtab)
2576 symtab->blockvector
2577 symtab->dirname
2578 symtab->free_code
2579 symtab->free_ptr
c906108c
SS
2580 */
2581
2582struct symtab *
fba45db2 2583allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2584{
52f0bd74 2585 struct symtab *symtab;
c906108c
SS
2586
2587 symtab = (struct symtab *)
4a146b47 2588 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2589 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2590 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2591 objfile->filename_cache);
c5aa993b
JM
2592 symtab->fullname = NULL;
2593 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2594 symtab->debugformat = "unknown";
c906108c
SS
2595
2596 /* Hook it to the objfile it comes from */
2597
c5aa993b
JM
2598 symtab->objfile = objfile;
2599 symtab->next = objfile->symtabs;
2600 objfile->symtabs = symtab;
c906108c 2601
c906108c
SS
2602 return (symtab);
2603}
2604
2605struct partial_symtab *
d85a05f0 2606allocate_psymtab (const char *filename, struct objfile *objfile)
c906108c
SS
2607{
2608 struct partial_symtab *psymtab;
2609
c5aa993b 2610 if (objfile->free_psymtabs)
c906108c 2611 {
c5aa993b
JM
2612 psymtab = objfile->free_psymtabs;
2613 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2614 }
2615 else
2616 psymtab = (struct partial_symtab *)
8b92e4d5 2617 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2618 sizeof (struct partial_symtab));
2619
2620 memset (psymtab, 0, sizeof (struct partial_symtab));
10abe6bf
TT
2621 psymtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2622 objfile->filename_cache);
c5aa993b 2623 psymtab->symtab = NULL;
c906108c
SS
2624
2625 /* Prepend it to the psymtab list for the objfile it belongs to.
2626 Psymtabs are searched in most recent inserted -> least recent
2627 inserted order. */
2628
c5aa993b
JM
2629 psymtab->objfile = objfile;
2630 psymtab->next = objfile->psymtabs;
2631 objfile->psymtabs = psymtab;
c906108c
SS
2632#if 0
2633 {
2634 struct partial_symtab **prev_pst;
c5aa993b
JM
2635 psymtab->objfile = objfile;
2636 psymtab->next = NULL;
2637 prev_pst = &(objfile->psymtabs);
c906108c 2638 while ((*prev_pst) != NULL)
c5aa993b 2639 prev_pst = &((*prev_pst)->next);
c906108c 2640 (*prev_pst) = psymtab;
c5aa993b 2641 }
c906108c 2642#endif
c5aa993b 2643
c906108c
SS
2644 return (psymtab);
2645}
2646
2647void
fba45db2 2648discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2649{
2650 struct partial_symtab **prev_pst;
2651
2652 /* From dbxread.c:
2653 Empty psymtabs happen as a result of header files which don't
2654 have any symbols in them. There can be a lot of them. But this
2655 check is wrong, in that a psymtab with N_SLINE entries but
2656 nothing else is not empty, but we don't realize that. Fixing
2657 that without slowing things down might be tricky. */
2658
2659 /* First, snip it out of the psymtab chain */
2660
2661 prev_pst = &(pst->objfile->psymtabs);
2662 while ((*prev_pst) != pst)
2663 prev_pst = &((*prev_pst)->next);
2664 (*prev_pst) = pst->next;
2665
2666 /* Next, put it on a free list for recycling */
2667
2668 pst->next = pst->objfile->free_psymtabs;
2669 pst->objfile->free_psymtabs = pst;
2670}
c906108c 2671\f
c5aa993b 2672
c906108c
SS
2673/* Reset all data structures in gdb which may contain references to symbol
2674 table data. */
2675
2676void
fba45db2 2677clear_symtab_users (void)
c906108c
SS
2678{
2679 /* Someday, we should do better than this, by only blowing away
2680 the things that really need to be blown. */
c0501be5
DJ
2681
2682 /* Clear the "current" symtab first, because it is no longer valid.
2683 breakpoint_re_set may try to access the current symtab. */
2684 clear_current_source_symtab_and_line ();
2685
c906108c 2686 clear_displays ();
c906108c 2687 breakpoint_re_set ();
6c95b8df 2688 set_default_breakpoint (0, NULL, 0, 0, 0);
c906108c 2689 clear_pc_function_cache ();
06d3b283 2690 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2691
2692 /* Clear globals which might have pointed into a removed objfile.
2693 FIXME: It's not clear which of these are supposed to persist
2694 between expressions and which ought to be reset each time. */
2695 expression_context_block = NULL;
2696 innermost_block = NULL;
8756216b
DP
2697
2698 /* Varobj may refer to old symbols, perform a cleanup. */
2699 varobj_invalidate ();
2700
c906108c
SS
2701}
2702
74b7792f
AC
2703static void
2704clear_symtab_users_cleanup (void *ignore)
2705{
2706 clear_symtab_users ();
2707}
c906108c
SS
2708\f
2709/* Allocate and partially fill a partial symtab. It will be
2710 completely filled at the end of the symbol list.
