]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/symfile.c
* ld-arm/attr-merge-6.attr: Add new test. Missed off last commit.
[thirdparty/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4c38e0a4 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
c906108c 68
9a4105ab
AC
69int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c906108c 80/* Global variables owned by this file */
c5aa993b 81int readnow_symbol_files; /* Read full symbols immediately */
c906108c 82
c906108c
SS
83/* External variables and functions referenced. */
84
a14ed312 85extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
86
87/* Functions this file defines */
88
89#if 0
a14ed312
KB
90static int simple_read_overlay_region_table (void);
91static void simple_free_overlay_region_table (void);
c906108c
SS
92#endif
93
a14ed312 94static void load_command (char *, int);
c906108c 95
d7db6da9
FN
96static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
a14ed312 98static void add_symbol_file_command (char *, int);
c906108c 99
a14ed312 100bfd *symfile_bfd_open (char *);
c906108c 101
0e931cf0
JB
102int get_section_index (struct objfile *, char *);
103
31d99776 104static struct sym_fns *find_sym_fns (bfd *);
c906108c 105
a14ed312 106static void decrement_reading_symtab (void *);
c906108c 107
a14ed312 108static void overlay_invalidate_all (void);
c906108c 109
a14ed312 110void list_overlays_command (char *, int);
c906108c 111
a14ed312 112void map_overlay_command (char *, int);
c906108c 113
a14ed312 114void unmap_overlay_command (char *, int);
c906108c 115
a14ed312 116static void overlay_auto_command (char *, int);
c906108c 117
a14ed312 118static void overlay_manual_command (char *, int);
c906108c 119
a14ed312 120static void overlay_off_command (char *, int);
c906108c 121
a14ed312 122static void overlay_load_command (char *, int);
c906108c 123
a14ed312 124static void overlay_command (char *, int);
c906108c 125
a14ed312 126static void simple_free_overlay_table (void);
c906108c 127
e17a4113
UW
128static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
129 enum bfd_endian);
c906108c 130
a14ed312 131static int simple_read_overlay_table (void);
c906108c 132
a14ed312 133static int simple_overlay_update_1 (struct obj_section *);
c906108c 134
a14ed312 135static void add_filename_language (char *ext, enum language lang);
392a587b 136
a14ed312 137static void info_ext_lang_command (char *args, int from_tty);
392a587b 138
a14ed312 139static void init_filename_language_table (void);
392a587b 140
31d99776
DJ
141static void symfile_find_segment_sections (struct objfile *objfile);
142
a14ed312 143void _initialize_symfile (void);
c906108c
SS
144
145/* List of all available sym_fns. On gdb startup, each object file reader
146 calls add_symtab_fns() to register information on each format it is
147 prepared to read. */
148
149static struct sym_fns *symtab_fns = NULL;
150
151/* Flag for whether user will be reloading symbols multiple times.
152 Defaults to ON for VxWorks, otherwise OFF. */
153
154#ifdef SYMBOL_RELOADING_DEFAULT
155int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
156#else
157int symbol_reloading = 0;
158#endif
920d2a44
AC
159static void
160show_symbol_reloading (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
163 fprintf_filtered (file, _("\
164Dynamic symbol table reloading multiple times in one run is %s.\n"),
165 value);
166}
167
b7209cb4
FF
168/* If non-zero, shared library symbols will be added automatically
169 when the inferior is created, new libraries are loaded, or when
170 attaching to the inferior. This is almost always what users will
171 want to have happen; but for very large programs, the startup time
172 will be excessive, and so if this is a problem, the user can clear
173 this flag and then add the shared library symbols as needed. Note
174 that there is a potential for confusion, since if the shared
c906108c 175 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 176 report all the functions that are actually present. */
c906108c
SS
177
178int auto_solib_add = 1;
b7209cb4
FF
179
180/* For systems that support it, a threshold size in megabytes. If
181 automatically adding a new library's symbol table to those already
182 known to the debugger would cause the total shared library symbol
183 size to exceed this threshhold, then the shlib's symbols are not
184 added. The threshold is ignored if the user explicitly asks for a
185 shlib to be added, such as when using the "sharedlibrary"
186 command. */
187
188int auto_solib_limit;
c906108c 189\f
c5aa993b 190
0fe19209
DC
191/* This compares two partial symbols by names, using strcmp_iw_ordered
192 for the comparison. */
c906108c
SS
193
194static int
0cd64fe2 195compare_psymbols (const void *s1p, const void *s2p)
c906108c 196{
0fe19209
DC
197 struct partial_symbol *const *s1 = s1p;
198 struct partial_symbol *const *s2 = s2p;
199
4725b721
PH
200 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
201 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
202}
203
204void
fba45db2 205sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
206{
207 /* Sort the global list; don't sort the static list */
208
c5aa993b
JM
209 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
210 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
211 compare_psymbols);
212}
213
c906108c
SS
214/* Make a null terminated copy of the string at PTR with SIZE characters in
215 the obstack pointed to by OBSTACKP . Returns the address of the copy.
216 Note that the string at PTR does not have to be null terminated, I.E. it
217 may be part of a larger string and we are only saving a substring. */
218
219char *
63ca651f 220obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 221{
52f0bd74 222 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
223 /* Open-coded memcpy--saves function call time. These strings are usually
224 short. FIXME: Is this really still true with a compiler that can
225 inline memcpy? */
226 {
aa1ee363
AC
227 const char *p1 = ptr;
228 char *p2 = p;
63ca651f 229 const char *end = ptr + size;
c906108c
SS
230 while (p1 != end)
231 *p2++ = *p1++;
232 }
233 p[size] = 0;
234 return p;
235}
236
237/* Concatenate strings S1, S2 and S3; return the new string. Space is found
238 in the obstack pointed to by OBSTACKP. */
239
240char *
fba45db2
KB
241obconcat (struct obstack *obstackp, const char *s1, const char *s2,
242 const char *s3)
c906108c 243{
52f0bd74
AC
244 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
245 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
246 strcpy (val, s1);
247 strcat (val, s2);
248 strcat (val, s3);
249 return val;
250}
251
252/* True if we are nested inside psymtab_to_symtab. */
253
254int currently_reading_symtab = 0;
255
256static void
fba45db2 257decrement_reading_symtab (void *dummy)
c906108c
SS
258{
259 currently_reading_symtab--;
260}
261
262/* Get the symbol table that corresponds to a partial_symtab.
263 This is fast after the first time you do it. In fact, there
264 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
265 case inline. */
266
267struct symtab *
aa1ee363 268psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
269{
270 /* If it's been looked up before, return it. */
271 if (pst->symtab)
272 return pst->symtab;
273
274 /* If it has not yet been read in, read it. */
275 if (!pst->readin)
c5aa993b 276 {
c906108c
SS
277 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
278 currently_reading_symtab++;
279 (*pst->read_symtab) (pst);
280 do_cleanups (back_to);
281 }
282
283 return pst->symtab;
284}
285
5417f6dc
RM
286/* Remember the lowest-addressed loadable section we've seen.
287 This function is called via bfd_map_over_sections.
c906108c
SS
288
289 In case of equal vmas, the section with the largest size becomes the
290 lowest-addressed loadable section.
291
292 If the vmas and sizes are equal, the last section is considered the
293 lowest-addressed loadable section. */
294
295void
4efb68b1 296find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 297{
c5aa993b 298 asection **lowest = (asection **) obj;
c906108c
SS
299
300 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
301 return;
302 if (!*lowest)
303 *lowest = sect; /* First loadable section */
304 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
305 *lowest = sect; /* A lower loadable section */
306 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
307 && (bfd_section_size (abfd, (*lowest))
308 <= bfd_section_size (abfd, sect)))
309 *lowest = sect;
310}
311
a39a16c4
MM
312/* Create a new section_addr_info, with room for NUM_SECTIONS. */
313
314struct section_addr_info *
315alloc_section_addr_info (size_t num_sections)
316{
317 struct section_addr_info *sap;
318 size_t size;
319
320 size = (sizeof (struct section_addr_info)
321 + sizeof (struct other_sections) * (num_sections - 1));
322 sap = (struct section_addr_info *) xmalloc (size);
323 memset (sap, 0, size);
324 sap->num_sections = num_sections;
325
326 return sap;
327}
62557bbc
KB
328
329/* Build (allocate and populate) a section_addr_info struct from
330 an existing section table. */
331
332extern struct section_addr_info *
0542c86d
PA
333build_section_addr_info_from_section_table (const struct target_section *start,
334 const struct target_section *end)
62557bbc
KB
335{
336 struct section_addr_info *sap;
0542c86d 337 const struct target_section *stp;
62557bbc
KB
338 int oidx;
339
a39a16c4 340 sap = alloc_section_addr_info (end - start);
62557bbc
KB
341
342 for (stp = start, oidx = 0; stp != end; stp++)
343 {
5417f6dc 344 if (bfd_get_section_flags (stp->bfd,
fbd35540 345 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 346 && oidx < end - start)
62557bbc
KB
347 {
348 sap->other[oidx].addr = stp->addr;
5417f6dc 349 sap->other[oidx].name
fbd35540 350 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
351 sap->other[oidx].sectindex = stp->the_bfd_section->index;
352 oidx++;
353 }
354 }
355
356 return sap;
357}
358
089b4803
TG
359/* Create a section_addr_info from section offsets in OBJFILE. */
360
567995e1 361struct section_addr_info *
089b4803
TG
362build_section_addr_info_from_objfile (const struct objfile *objfile)
363{
364 struct section_addr_info *sap;
365 int i;
366 struct bfd_section *sec;
567995e1
JK
367 int addr_bit = gdbarch_addr_bit (objfile->gdbarch);
368 CORE_ADDR mask = CORE_ADDR_MAX;
369
370 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
371 mask = ((CORE_ADDR) 1 << addr_bit) - 1;
089b4803
TG
372
373 sap = alloc_section_addr_info (objfile->num_sections);
012836ea
JK
374 for (i = 0, sec = objfile->obfd->sections; sec != NULL; sec = sec->next)
375 if (bfd_get_section_flags (objfile->obfd, sec) & (SEC_ALLOC | SEC_LOAD))
376 {
377 sap->other[i].addr = (bfd_get_section_vma (objfile->obfd, sec)
378 + objfile->section_offsets->offsets[i]) & mask;
379 sap->other[i].name = xstrdup (bfd_get_section_name (objfile->obfd,
380 sec));
381 sap->other[i].sectindex = sec->index;
382 i++;
383 }
089b4803
TG
384 return sap;
385}
386
62557bbc
KB
387
388/* Free all memory allocated by build_section_addr_info_from_section_table. */
389
390extern void
391free_section_addr_info (struct section_addr_info *sap)
392{
393 int idx;
394
a39a16c4 395 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 396 if (sap->other[idx].name)
b8c9b27d
KB
397 xfree (sap->other[idx].name);
398 xfree (sap);
62557bbc
KB
399}
400
401
e8289572
JB
402/* Initialize OBJFILE's sect_index_* members. */
403static void
404init_objfile_sect_indices (struct objfile *objfile)
c906108c 405{
e8289572 406 asection *sect;
c906108c 407 int i;
5417f6dc 408
b8fbeb18 409 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 410 if (sect)
b8fbeb18
EZ
411 objfile->sect_index_text = sect->index;
412
413 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 414 if (sect)
b8fbeb18
EZ
415 objfile->sect_index_data = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 418 if (sect)
b8fbeb18
EZ
419 objfile->sect_index_bss = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 422 if (sect)
b8fbeb18
EZ
423 objfile->sect_index_rodata = sect->index;
424
bbcd32ad
FF
425 /* This is where things get really weird... We MUST have valid
426 indices for the various sect_index_* members or gdb will abort.
427 So if for example, there is no ".text" section, we have to
31d99776
DJ
428 accomodate that. First, check for a file with the standard
429 one or two segments. */
430
431 symfile_find_segment_sections (objfile);
432
433 /* Except when explicitly adding symbol files at some address,
434 section_offsets contains nothing but zeros, so it doesn't matter
435 which slot in section_offsets the individual sect_index_* members
436 index into. So if they are all zero, it is safe to just point
437 all the currently uninitialized indices to the first slot. But
438 beware: if this is the main executable, it may be relocated
439 later, e.g. by the remote qOffsets packet, and then this will
440 be wrong! That's why we try segments first. */
bbcd32ad
FF
441
442 for (i = 0; i < objfile->num_sections; i++)
443 {
444 if (ANOFFSET (objfile->section_offsets, i) != 0)
445 {
446 break;
447 }
448 }
449 if (i == objfile->num_sections)
450 {
451 if (objfile->sect_index_text == -1)
452 objfile->sect_index_text = 0;
453 if (objfile->sect_index_data == -1)
454 objfile->sect_index_data = 0;
455 if (objfile->sect_index_bss == -1)
456 objfile->sect_index_bss = 0;
457 if (objfile->sect_index_rodata == -1)
458 objfile->sect_index_rodata = 0;
459 }
b8fbeb18 460}
c906108c 461
c1bd25fd
DJ
462/* The arguments to place_section. */
463
464struct place_section_arg
465{
466 struct section_offsets *offsets;
467 CORE_ADDR lowest;
468};
469
470/* Find a unique offset to use for loadable section SECT if
471 the user did not provide an offset. */
472
2c0b251b 473static void
c1bd25fd
DJ
474place_section (bfd *abfd, asection *sect, void *obj)
475{
476 struct place_section_arg *arg = obj;
477 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
478 int done;
3bd72c6f 479 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 480
2711e456
DJ
481 /* We are only interested in allocated sections. */
482 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
483 return;
484
485 /* If the user specified an offset, honor it. */
486 if (offsets[sect->index] != 0)
487 return;
488
489 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
490 start_addr = (arg->lowest + align - 1) & -align;
491
c1bd25fd
DJ
492 do {
493 asection *cur_sec;
c1bd25fd 494
c1bd25fd
DJ
495 done = 1;
496
497 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
498 {
499 int indx = cur_sec->index;
500 CORE_ADDR cur_offset;
501
502 /* We don't need to compare against ourself. */
503 if (cur_sec == sect)
504 continue;
505
2711e456
DJ
506 /* We can only conflict with allocated sections. */
507 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
508 continue;
509
510 /* If the section offset is 0, either the section has not been placed
511 yet, or it was the lowest section placed (in which case LOWEST
512 will be past its end). */
513 if (offsets[indx] == 0)
514 continue;
515
516 /* If this section would overlap us, then we must move up. */
517 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
518 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
519 {
520 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
521 start_addr = (start_addr + align - 1) & -align;
522 done = 0;
3bd72c6f 523 break;
c1bd25fd
DJ
524 }
525
526 /* Otherwise, we appear to be OK. So far. */
527 }
528 }
529 while (!done);
530
531 offsets[sect->index] = start_addr;
532 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 533}
e8289572 534
75242ef4
JK
535/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
536 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
537 entries. */
e8289572
JB
538
539void
75242ef4
JK
540relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
541 int num_sections,
542 struct section_addr_info *addrs)
e8289572
JB
543{
544 int i;
545
75242ef4 546 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 547
75242ef4 548 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 549 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 550 {
75242ef4 551 struct other_sections *osp;
e8289572 552
75242ef4 553 osp = &addrs->other[i];
e8289572
JB
554 if (osp->addr == 0)
555 continue;
556
557 /* Record all sections in offsets */
558 /* The section_offsets in the objfile are here filled in using
559 the BFD index. */
75242ef4
JK
560 section_offsets->offsets[osp->sectindex] = osp->addr;
561 }
562}
563
564/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
565 also SECTINDEXes there. */
566
567void
568addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
569{
570 asection *lower_sect;
571 asection *sect;
572 CORE_ADDR lower_offset;
573 int i;
574
575 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
576 continguous sections. */
577 lower_sect = NULL;
578 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
579 if (lower_sect == NULL)
580 {
581 warning (_("no loadable sections found in added symbol-file %s"),
582 bfd_get_filename (abfd));
583 lower_offset = 0;
e8289572 584 }
75242ef4
JK
585 else
586 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
587
588 /* Calculate offsets for the loadable sections.
589 FIXME! Sections must be in order of increasing loadable section
590 so that contiguous sections can use the lower-offset!!!
