]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/target.c
Introduce target/target.h
[thirdparty/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
ecd75fc8 3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c 23#include "target.h"
68c765e2 24#include "target-dcache.h"
c906108c
SS
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
45741a9c 28#include "infrun.h"
c906108c
SS
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
4930751a 32#include "dcache.h"
c906108c 33#include <signal.h>
4e052eda 34#include "regcache.h"
b6591e8b 35#include "gdbcore.h"
9e35dae4 36#include "exceptions.h"
424163ea 37#include "target-descriptions.h"
e1ac3328 38#include "gdbthread.h"
b9db4ced 39#include "solib.h"
07b82ea5 40#include "exec.h"
edb3359d 41#include "inline-frame.h"
2f4d8875 42#include "tracepoint.h"
7313baad 43#include "gdb/fileio.h"
8ffcbaaf 44#include "agent.h"
8de71aab 45#include "auxv.h"
a7068b60 46#include "target-debug.h"
c906108c 47
a14ed312 48static void target_info (char *, int);
c906108c 49
f0f9ff95
TT
50static void generic_tls_error (void) ATTRIBUTE_NORETURN;
51
0a4f40a2 52static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 53
5009afc5
AS
54static int default_watchpoint_addr_within_range (struct target_ops *,
55 CORE_ADDR, CORE_ADDR, int);
56
31568a15
TT
57static int default_region_ok_for_hw_watchpoint (struct target_ops *,
58 CORE_ADDR, int);
e0d24f8d 59
a30bf1f1 60static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
a53f3625 61
4229b31d
TT
62static ptid_t default_get_ada_task_ptid (struct target_ops *self,
63 long lwp, long tid);
64
098dba18
TT
65static int default_follow_fork (struct target_ops *self, int follow_child,
66 int detach_fork);
67
8d657035
TT
68static void default_mourn_inferior (struct target_ops *self);
69
58a5184e
TT
70static int default_search_memory (struct target_ops *ops,
71 CORE_ADDR start_addr,
72 ULONGEST search_space_len,
73 const gdb_byte *pattern,
74 ULONGEST pattern_len,
75 CORE_ADDR *found_addrp);
76
936d2992
PA
77static int default_verify_memory (struct target_ops *self,
78 const gdb_byte *data,
79 CORE_ADDR memaddr, ULONGEST size);
80
8eaff7cd
TT
81static struct address_space *default_thread_address_space
82 (struct target_ops *self, ptid_t ptid);
83
c25c4a8b 84static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 85
555bbdeb
TT
86static int return_zero (struct target_ops *);
87
88static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 89
a14ed312 90static void target_command (char *, int);
c906108c 91
a14ed312 92static struct target_ops *find_default_run_target (char *);
c906108c 93
c2250ad1
UW
94static struct gdbarch *default_thread_architecture (struct target_ops *ops,
95 ptid_t ptid);
96
0b5a2719
TT
97static int dummy_find_memory_regions (struct target_ops *self,
98 find_memory_region_ftype ignore1,
99 void *ignore2);
100
16f796b1
TT
101static char *dummy_make_corefile_notes (struct target_ops *self,
102 bfd *ignore1, int *ignore2);
103
770234d3
TT
104static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
105
fe31bf5b
TT
106static enum exec_direction_kind default_execution_direction
107 (struct target_ops *self);
108
c0eca49f
TT
109static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
110 struct gdbarch *gdbarch);
111
a7068b60
TT
112static struct target_ops debug_target;
113
1101cb7b
TT
114#include "target-delegates.c"
115
a14ed312 116static void init_dummy_target (void);
c906108c 117
3cecbbbe
TT
118static void update_current_target (void);
119
89a1c21a
SM
120/* Vector of existing target structures. */
121typedef struct target_ops *target_ops_p;
122DEF_VEC_P (target_ops_p);
123static VEC (target_ops_p) *target_structs;
c906108c
SS
124
125/* The initial current target, so that there is always a semi-valid
126 current target. */
127
128static struct target_ops dummy_target;
129
130/* Top of target stack. */
131
258b763a 132static struct target_ops *target_stack;
c906108c
SS
133
134/* The target structure we are currently using to talk to a process
135 or file or whatever "inferior" we have. */
136
137struct target_ops current_target;
138
139/* Command list for target. */
140
141static struct cmd_list_element *targetlist = NULL;
142
cf7a04e8
DJ
143/* Nonzero if we should trust readonly sections from the
144 executable when reading memory. */
145
146static int trust_readonly = 0;
147
8defab1a
DJ
148/* Nonzero if we should show true memory content including
149 memory breakpoint inserted by gdb. */
150
151static int show_memory_breakpoints = 0;
152
d914c394
SS
153/* These globals control whether GDB attempts to perform these
154 operations; they are useful for targets that need to prevent
155 inadvertant disruption, such as in non-stop mode. */
156
157int may_write_registers = 1;
158
159int may_write_memory = 1;
160
161int may_insert_breakpoints = 1;
162
163int may_insert_tracepoints = 1;
164
165int may_insert_fast_tracepoints = 1;
166
167int may_stop = 1;
168
c906108c
SS
169/* Non-zero if we want to see trace of target level stuff. */
170
ccce17b0 171static unsigned int targetdebug = 0;
3cecbbbe
TT
172
173static void
174set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
175{
176 update_current_target ();
177}
178
920d2a44
AC
179static void
180show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182{
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184}
c906108c 185
a14ed312 186static void setup_target_debug (void);
c906108c 187
c906108c
SS
188/* The user just typed 'target' without the name of a target. */