2711
d4f3574e 2712 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2713
2714struct partial_symtab *
fba45db2 2715start_psymtab_common (struct objfile *objfile,
d85a05f0
DJ
2716 struct section_offsets *section_offsets,
2717 const char *filename,
fba45db2
KB
2718 CORE_ADDR textlow, struct partial_symbol **global_syms,
2719 struct partial_symbol **static_syms)
c906108c
SS
2720{
2721 struct partial_symtab *psymtab;
2722
2723 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2724 psymtab->section_offsets = section_offsets;
2725 psymtab->textlow = textlow;
2726 psymtab->texthigh = psymtab->textlow; /* default */
2727 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2728 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2729 return (psymtab);
2730}
2731\f
2e618c13
AR
2732/* Helper function, initialises partial symbol structure and stashes
2733 it into objfile's bcache. Note that our caching mechanism will
2734 use all fields of struct partial_symbol to determine hash value of the
2735 structure. In other words, having two symbols with the same name but
2736 different domain (or address) is possible and correct. */
2737
11d31d94 2738static const struct partial_symbol *
04a679b8
TT
2739add_psymbol_to_bcache (char *name, int namelength, int copy_name,
2740 domain_enum domain,
2e618c13
AR
2741 enum address_class class,
2742 long val, /* Value as a long */
2743 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2744 enum language language, struct objfile *objfile,
2745 int *added)
2746{
69a943f0
TT
2747 /* psymbol is static so that there will be no uninitialized gaps in the
2748 structure which might contain random data, causing cache misses in
2749 bcache. */
2750 static struct partial_symbol psymbol;
2751
2752 /* However, we must ensure that the entire 'value' field has been
2753 zeroed before assigning to it, because an assignment may not
2754 write the entire field. */
2755 memset (&psymbol.ginfo.value, 0, sizeof (psymbol.ginfo.value));
2e618c13
AR
2756 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2757 if (val != 0)
2758 {
2759 SYMBOL_VALUE (&psymbol) = val;
2760 }
2761 else
2762 {
2763 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2764 }
2765 SYMBOL_SECTION (&psymbol) = 0;
2766 SYMBOL_LANGUAGE (&psymbol) = language;
2767 PSYMBOL_DOMAIN (&psymbol) = domain;
2768 PSYMBOL_CLASS (&psymbol) = class;
2769
04a679b8 2770 SYMBOL_SET_NAMES (&psymbol, name, namelength, copy_name, objfile);
2e618c13
AR
2771
2772 /* Stash the partial symbol away in the cache */
11d31d94
TT
2773 return bcache_full (&psymbol, sizeof (struct partial_symbol),
2774 objfile->psymbol_cache, added);
2e618c13
AR
2775}
2776
2777/* Helper function, adds partial symbol to the given partial symbol
2778 list. */
2779
2780static void
2781append_psymbol_to_list (struct psymbol_allocation_list *list,
11d31d94 2782 const struct partial_symbol *psym,
2e618c13
AR
2783 struct objfile *objfile)
2784{
2785 if (list->next >= list->list + list->size)
2786 extend_psymbol_list (list, objfile);
11d31d94 2787 *list->next++ = (struct partial_symbol *) psym;
2e618c13
AR
2788 OBJSTAT (objfile, n_psyms++);
2789}
2790
c906108c 2791/* Add a symbol with a long value to a psymtab.
5417f6dc 2792 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
2793 Return the partial symbol that has been added. */
2794
2795/* NOTE: carlton/2003-09-11: The reason why we return the partial
2796 symbol is so that callers can get access to the symbol's demangled
2797 name, which they don't have any cheap way to determine otherwise.
2798 (Currenly, dwarf2read.c is the only file who uses that information,
2799 though it's possible that other readers might in the future.)
2800 Elena wasn't thrilled about that, and I don't blame her, but we
2801 couldn't come up with a better way to get that information. If
2802 it's needed in other situations, we could consider breaking up
2803 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2804 cache. */
2805
2806const struct partial_symbol *
04a679b8
TT
2807add_psymbol_to_list (char *name, int namelength, int copy_name,
2808 domain_enum domain,
fba45db2 2809 enum address_class class,
2e618c13
AR
2810 struct psymbol_allocation_list *list,
2811 long val, /* Value as a long */
fba45db2
KB
2812 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2813 enum language language, struct objfile *objfile)
c906108c 2814{
11d31d94 2815 const struct partial_symbol *psym;
2de7ced7 2816
2e618c13 2817 int added;
c906108c
SS
2818
2819 /* Stash the partial symbol away in the cache */
04a679b8 2820 psym = add_psymbol_to_bcache (name, namelength, copy_name, domain, class,
2e618c13 2821 val, coreaddr, language, objfile, &added);
c906108c 2822
2e618c13
AR
2823 /* Do not duplicate global partial symbols. */
2824 if (list == &objfile->global_psymbols
2825 && !added)
2826 return psym;
5c4e30ca 2827
2e618c13
AR
2828 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2829 append_psymbol_to_list (list, psym, objfile);
5c4e30ca 2830 return psym;
c906108c
SS
2831}
2832
c906108c
SS
2833/* Initialize storage for partial symbols. */
2834
2835void
fba45db2 2836init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2837{
2838 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2839
2840 if (objfile->global_psymbols.list)
c906108c 2841 {
2dc74dc1 2842 xfree (objfile->global_psymbols.list);
c906108c 2843 }
c5aa993b 2844 if (objfile->static_psymbols.list)
c906108c 2845 {
2dc74dc1 2846 xfree (objfile->static_psymbols.list);
c906108c 2847 }
c5aa993b 2848
c906108c
SS
2849 /* Current best guess is that approximately a twentieth
2850 of the total symbols (in a debugging file) are global or static
2851 oriented symbols */
c906108c 2852
c5aa993b
JM
2853 objfile->global_psymbols.size = total_symbols / 10;
2854 objfile->static_psymbols.size = total_symbols / 10;
2855
2856 if (objfile->global_psymbols.size > 0)
c906108c 2857 {
c5aa993b
JM
2858 objfile->global_psymbols.next =
2859 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
2860 xmalloc ((objfile->global_psymbols.size
2861 * sizeof (struct partial_symbol *)));
c906108c 2862 }
c5aa993b 2863 if (objfile->static_psymbols.size > 0)
c906108c 2864 {
c5aa993b
JM
2865 objfile->static_psymbols.next =
2866 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
2867 xmalloc ((objfile->static_psymbols.size
2868 * sizeof (struct partial_symbol *)));
c906108c
SS
2869 }
2870}
2871
2872/* OVERLAYS:
2873 The following code implements an abstraction for debugging overlay sections.
2874
2875 The target model is as follows:
2876 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2877 same VMA, each with its own unique LMA (or load address).
c906108c 2878 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2879 sections, one by one, from the load address into the VMA address.