591
592 Adjust offsets if the segments are not contiguous.
593 If the section is contiguous, its offset should be set to
594 the offset of the highest loadable section lower than it
595 (the loadable section directly below it in memory).
596 this_offset = lower_offset = lower_addr - lower_orig_addr */
597
598 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
599 {
600 if (addrs->other[i].addr != 0)
601 {
602 sect = bfd_get_section_by_name (abfd, addrs->other[i].name);
603 if (sect)
604 {
605 addrs->other[i].addr -= bfd_section_vma (abfd, sect);
606 lower_offset = addrs->other[i].addr;
607 /* This is the index used by BFD. */
608 addrs->other[i].sectindex = sect->index;
609 }
610 else
611 {
612 warning (_("section %s not found in %s"), addrs->other[i].name,
613 bfd_get_filename (abfd));
614 addrs->other[i].addr = 0;
615 }
616 }
617 else
618 addrs->other[i].addr = lower_offset;
619 }
620}
621
622/* Parse the user's idea of an offset for dynamic linking, into our idea
623 of how to represent it for fast symbol reading. This is the default
624 version of the sym_fns.sym_offsets function for symbol readers that
625 don't need to do anything special. It allocates a section_offsets table
626 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
627
628void
629default_symfile_offsets (struct objfile *objfile,
630 struct section_addr_info *addrs)
631{
632 objfile->num_sections = bfd_count_sections (objfile->obfd);
633 objfile->section_offsets = (struct section_offsets *)
634 obstack_alloc (&objfile->objfile_obstack,
635 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
636 relative_addr_info_to_section_offsets (objfile->section_offsets,
637 objfile->num_sections, addrs);
e8289572 638
c1bd25fd
DJ
639 /* For relocatable files, all loadable sections will start at zero.
640 The zero is meaningless, so try to pick arbitrary addresses such
641 that no loadable sections overlap. This algorithm is quadratic,
642 but the number of sections in a single object file is generally
643 small. */
644 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
645 {
646 struct place_section_arg arg;
2711e456
DJ
647 bfd *abfd = objfile->obfd;
648 asection *cur_sec;
649 CORE_ADDR lowest = 0;
650
651 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
652 /* We do not expect this to happen; just skip this step if the
653 relocatable file has a section with an assigned VMA. */
654 if (bfd_section_vma (abfd, cur_sec) != 0)
655 break;
656
657 if (cur_sec == NULL)
658 {
659 CORE_ADDR *offsets = objfile->section_offsets->offsets;
660
661 /* Pick non-overlapping offsets for sections the user did not
662 place explicitly. */
663 arg.offsets = objfile->section_offsets;
664 arg.lowest = 0;
665 bfd_map_over_sections (objfile->obfd, place_section, &arg);
666
667 /* Correctly filling in the section offsets is not quite
668 enough. Relocatable files have two properties that
669 (most) shared objects do not:
670
671 - Their debug information will contain relocations. Some
672 shared libraries do also, but many do not, so this can not
673 be assumed.
674
675 - If there are multiple code sections they will be loaded
676 at different relative addresses in memory than they are
677 in the objfile, since all sections in the file will start
678 at address zero.
679
680 Because GDB has very limited ability to map from an
681 address in debug info to the correct code section,
682 it relies on adding SECT_OFF_TEXT to things which might be
683 code. If we clear all the section offsets, and set the
684 section VMAs instead, then symfile_relocate_debug_section
685 will return meaningful debug information pointing at the
686 correct sections.
687
688 GDB has too many different data structures for section
689 addresses - a bfd, objfile, and so_list all have section
690 tables, as does exec_ops. Some of these could probably
691 be eliminated. */
692
693 for (cur_sec = abfd->sections; cur_sec != NULL;
694 cur_sec = cur_sec->next)
695 {
696 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
697 continue;
698
699 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
700 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
701 offsets[cur_sec->index]);
2711e456
DJ
702 offsets[cur_sec->index] = 0;
703 }
704 }
c1bd25fd
DJ
705 }
706
e8289572
JB
707 /* Remember the bfd indexes for the .text, .data, .bss and
708 .rodata sections. */
709 init_objfile_sect_indices (objfile);
710}
711
712
31d99776
DJ
713/* Divide the file into segments, which are individual relocatable units.
714 This is the default version of the sym_fns.sym_segments function for
715 symbol readers that do not have an explicit representation of segments.
716 It assumes that object files do not have segments, and fully linked
717 files have a single segment. */
718
719struct symfile_segment_data *
720default_symfile_segments (bfd *abfd)
721{
722 int num_sections, i;
723 asection *sect;
724 struct symfile_segment_data *data;
725 CORE_ADDR low, high;
726
727 /* Relocatable files contain enough information to position each
728 loadable section independently; they should not be relocated
729 in segments. */
730 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
731 return NULL;
732
733 /* Make sure there is at least one loadable section in the file. */
734 for (sect = abfd->sections; sect != NULL; sect = sect->next)
735 {
736 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
737 continue;
738
739 break;
740 }
741 if (sect == NULL)
742 return NULL;
743
744 low = bfd_get_section_vma (abfd, sect);
745 high = low + bfd_get_section_size (sect);
746
747 data = XZALLOC (struct symfile_segment_data);
748 data->num_segments = 1;
749 data->segment_bases = XCALLOC (1, CORE_ADDR);
750 data->segment_sizes = XCALLOC (1, CORE_ADDR);
751
752 num_sections = bfd_count_sections (abfd);
753 data->segment_info = XCALLOC (num_sections, int);
754
755 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
756 {
757 CORE_ADDR vma;
758
759 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
760 continue;
761
762 vma = bfd_get_section_vma (abfd, sect);
763 if (vma < low)
764 low = vma;
765 if (vma + bfd_get_section_size (sect) > high)
766 high = vma + bfd_get_section_size (sect);
767
768 data->segment_info[i] = 1;
769 }
770
771 data->segment_bases[0] = low;
772 data->segment_sizes[0] = high - low;
773
774 return data;
775}
776
c906108c
SS
777/* Process a symbol file, as either the main file or as a dynamically
778 loaded file.
779
96baa820
JM
780 OBJFILE is where the symbols are to be read from.
781
7e8580c1
JB
782 ADDRS is the list of section load addresses. If the user has given
783 an 'add-symbol-file' command, then this is the list of offsets and
784 addresses he or she provided as arguments to the command; or, if
785 we're handling a shared library, these are the actual addresses the
786 sections are loaded at, according to the inferior's dynamic linker
787 (as gleaned by GDB's shared library code). We convert each address
788 into an offset from the section VMA's as it appears in the object
789 file, and then call the file's sym_offsets function to convert this
790 into a format-specific offset table --- a `struct section_offsets'.
791 If ADDRS is non-zero, OFFSETS must be zero.
792
793 OFFSETS is a table of section offsets already in the right
794 format-specific representation. NUM_OFFSETS is the number of
795 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
796 assume this is the proper table the call to sym_offsets described
797 above would produce. Instead of calling sym_offsets, we just dump
798 it right into objfile->section_offsets. (When we're re-reading
799 symbols from an objfile, we don't have the original load address
800 list any more; all we have is the section offset table.) If
801 OFFSETS is non-zero, ADDRS must be zero.
96baa820 802
7eedccfa
PP
803 ADD_FLAGS encodes verbosity level, whether this is main symbol or
804 an extra symbol file such as dynamically loaded code, and wether
805 breakpoint reset should be deferred. */
c906108c
SS
806
807void
7e8580c1
JB
808syms_from_objfile (struct objfile *objfile,
809 struct section_addr_info *addrs,
810 struct section_offsets *offsets,
811 int num_offsets,
7eedccfa 812 int add_flags)
c906108c 813{
a39a16c4 814 struct section_addr_info *local_addr = NULL;
c906108c 815 struct cleanup *old_chain;
7eedccfa 816 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 817
7e8580c1 818 gdb_assert (! (addrs && offsets));
2acceee2 819
c906108c 820 init_entry_point_info (objfile);
31d99776 821 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 822
75245b24
MS
823 if (objfile->sf == NULL)
824 return; /* No symbols. */
825
c906108c
SS
826 /* Make sure that partially constructed symbol tables will be cleaned up
827 if an error occurs during symbol reading. */
74b7792f 828 old_chain = make_cleanup_free_objfile (objfile);
c906108c 829
a39a16c4
MM
830 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
831 list. We now establish the convention that an addr of zero means
832 no load address was specified. */
833 if (! addrs && ! offsets)
834 {
5417f6dc 835 local_addr
a39a16c4
MM
836 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
837 make_cleanup (xfree, local_addr);
838 addrs = local_addr;
839 }
840
841 /* Now either addrs or offsets is non-zero. */
842
c5aa993b 843 if (mainline)
c906108c
SS
844 {
845 /* We will modify the main symbol table, make sure that all its users
c5aa993b 846 will be cleaned up if an error occurs during symbol reading. */
74b7792f 847 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
848
849 /* Since no error yet, throw away the old symbol table. */
850
851 if (symfile_objfile != NULL)
852 {
853 free_objfile (symfile_objfile);
adb7f338 854 gdb_assert (symfile_objfile == NULL);
c906108c
SS
855 }
856
857 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
858 If the user wants to get rid of them, they should do "symbol-file"
859 without arguments first. Not sure this is the best behavior
860 (PR 2207). */
c906108c 861
c5aa993b 862 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
863 }
864
865 /* Convert addr into an offset rather than an absolute address.
866 We find the lowest address of a loaded segment in the objfile,
53a5351d 867 and assume that <addr> is where that got loaded.
c906108c 868
53a5351d
JM
869 We no longer warn if the lowest section is not a text segment (as
870 happens for the PA64 port. */
0d15807d 871 if (addrs && addrs->other[0].name)
75242ef4 872 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
873
874 /* Initialize symbol reading routines for this objfile, allow complaints to
875 appear for this new file, and record how verbose to be, then do the
876 initial symbol reading for this file. */
877
c5aa993b 878 (*objfile->sf->sym_init) (objfile);
7eedccfa 879 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 880
7e8580c1
JB
881 if (addrs)
882 (*objfile->sf->sym_offsets) (objfile, addrs);
883 else
884 {
885 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
886
887 /* Just copy in the offset table directly as given to us. */
888 objfile->num_sections = num_offsets;
889 objfile->section_offsets
890 = ((struct section_offsets *)
8b92e4d5 891 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
892 memcpy (objfile->section_offsets, offsets, size);
893
894 init_objfile_sect_indices (objfile);
895 }
c906108c 896
f4352531 897 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 898
c906108c
SS
899 /* Discard cleanups as symbol reading was successful. */
900
901 discard_cleanups (old_chain);
f7545552 902 xfree (local_addr);
c906108c
SS
903}
904
905/* Perform required actions after either reading in the initial
906 symbols for a new objfile, or mapping in the symbols from a reusable
907 objfile. */
c5aa993b 908
c906108c 909void
7eedccfa 910new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c
SS
911{
912
913 /* If this is the main symbol file we have to clean up all users of the
914 old main symbol file. Otherwise it is sufficient to fixup all the
915 breakpoints that may have been redefined by this symbol file. */
7eedccfa 916 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
917 {
918 /* OK, make it the "real" symbol file. */
919 symfile_objfile = objfile;
920
921 clear_symtab_users ();
922 }
7eedccfa 923 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 924 {
69de3c6a 925 breakpoint_re_set ();
c906108c
SS
926 }
927
928 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 929 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
930}
931
932/* Process a symbol file, as either the main file or as a dynamically
933 loaded file.
934
5417f6dc
RM
935 ABFD is a BFD already open on the file, as from symfile_bfd_open.
936 This BFD will be closed on error, and is always consumed by this function.
7904e09f 937
7eedccfa
PP
938 ADD_FLAGS encodes verbosity, whether this is main symbol file or
939 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
940
941 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
942 syms_from_objfile, above.
943 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 944
c906108c
SS
945 Upon success, returns a pointer to the objfile that was added.
946 Upon failure, jumps back to command level (never returns). */
7eedccfa 947
7904e09f 948static struct objfile *
7eedccfa
PP
949symbol_file_add_with_addrs_or_offsets (bfd *abfd,
950 int add_flags,
7904e09f
JB
951 struct section_addr_info *addrs,
952 struct section_offsets *offsets,
953 int num_offsets,
7eedccfa 954 int flags)
c906108c
SS
955{
956 struct objfile *objfile;
957 struct partial_symtab *psymtab;
a39a16c4 958 struct cleanup *my_cleanups;
5417f6dc 959 const char *name = bfd_get_filename (abfd);
7eedccfa 960 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 961
5417f6dc 962 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 963
5417f6dc
RM
964 /* Give user a chance to burp if we'd be
965 interactively wiping out any existing symbols. */
c906108c
SS
966
967 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 968 && (add_flags & SYMFILE_MAINLINE)
c906108c 969 && from_tty
9e2f0ad4 970 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 971 error (_("Not confirmed."));
c906108c 972
2df3850c 973 objfile = allocate_objfile (abfd, flags);
5417f6dc 974 discard_cleanups (my_cleanups);
c906108c 975
78a4a9b9
AC
976 /* We either created a new mapped symbol table, mapped an existing
977 symbol table file which has not had initial symbol reading
978 performed, or need to read an unmapped symbol table. */
979 if (from_tty || info_verbose)
c906108c 980 {
769d7dc4
AC
981 if (deprecated_pre_add_symbol_hook)
982 deprecated_pre_add_symbol_hook (name);
78a4a9b9 983 else
c906108c 984 {
55333a84
DE
985 printf_unfiltered (_("Reading symbols from %s..."), name);
986 wrap_here ("");
987 gdb_flush (gdb_stdout);
c906108c 988 }
c906108c 989 }
78a4a9b9 990 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 991 add_flags);
c906108c
SS
992
993 /* We now have at least a partial symbol table. Check to see if the
994 user requested that all symbols be read on initial access via either
995 the gdb startup command line or on a per symbol file basis. Expand
996 all partial symbol tables for this objfile if so. */
997
2acceee2 998 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 999 {
55333a84 1000 if (from_tty || info_verbose)
c906108c 1001 {
a3f17187 1002 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1003 wrap_here ("");
1004 gdb_flush (gdb_stdout);
1005 }
1006
c5aa993b 1007 for (psymtab = objfile->psymtabs;
c906108c 1008 psymtab != NULL;
c5aa993b 1009 psymtab = psymtab->next)
c906108c
SS
1010 {
1011 psymtab_to_symtab (psymtab);
1012 }
1013 }
1014
55333a84 1015 if ((from_tty || info_verbose)
e361b228 1016 && !objfile_has_symbols (objfile))
cb3c37b2
JB
1017 {
1018 wrap_here ("");
55333a84 1019 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1020 wrap_here ("");
1021 }
1022
c906108c
SS
1023 if (from_tty || info_verbose)
1024 {
769d7dc4
AC
1025 if (deprecated_post_add_symbol_hook)
1026 deprecated_post_add_symbol_hook ();
c906108c 1027 else
55333a84 1028 printf_unfiltered (_("done.\n"));
c906108c
SS
1029 }
1030
481d0f41
JB
1031 /* We print some messages regardless of whether 'from_tty ||
1032 info_verbose' is true, so make sure they go out at the right
1033 time. */
1034 gdb_flush (gdb_stdout);
1035
a39a16c4
MM
1036 do_cleanups (my_cleanups);
1037
109f874e 1038 if (objfile->sf == NULL)
8caee43b
PP
1039 {
1040 observer_notify_new_objfile (objfile);
1041 return objfile; /* No symbols. */
1042 }
109f874e 1043
7eedccfa 1044 new_symfile_objfile (objfile, add_flags);
c906108c 1045
06d3b283 1046 observer_notify_new_objfile (objfile);
c906108c 1047
ce7d4522 1048 bfd_cache_close_all ();
c906108c
SS
1049 return (objfile);
1050}
1051
9cce227f
TG
1052/* Add BFD as a separate debug file for OBJFILE. */
1053
1054void
1055symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1056{
15d123c9 1057 struct objfile *new_objfile;
089b4803
TG
1058 struct section_addr_info *sap;
1059 struct cleanup *my_cleanup;
1060
1061 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1062 because sections of BFD may not match sections of OBJFILE and because
1063 vma may have been modified by tools such as prelink. */
1064 sap = build_section_addr_info_from_objfile (objfile);
1065 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1066
15d123c9 1067 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1068 (bfd, symfile_flags,
089b4803 1069 sap, NULL, 0,
9cce227f
TG
1070 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1071 | OBJF_USERLOADED));
089b4803
TG
1072
1073 do_cleanups (my_cleanup);
9cce227f 1074
15d123c9 1075 add_separate_debug_objfile (new_objfile, objfile);
9cce227f 1076}
7904e09f 1077
eb4556d7
JB
1078/* Process the symbol file ABFD, as either the main file or as a
1079 dynamically loaded file.