189
c906108c 190static void
fba45db2 191target_command (char *arg, int from_tty)
c906108c
SS
192{
193 fputs_filtered ("Argument required (target name). Try `help target'\n",
194 gdb_stdout);
195}
196
c35b1492
PA
197/* Default target_has_* methods for process_stratum targets. */
198
199int
200default_child_has_all_memory (struct target_ops *ops)
201{
202 /* If no inferior selected, then we can't read memory here. */
203 if (ptid_equal (inferior_ptid, null_ptid))
204 return 0;
205
206 return 1;
207}
208
209int
210default_child_has_memory (struct target_ops *ops)
211{
212 /* If no inferior selected, then we can't read memory here. */
213 if (ptid_equal (inferior_ptid, null_ptid))
214 return 0;
215
216 return 1;
217}
218
219int
220default_child_has_stack (struct target_ops *ops)
221{
222 /* If no inferior selected, there's no stack. */
223 if (ptid_equal (inferior_ptid, null_ptid))
224 return 0;
225
226 return 1;
227}
228
229int
230default_child_has_registers (struct target_ops *ops)
231{
232 /* Can't read registers from no inferior. */
233 if (ptid_equal (inferior_ptid, null_ptid))
234 return 0;
235
236 return 1;
237}
238
239int
aeaec162 240default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
241{
242 /* If there's no thread selected, then we can't make it run through
243 hoops. */
aeaec162 244 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
245 return 0;
246
247 return 1;
248}
249
250
251int
252target_has_all_memory_1 (void)
253{
254 struct target_ops *t;
255
256 for (t = current_target.beneath; t != NULL; t = t->beneath)
257 if (t->to_has_all_memory (t))
258 return 1;
259
260 return 0;
261}
262
263int
264target_has_memory_1 (void)
265{
266 struct target_ops *t;
267
268 for (t = current_target.beneath; t != NULL; t = t->beneath)
269 if (t->to_has_memory (t))
270 return 1;
271
272 return 0;
273}
274
275int
276target_has_stack_1 (void)
277{
278 struct target_ops *t;
279
280 for (t = current_target.beneath; t != NULL; t = t->beneath)
281 if (t->to_has_stack (t))
282 return 1;
283
284 return 0;
285}
286
287int
288target_has_registers_1 (void)
289{
290 struct target_ops *t;
291
292 for (t = current_target.beneath; t != NULL; t = t->beneath)
293 if (t->to_has_registers (t))
294 return 1;
295
296 return 0;
297}
298
299int
aeaec162 300target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
301{
302 struct target_ops *t;
303
304 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 305 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
306 return 1;
307
308 return 0;
309}
310
aeaec162
TT
311int
312target_has_execution_current (void)
313{
314 return target_has_execution_1 (inferior_ptid);
315}
316
c22a2b88
TT
317/* Complete initialization of T. This ensures that various fields in
318 T are set, if needed by the target implementation. */
c906108c
SS
319
320void
c22a2b88 321complete_target_initialization (struct target_ops *t)
c906108c 322{
0088c768 323 /* Provide default values for all "must have" methods. */
0088c768 324
c35b1492 325 if (t->to_has_all_memory == NULL)
555bbdeb 326 t->to_has_all_memory = return_zero;
c35b1492
PA
327
328 if (t->to_has_memory == NULL)
555bbdeb 329 t->to_has_memory = return_zero;
c35b1492
PA
330
331 if (t->to_has_stack == NULL)
555bbdeb 332 t->to_has_stack = return_zero;
c35b1492
PA
333
334 if (t->to_has_registers == NULL)
555bbdeb 335 t->to_has_registers = return_zero;
c35b1492
PA
336
337 if (t->to_has_execution == NULL)
555bbdeb 338 t->to_has_execution = return_zero_has_execution;
1101cb7b 339
b3ccfe11
TT
340 /* These methods can be called on an unpushed target and so require
341 a default implementation if the target might plausibly be the
342 default run target. */
343 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
344 && t->to_supports_non_stop != NULL));
345
1101cb7b 346 install_delegators (t);
c22a2b88
TT
347}
348
8981c758
TT
349/* This is used to implement the various target commands. */
350
351static void
352open_target (char *args, int from_tty, struct cmd_list_element *command)
353{
354 struct target_ops *ops = get_cmd_context (command);
355
356 if (targetdebug)
357 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
358 ops->to_shortname);
359
360 ops->to_open (args, from_tty);
361
362 if (targetdebug)
363 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
364 ops->to_shortname, args, from_tty);
365}
366
c22a2b88
TT
367/* Add possible target architecture T to the list and add a new
368 command 'target T->to_shortname'. Set COMPLETER as the command's
369 completer if not NULL. */
370
371void
372add_target_with_completer (struct target_ops *t,
373 completer_ftype *completer)
374{
375 struct cmd_list_element *c;
376
377 complete_target_initialization (t);
c35b1492 378
89a1c21a 379 VEC_safe_push (target_ops_p, target_structs, t);
c906108c
SS
380
381 if (targetlist == NULL)
1bedd215
AC
382 add_prefix_cmd ("target", class_run, target_command, _("\
383Connect to a target machine or process.\n\
c906108c
SS
384The first argument is the type or protocol of the target machine.\n\
385Remaining arguments are interpreted by the target protocol. For more\n\
386information on the arguments for a particular protocol, type\n\
1bedd215 387`help target ' followed by the protocol name."),
c906108c 388 &targetlist, "target ", 0, &cmdlist);
8981c758
TT
389 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
390 set_cmd_sfunc (c, open_target);
391 set_cmd_context (c, t);
9852c492
YQ
392 if (completer != NULL)
