]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/target.c
daily update
[thirdparty/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
ecd75fc8 3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include <errno.h>
0e9f083f 24#include <string.h>
c906108c 25#include "target.h"
68c765e2 26#include "target-dcache.h"
c906108c
SS
27#include "gdbcmd.h"
28#include "symtab.h"
29#include "inferior.h"
45741a9c 30#include "infrun.h"
c906108c
SS
31#include "bfd.h"
32#include "symfile.h"
33#include "objfiles.h"
4930751a 34#include "dcache.h"
c906108c 35#include <signal.h>
4e052eda 36#include "regcache.h"
0088c768 37#include "gdb_assert.h"
b6591e8b 38#include "gdbcore.h"
9e35dae4 39#include "exceptions.h"
424163ea 40#include "target-descriptions.h"
e1ac3328 41#include "gdbthread.h"
b9db4ced 42#include "solib.h"
07b82ea5 43#include "exec.h"
edb3359d 44#include "inline-frame.h"
2f4d8875 45#include "tracepoint.h"
7313baad 46#include "gdb/fileio.h"
8ffcbaaf 47#include "agent.h"
8de71aab 48#include "auxv.h"
c906108c 49
a14ed312 50static void target_info (char *, int);
c906108c 51
f0f9ff95
TT
52static void generic_tls_error (void) ATTRIBUTE_NORETURN;
53
0a4f40a2 54static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 55
5009afc5
AS
56static int default_watchpoint_addr_within_range (struct target_ops *,
57 CORE_ADDR, CORE_ADDR, int);
58
31568a15
TT
59static int default_region_ok_for_hw_watchpoint (struct target_ops *,
60 CORE_ADDR, int);
e0d24f8d 61
a30bf1f1 62static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
a53f3625 63
4229b31d
TT
64static ptid_t default_get_ada_task_ptid (struct target_ops *self,
65 long lwp, long tid);
66
098dba18
TT
67static int default_follow_fork (struct target_ops *self, int follow_child,
68 int detach_fork);
69
8d657035
TT
70static void default_mourn_inferior (struct target_ops *self);
71
58a5184e
TT
72static int default_search_memory (struct target_ops *ops,
73 CORE_ADDR start_addr,
74 ULONGEST search_space_len,
75 const gdb_byte *pattern,
76 ULONGEST pattern_len,
77 CORE_ADDR *found_addrp);
78
936d2992
PA
79static int default_verify_memory (struct target_ops *self,
80 const gdb_byte *data,
81 CORE_ADDR memaddr, ULONGEST size);
82
8eaff7cd
TT
83static struct address_space *default_thread_address_space
84 (struct target_ops *self, ptid_t ptid);
85
c25c4a8b 86static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 87
555bbdeb
TT
88static int return_zero (struct target_ops *);
89
90static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 91
a14ed312 92static void target_command (char *, int);
c906108c 93
a14ed312 94static struct target_ops *find_default_run_target (char *);
c906108c 95
c2250ad1
UW
96static struct gdbarch *default_thread_architecture (struct target_ops *ops,
97 ptid_t ptid);
98
0b5a2719
TT
99static int dummy_find_memory_regions (struct target_ops *self,
100 find_memory_region_ftype ignore1,
101 void *ignore2);
102
16f796b1
TT
103static char *dummy_make_corefile_notes (struct target_ops *self,
104 bfd *ignore1, int *ignore2);
105
770234d3
TT
106static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
107
fe31bf5b
TT
108static enum exec_direction_kind default_execution_direction
109 (struct target_ops *self);
110
c0eca49f
TT
111static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
112 struct gdbarch *gdbarch);
113
1101cb7b
TT
114#include "target-delegates.c"
115
a14ed312 116static void init_dummy_target (void);
c906108c 117
aa869812
AC
118static struct target_ops debug_target;
119
a14ed312 120static void debug_to_open (char *, int);
c906108c 121
f32dbf8c
MM
122static void debug_to_prepare_to_store (struct target_ops *self,
123 struct regcache *);
c906108c 124
a14ed312 125static void debug_to_files_info (struct target_ops *);
c906108c 126
3db08215 127static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
a6d9a66e 128 struct bp_target_info *);
c906108c 129
3db08215 130static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
a6d9a66e 131 struct bp_target_info *);
c906108c 132
5461485a
TT
133static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
134 int, int, int);
ccaa32c7 135
23a26771
TT
136static int debug_to_insert_hw_breakpoint (struct target_ops *self,
137 struct gdbarch *,
a6d9a66e 138 struct bp_target_info *);
ccaa32c7 139
a64dc96c
TT
140static int debug_to_remove_hw_breakpoint (struct target_ops *self,
141 struct gdbarch *,
a6d9a66e 142 struct bp_target_info *);
ccaa32c7 143
7bb99c53
TT
144static int debug_to_insert_watchpoint (struct target_ops *self,
145 CORE_ADDR, int, int,
0cf6dd15 146 struct expression *);
ccaa32c7 147
11b5219a
TT
148static int debug_to_remove_watchpoint (struct target_ops *self,
149 CORE_ADDR, int, int,
0cf6dd15 150 struct expression *);
ccaa32c7 151
4aa7a7f5 152static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
ccaa32c7 153
5009afc5
AS
154static int debug_to_watchpoint_addr_within_range (struct target_ops *,
155 CORE_ADDR, CORE_ADDR, int);
156
31568a15
TT
157static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
158 CORE_ADDR, int);
e0d24f8d 159
c3a5ff89
TT
160static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
161 CORE_ADDR, int, int,
0cf6dd15
TJB
162 struct expression *);
163
c42bf286 164static void debug_to_terminal_init (struct target_ops *self);
c906108c 165
d2f640d4 166static void debug_to_terminal_inferior (struct target_ops *self);
c906108c 167
2e1e1a19 168static void debug_to_terminal_ours_for_output (struct target_ops *self);
c906108c 169
ae3bd431 170static void debug_to_terminal_save_ours (struct target_ops *self);
a790ad35 171
e3594fd1 172static void debug_to_terminal_ours (struct target_ops *self);
c906108c 173
9cbe5fff 174static void debug_to_load (struct target_ops *self, const char *, int);
c906108c 175
da82bd6b 176static int debug_to_can_run (struct target_ops *self);
c906108c 177
1eab8a48 178static void debug_to_stop (struct target_ops *self, ptid_t);
c906108c 179
c906108c 180/* Pointer to array of target architecture structures; the size of the
2bc416ba 181 array; the current index into the array; the allocated size of the
c906108c
SS
182 array. */
183struct target_ops **target_structs;
184unsigned target_struct_size;
c906108c
SS
185unsigned target_struct_allocsize;
186#define DEFAULT_ALLOCSIZE 10
187
188/* The initial current target, so that there is always a semi-valid
189 current target. */
190
191static struct target_ops dummy_target;
192
193/* Top of target stack. */
194
258b763a 195static struct target_ops *target_stack;
c906108c
SS
196
197/* The target structure we are currently using to talk to a process
198 or file or whatever "inferior" we have. */
199
200struct target_ops current_target;
201
202/* Command list for target. */
203
204static struct cmd_list_element *targetlist = NULL;
205
cf7a04e8
DJ
206/* Nonzero if we should trust readonly sections from the
207 executable when reading memory. */
208
209static int trust_readonly = 0;
210
8defab1a
DJ
211/* Nonzero if we should show true memory content including
212 memory breakpoint inserted by gdb. */
213
214static int show_memory_breakpoints = 0;
215
d914c394
SS
216/* These globals control whether GDB attempts to perform these
217 operations; they are useful for targets that need to prevent
218 inadvertant disruption, such as in non-stop mode. */
219
220int may_write_registers = 1;
221
222int may_write_memory = 1;
223
224int may_insert_breakpoints = 1;
225
226int may_insert_tracepoints = 1;
227
228int may_insert_fast_tracepoints = 1;
229
230int may_stop = 1;
231
c906108c
SS
232/* Non-zero if we want to see trace of target level stuff. */
233
ccce17b0 234static unsigned int targetdebug = 0;
920d2a44
AC
235static void
236show_targetdebug (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238{
239 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
240}
c906108c 241
a14ed312 242static void setup_target_debug (void);
c906108c 243
c906108c
SS
244/* The user just typed 'target' without the name of a target. */
245
c906108c 246static void
fba45db2 247target_command (char *arg, int from_tty)
c906108c
SS
248{
249 fputs_filtered ("Argument required (target name). Try `help target'\n",
250 gdb_stdout);
251}
252
c35b1492
PA
253/* Default target_has_* methods for process_stratum targets. */
254
255int
256default_child_has_all_memory (struct target_ops *ops)
257{
258 /* If no inferior selected, then we can't read memory here. */
259 if (ptid_equal (inferior_ptid, null_ptid))
260 return 0;
261
262 return 1;
263}
264
265int
266default_child_has_memory (struct target_ops *ops)
267{
268 /* If no inferior selected, then we can't read memory here. */
269 if (ptid_equal (inferior_ptid, null_ptid))
270 return 0;
271
272 return 1;
273}
274
275int
276default_child_has_stack (struct target_ops *ops)
277{
278 /* If no inferior selected, there's no stack. */
279 if (ptid_equal (inferior_ptid, null_ptid))
280 return 0;
281
282 return 1;
283}
284
285int
286default_child_has_registers (struct target_ops *ops)
287{
288 /* Can't read registers from no inferior. */
289 if (ptid_equal (inferior_ptid, null_ptid))
290 return 0;
291
292 return 1;
293}
294
295int
aeaec162 296default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
297{
298 /* If there's no thread selected, then we can't make it run through
299 hoops. */
aeaec162 300 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
301 return 0;
302
303 return 1;
304}
305
306
307int
308target_has_all_memory_1 (void)
309{
310 struct target_ops *t;
311
312 for (t = current_target.beneath; t != NULL; t = t->beneath)
313 if (t->to_has_all_memory (t))
314 return 1;
315
316 return 0;
317}
318
319int
320target_has_memory_1 (void)
321{
322 struct target_ops *t;
323
324 for (t = current_target.beneath; t != NULL; t = t->beneath)
325 if (t->to_has_memory (t))
326 return 1;
327
328 return 0;
329}
330
331int
332target_has_stack_1 (void)
333{
334 struct target_ops *t;
335
336 for (t = current_target.beneath; t != NULL; t = t->beneath)
337 if (t->to_has_stack (t))
338 return 1;
339
340 return 0;
341}
342
343int
344target_has_registers_1 (void)
345{
346 struct target_ops *t;
347
348 for (t = current_target.beneath; t != NULL; t = t->beneath)
349 if (t->to_has_registers (t))
350 return 1;
351
352 return 0;
353}
354
355int
aeaec162 356target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
357{
358 struct target_ops *t;
359
360 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 361 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
362 return 1;
363
364 return 0;
365}
366
aeaec162
TT
367int
368target_has_execution_current (void)
369{
370 return target_has_execution_1 (inferior_ptid);
371}
372
c22a2b88
TT
373/* Complete initialization of T. This ensures that various fields in
374 T are set, if needed by the target implementation. */
c906108c
SS
375
376void
c22a2b88 377complete_target_initialization (struct target_ops *t)
c906108c 378{
0088c768 379 /* Provide default values for all "must have" methods. */
0088c768 380
c35b1492 381 if (t->to_has_all_memory == NULL)
555bbdeb 382 t->to_has_all_memory = return_zero;
c35b1492
PA
383
384 if (t->to_has_memory == NULL)
555bbdeb 385 t->to_has_memory = return_zero;
c35b1492
PA
386
387 if (t->to_has_stack == NULL)
555bbdeb 388 t->to_has_stack = return_zero;
c35b1492
PA
389
390 if (t->to_has_registers == NULL)
555bbdeb 391 t->to_has_registers = return_zero;
c35b1492
PA
392
393 if (t->to_has_execution == NULL)
555bbdeb 394 t->to_has_execution = return_zero_has_execution;
1101cb7b 395
b3ccfe11
TT
396 /* These methods can be called on an unpushed target and so require
397 a default implementation if the target might plausibly be the
398 default run target. */
399 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
400 && t->to_supports_non_stop != NULL));
401
1101cb7b 402 install_delegators (t);
c22a2b88
TT
403}
404
405/* Add possible target architecture T to the list and add a new
406 command 'target T->to_shortname'. Set COMPLETER as the command's
407 completer if not NULL. */
408
409void
410add_target_with_completer (struct target_ops *t,
411 completer_ftype *completer)
412{
413 struct cmd_list_element *c;
414
415 complete_target_initialization (t);
c35b1492 416
c906108c
SS
417 if (!target_structs)
418 {
419 target_struct_allocsize = DEFAULT_ALLOCSIZE;
420 target_structs = (struct target_ops **) xmalloc
421 (target_struct_allocsize * sizeof (*target_structs));
422 }
423 if (target_struct_size >= target_struct_allocsize)
424 {
425 target_struct_allocsize *= 2;
426 target_structs = (struct target_ops **)
c5aa993b
JM
427 xrealloc ((char *) target_structs,
428 target_struct_allocsize * sizeof (*target_structs));
c906108c
SS
429 }
430 target_structs[target_struct_size++] = t;
c906108c
SS
431
432 if (targetlist == NULL)
1bedd215
AC
433 add_prefix_cmd ("target", class_run, target_command, _("\
434Connect to a target machine or process.\n\
c906108c
SS
435The first argument is the type or protocol of the target machine.\n\
436Remaining arguments are interpreted by the target protocol. For more\n\
437information on the arguments for a particular protocol, type\n\
1bedd215 438`help target ' followed by the protocol name."),
c906108c 439 &targetlist, "target ", 0, &cmdlist);
9852c492
YQ
440 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
441 &targetlist);
442 if (completer != NULL)
443 set_cmd_completer (c, completer);
444}
445
446/* Add a possible target architecture to the list. */
447
448void
449add_target (struct target_ops *t)
450{
451 add_target_with_completer (t, NULL);
c906108c
SS
452}
453
b48d48eb
MM
454/* See target.h. */
455
456void
457add_deprecated_target_alias (struct target_ops *t, char *alias)
458{
459 struct cmd_list_element *c;
460 char *alt;
461
462 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
463 see PR cli/15104. */
464 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
465 alt = xstrprintf ("target %s", t->to_shortname);
466 deprecate_cmd (c, alt);
467}
468
c906108c
SS
469/* Stub functions */
470
7d85a9c0
JB
471void
472target_kill (void)
473{
423a4807
TT
474 if (targetdebug)
475 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
7d85a9c0 476
423a4807 477 current_target.to_kill (&current_target);
7d85a9c0
JB
478}
479
11cf8741 480void
9cbe5fff 481target_load (const char *arg, int from_tty)
11cf8741 482{
4e5d721f 483 target_dcache_invalidate ();
71a9f134 484 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
485}
486
d9d2d8b6
PA
487void
488target_terminal_inferior (void)
489{
490 /* A background resume (``run&'') should leave GDB in control of the
c378eb4e 491 terminal. Use target_can_async_p, not target_is_async_p, since at
ba7f6c64
VP
492 this point the target is not async yet. However, if sync_execution
493 is not set, we know it will become async prior to resume. */
494 if (target_can_async_p () && !sync_execution)
d9d2d8b6
PA
495 return;
496
497 /* If GDB is resuming the inferior in the foreground, install
498 inferior's terminal modes. */
d2f640d4 499 (*current_target.to_terminal_inferior) (&current_target);
d9d2d8b6 500}
136d6dae 501
c906108c 502static void
fba45db2 503tcomplain (void)
c906108c 504{
8a3fe4f8 505 error (_("You can't do that when your target is `%s'"),
c906108c
SS
506 current_target.to_shortname);
507}
508
509void
fba45db2 510noprocess (void)
c906108c 511{
8a3fe4f8 512 error (_("You can't do that without a process to debug."));
c906108c
SS
513}
514
c906108c 515static void
0a4f40a2 516default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 517{
a3f17187 518 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
519}
520
0ef643c8
JB
521/* A default implementation for the to_get_ada_task_ptid target method.
522
523 This function builds the PTID by using both LWP and TID as part of
524 the PTID lwp and tid elements. The pid used is the pid of the
525 inferior_ptid. */
526
2c0b251b 527static ptid_t
1e6b91a4 528default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
529{
530 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
531}
532
32231432 533static enum exec_direction_kind
4c612759 534default_execution_direction (struct target_ops *self)
32231432
PA
535{
536 if (!target_can_execute_reverse)
537 return EXEC_FORWARD;
538 else if (!target_can_async_p ())
539 return EXEC_FORWARD;
540 else
541 gdb_assert_not_reached ("\
542to_execution_direction must be implemented for reverse async");
543}
544
7998dfc3
AC
545/* Go through the target stack from top to bottom, copying over zero
546 entries in current_target, then filling in still empty entries. In
547 effect, we are doing class inheritance through the pushed target
548 vectors.
549
550 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
551 is currently implemented, is that it discards any knowledge of
552 which target an inherited method originally belonged to.