5417f6dc 2880 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2881 sections should be considered to be mapped from the VMA to the LMA.
2882 This information is used for symbol lookup, and memory read/write.
5417f6dc 2883 For instance, if a section has been mapped then its contents
c5aa993b 2884 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2885
2886 Two levels of debugger support for overlays are available. One is
2887 "manual", in which the debugger relies on the user to tell it which
2888 overlays are currently mapped. This level of support is
2889 implemented entirely in the core debugger, and the information about
2890 whether a section is mapped is kept in the objfile->obj_section table.
2891
2892 The second level of support is "automatic", and is only available if
2893 the target-specific code provides functionality to read the target's
2894 overlay mapping table, and translate its contents for the debugger
2895 (by updating the mapped state information in the obj_section tables).
2896
2897 The interface is as follows:
c5aa993b
JM
2898 User commands:
2899 overlay map <name> -- tell gdb to consider this section mapped
2900 overlay unmap <name> -- tell gdb to consider this section unmapped
2901 overlay list -- list the sections that GDB thinks are mapped
2902 overlay read-target -- get the target's state of what's mapped
2903 overlay off/manual/auto -- set overlay debugging state
2904 Functional interface:
2905 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2906 section, return that section.
5417f6dc 2907 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2908 the pc, either in its VMA or its LMA
714835d5 2909 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2910 section_is_overlay(sect): true if section's VMA != LMA
2911 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2912 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2913 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2914 overlay_mapped_address(...): map an address from section's LMA to VMA
2915 overlay_unmapped_address(...): map an address from section's VMA to LMA
2916 symbol_overlayed_address(...): Return a "current" address for symbol:
2917 either in VMA or LMA depending on whether
2918 the symbol's section is currently mapped
c906108c
SS
2919 */
2920
2921/* Overlay debugging state: */
2922
d874f1e2 2923enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2924int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2925
c906108c 2926/* Function: section_is_overlay (SECTION)
5417f6dc 2927 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2928 SECTION is loaded at an address different from where it will "run". */
2929
2930int
714835d5 2931section_is_overlay (struct obj_section *section)
c906108c 2932{
714835d5
UW
2933 if (overlay_debugging && section)
2934 {
2935 bfd *abfd = section->objfile->obfd;
2936 asection *bfd_section = section->the_bfd_section;
2937
2938 if (bfd_section_lma (abfd, bfd_section) != 0
2939 && bfd_section_lma (abfd, bfd_section)
2940 != bfd_section_vma (abfd, bfd_section))
2941 return 1;
2942 }
c906108c
SS
2943
2944 return 0;
2945}
2946
2947/* Function: overlay_invalidate_all (void)
2948 Invalidate the mapped state of all overlay sections (mark it as stale). */
2949
2950static void
fba45db2 2951overlay_invalidate_all (void)
c906108c 2952{
c5aa993b 2953 struct objfile *objfile;
c906108c
SS
2954 struct obj_section *sect;
2955
2956 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2957 if (section_is_overlay (sect))
2958 sect->ovly_mapped = -1;
c906108c
SS
2959}
2960
714835d5 2961/* Function: section_is_mapped (SECTION)
5417f6dc 2962 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2963
2964 Access to the ovly_mapped flag is restricted to this function, so
2965 that we can do automatic update. If the global flag
2966 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2967 overlay_invalidate_all. If the mapped state of the particular
2968 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2969
714835d5
UW
2970int
2971section_is_mapped (struct obj_section *osect)
c906108c 2972{
9216df95
UW
2973 struct gdbarch *gdbarch;
2974
714835d5 2975 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2976 return 0;
2977
c5aa993b 2978 switch (overlay_debugging)
c906108c
SS
2979 {
2980 default:
d874f1e2 2981 case ovly_off:
c5aa993b 2982 return 0; /* overlay debugging off */
d874f1e2 2983 case ovly_auto: /* overlay debugging automatic */
1c772458 2984 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 2985 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
2986 gdbarch = get_objfile_arch (osect->objfile);
2987 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2988 {
2989 if (overlay_cache_invalid)
2990 {
2991 overlay_invalidate_all ();
2992 overlay_cache_invalid = 0;
2993 }
2994 if (osect->ovly_mapped == -1)
9216df95 2995 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2996 }
2997 /* fall thru to manual case */
d874f1e2 2998 case ovly_on: /* overlay debugging manual */
c906108c
SS
2999 return osect->ovly_mapped == 1;
3000 }
3001}
3002
c906108c
SS
3003/* Function: pc_in_unmapped_range
3004 If PC falls into the lma range of SECTION, return true, else false. */
3005
3006CORE_ADDR
714835d5 3007pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3008{
714835d5
UW
3009 if (section_is_overlay (section))
3010 {
3011 bfd *abfd = section->objfile->obfd;
3012 asection *bfd_section = section->the_bfd_section;
fbd35540 3013
714835d5
UW
3014 /* We assume the LMA is relocated by the same offset as the VMA. */
3015 bfd_vma size = bfd_get_section_size (bfd_section);
3016 CORE_ADDR offset = obj_section_offset (section);
3017
3018 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3019 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3020 return 1;
3021 }
c906108c 3022
c906108c
SS
3023 return 0;
3024}
3025
3026/* Function: pc_in_mapped_range
3027 If PC falls into the vma range of SECTION, return true, else false. */
3028
3029CORE_ADDR
714835d5 3030pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3031{
714835d5
UW
3032 if (section_is_overlay (section))
3033 {
3034 if (obj_section_addr (section) <= pc
3035 && pc < obj_section_endaddr (section))
3036 return 1;
3037 }
c906108c 3038
c906108c
SS
3039 return 0;
3040}
3041
9ec8e6a0
JB
3042
3043/* Return true if the mapped ranges of sections A and B overlap, false
3044 otherwise. */
b9362cc7 3045static int
714835d5 3046sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3047{
714835d5
UW
3048 CORE_ADDR a_start = obj_section_addr (a);
3049 CORE_ADDR a_end = obj_section_endaddr (a);
3050 CORE_ADDR b_start = obj_section_addr (b);
3051 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3052
3053 return (a_start < b_end && b_start < a_end);
3054}
3055
c906108c
SS
3056/* Function: overlay_unmapped_address (PC, SECTION)