1080
1081 See symbol_file_add_with_addrs_or_offsets's comments for
1082 details. */
1083struct objfile *
7eedccfa 1084symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1085 struct section_addr_info *addrs,
7eedccfa 1086 int flags)
eb4556d7 1087{
7eedccfa
PP
1088 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1089 flags);
eb4556d7
JB
1090}
1091
1092
7904e09f
JB
1093/* Process a symbol file, as either the main file or as a dynamically
1094 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1095 for details. */
1096struct objfile *
7eedccfa
PP
1097symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1098 int flags)
7904e09f 1099{
7eedccfa
PP
1100 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1101 flags);
7904e09f
JB
1102}
1103
1104
d7db6da9
FN
1105/* Call symbol_file_add() with default values and update whatever is
1106 affected by the loading of a new main().
1107 Used when the file is supplied in the gdb command line
1108 and by some targets with special loading requirements.
1109 The auxiliary function, symbol_file_add_main_1(), has the flags
1110 argument for the switches that can only be specified in the symbol_file
1111 command itself. */
5417f6dc 1112
1adeb98a
FN
1113void
1114symbol_file_add_main (char *args, int from_tty)
1115{
d7db6da9
FN
1116 symbol_file_add_main_1 (args, from_tty, 0);
1117}
1118
1119static void
1120symbol_file_add_main_1 (char *args, int from_tty, int flags)
1121{
7eedccfa
PP
1122 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1123 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1124
d7db6da9
FN
1125 /* Getting new symbols may change our opinion about
1126 what is frameless. */
1127 reinit_frame_cache ();
1128
1129 set_initial_language ();
1adeb98a
FN
1130}
1131
1132void
1133symbol_file_clear (int from_tty)
1134{
1135 if ((have_full_symbols () || have_partial_symbols ())
1136 && from_tty
0430b0d6
AS
1137 && (symfile_objfile
1138 ? !query (_("Discard symbol table from `%s'? "),
1139 symfile_objfile->name)
1140 : !query (_("Discard symbol table? "))))
8a3fe4f8 1141 error (_("Not confirmed."));
1adeb98a 1142
d10c338d 1143 free_all_objfiles ();
1adeb98a 1144
d10c338d
DE
1145 /* solib descriptors may have handles to objfiles. Since their
1146 storage has just been released, we'd better wipe the solib
1147 descriptors as well. */
1148 no_shared_libraries (NULL, from_tty);
1149
adb7f338 1150 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1151 if (from_tty)
1152 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1153}
1154
5b5d99cf
JB
1155static char *
1156get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1157{
1158 asection *sect;
1159 bfd_size_type debuglink_size;
1160 unsigned long crc32;
1161 char *contents;
1162 int crc_offset;
1163 unsigned char *p;
5417f6dc 1164
5b5d99cf
JB
1165 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1166
1167 if (sect == NULL)
1168 return NULL;
1169
1170 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1171
5b5d99cf
JB
1172 contents = xmalloc (debuglink_size);
1173 bfd_get_section_contents (objfile->obfd, sect, contents,
1174 (file_ptr)0, (bfd_size_type)debuglink_size);
1175
1176 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1177 crc_offset = strlen (contents) + 1;
1178 crc_offset = (crc_offset + 3) & ~3;
1179
1180 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1181
5b5d99cf
JB
1182 *crc32_out = crc32;
1183 return contents;
1184}
1185
1186static int
287ccc17 1187separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1188 struct objfile *parent_objfile)
5b5d99cf
JB
1189{
1190 unsigned long file_crc = 0;
f1838a98 1191 bfd *abfd;
777ea8f1 1192 gdb_byte buffer[8*1024];
5b5d99cf 1193 int count;
32a0e547
JK
1194 struct stat parent_stat, abfd_stat;
1195
1196 /* Find a separate debug info file as if symbols would be present in
1197 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1198 section can contain just the basename of PARENT_OBJFILE without any
1199 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1200 the separate debug infos with the same basename can exist. */
1201
1202 if (strcmp (name, parent_objfile->name) == 0)
1203 return 0;
5b5d99cf 1204
874f5765 1205 abfd = bfd_open_maybe_remote (name);
f1838a98
UW
1206
1207 if (!abfd)
5b5d99cf
JB
1208 return 0;
1209
32a0e547
JK
1210 /* Verify symlinks were not the cause of strcmp name difference above.
1211
1212 Some operating systems, e.g. Windows, do not provide a meaningful
1213 st_ino; they always set it to zero. (Windows does provide a
1214 meaningful st_dev.) Do not indicate a duplicate library in that
1215 case. While there is no guarantee that a system that provides
1216 meaningful inode numbers will never set st_ino to zero, this is
1217 merely an optimization, so we do not need to worry about false
1218 negatives. */
1219
1220 if (bfd_stat (abfd, &abfd_stat) == 0
1221 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1222 && abfd_stat.st_dev == parent_stat.st_dev
1223 && abfd_stat.st_ino == parent_stat.st_ino
1224 && abfd_stat.st_ino != 0)
1225 {
1226 bfd_close (abfd);
1227 return 0;
1228 }
1229
f1838a98 1230 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1231 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1232
f1838a98 1233 bfd_close (abfd);
5b5d99cf 1234
287ccc17
JK
1235 if (crc != file_crc)
1236 {
1237 warning (_("the debug information found in \"%s\""
1238 " does not match \"%s\" (CRC mismatch).\n"),
32a0e547 1239 name, parent_objfile->name);
287ccc17
JK
1240 return 0;
1241 }
1242
1243 return 1;
5b5d99cf
JB
1244}
1245
aa28a74e 1246char *debug_file_directory = NULL;
920d2a44
AC
1247static void
1248show_debug_file_directory (struct ui_file *file, int from_tty,
1249 struct cmd_list_element *c, const char *value)
1250{
1251 fprintf_filtered (file, _("\
1252The directory where separate debug symbols are searched for is \"%s\".\n"),
1253 value);
1254}
5b5d99cf
JB
1255
1256#if ! defined (DEBUG_SUBDIRECTORY)
1257#define DEBUG_SUBDIRECTORY ".debug"
1258#endif
1259
9cce227f
TG
1260char *
1261find_separate_debug_file_by_debuglink (struct objfile *objfile)
1262{
1263 asection *sect;
1264 char *basename, *name_copy, *debugdir;
1265 char *dir = NULL;
1266 char *debugfile = NULL;
1267 char *canon_name = NULL;
1268 bfd_size_type debuglink_size;
1269 unsigned long crc32;
1270 int i;
5b5d99cf
JB
1271
1272 basename = get_debug_link_info (objfile, &crc32);
1273
1274 if (basename == NULL)
287ccc17
JK
1275 /* There's no separate debug info, hence there's no way we could
1276 load it => no warning. */
25522fae 1277 goto cleanup_return_debugfile;
5417f6dc 1278
5b5d99cf
JB
1279 dir = xstrdup (objfile->name);
1280
fe36c4f4
JB
1281 /* Strip off the final filename part, leaving the directory name,
1282 followed by a slash. Objfile names should always be absolute and
1283 tilde-expanded, so there should always be a slash in there
1284 somewhere. */
5b5d99cf
JB
1285 for (i = strlen(dir) - 1; i >= 0; i--)
1286 {
1287 if (IS_DIR_SEPARATOR (dir[i]))
1288 break;
1289 }
fe36c4f4 1290 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1291 dir[i+1] = '\0';
5417f6dc 1292
1ffa32ee
JK
1293 /* Set I to max (strlen (canon_name), strlen (dir)). */
1294 canon_name = lrealpath (dir);
1295 i = strlen (dir);
1296 if (canon_name && strlen (canon_name) > i)
1297 i = strlen (canon_name);
1298
25522fae
JK
1299 debugfile = xmalloc (strlen (debug_file_directory) + 1
1300 + i
1301 + strlen (DEBUG_SUBDIRECTORY)
1302 + strlen ("/")
1303 + strlen (basename)
1304 + 1);
5b5d99cf
JB
1305
1306 /* First try in the same directory as the original file. */
1307 strcpy (debugfile, dir);
1308 strcat (debugfile, basename);
1309
32a0e547 1310 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1311 goto cleanup_return_debugfile;
5417f6dc 1312
5b5d99cf
JB
1313 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1314 strcpy (debugfile, dir);
1315 strcat (debugfile, DEBUG_SUBDIRECTORY);
1316 strcat (debugfile, "/");
1317 strcat (debugfile, basename);
1318
32a0e547 1319 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1320 goto cleanup_return_debugfile;
5417f6dc 1321
24ddea62
JK
1322 /* Then try in the global debugfile directories.
1323
1324 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1325 cause "/..." lookups. */
5417f6dc 1326
24ddea62
JK
1327 debugdir = debug_file_directory;
1328 do
aa28a74e 1329 {
24ddea62
JK
1330 char *debugdir_end;
1331
1332 while (*debugdir == DIRNAME_SEPARATOR)
1333 debugdir++;
1334
1335 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1336 if (debugdir_end == NULL)
1337 debugdir_end = &debugdir[strlen (debugdir)];
1338
1339 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1340 debugfile[debugdir_end - debugdir] = 0;
aa28a74e 1341 strcat (debugfile, "/");
24ddea62 1342 strcat (debugfile, dir);
aa28a74e
DJ
1343 strcat (debugfile, basename);
1344
32a0e547 1345 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1346 goto cleanup_return_debugfile;
24ddea62
JK
1347
1348 /* If the file is in the sysroot, try using its base path in the
1349 global debugfile directory. */
1350 if (canon_name
1351 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1352 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1353 {
1354 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1355 debugfile[debugdir_end - debugdir] = 0;
1356 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1357 strcat (debugfile, "/");
1358 strcat (debugfile, basename);
1359
32a0e547 1360 if (separate_debug_file_exists (debugfile, crc32, objfile))
24ddea62
JK
1361 goto cleanup_return_debugfile;
1362 }
1363
1364 debugdir = debugdir_end;
aa28a74e 1365 }
24ddea62 1366 while (*debugdir != 0);
aa28a74e 1367
25522fae
JK
1368 xfree (debugfile);
1369 debugfile = NULL;
aa28a74e 1370
25522fae
JK
1371cleanup_return_debugfile:
1372 xfree (canon_name);
5b5d99cf
JB
1373 xfree (basename);
1374 xfree (dir);
25522fae 1375 return debugfile;
5b5d99cf
JB
1376}
1377
1378
c906108c
SS
1379/* This is the symbol-file command. Read the file, analyze its
1380 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1381 the command is rather bizarre:
1382
1383 1. The function buildargv implements various quoting conventions
1384 which are undocumented and have little or nothing in common with
1385 the way things are quoted (or not quoted) elsewhere in GDB.
1386
1387 2. Options are used, which are not generally used in GDB (perhaps
1388 "set mapped on", "set readnow on" would be better)
1389
1390 3. The order of options matters, which is contrary to GNU
c906108c
SS
1391 conventions (because it is confusing and inconvenient). */
1392
1393void
fba45db2 1394symbol_file_command (char *args, int from_tty)
c906108c 1395{
c906108c
SS
1396 dont_repeat ();
1397
1398 if (args == NULL)
1399 {
1adeb98a 1400 symbol_file_clear (from_tty);
c906108c
SS
1401 }
1402 else
1403 {
d1a41061 1404 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1405 int flags = OBJF_USERLOADED;
1406 struct cleanup *cleanups;
1407 char *name = NULL;
1408
7a292a7a 1409 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1410 while (*argv != NULL)
1411 {
78a4a9b9
AC
1412 if (strcmp (*argv, "-readnow") == 0)
1413 flags |= OBJF_READNOW;
1414 else if (**argv == '-')
8a3fe4f8 1415 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1416 else
1417 {
cb2f3a29 1418 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1419 name = *argv;
78a4a9b9 1420 }
cb2f3a29 1421
c906108c
SS
1422 argv++;
1423 }
1424
1425 if (name == NULL)
cb2f3a29
MK
1426 error (_("no symbol file name was specified"));
1427
c906108c
SS
1428 do_cleanups (cleanups);
1429 }
1430}
1431
1432/* Set the initial language.