553 Consequently, new new target methods should instead explicitly and
554 locally search the target stack for the target that can handle the
555 request. */
c906108c
SS
556
557static void
7998dfc3 558update_current_target (void)
c906108c 559{
7998dfc3
AC
560 struct target_ops *t;
561
08d8bcd7 562 /* First, reset current's contents. */
7998dfc3
AC
563 memset (&current_target, 0, sizeof (current_target));
564
1101cb7b
TT
565 /* Install the delegators. */
566 install_delegators (&current_target);
567
be4ddd36
TT
568 current_target.to_stratum = target_stack->to_stratum;
569
7998dfc3
AC
570#define INHERIT(FIELD, TARGET) \
571 if (!current_target.FIELD) \
572 current_target.FIELD = (TARGET)->FIELD
573
be4ddd36
TT
574 /* Do not add any new INHERITs here. Instead, use the delegation
575 mechanism provided by make-target-delegates. */
7998dfc3
AC
576 for (t = target_stack; t; t = t->beneath)
577 {
578 INHERIT (to_shortname, t);
579 INHERIT (to_longname, t);
dc177b7a 580 INHERIT (to_attach_no_wait, t);
74174d2e 581 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 582 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 583 INHERIT (to_has_thread_control, t);
7998dfc3
AC
584 }
585#undef INHERIT
586
7998dfc3
AC
587 /* Finally, position the target-stack beneath the squashed
588 "current_target". That way code looking for a non-inherited
589 target method can quickly and simply find it. */
590 current_target.beneath = target_stack;
b4b61fdb
DJ
591
592 if (targetdebug)
593 setup_target_debug ();
c906108c
SS
594}
595
596/* Push a new target type into the stack of the existing target accessors,
597 possibly superseding some of the existing accessors.
598
c906108c
SS
599 Rather than allow an empty stack, we always have the dummy target at
600 the bottom stratum, so we can call the function vectors without
601 checking them. */
602
b26a4dcb 603void
fba45db2 604push_target (struct target_ops *t)
c906108c 605{
258b763a 606 struct target_ops **cur;
c906108c
SS
607
608 /* Check magic number. If wrong, it probably means someone changed
609 the struct definition, but not all the places that initialize one. */
610 if (t->to_magic != OPS_MAGIC)
611 {
c5aa993b
JM
612 fprintf_unfiltered (gdb_stderr,
613 "Magic number of %s target struct wrong\n",
614 t->to_shortname);
3e43a32a
MS
615 internal_error (__FILE__, __LINE__,
616 _("failed internal consistency check"));
c906108c
SS
617 }
618
258b763a
AC
619 /* Find the proper stratum to install this target in. */
620 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 621 {
258b763a 622 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
623 break;
624 }
625
258b763a 626 /* If there's already targets at this stratum, remove them. */
88c231eb 627 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
628 targets to CUR, and not just those at this stratum level. */
629 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
630 {
631 /* There's already something at this stratum level. Close it,
632 and un-hook it from the stack. */
633 struct target_ops *tmp = (*cur);
5d502164 634
258b763a
AC
635 (*cur) = (*cur)->beneath;
636 tmp->beneath = NULL;
460014f5 637 target_close (tmp);
258b763a 638 }
c906108c
SS
639
640 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
641 t->beneath = (*cur);
642 (*cur) = t;
c906108c
SS
643
644 update_current_target ();
c906108c
SS
645}
646
2bc416ba 647/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
648 Return how many times it was removed (0 or 1). */
649
650int
fba45db2 651unpush_target (struct target_ops *t)
c906108c 652{
258b763a
AC
653 struct target_ops **cur;
654 struct target_ops *tmp;
c906108c 655
c8d104ad
PA
656 if (t->to_stratum == dummy_stratum)
657 internal_error (__FILE__, __LINE__,
9b20d036 658 _("Attempt to unpush the dummy target"));
c8d104ad 659
c906108c 660 /* Look for the specified target. Note that we assume that a target
c378eb4e 661 can only occur once in the target stack. */
c906108c 662
258b763a
AC
663 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
664 {
665 if ((*cur) == t)
666 break;
667 }
c906108c 668
305436e0
PA
669 /* If we don't find target_ops, quit. Only open targets should be
670 closed. */
258b763a 671 if ((*cur) == NULL)
305436e0 672 return 0;
5269965e 673
c378eb4e 674 /* Unchain the target. */
258b763a
AC
675 tmp = (*cur);
676 (*cur) = (*cur)->beneath;
677 tmp->beneath = NULL;
c906108c
SS
678
679 update_current_target ();
c906108c 680
305436e0
PA
681 /* Finally close the target. Note we do this after unchaining, so
682 any target method calls from within the target_close
683 implementation don't end up in T anymore. */
460014f5 684 target_close (t);
305436e0 685
c906108c
SS
686 return 1;
687}
688
aa76d38d 689void
460014f5 690pop_all_targets_above (enum strata above_stratum)
aa76d38d 691{
87ab71f0 692 while ((int) (current_target.to_stratum) > (int) above_stratum)
aa76d38d 693 {
aa76d38d
PA
694 if (!unpush_target (target_stack))
695 {
696 fprintf_unfiltered (gdb_stderr,
697 "pop_all_targets couldn't find target %s\n",
b52323fa 698 target_stack->to_shortname);
aa76d38d
PA
699 internal_error (__FILE__, __LINE__,
700 _("failed internal consistency check"));
701 break;
702 }
703 }
704}
705
87ab71f0 706void
460014f5 707pop_all_targets (void)
87ab71f0 708{
460014f5 709 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
710}
711
c0edd9ed
JK
712/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
713
714int
715target_is_pushed (struct target_ops *t)
716{
717 struct target_ops **cur;
718
719 /* Check magic number. If wrong, it probably means someone changed
720 the struct definition, but not all the places that initialize one. */
721 if (t->to_magic != OPS_MAGIC)
722 {
723 fprintf_unfiltered (gdb_stderr,
724 "Magic number of %s target struct wrong\n",
725 t->to_shortname);
3e43a32a
MS
726 internal_error (__FILE__, __LINE__,
727 _("failed internal consistency check"));
c0edd9ed
JK
728 }
729
730 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
731 if (*cur == t)
732 return 1;
733
734 return 0;
735}
736
f0f9ff95
TT
737/* Default implementation of to_get_thread_local_address. */
738
739static void
740generic_tls_error (void)
741{
742 throw_error (TLS_GENERIC_ERROR,
743 _("Cannot find thread-local variables on this target"));
744}
745
72f5cf0e 746/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
747 current thread's thread-local storage with offset OFFSET. */
748CORE_ADDR
749target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
750{
751 volatile CORE_ADDR addr = 0;
f0f9ff95 752 struct target_ops *target = &current_target;
9e35dae4 753
f0f9ff95 754 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
755 {
756 ptid_t ptid = inferior_ptid;
757 volatile struct gdb_exception ex;
758
759 TRY_CATCH (ex, RETURN_MASK_ALL)
760 {
761 CORE_ADDR lm_addr;
762
763 /* Fetch the load module address for this objfile. */
f5656ead 764 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4 765 objfile);
9e35dae4 766
3e43a32a
MS
767 addr = target->to_get_thread_local_address (target, ptid,
768 lm_addr, offset);
9e35dae4
DJ
769 }
770 /* If an error occurred, print TLS related messages here. Otherwise,
771 throw the error to some higher catcher. */
772 if (ex.reason < 0)
773 {
774 int objfile_is_library = (objfile->flags & OBJF_SHARED);
775
776 switch (ex.error)
777 {
778 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
779 error (_("Cannot find thread-local variables "
780 "in this thread library."));
9e35dae4
DJ
781 break;
782 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
783 if (objfile_is_library)
784 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 785 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
786 else
787 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 788 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
789 break;
790 case TLS_NOT_ALLOCATED_YET_ERROR:
791 if (objfile_is_library)
792 error (_("The inferior has not yet allocated storage for"
793 " thread-local variables in\n"
794 "the shared library `%s'\n"
795 "for %s"),
4262abfb 796 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
797 else
798 error (_("The inferior has not yet allocated storage for"
799 " thread-local variables in\n"
800 "the executable `%s'\n"
801 "for %s"),
4262abfb 802 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
803 break;
804 case TLS_GENERIC_ERROR:
805 if (objfile_is_library)
806 error (_("Cannot find thread-local storage for %s, "
807 "shared library %s:\n%s"),
808 target_pid_to_str (ptid),
4262abfb 809 objfile_name (objfile), ex.message);
9e35dae4
DJ
810 else
811 error (_("Cannot find thread-local storage for %s, "
812 "executable file %s:\n%s"),
813 target_pid_to_str (ptid),
4262abfb 814 objfile_name (objfile), ex.message);
9e35dae4
DJ
815 break;
816 default:
817 throw_exception (ex);
818 break;
819 }
820 }
821 }
822 /* It wouldn't be wrong here to try a gdbarch method, too; finding
823 TLS is an ABI-specific thing. But we don't do that yet. */
824 else
825 error (_("Cannot find thread-local variables on this target"));
826
827 return addr;
828}
829
6be7b56e 830const char *
01cb8804 831target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
832{
833#define CASE(X) case X: return #X
01cb8804 834 switch (status)
6be7b56e
PA
835 {
836 CASE(TARGET_XFER_E_IO);
bc113b4e 837 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
838 default:
839 return "<unknown>";
840 }
841#undef CASE
842};
843
844
c906108c
SS
845#undef MIN
846#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
847
848/* target_read_string -- read a null terminated string, up to LEN bytes,
849 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
850 Set *STRING to a pointer to malloc'd memory containing the data; the caller
851 is responsible for freeing it. Return the number of bytes successfully
852 read. */
853
854int
fba45db2 855target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 856{
c2e8b827 857 int tlen, offset, i;
1b0ba102 858 gdb_byte buf[4];
c906108c
SS
859 int errcode = 0;
860 char *buffer;
861 int buffer_allocated;
862 char *bufptr;
863 unsigned int nbytes_read = 0;
864
6217bf3e
MS
865 gdb_assert (string);
866
c906108c
SS
867 /* Small for testing. */
868 buffer_allocated = 4;
869 buffer = xmalloc (buffer_allocated);
870 bufptr = buffer;
871
c906108c
SS
872 while (len > 0)
873 {
874 tlen = MIN (len, 4 - (memaddr & 3));
875 offset = memaddr & 3;
876
1b0ba102 877 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
878 if (errcode != 0)
879 {
880 /* The transfer request might have crossed the boundary to an
c378eb4e 881 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
882 a single byte. */
883 tlen = 1;
884 offset = 0;
b8eb5af0 885 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
886 if (errcode != 0)
887 goto done;
888 }
889
890 if (bufptr - buffer + tlen > buffer_allocated)
891 {
892 unsigned int bytes;
5d502164 893
c906108c
SS
894 bytes = bufptr - buffer;
895 buffer_allocated *= 2;
896 buffer = xrealloc (buffer, buffer_allocated);
897 bufptr = buffer + bytes;
898 }
899
900 for (i = 0; i < tlen; i++)
901 {
902 *bufptr++ = buf[i + offset];
903 if (buf[i + offset] == '\000')
904 {
905 nbytes_read += i + 1;
906 goto done;
907 }
908 }
909
910 memaddr += tlen;
911 len -= tlen;
912 nbytes_read += tlen;
913 }
c5aa993b 914done:
6217bf3e 915 *string = buffer;
c906108c
SS
916 if (errnop != NULL)
917 *errnop = errcode;
c906108c
SS
918 return nbytes_read;
919}
920
07b82ea5
PA
921struct target_section_table *
922target_get_section_table (struct target_ops *target)
923{
07b82ea5
PA
924 if (targetdebug)
925 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
926
7e35c012 927 return (*target->to_get_section_table) (target);
07b82ea5
PA
928}
929
8db32d44 930/* Find a section containing ADDR. */
07b82ea5 931
0542c86d 932struct target_section *
8db32d44
AC
933target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
934{
07b82ea5 935 struct target_section_table *table = target_get_section_table (target);
0542c86d 936 struct target_section *secp;
07b82ea5
PA
937
938 if (table == NULL)
939 return NULL;
940
941 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
942 {
943 if (addr >= secp->addr && addr < secp->endaddr)
944 return secp;
945 }
946 return NULL;
947}
948
9f713294
YQ
949/* Read memory from more than one valid target. A core file, for
950 instance, could have some of memory but delegate other bits to
951 the target below it. So, we must manually try all targets. */
952
9b409511 953static enum target_xfer_status
17fde6d0 954raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
955 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
956 ULONGEST *xfered_len)
9f713294 957{
9b409511 958 enum target_xfer_status res;
9f713294
YQ
959
960 do
961 {
962 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
963 readbuf, writebuf, memaddr, len,
964 xfered_len);
965 if (res == TARGET_XFER_OK)
9f713294
YQ
966 break;
967
633785ff 968 /* Stop if the target reports that the memory is not available. */
bc113b4e 969 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
970 break;
971
9f713294
YQ
972 /* We want to continue past core files to executables, but not
973 past a running target's memory. */
974 if (ops->to_has_all_memory (ops))
975 break;
976
977 ops = ops->beneath;
978 }
979 while (ops != NULL);
980
0f26cec1
PA
981 /* The cache works at the raw memory level. Make sure the cache
982 gets updated with raw contents no matter what kind of memory
983 object was originally being written. Note we do write-through
984 first, so that if it fails, we don't write to the cache contents
985 that never made it to the target. */
986 if (writebuf != NULL
987 && !ptid_equal (inferior_ptid, null_ptid)
988 && target_dcache_init_p ()
989 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
990 {
991 DCACHE *dcache = target_dcache_get ();
992
993 /* Note that writing to an area of memory which wasn't present
994 in the cache doesn't cause it to be loaded in. */
995 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
996 }
997
9f713294
YQ
998 return res;
999}
1000
7f79c47e
DE
1001/* Perform a partial memory transfer.
1002 For docs see target.h, to_xfer_partial. */
cf7a04e8 1003
9b409511 1004static enum target_xfer_status
f0ba3972 1005memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 1006 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 1007 ULONGEST len, ULONGEST *xfered_len)
0779438d 1008{
9b409511 1009 enum target_xfer_status res;
cf7a04e8
DJ
1010 int reg_len;
1011 struct mem_region *region;
4e5d721f 1012 struct inferior *inf;
cf7a04e8 1013
07b82ea5
PA
1014 /* For accesses to unmapped overlay sections, read directly from
1015 files. Must do this first, as MEMADDR may need adjustment. */
1016 if (readbuf != NULL && overlay_debugging)
1017 {
1018 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 1019
07b82ea5
PA
1020 if (pc_in_unmapped_range (memaddr, section))
1021 {
1022 struct target_section_table *table
1023 = target_get_section_table (ops);
1024 const char *section_name = section->the_bfd_section->name;
5d502164 1025
07b82ea5
PA
1026 memaddr = overlay_mapped_address (memaddr, section);
1027 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1028 memaddr, len, xfered_len,
07b82ea5
PA
1029 table->sections,
1030 table->sections_end,
1031 section_name);
1032 }
1033 }
1034
1035 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
1036 if (readbuf != NULL && trust_readonly)
1037 {
0542c86d 1038 struct target_section *secp;
07b82ea5 1039 struct target_section_table *table;
cf7a04e8
DJ
1040
1041 secp = target_section_by_addr (ops, memaddr);
1042 if (secp != NULL
2b2848e2
DE
1043 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1044 secp->the_bfd_section)
cf7a04e8 1045 & SEC_READONLY))
07b82ea5
PA
1046 {
1047 table = target_get_section_table (ops);
1048 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1049 memaddr, len, xfered_len,
07b82ea5
PA
1050 table->sections,
1051 table->sections_end,
1052 NULL);
1053 }
98646950
UW
1054 }
1055
cf7a04e8
DJ
1056 /* Try GDB's internal data cache. */
1057 region = lookup_mem_region (memaddr);
4b5752d0
VP
1058 /* region->hi == 0 means there's no upper bound. */
1059 if (memaddr + len < region->hi || region->hi == 0)
cf7a04e8
DJ
1060 reg_len = len;
1061 else
1062 reg_len = region->hi - memaddr;
1063
1064 switch (region->attrib.mode)
1065 {
1066 case MEM_RO:
1067 if (writebuf != NULL)
2ed4b548 1068 return TARGET_XFER_E_IO;
cf7a04e8
DJ
1069 break;
1070
1071 case MEM_WO:
1072 if (readbuf != NULL)
2ed4b548 1073 return TARGET_XFER_E_IO;
cf7a04e8 1074 break;
a76d924d
DJ
1075
1076 case MEM_FLASH:
1077 /* We only support writing to flash during "load" for now. */
1078 if (writebuf != NULL)
1079 error (_("Writing to flash memory forbidden in this context"));
1080 break;
4b5752d0
VP
1081
1082 case MEM_NONE:
2ed4b548 1083 return TARGET_XFER_E_IO;
cf7a04e8
DJ
1084 }
1085
6c95b8df
PA
1086 if (!ptid_equal (inferior_ptid, null_ptid))
1087 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1088 else
1089 inf = NULL;
4e5d721f
DE
1090
1091 if (inf != NULL
0f26cec1 1092 && readbuf != NULL
2f4d8875
PA
1093 /* The dcache reads whole cache lines; that doesn't play well
1094 with reading from a trace buffer, because reading outside of
1095 the collected memory range fails. */
1096 && get_traceframe_number () == -1
4e5d721f 1097 && (region->attrib.cache
29453a14
YQ
1098 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1099 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1100 {
2a2f9fe4
YQ
1101 DCACHE *dcache = target_dcache_get_or_init ();
1102
0f26cec1
PA
1103 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1104 reg_len, xfered_len);
cf7a04e8
DJ
1105 }
1106
1107 /* If none of those methods found the memory we wanted, fall back
1108 to a target partial transfer. Normally a single call to
1109 to_xfer_partial is enough; if it doesn't recognize an object
1110 it will call the to_xfer_partial of the next target down.