3057 Returns the address corresponding to PC in the unmapped (load) range.
3058 May be the same as PC. */
3059
3060CORE_ADDR
714835d5 3061overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3062{
714835d5
UW
3063 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3064 {
3065 bfd *abfd = section->objfile->obfd;
3066 asection *bfd_section = section->the_bfd_section;
fbd35540 3067
714835d5
UW
3068 return pc + bfd_section_lma (abfd, bfd_section)
3069 - bfd_section_vma (abfd, bfd_section);
3070 }
c906108c
SS
3071
3072 return pc;
3073}
3074
3075/* Function: overlay_mapped_address (PC, SECTION)
3076 Returns the address corresponding to PC in the mapped (runtime) range.
3077 May be the same as PC. */
3078
3079CORE_ADDR
714835d5 3080overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3081{
714835d5
UW
3082 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3083 {
3084 bfd *abfd = section->objfile->obfd;
3085 asection *bfd_section = section->the_bfd_section;
fbd35540 3086
714835d5
UW
3087 return pc + bfd_section_vma (abfd, bfd_section)
3088 - bfd_section_lma (abfd, bfd_section);
3089 }
c906108c
SS
3090
3091 return pc;
3092}
3093
3094
5417f6dc 3095/* Function: symbol_overlayed_address
c906108c
SS
3096 Return one of two addresses (relative to the VMA or to the LMA),
3097 depending on whether the section is mapped or not. */
3098
c5aa993b 3099CORE_ADDR
714835d5 3100symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3101{
3102 if (overlay_debugging)
3103 {
3104 /* If the symbol has no section, just return its regular address. */
3105 if (section == 0)
3106 return address;
3107 /* If the symbol's section is not an overlay, just return its address */
3108 if (!section_is_overlay (section))
3109 return address;
3110 /* If the symbol's section is mapped, just return its address */
3111 if (section_is_mapped (section))
3112 return address;
3113 /*
3114 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3115 * then return its LOADED address rather than its vma address!!
3116 */
3117 return overlay_unmapped_address (address, section);
3118 }
3119 return address;
3120}
3121
5417f6dc 3122/* Function: find_pc_overlay (PC)
c906108c
SS
3123 Return the best-match overlay section for PC:
3124 If PC matches a mapped overlay section's VMA, return that section.
3125 Else if PC matches an unmapped section's VMA, return that section.
3126 Else if PC matches an unmapped section's LMA, return that section. */
3127
714835d5 3128struct obj_section *
fba45db2 3129find_pc_overlay (CORE_ADDR pc)
c906108c 3130{
c5aa993b 3131 struct objfile *objfile;
c906108c
SS
3132 struct obj_section *osect, *best_match = NULL;
3133
3134 if (overlay_debugging)
3135 ALL_OBJSECTIONS (objfile, osect)
714835d5 3136 if (section_is_overlay (osect))
c5aa993b 3137 {
714835d5 3138 if (pc_in_mapped_range (pc, osect))
c5aa993b 3139 {
714835d5
UW
3140 if (section_is_mapped (osect))
3141 return osect;
c5aa993b
JM
3142 else
3143 best_match = osect;
3144 }
714835d5 3145 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3146 best_match = osect;
3147 }
714835d5 3148 return best_match;
c906108c
SS
3149}
3150
3151/* Function: find_pc_mapped_section (PC)
5417f6dc 3152 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3153 currently marked as MAPPED, return that section. Else return NULL. */
3154
714835d5 3155struct obj_section *
fba45db2 3156find_pc_mapped_section (CORE_ADDR pc)
c906108c 3157{
c5aa993b 3158 struct objfile *objfile;
c906108c
SS
3159 struct obj_section *osect;
3160
3161 if (overlay_debugging)
3162 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3163 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3164 return osect;
c906108c
SS
3165
3166 return NULL;
3167}
3168
3169/* Function: list_overlays_command
3170 Print a list of mapped sections and their PC ranges */
3171
3172void
fba45db2 3173list_overlays_command (char *args, int from_tty)
c906108c 3174{
c5aa993b
JM
3175 int nmapped = 0;
3176 struct objfile *objfile;
c906108c
SS
3177 struct obj_section *osect;
3178
3179 if (overlay_debugging)
3180 ALL_OBJSECTIONS (objfile, osect)
714835d5 3181 if (section_is_mapped (osect))
c5aa993b 3182 {
5af949e3 3183 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3184 const char *name;
3185 bfd_vma lma, vma;
3186 int size;
3187
3188 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3189 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3190 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3191 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3192
3193 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3194 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3195 puts_filtered (" - ");
5af949e3 3196 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3197 printf_filtered (", mapped at ");
5af949e3 3198 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3199 puts_filtered (" - ");
5af949e3 3200 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3201 puts_filtered ("\n");
3202
3203 nmapped++;
3204 }
c906108c 3205 if (nmapped == 0)
a3f17187 3206 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3207}
3208
3209/* Function: map_overlay_command
3210 Mark the named section as mapped (ie. residing at its VMA address). */
3211
3212void
fba45db2 3213map_overlay_command (char *args, int from_tty)
c906108c 3214{
c5aa993b
JM
3215 struct objfile *objfile, *objfile2;
3216 struct obj_section *sec, *sec2;
c906108c
SS
3217
3218 if (!overlay_debugging)
8a3fe4f8 3219 error (_("\
515ad16c 3220Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3221the 'overlay manual' command."));
c906108c