1433
cb2f3a29
MK
1434 FIXME: A better solution would be to record the language in the
1435 psymtab when reading partial symbols, and then use it (if known) to
1436 set the language. This would be a win for formats that encode the
1437 language in an easily discoverable place, such as DWARF. For
1438 stabs, we can jump through hoops looking for specially named
1439 symbols or try to intuit the language from the specific type of
1440 stabs we find, but we can't do that until later when we read in
1441 full symbols. */
c906108c 1442
8b60591b 1443void
fba45db2 1444set_initial_language (void)
c906108c
SS
1445{
1446 struct partial_symtab *pst;
c5aa993b 1447 enum language lang = language_unknown;
c906108c
SS
1448
1449 pst = find_main_psymtab ();
1450 if (pst != NULL)
1451 {
c5aa993b 1452 if (pst->filename != NULL)
cb2f3a29
MK
1453 lang = deduce_language_from_filename (pst->filename);
1454
c906108c
SS
1455 if (lang == language_unknown)
1456 {
c5aa993b
JM
1457 /* Make C the default language */
1458 lang = language_c;
c906108c 1459 }
cb2f3a29 1460
c906108c 1461 set_language (lang);
cb2f3a29 1462 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1463 }
1464}
1465
874f5765
TG
1466/* If NAME is a remote name open the file using remote protocol, otherwise
1467 open it normally. */
1468
1469bfd *
1470bfd_open_maybe_remote (const char *name)
1471{
1472 if (remote_filename_p (name))
1473 return remote_bfd_open (name, gnutarget);
1474 else
1475 return bfd_openr (name, gnutarget);
1476}
1477
1478
cb2f3a29
MK
1479/* Open the file specified by NAME and hand it off to BFD for
1480 preliminary analysis. Return a newly initialized bfd *, which
1481 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1482 absolute). In case of trouble, error() is called. */
c906108c
SS
1483
1484bfd *
fba45db2 1485symfile_bfd_open (char *name)
c906108c
SS
1486{
1487 bfd *sym_bfd;
1488 int desc;
1489 char *absolute_name;
1490
f1838a98
UW
1491 if (remote_filename_p (name))
1492 {
1493 name = xstrdup (name);
1494 sym_bfd = remote_bfd_open (name, gnutarget);
1495 if (!sym_bfd)
1496 {
1497 make_cleanup (xfree, name);
1498 error (_("`%s': can't open to read symbols: %s."), name,
1499 bfd_errmsg (bfd_get_error ()));
1500 }
1501
1502 if (!bfd_check_format (sym_bfd, bfd_object))
1503 {
1504 bfd_close (sym_bfd);
1505 make_cleanup (xfree, name);
1506 error (_("`%s': can't read symbols: %s."), name,
1507 bfd_errmsg (bfd_get_error ()));
1508 }
1509
1510 return sym_bfd;
1511 }
1512
cb2f3a29 1513 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1514
1515 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1516 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1517 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1518#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1519 if (desc < 0)
1520 {
1521 char *exename = alloca (strlen (name) + 5);
1522 strcat (strcpy (exename, name), ".exe");
014d698b 1523 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1524 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1525 }
1526#endif
1527 if (desc < 0)
1528 {
b8c9b27d 1529 make_cleanup (xfree, name);
c906108c
SS
1530 perror_with_name (name);
1531 }
cb2f3a29
MK
1532
1533 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1534 bfd. It'll be freed in free_objfile(). */
1535 xfree (name);
1536 name = absolute_name;
c906108c 1537
9f76c2cd 1538 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1539 if (!sym_bfd)
1540 {
1541 close (desc);
b8c9b27d 1542 make_cleanup (xfree, name);
f1838a98 1543 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1544 bfd_errmsg (bfd_get_error ()));
1545 }
549c1eea 1546 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1547
1548 if (!bfd_check_format (sym_bfd, bfd_object))
1549 {
cb2f3a29
MK
1550 /* FIXME: should be checking for errors from bfd_close (for one
1551 thing, on error it does not free all the storage associated
1552 with the bfd). */
1553 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1554 make_cleanup (xfree, name);
f1838a98 1555 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1556 bfd_errmsg (bfd_get_error ()));
1557 }
cb2f3a29 1558
4f6f9936
JK
1559 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1560 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1561
cb2f3a29 1562 return sym_bfd;
c906108c
SS
1563}
1564
cb2f3a29
MK
1565/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1566 the section was not found. */
1567
0e931cf0
JB
1568int
1569get_section_index (struct objfile *objfile, char *section_name)
1570{
1571 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1572
0e931cf0
JB
1573 if (sect)
1574 return sect->index;
1575 else
1576 return -1;
1577}
1578
cb2f3a29
MK
1579/* Link SF into the global symtab_fns list. Called on startup by the
1580 _initialize routine in each object file format reader, to register
1581 information about each format the the reader is prepared to
1582 handle. */
c906108c
SS
1583
1584void
fba45db2 1585add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1586{
1587 sf->next = symtab_fns;
1588 symtab_fns = sf;
1589}
1590
cb2f3a29
MK
1591/* Initialize OBJFILE to read symbols from its associated BFD. It
1592 either returns or calls error(). The result is an initialized
1593 struct sym_fns in the objfile structure, that contains cached
1594 information about the symbol file. */
c906108c 1595
31d99776
DJ
1596static struct sym_fns *
1597find_sym_fns (bfd *abfd)
c906108c
SS
1598{
1599 struct sym_fns *sf;
31d99776 1600 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1601
75245b24
MS
1602 if (our_flavour == bfd_target_srec_flavour
1603 || our_flavour == bfd_target_ihex_flavour
1604 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1605 return NULL; /* No symbols. */
75245b24 1606
c5aa993b 1607 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1608 if (our_flavour == sf->sym_flavour)
1609 return sf;
cb2f3a29 1610
8a3fe4f8 1611 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1612 bfd_get_target (abfd));
c906108c
SS
1613}
1614\f
cb2f3a29 1615
c906108c
SS
1616/* This function runs the load command of our current target. */
1617
1618static void
fba45db2 1619load_command (char *arg, int from_tty)
c906108c 1620{
4487aabf
PA
1621 /* The user might be reloading because the binary has changed. Take
1622 this opportunity to check. */
1623 reopen_exec_file ();
1624 reread_symbols ();
1625
c906108c 1626 if (arg == NULL)
1986bccd
AS
1627 {
1628 char *parg;
1629 int count = 0;
1630
1631 parg = arg = get_exec_file (1);
1632
1633 /* Count how many \ " ' tab space there are in the name. */
1634 while ((parg = strpbrk (parg, "\\\"'\t ")))
1635 {
1636 parg++;
1637 count++;
1638 }
1639
1640 if (count)
1641 {
1642 /* We need to quote this string so buildargv can pull it apart. */
1643 char *temp = xmalloc (strlen (arg) + count + 1 );
1644 char *ptemp = temp;
1645 char *prev;
1646
1647 make_cleanup (xfree, temp);
1648
1649 prev = parg = arg;
1650 while ((parg = strpbrk (parg, "\\\"'\t ")))
1651 {
1652 strncpy (ptemp, prev, parg - prev);
1653 ptemp += parg - prev;
1654 prev = parg++;
1655 *ptemp++ = '\\';
1656 }
1657 strcpy (ptemp, prev);
1658
1659 arg = temp;
1660 }
1661 }
1662
c906108c 1663 target_load (arg, from_tty);
2889e661
JB
1664
1665 /* After re-loading the executable, we don't really know which
1666 overlays are mapped any more. */
1667 overlay_cache_invalid = 1;
c906108c
SS
1668}
1669
1670/* This version of "load" should be usable for any target. Currently
1671 it is just used for remote targets, not inftarg.c or core files,
1672 on the theory that only in that case is it useful.
1673
1674 Avoiding xmodem and the like seems like a win (a) because we don't have
1675 to worry about finding it, and (b) On VMS, fork() is very slow and so
1676 we don't want to run a subprocess. On the other hand, I'm not sure how
1677 performance compares. */
917317f4 1678
917317f4
JM
1679static int validate_download = 0;
1680
e4f9b4d5
MS
1681/* Callback service function for generic_load (bfd_map_over_sections). */
1682
1683static void
1684add_section_size_callback (bfd *abfd, asection *asec, void *data)
1685{
1686 bfd_size_type *sum = data;
1687
2c500098 1688 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1689}
1690
1691/* Opaque data for load_section_callback. */
1692struct load_section_data {
1693 unsigned long load_offset;
a76d924d
DJ
1694 struct load_progress_data *progress_data;
1695 VEC(memory_write_request_s) *requests;
1696};
1697
1698/* Opaque data for load_progress. */
1699struct load_progress_data {
1700 /* Cumulative data. */
e4f9b4d5
MS
1701 unsigned long write_count;
1702 unsigned long data_count;
1703 bfd_size_type total_size;
a76d924d
DJ
1704};
1705
1706/* Opaque data for load_progress for a single section. */
1707struct load_progress_section_data {
1708 struct load_progress_data *cumulative;
cf7a04e8 1709
a76d924d 1710 /* Per-section data. */
cf7a04e8
DJ
1711 const char *section_name;
1712 ULONGEST section_sent;
1713 ULONGEST section_size;
1714 CORE_ADDR lma;
1715 gdb_byte *buffer;
e4f9b4d5
MS
1716};
1717
a76d924d 1718/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1719
1720static void
1721load_progress (ULONGEST bytes, void *untyped_arg)
1722{
a76d924d
DJ
1723 struct load_progress_section_data *args = untyped_arg;
1724 struct load_progress_data *totals;
1725
1726 if (args == NULL)
1727 /* Writing padding data. No easy way to get at the cumulative
1728 stats, so just ignore this. */
1729 return;
1730
1731 totals = args->cumulative;
1732
1733 if (bytes == 0 && args->section_sent == 0)
1734 {
1735 /* The write is just starting. Let the user know we've started
1736 this section. */
5af949e3
UW
1737 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1738 args->section_name, hex_string (args->section_size),
1739 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1740 return;
1741 }
cf7a04e8
DJ
1742
1743 if (validate_download)
1744 {
1745 /* Broken memories and broken monitors manifest themselves here
1746 when bring new computers to life. This doubles already slow
1747 downloads. */
1748 /* NOTE: cagney/1999-10-18: A more efficient implementation
1749 might add a verify_memory() method to the target vector and
1750 then use that. remote.c could implement that method using
1751 the ``qCRC'' packet. */
1752 gdb_byte *check = xmalloc (bytes);
1753 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1754
1755 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1756 error (_("Download verify read failed at %s"),
1757 paddress (target_gdbarch, args->lma));
cf7a04e8 1758 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1759 error (_("Download verify compare failed at %s"),
1760 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1761 do_cleanups (verify_cleanups);
1762 }
a76d924d 1763 totals->data_count += bytes;
cf7a04e8
DJ
1764 args->lma += bytes;
1765 args->buffer += bytes;
a76d924d 1766 totals->write_count += 1;
cf7a04e8
DJ
1767 args->section_sent += bytes;
1768 if (quit_flag
1769 || (deprecated_ui_load_progress_hook != NULL
1770 && deprecated_ui_load_progress_hook (args->section_name,
1771 args->section_sent)))
1772 error (_("Canceled the download"));
1773
1774 if (deprecated_show_load_progress != NULL)
1775 deprecated_show_load_progress (args->section_name,
1776 args->section_sent,
1777 args->section_size,
a76d924d
DJ
1778 totals->data_count,
1779 totals->total_size);
cf7a04e8
DJ
1780}
1781
e4f9b4d5
MS
1782/* Callback service function for generic_load (bfd_map_over_sections). */
1783
1784static void
1785load_section_callback (bfd *abfd, asection *asec, void *data)
1786{
a76d924d 1787 struct memory_write_request *new_request;
e4f9b4d5 1788 struct load_section_data *args = data;
a76d924d 1789 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1790 bfd_size_type size = bfd_get_section_size (asec);
1791 gdb_byte *buffer;
cf7a04e8 1792 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1793
cf7a04e8
DJ
1794 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1795 return;
e4f9b4d5 1796
cf7a04e8
DJ
1797 if (size == 0)
1798 return;
e4f9b4d5 1799
a76d924d
DJ
1800 new_request = VEC_safe_push (memory_write_request_s,
1801 args->requests, NULL);
1802 memset (new_request, 0, sizeof (struct memory_write_request));
1803 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1804 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1805 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1806 new_request->data = xmalloc (size);
1807 new_request->baton = section_data;
cf7a04e8 1808
a76d924d 1809 buffer = new_request->data;
cf7a04e8 1810
a76d924d
DJ
1811 section_data->cumulative = args->progress_data;
1812 section_data->section_name = sect_name;
1813 section_data->section_size = size;
1814 section_data->lma = new_request->begin;
1815 section_data->buffer = buffer;
cf7a04e8
DJ
1816
1817 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1818}
1819
1820/* Clean up an entire memory request vector, including load
1821 data and progress records. */
cf7a04e8 1822
a76d924d
DJ
1823static void
1824clear_memory_write_data (void *arg)
1825{
1826 VEC(memory_write_request_s) **vec_p = arg;
1827 VEC(memory_write_request_s) *vec = *vec_p;
1828 int i;
1829 struct memory_write_request *mr;
cf7a04e8 1830
a76d924d
DJ
1831 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1832 {
1833 xfree (mr->data);
1834 xfree (mr->baton);
1835 }
1836 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1837}
1838
c906108c 1839void
917317f4 1840generic_load (char *args, int from_tty)
c906108c 1841{
c906108c 1842 bfd *loadfile_bfd;
2b71414d 1843 struct timeval start_time, end_time;
917317f4 1844 char *filename;
1986bccd 1845 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1846 struct load_section_data cbdata;
a76d924d
DJ
1847 struct load_progress_data total_progress;
1848
e4f9b4d5 1849 CORE_ADDR entry;
1986bccd 1850 char **argv;
e4f9b4d5 1851
a76d924d
DJ
1852 memset (&cbdata, 0, sizeof (cbdata));
1853 memset (&total_progress, 0, sizeof (total_progress));
1854 cbdata.progress_data = &total_progress;
1855
1856 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1857
d1a41061
PP
1858 if (args == NULL)
1859 error_no_arg (_("file to load"));
1986bccd 1860
d1a41061 1861 argv = gdb_buildargv (args);
1986bccd
AS
1862 make_cleanup_freeargv (argv);
1863
1864 filename = tilde_expand (argv[0]);
1865 make_cleanup (xfree, filename);
1866
1867 if (argv[1] != NULL)
917317f4
JM
1868 {
1869 char *endptr;
ba5f2f8a 1870
1986bccd
AS
1871 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1872
1873 /* If the last word was not a valid number then
1874 treat it as a file name with spaces in. */
1875 if (argv[1] == endptr)
1876 error (_("Invalid download offset:%s."), argv[1]);
1877
1878 if (argv[2] != NULL)
1879 error (_("Too many parameters."));
917317f4 1880 }
c906108c 1881
917317f4 1882 /* Open the file for loading. */
c906108c
SS
1883 loadfile_bfd = bfd_openr (filename, gnutarget);
1884 if (loadfile_bfd == NULL)
1885 {
1886 perror_with_name (filename);
1887 return;
1888 }
917317f4 1889
c906108c
SS
1890 /* FIXME: should be checking for errors from bfd_close (for one thing,
1891 on error it does not free all the storage associated with the
1892 bfd). */
5c65bbb6 1893 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1894
c5aa993b 1895 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1896 {
8a3fe4f8 1897 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1898 bfd_errmsg (bfd_get_error ()));
1899 }
c5aa993b 1900
5417f6dc 1901 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1902 (void *) &total_progress.total_size);
1903
1904 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1905
2b71414d 1906 gettimeofday (&start_time, NULL);
c906108c 1907
a76d924d
DJ
1908 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1909 load_progress) != 0)
1910 error (_("Load failed"));
c906108c 1911
2b71414d 1912 gettimeofday (&end_time, NULL);
ba5f2f8a 1913
e4f9b4d5 1914 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 1915 ui_out_text (uiout, "Start address ");
5af949e3 1916 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 1917 ui_out_text (uiout, ", load size ");
a76d924d 1918 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 1919 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1920 /* We were doing this in remote-mips.c, I suspect it is right
1921 for other targets too. */
fb14de7b 1922 regcache_write_pc (get_current_regcache (), entry);
c906108c 1923
7ca9f392
AC
1924 /* FIXME: are we supposed to call symbol_file_add or not? According
1925 to a comment from remote-mips.c (where a call to symbol_file_add
1926 was commented out), making the call confuses GDB if more than one
1927 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1928 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1929
a76d924d
DJ
1930 print_transfer_performance (gdb_stdout, total_progress.data_count,
1931 total_progress.write_count,
1932 &start_time, &end_time);
c906108c
SS
1933
1934 do_cleanups (old_cleanups);
1935}
1936
1937/* Report how fast the transfer went. */
1938
917317f4
JM
1939/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1940 replaced by print_transfer_performance (with a very different
1941 function signature). */
1942
c906108c 1943void
fba45db2
KB
1944report_transfer_performance (unsigned long data_count, time_t start_time,
1945 time_t end_time)
c906108c 1946{
2b71414d
DJ
1947 struct timeval start, end;
1948
1949 start.tv_sec = start_time;
1950 start.tv_usec = 0;
1951 end.tv_sec = end_time;
1952 end.tv_usec = 0;
1953
1954 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
1955}
1956
1957void
d9fcf2fb 1958print_transfer_performance (struct ui_file *stream,
917317f4
JM
1959 unsigned long data_count,
1960 unsigned long write_count,
2b71414d
DJ
1961 const struct timeval *start_time,
1962 const struct timeval *end_time)
917317f4 1963{
9f43d28c 1964 ULONGEST time_count;
2b71414d
DJ
1965
1966 /* Compute the elapsed time in milliseconds, as a tradeoff between
1967 accuracy and overflow. */
1968 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1969 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1970
8b93c638
JM
1971 ui_out_text (uiout, "Transfer rate: ");
1972 if (time_count > 0)
1973 {
9f43d28c
DJ
1974 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
1975
1976 if (ui_out_is_mi_like_p (uiout))
1977 {
1978 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
1979 ui_out_text (uiout, " bits/sec");
1980 }
1981 else if (rate < 1024)
1982 {
1983 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
1984 ui_out_text (uiout, " bytes/sec");
1985 }
1986 else
1987 {
1988 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
1989 ui_out_text (uiout, " KB/sec");
1990 }
8b93c638
JM
1991 }
1992 else
1993 {
ba5f2f8a 1994 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 1995 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
1996 }
1997 if (write_count > 0)
1998 {
1999 ui_out_text (uiout, ", ");
ba5f2f8a 2000 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2001 ui_out_text (uiout, " bytes/write");
2002 }
2003 ui_out_text (uiout, ".\n");
c906108c
SS
2004}
2005
2006/* This function allows the addition of incrementally linked object files.