1111 But for memory this won't do. Memory is the only target
9b409511
YQ
1112 object which can be read from more than one valid target.
1113 A core file, for instance, could have some of memory but
1114 delegate other bits to the target below it. So, we must
1115 manually try all targets. */
1116
1117 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1118 xfered_len);
cf7a04e8
DJ
1119
1120 /* If we still haven't got anything, return the last error. We
1121 give up. */
1122 return res;
0779438d
AC
1123}
1124
f0ba3972
PA
1125/* Perform a partial memory transfer. For docs see target.h,
1126 to_xfer_partial. */
1127
9b409511 1128static enum target_xfer_status
f0ba3972 1129memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1130 gdb_byte *readbuf, const gdb_byte *writebuf,
1131 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1132{
9b409511 1133 enum target_xfer_status res;
f0ba3972
PA
1134
1135 /* Zero length requests are ok and require no work. */
1136 if (len == 0)
9b409511 1137 return TARGET_XFER_EOF;
f0ba3972
PA
1138
1139 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1140 breakpoint insns, thus hiding out from higher layers whether
1141 there are software breakpoints inserted in the code stream. */
1142 if (readbuf != NULL)
1143 {
9b409511
YQ
1144 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1145 xfered_len);
f0ba3972 1146
9b409511 1147 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1148 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1149 }
1150 else
1151 {
1152 void *buf;
1153 struct cleanup *old_chain;
1154
67c059c2
AB
1155 /* A large write request is likely to be partially satisfied
1156 by memory_xfer_partial_1. We will continually malloc
1157 and free a copy of the entire write request for breakpoint
1158 shadow handling even though we only end up writing a small
1159 subset of it. Cap writes to 4KB to mitigate this. */
1160 len = min (4096, len);
1161
f0ba3972
PA
1162 buf = xmalloc (len);
1163 old_chain = make_cleanup (xfree, buf);
1164 memcpy (buf, writebuf, len);
1165
1166 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1167 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1168 xfered_len);
f0ba3972
PA
1169
1170 do_cleanups (old_chain);
1171 }
1172
1173 return res;
1174}
1175
8defab1a
DJ
1176static void
1177restore_show_memory_breakpoints (void *arg)
1178{
1179 show_memory_breakpoints = (uintptr_t) arg;
1180}
1181
1182struct cleanup *
1183make_show_memory_breakpoints_cleanup (int show)
1184{
1185 int current = show_memory_breakpoints;
8defab1a 1186
5d502164 1187 show_memory_breakpoints = show;
8defab1a
DJ
1188 return make_cleanup (restore_show_memory_breakpoints,
1189 (void *) (uintptr_t) current);
1190}
1191
7f79c47e
DE
1192/* For docs see target.h, to_xfer_partial. */
1193
9b409511 1194enum target_xfer_status
27394598
AC
1195target_xfer_partial (struct target_ops *ops,
1196 enum target_object object, const char *annex,
4ac248ca 1197 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1198 ULONGEST offset, ULONGEST len,
1199 ULONGEST *xfered_len)
27394598 1200{
9b409511 1201 enum target_xfer_status retval;
27394598
AC
1202
1203 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1204
ce6d0892
YQ
1205 /* Transfer is done when LEN is zero. */
1206 if (len == 0)
9b409511 1207 return TARGET_XFER_EOF;
ce6d0892 1208
d914c394
SS
1209 if (writebuf && !may_write_memory)
1210 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1211 core_addr_to_string_nz (offset), plongest (len));
1212
9b409511
YQ
1213 *xfered_len = 0;
1214
cf7a04e8
DJ
1215 /* If this is a memory transfer, let the memory-specific code
1216 have a look at it instead. Memory transfers are more
1217 complicated. */
29453a14
YQ
1218 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1219 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1220 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1221 writebuf, offset, len, xfered_len);
9f713294 1222 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1223 {
9f713294 1224 /* Request the normal memory object from other layers. */
9b409511
YQ
1225 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1226 xfered_len);
cf7a04e8 1227 }
9f713294
YQ
1228 else
1229 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1230 writebuf, offset, len, xfered_len);
cf7a04e8 1231
27394598
AC
1232 if (targetdebug)
1233 {
1234 const unsigned char *myaddr = NULL;
1235
1236 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1237 "%s:target_xfer_partial "
9b409511 1238 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1239 ops->to_shortname,
1240 (int) object,
1241 (annex ? annex : "(null)"),
53b71562
JB
1242 host_address_to_string (readbuf),
1243 host_address_to_string (writebuf),
0b1553bc 1244 core_addr_to_string_nz (offset),
9b409511
YQ
1245 pulongest (len), retval,
1246 pulongest (*xfered_len));
27394598
AC
1247
1248 if (readbuf)
1249 myaddr = readbuf;
1250 if (writebuf)
1251 myaddr = writebuf;
9b409511 1252 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1253 {
1254 int i;
2bc416ba 1255
27394598 1256 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1257 for (i = 0; i < *xfered_len; i++)
27394598 1258 {
53b71562 1259 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1260 {
1261 if (targetdebug < 2 && i > 0)
1262 {
1263 fprintf_unfiltered (gdb_stdlog, " ...");
1264 break;
1265 }
1266 fprintf_unfiltered (gdb_stdlog, "\n");
1267 }
2bc416ba 1268
27394598
AC
1269 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1270 }
1271 }
2bc416ba 1272
27394598
AC
1273 fputc_unfiltered ('\n', gdb_stdlog);
1274 }
9b409511
YQ
1275
1276 /* Check implementations of to_xfer_partial update *XFERED_LEN
1277 properly. Do assertion after printing debug messages, so that we
1278 can find more clues on assertion failure from debugging messages. */
bc113b4e 1279 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1280 gdb_assert (*xfered_len > 0);
1281
27394598
AC
1282 return retval;
1283}
1284
578d3588
PA
1285/* Read LEN bytes of target memory at address MEMADDR, placing the
1286 results in GDB's memory at MYADDR. Returns either 0 for success or
9b409511 1287 TARGET_XFER_E_IO if any error occurs.
c906108c
SS
1288
1289 If an error occurs, no guarantee is made about the contents of the data at
1290 MYADDR. In particular, the caller should not depend upon partial reads
1291 filling the buffer with good data. There is no way for the caller to know
1292 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1293 deal with partial reads should call target_read (which will retry until
c378eb4e 1294 it makes no progress, and then return how much was transferred). */
c906108c
SS
1295
1296int
1b162304 1297target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1298{
c35b1492
PA
1299 /* Dispatch to the topmost target, not the flattened current_target.
1300 Memory accesses check target->to_has_(all_)memory, and the
1301 flattened target doesn't inherit those. */
1302 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1303 myaddr, memaddr, len) == len)
1304 return 0;
0779438d 1305 else
578d3588 1306 return TARGET_XFER_E_IO;
c906108c
SS
1307}
1308
aee4bf85
PA
1309/* Like target_read_memory, but specify explicitly that this is a read
1310 from the target's raw memory. That is, this read bypasses the
1311 dcache, breakpoint shadowing, etc. */
1312
1313int
1314target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1315{
1316 /* See comment in target_read_memory about why the request starts at
1317 current_target.beneath. */
1318 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1319 myaddr, memaddr, len) == len)
1320 return 0;
1321 else
1322 return TARGET_XFER_E_IO;
1323}
1324
4e5d721f
DE
1325/* Like target_read_memory, but specify explicitly that this is a read from
1326 the target's stack. This may trigger different cache behavior. */
1327
1328int
45aa4659 1329target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1330{
aee4bf85
PA
1331 /* See comment in target_read_memory about why the request starts at
1332 current_target.beneath. */
4e5d721f
DE
1333 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1334 myaddr, memaddr, len) == len)
1335 return 0;
1336 else
578d3588 1337 return TARGET_XFER_E_IO;
4e5d721f
DE
1338}
1339
29453a14
YQ
1340/* Like target_read_memory, but specify explicitly that this is a read from
1341 the target's code. This may trigger different cache behavior. */
1342
1343int
1344target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1345{
aee4bf85
PA
1346 /* See comment in target_read_memory about why the request starts at
1347 current_target.beneath. */
29453a14
YQ
1348 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1349 myaddr, memaddr, len) == len)
1350 return 0;
1351 else
1352 return TARGET_XFER_E_IO;
1353}
1354
7f79c47e 1355/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
9b409511 1356 Returns either 0 for success or TARGET_XFER_E_IO if any
578d3588
PA
1357 error occurs. If an error occurs, no guarantee is made about how
1358 much data got written. Callers that can deal with partial writes
1359 should call target_write. */
7f79c47e 1360
c906108c 1361int
45aa4659 1362target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1363{
aee4bf85
PA
1364 /* See comment in target_read_memory about why the request starts at
1365 current_target.beneath. */
c35b1492 1366 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1367 myaddr, memaddr, len) == len)
1368 return 0;
0779438d 1369 else
578d3588 1370 return TARGET_XFER_E_IO;
c906108c 1371}
c5aa993b 1372
f0ba3972 1373/* Write LEN bytes from MYADDR to target raw memory at address
9b409511 1374 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
578d3588
PA
1375 if any error occurs. If an error occurs, no guarantee is made
1376 about how much data got written. Callers that can deal with
1377 partial writes should call target_write. */
f0ba3972
PA
1378
1379int
45aa4659 1380target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1381{
aee4bf85
PA
1382 /* See comment in target_read_memory about why the request starts at
1383 current_target.beneath. */
f0ba3972
PA
1384 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1385 myaddr, memaddr, len) == len)
1386 return 0;
1387 else
578d3588 1388 return TARGET_XFER_E_IO;
f0ba3972
PA
1389}
1390
fd79ecee
DJ
1391/* Fetch the target's memory map. */
1392
1393VEC(mem_region_s) *
1394target_memory_map (void)
1395{
1396 VEC(mem_region_s) *result;
1397 struct mem_region *last_one, *this_one;
1398 int ix;
1399 struct target_ops *t;
1400
1401 if (targetdebug)
1402 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1403
6b2c5a57 1404 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1405 if (result == NULL)
1406 return NULL;
1407
1408 qsort (VEC_address (mem_region_s, result),
1409 VEC_length (mem_region_s, result),
1410 sizeof (struct mem_region), mem_region_cmp);
1411
1412 /* Check that regions do not overlap. Simultaneously assign
1413 a numbering for the "mem" commands to use to refer to
1414 each region. */
1415 last_one = NULL;
1416 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1417 {
1418 this_one->number = ix;
1419
1420 if (last_one && last_one->hi > this_one->lo)
1421 {
1422 warning (_("Overlapping regions in memory map: ignoring"));
1423 VEC_free (mem_region_s, result);
1424 return NULL;
1425 }
1426 last_one = this_one;
1427 }
1428
1429 return result;
1430}
1431
a76d924d
DJ
1432void
1433target_flash_erase (ULONGEST address, LONGEST length)
1434{
e8a6c6ac
TT
1435 if (targetdebug)
1436 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1437 hex_string (address), phex (length, 0));
1438 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1439}
1440
1441void
1442target_flash_done (void)
1443{
f6fb2925
TT
1444 if (targetdebug)
1445 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1446 current_target.to_flash_done (&current_target);
a76d924d
DJ
1447}
1448
920d2a44
AC
1449static void
1450show_trust_readonly (struct ui_file *file, int from_tty,
1451 struct cmd_list_element *c, const char *value)
1452{
3e43a32a
MS
1453 fprintf_filtered (file,
1454 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1455 value);
1456}
3a11626d 1457
7f79c47e 1458/* Target vector read/write partial wrapper functions. */
0088c768 1459
9b409511 1460static enum target_xfer_status
1e3ff5ad
AC
1461target_read_partial (struct target_ops *ops,
1462 enum target_object object,
1b0ba102 1463 const char *annex, gdb_byte *buf,
9b409511
YQ
1464 ULONGEST offset, ULONGEST len,
1465 ULONGEST *xfered_len)
1e3ff5ad 1466{
9b409511
YQ
1467 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1468 xfered_len);
1e3ff5ad
AC
1469}
1470
8a55ffb0 1471static enum target_xfer_status
1e3ff5ad
AC
1472target_write_partial (struct target_ops *ops,
1473 enum target_object object,
1b0ba102 1474 const char *annex, const gdb_byte *buf,
9b409511 1475 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1476{
9b409511
YQ
1477 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1478 xfered_len);
1e3ff5ad
AC
1479}
1480
1481/* Wrappers to perform the full transfer. */
7f79c47e
DE
1482
1483/* For docs on target_read see target.h. */
1484
1e3ff5ad
AC
1485LONGEST
1486target_read (struct target_ops *ops,
1487 enum target_object object,
1b0ba102 1488 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1489 ULONGEST offset, LONGEST len)
1490{
1491 LONGEST xfered = 0;
5d502164 1492
1e3ff5ad
AC
1493 while (xfered < len)
1494 {
9b409511
YQ
1495 ULONGEST xfered_len;
1496 enum target_xfer_status status;
1497
1498 status = target_read_partial (ops, object, annex,
1499 (gdb_byte *) buf + xfered,
1500 offset + xfered, len - xfered,
1501 &xfered_len);
5d502164 1502
1e3ff5ad 1503 /* Call an observer, notifying them of the xfer progress? */
9b409511 1504 if (status == TARGET_XFER_EOF)
13547ab6 1505 return xfered;
9b409511
YQ
1506 else if (status == TARGET_XFER_OK)
1507 {
1508 xfered += xfered_len;
1509 QUIT;
1510 }
1511 else
0088c768 1512 return -1;
9b409511 1513
1e3ff5ad
AC
1514 }
1515 return len;
1516}
1517
f1a507a1
JB
1518/* Assuming that the entire [begin, end) range of memory cannot be
1519 read, try to read whatever subrange is possible to read.
1520
1521 The function returns, in RESULT, either zero or one memory block.
1522 If there's a readable subrange at the beginning, it is completely
1523 read and returned. Any further readable subrange will not be read.
1524 Otherwise, if there's a readable subrange at the end, it will be
1525 completely read and returned. Any readable subranges before it
1526 (obviously, not starting at the beginning), will be ignored. In
1527 other cases -- either no readable subrange, or readable subrange(s)
1528 that is neither at the beginning, or end, nothing is returned.
1529
1530 The purpose of this function is to handle a read across a boundary
1531 of accessible memory in a case when memory map is not available.
1532 The above restrictions are fine for this case, but will give
1533 incorrect results if the memory is 'patchy'. However, supporting
1534 'patchy' memory would require trying to read every single byte,
1535 and it seems unacceptable solution. Explicit memory map is
1536 recommended for this case -- and target_read_memory_robust will
1537 take care of reading multiple ranges then. */
8dedea02
VP
1538
1539static void
3e43a32a
MS
1540read_whatever_is_readable (struct target_ops *ops,
1541 ULONGEST begin, ULONGEST end,
8dedea02 1542 VEC(memory_read_result_s) **result)
d5086790 1543{
f1a507a1 1544 gdb_byte *buf = xmalloc (end - begin);
8dedea02
VP
1545 ULONGEST current_begin = begin;
1546 ULONGEST current_end = end;
1547 int forward;
1548 memory_read_result_s r;
9b409511 1549 ULONGEST xfered_len;
8dedea02
VP
1550
1551 /* If we previously failed to read 1 byte, nothing can be done here. */
1552 if (end - begin <= 1)
13b3fd9b
MS
1553 {
1554 xfree (buf);
1555 return;
1556 }
8dedea02
VP
1557
1558 /* Check that either first or the last byte is readable, and give up
c378eb4e 1559 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1560 at the boundary of accessible region. */
1561 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1562 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1563 {
1564 forward = 1;
1565 ++current_begin;
1566 }
1567 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1568 buf + (end-begin) - 1, end - 1, 1,
1569 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1570 {
1571 forward = 0;
1572 --current_end;
1573 }
1574 else
1575 {
13b3fd9b 1576 xfree (buf);
8dedea02
VP
1577 return;
1578 }
1579
1580 /* Loop invariant is that the [current_begin, current_end) was previously
1581 found to be not readable as a whole.
1582
1583 Note loop condition -- if the range has 1 byte, we can't divide the range
1584 so there's no point trying further. */
1585 while (current_end - current_begin > 1)
1586 {
1587 ULONGEST first_half_begin, first_half_end;
1588 ULONGEST second_half_begin, second_half_end;
1589 LONGEST xfer;
8dedea02 1590 ULONGEST middle = current_begin + (current_end - current_begin)/2;
f1a507a1 1591
8dedea02
VP
1592 if (forward)
1593 {
1594 first_half_begin = current_begin;
1595 first_half_end = middle;
1596 second_half_begin = middle;
1597 second_half_end = current_end;
1598 }
1599 else
1600 {
1601 first_half_begin = middle;
1602 first_half_end = current_end;
1603 second_half_begin = current_begin;
1604 second_half_end = middle;
1605 }
1606
1607 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1608 buf + (first_half_begin - begin),
1609 first_half_begin,
1610 first_half_end - first_half_begin);
1611
1612 if (xfer == first_half_end - first_half_begin)
1613 {
c378eb4e 1614 /* This half reads up fine. So, the error must be in the
3e43a32a 1615 other half. */
8dedea02
VP
1616 current_begin = second_half_begin;
1617 current_end = second_half_end;
1618 }
1619 else
1620 {
c378eb4e
MS
1621 /* This half is not readable. Because we've tried one byte, we
1622 know some part of this half if actually redable. Go to the next
8dedea02
VP
1623 iteration to divide again and try to read.
