]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/target-memory.c
Generated files
[thirdparty/binutils-gdb.git] / gdb / target-memory.c
CommitLineData
a76d924d
DJ
1/* Parts of target interface that deal with accessing memory and memory-like
2 objects.
3
e2882c85 4 Copyright (C) 2006-2018 Free Software Foundation, Inc.
a76d924d
DJ
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
a76d924d
DJ
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
a76d924d
DJ
20
21#include "defs.h"
22#include "vec.h"
23#include "target.h"
24#include "memory-map.h"
25
438e1e42 26#include "gdb_sys_time.h"
325fac50 27#include <algorithm>
a76d924d 28
55089490
TT
29static bool
30compare_block_starting_address (const memory_write_request &a_req,
31 const memory_write_request &b_req)
a76d924d 32{
55089490 33 return a_req.begin < b_req.begin;
a76d924d
DJ
34}
35
36/* Adds to RESULT all memory write requests from BLOCK that are
37 in [BEGIN, END) range.
38
39 If any memory request is only partially in the specified range,
40 that part of the memory request will be added. */
41
42static void
55089490
TT
43claim_memory (const std::vector<memory_write_request> &blocks,
44 std::vector<memory_write_request> *result,
a76d924d
DJ
45 ULONGEST begin,
46 ULONGEST end)
47{
a76d924d
DJ
48 ULONGEST claimed_begin;
49 ULONGEST claimed_end;
a76d924d 50
55089490 51 for (const memory_write_request &r : blocks)
a76d924d
DJ
52 {
53 /* If the request doesn't overlap [BEGIN, END), skip it. We
54 must handle END == 0 meaning the top of memory; we don't yet
55 check for R->end == 0, which would also mean the top of
56 memory, but there's an assertion in
57 target_write_memory_blocks which checks for that. */
58
55089490 59 if (begin >= r.end)
a76d924d 60 continue;
55089490 61 if (end != 0 && end <= r.begin)
a76d924d
DJ
62 continue;
63
55089490 64 claimed_begin = std::max (begin, r.begin);
a76d924d 65 if (end == 0)
55089490 66 claimed_end = r.end;
a76d924d 67 else
55089490 68 claimed_end = std::min (end, r.end);
a76d924d 69
55089490
TT
70 if (claimed_begin == r.begin && claimed_end == r.end)
71 result->push_back (r);
a76d924d
DJ
72 else
73 {
55089490
TT
74 struct memory_write_request n = r;
75
76 n.begin = claimed_begin;
77 n.end = claimed_end;
78 n.data += claimed_begin - r.begin;
5d502164 79
55089490 80 result->push_back (n);
a76d924d
DJ
81 }
82 }
83}
84
85/* Given a vector of struct memory_write_request objects in BLOCKS,
86 add memory requests for flash memory into FLASH_BLOCKS, and for
87 regular memory to REGULAR_BLOCKS. */
88
89static void
55089490
TT
90split_regular_and_flash_blocks (const std::vector<memory_write_request> &blocks,
91 std::vector<memory_write_request> *regular_blocks,
92 std::vector<memory_write_request> *flash_blocks)
a76d924d
DJ
93{
94 struct mem_region *region;
95 CORE_ADDR cur_address;
96
97 /* This implementation runs in O(length(regions)*length(blocks)) time.
98 However, in most cases the number of blocks will be small, so this does
99 not matter.