SS
3222
3223 if (args == 0 || *args == 0)
8a3fe4f8 3224 error (_("Argument required: name of an overlay section"));
c906108c
SS
3225
3226 /* First, find a section matching the user supplied argument */
3227 ALL_OBJSECTIONS (objfile, sec)
3228 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3229 {
3230 /* Now, check to see if the section is an overlay. */
714835d5 3231 if (!section_is_overlay (sec))
c5aa993b
JM
3232 continue; /* not an overlay section */
3233
3234 /* Mark the overlay as "mapped" */
3235 sec->ovly_mapped = 1;
3236
3237 /* Next, make a pass and unmap any sections that are
3238 overlapped by this new section: */
3239 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3240 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3241 {
3242 if (info_verbose)
a3f17187 3243 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3244 bfd_section_name (objfile->obfd,
3245 sec2->the_bfd_section));
3246 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3247 }
3248 return;
3249 }
8a3fe4f8 3250 error (_("No overlay section called %s"), args);
c906108c
SS
3251}
3252
3253/* Function: unmap_overlay_command
5417f6dc 3254 Mark the overlay section as unmapped
c906108c
SS
3255 (ie. resident in its LMA address range, rather than the VMA range). */
3256
3257void
fba45db2 3258unmap_overlay_command (char *args, int from_tty)
c906108c 3259{
c5aa993b 3260 struct objfile *objfile;
c906108c
SS
3261 struct obj_section *sec;
3262
3263 if (!overlay_debugging)
8a3fe4f8 3264 error (_("\
515ad16c 3265Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3266the 'overlay manual' command."));
c906108c
SS
3267
3268 if (args == 0 || *args == 0)
8a3fe4f8 3269 error (_("Argument required: name of an overlay section"));
c906108c
SS
3270
3271 /* First, find a section matching the user supplied argument */
3272 ALL_OBJSECTIONS (objfile, sec)
3273 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3274 {
3275 if (!sec->ovly_mapped)
8a3fe4f8 3276 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3277 sec->ovly_mapped = 0;
3278 return;
3279 }
8a3fe4f8 3280 error (_("No overlay section called %s"), args);
c906108c
SS
3281}
3282
3283/* Function: overlay_auto_command
3284 A utility command to turn on overlay debugging.
3285 Possibly this should be done via a set/show command. */
3286
3287static void
fba45db2 3288overlay_auto_command (char *args, int from_tty)
c906108c 3289{
d874f1e2 3290 overlay_debugging = ovly_auto;
1900040c 3291 enable_overlay_breakpoints ();
c906108c 3292 if (info_verbose)
a3f17187 3293 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3294}
3295
3296/* Function: overlay_manual_command
3297 A utility command to turn on overlay debugging.
3298 Possibly this should be done via a set/show command. */
3299
3300static void
fba45db2 3301overlay_manual_command (char *args, int from_tty)
c906108c 3302{
d874f1e2 3303 overlay_debugging = ovly_on;
1900040c 3304 disable_overlay_breakpoints ();
c906108c 3305 if (info_verbose)
a3f17187 3306 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3307}
3308
3309/* Function: overlay_off_command
3310 A utility command to turn on overlay debugging.
3311 Possibly this should be done via a set/show command. */
3312
3313static void
fba45db2 3314overlay_off_command (char *args, int from_tty)
c906108c 3315{
d874f1e2 3316 overlay_debugging = ovly_off;
1900040c 3317 disable_overlay_breakpoints ();
c906108c 3318 if (info_verbose)
a3f17187 3319 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3320}
3321
3322static void
fba45db2 3323overlay_load_command (char *args, int from_tty)
c906108c 3324{
e17c207e
UW
3325 struct gdbarch *gdbarch = get_current_arch ();
3326
3327 if (gdbarch_overlay_update_p (gdbarch))
3328 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3329 else
8a3fe4f8 3330 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3331}
3332
3333/* Function: overlay_command
3334 A place-holder for a mis-typed command */
3335
3336/* Command list chain containing all defined "overlay" subcommands. */
3337struct cmd_list_element *overlaylist;
3338
3339static void
fba45db2 3340overlay_command (char *args, int from_tty)
c906108c 3341{
c5aa993b 3342 printf_unfiltered
c906108c
SS
3343 ("\"overlay\" must be followed by the name of an overlay command.\n");
3344 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3345}
3346
3347
3348/* Target Overlays for the "Simplest" overlay manager:
3349
5417f6dc
RM
3350 This is GDB's default target overlay layer. It works with the
3351 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3352 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3353 so targets that use a different runtime overlay manager can
c906108c
SS
3354 substitute their own overlay_update function and take over the
3355 function pointer.
3356
3357 The overlay_update function pokes around in the target's data structures
3358 to see what overlays are mapped, and updates GDB's overlay mapping with
3359 this information.
3360
3361 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3362 unsigned _novlys; /# number of overlay sections #/
3363 unsigned _ovly_table[_novlys][4] = {
3364 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3365 {..., ..., ..., ...},
3366 }
3367 unsigned _novly_regions; /# number of overlay regions #/
3368 unsigned _ovly_region_table[_novly_regions][3] = {
3369 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3370 {..., ..., ...},
3371 }
c906108c
SS
3372 These functions will attempt to update GDB's mappedness state in the
3373 symbol section table, based on the target's mappedness state.