393 set_cmd_completer (c, completer);
394}
395
396/* Add a possible target architecture to the list. */
397
398void
399add_target (struct target_ops *t)
400{
401 add_target_with_completer (t, NULL);
c906108c
SS
402}
403
b48d48eb
MM
404/* See target.h. */
405
406void
407add_deprecated_target_alias (struct target_ops *t, char *alias)
408{
409 struct cmd_list_element *c;
410 char *alt;
411
412 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
413 see PR cli/15104. */
8981c758
TT
414 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
415 set_cmd_sfunc (c, open_target);
416 set_cmd_context (c, t);
b48d48eb
MM
417 alt = xstrprintf ("target %s", t->to_shortname);
418 deprecate_cmd (c, alt);
419}
420
c906108c
SS
421/* Stub functions */
422
7d85a9c0
JB
423void
424target_kill (void)
425{
423a4807 426 current_target.to_kill (&current_target);
7d85a9c0
JB
427}
428
11cf8741 429void
9cbe5fff 430target_load (const char *arg, int from_tty)
11cf8741 431{
4e5d721f 432 target_dcache_invalidate ();
71a9f134 433 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
434}
435
d9d2d8b6
PA
436void
437target_terminal_inferior (void)
438{
439 /* A background resume (``run&'') should leave GDB in control of the
c378eb4e 440 terminal. Use target_can_async_p, not target_is_async_p, since at
ba7f6c64
VP
441 this point the target is not async yet. However, if sync_execution
442 is not set, we know it will become async prior to resume. */
443 if (target_can_async_p () && !sync_execution)
d9d2d8b6
PA
444 return;
445
446 /* If GDB is resuming the inferior in the foreground, install
447 inferior's terminal modes. */
d2f640d4 448 (*current_target.to_terminal_inferior) (&current_target);
d9d2d8b6 449}
136d6dae 450
b0ed115f
TT
451/* See target.h. */
452
453int
454target_supports_terminal_ours (void)
455{
456 struct target_ops *t;
457
458 for (t = current_target.beneath; t != NULL; t = t->beneath)
459 {
460 if (t->to_terminal_ours != delegate_terminal_ours
461 && t->to_terminal_ours != tdefault_terminal_ours)
462 return 1;
463 }
464
465 return 0;
466}
467
c906108c 468static void
fba45db2 469tcomplain (void)
c906108c 470{
8a3fe4f8 471 error (_("You can't do that when your target is `%s'"),
c906108c
SS
472 current_target.to_shortname);
473}
474
475void
fba45db2 476noprocess (void)
c906108c 477{
8a3fe4f8 478 error (_("You can't do that without a process to debug."));
c906108c
SS
479}
480
c906108c 481static void
0a4f40a2 482default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 483{
a3f17187 484 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
485}
486
0ef643c8
JB
487/* A default implementation for the to_get_ada_task_ptid target method.
488
489 This function builds the PTID by using both LWP and TID as part of
490 the PTID lwp and tid elements. The pid used is the pid of the
491 inferior_ptid. */
492
2c0b251b 493static ptid_t
1e6b91a4 494default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
495{
496 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
497}
498
32231432 499static enum exec_direction_kind
4c612759 500default_execution_direction (struct target_ops *self)
32231432
PA
501{
502 if (!target_can_execute_reverse)
503 return EXEC_FORWARD;
504 else if (!target_can_async_p ())
505 return EXEC_FORWARD;
506 else
507 gdb_assert_not_reached ("\
508to_execution_direction must be implemented for reverse async");
509}
510
7998dfc3
AC
511/* Go through the target stack from top to bottom, copying over zero
512 entries in current_target, then filling in still empty entries. In
513 effect, we are doing class inheritance through the pushed target
514 vectors.
515
516 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
517 is currently implemented, is that it discards any knowledge of
518 which target an inherited method originally belonged to.
519 Consequently, new new target methods should instead explicitly and
520 locally search the target stack for the target that can handle the
521 request. */
c906108c
SS
522
523static void
7998dfc3 524update_current_target (void)
c906108c 525{
7998dfc3
AC
526 struct target_ops *t;
527
08d8bcd7 528 /* First, reset current's contents. */
7998dfc3
AC
529 memset (&current_target, 0, sizeof (current_target));
530
1101cb7b
TT
531 /* Install the delegators. */
532 install_delegators (&current_target);
533
be4ddd36
TT
534 current_target.to_stratum = target_stack->to_stratum;
535
7998dfc3
AC
536#define INHERIT(FIELD, TARGET) \
537 if (!current_target.FIELD) \
538 current_target.FIELD = (TARGET)->FIELD
539
be4ddd36
TT
540 /* Do not add any new INHERITs here. Instead, use the delegation
541 mechanism provided by make-target-delegates. */
7998dfc3
AC
542 for (t = target_stack; t; t = t->beneath)
543 {
544 INHERIT (to_shortname, t);
545 INHERIT (to_longname, t);
dc177b7a 546 INHERIT (to_attach_no_wait, t);
74174d2e 547 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 548 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 549 INHERIT (to_has_thread_control, t);
7998dfc3
AC
550 }
551#undef INHERIT
552
7998dfc3
AC
553 /* Finally, position the target-stack beneath the squashed
554 "current_target". That way code looking for a non-inherited
555 target method can quickly and simply find it. */
556 current_target.beneath = target_stack;
b4b61fdb
DJ
557
558 if (targetdebug)
559 setup_target_debug ();
c906108c
SS
560}
561
562/* Push a new target type into the stack of the existing target accessors,
563 possibly superseding some of the existing accessors.