2007 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2008/* Note: ezannoni 2000-04-13 This function/command used to have a
2009 special case syntax for the rombug target (Rombug is the boot
2010 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2011 rombug case, the user doesn't need to supply a text address,
2012 instead a call to target_link() (in target.c) would supply the
2013 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2014
c906108c 2015static void
fba45db2 2016add_symbol_file_command (char *args, int from_tty)
c906108c 2017{
5af949e3 2018 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2019 char *filename = NULL;
2df3850c 2020 int flags = OBJF_USERLOADED;
c906108c 2021 char *arg;
2acceee2 2022 int expecting_option = 0;
db162d44 2023 int section_index = 0;
2acceee2
JM
2024 int argcnt = 0;
2025 int sec_num = 0;
2026 int i;
db162d44
EZ
2027 int expecting_sec_name = 0;
2028 int expecting_sec_addr = 0;
5b96932b 2029 char **argv;
db162d44 2030
a39a16c4 2031 struct sect_opt
2acceee2 2032 {
2acceee2
JM
2033 char *name;
2034 char *value;
a39a16c4 2035 };
db162d44 2036
a39a16c4
MM
2037 struct section_addr_info *section_addrs;
2038 struct sect_opt *sect_opts = NULL;
2039 size_t num_sect_opts = 0;
3017564a 2040 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2041
a39a16c4 2042 num_sect_opts = 16;
5417f6dc 2043 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2044 * sizeof (struct sect_opt));
2045
c906108c
SS
2046 dont_repeat ();
2047
2048 if (args == NULL)
8a3fe4f8 2049 error (_("add-symbol-file takes a file name and an address"));
c906108c 2050
d1a41061 2051 argv = gdb_buildargv (args);
5b96932b 2052 make_cleanup_freeargv (argv);
db162d44 2053
5b96932b
AS
2054 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2055 {
2056 /* Process the argument. */
db162d44 2057 if (argcnt == 0)
c906108c 2058 {
db162d44
EZ
2059 /* The first argument is the file name. */
2060 filename = tilde_expand (arg);
3017564a 2061 make_cleanup (xfree, filename);
c906108c 2062 }
db162d44 2063 else
7a78ae4e
ND
2064 if (argcnt == 1)
2065 {
2066 /* The second argument is always the text address at which
2067 to load the program. */
2068 sect_opts[section_index].name = ".text";
2069 sect_opts[section_index].value = arg;
f414f22f 2070 if (++section_index >= num_sect_opts)
a39a16c4
MM
2071 {
2072 num_sect_opts *= 2;
5417f6dc 2073 sect_opts = ((struct sect_opt *)
a39a16c4 2074 xrealloc (sect_opts,
5417f6dc 2075 num_sect_opts
a39a16c4
MM
2076 * sizeof (struct sect_opt)));
2077 }
7a78ae4e
ND
2078 }
2079 else
2080 {
2081 /* It's an option (starting with '-') or it's an argument
2082 to an option */
2083
2084 if (*arg == '-')
2085 {
78a4a9b9
AC
2086 if (strcmp (arg, "-readnow") == 0)
2087 flags |= OBJF_READNOW;
2088 else if (strcmp (arg, "-s") == 0)
2089 {
2090 expecting_sec_name = 1;
2091 expecting_sec_addr = 1;
2092 }
7a78ae4e
ND
2093 }
2094 else
2095 {
2096 if (expecting_sec_name)
db162d44 2097 {
7a78ae4e
ND
2098 sect_opts[section_index].name = arg;
2099 expecting_sec_name = 0;
db162d44
EZ
2100 }
2101 else
7a78ae4e
ND
2102 if (expecting_sec_addr)
2103 {
2104 sect_opts[section_index].value = arg;
2105 expecting_sec_addr = 0;
f414f22f 2106 if (++section_index >= num_sect_opts)
a39a16c4
MM
2107 {
2108 num_sect_opts *= 2;
5417f6dc 2109 sect_opts = ((struct sect_opt *)
a39a16c4 2110 xrealloc (sect_opts,
5417f6dc 2111 num_sect_opts
a39a16c4
MM
2112 * sizeof (struct sect_opt)));
2113 }
7a78ae4e
ND
2114 }
2115 else
8a3fe4f8 2116 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2117 }
2118 }
c906108c 2119 }
c906108c 2120
927890d0
JB
2121 /* This command takes at least two arguments. The first one is a
2122 filename, and the second is the address where this file has been
2123 loaded. Abort now if this address hasn't been provided by the
2124 user. */
2125 if (section_index < 1)
2126 error (_("The address where %s has been loaded is missing"), filename);
2127
db162d44
EZ
2128 /* Print the prompt for the query below. And save the arguments into
2129 a sect_addr_info structure to be passed around to other
2130 functions. We have to split this up into separate print
bb599908 2131 statements because hex_string returns a local static
db162d44 2132 string. */
5417f6dc 2133
a3f17187 2134 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2135 section_addrs = alloc_section_addr_info (section_index);
2136 make_cleanup (xfree, section_addrs);
db162d44 2137 for (i = 0; i < section_index; i++)
c906108c 2138 {
db162d44
EZ
2139 CORE_ADDR addr;
2140 char *val = sect_opts[i].value;
2141 char *sec = sect_opts[i].name;
5417f6dc 2142
ae822768 2143 addr = parse_and_eval_address (val);
db162d44 2144
db162d44
EZ
2145 /* Here we store the section offsets in the order they were
2146 entered on the command line. */
a39a16c4
MM
2147 section_addrs->other[sec_num].name = sec;
2148 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2149 printf_unfiltered ("\t%s_addr = %s\n", sec,
2150 paddress (gdbarch, addr));
db162d44
EZ
2151 sec_num++;
2152
5417f6dc 2153 /* The object's sections are initialized when a
db162d44 2154 call is made to build_objfile_section_table (objfile).
5417f6dc 2155 This happens in reread_symbols.
db162d44
EZ
2156 At this point, we don't know what file type this is,
2157 so we can't determine what section names are valid. */
2acceee2 2158 }
db162d44 2159
2acceee2 2160 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2161 error (_("Not confirmed."));
c906108c 2162
7eedccfa
PP
2163 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2164 section_addrs, flags);
c906108c
SS
2165
2166 /* Getting new symbols may change our opinion about what is
2167 frameless. */
2168 reinit_frame_cache ();
db162d44 2169 do_cleanups (my_cleanups);
c906108c
SS
2170}
2171\f
70992597 2172
c906108c
SS
2173/* Re-read symbols if a symbol-file has changed. */
2174void
fba45db2 2175reread_symbols (void)
c906108c
SS
2176{
2177 struct objfile *objfile;
2178 long new_modtime;
2179 int reread_one = 0;
2180 struct stat new_statbuf;
2181 int res;
2182
2183 /* With the addition of shared libraries, this should be modified,
2184 the load time should be saved in the partial symbol tables, since
2185 different tables may come from different source files. FIXME.
2186 This routine should then walk down each partial symbol table
2187 and see if the symbol table that it originates from has been changed */
2188
c5aa993b
JM
2189 for (objfile = object_files; objfile; objfile = objfile->next)
2190 {
9cce227f
TG
2191 /* solib-sunos.c creates one objfile with obfd. */
2192 if (objfile->obfd == NULL)
2193 continue;
2194
2195 /* Separate debug objfiles are handled in the main objfile. */
2196 if (objfile->separate_debug_objfile_backlink)
2197 continue;
2198
52d16ba8 2199#ifdef DEPRECATED_IBM6000_TARGET
9cce227f
TG
2200 /* If this object is from a shared library, then you should
2201 stat on the library name, not member name. */
c906108c 2202
9cce227f
TG
2203 if (objfile->obfd->my_archive)
2204 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2205 else
c906108c 2206#endif
9cce227f
TG
2207 res = stat (objfile->name, &new_statbuf);
2208 if (res != 0)
2209 {
2210 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2211 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2212 objfile->name);
2213 continue;
2214 }
2215 new_modtime = new_statbuf.st_mtime;
2216 if (new_modtime != objfile->mtime)
2217 {
2218 struct cleanup *old_cleanups;
2219 struct section_offsets *offsets;
2220 int num_offsets;
2221 char *obfd_filename;
2222
2223 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2224 objfile->name);
2225
2226 /* There are various functions like symbol_file_add,
2227 symfile_bfd_open, syms_from_objfile, etc., which might
2228 appear to do what we want. But they have various other
2229 effects which we *don't* want. So we just do stuff
2230 ourselves. We don't worry about mapped files (for one thing,
2231 any mapped file will be out of date). */
2232
2233 /* If we get an error, blow away this objfile (not sure if
2234 that is the correct response for things like shared
2235 libraries). */
2236 old_cleanups = make_cleanup_free_objfile (objfile);
2237 /* We need to do this whenever any symbols go away. */
2238 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2239
2240 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2241 bfd_get_filename (exec_bfd)) == 0)
2242 {
2243 /* Reload EXEC_BFD without asking anything. */
2244
2245 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2246 }
2247
2248 /* Clean up any state BFD has sitting around. We don't need
2249 to close the descriptor but BFD lacks a way of closing the
2250 BFD without closing the descriptor. */
2251 obfd_filename = bfd_get_filename (objfile->obfd);
2252 if (!bfd_close (objfile->obfd))
2253 error (_("Can't close BFD for %s: %s"), objfile->name,
2254 bfd_errmsg (bfd_get_error ()));
874f5765 2255 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
9cce227f
TG
2256 if (objfile->obfd == NULL)
2257 error (_("Can't open %s to read symbols."), objfile->name);
2258 else
2259 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2260 /* bfd_openr sets cacheable to true, which is what we want. */
2261 if (!bfd_check_format (objfile->obfd, bfd_object))
2262 error (_("Can't read symbols from %s: %s."), objfile->name,
2263 bfd_errmsg (bfd_get_error ()));
2264
2265 /* Save the offsets, we will nuke them with the rest of the
2266 objfile_obstack. */
2267 num_offsets = objfile->num_sections;
2268 offsets = ((struct section_offsets *)
2269 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2270 memcpy (offsets, objfile->section_offsets,
2271 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2272
2273 /* Remove any references to this objfile in the global
2274 value lists. */
2275 preserve_values (objfile);
2276
2277 /* Nuke all the state that we will re-read. Much of the following
2278 code which sets things to NULL really is necessary to tell
2279 other parts of GDB that there is nothing currently there.
2280
2281 Try to keep the freeing order compatible with free_objfile. */
2282
2283 if (objfile->sf != NULL)
2284 {
2285 (*objfile->sf->sym_finish) (objfile);
2286 }
2287
2288 clear_objfile_data (objfile);
2289
15d123c9 2290 /* Free the separate debug objfiles. It will be
9cce227f 2291 automatically recreated by sym_read. */
15d123c9 2292 free_objfile_separate_debug (objfile);
9cce227f
TG
2293
2294 /* FIXME: Do we have to free a whole linked list, or is this
2295 enough? */
2296 if (objfile->global_psymbols.list)
2297 xfree (objfile->global_psymbols.list);
2298 memset (&objfile->global_psymbols, 0,
2299 sizeof (objfile->global_psymbols));
2300 if (objfile->static_psymbols.list)
2301 xfree (objfile->static_psymbols.list);
2302 memset (&objfile->static_psymbols, 0,
2303 sizeof (objfile->static_psymbols));
2304
2305 /* Free the obstacks for non-reusable objfiles */
2306 bcache_xfree (objfile->psymbol_cache);
2307 objfile->psymbol_cache = bcache_xmalloc ();
2308 bcache_xfree (objfile->macro_cache);
2309 objfile->macro_cache = bcache_xmalloc ();
2310 bcache_xfree (objfile->filename_cache);
2311 objfile->filename_cache = bcache_xmalloc ();
2312 if (objfile->demangled_names_hash != NULL)
2313 {
2314 htab_delete (objfile->demangled_names_hash);
2315 objfile->demangled_names_hash = NULL;
2316 }
2317 obstack_free (&objfile->objfile_obstack, 0);
2318 objfile->sections = NULL;
2319 objfile->symtabs = NULL;
2320 objfile->psymtabs = NULL;
2321 objfile->psymtabs_addrmap = NULL;
2322 objfile->free_psymtabs = NULL;
2323 objfile->cp_namespace_symtab = NULL;
2324 objfile->msymbols = NULL;
2325 objfile->deprecated_sym_private = NULL;
2326 objfile->minimal_symbol_count = 0;
2327 memset (&objfile->msymbol_hash, 0,
2328 sizeof (objfile->msymbol_hash));
2329 memset (&objfile->msymbol_demangled_hash, 0,
2330 sizeof (objfile->msymbol_demangled_hash));
2331
2332 objfile->psymbol_cache = bcache_xmalloc ();
2333 objfile->macro_cache = bcache_xmalloc ();
2334 objfile->filename_cache = bcache_xmalloc ();
2335 /* obstack_init also initializes the obstack so it is
2336 empty. We could use obstack_specify_allocation but
2337 gdb_obstack.h specifies the alloc/dealloc
2338 functions. */
2339 obstack_init (&objfile->objfile_obstack);
2340 if (build_objfile_section_table (objfile))
2341 {
2342 error (_("Can't find the file sections in `%s': %s"),
2343 objfile->name, bfd_errmsg (bfd_get_error ()));
2344 }
2345 terminate_minimal_symbol_table (objfile);
2346
2347 /* We use the same section offsets as from last time. I'm not
2348 sure whether that is always correct for shared libraries. */
2349 objfile->section_offsets = (struct section_offsets *)
2350 obstack_alloc (&objfile->objfile_obstack,
2351 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2352 memcpy (objfile->section_offsets, offsets,
2353 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2354 objfile->num_sections = num_offsets;
2355
2356 /* What the hell is sym_new_init for, anyway? The concept of
2357 distinguishing between the main file and additional files
2358 in this way seems rather dubious. */
2359 if (objfile == symfile_objfile)
c906108c 2360 {
9cce227f 2361 (*objfile->sf->sym_new_init) (objfile);
c906108c 2362 }
9cce227f
TG
2363
2364 (*objfile->sf->sym_init) (objfile);
2365 clear_complaints (&symfile_complaints, 1, 1);
2366 /* Do not set flags as this is safe and we don't want to be
2367 verbose. */
2368 (*objfile->sf->sym_read) (objfile, 0);
2369 if (!objfile_has_symbols (objfile))
c906108c 2370 {
9cce227f
TG
2371 wrap_here ("");
2372 printf_unfiltered (_("(no debugging symbols found)\n"));
2373 wrap_here ("");
c5aa993b 2374 }
9cce227f
TG
2375
2376 /* We're done reading the symbol file; finish off complaints. */
2377 clear_complaints (&symfile_complaints, 0, 1);
2378
2379 /* Getting new symbols may change our opinion about what is
2380 frameless. */
2381
2382 reinit_frame_cache ();
2383
2384 /* Discard cleanups as symbol reading was successful. */
2385 discard_cleanups (old_cleanups);
2386
2387 /* If the mtime has changed between the time we set new_modtime
2388 and now, we *want* this to be out of date, so don't call stat
2389 again now. */
2390 objfile->mtime = new_modtime;
2391 reread_one = 1;
2392 init_entry_point_info (objfile);
c906108c
SS
2393 }
2394 }
c906108c
SS
2395
2396 if (reread_one)
ea53e89f 2397 {
ff3536bc
UW
2398 /* Notify objfiles that we've modified objfile sections. */
2399 objfiles_changed ();
2400
ea53e89f
JB
2401 clear_symtab_users ();
2402 /* At least one objfile has changed, so we can consider that
2403 the executable we're debugging has changed too. */
781b42b0 2404 observer_notify_executable_changed ();
ea53e89f 2405 }
c906108c 2406}
c906108c
SS
2407\f
2408
c5aa993b
JM
2409
2410typedef struct
2411{
2412 char *ext;
c906108c 2413 enum language lang;
c5aa993b
JM
2414}
2415filename_language;
c906108c 2416
c5aa993b 2417static filename_language *filename_language_table;
c906108c
SS
2418static int fl_table_size, fl_table_next;
2419
2420static void
fba45db2 2421add_filename_language (char *ext, enum language lang)
c906108c
SS
2422{
2423 if (fl_table_next >= fl_table_size)
2424 {
2425 fl_table_size += 10;
5417f6dc 2426 filename_language_table =
25bf3106
PM
2427 xrealloc (filename_language_table,
2428 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2429 }
2430
4fcf66da 2431 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2432 filename_language_table[fl_table_next].lang = lang;
2433 fl_table_next++;
2434}
2435
2436static char *ext_args;
920d2a44
AC
2437static void
2438show_ext_args (struct ui_file *file, int from_tty,
2439 struct cmd_list_element *c, const char *value)
2440{
2441 fprintf_filtered (file, _("\
2442Mapping between filename extension and source language is \"%s\".\n"),
2443 value);
2444}
c906108c
SS
2445
2446static void
26c41df3 2447set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2448{
2449 int i;
2450 char *cp = ext_args;
2451 enum language lang;
2452
2453 /* First arg is filename extension, starting with '.' */
2454 if (*cp != '.')