1624
1625 We don't handle the other half, because this function only tries
1626 to read a single readable subrange. */
1627 current_begin = first_half_begin;
1628 current_end = first_half_end;
1629 }
1630 }
1631
1632 if (forward)
1633 {
1634 /* The [begin, current_begin) range has been read. */
1635 r.begin = begin;
1636 r.end = current_begin;
1637 r.data = buf;
1638 }
1639 else
1640 {
1641 /* The [current_end, end) range has been read. */
1642 LONGEST rlen = end - current_end;
f1a507a1 1643
8dedea02
VP
1644 r.data = xmalloc (rlen);
1645 memcpy (r.data, buf + current_end - begin, rlen);
1646 r.begin = current_end;
1647 r.end = end;
1648 xfree (buf);
1649 }
1650 VEC_safe_push(memory_read_result_s, (*result), &r);
1651}
1652
1653void
1654free_memory_read_result_vector (void *x)
1655{
1656 VEC(memory_read_result_s) *v = x;
1657 memory_read_result_s *current;
1658 int ix;
1659
1660 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1661 {
1662 xfree (current->data);
1663 }
1664 VEC_free (memory_read_result_s, v);
1665}
1666
1667VEC(memory_read_result_s) *
1668read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1669{
1670 VEC(memory_read_result_s) *result = 0;
1671
1672 LONGEST xfered = 0;
d5086790
VP
1673 while (xfered < len)
1674 {
8dedea02
VP
1675 struct mem_region *region = lookup_mem_region (offset + xfered);
1676 LONGEST rlen;
5d502164 1677
8dedea02
VP
1678 /* If there is no explicit region, a fake one should be created. */
1679 gdb_assert (region);
1680
1681 if (region->hi == 0)
1682 rlen = len - xfered;
1683 else
1684 rlen = region->hi - offset;
1685
1686 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1687 {
c378eb4e 1688 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1689 if the region is explicitly marked inaccessible, or
1690 'inaccessible-by-default' is in effect. */
1691 xfered += rlen;
1692 }
1693 else
1694 {
1695 LONGEST to_read = min (len - xfered, rlen);
1696 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1697
1698 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1699 (gdb_byte *) buffer,
1700 offset + xfered, to_read);
1701 /* Call an observer, notifying them of the xfer progress? */
d5086790 1702 if (xfer <= 0)
d5086790 1703 {
c378eb4e 1704 /* Got an error reading full chunk. See if maybe we can read
8dedea02
VP
1705 some subrange. */
1706 xfree (buffer);
3e43a32a
MS
1707 read_whatever_is_readable (ops, offset + xfered,
1708 offset + xfered + to_read, &result);
8dedea02 1709 xfered += to_read;
d5086790 1710 }
8dedea02
VP
1711 else
1712 {
1713 struct memory_read_result r;
1714 r.data = buffer;
1715 r.begin = offset + xfered;
1716 r.end = r.begin + xfer;
1717 VEC_safe_push (memory_read_result_s, result, &r);
1718 xfered += xfer;
1719 }
1720 QUIT;
d5086790 1721 }
d5086790 1722 }
8dedea02 1723 return result;
d5086790
VP
1724}
1725
8dedea02 1726
cf7a04e8
DJ
1727/* An alternative to target_write with progress callbacks. */
1728
1e3ff5ad 1729LONGEST
cf7a04e8
DJ
1730target_write_with_progress (struct target_ops *ops,
1731 enum target_object object,
1732 const char *annex, const gdb_byte *buf,
1733 ULONGEST offset, LONGEST len,
1734 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad
AC
1735{
1736 LONGEST xfered = 0;
a76d924d
DJ
1737
1738 /* Give the progress callback a chance to set up. */
1739 if (progress)
1740 (*progress) (0, baton);
1741
1e3ff5ad
AC
1742 while (xfered < len)
1743 {
9b409511
YQ
1744 ULONGEST xfered_len;
1745 enum target_xfer_status status;
1746
1747 status = target_write_partial (ops, object, annex,
1748 (gdb_byte *) buf + xfered,
1749 offset + xfered, len - xfered,
1750 &xfered_len);
cf7a04e8 1751
5c328c05
YQ
1752 if (status != TARGET_XFER_OK)
1753 return status == TARGET_XFER_EOF ? xfered : -1;
cf7a04e8
DJ
1754
1755 if (progress)
9b409511 1756 (*progress) (xfered_len, baton);
cf7a04e8 1757
9b409511 1758 xfered += xfered_len;
1e3ff5ad
AC
1759 QUIT;
1760 }
1761 return len;
1762}
1763
7f79c47e
DE
1764/* For docs on target_write see target.h. */
1765
cf7a04e8
DJ
1766LONGEST
1767target_write (struct target_ops *ops,
1768 enum target_object object,
1769 const char *annex, const gdb_byte *buf,
1770 ULONGEST offset, LONGEST len)
1771{
1772 return target_write_with_progress (ops, object, annex, buf, offset, len,
1773 NULL, NULL);
1774}
1775
159f81f3
DJ
1776/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1777 the size of the transferred data. PADDING additional bytes are
1778 available in *BUF_P. This is a helper function for
1779 target_read_alloc; see the declaration of that function for more
1780 information. */
13547ab6 1781
159f81f3
DJ
1782static LONGEST
1783target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1784 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1785{
1786 size_t buf_alloc, buf_pos;
1787 gdb_byte *buf;
13547ab6
DJ
1788
1789 /* This function does not have a length parameter; it reads the
1790 entire OBJECT). Also, it doesn't support objects fetched partly
1791 from one target and partly from another (in a different stratum,
1792 e.g. a core file and an executable). Both reasons make it
1793 unsuitable for reading memory. */
1794 gdb_assert (object != TARGET_OBJECT_MEMORY);
1795
1796 /* Start by reading up to 4K at a time. The target will throttle
1797 this number down if necessary. */
1798 buf_alloc = 4096;
1799 buf = xmalloc (buf_alloc);
1800 buf_pos = 0;
1801 while (1)
1802 {
9b409511
YQ
1803 ULONGEST xfered_len;
1804 enum target_xfer_status status;
1805
1806 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1807 buf_pos, buf_alloc - buf_pos - padding,
1808 &xfered_len);
1809
1810 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1811 {
1812 /* Read all there was. */
1813 if (buf_pos == 0)
1814 xfree (buf);
1815 else
1816 *buf_p = buf;
1817 return buf_pos;
1818 }
9b409511
YQ
1819 else if (status != TARGET_XFER_OK)
1820 {
1821 /* An error occurred. */
1822 xfree (buf);
1823 return TARGET_XFER_E_IO;
1824 }
13547ab6 1825
9b409511 1826 buf_pos += xfered_len;
13547ab6
DJ
1827
1828 /* If the buffer is filling up, expand it. */
1829 if (buf_alloc < buf_pos * 2)
1830 {
1831 buf_alloc *= 2;
1832 buf = xrealloc (buf, buf_alloc);
1833 }
1834
1835 QUIT;
1836 }
1837}
1838
159f81f3
DJ
1839/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1840 the size of the transferred data. See the declaration in "target.h"
1841 function for more information about the return value. */
1842
1843LONGEST
1844target_read_alloc (struct target_ops *ops, enum target_object object,
1845 const char *annex, gdb_byte **buf_p)
1846{
1847 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1848}
1849
1850/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1851 returned as a string, allocated using xmalloc. If an error occurs
1852 or the transfer is unsupported, NULL is returned. Empty objects
1853 are returned as allocated but empty strings. A warning is issued
1854 if the result contains any embedded NUL bytes. */
1855
1856char *
1857target_read_stralloc (struct target_ops *ops, enum target_object object,
1858 const char *annex)
1859{
39086a0e
PA
1860 gdb_byte *buffer;
1861 char *bufstr;
7313baad 1862 LONGEST i, transferred;
159f81f3 1863
39086a0e
PA
1864 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1865 bufstr = (char *) buffer;
159f81f3
DJ
1866
1867 if (transferred < 0)
1868 return NULL;
1869
1870 if (transferred == 0)
1871 return xstrdup ("");
1872
39086a0e 1873 bufstr[transferred] = 0;
7313baad
UW
1874
1875 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
1876 for (i = strlen (bufstr); i < transferred; i++)
1877 if (bufstr[i] != 0)
7313baad
UW
1878 {
1879 warning (_("target object %d, annex %s, "
1880 "contained unexpected null characters"),
1881 (int) object, annex ? annex : "(none)");
1882 break;
1883 }
159f81f3 1884
39086a0e 1885 return bufstr;
159f81f3
DJ
1886}
1887
b6591e8b
AC
1888/* Memory transfer methods. */
1889
1890void
1b0ba102 1891get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
1892 LONGEST len)
1893{
07b82ea5
PA
1894 /* This method is used to read from an alternate, non-current
1895 target. This read must bypass the overlay support (as symbols
1896 don't match this target), and GDB's internal cache (wrong cache
1897 for this target). */
1898 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 1899 != len)
578d3588 1900 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
1901}
1902
1903ULONGEST
5d502164
MS
1904get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1905 int len, enum bfd_endian byte_order)
b6591e8b 1906{
f6519ebc 1907 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
1908
1909 gdb_assert (len <= sizeof (buf));
1910 get_target_memory (ops, addr, buf, len);
e17a4113 1911 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
1912}
1913
3db08215
MM
1914/* See target.h. */
1915
d914c394
SS
1916int
1917target_insert_breakpoint (struct gdbarch *gdbarch,
1918 struct bp_target_info *bp_tgt)
1919{
1920 if (!may_insert_breakpoints)
1921 {
1922 warning (_("May not insert breakpoints"));
1923 return 1;
1924 }
1925
6b84065d
TT
1926 return current_target.to_insert_breakpoint (&current_target,
1927 gdbarch, bp_tgt);
d914c394
SS
1928}
1929
3db08215
MM
1930/* See target.h. */
1931
d914c394 1932int
6b84065d
TT
1933target_remove_breakpoint (struct gdbarch *gdbarch,
1934 struct bp_target_info *bp_tgt)
d914c394
SS
1935{
1936 /* This is kind of a weird case to handle, but the permission might
1937 have been changed after breakpoints were inserted - in which case
1938 we should just take the user literally and assume that any
1939 breakpoints should be left in place. */
1940 if (!may_insert_breakpoints)
1941 {
1942 warning (_("May not remove breakpoints"));
1943 return 1;
1944 }
1945
6b84065d
TT
1946 return current_target.to_remove_breakpoint (&current_target,
1947 gdbarch, bp_tgt);
d914c394
SS
1948}
1949
c906108c 1950static void
fba45db2 1951target_info (char *args, int from_tty)
c906108c
SS
1952{
1953 struct target_ops *t;
c906108c 1954 int has_all_mem = 0;
c5aa993b 1955
c906108c 1956 if (symfile_objfile != NULL)
4262abfb
JK
1957 printf_unfiltered (_("Symbols from \"%s\".\n"),
1958 objfile_name (symfile_objfile));
c906108c 1959
258b763a 1960 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 1961 {
c35b1492 1962 if (!(*t->to_has_memory) (t))
c906108c
SS
1963 continue;
1964
c5aa993b 1965 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
1966 continue;
1967 if (has_all_mem)
3e43a32a
MS
1968 printf_unfiltered (_("\tWhile running this, "
1969 "GDB does not access memory from...\n"));
c5aa993b
JM
1970 printf_unfiltered ("%s:\n", t->to_longname);
1971 (t->to_files_info) (t);
c35b1492 1972 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
1973 }
1974}
1975
fd79ecee
DJ
1976/* This function is called before any new inferior is created, e.g.
1977 by running a program, attaching, or connecting to a target.
1978 It cleans up any state from previous invocations which might
1979 change between runs. This is a subset of what target_preopen
1980 resets (things which might change between targets). */
1981
1982void
1983target_pre_inferior (int from_tty)
1984{
c378eb4e 1985 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 1986 inferior might have survived and is entirely wrong for the new
c378eb4e 1987 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
1988 to reproduce:
1989
1990 bash$ ./foo&
1991 [1] 4711
1992 bash$ ./foo&
1993 [1] 4712
1994 bash$ gdb ./foo
1995 [...]
1996 (gdb) attach 4711
1997 (gdb) detach
1998 (gdb) attach 4712
1999 Cannot access memory at address 0xdeadbeef
2000 */
b9db4ced 2001
50c71eaf
PA
2002 /* In some OSs, the shared library list is the same/global/shared
2003 across inferiors. If code is shared between processes, so are
2004 memory regions and features. */
f5656ead 2005 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
2006 {
2007 no_shared_libraries (NULL, from_tty);
2008
2009 invalidate_target_mem_regions ();
424163ea 2010
50c71eaf
PA
2011 target_clear_description ();
2012 }
8ffcbaaf
YQ
2013
2014 agent_capability_invalidate ();
fd79ecee
DJ
2015}
2016
b8fa0bfa
PA
2017/* Callback for iterate_over_inferiors. Gets rid of the given
2018 inferior. */
2019
2020static int
2021dispose_inferior (struct inferior *inf, void *args)
2022{
2023 struct thread_info *thread;
2024
2025 thread = any_thread_of_process (inf->pid);
2026 if (thread)
2027 {
2028 switch_to_thread (thread->ptid);
2029
2030 /* Core inferiors actually should be detached, not killed. */
2031 if (target_has_execution)
2032 target_kill ();
2033 else
2034 target_detach (NULL, 0);
2035 }
2036
2037 return 0;
2038}
2039
c906108c
SS
2040/* This is to be called by the open routine before it does
2041 anything. */
2042
2043void
fba45db2 2044target_preopen (int from_tty)
c906108c 2045{
c5aa993b 2046 dont_repeat ();
c906108c 2047
b8fa0bfa 2048 if (have_inferiors ())
c5aa993b 2049 {
adf40b2e 2050 if (!from_tty
b8fa0bfa
PA
2051 || !have_live_inferiors ()
2052 || query (_("A program is being debugged already. Kill it? ")))
2053 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2054 else
8a3fe4f8 2055 error (_("Program not killed."));
c906108c
SS
2056 }
2057
2058 /* Calling target_kill may remove the target from the stack. But if
2059 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2060 /* Leave the exec target, though. The user may be switching from a
2061 live process to a core of the same program. */
460014f5 2062 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2063
2064 target_pre_inferior (from_tty);
c906108c
SS
2065}
2066
2067/* Detach a target after doing deferred register stores. */
2068
2069void
52554a0e 2070target_detach (const char *args, int from_tty)
c906108c 2071{
136d6dae
VP
2072 struct target_ops* t;
2073
f5656ead 2074 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2075 /* Don't remove global breakpoints here. They're removed on
2076 disconnection from the target. */
2077 ;
2078 else
2079 /* If we're in breakpoints-always-inserted mode, have to remove
2080 them before detaching. */
dfd4cc63 2081 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2082
24291992
PA
2083 prepare_for_detach ();
2084
09da0d0a
TT
2085 current_target.to_detach (&current_target, args, from_tty);
2086 if (targetdebug)
2087 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2088 args, from_tty);
c906108c
SS
2089}
2090
6ad8ae5c 2091void
fee354ee 2092target_disconnect (const char *args, int from_tty)
6ad8ae5c 2093{
50c71eaf
PA
2094 /* If we're in breakpoints-always-inserted mode or if breakpoints
2095 are global across processes, we have to remove them before
2096 disconnecting. */
74960c60
VP
2097 remove_breakpoints ();
2098
86a0854a
TT
2099 if (targetdebug)
2100 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2101 args, from_tty);
2102 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2103}
2104
117de6a9 2105ptid_t
47608cb1 2106target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9
PA
2107{
2108 struct target_ops *t;
6b84065d
TT
2109 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2110 status, options);
117de6a9 2111
6b84065d 2112 if (targetdebug)
117de6a9 2113 {
6b84065d
TT
2114 char *status_string;
2115 char *options_string;
117de6a9 2116
6b84065d
TT
2117 status_string = target_waitstatus_to_string (status);
2118 options_string = target_options_to_string (options);
2119 fprintf_unfiltered (gdb_stdlog,
2120 "target_wait (%d, status, options={%s})"
2121 " = %d, %s\n",
2122 ptid_get_pid (ptid), options_string,
2123 ptid_get_pid (retval), status_string);
2124 xfree (status_string);
2125 xfree (options_string);
117de6a9
PA
2126 }
2127
6b84065d 2128 return retval;
117de6a9
PA
2129}
2130
2131char *
2132target_pid_to_str (ptid_t ptid)
2133{
770234d3 2134 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2135}
2136
4694da01
TT
2137char *
2138target_thread_name (struct thread_info *info)
2139{
825828fc 2140 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2141}
2142
e1ac3328 2143void
2ea28649 2144target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2145{
28439f5e
PA
2146 struct target_ops *t;
2147
4e5d721f 2148 target_dcache_invalidate ();
28439f5e 2149
6b84065d
TT
2150 current_target.to_resume (&current_target, ptid, step, signal);
2151 if (targetdebug)
2152 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2153 ptid_get_pid (ptid),
2154 step ? "step" : "continue",
2155 gdb_signal_to_name (signal));
28439f5e 2156
6b84065d 2157 registers_changed_ptid (ptid);
251bde03
PA
2158 /* We only set the internal executing state here. The user/frontend
2159 running state is set at a higher level. */
6b84065d 2160 set_executing (ptid, 1);
6b84065d 2161 clear_inline_frame_state (ptid);
e1ac3328 2162}
2455069d
UW
2163
2164void
2165target_pass_signals (int numsigs, unsigned char *pass_signals)
2166{
035cad7f 2167 if (targetdebug)
2455069d 2168 {
035cad7f 2169 int i;
2455069d 2170
035cad7f
TT
2171 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2172 numsigs);
2455069d 2173
035cad7f
TT
2174 for (i = 0; i < numsigs; i++)
2175 if (pass_signals[i])
2176 fprintf_unfiltered (gdb_stdlog, " %s",
2177 gdb_signal_to_name (i));
2455069d 2178
035cad7f 2179 fprintf_unfiltered (gdb_stdlog, " })\n");
2455069d 2180 }
035cad7f
TT
2181
2182 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2183}
2184
9b224c5e
PA
2185void
2186target_program_signals (int numsigs, unsigned char *program_signals)
2187{
7d4f8efa 2188 if (targetdebug)
9b224c5e 2189 {
7d4f8efa 2190 int i;
9b224c5e 2191
7d4f8efa
TT
2192 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2193 numsigs);
9b224c5e 2194
7d4f8efa
TT
2195 for (i = 0; i < numsigs; i++)
2196 if (program_signals[i])
2197 fprintf_unfiltered (gdb_stdlog, " %s",
2198 gdb_signal_to_name (i));
9b224c5e 2199
7d4f8efa 2200 fprintf_unfiltered (gdb_stdlog, " })\n");
9b224c5e 2201 }
7d4f8efa
TT
2202
2203 (*current_target.to_program_signals) (&current_target,
2204 numsigs, program_signals);
9b224c5e
PA
2205}
2206
098dba18
TT
2207static int
2208default_follow_fork (struct target_ops *self, int follow_child,
2209 int detach_fork)
2210{
2211 /* Some target returned a fork event, but did not know how to follow it. */
2212 internal_error (__FILE__, __LINE__,
2213 _("could not find a target to follow fork"));
2214}
2215
ee057212
DJ
2216/* Look through the list of possible targets for a target that can
2217 follow forks. */
2218
2219int
07107ca6 2220target_follow_fork (int follow_child, int detach_fork)
ee057212 2221{
098dba18
TT
2222 int retval = current_target.to_follow_fork (&current_target,
2223 follow_child, detach_fork);
ee057212 2224
098dba18
TT
2225 if (targetdebug)
2226 fprintf_unfiltered (gdb_stdlog,
2227 "target_follow_fork (%d, %d) = %d\n",
2228 follow_child, detach_fork, retval);
2229 return retval;
ee057212
DJ
2230}
2231
8d657035
TT
2232static void
2233default_mourn_inferior (struct target_ops *self)
2234{
2235 internal_error (__FILE__, __LINE__,
2236 _("could not find a target to follow mourn inferior"));
2237}
2238
136d6dae
VP
2239void
2240target_mourn_inferior (void)
2241{
8d657035
TT
2242 current_target.to_mourn_inferior (&current_target);
2243 if (targetdebug)
2244 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
136d6dae 2245
8d657035
TT
2246 /* We no longer need to keep handles on any of the object files.