3374
3375 To do this, we keep a cached copy of the target's _ovly_table, and
3376 attempt to detect when the cached copy is invalidated. The main
3377 entry point is "simple_overlay_update(SECT), which looks up SECT in
3378 the cached table and re-reads only the entry for that section from
3379 the target (whenever possible).
3380 */
3381
3382/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3383static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3384#if 0
c5aa993b 3385static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3386#endif
c5aa993b 3387static unsigned cache_novlys = 0;
c906108c 3388#if 0
c5aa993b 3389static unsigned cache_novly_regions = 0;
c906108c
SS
3390#endif
3391static CORE_ADDR cache_ovly_table_base = 0;
3392#if 0
3393static CORE_ADDR cache_ovly_region_table_base = 0;
3394#endif
c5aa993b
JM
3395enum ovly_index
3396 {
3397 VMA, SIZE, LMA, MAPPED
3398 };
c906108c
SS
3399
3400/* Throw away the cached copy of _ovly_table */
3401static void
fba45db2 3402simple_free_overlay_table (void)
c906108c
SS
3403{
3404 if (cache_ovly_table)
b8c9b27d 3405 xfree (cache_ovly_table);
c5aa993b 3406 cache_novlys = 0;
c906108c
SS
3407 cache_ovly_table = NULL;
3408 cache_ovly_table_base = 0;
3409}
3410
3411#if 0
3412/* Throw away the cached copy of _ovly_region_table */
3413static void
fba45db2 3414simple_free_overlay_region_table (void)
c906108c
SS
3415{
3416 if (cache_ovly_region_table)
b8c9b27d 3417 xfree (cache_ovly_region_table);
c5aa993b 3418 cache_novly_regions = 0;
c906108c
SS
3419 cache_ovly_region_table = NULL;
3420 cache_ovly_region_table_base = 0;
3421}
3422#endif
3423
9216df95 3424/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3425 Convert to host order. int LEN is number of ints */
3426static void
9216df95 3427read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3428 int len, int size, enum bfd_endian byte_order)
c906108c 3429{
34c0bd93 3430 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3431 gdb_byte *buf = alloca (len * size);
c5aa993b 3432 int i;
c906108c 3433
9216df95 3434 read_memory (memaddr, buf, len * size);
c906108c 3435 for (i = 0; i < len; i++)
e17a4113 3436 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3437}
3438
3439/* Find and grab a copy of the target _ovly_table
3440 (and _novlys, which is needed for the table's size) */
c5aa993b 3441static int
fba45db2 3442simple_read_overlay_table (void)
c906108c 3443{
0d43edd1 3444 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3445 struct gdbarch *gdbarch;
3446 int word_size;
e17a4113 3447 enum bfd_endian byte_order;
c906108c
SS
3448
3449 simple_free_overlay_table ();
9b27852e 3450 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3451 if (! novlys_msym)
c906108c 3452 {
8a3fe4f8 3453 error (_("Error reading inferior's overlay table: "
0d43edd1 3454 "couldn't find `_novlys' variable\n"
8a3fe4f8 3455 "in inferior. Use `overlay manual' mode."));
0d43edd1 3456 return 0;
c906108c 3457 }
0d43edd1 3458
9b27852e 3459 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3460 if (! ovly_table_msym)
3461 {
8a3fe4f8 3462 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3463 "`_ovly_table' array\n"
8a3fe4f8 3464 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3465 return 0;
3466 }
3467
9216df95
UW
3468 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3469 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3470 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3471
e17a4113
UW
3472 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3473 4, byte_order);
0d43edd1
JB
3474 cache_ovly_table
3475 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3476 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3477 read_target_long_array (cache_ovly_table_base,
777ea8f1 3478 (unsigned int *) cache_ovly_table,
e17a4113 3479 cache_novlys * 4, word_size, byte_order);
0d43edd1 3480
c5aa993b 3481 return 1; /* SUCCESS */
c906108c
SS
3482}
3483
3484#if 0
3485/* Find and grab a copy of the target _ovly_region_table
3486 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3487static int
fba45db2 3488simple_read_overlay_region_table (void)
c906108c
SS
3489{
3490 struct minimal_symbol *msym;
e17a4113
UW
3491 struct gdbarch *gdbarch;
3492 int word_size;
3493 enum bfd_endian byte_order;
c906108c
SS
3494
3495 simple_free_overlay_region_table ();
9b27852e 3496 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
e17a4113 3497 if (msym == NULL)
c5aa993b 3498 return 0; /* failure */
e17a4113
UW
3499
3500 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3501 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3502 byte_order = gdbarch_byte_order (gdbarch);
3503
3504 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3505 4, byte_order);
3506
c906108c
SS
3507 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3508 if (cache_ovly_region_table != NULL)
3509 {
9b27852e 3510 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3511 if (msym != NULL)
3512 {
3513 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3514 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3515 (unsigned int *) cache_ovly_region_table,
e17a4113
UW
3516 cache_novly_regions * 3,
3517 word_size, byte_order);
c906108c 3518 }
c5aa993b
JM
3519 else
3520 return 0; /* failure */
c906108c 3521 }
c5aa993b
JM
3522 else
3523 return 0; /* failure */
3524 return 1; /* SUCCESS */
c906108c
SS
3525}
3526#endif
3527
5417f6dc 3528/* Function: simple_overlay_update_1
c906108c
SS
3529 A helper function for simple_overlay_update. Assuming a cached copy
3530 of _ovly_table exists, look through it to find an entry whose vma,
3531 lma and size match those of OSECT. Re-read the entry and make sure
3532 it still matches OSECT (else the table may no longer be valid).