8a3fe4f8 2455 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2456
2457 /* Find end of first arg. */
c5aa993b 2458 while (*cp && !isspace (*cp))
c906108c
SS
2459 cp++;
2460
2461 if (*cp == '\0')
8a3fe4f8 2462 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2463 ext_args);
2464
2465 /* Null-terminate first arg */
c5aa993b 2466 *cp++ = '\0';
c906108c
SS
2467
2468 /* Find beginning of second arg, which should be a source language. */
2469 while (*cp && isspace (*cp))
2470 cp++;
2471
2472 if (*cp == '\0')
8a3fe4f8 2473 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2474 ext_args);
2475
2476 /* Lookup the language from among those we know. */
2477 lang = language_enum (cp);
2478
2479 /* Now lookup the filename extension: do we already know it? */
2480 for (i = 0; i < fl_table_next; i++)
2481 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2482 break;
2483
2484 if (i >= fl_table_next)
2485 {
2486 /* new file extension */
2487 add_filename_language (ext_args, lang);
2488 }
2489 else
2490 {
2491 /* redefining a previously known filename extension */
2492
2493 /* if (from_tty) */
2494 /* query ("Really make files of type %s '%s'?", */
2495 /* ext_args, language_str (lang)); */
2496
b8c9b27d 2497 xfree (filename_language_table[i].ext);
4fcf66da 2498 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2499 filename_language_table[i].lang = lang;
2500 }
2501}
2502
2503static void
fba45db2 2504info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2505{
2506 int i;
2507
a3f17187 2508 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2509 printf_filtered ("\n\n");
2510 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2511 printf_filtered ("\t%s\t- %s\n",
2512 filename_language_table[i].ext,
c906108c
SS
2513 language_str (filename_language_table[i].lang));
2514}
2515
2516static void
fba45db2 2517init_filename_language_table (void)
c906108c
SS
2518{
2519 if (fl_table_size == 0) /* protect against repetition */
2520 {
2521 fl_table_size = 20;
2522 fl_table_next = 0;
c5aa993b 2523 filename_language_table =
c906108c 2524 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2525 add_filename_language (".c", language_c);
2526 add_filename_language (".C", language_cplus);
2527 add_filename_language (".cc", language_cplus);
2528 add_filename_language (".cp", language_cplus);
2529 add_filename_language (".cpp", language_cplus);
2530 add_filename_language (".cxx", language_cplus);
2531 add_filename_language (".c++", language_cplus);
2532 add_filename_language (".java", language_java);
c906108c 2533 add_filename_language (".class", language_java);
da2cf7e0 2534 add_filename_language (".m", language_objc);
c5aa993b
JM
2535 add_filename_language (".f", language_fortran);
2536 add_filename_language (".F", language_fortran);
2537 add_filename_language (".s", language_asm);
aa707ed0 2538 add_filename_language (".sx", language_asm);
c5aa993b 2539 add_filename_language (".S", language_asm);
c6fd39cd
PM
2540 add_filename_language (".pas", language_pascal);
2541 add_filename_language (".p", language_pascal);
2542 add_filename_language (".pp", language_pascal);
963a6417
PH
2543 add_filename_language (".adb", language_ada);
2544 add_filename_language (".ads", language_ada);
2545 add_filename_language (".a", language_ada);
2546 add_filename_language (".ada", language_ada);
c906108c
SS
2547 }
2548}
2549
2550enum language
fba45db2 2551deduce_language_from_filename (char *filename)
c906108c
SS
2552{
2553 int i;
2554 char *cp;
2555
2556 if (filename != NULL)
2557 if ((cp = strrchr (filename, '.')) != NULL)
2558 for (i = 0; i < fl_table_next; i++)
2559 if (strcmp (cp, filename_language_table[i].ext) == 0)
2560 return filename_language_table[i].lang;
2561
2562 return language_unknown;
2563}
2564\f
2565/* allocate_symtab:
2566
2567 Allocate and partly initialize a new symbol table. Return a pointer
2568 to it. error() if no space.
2569
2570 Caller must set these fields:
c5aa993b
JM
2571 LINETABLE(symtab)
2572 symtab->blockvector
2573 symtab->dirname
2574 symtab->free_code
2575 symtab->free_ptr
c906108c
SS
2576 */
2577
2578struct symtab *
fba45db2 2579allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2580{
52f0bd74 2581 struct symtab *symtab;
c906108c
SS
2582
2583 symtab = (struct symtab *)
4a146b47 2584 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2585 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2586 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2587 objfile->filename_cache);
c5aa993b
JM
2588 symtab->fullname = NULL;
2589 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2590 symtab->debugformat = "unknown";
c906108c
SS
2591
2592 /* Hook it to the objfile it comes from */
2593
c5aa993b
JM
2594 symtab->objfile = objfile;
2595 symtab->next = objfile->symtabs;
2596 objfile->symtabs = symtab;
c906108c 2597
c906108c
SS
2598 return (symtab);
2599}
2600
2601struct partial_symtab *
d85a05f0 2602allocate_psymtab (const char *filename, struct objfile *objfile)
c906108c
SS
2603{
2604 struct partial_symtab *psymtab;
2605
c5aa993b 2606 if (objfile->free_psymtabs)
c906108c 2607 {
c5aa993b
JM
2608 psymtab = objfile->free_psymtabs;
2609 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2610 }
2611 else
2612 psymtab = (struct partial_symtab *)
8b92e4d5 2613 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2614 sizeof (struct partial_symtab));
2615
2616 memset (psymtab, 0, sizeof (struct partial_symtab));
10abe6bf
TT
2617 psymtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2618 objfile->filename_cache);
c5aa993b 2619 psymtab->symtab = NULL;
c906108c
SS
2620
2621 /* Prepend it to the psymtab list for the objfile it belongs to.
2622 Psymtabs are searched in most recent inserted -> least recent
2623 inserted order. */
2624
c5aa993b
JM
2625 psymtab->objfile = objfile;
2626 psymtab->next = objfile->psymtabs;
2627 objfile->psymtabs = psymtab;
c906108c
SS
2628#if 0
2629 {
2630 struct partial_symtab **prev_pst;
c5aa993b
JM
2631 psymtab->objfile = objfile;
2632 psymtab->next = NULL;
2633 prev_pst = &(objfile->psymtabs);
c906108c 2634 while ((*prev_pst) != NULL)
c5aa993b 2635 prev_pst = &((*prev_pst)->next);
c906108c 2636 (*prev_pst) = psymtab;
c5aa993b 2637 }
c906108c 2638#endif
c5aa993b 2639
c906108c
SS
2640 return (psymtab);
2641}
2642
2643void
fba45db2 2644discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2645{
2646 struct partial_symtab **prev_pst;
2647
2648 /* From dbxread.c:
2649 Empty psymtabs happen as a result of header files which don't
2650 have any symbols in them. There can be a lot of them. But this
2651 check is wrong, in that a psymtab with N_SLINE entries but
2652 nothing else is not empty, but we don't realize that. Fixing
2653 that without slowing things down might be tricky. */
2654
2655 /* First, snip it out of the psymtab chain */
2656
2657 prev_pst = &(pst->objfile->psymtabs);
2658 while ((*prev_pst) != pst)
2659 prev_pst = &((*prev_pst)->next);
2660 (*prev_pst) = pst->next;
2661
2662 /* Next, put it on a free list for recycling */
2663
2664 pst->next = pst->objfile->free_psymtabs;
2665 pst->objfile->free_psymtabs = pst;
2666}
c906108c 2667\f
c5aa993b 2668
c906108c
SS
2669/* Reset all data structures in gdb which may contain references to symbol
2670 table data. */
2671
2672void
fba45db2 2673clear_symtab_users (void)
c906108c
SS
2674{
2675 /* Someday, we should do better than this, by only blowing away
2676 the things that really need to be blown. */
c0501be5
DJ
2677
2678 /* Clear the "current" symtab first, because it is no longer valid.
2679 breakpoint_re_set may try to access the current symtab. */
2680 clear_current_source_symtab_and_line ();
2681
c906108c 2682 clear_displays ();
c906108c 2683 breakpoint_re_set ();
6c95b8df 2684 set_default_breakpoint (0, NULL, 0, 0, 0);
c906108c 2685 clear_pc_function_cache ();
06d3b283 2686 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2687
2688 /* Clear globals which might have pointed into a removed objfile.
2689 FIXME: It's not clear which of these are supposed to persist
2690 between expressions and which ought to be reset each time. */
2691 expression_context_block = NULL;
2692 innermost_block = NULL;
8756216b
DP
2693
2694 /* Varobj may refer to old symbols, perform a cleanup. */
2695 varobj_invalidate ();
2696
c906108c
SS
2697}
2698
74b7792f
AC
2699static void
2700clear_symtab_users_cleanup (void *ignore)
2701{
2702 clear_symtab_users ();
2703}
c906108c
SS
2704\f
2705/* Allocate and partially fill a partial symtab. It will be
2706 completely filled at the end of the symbol list.
2707
d4f3574e 2708 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2709
2710struct partial_symtab *
fba45db2 2711start_psymtab_common (struct objfile *objfile,
d85a05f0
DJ
2712 struct section_offsets *section_offsets,
2713 const char *filename,
fba45db2
KB
2714 CORE_ADDR textlow, struct partial_symbol **global_syms,
2715 struct partial_symbol **static_syms)
c906108c
SS
2716{
2717 struct partial_symtab *psymtab;
2718
2719 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2720 psymtab->section_offsets = section_offsets;
2721 psymtab->textlow = textlow;
2722 psymtab->texthigh = psymtab->textlow; /* default */
2723 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2724 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2725 return (psymtab);
2726}
2727\f
2e618c13
AR
2728/* Helper function, initialises partial symbol structure and stashes
2729 it into objfile's bcache. Note that our caching mechanism will
2730 use all fields of struct partial_symbol to determine hash value of the
2731 structure. In other words, having two symbols with the same name but
2732 different domain (or address) is possible and correct. */
2733
11d31d94 2734static const struct partial_symbol *
04a679b8
TT
2735add_psymbol_to_bcache (char *name, int namelength, int copy_name,
2736 domain_enum domain,
2e618c13
AR
2737 enum address_class class,
2738 long val, /* Value as a long */
2739 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2740 enum language language, struct objfile *objfile,
2741 int *added)
2742{
69a943f0
TT
2743 /* psymbol is static so that there will be no uninitialized gaps in the
2744 structure which might contain random data, causing cache misses in
2745 bcache. */
2746 static struct partial_symbol psymbol;
2747
2748 /* However, we must ensure that the entire 'value' field has been
2749 zeroed before assigning to it, because an assignment may not
2750 write the entire field. */
2751 memset (&psymbol.ginfo.value, 0, sizeof (psymbol.ginfo.value));
2e618c13
AR
2752 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2753 if (val != 0)
2754 {
2755 SYMBOL_VALUE (&psymbol) = val;
2756 }
2757 else
2758 {
2759 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2760 }
2761 SYMBOL_SECTION (&psymbol) = 0;
2762 SYMBOL_LANGUAGE (&psymbol) = language;
2763 PSYMBOL_DOMAIN (&psymbol) = domain;
2764 PSYMBOL_CLASS (&psymbol) = class;
2765
04a679b8 2766 SYMBOL_SET_NAMES (&psymbol, name, namelength, copy_name, objfile);
2e618c13
AR
2767
2768 /* Stash the partial symbol away in the cache */
11d31d94
TT
2769 return bcache_full (&psymbol, sizeof (struct partial_symbol),
2770 objfile->psymbol_cache, added);
2e618c13
AR
2771}
2772
2773/* Helper function, adds partial symbol to the given partial symbol
2774 list. */
2775
2776static void
2777append_psymbol_to_list (struct psymbol_allocation_list *list,
11d31d94 2778 const struct partial_symbol *psym,
2e618c13
AR
2779 struct objfile *objfile)
2780{
2781 if (list->next >= list->list + list->size)
2782 extend_psymbol_list (list, objfile);
11d31d94 2783 *list->next++ = (struct partial_symbol *) psym;
2e618c13
AR
2784 OBJSTAT (objfile, n_psyms++);
2785}
2786
c906108c 2787/* Add a symbol with a long value to a psymtab.
5417f6dc 2788 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
2789 Return the partial symbol that has been added. */
2790
2791/* NOTE: carlton/2003-09-11: The reason why we return the partial
2792 symbol is so that callers can get access to the symbol's demangled
2793 name, which they don't have any cheap way to determine otherwise.
2794 (Currenly, dwarf2read.c is the only file who uses that information,
2795 though it's possible that other readers might in the future.)
2796 Elena wasn't thrilled about that, and I don't blame her, but we
2797 couldn't come up with a better way to get that information. If
2798 it's needed in other situations, we could consider breaking up
2799 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2800 cache. */
2801
2802const struct partial_symbol *
04a679b8
TT
2803add_psymbol_to_list (char *name, int namelength, int copy_name,
2804 domain_enum domain,
fba45db2 2805 enum address_class class,
2e618c13
AR
2806 struct psymbol_allocation_list *list,
2807 long val, /* Value as a long */
fba45db2
KB
2808 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2809 enum language language, struct objfile *objfile)
c906108c 2810{
11d31d94 2811 const struct partial_symbol *psym;
2de7ced7 2812
2e618c13 2813 int added;
c906108c
SS
2814
2815 /* Stash the partial symbol away in the cache */
04a679b8 2816 psym = add_psymbol_to_bcache (name, namelength, copy_name, domain, class,
2e618c13 2817 val, coreaddr, language, objfile, &added);
c906108c 2818
2e618c13
AR
2819 /* Do not duplicate global partial symbols. */
2820 if (list == &objfile->global_psymbols
2821 && !added)
2822 return psym;
5c4e30ca 2823
2e618c13
AR
2824 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2825 append_psymbol_to_list (list, psym, objfile);
5c4e30ca 2826 return psym;
c906108c
SS
2827}
2828
c906108c
SS
2829/* Initialize storage for partial symbols. */
2830
2831void
fba45db2 2832init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2833{
2834 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2835
2836 if (objfile->global_psymbols.list)
c906108c 2837 {
2dc74dc1 2838 xfree (objfile->global_psymbols.list);
c906108c 2839 }
c5aa993b 2840 if (objfile->static_psymbols.list)
c906108c 2841 {
2dc74dc1 2842 xfree (objfile->static_psymbols.list);
c906108c 2843 }
c5aa993b 2844
c906108c
SS
2845 /* Current best guess is that approximately a twentieth
2846 of the total symbols (in a debugging file) are global or static
2847 oriented symbols */
c906108c 2848
c5aa993b
JM
2849 objfile->global_psymbols.size = total_symbols / 10;
2850 objfile->static_psymbols.size = total_symbols / 10;
2851
2852 if (objfile->global_psymbols.size > 0)
c906108c 2853 {
c5aa993b
JM
2854 objfile->global_psymbols.next =
2855 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
2856 xmalloc ((objfile->global_psymbols.size
2857 * sizeof (struct partial_symbol *)));
c906108c 2858 }
c5aa993b 2859 if (objfile->static_psymbols.size > 0)
c906108c 2860 {
c5aa993b
JM
2861 objfile->static_psymbols.next =
2862 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
2863 xmalloc ((objfile->static_psymbols.size
2864 * sizeof (struct partial_symbol *)));
c906108c
SS
2865 }
2866}
2867
2868/* OVERLAYS:
2869 The following code implements an abstraction for debugging overlay sections.
2870
2871 The target model is as follows:
2872 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2873 same VMA, each with its own unique LMA (or load address).
c906108c 2874 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2875 sections, one by one, from the load address into the VMA address.
5417f6dc 2876 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2877 sections should be considered to be mapped from the VMA to the LMA.
2878 This information is used for symbol lookup, and memory read/write.
5417f6dc 2879 For instance, if a section has been mapped then its contents
c5aa993b 2880 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2881
2882 Two levels of debugger support for overlays are available. One is
2883 "manual", in which the debugger relies on the user to tell it which
2884 overlays are currently mapped. This level of support is
2885 implemented entirely in the core debugger, and the information about
2886 whether a section is mapped is kept in the objfile->obj_section table.
2887
2888 The second level of support is "automatic", and is only available if
2889 the target-specific code provides functionality to read the target's
2890 overlay mapping table, and translate its contents for the debugger
2891 (by updating the mapped state information in the obj_section tables).