2247 Make sure to release them to avoid unnecessarily locking any
2248 of them while we're not actually debugging. */
2249 bfd_cache_close_all ();
136d6dae
VP
2250}
2251
424163ea
DJ
2252/* Look for a target which can describe architectural features, starting
2253 from TARGET. If we find one, return its description. */
2254
2255const struct target_desc *
2256target_read_description (struct target_ops *target)
2257{
2117c711 2258 return target->to_read_description (target);
424163ea
DJ
2259}
2260
58a5184e 2261/* This implements a basic search of memory, reading target memory and
08388c79
DE
2262 performing the search here (as opposed to performing the search in on the
2263 target side with, for example, gdbserver). */
2264
2265int
2266simple_search_memory (struct target_ops *ops,
2267 CORE_ADDR start_addr, ULONGEST search_space_len,
2268 const gdb_byte *pattern, ULONGEST pattern_len,
2269 CORE_ADDR *found_addrp)
2270{
2271 /* NOTE: also defined in find.c testcase. */
2272#define SEARCH_CHUNK_SIZE 16000
2273 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2274 /* Buffer to hold memory contents for searching. */
2275 gdb_byte *search_buf;
2276 unsigned search_buf_size;
2277 struct cleanup *old_cleanups;
2278
2279 search_buf_size = chunk_size + pattern_len - 1;
2280
2281 /* No point in trying to allocate a buffer larger than the search space. */
2282 if (search_space_len < search_buf_size)
2283 search_buf_size = search_space_len;
2284
2285 search_buf = malloc (search_buf_size);
2286 if (search_buf == NULL)
5e1471f5 2287 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2288 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2289
2290 /* Prime the search buffer. */
2291
2292 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2293 search_buf, start_addr, search_buf_size) != search_buf_size)
2294 {
b3dc46ff
AB
2295 warning (_("Unable to access %s bytes of target "
2296 "memory at %s, halting search."),
2297 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2298 do_cleanups (old_cleanups);
2299 return -1;
2300 }
2301
2302 /* Perform the search.
2303
2304 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2305 When we've scanned N bytes we copy the trailing bytes to the start and
2306 read in another N bytes. */
2307
2308 while (search_space_len >= pattern_len)
2309 {
2310 gdb_byte *found_ptr;
2311 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2312
2313 found_ptr = memmem (search_buf, nr_search_bytes,
2314 pattern, pattern_len);
2315
2316 if (found_ptr != NULL)
2317 {
2318 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2319
08388c79
DE
2320 *found_addrp = found_addr;
2321 do_cleanups (old_cleanups);
2322 return 1;
2323 }
2324
2325 /* Not found in this chunk, skip to next chunk. */
2326
2327 /* Don't let search_space_len wrap here, it's unsigned. */
2328 if (search_space_len >= chunk_size)
2329 search_space_len -= chunk_size;
2330 else
2331 search_space_len = 0;
2332
2333 if (search_space_len >= pattern_len)
2334 {
2335 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2336 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2337 int nr_to_read;
2338
2339 /* Copy the trailing part of the previous iteration to the front
2340 of the buffer for the next iteration. */
2341 gdb_assert (keep_len == pattern_len - 1);
2342 memcpy (search_buf, search_buf + chunk_size, keep_len);
2343
2344 nr_to_read = min (search_space_len - keep_len, chunk_size);
2345
2346 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2347 search_buf + keep_len, read_addr,
2348 nr_to_read) != nr_to_read)
2349 {
b3dc46ff 2350 warning (_("Unable to access %s bytes of target "
9b20d036 2351 "memory at %s, halting search."),
b3dc46ff 2352 plongest (nr_to_read),
08388c79
DE
2353 hex_string (read_addr));
2354 do_cleanups (old_cleanups);
2355 return -1;
2356 }
2357
2358 start_addr += chunk_size;
2359 }
2360 }
2361
2362 /* Not found. */
2363
2364 do_cleanups (old_cleanups);
2365 return 0;
2366}
2367
58a5184e
TT
2368/* Default implementation of memory-searching. */
2369
2370static int
2371default_search_memory (struct target_ops *self,
2372 CORE_ADDR start_addr, ULONGEST search_space_len,
2373 const gdb_byte *pattern, ULONGEST pattern_len,
2374 CORE_ADDR *found_addrp)
2375{
2376 /* Start over from the top of the target stack. */
2377 return simple_search_memory (current_target.beneath,
2378 start_addr, search_space_len,
2379 pattern, pattern_len, found_addrp);
2380}
2381
08388c79
DE
2382/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2383 sequence of bytes in PATTERN with length PATTERN_LEN.
2384
2385 The result is 1 if found, 0 if not found, and -1 if there was an error
2386 requiring halting of the search (e.g. memory read error).
2387 If the pattern is found the address is recorded in FOUND_ADDRP. */
2388
2389int
2390target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2391 const gdb_byte *pattern, ULONGEST pattern_len,
2392 CORE_ADDR *found_addrp)
2393{
08388c79
DE
2394 int found;
2395
08388c79
DE
2396 if (targetdebug)
2397 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2398 hex_string (start_addr));
2399
58a5184e
TT
2400 found = current_target.to_search_memory (&current_target, start_addr,
2401 search_space_len,
2402 pattern, pattern_len, found_addrp);
08388c79
DE
2403
2404 if (targetdebug)
2405 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2406
2407 return found;
2408}
2409
8edfe269
DJ
2410/* Look through the currently pushed targets. If none of them will
2411 be able to restart the currently running process, issue an error
2412 message. */
2413
2414void
2415target_require_runnable (void)
2416{
2417 struct target_ops *t;
2418
2419 for (t = target_stack; t != NULL; t = t->beneath)
2420 {
2421 /* If this target knows how to create a new program, then
2422 assume we will still be able to after killing the current
2423 one. Either killing and mourning will not pop T, or else
2424 find_default_run_target will find it again. */
2425 if (t->to_create_inferior != NULL)
2426 return;
2427
2428 /* Do not worry about thread_stratum targets that can not
2429 create inferiors. Assume they will be pushed again if
2430 necessary, and continue to the process_stratum. */
85e747d2
UW
2431 if (t->to_stratum == thread_stratum
2432 || t->to_stratum == arch_stratum)
8edfe269
DJ
2433 continue;
2434
3e43a32a
MS
2435 error (_("The \"%s\" target does not support \"run\". "
2436 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2437 t->to_shortname);
2438 }
2439
2440 /* This function is only called if the target is running. In that
2441 case there should have been a process_stratum target and it
c378eb4e 2442 should either know how to create inferiors, or not... */
9b20d036 2443 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2444}
2445
6a3cb8e8
PA
2446/* Whether GDB is allowed to fall back to the default run target for
2447 "run", "attach", etc. when no target is connected yet. */
2448static int auto_connect_native_target = 1;
2449
2450static void
2451show_auto_connect_native_target (struct ui_file *file, int from_tty,
2452 struct cmd_list_element *c, const char *value)
2453{
2454 fprintf_filtered (file,
2455 _("Whether GDB may automatically connect to the "
2456 "native target is %s.\n"),
2457 value);
2458}
2459
c906108c
SS
2460/* Look through the list of possible targets for a target that can
2461 execute a run or attach command without any other data. This is
2462 used to locate the default process stratum.
2463
5f667f2d
PA
2464 If DO_MESG is not NULL, the result is always valid (error() is
2465 called for errors); else, return NULL on error. */
c906108c
SS
2466
2467static struct target_ops *
fba45db2 2468find_default_run_target (char *do_mesg)
c906108c 2469{
c906108c 2470 struct target_ops *runable = NULL;
c906108c 2471
6a3cb8e8 2472 if (auto_connect_native_target)
c906108c 2473 {
6a3cb8e8
PA
2474 struct target_ops **t;
2475 int count = 0;
2476
2477 for (t = target_structs; t < target_structs + target_struct_size;
2478 ++t)
c906108c 2479 {
6a3cb8e8
PA
2480 if ((*t)->to_can_run != delegate_can_run && target_can_run (*t))
2481 {
2482 runable = *t;
2483 ++count;
2484 }
c906108c 2485 }
6a3cb8e8
PA
2486
2487 if (count != 1)
2488 runable = NULL;
c906108c
SS
2489 }
2490
6a3cb8e8 2491 if (runable == NULL)
5f667f2d
PA
2492 {
2493 if (do_mesg)
2494 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2495 else
2496 return NULL;
2497 }
c906108c
SS
2498
2499 return runable;
2500}
2501
b3ccfe11 2502/* See target.h. */
c906108c 2503
b3ccfe11
TT
2504struct target_ops *
2505find_attach_target (void)
c906108c
SS
2506{
2507 struct target_ops *t;
2508
b3ccfe11
TT
2509 /* If a target on the current stack can attach, use it. */
2510 for (t = current_target.beneath; t != NULL; t = t->beneath)
2511 {
2512 if (t->to_attach != NULL)
2513 break;
2514 }
c906108c 2515
b3ccfe11
TT
2516 /* Otherwise, use the default run target for attaching. */
2517 if (t == NULL)
2518 t = find_default_run_target ("attach");
b84876c2 2519
b3ccfe11 2520 return t;
b84876c2
PA
2521}
2522
b3ccfe11 2523/* See target.h. */
b84876c2 2524
b3ccfe11
TT
2525struct target_ops *
2526find_run_target (void)
9908b566
VP
2527{
2528 struct target_ops *t;
2529
b3ccfe11
TT
2530 /* If a target on the current stack can attach, use it. */
2531 for (t = current_target.beneath; t != NULL; t = t->beneath)
2532 {
2533 if (t->to_create_inferior != NULL)
2534 break;
2535 }
5d502164 2536
b3ccfe11
TT
2537 /* Otherwise, use the default run target. */
2538 if (t == NULL)
2539 t = find_default_run_target ("run");
9908b566 2540
b3ccfe11 2541 return t;
9908b566
VP
2542}
2543
145b16a9
UW
2544/* Implement the "info proc" command. */
2545
451b7c33 2546int
7bc112c1 2547target_info_proc (const char *args, enum info_proc_what what)
145b16a9
UW
2548{
2549 struct target_ops *t;
2550
2551 /* If we're already connected to something that can get us OS
2552 related data, use it. Otherwise, try using the native
2553 target. */
2554 if (current_target.to_stratum >= process_stratum)
2555 t = current_target.beneath;
2556 else
2557 t = find_default_run_target (NULL);
2558
2559 for (; t != NULL; t = t->beneath)
2560 {
2561 if (t->to_info_proc != NULL)
2562 {
2563 t->to_info_proc (t, args, what);
2564
2565 if (targetdebug)
2566 fprintf_unfiltered (gdb_stdlog,
2567 "target_info_proc (\"%s\", %d)\n", args, what);
2568
451b7c33 2569 return 1;
145b16a9
UW
2570 }
2571 }
2572
451b7c33 2573 return 0;
145b16a9
UW
2574}
2575
03583c20 2576static int
2bfc0540 2577find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2578{
2579 struct target_ops *t;
2580
2581 t = find_default_run_target (NULL);
2582 if (t && t->to_supports_disable_randomization)
2bfc0540 2583 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2584 return 0;
2585}
2586
2587int
2588target_supports_disable_randomization (void)
2589{
2590 struct target_ops *t;
2591
2592 for (t = &current_target; t != NULL; t = t->beneath)
2593 if (t->to_supports_disable_randomization)
2bfc0540 2594 return t->to_supports_disable_randomization (t);
03583c20
UW
2595
2596 return 0;
2597}
9908b566 2598
07e059b5
VP
2599char *
2600target_get_osdata (const char *type)
2601{
07e059b5
VP
2602 struct target_ops *t;
2603
739ef7fb
PA
2604 /* If we're already connected to something that can get us OS
2605 related data, use it. Otherwise, try using the native
2606 target. */
2607 if (current_target.to_stratum >= process_stratum)
6d097e65 2608 t = current_target.beneath;
739ef7fb
PA
2609 else
2610 t = find_default_run_target ("get OS data");
07e059b5
VP
2611
2612 if (!t)
2613 return NULL;
2614
6d097e65 2615 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2616}
2617
8eaff7cd
TT
2618static struct address_space *
2619default_thread_address_space (struct target_ops *self, ptid_t ptid)
6c95b8df
PA
2620{
2621 struct inferior *inf;
6c95b8df
PA
2622
2623 /* Fall-back to the "main" address space of the inferior. */
2624 inf = find_inferior_pid (ptid_get_pid (ptid));
2625
2626 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2627 internal_error (__FILE__, __LINE__,
9b20d036
MS
2628 _("Can't determine the current "
2629 "address space of thread %s\n"),
6c95b8df
PA
2630 target_pid_to_str (ptid));
2631
2632 return inf->aspace;
2633}
2634
8eaff7cd
TT
2635/* Determine the current address space of thread PTID. */
2636
2637struct address_space *
2638target_thread_address_space (ptid_t ptid)
2639{
2640 struct address_space *aspace;
2641
2642 aspace = current_target.to_thread_address_space (&current_target, ptid);
2643 gdb_assert (aspace != NULL);
2644
2645 if (targetdebug)
2646 fprintf_unfiltered (gdb_stdlog,
2647 "target_thread_address_space (%s) = %d\n",
2648 target_pid_to_str (ptid),
2649 address_space_num (aspace));
2650
2651 return aspace;
2652}
2653
7313baad
UW
2654
2655/* Target file operations. */
2656
2657static struct target_ops *
2658default_fileio_target (void)
2659{
2660 /* If we're already connected to something that can perform
2661 file I/O, use it. Otherwise, try using the native target. */
2662 if (current_target.to_stratum >= process_stratum)
2663 return current_target.beneath;
2664 else
2665 return find_default_run_target ("file I/O");
2666}
2667
2668/* Open FILENAME on the target, using FLAGS and MODE. Return a
2669 target file descriptor, or -1 if an error occurs (and set
2670 *TARGET_ERRNO). */
2671int
2672target_fileio_open (const char *filename, int flags, int mode,
2673 int *target_errno)
2674{
2675 struct target_ops *t;
2676
2677 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2678 {
2679 if (t->to_fileio_open != NULL)
2680 {
cd897586 2681 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
7313baad
UW
2682
2683 if (targetdebug)
2684 fprintf_unfiltered (gdb_stdlog,
2685 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2686 filename, flags, mode,
2687 fd, fd != -1 ? 0 : *target_errno);
2688 return fd;
2689 }
2690 }
2691
2692 *target_errno = FILEIO_ENOSYS;
2693 return -1;
2694}
2695
2696/* Write up to LEN bytes from WRITE_BUF to FD on the target.