100
101 Note also that it's extremely unlikely that a memory write request
102 will span more than one memory region, however for safety we handle
103 such situations. */
104
105 cur_address = 0;
106 while (1)
107 {
55089490 108 std::vector<memory_write_request> *r;
a76d924d 109
5d502164 110 region = lookup_mem_region (cur_address);
a76d924d
DJ
111 r = region->attrib.mode == MEM_FLASH ? flash_blocks : regular_blocks;
112 cur_address = region->hi;
113 claim_memory (blocks, r, region->lo, region->hi);
114
115 if (cur_address == 0)
116 break;
117 }
118}
119
120/* Given an ADDRESS, if BEGIN is non-NULL this function sets *BEGIN
121 to the start of the flash block containing the address. Similarly,
122 if END is non-NULL *END will be set to the address one past the end
123 of the block containing the address. */
124
125static void
126block_boundaries (CORE_ADDR address, CORE_ADDR *begin, CORE_ADDR *end)
127{
128 struct mem_region *region;
129 unsigned blocksize;
d9b477e3 130 CORE_ADDR offset_in_region;
a76d924d
DJ
131
132 region = lookup_mem_region (address);
133 gdb_assert (region->attrib.mode == MEM_FLASH);
134 blocksize = region->attrib.blocksize;
d9b477e3
KB
135
136 offset_in_region = address - region->lo;
137
a76d924d 138 if (begin)
d9b477e3 139 *begin = region->lo + offset_in_region / blocksize * blocksize;
a76d924d 140 if (end)
d9b477e3 141 *end = region->lo + (offset_in_region + blocksize - 1) / blocksize * blocksize;
a76d924d
DJ
142}
143
144/* Given the list of memory requests to be WRITTEN, this function
145 returns write requests covering each group of flash blocks which must
146 be erased. */
147
55089490
TT
148static std::vector<memory_write_request>
149blocks_to_erase (const std::vector<memory_write_request> &written)
a76d924d 150{
55089490 151 std::vector<memory_write_request> result;
a76d924d 152
55089490 153 for (const memory_write_request &request : written)
a76d924d
DJ
154 {
155 CORE_ADDR begin, end;
156
55089490
TT
157 block_boundaries (request.begin, &begin, 0);
158 block_boundaries (request.end - 1, 0, &end);
a76d924d 159
55089490
TT
160 if (!result.empty () && result.back ().end >= begin)
161 result.back ().end = end;
a76d924d 162 else
55089490 163 result.emplace_back (begin, end);
a76d924d
DJ
164 }
165
166 return result;
167}
168
169/* Given ERASED_BLOCKS, a list of blocks that will be erased with
170 flash erase commands, and WRITTEN_BLOCKS, the list of memory
171 addresses that will be written, compute the set of memory addresses
172 that will be erased but not rewritten (e.g. padding within a block
173 which is only partially filled by "load"). */
174
55089490
TT
175static std::vector<memory_write_request>
176compute_garbled_blocks (const std::vector<memory_write_request> &erased_blocks,
177 const std::vector<memory_write_request> &written_blocks)
a76d924d 178{
55089490 179 std::vector<memory_write_request> result;
a76d924d 180
55089490
TT
181 unsigned j;
182 unsigned je = written_blocks.size ();
a76d924d
DJ
183 struct memory_write_request *erased_p;
184
185 /* Look at each erased memory_write_request in turn, and
186 see what part of it is subsequently written to.
187
188 This implementation is O(length(erased) * length(written)). If
189 the lists are sorted at this point it could be rewritten more
190 efficiently, but the complexity is not generally worthwhile. */
191
55089490 192 for (const memory_write_request &erased_iter : erased_blocks)
a76d924d
DJ
193 {
194 /* Make a deep copy -- it will be modified inside the loop, but
195 we don't want to modify original vector. */
55089490 196 struct memory_write_request erased = erased_iter;
a76d924d
DJ
197
198 for (j = 0; j != je;)
199 {
55089490 200 const memory_write_request *written = &written_blocks[j];
a76d924d
DJ
201
202 /* Now try various cases. */
203
204 /* If WRITTEN is fully to the left of ERASED, check the next
205 written memory_write_request. */
206 if (written->end <= erased.begin)
207 {
208 ++j;
209 continue;
210 }
211
212 /* If WRITTEN is fully to the right of ERASED, then ERASED
213 is not written at all. WRITTEN might affect other
214 blocks. */
215 if (written->begin >= erased.end)
216 {
55089490 217 result.push_back (erased);
a76d924d
DJ
218 goto next_erased;
219 }
220
221 /* If all of ERASED is completely written, we can move on to
222 the next erased region. */
223 if (written->begin <= erased.begin
224 && written->end >= erased.end)
225 {
226 goto next_erased;
227 }
228
229 /* If there is an unwritten part at the beginning of ERASED,
230 then we should record that part and try this inner loop
231 again for the remainder. */
232 if (written->begin > erased.begin)
233 {
55089490 234 result.emplace_back (erased.begin, written->begin);
a76d924d
DJ
235 erased.begin = written->begin;
236 continue;
237 }
238
239 /* If there is an unwritten part at the end of ERASED, we
240 forget about the part that was written to and wait to see