2892
2893 The interface is as follows:
c5aa993b
JM
2894 User commands:
2895 overlay map <name> -- tell gdb to consider this section mapped
2896 overlay unmap <name> -- tell gdb to consider this section unmapped
2897 overlay list -- list the sections that GDB thinks are mapped
2898 overlay read-target -- get the target's state of what's mapped
2899 overlay off/manual/auto -- set overlay debugging state
2900 Functional interface:
2901 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2902 section, return that section.
5417f6dc 2903 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2904 the pc, either in its VMA or its LMA
714835d5 2905 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2906 section_is_overlay(sect): true if section's VMA != LMA
2907 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2908 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2909 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2910 overlay_mapped_address(...): map an address from section's LMA to VMA
2911 overlay_unmapped_address(...): map an address from section's VMA to LMA
2912 symbol_overlayed_address(...): Return a "current" address for symbol:
2913 either in VMA or LMA depending on whether
2914 the symbol's section is currently mapped
c906108c
SS
2915 */
2916
2917/* Overlay debugging state: */
2918
d874f1e2 2919enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2920int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2921
c906108c 2922/* Function: section_is_overlay (SECTION)
5417f6dc 2923 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2924 SECTION is loaded at an address different from where it will "run". */
2925
2926int
714835d5 2927section_is_overlay (struct obj_section *section)
c906108c 2928{
714835d5
UW
2929 if (overlay_debugging && section)
2930 {
2931 bfd *abfd = section->objfile->obfd;
2932 asection *bfd_section = section->the_bfd_section;
2933
2934 if (bfd_section_lma (abfd, bfd_section) != 0
2935 && bfd_section_lma (abfd, bfd_section)
2936 != bfd_section_vma (abfd, bfd_section))
2937 return 1;
2938 }
c906108c
SS
2939
2940 return 0;
2941}
2942
2943/* Function: overlay_invalidate_all (void)
2944 Invalidate the mapped state of all overlay sections (mark it as stale). */
2945
2946static void
fba45db2 2947overlay_invalidate_all (void)
c906108c 2948{
c5aa993b 2949 struct objfile *objfile;
c906108c
SS
2950 struct obj_section *sect;
2951
2952 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2953 if (section_is_overlay (sect))
2954 sect->ovly_mapped = -1;
c906108c
SS
2955}
2956
714835d5 2957/* Function: section_is_mapped (SECTION)
5417f6dc 2958 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2959
2960 Access to the ovly_mapped flag is restricted to this function, so
2961 that we can do automatic update. If the global flag
2962 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2963 overlay_invalidate_all. If the mapped state of the particular
2964 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2965
714835d5
UW
2966int
2967section_is_mapped (struct obj_section *osect)
c906108c 2968{
9216df95
UW
2969 struct gdbarch *gdbarch;
2970
714835d5 2971 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2972 return 0;
2973
c5aa993b 2974 switch (overlay_debugging)
c906108c
SS
2975 {
2976 default:
d874f1e2 2977 case ovly_off:
c5aa993b 2978 return 0; /* overlay debugging off */
d874f1e2 2979 case ovly_auto: /* overlay debugging automatic */
1c772458 2980 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 2981 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
2982 gdbarch = get_objfile_arch (osect->objfile);
2983 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2984 {
2985 if (overlay_cache_invalid)
2986 {
2987 overlay_invalidate_all ();
2988 overlay_cache_invalid = 0;
2989 }
2990 if (osect->ovly_mapped == -1)
9216df95 2991 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2992 }
2993 /* fall thru to manual case */
d874f1e2 2994 case ovly_on: /* overlay debugging manual */
c906108c
SS
2995 return osect->ovly_mapped == 1;
2996 }
2997}
2998
c906108c
SS
2999/* Function: pc_in_unmapped_range
3000 If PC falls into the lma range of SECTION, return true, else false. */
3001
3002CORE_ADDR
714835d5 3003pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3004{
714835d5
UW
3005 if (section_is_overlay (section))
3006 {
3007 bfd *abfd = section->objfile->obfd;
3008 asection *bfd_section = section->the_bfd_section;
fbd35540 3009
714835d5
UW
3010 /* We assume the LMA is relocated by the same offset as the VMA. */
3011 bfd_vma size = bfd_get_section_size (bfd_section);
3012 CORE_ADDR offset = obj_section_offset (section);
3013
3014 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3015 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3016 return 1;
3017 }
c906108c 3018
c906108c
SS
3019 return 0;
3020}
3021
3022/* Function: pc_in_mapped_range
3023 If PC falls into the vma range of SECTION, return true, else false. */
3024
3025CORE_ADDR
714835d5 3026pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3027{
714835d5
UW
3028 if (section_is_overlay (section))
3029 {
3030 if (obj_section_addr (section) <= pc
3031 && pc < obj_section_endaddr (section))
3032 return 1;
3033 }
c906108c 3034
c906108c
SS
3035 return 0;
3036}
3037
9ec8e6a0
JB
3038
3039/* Return true if the mapped ranges of sections A and B overlap, false
3040 otherwise. */
b9362cc7 3041static int
714835d5 3042sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3043{
714835d5
UW
3044 CORE_ADDR a_start = obj_section_addr (a);
3045 CORE_ADDR a_end = obj_section_endaddr (a);
3046 CORE_ADDR b_start = obj_section_addr (b);
3047 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3048
3049 return (a_start < b_end && b_start < a_end);
3050}
3051
c906108c
SS
3052/* Function: overlay_unmapped_address (PC, SECTION)
3053 Returns the address corresponding to PC in the unmapped (load) range.
3054 May be the same as PC. */
3055
3056CORE_ADDR
714835d5 3057overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3058{
714835d5
UW
3059 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3060 {
3061 bfd *abfd = section->objfile->obfd;
3062 asection *bfd_section = section->the_bfd_section;
fbd35540 3063
714835d5
UW
3064 return pc + bfd_section_lma (abfd, bfd_section)
3065 - bfd_section_vma (abfd, bfd_section);
3066 }
c906108c
SS
3067
3068 return pc;
3069}
3070
3071/* Function: overlay_mapped_address (PC, SECTION)
3072 Returns the address corresponding to PC in the mapped (runtime) range.
3073 May be the same as PC. */
3074
3075CORE_ADDR
714835d5 3076overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3077{
714835d5
UW
3078 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3079 {
3080 bfd *abfd = section->objfile->obfd;
3081 asection *bfd_section = section->the_bfd_section;
fbd35540 3082
714835d5
UW
3083 return pc + bfd_section_vma (abfd, bfd_section)
3084 - bfd_section_lma (abfd, bfd_section);
3085 }
c906108c
SS
3086
3087 return pc;
3088}
3089
3090
5417f6dc 3091/* Function: symbol_overlayed_address
c906108c
SS
3092 Return one of two addresses (relative to the VMA or to the LMA),
3093 depending on whether the section is mapped or not. */
3094
c5aa993b 3095CORE_ADDR
714835d5 3096symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3097{
3098 if (overlay_debugging)
3099 {
3100 /* If the symbol has no section, just return its regular address. */
3101 if (section == 0)
3102 return address;
3103 /* If the symbol's section is not an overlay, just return its address */
3104 if (!section_is_overlay (section))
3105 return address;
3106 /* If the symbol's section is mapped, just return its address */
3107 if (section_is_mapped (section))
3108 return address;
3109 /*
3110 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3111 * then return its LOADED address rather than its vma address!!
3112 */
3113 return overlay_unmapped_address (address, section);
3114 }
3115 return address;
3116}
3117
5417f6dc 3118/* Function: find_pc_overlay (PC)
c906108c
SS
3119 Return the best-match overlay section for PC:
3120 If PC matches a mapped overlay section's VMA, return that section.
3121 Else if PC matches an unmapped section's VMA, return that section.
3122 Else if PC matches an unmapped section's LMA, return that section. */
3123
714835d5 3124struct obj_section *
fba45db2 3125find_pc_overlay (CORE_ADDR pc)
c906108c 3126{
c5aa993b 3127 struct objfile *objfile;
c906108c
SS
3128 struct obj_section *osect, *best_match = NULL;
3129
3130 if (overlay_debugging)
3131 ALL_OBJSECTIONS (objfile, osect)
714835d5 3132 if (section_is_overlay (osect))
c5aa993b 3133 {
714835d5 3134 if (pc_in_mapped_range (pc, osect))
c5aa993b 3135 {
714835d5
UW
3136 if (section_is_mapped (osect))
3137 return osect;
c5aa993b
JM
3138 else
3139 best_match = osect;
3140 }
714835d5 3141 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3142 best_match = osect;
3143 }
714835d5 3144 return best_match;
c906108c
SS
3145}
3146
3147/* Function: find_pc_mapped_section (PC)
5417f6dc 3148 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3149 currently marked as MAPPED, return that section. Else return NULL. */
3150
714835d5 3151struct obj_section *
fba45db2 3152find_pc_mapped_section (CORE_ADDR pc)
c906108c 3153{
c5aa993b 3154 struct objfile *objfile;
c906108c
SS
3155 struct obj_section *osect;
3156
3157 if (overlay_debugging)
3158 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3159 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3160 return osect;
c906108c
SS
3161
3162 return NULL;
3163}
3164
3165/* Function: list_overlays_command
3166 Print a list of mapped sections and their PC ranges */
3167
3168void
fba45db2 3169list_overlays_command (char *args, int from_tty)
c906108c 3170{
c5aa993b
JM
3171 int nmapped = 0;
3172 struct objfile *objfile;
c906108c
SS
3173 struct obj_section *osect;
3174
3175 if (overlay_debugging)
3176 ALL_OBJSECTIONS (objfile, osect)
714835d5 3177 if (section_is_mapped (osect))
c5aa993b 3178 {
5af949e3 3179 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3180 const char *name;
3181 bfd_vma lma, vma;
3182 int size;
3183
3184 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3185 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3186 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3187 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3188
3189 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3190 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3191 puts_filtered (" - ");
5af949e3 3192 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3193 printf_filtered (", mapped at ");
5af949e3 3194 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3195 puts_filtered (" - ");
5af949e3 3196 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3197 puts_filtered ("\n");
3198
3199 nmapped++;
3200 }
c906108c 3201 if (nmapped == 0)
a3f17187 3202 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3203}
3204
3205/* Function: map_overlay_command
3206 Mark the named section as mapped (ie. residing at its VMA address). */
3207
3208void
fba45db2 3209map_overlay_command (char *args, int from_tty)
c906108c 3210{
c5aa993b
JM
3211 struct objfile *objfile, *objfile2;
3212 struct obj_section *sec, *sec2;
c906108c
SS
3213
3214 if (!overlay_debugging)
8a3fe4f8 3215 error (_("\
515ad16c 3216Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3217the 'overlay manual' command."));
c906108c
SS
3218
3219 if (args == 0 || *args == 0)
8a3fe4f8 3220 error (_("Argument required: name of an overlay section"));
c906108c
SS
3221
3222 /* First, find a section matching the user supplied argument */
3223 ALL_OBJSECTIONS (objfile, sec)
3224 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3225 {
3226 /* Now, check to see if the section is an overlay. */
714835d5 3227 if (!section_is_overlay (sec))
c5aa993b
JM
3228 continue; /* not an overlay section */
3229
3230 /* Mark the overlay as "mapped" */
3231 sec->ovly_mapped = 1;
3232
3233 /* Next, make a pass and unmap any sections that are
3234 overlapped by this new section: */
3235 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3236 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3237 {
3238 if (info_verbose)
a3f17187 3239 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3240 bfd_section_name (objfile->obfd,
3241 sec2->the_bfd_section));
3242 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3243 }
3244 return;
3245 }
8a3fe4f8 3246 error (_("No overlay section called %s"), args);
c906108c
SS
3247}
3248
3249/* Function: unmap_overlay_command
5417f6dc 3250 Mark the overlay section as unmapped
c906108c
SS
3251 (ie. resident in its LMA address range, rather than the VMA range). */
3252
3253void
fba45db2 3254unmap_overlay_command (char *args, int from_tty)
c906108c 3255{
c5aa993b 3256 struct objfile *objfile;
c906108c
SS
3257 struct obj_section *sec;
3258
3259 if (!overlay_debugging)
8a3fe4f8 3260 error (_("\
515ad16c 3261Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3262the 'overlay manual' command."));
c906108c
SS
3263
3264 if (args == 0 || *args == 0)
8a3fe4f8 3265 error (_("Argument required: name of an overlay section"));
c906108c
SS
3266
3267 /* First, find a section matching the user supplied argument */
3268 ALL_OBJSECTIONS (objfile, sec)
3269 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3270 {
3271 if (!sec->ovly_mapped)
8a3fe4f8 3272 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3273 sec->ovly_mapped = 0;
3274 return;
3275 }
8a3fe4f8 3276 error (_("No overlay section called %s"), args);
c906108c
SS
3277}
3278
3279/* Function: overlay_auto_command
3280 A utility command to turn on overlay debugging.
3281 Possibly this should be done via a set/show command. */
3282
3283static void
fba45db2 3284overlay_auto_command (char *args, int from_tty)
c906108c 3285{
d874f1e2 3286 overlay_debugging = ovly_auto;
1900040c 3287 enable_overlay_breakpoints ();
c906108c 3288 if (info_verbose)
a3f17187 3289 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3290}
3291
3292/* Function: overlay_manual_command
3293 A utility command to turn on overlay debugging.
3294 Possibly this should be done via a set/show command. */
3295
3296static void
fba45db2 3297overlay_manual_command (char *args, int from_tty)
c906108c 3298{
d874f1e2 3299 overlay_debugging = ovly_on;
1900040c 3300 disable_overlay_breakpoints ();
c906108c 3301 if (info_verbose)
a3f17187 3302 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3303}
3304
3305/* Function: overlay_off_command
3306 A utility command to turn on overlay debugging.
3307 Possibly this should be done via a set/show command. */
3308
3309static void
fba45db2 3310overlay_off_command (char *args, int from_tty)
c906108c 3311{
d874f1e2 3312 overlay_debugging = ovly_off;
1900040c 3313 disable_overlay_breakpoints ();
c906108c 3314 if (info_verbose)
a3f17187 3315 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3316}
3317
3318static void
fba45db2 3319overlay_load_command (char *args, int from_tty)
c906108c 3320{
e17c207e
UW
3321 struct gdbarch *gdbarch = get_current_arch ();
3322
3323 if (gdbarch_overlay_update_p (gdbarch))
3324 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3325 else
8a3fe4f8 3326 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3327}
3328
3329/* Function: overlay_command
3330 A place-holder for a mis-typed command */
3331
3332/* Command list chain containing all defined "overlay" subcommands. */
3333struct cmd_list_element *overlaylist;
3334
3335static void
fba45db2 3336overlay_command (char *args, int from_tty)
c906108c 3337{
c5aa993b 3338 printf_unfiltered
c906108c
SS
3339 ("\"overlay\" must be followed by the name of an overlay command.\n");
3340 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3341}
3342
3343
3344/* Target Overlays for the "Simplest" overlay manager:
3345
5417f6dc
RM
3346 This is GDB's default target overlay layer. It works with the
3347 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3348 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3349 so targets that use a different runtime overlay manager can
c906108c
SS
3350 substitute their own overlay_update function and take over the
3351 function pointer.
3352
3353 The overlay_update function pokes around in the target's data structures
3354 to see what overlays are mapped, and updates GDB's overlay mapping with
3355 this information.
3356
3357 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3358 unsigned _novlys; /# number of overlay sections #/
3359 unsigned _ovly_table[_novlys][4] = {
3360 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3361 {..., ..., ..., ...},
3362 }
3363 unsigned _novly_regions; /# number of overlay regions #/
3364 unsigned _ovly_region_table[_novly_regions][3] = {
3365 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3366 {..., ..., ...},
3367 }
c906108c
SS
3368 These functions will attempt to update GDB's mappedness state in the
3369 symbol section table, based on the target's mappedness state.
3370
3371 To do this, we keep a cached copy of the target's _ovly_table, and
3372 attempt to detect when the cached copy is invalidated. The main
3373 entry point is "simple_overlay_update(SECT), which looks up SECT in
3374 the cached table and re-reads only the entry for that section from
3375 the target (whenever possible).