564
c906108c
SS
565 Rather than allow an empty stack, we always have the dummy target at
566 the bottom stratum, so we can call the function vectors without
567 checking them. */
568
b26a4dcb 569void
fba45db2 570push_target (struct target_ops *t)
c906108c 571{
258b763a 572 struct target_ops **cur;
c906108c
SS
573
574 /* Check magic number. If wrong, it probably means someone changed
575 the struct definition, but not all the places that initialize one. */
576 if (t->to_magic != OPS_MAGIC)
577 {
c5aa993b
JM
578 fprintf_unfiltered (gdb_stderr,
579 "Magic number of %s target struct wrong\n",
580 t->to_shortname);
3e43a32a
MS
581 internal_error (__FILE__, __LINE__,
582 _("failed internal consistency check"));
c906108c
SS
583 }
584
258b763a
AC
585 /* Find the proper stratum to install this target in. */
586 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 587 {
258b763a 588 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
589 break;
590 }
591
258b763a 592 /* If there's already targets at this stratum, remove them. */
88c231eb 593 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
594 targets to CUR, and not just those at this stratum level. */
595 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
596 {
597 /* There's already something at this stratum level. Close it,
598 and un-hook it from the stack. */
599 struct target_ops *tmp = (*cur);
5d502164 600
258b763a
AC
601 (*cur) = (*cur)->beneath;
602 tmp->beneath = NULL;
460014f5 603 target_close (tmp);
258b763a 604 }
c906108c
SS
605
606 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
607 t->beneath = (*cur);
608 (*cur) = t;
c906108c
SS
609
610 update_current_target ();
c906108c
SS
611}
612
2bc416ba 613/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
614 Return how many times it was removed (0 or 1). */
615
616int
fba45db2 617unpush_target (struct target_ops *t)
c906108c 618{
258b763a
AC
619 struct target_ops **cur;
620 struct target_ops *tmp;
c906108c 621
c8d104ad
PA
622 if (t->to_stratum == dummy_stratum)
623 internal_error (__FILE__, __LINE__,
9b20d036 624 _("Attempt to unpush the dummy target"));
c8d104ad 625
c906108c 626 /* Look for the specified target. Note that we assume that a target
c378eb4e 627 can only occur once in the target stack. */
c906108c 628
258b763a
AC
629 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
630 {
631 if ((*cur) == t)
632 break;
633 }
c906108c 634
305436e0
PA
635 /* If we don't find target_ops, quit. Only open targets should be
636 closed. */
258b763a 637 if ((*cur) == NULL)
305436e0 638 return 0;
5269965e 639
c378eb4e 640 /* Unchain the target. */
258b763a
AC
641 tmp = (*cur);
642 (*cur) = (*cur)->beneath;
643 tmp->beneath = NULL;
c906108c
SS
644
645 update_current_target ();
c906108c 646
305436e0
PA
647 /* Finally close the target. Note we do this after unchaining, so
648 any target method calls from within the target_close
649 implementation don't end up in T anymore. */
460014f5 650 target_close (t);
305436e0 651
c906108c
SS
652 return 1;
653}
654
aa76d38d 655void
460014f5 656pop_all_targets_above (enum strata above_stratum)
aa76d38d 657{
87ab71f0 658 while ((int) (current_target.to_stratum) > (int) above_stratum)
aa76d38d 659 {
aa76d38d
PA
660 if (!unpush_target (target_stack))
661 {
662 fprintf_unfiltered (gdb_stderr,
663 "pop_all_targets couldn't find target %s\n",
b52323fa 664 target_stack->to_shortname);
aa76d38d
PA
665 internal_error (__FILE__, __LINE__,
666 _("failed internal consistency check"));
667 break;
668 }
669 }
670}
671
87ab71f0 672void
460014f5 673pop_all_targets (void)
87ab71f0 674{
460014f5 675 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
676}
677
c0edd9ed
JK
678/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
679
680int
681target_is_pushed (struct target_ops *t)
682{
84202f9c 683 struct target_ops *cur;
c0edd9ed
JK
684
685 /* Check magic number. If wrong, it probably means someone changed
686 the struct definition, but not all the places that initialize one. */
687 if (t->to_magic != OPS_MAGIC)
688 {
689 fprintf_unfiltered (gdb_stderr,
690 "Magic number of %s target struct wrong\n",
691 t->to_shortname);
3e43a32a
MS
692 internal_error (__FILE__, __LINE__,
693 _("failed internal consistency check"));
c0edd9ed
JK
694 }
695
84202f9c
TT
696 for (cur = target_stack; cur != NULL; cur = cur->beneath)
697 if (cur == t)
c0edd9ed
JK
698 return 1;
699
700 return 0;
701}
702
f0f9ff95
TT
703/* Default implementation of to_get_thread_local_address. */
704
705static void
706generic_tls_error (void)
707{
708 throw_error (TLS_GENERIC_ERROR,
709 _("Cannot find thread-local variables on this target"));
710}
711
72f5cf0e 712/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
713 current thread's thread-local storage with offset OFFSET. */
714CORE_ADDR
715target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
716{
717 volatile CORE_ADDR addr = 0;
f0f9ff95 718 struct target_ops *target = &current_target;
9e35dae4 719
f0f9ff95 720 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
721 {
722 ptid_t ptid = inferior_ptid;
723 volatile struct gdb_exception ex;