3533 Set OSECT's mapped state to match the entry. Return: 1 for
3534 success, 0 for failure. */
3535
3536static int
fba45db2 3537simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3538{
3539 int i, size;
fbd35540
MS
3540 bfd *obfd = osect->objfile->obfd;
3541 asection *bsect = osect->the_bfd_section;
9216df95
UW
3542 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3543 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3544 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3545
2c500098 3546 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3547 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3548 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3549 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3550 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3551 {
9216df95
UW
3552 read_target_long_array (cache_ovly_table_base + i * word_size,
3553 (unsigned int *) cache_ovly_table[i],
e17a4113 3554 4, word_size, byte_order);
fbd35540
MS
3555 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3556 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3557 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3558 {
3559 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3560 return 1;
3561 }
fbd35540 3562 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3563 return 0;
3564 }
3565 return 0;
3566}
3567
3568/* Function: simple_overlay_update
5417f6dc
RM
3569 If OSECT is NULL, then update all sections' mapped state
3570 (after re-reading the entire target _ovly_table).
3571 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3572 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3573 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3574 re-read the entire cache, and go ahead and update all sections. */
3575
1c772458 3576void
fba45db2 3577simple_overlay_update (struct obj_section *osect)
c906108c 3578{
c5aa993b 3579 struct objfile *objfile;
c906108c
SS
3580
3581 /* Were we given an osect to look up? NULL means do all of them. */
3582 if (osect)
3583 /* Have we got a cached copy of the target's overlay table? */
3584 if (cache_ovly_table != NULL)
3585 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3586 if (cache_ovly_table_base ==
9b27852e 3587 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3588 /* Then go ahead and try to look up this single section in the cache */
3589 if (simple_overlay_update_1 (osect))
3590 /* Found it! We're done. */
3591 return;
3592
3593 /* Cached table no good: need to read the entire table anew.
3594 Or else we want all the sections, in which case it's actually
3595 more efficient to read the whole table in one block anyway. */
3596
0d43edd1
JB
3597 if (! simple_read_overlay_table ())
3598 return;
3599
c906108c
SS
3600 /* Now may as well update all sections, even if only one was requested. */
3601 ALL_OBJSECTIONS (objfile, osect)
714835d5 3602 if (section_is_overlay (osect))
c5aa993b
JM
3603 {
3604 int i, size;
fbd35540
MS
3605 bfd *obfd = osect->objfile->obfd;
3606 asection *bsect = osect->the_bfd_section;
c5aa993b 3607
2c500098 3608 size = bfd_get_section_size (bsect);
c5aa993b 3609 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3610 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3611 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3612 /* && cache_ovly_table[i][SIZE] == size */ )
3613 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3614 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3615 break; /* finished with inner for loop: break out */
3616 }
3617 }
c906108c
SS
3618}
3619
086df311
DJ
3620/* Set the output sections and output offsets for section SECTP in
3621 ABFD. The relocation code in BFD will read these offsets, so we
3622 need to be sure they're initialized. We map each section to itself,
3623 with no offset; this means that SECTP->vma will be honored. */
3624
3625static void
3626symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3627{
3628 sectp->output_section = sectp;
3629 sectp->output_offset = 0;
3630}
3631
ac8035ab
TG
3632/* Default implementation for sym_relocate. */
3633
3634
3635bfd_byte *
3636default_symfile_relocate (struct objfile *objfile, asection *sectp,
3637 bfd_byte *buf)
3638{
3639 bfd *abfd = objfile->obfd;
3640
3641 /* We're only interested in sections with relocation
3642 information. */
3643 if ((sectp->flags & SEC_RELOC) == 0)
3644 return NULL;
3645
3646 /* We will handle section offsets properly elsewhere, so relocate as if
3647 all sections begin at 0. */
3648 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3649
3650 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3651}
3652
086df311
DJ
3653/* Relocate the contents of a debug section SECTP in ABFD. The
3654 contents are stored in BUF if it is non-NULL, or returned in a
3655 malloc'd buffer otherwise.
3656
3657 For some platforms and debug info formats, shared libraries contain
3658 relocations against the debug sections (particularly for DWARF-2;
3659 one affected platform is PowerPC GNU/Linux, although it depends on
3660 the version of the linker in use). Also, ELF object files naturally
3661 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3662 the relocations in order to get the locations of symbols correct.
3663 Another example that may require relocation processing, is the
3664 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3665 debug section. */
086df311
DJ
3666
3667bfd_byte *
ac8035ab
TG
3668symfile_relocate_debug_section (struct objfile *objfile,
3669 asection *sectp, bfd_byte *buf)
086df311 3670{
ac8035ab 3671 gdb_assert (objfile->sf->sym_relocate);
086df311 3672
ac8035ab 3673 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3674}
c906108c 3675
31d99776
DJ
3676struct symfile_segment_data *
3677get_symfile_segment_data (bfd *abfd)
3678{
3679 struct sym_fns *sf = find_sym_fns (abfd);
3680
3681 if (sf == NULL)
3682 return NULL;
3683
3684 return sf->sym_segments (abfd);
3685}
3686
3687void
3688free_symfile_segment_data (struct symfile_segment_data *data)
3689{
3690 xfree (data->segment_bases);
3691 xfree (data->segment_sizes);
3692 xfree (data->segment_info);
3693 xfree (data);
3694}
3695
28c32713
JB
3696
3697/* Given:
3698 - DATA, containing segment addresses from the object file ABFD, and
3699 the mapping from ABFD's sections onto the segments that own them,
3700 and
3701 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3702 segment addresses reported by the target,
3703 store the appropriate offsets for each section in OFFSETS.