3376 */
3377
3378/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3379static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3380#if 0
c5aa993b 3381static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3382#endif
c5aa993b 3383static unsigned cache_novlys = 0;
c906108c 3384#if 0
c5aa993b 3385static unsigned cache_novly_regions = 0;
c906108c
SS
3386#endif
3387static CORE_ADDR cache_ovly_table_base = 0;
3388#if 0
3389static CORE_ADDR cache_ovly_region_table_base = 0;
3390#endif
c5aa993b
JM
3391enum ovly_index
3392 {
3393 VMA, SIZE, LMA, MAPPED
3394 };
c906108c
SS
3395
3396/* Throw away the cached copy of _ovly_table */
3397static void
fba45db2 3398simple_free_overlay_table (void)
c906108c
SS
3399{
3400 if (cache_ovly_table)
b8c9b27d 3401 xfree (cache_ovly_table);
c5aa993b 3402 cache_novlys = 0;
c906108c
SS
3403 cache_ovly_table = NULL;
3404 cache_ovly_table_base = 0;
3405}
3406
3407#if 0
3408/* Throw away the cached copy of _ovly_region_table */
3409static void
fba45db2 3410simple_free_overlay_region_table (void)
c906108c
SS
3411{
3412 if (cache_ovly_region_table)
b8c9b27d 3413 xfree (cache_ovly_region_table);
c5aa993b 3414 cache_novly_regions = 0;
c906108c
SS
3415 cache_ovly_region_table = NULL;
3416 cache_ovly_region_table_base = 0;
3417}
3418#endif
3419
9216df95 3420/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3421 Convert to host order. int LEN is number of ints */
3422static void
9216df95 3423read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3424 int len, int size, enum bfd_endian byte_order)
c906108c 3425{
34c0bd93 3426 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3427 gdb_byte *buf = alloca (len * size);
c5aa993b 3428 int i;
c906108c 3429
9216df95 3430 read_memory (memaddr, buf, len * size);
c906108c 3431 for (i = 0; i < len; i++)
e17a4113 3432 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3433}
3434
3435/* Find and grab a copy of the target _ovly_table
3436 (and _novlys, which is needed for the table's size) */
c5aa993b 3437static int
fba45db2 3438simple_read_overlay_table (void)
c906108c 3439{
0d43edd1 3440 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3441 struct gdbarch *gdbarch;
3442 int word_size;
e17a4113 3443 enum bfd_endian byte_order;
c906108c
SS
3444
3445 simple_free_overlay_table ();
9b27852e 3446 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3447 if (! novlys_msym)
c906108c 3448 {
8a3fe4f8 3449 error (_("Error reading inferior's overlay table: "
0d43edd1 3450 "couldn't find `_novlys' variable\n"
8a3fe4f8 3451 "in inferior. Use `overlay manual' mode."));
0d43edd1 3452 return 0;
c906108c 3453 }
0d43edd1 3454
9b27852e 3455 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3456 if (! ovly_table_msym)
3457 {
8a3fe4f8 3458 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3459 "`_ovly_table' array\n"
8a3fe4f8 3460 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3461 return 0;
3462 }
3463
9216df95
UW
3464 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3465 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3466 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3467
e17a4113
UW
3468 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3469 4, byte_order);
0d43edd1
JB
3470 cache_ovly_table
3471 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3472 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3473 read_target_long_array (cache_ovly_table_base,
777ea8f1 3474 (unsigned int *) cache_ovly_table,
e17a4113 3475 cache_novlys * 4, word_size, byte_order);
0d43edd1 3476
c5aa993b 3477 return 1; /* SUCCESS */
c906108c
SS
3478}
3479
3480#if 0
3481/* Find and grab a copy of the target _ovly_region_table
3482 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3483static int
fba45db2 3484simple_read_overlay_region_table (void)
c906108c
SS
3485{
3486 struct minimal_symbol *msym;
e17a4113
UW
3487 struct gdbarch *gdbarch;
3488 int word_size;
3489 enum bfd_endian byte_order;
c906108c
SS
3490
3491 simple_free_overlay_region_table ();
9b27852e 3492 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
e17a4113 3493 if (msym == NULL)
c5aa993b 3494 return 0; /* failure */
e17a4113
UW
3495
3496 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3497 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3498 byte_order = gdbarch_byte_order (gdbarch);
3499
3500 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3501 4, byte_order);
3502
c906108c
SS
3503 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3504 if (cache_ovly_region_table != NULL)
3505 {
9b27852e 3506 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3507 if (msym != NULL)
3508 {
3509 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3510 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3511 (unsigned int *) cache_ovly_region_table,
e17a4113
UW
3512 cache_novly_regions * 3,
3513 word_size, byte_order);
c906108c 3514 }
c5aa993b
JM
3515 else
3516 return 0; /* failure */
c906108c 3517 }
c5aa993b
JM
3518 else
3519 return 0; /* failure */
3520 return 1; /* SUCCESS */
c906108c
SS
3521}
3522#endif
3523
5417f6dc 3524/* Function: simple_overlay_update_1
c906108c
SS
3525 A helper function for simple_overlay_update. Assuming a cached copy
3526 of _ovly_table exists, look through it to find an entry whose vma,
3527 lma and size match those of OSECT. Re-read the entry and make sure
3528 it still matches OSECT (else the table may no longer be valid).
3529 Set OSECT's mapped state to match the entry. Return: 1 for
3530 success, 0 for failure. */
3531
3532static int
fba45db2 3533simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3534{
3535 int i, size;
fbd35540
MS
3536 bfd *obfd = osect->objfile->obfd;
3537 asection *bsect = osect->the_bfd_section;
9216df95
UW
3538 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3539 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3540 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3541
2c500098 3542 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3543 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3544 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3545 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3546 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3547 {
9216df95
UW
3548 read_target_long_array (cache_ovly_table_base + i * word_size,
3549 (unsigned int *) cache_ovly_table[i],
e17a4113 3550 4, word_size, byte_order);
fbd35540
MS
3551 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3552 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3553 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3554 {
3555 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3556 return 1;
3557 }
fbd35540 3558 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3559 return 0;
3560 }
3561 return 0;
3562}
3563
3564/* Function: simple_overlay_update
5417f6dc
RM
3565 If OSECT is NULL, then update all sections' mapped state
3566 (after re-reading the entire target _ovly_table).
3567 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3568 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3569 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3570 re-read the entire cache, and go ahead and update all sections. */
3571
1c772458 3572void
fba45db2 3573simple_overlay_update (struct obj_section *osect)
c906108c 3574{
c5aa993b 3575 struct objfile *objfile;
c906108c
SS
3576
3577 /* Were we given an osect to look up? NULL means do all of them. */
3578 if (osect)
3579 /* Have we got a cached copy of the target's overlay table? */
3580 if (cache_ovly_table != NULL)
3581 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3582 if (cache_ovly_table_base ==
9b27852e 3583 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3584 /* Then go ahead and try to look up this single section in the cache */
3585 if (simple_overlay_update_1 (osect))
3586 /* Found it! We're done. */
3587 return;
3588
3589 /* Cached table no good: need to read the entire table anew.
3590 Or else we want all the sections, in which case it's actually
3591 more efficient to read the whole table in one block anyway. */
3592
0d43edd1
JB
3593 if (! simple_read_overlay_table ())
3594 return;
3595
c906108c
SS
3596 /* Now may as well update all sections, even if only one was requested. */
3597 ALL_OBJSECTIONS (objfile, osect)
714835d5 3598 if (section_is_overlay (osect))
c5aa993b
JM
3599 {
3600 int i, size;
fbd35540
MS
3601 bfd *obfd = osect->objfile->obfd;
3602 asection *bsect = osect->the_bfd_section;
c5aa993b 3603
2c500098 3604 size = bfd_get_section_size (bsect);
c5aa993b 3605 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3606 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3607 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3608 /* && cache_ovly_table[i][SIZE] == size */ )
3609 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3610 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3611 break; /* finished with inner for loop: break out */
3612 }
3613 }
c906108c
SS
3614}
3615
086df311
DJ
3616/* Set the output sections and output offsets for section SECTP in
3617 ABFD. The relocation code in BFD will read these offsets, so we
3618 need to be sure they're initialized. We map each section to itself,
3619 with no offset; this means that SECTP->vma will be honored. */
3620
3621static void
3622symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3623{
3624 sectp->output_section = sectp;
3625 sectp->output_offset = 0;
3626}
3627
ac8035ab
TG
3628/* Default implementation for sym_relocate. */
3629
3630
3631bfd_byte *
3632default_symfile_relocate (struct objfile *objfile, asection *sectp,
3633 bfd_byte *buf)
3634{
3635 bfd *abfd = objfile->obfd;
3636
3637 /* We're only interested in sections with relocation
3638 information. */
3639 if ((sectp->flags & SEC_RELOC) == 0)
3640 return NULL;
3641
3642 /* We will handle section offsets properly elsewhere, so relocate as if
3643 all sections begin at 0. */
3644 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3645
3646 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3647}
3648
086df311
DJ
3649/* Relocate the contents of a debug section SECTP in ABFD. The
3650 contents are stored in BUF if it is non-NULL, or returned in a
3651 malloc'd buffer otherwise.
3652
3653 For some platforms and debug info formats, shared libraries contain
3654 relocations against the debug sections (particularly for DWARF-2;
3655 one affected platform is PowerPC GNU/Linux, although it depends on
3656 the version of the linker in use). Also, ELF object files naturally
3657 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3658 the relocations in order to get the locations of symbols correct.
3659 Another example that may require relocation processing, is the
3660 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3661 debug section. */
086df311
DJ
3662
3663bfd_byte *
ac8035ab
TG
3664symfile_relocate_debug_section (struct objfile *objfile,
3665 asection *sectp, bfd_byte *buf)
086df311 3666{
ac8035ab 3667 gdb_assert (objfile->sf->sym_relocate);
086df311 3668
ac8035ab 3669 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3670}
c906108c 3671
31d99776
DJ
3672struct symfile_segment_data *
3673get_symfile_segment_data (bfd *abfd)
3674{
3675 struct sym_fns *sf = find_sym_fns (abfd);
3676
3677 if (sf == NULL)
3678 return NULL;
3679
3680 return sf->sym_segments (abfd);
3681}
3682
3683void
3684free_symfile_segment_data (struct symfile_segment_data *data)
3685{
3686 xfree (data->segment_bases);
3687 xfree (data->segment_sizes);
3688 xfree (data->segment_info);
3689 xfree (data);
3690}
3691
28c32713
JB
3692
3693/* Given:
3694 - DATA, containing segment addresses from the object file ABFD, and
3695 the mapping from ABFD's sections onto the segments that own them,
3696 and
3697 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3698 segment addresses reported by the target,
3699 store the appropriate offsets for each section in OFFSETS.
3700
3701 If there are fewer entries in SEGMENT_BASES than there are segments
3702 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3703
8d385431
DJ
3704 If there are more entries, then ignore the extra. The target may
3705 not be able to distinguish between an empty data segment and a
3706 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3707int
3708symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3709 struct section_offsets *offsets,
3710 int num_segment_bases,
3711 const CORE_ADDR *segment_bases)
3712{
3713 int i;
3714 asection *sect;
3715
28c32713
JB
3716 /* It doesn't make sense to call this function unless you have some
3717 segment base addresses. */
3718 gdb_assert (segment_bases > 0);
3719
31d99776
DJ
3720 /* If we do not have segment mappings for the object file, we
3721 can not relocate it by segments. */
3722 gdb_assert (data != NULL);
3723 gdb_assert (data->num_segments > 0);
3724
31d99776
DJ
3725 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3726 {
31d99776
DJ
3727 int which = data->segment_info[i];
3728
28c32713
JB
3729 gdb_assert (0 <= which && which <= data->num_segments);
3730
3731 /* Don't bother computing offsets for sections that aren't
3732 loaded as part of any segment. */
3733 if (! which)
3734 continue;
3735
3736 /* Use the last SEGMENT_BASES entry as the address of any extra
3737 segments mentioned in DATA->segment_info. */
31d99776 3738 if (which > num_segment_bases)
28c32713 3739 which = num_segment_bases;
31d99776 3740
28c32713
JB
3741 offsets->offsets[i] = (segment_bases[which - 1]
3742 - data->segment_bases[which - 1]);
31d99776
DJ
3743 }
3744
3745 return 1;
3746}
3747
3748static void
3749symfile_find_segment_sections (struct objfile *objfile)
3750{
3751 bfd *abfd = objfile->obfd;
3752 int i;
3753 asection *sect;
3754 struct symfile_segment_data *data;
3755
3756 data = get_symfile_segment_data (objfile->obfd);
3757 if (data == NULL)
3758 return;
3759
3760 if (data->num_segments != 1 && data->num_segments != 2)
3761 {
3762 free_symfile_segment_data (data);
3763 return;
3764 }
3765
3766 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3767 {
3768 CORE_ADDR vma;
3769 int which = data->segment_info[i];
3770
3771 if (which == 1)
3772 {
3773 if (objfile->sect_index_text == -1)
3774 objfile->sect_index_text = sect->index;
3775
3776 if (objfile->sect_index_rodata == -1)
3777 objfile->sect_index_rodata = sect->index;
3778 }
3779 else if (which == 2)
3780 {
3781 if (objfile->sect_index_data == -1)
3782 objfile->sect_index_data = sect->index;
3783
3784 if (objfile->sect_index_bss == -1)
3785 objfile->sect_index_bss = sect->index;
3786 }
3787 }
3788
3789 free_symfile_segment_data (data);
3790}
3791
c906108c 3792void
fba45db2 3793_initialize_symfile (void)
c906108c
SS
3794{
3795 struct cmd_list_element *c;
c5aa993b 3796
1a966eab
AC
3797 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3798Load symbol table from executable file FILE.\n\
c906108c 3799The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3800to execute."), &cmdlist);
5ba2abeb 3801 set_cmd_completer (c, filename_completer);
c906108c 3802
1a966eab 3803 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3804Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 3805Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 3806ADDR is the starting address of the file's text.\n\
db162d44
EZ
3807The optional arguments are section-name section-address pairs and\n\
3808should be specified if the data and bss segments are not contiguous\n\
1a966eab 3809with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3810 &cmdlist);
5ba2abeb 3811 set_cmd_completer (c, filename_completer);
c906108c 3812
1a966eab
AC
3813 c = add_cmd ("load", class_files, load_command, _("\
3814Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3815for access from GDB.\n\
3816A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3817 set_cmd_completer (c, filename_completer);
c906108c 3818
5bf193a2
AC
3819 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3820 &symbol_reloading, _("\
3821Set dynamic symbol table reloading multiple times in one run."), _("\
3822Show dynamic symbol table reloading multiple times in one run."), NULL,
3823 NULL,
920d2a44 3824 show_symbol_reloading,
5bf193a2 3825 &setlist, &showlist);
c906108c 3826
c5aa993b 3827 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3828 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3829 "overlay ", 0, &cmdlist);
3830
3831 add_com_alias ("ovly", "overlay", class_alias, 1);
3832 add_com_alias ("ov", "overlay", class_alias, 1);
3833
c5aa993b 3834 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3835 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3836
c5aa993b 3837 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3838 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3839
c5aa993b 3840 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3841 _("List mappings of overlay sections."), &overlaylist);
c906108c 3842
c5aa993b 3843 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3844 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3845 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3846 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3847 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3848 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3849 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3850 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3851
3852 /* Filename extension to source language lookup table: */
3853 init_filename_language_table ();
26c41df3
AC
3854 add_setshow_string_noescape_cmd ("extension-language", class_files,
3855 &ext_args, _("\
3856Set mapping between filename extension and source language."), _("\
3857Show mapping between filename extension and source language."), _("\
3858Usage: set extension-language .foo bar"),
3859 set_ext_lang_command,
920d2a44 3860 show_ext_args,
26c41df3 3861 &setlist, &showlist);
c906108c 3862
c5aa993b 3863 add_info ("extensions", info_ext_lang_command,
1bedd215 3864 _("All filename extensions associated with a source language."));
917317f4 3865
525226b5
AC
3866 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3867 &debug_file_directory, _("\
24ddea62
JK
3868Set the directories where separate debug symbols are searched for."), _("\
3869Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3870Separate debug symbols are first searched for in the same\n\
3871directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3872and lastly at the path of the directory of the binary with\n\
24ddea62 3873each global debug-file-directory component prepended."),
525226b5 3874 NULL,
920d2a44 3875 show_debug_file_directory,
525226b5 3876 &setlist, &showlist);
c906108c 3877}