2697 Return the number of bytes written, or -1 if an error occurs
2698 (and set *TARGET_ERRNO). */
2699int
2700target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2701 ULONGEST offset, int *target_errno)
2702{
2703 struct target_ops *t;
2704
2705 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2706 {
2707 if (t->to_fileio_pwrite != NULL)
2708 {
0d866f62 2709 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
7313baad
UW
2710 target_errno);
2711
2712 if (targetdebug)
2713 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2714 "target_fileio_pwrite (%d,...,%d,%s) "
7313baad 2715 "= %d (%d)\n",
a71b5a38 2716 fd, len, pulongest (offset),
7313baad
UW
2717 ret, ret != -1 ? 0 : *target_errno);
2718 return ret;
2719 }
2720 }
2721
2722 *target_errno = FILEIO_ENOSYS;
2723 return -1;
2724}
2725
2726/* Read up to LEN bytes FD on the target into READ_BUF.
2727 Return the number of bytes read, or -1 if an error occurs
2728 (and set *TARGET_ERRNO). */
2729int
2730target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2731 ULONGEST offset, int *target_errno)
2732{
2733 struct target_ops *t;
2734
2735 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2736 {
2737 if (t->to_fileio_pread != NULL)
2738 {
a3be983c 2739 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
7313baad
UW
2740 target_errno);
2741
2742 if (targetdebug)
2743 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2744 "target_fileio_pread (%d,...,%d,%s) "
7313baad 2745 "= %d (%d)\n",
a71b5a38 2746 fd, len, pulongest (offset),
7313baad
UW
2747 ret, ret != -1 ? 0 : *target_errno);
2748 return ret;
2749 }
2750 }
2751
2752 *target_errno = FILEIO_ENOSYS;
2753 return -1;
2754}
2755
2756/* Close FD on the target. Return 0, or -1 if an error occurs
2757 (and set *TARGET_ERRNO). */
2758int
2759target_fileio_close (int fd, int *target_errno)
2760{
2761 struct target_ops *t;
2762
2763 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2764 {
2765 if (t->to_fileio_close != NULL)
2766 {
df39ea25 2767 int ret = t->to_fileio_close (t, fd, target_errno);
7313baad
UW
2768
2769 if (targetdebug)
2770 fprintf_unfiltered (gdb_stdlog,
2771 "target_fileio_close (%d) = %d (%d)\n",
2772 fd, ret, ret != -1 ? 0 : *target_errno);
2773 return ret;
2774 }
2775 }
2776
2777 *target_errno = FILEIO_ENOSYS;
2778 return -1;
2779}
2780
2781/* Unlink FILENAME on the target. Return 0, or -1 if an error
2782 occurs (and set *TARGET_ERRNO). */
2783int
2784target_fileio_unlink (const char *filename, int *target_errno)
2785{
2786 struct target_ops *t;
2787
2788 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2789 {
2790 if (t->to_fileio_unlink != NULL)
2791 {
dbbca37d 2792 int ret = t->to_fileio_unlink (t, filename, target_errno);
7313baad
UW
2793
2794 if (targetdebug)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "target_fileio_unlink (%s) = %d (%d)\n",
2797 filename, ret, ret != -1 ? 0 : *target_errno);
2798 return ret;
2799 }
2800 }
2801
2802 *target_errno = FILEIO_ENOSYS;
2803 return -1;
2804}
2805
b9e7b9c3
UW
2806/* Read value of symbolic link FILENAME on the target. Return a
2807 null-terminated string allocated via xmalloc, or NULL if an error
2808 occurs (and set *TARGET_ERRNO). */
2809char *
2810target_fileio_readlink (const char *filename, int *target_errno)
2811{
2812 struct target_ops *t;
2813
2814 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2815 {
2816 if (t->to_fileio_readlink != NULL)
2817 {
fab5aa7c 2818 char *ret = t->to_fileio_readlink (t, filename, target_errno);
b9e7b9c3
UW
2819
2820 if (targetdebug)
2821 fprintf_unfiltered (gdb_stdlog,
2822 "target_fileio_readlink (%s) = %s (%d)\n",
2823 filename, ret? ret : "(nil)",
2824 ret? 0 : *target_errno);
2825 return ret;
2826 }
2827 }
2828
2829 *target_errno = FILEIO_ENOSYS;
2830 return NULL;
2831}
2832
7313baad
UW
2833static void
2834target_fileio_close_cleanup (void *opaque)
2835{
2836 int fd = *(int *) opaque;
2837 int target_errno;
2838
2839 target_fileio_close (fd, &target_errno);
2840}
2841
2842/* Read target file FILENAME. Store the result in *BUF_P and
2843 return the size of the transferred data. PADDING additional bytes are
2844 available in *BUF_P. This is a helper function for
2845 target_fileio_read_alloc; see the declaration of that function for more
2846 information. */
2847
2848static LONGEST
2849target_fileio_read_alloc_1 (const char *filename,
2850 gdb_byte **buf_p, int padding)
2851{
2852 struct cleanup *close_cleanup;
2853 size_t buf_alloc, buf_pos;
2854 gdb_byte *buf;
2855 LONGEST n;
2856 int fd;
2857 int target_errno;
2858
2859 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2860 if (fd == -1)
2861 return -1;
2862
2863 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2864
2865 /* Start by reading up to 4K at a time. The target will throttle
2866 this number down if necessary. */
2867 buf_alloc = 4096;
2868 buf = xmalloc (buf_alloc);
2869 buf_pos = 0;
2870 while (1)
2871 {
2872 n = target_fileio_pread (fd, &buf[buf_pos],
2873 buf_alloc - buf_pos - padding, buf_pos,
2874 &target_errno);
2875 if (n < 0)
2876 {
2877 /* An error occurred. */
2878 do_cleanups (close_cleanup);
2879 xfree (buf);
2880 return -1;
2881 }
2882 else if (n == 0)
2883 {
2884 /* Read all there was. */
2885 do_cleanups (close_cleanup);
2886 if (buf_pos == 0)
2887 xfree (buf);
2888 else
2889 *buf_p = buf;
2890 return buf_pos;
2891 }
2892
2893 buf_pos += n;
2894
2895 /* If the buffer is filling up, expand it. */
2896 if (buf_alloc < buf_pos * 2)
2897 {
2898 buf_alloc *= 2;
2899 buf = xrealloc (buf, buf_alloc);
2900 }
2901
2902 QUIT;
2903 }
2904}
2905
2906/* Read target file FILENAME. Store the result in *BUF_P and return
2907 the size of the transferred data. See the declaration in "target.h"
2908 function for more information about the return value. */
2909
2910LONGEST
2911target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2912{
2913 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2914}
2915
2916/* Read target file FILENAME. The result is NUL-terminated and
2917 returned as a string, allocated using xmalloc. If an error occurs
2918 or the transfer is unsupported, NULL is returned. Empty objects
2919 are returned as allocated but empty strings. A warning is issued
2920 if the result contains any embedded NUL bytes. */
2921
2922char *
2923target_fileio_read_stralloc (const char *filename)
2924{
39086a0e
PA
2925 gdb_byte *buffer;
2926 char *bufstr;
7313baad
UW
2927 LONGEST i, transferred;
2928
39086a0e
PA
2929 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2930 bufstr = (char *) buffer;
7313baad
UW
2931
2932 if (transferred < 0)
2933 return NULL;
2934
2935 if (transferred == 0)
2936 return xstrdup ("");
2937
39086a0e 2938 bufstr[transferred] = 0;
7313baad
UW
2939
2940 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2941 for (i = strlen (bufstr); i < transferred; i++)
2942 if (bufstr[i] != 0)
7313baad
UW
2943 {
2944 warning (_("target file %s "
2945 "contained unexpected null characters"),
2946 filename);
2947 break;
2948 }
2949
39086a0e 2950 return bufstr;
7313baad
UW
2951}
2952
2953
e0d24f8d 2954static int
31568a15
TT
2955default_region_ok_for_hw_watchpoint (struct target_ops *self,
2956 CORE_ADDR addr, int len)
e0d24f8d 2957{
f5656ead 2958 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
2959}
2960
5009afc5
AS
2961static int
2962default_watchpoint_addr_within_range (struct target_ops *target,
2963 CORE_ADDR addr,
2964 CORE_ADDR start, int length)
2965{
2966 return addr >= start && addr < start + length;
2967}
2968
c2250ad1
UW
2969static struct gdbarch *
2970default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2971{
f5656ead 2972 return target_gdbarch ();
c2250ad1
UW
2973}
2974
c906108c 2975static int
555bbdeb
TT
2976return_zero (struct target_ops *ignore)
2977{
2978 return 0;
2979}
2980
2981static int
2982return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
2983{
2984 return 0;
2985}
2986
ed9a39eb
JM
2987/*
2988 * Find the next target down the stack from the specified target.
2989 */
2990
2991struct target_ops *
fba45db2 2992find_target_beneath (struct target_ops *t)
ed9a39eb 2993{
258b763a 2994 return t->beneath;
ed9a39eb
JM
2995}
2996
8b06beed
TT
2997/* See target.h. */
2998
2999struct target_ops *
3000find_target_at (enum strata stratum)
3001{
3002 struct target_ops *t;
3003
3004 for (t = current_target.beneath; t != NULL; t = t->beneath)
3005 if (t->to_stratum == stratum)
3006 return t;
3007
3008 return NULL;
3009}
3010
c906108c
SS
3011\f
3012/* The inferior process has died. Long live the inferior! */
3013
3014void
fba45db2 3015generic_mourn_inferior (void)
c906108c 3016{
7f9f62ba 3017 ptid_t ptid;
c906108c 3018
7f9f62ba 3019 ptid = inferior_ptid;
39f77062 3020 inferior_ptid = null_ptid;
7f9f62ba 3021
f59f708a
PA
3022 /* Mark breakpoints uninserted in case something tries to delete a
3023 breakpoint while we delete the inferior's threads (which would
3024 fail, since the inferior is long gone). */
3025 mark_breakpoints_out ();
3026
7f9f62ba
PA
3027 if (!ptid_equal (ptid, null_ptid))
3028 {
3029 int pid = ptid_get_pid (ptid);
6c95b8df 3030 exit_inferior (pid);
7f9f62ba
PA
3031 }
3032
f59f708a
PA
3033 /* Note this wipes step-resume breakpoints, so needs to be done
3034 after exit_inferior, which ends up referencing the step-resume
3035 breakpoints through clear_thread_inferior_resources. */
c906108c 3036 breakpoint_init_inferior (inf_exited);
f59f708a 3037
c906108c
SS
3038 registers_changed ();
3039
c906108c
SS
3040 reopen_exec_file ();
3041 reinit_frame_cache ();
3042
9a4105ab
AC
3043 if (deprecated_detach_hook)
3044 deprecated_detach_hook ();
c906108c
SS
3045}
3046\f
fd0a2a6f
MK
3047/* Convert a normal process ID to a string. Returns the string in a
3048 static buffer. */
c906108c
SS
3049
3050char *
39f77062 3051normal_pid_to_str (ptid_t ptid)
c906108c 3052{
fd0a2a6f 3053 static char buf[32];
c906108c 3054
5fff8fc0 3055 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
3056 return buf;
3057}
3058
2c0b251b 3059static char *
770234d3 3060default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
3061{
3062 return normal_pid_to_str (ptid);
3063}
3064
9b4eba8e
HZ
3065/* Error-catcher for target_find_memory_regions. */
3066static int
2e73927c
TT
3067dummy_find_memory_regions (struct target_ops *self,
3068 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 3069{
9b4eba8e 3070 error (_("Command not implemented for this target."));
be4d1333
MS
3071 return 0;
3072}
3073
9b4eba8e
HZ
3074/* Error-catcher for target_make_corefile_notes. */
3075static char *
fc6691b2
TT
3076dummy_make_corefile_notes (struct target_ops *self,
3077 bfd *ignore1, int *ignore2)
be4d1333 3078{
9b4eba8e 3079 error (_("Command not implemented for this target."));
be4d1333
MS
3080 return NULL;
3081}
3082
c906108c
SS
3083/* Set up the handful of non-empty slots needed by the dummy target
3084 vector. */
3085
3086static void
fba45db2 3087init_dummy_target (void)
c906108c
SS
3088{
3089 dummy_target.to_shortname = "None";
3090 dummy_target.to_longname = "None";
3091 dummy_target.to_doc = "";
03583c20
UW
3092 dummy_target.to_supports_disable_randomization
3093 = find_default_supports_disable_randomization;
c906108c 3094 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
3095 dummy_target.to_has_all_memory = return_zero;
3096 dummy_target.to_has_memory = return_zero;
3097 dummy_target.to_has_stack = return_zero;
3098 dummy_target.to_has_registers = return_zero;
3099 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 3100 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
3101
3102 install_dummy_methods (&dummy_target);
c906108c 3103}
c906108c 3104\f
c906108c 3105static void
fba45db2 3106debug_to_open (char *args, int from_tty)
c906108c
SS
3107{
3108 debug_target.to_open (args, from_tty);
3109
96baa820 3110 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
c906108c
SS
3111}
3112
f1c07ab0 3113void
460014f5 3114target_close (struct target_ops *targ)
f1c07ab0 3115{
7fdc1521
TT
3116 gdb_assert (!target_is_pushed (targ));
3117
f1c07ab0 3118 if (targ->to_xclose != NULL)
460014f5 3119 targ->to_xclose (targ);
f1c07ab0 3120 else if (targ->to_close != NULL)
de90e03d 3121 targ->to_close (targ);
947b8855
PA
3122
3123 if (targetdebug)
460014f5 3124 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
3125}
3126
28439f5e
PA
3127int
3128target_thread_alive (ptid_t ptid)
c906108c 3129{
cbffc065 3130 int retval;
28439f5e 3131
cbffc065
TT
3132 retval = current_target.to_thread_alive (&current_target, ptid);
3133 if (targetdebug)
3134 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3135 ptid_get_pid (ptid), retval);
28439f5e 3136
cbffc065 3137 return retval;
28439f5e
PA
3138}
3139
3140void
3141target_find_new_threads (void)
3142{
09b0dc2b
TT
3143 current_target.to_find_new_threads (&current_target);
3144 if (targetdebug)
3145 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
c906108c
SS
3146}
3147
d914c394
SS
3148void
3149target_stop (ptid_t ptid)
3150{
3151 if (!may_stop)
3152 {
3153 warning (_("May not interrupt or stop the target, ignoring attempt"));
3154 return;
3155 }
3156
1eab8a48 3157 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3158}
3159
c906108c 3160static void
f045800c 3161debug_to_post_attach (struct target_ops *self, int pid)
c906108c 3162{
f045800c 3163 debug_target.to_post_attach (&debug_target, pid);
c906108c 3164
28439f5e 3165 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
c906108c
SS
3166}
3167
09826ec5
PA
3168/* Concatenate ELEM to LIST, a comma separate list, and return the
3169 result. The LIST incoming argument is released. */
3170
3171static char *
3172str_comma_list_concat_elem (char *list, const char *elem)
3173{
3174 if (list == NULL)
3175 return xstrdup (elem);
3176 else
3177 return reconcat (list, list, ", ", elem, (char *) NULL);
3178}
3179
3180/* Helper for target_options_to_string. If OPT is present in
3181 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3182 Returns the new resulting string. OPT is removed from
3183 TARGET_OPTIONS. */
3184
3185static char *
3186do_option (int *target_options, char *ret,
3187 int opt, char *opt_str)
3188{
3189 if ((*target_options & opt) != 0)
3190 {
3191 ret = str_comma_list_concat_elem (ret, opt_str);
3192 *target_options &= ~opt;
3193 }
3194
3195 return ret;
3196}
3197
3198char *
3199target_options_to_string (int target_options)
3200{
3201 char *ret = NULL;
3202
3203#define DO_TARG_OPTION(OPT) \
3204 ret = do_option (&target_options, ret, OPT, #OPT)
3205
3206 DO_TARG_OPTION (TARGET_WNOHANG);
3207
3208 if (target_options != 0)
3209 ret = str_comma_list_concat_elem (ret, "unknown???");
3210
3211 if (ret == NULL)
3212 ret = xstrdup ("");
3213 return ret;
3214}
3215
bf0c5130 3216static void
56be3814
UW
3217debug_print_register (const char * func,
3218 struct regcache *regcache, int regno)
bf0c5130 3219{
f8d29908 3220 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3221
bf0c5130 3222 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3223 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3224 && gdbarch_register_name (gdbarch, regno) != NULL
3225 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3226 fprintf_unfiltered (gdb_stdlog, "(%s)",
3227 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3228 else
3229 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3230 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3231 {
e17a4113 3232 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3233 int i, size = register_size (gdbarch, regno);
e362b510 3234 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3235
0ff58721 3236 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3237 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3238 for (i = 0; i < size; i++)
bf0c5130
AC
3239 {
3240 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3241 }
81c4a259 3242 if (size <= sizeof (LONGEST))
bf0c5130 3243 {
e17a4113 3244 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3245
0b1553bc
UW
3246 fprintf_unfiltered (gdb_stdlog, " %s %s",
3247 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3248 }
3249 }
3250 fprintf_unfiltered (gdb_stdlog, "\n");
3251}
3252
28439f5e
PA
3253void
3254target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3255{
ad5989bd
TT
3256 current_target.to_fetch_registers (&current_target, regcache, regno);
3257 if (targetdebug)
3258 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3259}
3260
28439f5e
PA
3261void
3262target_store_registers (struct regcache *regcache, int regno)
c906108c 3263{
28439f5e 3264 struct target_ops *t;
5d502164 3265
d914c394
SS
3266 if (!may_write_registers)
3267 error (_("Writing to registers is not allowed (regno %d)"), regno);
3268
6b84065d
TT
3269 current_target.to_store_registers (&current_target, regcache, regno);
3270 if (targetdebug)
28439f5e 3271 {
6b84065d 3272 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3273 }