3704
3705 If there are fewer entries in SEGMENT_BASES than there are segments
3706 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3707
8d385431
DJ
3708 If there are more entries, then ignore the extra. The target may
3709 not be able to distinguish between an empty data segment and a
3710 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3711int
3712symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3713 struct section_offsets *offsets,
3714 int num_segment_bases,
3715 const CORE_ADDR *segment_bases)
3716{
3717 int i;
3718 asection *sect;
3719
28c32713
JB
3720 /* It doesn't make sense to call this function unless you have some
3721 segment base addresses. */
202b96c1 3722 gdb_assert (num_segment_bases > 0);
28c32713 3723
31d99776
DJ
3724 /* If we do not have segment mappings for the object file, we
3725 can not relocate it by segments. */
3726 gdb_assert (data != NULL);
3727 gdb_assert (data->num_segments > 0);
3728
31d99776
DJ
3729 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3730 {
31d99776
DJ
3731 int which = data->segment_info[i];
3732
28c32713
JB
3733 gdb_assert (0 <= which && which <= data->num_segments);
3734
3735 /* Don't bother computing offsets for sections that aren't
3736 loaded as part of any segment. */
3737 if (! which)
3738 continue;
3739
3740 /* Use the last SEGMENT_BASES entry as the address of any extra
3741 segments mentioned in DATA->segment_info. */
31d99776 3742 if (which > num_segment_bases)
28c32713 3743 which = num_segment_bases;
31d99776 3744
28c32713
JB
3745 offsets->offsets[i] = (segment_bases[which - 1]
3746 - data->segment_bases[which - 1]);
31d99776
DJ
3747 }
3748
3749 return 1;
3750}
3751
3752static void
3753symfile_find_segment_sections (struct objfile *objfile)
3754{
3755 bfd *abfd = objfile->obfd;
3756 int i;
3757 asection *sect;
3758 struct symfile_segment_data *data;
3759
3760 data = get_symfile_segment_data (objfile->obfd);
3761 if (data == NULL)
3762 return;
3763
3764 if (data->num_segments != 1 && data->num_segments != 2)
3765 {
3766 free_symfile_segment_data (data);
3767 return;
3768 }
3769
3770 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3771 {
3772 CORE_ADDR vma;
3773 int which = data->segment_info[i];
3774
3775 if (which == 1)
3776 {
3777 if (objfile->sect_index_text == -1)
3778 objfile->sect_index_text = sect->index;
3779
3780 if (objfile->sect_index_rodata == -1)
3781 objfile->sect_index_rodata = sect->index;
3782 }
3783 else if (which == 2)
3784 {
3785 if (objfile->sect_index_data == -1)
3786 objfile->sect_index_data = sect->index;
3787
3788 if (objfile->sect_index_bss == -1)
3789 objfile->sect_index_bss = sect->index;
3790 }
3791 }
3792
3793 free_symfile_segment_data (data);
3794}
3795
c906108c 3796void
fba45db2 3797_initialize_symfile (void)
c906108c
SS
3798{
3799 struct cmd_list_element *c;
c5aa993b 3800
1a966eab
AC
3801 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3802Load symbol table from executable file FILE.\n\
c906108c 3803The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3804to execute."), &cmdlist);
5ba2abeb 3805 set_cmd_completer (c, filename_completer);
c906108c 3806
1a966eab 3807 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3808Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 3809Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 3810ADDR is the starting address of the file's text.\n\
db162d44
EZ
3811The optional arguments are section-name section-address pairs and\n\
3812should be specified if the data and bss segments are not contiguous\n\
1a966eab 3813with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3814 &cmdlist);
5ba2abeb 3815 set_cmd_completer (c, filename_completer);
c906108c 3816
1a966eab
AC
3817 c = add_cmd ("load", class_files, load_command, _("\
3818Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3819for access from GDB.\n\
3820A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3821 set_cmd_completer (c, filename_completer);
c906108c 3822
5bf193a2
AC
3823 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3824 &symbol_reloading, _("\
3825Set dynamic symbol table reloading multiple times in one run."), _("\
3826Show dynamic symbol table reloading multiple times in one run."), NULL,
3827 NULL,
920d2a44 3828 show_symbol_reloading,
5bf193a2 3829 &setlist, &showlist);
c906108c 3830
c5aa993b 3831 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3832 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3833 "overlay ", 0, &cmdlist);
3834
3835 add_com_alias ("ovly", "overlay", class_alias, 1);
3836 add_com_alias ("ov", "overlay", class_alias, 1);
3837
c5aa993b 3838 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3839 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3840
c5aa993b 3841 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3842 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3843
c5aa993b 3844 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3845 _("List mappings of overlay sections."), &overlaylist);
c906108c 3846
c5aa993b 3847 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3848 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3849 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3850 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3851 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3852 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3853 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3854 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3855
3856 /* Filename extension to source language lookup table: */
3857 init_filename_language_table ();
26c41df3
AC
3858 add_setshow_string_noescape_cmd ("extension-language", class_files,
3859 &ext_args, _("\
3860Set mapping between filename extension and source language."), _("\
3861Show mapping between filename extension and source language."), _("\
3862Usage: set extension-language .foo bar"),
3863 set_ext_lang_command,
920d2a44 3864 show_ext_args,
26c41df3 3865 &setlist, &showlist);
c906108c 3866
c5aa993b 3867 add_info ("extensions", info_ext_lang_command,
1bedd215 3868 _("All filename extensions associated with a source language."));
917317f4 3869
525226b5
AC
3870 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3871 &debug_file_directory, _("\
24ddea62
JK
3872Set the directories where separate debug symbols are searched for."), _("\
3873Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3874Separate debug symbols are first searched for in the same\n\
3875directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3876and lastly at the path of the directory of the binary with\n\
24ddea62 3877each global debug-file-directory component prepended."),
525226b5 3878 NULL,
920d2a44 3879 show_debug_file_directory,
525226b5 3880 &setlist, &showlist);
c906108c 3881}