724
725 TRY_CATCH (ex, RETURN_MASK_ALL)
726 {
727 CORE_ADDR lm_addr;
728
729 /* Fetch the load module address for this objfile. */
f5656ead 730 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4 731 objfile);
9e35dae4 732
3e43a32a
MS
733 addr = target->to_get_thread_local_address (target, ptid,
734 lm_addr, offset);
9e35dae4
DJ
735 }
736 /* If an error occurred, print TLS related messages here. Otherwise,
737 throw the error to some higher catcher. */
738 if (ex.reason < 0)
739 {
740 int objfile_is_library = (objfile->flags & OBJF_SHARED);
741
742 switch (ex.error)
743 {
744 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
745 error (_("Cannot find thread-local variables "
746 "in this thread library."));
9e35dae4
DJ
747 break;
748 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
749 if (objfile_is_library)
750 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 751 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
752 else
753 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 754 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
755 break;
756 case TLS_NOT_ALLOCATED_YET_ERROR:
757 if (objfile_is_library)
758 error (_("The inferior has not yet allocated storage for"
759 " thread-local variables in\n"
760 "the shared library `%s'\n"
761 "for %s"),
4262abfb 762 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
763 else
764 error (_("The inferior has not yet allocated storage for"
765 " thread-local variables in\n"
766 "the executable `%s'\n"
767 "for %s"),
4262abfb 768 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
769 break;
770 case TLS_GENERIC_ERROR:
771 if (objfile_is_library)
772 error (_("Cannot find thread-local storage for %s, "
773 "shared library %s:\n%s"),
774 target_pid_to_str (ptid),
4262abfb 775 objfile_name (objfile), ex.message);
9e35dae4
DJ
776 else
777 error (_("Cannot find thread-local storage for %s, "
778 "executable file %s:\n%s"),
779 target_pid_to_str (ptid),
4262abfb 780 objfile_name (objfile), ex.message);
9e35dae4
DJ
781 break;
782 default:
783 throw_exception (ex);
784 break;
785 }
786 }
787 }
788 /* It wouldn't be wrong here to try a gdbarch method, too; finding
789 TLS is an ABI-specific thing. But we don't do that yet. */
790 else
791 error (_("Cannot find thread-local variables on this target"));
792
793 return addr;
794}
795
6be7b56e 796const char *
01cb8804 797target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
798{
799#define CASE(X) case X: return #X
01cb8804 800 switch (status)
6be7b56e
PA
801 {
802 CASE(TARGET_XFER_E_IO);
bc113b4e 803 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
804 default:
805 return "<unknown>";
806 }
807#undef CASE
808};
809
810
c906108c
SS
811#undef MIN
812#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
813
814/* target_read_string -- read a null terminated string, up to LEN bytes,
815 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
816 Set *STRING to a pointer to malloc'd memory containing the data; the caller
817 is responsible for freeing it. Return the number of bytes successfully
818 read. */
819
820int
fba45db2 821target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 822{
c2e8b827 823 int tlen, offset, i;
1b0ba102 824 gdb_byte buf[4];
c906108c
SS
825 int errcode = 0;
826 char *buffer;
827 int buffer_allocated;
828 char *bufptr;
829 unsigned int nbytes_read = 0;
830
6217bf3e
MS
831 gdb_assert (string);
832
c906108c
SS
833 /* Small for testing. */
834 buffer_allocated = 4;
835 buffer = xmalloc (buffer_allocated);
836 bufptr = buffer;
837
c906108c
SS
838 while (len > 0)
839 {
840 tlen = MIN (len, 4 - (memaddr & 3));
841 offset = memaddr & 3;
842
1b0ba102 843 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
844 if (errcode != 0)
845 {
846 /* The transfer request might have crossed the boundary to an
c378eb4e 847 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
848 a single byte. */
849 tlen = 1;
850 offset = 0;
b8eb5af0 851 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
852 if (errcode != 0)
853 goto done;
854 }
855
856 if (bufptr - buffer + tlen > buffer_allocated)
857 {
858 unsigned int bytes;
5d502164 859
c906108c
SS
860 bytes = bufptr - buffer;
861 buffer_allocated *= 2;
862 buffer = xrealloc (buffer, buffer_allocated);
863 bufptr = buffer + bytes;
864 }
865
866 for (i = 0; i < tlen; i++)
867 {
868 *bufptr++ = buf[i + offset];
869 if (buf[i + offset] == '\000')
870 {
871 nbytes_read += i + 1;
872 goto done;
873 }
874 }
875
876 memaddr += tlen;
877 len -= tlen;
878 nbytes_read += tlen;
879 }
c5aa993b 880done:
6217bf3e 881 *string = buffer;
c906108c
SS
882 if (errnop != NULL)
883 *errnop = errcode;
c906108c
SS
884 return nbytes_read;
885}
886
07b82ea5
PA
887struct target_section_table *
888target_get_section_table (struct target_ops *target)
889{
7e35c012 890 return (*target->to_get_section_table) (target);
07b82ea5
PA
891}
892
8db32d44 893/* Find a section containing ADDR. */
07b82ea5 894
0542c86d 895struct target_section *
8db32d44
AC
896target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
897{