c906108c
SS
3274}
3275
dc146f7c
VP
3276int
3277target_core_of_thread (ptid_t ptid)
3278{
9e538d0d 3279 int retval = current_target.to_core_of_thread (&current_target, ptid);
dc146f7c 3280
9e538d0d
TT
3281 if (targetdebug)
3282 fprintf_unfiltered (gdb_stdlog,
3283 "target_core_of_thread (%d) = %d\n",
3284 ptid_get_pid (ptid), retval);
3285 return retval;
dc146f7c
VP
3286}
3287
936d2992
PA
3288int
3289simple_verify_memory (struct target_ops *ops,
3290 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3291{
3292 LONGEST total_xfered = 0;
3293
3294 while (total_xfered < size)
3295 {
3296 ULONGEST xfered_len;
3297 enum target_xfer_status status;
3298 gdb_byte buf[1024];
3299 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3300
3301 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3302 buf, NULL, lma + total_xfered, howmuch,
3303 &xfered_len);
3304 if (status == TARGET_XFER_OK
3305 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3306 {
3307 total_xfered += xfered_len;
3308 QUIT;
3309 }
3310 else
3311 return 0;
3312 }
3313 return 1;
3314}
3315
3316/* Default implementation of memory verification. */
3317
3318static int
3319default_verify_memory (struct target_ops *self,
3320 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3321{
3322 /* Start over from the top of the target stack. */
3323 return simple_verify_memory (current_target.beneath,
3324 data, memaddr, size);
3325}
3326
4a5e7a5b
PA
3327int
3328target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3329{
eb276a6b
TT
3330 int retval = current_target.to_verify_memory (&current_target,
3331 data, memaddr, size);
5d502164 3332
eb276a6b
TT
3333 if (targetdebug)
3334 fprintf_unfiltered (gdb_stdlog,
3335 "target_verify_memory (%s, %s) = %d\n",
3336 paddress (target_gdbarch (), memaddr),
3337 pulongest (size),
3338 retval);
3339 return retval;
4a5e7a5b
PA
3340}
3341
9c06b0b4
TJB
3342/* The documentation for this function is in its prototype declaration in
3343 target.h. */
3344
3345int
3346target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3347{
cd4ae029 3348 int ret;
9c06b0b4 3349
cd4ae029
TT
3350 ret = current_target.to_insert_mask_watchpoint (&current_target,
3351 addr, mask, rw);
9c06b0b4 3352
cd4ae029
TT
3353 if (targetdebug)
3354 fprintf_unfiltered (gdb_stdlog, "\
9c06b0b4 3355target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
cd4ae029
TT
3356 core_addr_to_string (addr),
3357 core_addr_to_string (mask), rw, ret);
3358
3359 return ret;
9c06b0b4
TJB
3360}
3361
3362/* The documentation for this function is in its prototype declaration in
3363 target.h. */
3364
3365int
3366target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3367{
8b1c364c 3368 int ret;
9c06b0b4 3369
8b1c364c
TT
3370 ret = current_target.to_remove_mask_watchpoint (&current_target,
3371 addr, mask, rw);
9c06b0b4 3372
8b1c364c
TT
3373 if (targetdebug)
3374 fprintf_unfiltered (gdb_stdlog, "\
9c06b0b4 3375target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
8b1c364c
TT
3376 core_addr_to_string (addr),
3377 core_addr_to_string (mask), rw, ret);
9c06b0b4 3378
8b1c364c 3379 return ret;
9c06b0b4
TJB
3380}
3381
3382/* The documentation for this function is in its prototype declaration
3383 in target.h. */
3384
3385int
3386target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3387{
6c7e5e5c
TT
3388 return current_target.to_masked_watch_num_registers (&current_target,
3389 addr, mask);
9c06b0b4
TJB
3390}
3391
f1310107
TJB
3392/* The documentation for this function is in its prototype declaration
3393 in target.h. */
3394
3395int
3396target_ranged_break_num_registers (void)
3397{
a134316b 3398 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3399}
3400
02d27625
MM
3401/* See target.h. */
3402
02d27625
MM
3403struct btrace_target_info *
3404target_enable_btrace (ptid_t ptid)
3405{
6dc7fcf4 3406 return current_target.to_enable_btrace (&current_target, ptid);
02d27625
MM
3407}
3408
3409/* See target.h. */
3410
3411void
3412target_disable_btrace (struct btrace_target_info *btinfo)
3413{
8dc292d3 3414 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3415}
3416
3417/* See target.h. */
3418
3419void
3420target_teardown_btrace (struct btrace_target_info *btinfo)
3421{
9ace480d 3422 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3423}
3424
3425/* See target.h. */
3426
969c39fb
MM
3427enum btrace_error
3428target_read_btrace (VEC (btrace_block_s) **btrace,
3429 struct btrace_target_info *btinfo,
02d27625
MM
3430 enum btrace_read_type type)
3431{
eb5b20d4 3432 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3433}
3434
d02ed0bb
MM
3435/* See target.h. */
3436
7c1687a9
MM
3437void
3438target_stop_recording (void)
3439{
ee97f592 3440 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3441}
3442
3443/* See target.h. */
3444
d02ed0bb 3445void
85e1311a 3446target_save_record (const char *filename)
d02ed0bb 3447{
f09e2107 3448 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3449}
3450
3451/* See target.h. */
3452
3453int
3454target_supports_delete_record (void)
3455{
3456 struct target_ops *t;
3457
3458 for (t = current_target.beneath; t != NULL; t = t->beneath)
3459 if (t->to_delete_record != NULL)
3460 return 1;
3461
3462 return 0;
3463}
3464
3465/* See target.h. */
3466
3467void
3468target_delete_record (void)
3469{
07366925 3470 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3471}
3472
3473/* See target.h. */
3474
3475int
3476target_record_is_replaying (void)
3477{
dd2e9d25 3478 return current_target.to_record_is_replaying (&current_target);
d02ed0bb
MM
3479}
3480
3481/* See target.h. */
3482
3483void
3484target_goto_record_begin (void)
3485{
671e76cc 3486 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3487}
3488
3489/* See target.h. */
3490
3491void
3492target_goto_record_end (void)
3493{
e9179bb3 3494 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3495}
3496
3497/* See target.h. */
3498
3499void
3500target_goto_record (ULONGEST insn)
3501{
05969c84 3502 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3503}
3504
67c86d06
MM
3505/* See target.h. */
3506
3507void
3508target_insn_history (int size, int flags)
3509{
3679abfa 3510 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3511}
3512
3513/* See target.h. */
3514
3515void
3516target_insn_history_from (ULONGEST from, int size, int flags)
3517{
8444ab58 3518 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3519}
3520
3521/* See target.h. */
3522
3523void
3524target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3525{
c29302cc 3526 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3527}
3528
15984c13
MM
3529/* See target.h. */
3530
3531void
3532target_call_history (int size, int flags)
3533{
170049d4 3534 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3535}
3536
3537/* See target.h. */
3538
3539void
3540target_call_history_from (ULONGEST begin, int size, int flags)
3541{
16fc27d6 3542 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3543}
3544
3545/* See target.h. */
3546
3547void
3548target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3549{
115d9817 3550 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3551}
3552
c906108c 3553static void
f32dbf8c 3554debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
c906108c 3555{
f32dbf8c 3556 debug_target.to_prepare_to_store (&debug_target, regcache);
c906108c 3557
96baa820 3558 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
c906108c
SS
3559}
3560
ea001bdc
MM
3561/* See target.h. */
3562
3563const struct frame_unwind *
3564target_get_unwinder (void)
3565{
ac01945b 3566 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3567}
3568
3569/* See target.h. */
3570
3571const struct frame_unwind *
3572target_get_tailcall_unwinder (void)
3573{
ac01945b 3574 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3575}
3576
c0eca49f 3577/* Default implementation of to_decr_pc_after_break. */
118e6252 3578
c0eca49f
TT
3579static CORE_ADDR
3580default_target_decr_pc_after_break (struct target_ops *ops,
118e6252
MM
3581 struct gdbarch *gdbarch)
3582{
118e6252
MM
3583 return gdbarch_decr_pc_after_break (gdbarch);
3584}
3585
3586/* See target.h. */
3587
3588CORE_ADDR
3589target_decr_pc_after_break (struct gdbarch *gdbarch)
3590{
c0eca49f 3591 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
118e6252
MM
3592}
3593
5fff78c4
MM
3594/* See target.h. */
3595
3596void
3597target_prepare_to_generate_core (void)
3598{
3599 current_target.to_prepare_to_generate_core (&current_target);
3600}
3601
3602/* See target.h. */
3603
3604void
3605target_done_generating_core (void)
3606{
3607 current_target.to_done_generating_core (&current_target);
3608}
3609
c906108c 3610static void
fba45db2 3611debug_to_files_info (struct target_ops *target)
c906108c
SS
3612{
3613 debug_target.to_files_info (target);
3614
96baa820 3615 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
c906108c
SS
3616}
3617
3618static int
3db08215 3619debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
a6d9a66e 3620 struct bp_target_info *bp_tgt)
c906108c
SS
3621{
3622 int retval;
3623
6b84065d 3624 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
c906108c 3625
96baa820 3626 fprintf_unfiltered (gdb_stdlog,
bd91e7ae
OS
3627 "target_insert_breakpoint (%s, xxx) = %ld\n",
3628 core_addr_to_string (bp_tgt->placed_address),
104c1213 3629 (unsigned long) retval);
c906108c
SS
3630 return retval;
3631}
3632
3633static int
3db08215 3634debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
a6d9a66e 3635 struct bp_target_info *bp_tgt)
c906108c
SS
3636{
3637 int retval;
3638
6b84065d 3639 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
c906108c 3640
96baa820 3641 fprintf_unfiltered (gdb_stdlog,
bd91e7ae
OS
3642 "target_remove_breakpoint (%s, xxx) = %ld\n",
3643 core_addr_to_string (bp_tgt->placed_address),
104c1213 3644 (unsigned long) retval);
c906108c
SS
3645 return retval;
3646}
3647
ccaa32c7 3648static int
5461485a
TT
3649debug_to_can_use_hw_breakpoint (struct target_ops *self,
3650 int type, int cnt, int from_tty)
ccaa32c7
GS
3651{
3652 int retval;
3653
5461485a
TT
3654 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
3655 type, cnt, from_tty);
ccaa32c7
GS
3656
3657 fprintf_unfiltered (gdb_stdlog,
3658 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3659 (unsigned long) type,
3660 (unsigned long) cnt,
3661 (unsigned long) from_tty,
3662 (unsigned long) retval);
3663 return retval;
3664}
3665
e0d24f8d 3666static int
31568a15
TT
3667debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
3668 CORE_ADDR addr, int len)
e0d24f8d
WZ
3669{
3670 CORE_ADDR retval;
3671
31568a15
TT
3672 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
3673 addr, len);
e0d24f8d
WZ
3674
3675 fprintf_unfiltered (gdb_stdlog,
bd91e7ae
OS
3676 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3677 core_addr_to_string (addr), (unsigned long) len,
3678 core_addr_to_string (retval));
e0d24f8d
WZ
3679 return retval;
3680}
3681
0cf6dd15 3682static int
c3a5ff89
TT
3683debug_to_can_accel_watchpoint_condition (struct target_ops *self,
3684 CORE_ADDR addr, int len, int rw,
0cf6dd15
TJB
3685 struct expression *cond)
3686{
3687 int retval;
3688
c3a5ff89
TT
3689 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
3690 addr, len,
3e43a32a 3691 rw, cond);
0cf6dd15
TJB
3692
3693 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
3694 "target_can_accel_watchpoint_condition "
3695 "(%s, %d, %d, %s) = %ld\n",
bd91e7ae
OS
3696 core_addr_to_string (addr), len, rw,
3697 host_address_to_string (cond), (unsigned long) retval);
0cf6dd15
TJB
3698 return retval;
3699}
3700
ccaa32c7 3701static int
6a109b6b 3702debug_to_stopped_by_watchpoint (struct target_ops *ops)
ccaa32c7
GS
3703{
3704 int retval;
3705
6a109b6b 3706 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
ccaa32c7
GS
3707
3708 fprintf_unfiltered (gdb_stdlog,
d92524f1 3709 "target_stopped_by_watchpoint () = %ld\n",
ccaa32c7
GS
3710 (unsigned long) retval);
3711 return retval;
3712}
3713
4aa7a7f5
JJ
3714static int
3715debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
ccaa32c7 3716{
4aa7a7f5 3717 int retval;
ccaa32c7 3718
4aa7a7f5 3719 retval = debug_target.to_stopped_data_address (target, addr);
ccaa32c7
GS
3720
3721 fprintf_unfiltered (gdb_stdlog,
bd91e7ae
OS
3722 "target_stopped_data_address ([%s]) = %ld\n",
3723 core_addr_to_string (*addr),
4aa7a7f5 3724 (unsigned long)retval);
ccaa32c7
GS
3725 return retval;
3726}
3727
5009afc5
AS
3728static int
3729debug_to_watchpoint_addr_within_range (struct target_ops *target,
3730 CORE_ADDR addr,
3731 CORE_ADDR start, int length)
3732{
3733 int retval;
3734
3735 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3736 start, length);
3737
3738 fprintf_filtered (gdb_stdlog,
bd91e7ae
OS
3739 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3740 core_addr_to_string (addr), core_addr_to_string (start),
3741 length, retval);
5009afc5
AS
3742 return retval;
3743}
3744
ccaa32c7 3745static int
23a26771
TT
3746debug_to_insert_hw_breakpoint (struct target_ops *self,
3747 struct gdbarch *gdbarch,
a6d9a66e 3748 struct bp_target_info *bp_tgt)
ccaa32c7
GS
3749{
3750 int retval;
3751
23a26771
TT
3752 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
3753 gdbarch, bp_tgt);
ccaa32c7
GS
3754
3755 fprintf_unfiltered (gdb_stdlog,
bd91e7ae
OS
3756 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3757 core_addr_to_string (bp_tgt->placed_address),
ccaa32c7
GS
3758 (unsigned long) retval);
3759 return retval;
3760}
3761
3762static int
a64dc96c
TT
3763debug_to_remove_hw_breakpoint (struct target_ops *self,
3764 struct gdbarch *gdbarch,
a6d9a66e 3765 struct bp_target_info *bp_tgt)
ccaa32c7
GS
3766{
3767 int retval;
3768
a64dc96c
TT
3769 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
3770 gdbarch, bp_tgt);
ccaa32c7
GS
3771
3772 fprintf_unfiltered (gdb_stdlog,
bd91e7ae
OS
3773 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3774 core_addr_to_string (bp_tgt->placed_address),
ccaa32c7
GS
3775 (unsigned long) retval);
3776 return retval;
3777}
3778
3779static int
7bb99c53
TT
3780debug_to_insert_watchpoint (struct target_ops *self,
3781 CORE_ADDR addr, int len, int type,
0cf6dd15 3782 struct expression *cond)
ccaa32c7
GS
3783{
3784 int retval;
3785
7bb99c53
TT
3786 retval = debug_target.to_insert_watchpoint (&debug_target,
3787 addr, len, type, cond);
ccaa32c7
GS
3788
3789 fprintf_unfiltered (gdb_stdlog,
bd91e7ae
OS
3790 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3791 core_addr_to_string (addr), len, type,
3792 host_address_to_string (cond), (unsigned long) retval);
ccaa32c7
GS
3793 return retval;
3794}
3795
3796static int
11b5219a
TT
3797debug_to_remove_watchpoint (struct target_ops *self,
3798 CORE_ADDR addr, int len, int type,
0cf6dd15 3799 struct expression *cond)
ccaa32c7
GS
3800{
3801 int retval;
3802
11b5219a
TT
3803 retval = debug_target.to_remove_watchpoint (&debug_target,
3804 addr, len, type, cond);
ccaa32c7
GS
3805
3806 fprintf_unfiltered (gdb_stdlog,
bd91e7ae
OS
3807 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3808 core_addr_to_string (addr), len, type,
3809 host_address_to_string (cond), (unsigned long) retval);
ccaa32c7
GS
3810 return retval;
3811}
3812
c906108c 3813static void
c42bf286 3814debug_to_terminal_init (struct target_ops *self)
c906108c 3815{
c42bf286 3816 debug_target.to_terminal_init (&debug_target);
c906108c 3817
96baa820 3818 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
c906108c
SS
3819}
3820
3821static void
d2f640d4 3822debug_to_terminal_inferior (struct target_ops *self)
c906108c 3823{
d2f640d4 3824 debug_target.to_terminal_inferior (&debug_target);
c906108c 3825
96baa820 3826 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
c906108c
SS
3827}
3828
3829static void
2e1e1a19 3830debug_to_terminal_ours_for_output (struct target_ops *self)
c906108c 3831{
2e1e1a19 3832 debug_target.to_terminal_ours_for_output (&debug_target);
c906108c 3833
96baa820 3834 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
c906108c
SS
3835}
3836
3837static void
e3594fd1 3838debug_to_terminal_ours (struct target_ops *self)
c906108c 3839{
e3594fd1 3840 debug_target.to_terminal_ours (&debug_target);
c906108c 3841
96baa820 3842 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
c906108c
SS
3843}
3844
a790ad35 3845static void
ae3bd431 3846debug_to_terminal_save_ours (struct target_ops *self)
a790ad35 3847{
ae3bd431 3848 debug_target.to_terminal_save_ours (&debug_target);
a790ad35
SC
3849
3850 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3851}
3852
c906108c 3853static void
0a4f40a2
TT
3854debug_to_terminal_info (struct target_ops *self,
3855 const char *arg, int from_tty)
c906108c 3856{
0a4f40a2 3857 debug_target.to_terminal_info (&debug_target, arg, from_tty);
c906108c 3858
96baa820 3859 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
c906108c
SS
3860 from_tty);
3861}
3862
c906108c 3863static void