241 if the next write request writes more of ERASED. We can't
242 push it yet. */
243 if (written->end < erased.end)
244 {
245 erased.begin = written->end;
246 ++j;
247 continue;
248 }
249 }
250
251 /* If we ran out of write requests without doing anything about
252 ERASED, then that means it's really erased. */
55089490 253 result.push_back (erased);
a76d924d
DJ
254
255 next_erased:
256 ;
257 }
258
259 return result;
260}
261
a76d924d 262int
55089490 263target_write_memory_blocks (const std::vector<memory_write_request> &requests,
a76d924d
DJ
264 enum flash_preserve_mode preserve_flash_p,
265 void (*progress_cb) (ULONGEST, void *))
266{
55089490 267 std::vector<memory_write_request> blocks = requests;
a76d924d 268 struct memory_write_request *r;
55089490
TT
269 std::vector<memory_write_request> regular;
270 std::vector<memory_write_request> flash;
271 std::vector<memory_write_request> erased, garbled;
a76d924d
DJ
272
273 /* END == 0 would represent wraparound: a write to the very last
274 byte of the address space. This file was not written with that
275 possibility in mind. This is fixable, but a lot of work for a
276 rare problem; so for now, fail noisily here instead of obscurely
277 later. */
55089490
TT
278 for (const memory_write_request &iter : requests)
279 gdb_assert (iter.end != 0);
a76d924d
DJ
280
281 /* Sort the blocks by their start address. */
55089490 282 std::sort (blocks.begin (), blocks.end (), compare_block_starting_address);
a76d924d
DJ
283
284 /* Split blocks into list of regular memory blocks,
c378eb4e 285 and list of flash memory blocks. */
a76d924d
DJ
286 split_regular_and_flash_blocks (blocks, &regular, &flash);
287
288 /* If a variable is added to forbid flash write, even during "load",
289 it should be checked here. Similarly, if this function is used
290 for other situations besides "load" in which writing to flash
291 is undesirable, that should be checked here. */
292
293 /* Find flash blocks to erase. */
294 erased = blocks_to_erase (flash);
a76d924d
DJ
295
296 /* Find what flash regions will be erased, and not overwritten; then
297 either preserve or discard the old contents. */
298 garbled = compute_garbled_blocks (erased, flash);
a76d924d 299
55089490
TT
300 std::vector<gdb::unique_xmalloc_ptr<gdb_byte>> mem_holders;
301 if (!garbled.empty ())
a76d924d
DJ
302 {
303 if (preserve_flash_p == flash_preserve)
304 {
a76d924d
DJ
305 /* Read in regions that must be preserved and add them to
306 the list of blocks we read. */
55089490 307 for (memory_write_request &iter : garbled)
a76d924d 308 {
55089490
TT
309 gdb_assert (iter.data == NULL);
310 gdb::unique_xmalloc_ptr<gdb_byte> holder
311 ((gdb_byte *) xmalloc (iter.end - iter.begin));
312 iter.data = holder.get ();
313 mem_holders.push_back (std::move (holder));
314 int err = target_read_memory (iter.begin, iter.data,
315 iter.end - iter.begin);
a76d924d 316 if (err != 0)
55089490 317 return err;
a76d924d 318
55089490 319 flash.push_back (iter);
a76d924d
DJ
320 }
321
55089490
TT
322 std::sort (flash.begin (), flash.end (),
323 compare_block_starting_address);
a76d924d
DJ
324 }
325 }
326
327 /* We could coalesce adjacent memory blocks here, to reduce the
328 number of write requests for small sections. However, we would
329 have to reallocate and copy the data pointers, which could be
330 large; large sections are more common in loadable objects than
331 large numbers of small sections (although the reverse can be true
332 in object files). So, we issue at least one write request per
333 passed struct memory_write_request. The remote stub will still
334 have the opportunity to batch flash requests. */
335
336 /* Write regular blocks. */
55089490 337 for (const memory_write_request &iter : regular)
a76d924d
DJ
338 {
339 LONGEST len;
340
8b88a78e 341 len = target_write_with_progress (current_top_target (),
a76d924d 342 TARGET_OBJECT_MEMORY, NULL,
55089490
TT
343 iter.data, iter.begin,
344 iter.end - iter.begin,
345 progress_cb, iter.baton);
346 if (len < (LONGEST) (iter.end - iter.begin))
a76d924d
DJ
347 {
348 /* Call error? */
55089490 349 return -1;
a76d924d
DJ
350 }
351 }
352
55089490 353 if (!erased.empty ())
a76d924d
DJ
354 {
355 /* Erase all pages. */
55089490
TT
356 for (const memory_write_request &iter : erased)
357 target_flash_erase (iter.begin, iter.end - iter.begin);
a76d924d
DJ
358
359 /* Write flash data. */
55089490 360 for (const memory_write_request &iter : flash)
a76d924d
DJ
361 {
362 LONGEST len;
363
8b88a78e 364 len = target_write_with_progress (current_top_target (),
a76d924d 365 TARGET_OBJECT_FLASH, NULL,
55089490
TT
366 iter.data, iter.begin,
367 iter.end - iter.begin,
368 progress_cb, iter.baton);
369 if (len < (LONGEST) (iter.end - iter.begin))
a76d924d
DJ
370 error (_("Error writing data to flash"));
371 }
372
373 target_flash_done ();
374 }
375
55089490 376 return 0;
a76d924d 377}