07b82ea5 898 struct target_section_table *table = target_get_section_table (target);
0542c86d 899 struct target_section *secp;
07b82ea5
PA
900
901 if (table == NULL)
902 return NULL;
903
904 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
905 {
906 if (addr >= secp->addr && addr < secp->endaddr)
907 return secp;
908 }
909 return NULL;
910}
911
9f713294
YQ
912/* Read memory from more than one valid target. A core file, for
913 instance, could have some of memory but delegate other bits to
914 the target below it. So, we must manually try all targets. */
915
9b409511 916static enum target_xfer_status
17fde6d0 917raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
918 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
919 ULONGEST *xfered_len)
9f713294 920{
9b409511 921 enum target_xfer_status res;
9f713294
YQ
922
923 do
924 {
925 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
926 readbuf, writebuf, memaddr, len,
927 xfered_len);
928 if (res == TARGET_XFER_OK)
9f713294
YQ
929 break;
930
633785ff 931 /* Stop if the target reports that the memory is not available. */
bc113b4e 932 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
933 break;
934
9f713294
YQ
935 /* We want to continue past core files to executables, but not
936 past a running target's memory. */
937 if (ops->to_has_all_memory (ops))
938 break;
939
940 ops = ops->beneath;
941 }
942 while (ops != NULL);
943
0f26cec1
PA
944 /* The cache works at the raw memory level. Make sure the cache
945 gets updated with raw contents no matter what kind of memory
946 object was originally being written. Note we do write-through
947 first, so that if it fails, we don't write to the cache contents
948 that never made it to the target. */
949 if (writebuf != NULL
950 && !ptid_equal (inferior_ptid, null_ptid)
951 && target_dcache_init_p ()
952 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
953 {
954 DCACHE *dcache = target_dcache_get ();
955
956 /* Note that writing to an area of memory which wasn't present
957 in the cache doesn't cause it to be loaded in. */
958 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
959 }
960
9f713294
YQ
961 return res;
962}
963
7f79c47e
DE
964/* Perform a partial memory transfer.
965 For docs see target.h, to_xfer_partial. */
cf7a04e8 966
9b409511 967static enum target_xfer_status
f0ba3972 968memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 969 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 970 ULONGEST len, ULONGEST *xfered_len)
0779438d 971{
9b409511 972 enum target_xfer_status res;
cf7a04e8
DJ
973 int reg_len;
974 struct mem_region *region;
4e5d721f 975 struct inferior *inf;
cf7a04e8 976
07b82ea5
PA
977 /* For accesses to unmapped overlay sections, read directly from
978 files. Must do this first, as MEMADDR may need adjustment. */
979 if (readbuf != NULL && overlay_debugging)
980 {
981 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 982
07b82ea5
PA
983 if (pc_in_unmapped_range (memaddr, section))
984 {
985 struct target_section_table *table
986 = target_get_section_table (ops);
987 const char *section_name = section->the_bfd_section->name;
5d502164 988
07b82ea5
PA
989 memaddr = overlay_mapped_address (memaddr, section);
990 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 991 memaddr, len, xfered_len,
07b82ea5
PA
992 table->sections,
993 table->sections_end,
994 section_name);
995 }
996 }
997
998 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
999 if (readbuf != NULL && trust_readonly)
1000 {
0542c86d 1001 struct target_section *secp;
07b82ea5 1002 struct target_section_table *table;
cf7a04e8
DJ
1003
1004 secp = target_section_by_addr (ops, memaddr);
1005 if (secp != NULL
2b2848e2
DE
1006 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1007 secp->the_bfd_section)
cf7a04e8 1008 & SEC_READONLY))
07b82ea5
PA
1009 {
1010 table = target_get_section_table (ops);
1011 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1012 memaddr, len, xfered_len,
07b82ea5
PA
1013 table->sections,
1014 table->sections_end,
1015 NULL);
1016 }
98646950
UW
1017 }
1018
cf7a04e8
DJ
1019 /* Try GDB's internal data cache. */
1020 region = lookup_mem_region (memaddr);
4b5752d0
VP
1021 /* region->hi == 0 means there's no upper bound. */
1022 if (memaddr + len < region->hi || region->hi == 0)
cf7a04e8
DJ
1023 reg_len = len;
1024 else
1025 reg_len = region->hi - memaddr;
1026
1027 switch (region->attrib.mode)
1028 {
1029 case MEM_RO:
1030 if (writebuf != NULL)
2ed4b548 1031 return TARGET_XFER_E_IO;
cf7a04e8
DJ
1032 break;
1033
1034 case MEM_WO:
1035 if (readbuf != NULL)
2ed4b548 1036 return TARGET_XFER_E_IO;
cf7a04e8 1037 break;
a76d924d
DJ
1038
1039 case MEM_FLASH:
1040 /* We only support writing to flash during "load" for now. */
1041 if (writebuf != NULL)
1042 error (_("Writing to flash memory forbidden in this context"));
1043 break;
4b5752d0
VP
1044
1045 case MEM_NONE:
2ed4b548 1046 return TARGET_XFER_E_IO;
cf7a04e8
DJ
1047 }
1048
6c95b8df
PA
1049 if (!ptid_equal (inferior_ptid, null_ptid))
1050 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1051 else
1052 inf = NULL;
4e5d721f
DE
1053