9cbe5fff 3864debug_to_load (struct target_ops *self, const char *args, int from_tty)
c906108c 3865{
71a9f134 3866 debug_target.to_load (&debug_target, args, from_tty);
c906108c 3867
96baa820 3868 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
c906108c
SS
3869}
3870
c906108c 3871static void
2e97a79e 3872debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
c906108c 3873{
2e97a79e 3874 debug_target.to_post_startup_inferior (&debug_target, ptid);
c906108c 3875
96baa820 3876 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
dfd4cc63 3877 ptid_get_pid (ptid));
c906108c
SS
3878}
3879
77b06cd7 3880static int
a863b201 3881debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
c906108c 3882{
77b06cd7
TJB
3883 int retval;
3884
a863b201 3885 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
77b06cd7
TJB
3886
3887 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
3888 pid, retval);
c906108c 3889
77b06cd7 3890 return retval;
c906108c
SS
3891}
3892
3893static int
973fc227 3894debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
c906108c 3895{
c5aa993b 3896 int retval;
c906108c 3897
973fc227 3898 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
c906108c 3899
96baa820 3900 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
c5aa993b 3901 pid, retval);
c906108c
SS
3902
3903 return retval;
3904}
3905
77b06cd7 3906static int
3ecc7da0 3907debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
c906108c 3908{
77b06cd7
TJB
3909 int retval;
3910
3ecc7da0 3911 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
c906108c 3912
77b06cd7
TJB
3913 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
3914 pid, retval);
3915
3916 return retval;
c906108c
SS
3917}
3918
3919static int
e98cf0cd 3920debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
c906108c 3921{
c5aa993b 3922 int retval;
c906108c 3923
e98cf0cd 3924 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
c906108c 3925
96baa820 3926 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
c5aa993b 3927 pid, retval);
c906108c
SS
3928
3929 return retval;
3930}
3931
77b06cd7 3932static int
ba025e51 3933debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
c906108c 3934{
77b06cd7
TJB
3935 int retval;
3936
ba025e51 3937 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
c906108c 3938
77b06cd7
TJB
3939 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
3940 pid, retval);
3941
3942 return retval;
c906108c
SS
3943}
3944
3945static int
758e29d2 3946debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
c906108c 3947{
c5aa993b 3948 int retval;
c906108c 3949
758e29d2 3950 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
c906108c 3951
96baa820 3952 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
c5aa993b 3953 pid, retval);
c906108c
SS
3954
3955 return retval;
3956}
3957
c906108c 3958static int
d796e1d6
TT
3959debug_to_has_exited (struct target_ops *self,
3960 int pid, int wait_status, int *exit_status)
c906108c 3961{
c5aa993b 3962 int has_exited;
c906108c 3963
d796e1d6
TT
3964 has_exited = debug_target.to_has_exited (&debug_target,
3965 pid, wait_status, exit_status);
c906108c 3966
96baa820 3967 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
c5aa993b 3968 pid, wait_status, *exit_status, has_exited);
c906108c
SS
3969
3970 return has_exited;
3971}
3972
c906108c 3973static int
da82bd6b 3974debug_to_can_run (struct target_ops *self)
c906108c
SS
3975{
3976 int retval;
3977
da82bd6b 3978 retval = debug_target.to_can_run (&debug_target);
c906108c 3979
96baa820 3980 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
c906108c
SS
3981
3982 return retval;
3983}
3984
c2250ad1
UW
3985static struct gdbarch *
3986debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3987{
3988 struct gdbarch *retval;
3989
3990 retval = debug_target.to_thread_architecture (ops, ptid);
3991
3e43a32a
MS
3992 fprintf_unfiltered (gdb_stdlog,
3993 "target_thread_architecture (%s) = %s [%s]\n",
3994 target_pid_to_str (ptid),
3995 host_address_to_string (retval),
c2250ad1
UW
3996 gdbarch_bfd_arch_info (retval)->printable_name);
3997 return retval;
3998}
3999
c906108c 4000static void
1eab8a48 4001debug_to_stop (struct target_ops *self, ptid_t ptid)
c906108c 4002{
1eab8a48 4003 debug_target.to_stop (&debug_target, ptid);
c906108c 4004
94cc34af
PA
4005 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4006 target_pid_to_str (ptid));
c906108c
SS
4007}
4008
96baa820 4009static void
a30bf1f1 4010debug_to_rcmd (struct target_ops *self, const char *command,
d9fcf2fb 4011 struct ui_file *outbuf)
96baa820 4012{
1aac633b 4013 debug_target.to_rcmd (&debug_target, command, outbuf);
96baa820
JM
4014 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4015}
4016
c906108c 4017static char *
8dd27370 4018debug_to_pid_to_exec_file (struct target_ops *self, int pid)
c906108c 4019{
c5aa993b 4020 char *exec_file;
c906108c 4021
8dd27370 4022 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
c906108c 4023
96baa820 4024 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
c5aa993b 4025 pid, exec_file);
c906108c
SS
4026
4027 return exec_file;
4028}
4029
c906108c 4030static void
fba45db2 4031setup_target_debug (void)
c906108c
SS
4032{
4033 memcpy (&debug_target, &current_target, sizeof debug_target);
4034
4035 current_target.to_open = debug_to_open;
c906108c 4036 current_target.to_post_attach = debug_to_post_attach;
c906108c 4037 current_target.to_prepare_to_store = debug_to_prepare_to_store;
c906108c
SS
4038 current_target.to_files_info = debug_to_files_info;
4039 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4040 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
ccaa32c7
GS
4041 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4042 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4043 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4044 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4045 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4046 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4047 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3e43a32a
MS
4048 current_target.to_watchpoint_addr_within_range
4049 = debug_to_watchpoint_addr_within_range;
4050 current_target.to_region_ok_for_hw_watchpoint
4051 = debug_to_region_ok_for_hw_watchpoint;
4052 current_target.to_can_accel_watchpoint_condition
4053 = debug_to_can_accel_watchpoint_condition;
c906108c
SS
4054 current_target.to_terminal_init = debug_to_terminal_init;
4055 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3e43a32a
MS
4056 current_target.to_terminal_ours_for_output
4057 = debug_to_terminal_ours_for_output;
c906108c 4058 current_target.to_terminal_ours = debug_to_terminal_ours;
a790ad35 4059 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
c906108c 4060 current_target.to_terminal_info = debug_to_terminal_info;
c906108c 4061 current_target.to_load = debug_to_load;
c906108c 4062 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
c906108c
SS
4063 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4064 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4065 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4066 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
c906108c
SS
4067 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4068 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
c906108c 4069 current_target.to_has_exited = debug_to_has_exited;
c906108c 4070 current_target.to_can_run = debug_to_can_run;
c906108c 4071 current_target.to_stop = debug_to_stop;
96baa820 4072 current_target.to_rcmd = debug_to_rcmd;
c906108c 4073 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
c2250ad1 4074 current_target.to_thread_architecture = debug_to_thread_architecture;
c906108c 4075}
c906108c 4076\f
c5aa993b
JM
4077
4078static char targ_desc[] =
3e43a32a
MS
4079"Names of targets and files being debugged.\nShows the entire \
4080stack of targets currently in use (including the exec-file,\n\
c906108c
SS
4081core-file, and process, if any), as well as the symbol file name.";
4082
a53f3625 4083static void
a30bf1f1
TT
4084default_rcmd (struct target_ops *self, const char *command,
4085 struct ui_file *output)
a53f3625
TT
4086{
4087 error (_("\"monitor\" command not supported by this target."));
4088}
4089
96baa820
JM
4090static void
4091do_monitor_command (char *cmd,
4092 int from_tty)
4093{
96baa820
JM
4094 target_rcmd (cmd, gdb_stdtarg);
4095}
4096
87680a14
JB
4097/* Print the name of each layers of our target stack. */
4098
4099static void
4100maintenance_print_target_stack (char *cmd, int from_tty)
4101{
4102 struct target_ops *t;
4103
4104 printf_filtered (_("The current target stack is:\n"));
4105
4106 for (t = target_stack; t != NULL; t = t->beneath)
4107 {
4108 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4109 }
4110}
4111
329ea579
PA
4112/* Controls if targets can report that they can/are async. This is
4113 just for maintainers to use when debugging gdb. */
4114int target_async_permitted = 1;
c6ebd6cf
VP
4115
4116/* The set command writes to this variable. If the inferior is
b5419e49 4117 executing, target_async_permitted is *not* updated. */
329ea579 4118static int target_async_permitted_1 = 1;
c6ebd6cf
VP
4119
4120static void
329ea579
PA
4121maint_set_target_async_command (char *args, int from_tty,
4122 struct cmd_list_element *c)
c6ebd6cf 4123{
c35b1492 4124 if (have_live_inferiors ())
c6ebd6cf
VP
4125 {
4126 target_async_permitted_1 = target_async_permitted;
4127 error (_("Cannot change this setting while the inferior is running."));
4128 }
4129
4130 target_async_permitted = target_async_permitted_1;
4131}
4132
4133static void
329ea579
PA
4134maint_show_target_async_command (struct ui_file *file, int from_tty,
4135 struct cmd_list_element *c,
4136 const char *value)
c6ebd6cf 4137{
3e43a32a
MS
4138 fprintf_filtered (file,
4139 _("Controlling the inferior in "
4140 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
4141}
4142
d914c394
SS
4143/* Temporary copies of permission settings. */
4144
4145static int may_write_registers_1 = 1;
4146static int may_write_memory_1 = 1;
4147static int may_insert_breakpoints_1 = 1;
4148static int may_insert_tracepoints_1 = 1;
4149static int may_insert_fast_tracepoints_1 = 1;
4150static int may_stop_1 = 1;
4151
4152/* Make the user-set values match the real values again. */
4153
4154void
4155update_target_permissions (void)
4156{
4157 may_write_registers_1 = may_write_registers;
4158 may_write_memory_1 = may_write_memory;
4159 may_insert_breakpoints_1 = may_insert_breakpoints;
4160 may_insert_tracepoints_1 = may_insert_tracepoints;
4161 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4162 may_stop_1 = may_stop;
4163}
4164
4165/* The one function handles (most of) the permission flags in the same
4166 way. */
4167
4168static void
4169set_target_permissions (char *args, int from_tty,
4170 struct cmd_list_element *c)
4171{
4172 if (target_has_execution)
4173 {
4174 update_target_permissions ();
4175 error (_("Cannot change this setting while the inferior is running."));
4176 }
4177
4178 /* Make the real values match the user-changed values. */
4179 may_write_registers = may_write_registers_1;
4180 may_insert_breakpoints = may_insert_breakpoints_1;
4181 may_insert_tracepoints = may_insert_tracepoints_1;
4182 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4183 may_stop = may_stop_1;
4184 update_observer_mode ();
4185}
4186
4187/* Set memory write permission independently of observer mode. */
4188
4189static void
4190set_write_memory_permission (char *args, int from_tty,
4191 struct cmd_list_element *c)
4192{
4193 /* Make the real values match the user-changed values. */
4194 may_write_memory = may_write_memory_1;
4195 update_observer_mode ();
4196}
4197
4198
c906108c 4199void
fba45db2 4200initialize_targets (void)
c906108c
SS
4201{
4202 init_dummy_target ();
4203 push_target (&dummy_target);
4204
4205 add_info ("target", target_info, targ_desc);
4206 add_info ("files", target_info, targ_desc);
4207
ccce17b0 4208 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
4209Set target debugging."), _("\
4210Show target debugging."), _("\
333dabeb
DJ
4211When non-zero, target debugging is enabled. Higher numbers are more\n\
4212verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
85c07804 4213command."),
ccce17b0
YQ
4214 NULL,
4215 show_targetdebug,
4216 &setdebuglist, &showdebuglist);
3a11626d 4217
2bc416ba 4218 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
4219 &trust_readonly, _("\
4220Set mode for reading from readonly sections."), _("\
4221Show mode for reading from readonly sections."), _("\
3a11626d
MS
4222When this mode is on, memory reads from readonly sections (such as .text)\n\
4223will be read from the object file instead of from the target. This will\n\
7915a72c 4224result in significant performance improvement for remote targets."),
2c5b56ce 4225 NULL,
920d2a44 4226 show_trust_readonly,
e707bbc2 4227 &setlist, &showlist);
96baa820
JM
4228
4229 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 4230 _("Send a command to the remote monitor (remote targets only)."));
96baa820 4231
87680a14
JB
4232 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4233 _("Print the name of each layer of the internal target stack."),
4234 &maintenanceprintlist);
4235
c6ebd6cf
VP
4236 add_setshow_boolean_cmd ("target-async", no_class,
4237 &target_async_permitted_1, _("\
4238Set whether gdb controls the inferior in asynchronous mode."), _("\
4239Show whether gdb controls the inferior in asynchronous mode."), _("\
4240Tells gdb whether to control the inferior in asynchronous mode."),
329ea579
PA
4241 maint_set_target_async_command,
4242 maint_show_target_async_command,
4243 &maintenance_set_cmdlist,
4244 &maintenance_show_cmdlist);
c6ebd6cf 4245
d914c394
SS
4246 add_setshow_boolean_cmd ("may-write-registers", class_support,
4247 &may_write_registers_1, _("\
4248Set permission to write into registers."), _("\
4249Show permission to write into registers."), _("\
4250When this permission is on, GDB may write into the target's registers.\n\
4251Otherwise, any sort of write attempt will result in an error."),
4252 set_target_permissions, NULL,
4253 &setlist, &showlist);
4254
4255 add_setshow_boolean_cmd ("may-write-memory", class_support,
4256 &may_write_memory_1, _("\
4257Set permission to write into target memory."), _("\
4258Show permission to write into target memory."), _("\
4259When this permission is on, GDB may write into the target's memory.\n\
4260Otherwise, any sort of write attempt will result in an error."),
4261 set_write_memory_permission, NULL,
4262 &setlist, &showlist);
4263
4264 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4265 &may_insert_breakpoints_1, _("\
4266Set permission to insert breakpoints in the target."), _("\
4267Show permission to insert breakpoints in the target."), _("\
4268When this permission is on, GDB may insert breakpoints in the program.\n\
4269Otherwise, any sort of insertion attempt will result in an error."),
4270 set_target_permissions, NULL,
4271 &setlist, &showlist);
4272
4273 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4274 &may_insert_tracepoints_1, _("\
4275Set permission to insert tracepoints in the target."), _("\
4276Show permission to insert tracepoints in the target."), _("\
4277When this permission is on, GDB may insert tracepoints in the program.\n\
4278Otherwise, any sort of insertion attempt will result in an error."),
4279 set_target_permissions, NULL,
4280 &setlist, &showlist);
4281
4282 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4283 &may_insert_fast_tracepoints_1, _("\
4284Set permission to insert fast tracepoints in the target."), _("\
4285Show permission to insert fast tracepoints in the target."), _("\
4286When this permission is on, GDB may insert fast tracepoints.\n\
4287Otherwise, any sort of insertion attempt will result in an error."),
4288 set_target_permissions, NULL,
4289 &setlist, &showlist);
4290
4291 add_setshow_boolean_cmd ("may-interrupt", class_support,
4292 &may_stop_1, _("\
4293Set permission to interrupt or signal the target."), _("\
4294Show permission to interrupt or signal the target."), _("\
4295When this permission is on, GDB may interrupt/stop the target's execution.\n\
4296Otherwise, any attempt to interrupt or stop will be ignored."),
4297 set_target_permissions, NULL,
4298 &setlist, &showlist);
6a3cb8e8
PA
4299
4300 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4301 &auto_connect_native_target, _("\
4302Set whether GDB may automatically connect to the native target."), _("\
4303Show whether GDB may automatically connect to the native target."), _("\
4304When on, and GDB is not connected to a target yet, GDB\n\
4305attempts \"run\" and other commands with the native target."),
4306 NULL, show_auto_connect_native_target,
4307 &setlist, &showlist);
c906108c 4308}