1054 if (inf != NULL
0f26cec1 1055 && readbuf != NULL
2f4d8875
PA
1056 /* The dcache reads whole cache lines; that doesn't play well
1057 with reading from a trace buffer, because reading outside of
1058 the collected memory range fails. */
1059 && get_traceframe_number () == -1
4e5d721f 1060 && (region->attrib.cache
29453a14
YQ
1061 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1062 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1063 {
2a2f9fe4
YQ
1064 DCACHE *dcache = target_dcache_get_or_init ();
1065
0f26cec1
PA
1066 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1067 reg_len, xfered_len);
cf7a04e8
DJ
1068 }
1069
1070 /* If none of those methods found the memory we wanted, fall back
1071 to a target partial transfer. Normally a single call to
1072 to_xfer_partial is enough; if it doesn't recognize an object
1073 it will call the to_xfer_partial of the next target down.
1074 But for memory this won't do. Memory is the only target
9b409511
YQ
1075 object which can be read from more than one valid target.
1076 A core file, for instance, could have some of memory but
1077 delegate other bits to the target below it. So, we must
1078 manually try all targets. */
1079
1080 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1081 xfered_len);
cf7a04e8
DJ
1082
1083 /* If we still haven't got anything, return the last error. We
1084 give up. */
1085 return res;
0779438d
AC
1086}
1087
f0ba3972
PA
1088/* Perform a partial memory transfer. For docs see target.h,
1089 to_xfer_partial. */
1090
9b409511 1091static enum target_xfer_status
f0ba3972 1092memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1093 gdb_byte *readbuf, const gdb_byte *writebuf,
1094 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1095{
9b409511 1096 enum target_xfer_status res;
f0ba3972
PA
1097
1098 /* Zero length requests are ok and require no work. */
1099 if (len == 0)
9b409511 1100 return TARGET_XFER_EOF;
f0ba3972
PA
1101
1102 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1103 breakpoint insns, thus hiding out from higher layers whether
1104 there are software breakpoints inserted in the code stream. */
1105 if (readbuf != NULL)
1106 {
9b409511
YQ
1107 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1108 xfered_len);
f0ba3972 1109
9b409511 1110 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1111 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1112 }
1113 else
1114 {
1115 void *buf;
1116 struct cleanup *old_chain;
1117
67c059c2
AB
1118 /* A large write request is likely to be partially satisfied
1119 by memory_xfer_partial_1. We will continually malloc
1120 and free a copy of the entire write request for breakpoint
1121 shadow handling even though we only end up writing a small
1122 subset of it. Cap writes to 4KB to mitigate this. */
1123 len = min (4096, len);
1124
f0ba3972
PA
1125 buf = xmalloc (len);
1126 old_chain = make_cleanup (xfree, buf);
1127 memcpy (buf, writebuf, len);
1128
1129 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1130 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1131 xfered_len);
f0ba3972
PA
1132
1133 do_cleanups (old_chain);
1134 }
1135
1136 return res;
1137}
1138
8defab1a
DJ
1139static void
1140restore_show_memory_breakpoints (void *arg)
1141{
1142 show_memory_breakpoints = (uintptr_t) arg;
1143}
1144
1145struct cleanup *
1146make_show_memory_breakpoints_cleanup (int show)
1147{
1148 int current = show_memory_breakpoints;
8defab1a 1149
5d502164 1150 show_memory_breakpoints = show;
8defab1a
DJ
1151 return make_cleanup (restore_show_memory_breakpoints,
1152 (void *) (uintptr_t) current);
1153}
1154
7f79c47e
DE
1155/* For docs see target.h, to_xfer_partial. */
1156
9b409511 1157enum target_xfer_status
27394598
AC
1158target_xfer_partial (struct target_ops *ops,
1159 enum target_object object, const char *annex,
4ac248ca 1160 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1161 ULONGEST offset, ULONGEST len,
1162 ULONGEST *xfered_len)
27394598 1163{
9b409511 1164 enum target_xfer_status retval;
27394598
AC
1165
1166 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1167
ce6d0892
YQ
1168 /* Transfer is done when LEN is zero. */
1169 if (len == 0)
9b409511 1170 return TARGET_XFER_EOF;
ce6d0892 1171
d914c394
SS
1172 if (writebuf && !may_write_memory)
1173 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1174 core_addr_to_string_nz (offset), plongest (len));
1175
9b409511
YQ
1176 *xfered_len = 0;
1177
cf7a04e8
DJ
1178 /* If this is a memory transfer, let the memory-specific code
1179 have a look at it instead. Memory transfers are more
1180 complicated. */
29453a14
YQ
1181 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1182 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1183 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1184 writebuf, offset, len, xfered_len);
9f713294 1185 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1186 {
9f713294 1187 /* Request the normal memory object from other layers. */
9b409511
YQ
1188 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1189 xfered_len);
cf7a04e8 1190 }
9f713294
YQ
1191 else
1192 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1193 writebuf, offset, len, xfered_len);
cf7a04e8 1194
27394598
AC
1195 if (targetdebug)
1196 {
1197 const unsigned char *myaddr = NULL;
1198
1199 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1200 "%s:target_xfer_partial "
9b409511 1201 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1202 ops->to_shortname,
1203 (int) object,
1204 (annex ? annex : "(null)"),
53b71562
JB
1205 host_address_to_string (readbuf),
1206 host_address_to_string (writebuf),
0b1553bc 1207 core_addr_to_string_nz (offset),
9b409511
YQ
1208 pulongest (len), retval,
1209 pulongest (*xfered_len));
27394598
AC
1210
1211 if (readbuf)
1212 myaddr = readbuf;
1213 if (writebuf)
1214 myaddr = writebuf;
9b409511 1215 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1216 {
1217 int i;
2bc416ba 1218
27394598 1219 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1220 for (i = 0; i < *xfered_len; i++)
27394598 1221 {
53b71562 1222 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1223 {
1224 if (targetdebug < 2 && i > 0)
1225 {
1226 fprintf_unfiltered (gdb_stdlog, " ...");
1227 break;
1228 }
1229 fprintf_unfiltered (gdb_stdlog, "\n");
1230 }
2bc416ba 1231
27394598
AC
1232 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1233 }
1234 }
2bc416ba 1235
27394598
AC
1236 fputc_unfiltered ('\n', gdb_stdlog);
1237 }
9b409511
YQ
1238
1239 /* Check implementations of to_xfer_partial update *XFERED_LEN
1240 properly. Do assertion after printing debug messages, so that we
1241 can find more clues on assertion failure from debugging messages. */
bc113b4e 1242 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1243 gdb_assert (*xfered_len > 0);
1244
27394598
AC
1245 return retval;
1246}
1247
578d3588
PA
1248/* Read LEN bytes of target memory at address MEMADDR, placing the
1249 results in GDB's memory at MYADDR. Returns either 0 for success or
9b409511 1250 TARGET_XFER_E_IO if any error occurs.
c906108c
SS
1251
1252 If an error occurs, no guarantee is made about the contents of the data at
1253 MYADDR. In particular, the caller should not depend upon partial reads
1254 filling the buffer with good data. There is no way for the caller to know
1255 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1256 deal with partial reads should call target_read (which will retry until
c378eb4e 1257 it makes no progress, and then return how much was transferred). */
c906108c
SS
1258
1259int
1b162304 1260target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1261{
c35b1492
PA
1262 /* Dispatch to the topmost target, not the flattened current_target.
1263 Memory accesses check target->to_has_(all_)memory, and the
1264 flattened target doesn't inherit those. */
1265 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1266 myaddr, memaddr, len) == len)
1267 return 0;
0779438d 1268 else
578d3588 1269 return TARGET_XFER_E_IO;
c906108c
SS
1270}
1271
721ec300
GB
1272/* See target/target.h. */
1273
1274int
1275target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1276{
1277 gdb_byte buf[4];
1278 int r;
1279
1280 r = target_read_memory (memaddr, buf, sizeof buf);
1281 if (r != 0)
1282 return r;
1283 *result = extract_unsigned_integer (buf, sizeof buf,
1284 gdbarch_byte_order (target_gdbarch ()));
1285 return 0;
1286}
1287
aee4bf85
PA
1288/* Like target_read_memory, but specify explicitly that this is a read
1289 from the target's raw memory. That is, this read bypasses the
1290 dcache, breakpoint shadowing, etc. */
1291
1292int
1293target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1294{
1295 /* See comment in target_read_memory about why the request starts at
1296 current_target.beneath. */
1297 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1298 myaddr, memaddr, len) == len)
1299 return 0;
1300 else
1301 return TARGET_XFER_E_IO;
1302}
1303
4e5d721f
DE
1304/* Like target_read_memory, but specify explicitly that this is a read from
1305 the target's stack. This may trigger different cache behavior. */
1306
1307int
45aa4659 1308target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1309{
aee4bf85
PA
1310 /* See comment in target_read_memory about why the request starts at
1311 current_target.beneath. */
4e5d721f
DE
1312 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1313 myaddr, memaddr, len) == len)
1314 return 0;
1315 else
578d3588 1316 return TARGET_XFER_E_IO;
4e5d721f
DE
1317}
1318
29453a14
YQ
1319/* Like target_read_memory, but specify explicitly that this is a read from
1320 the target's code. This may trigger different cache behavior. */
1321
1322int
1323target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1324{
aee4bf85
PA
1325 /* See comment in target_read_memory about why the request starts at
1326 current_target.beneath. */
29453a14
YQ
1327 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1328 myaddr, memaddr, len) == len)
1329 return 0;
1330 else
1331 return TARGET_XFER_E_IO;
1332}
1333
7f79c47e 1334/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
9b409511 1335 Returns either 0 for success or TARGET_XFER_E_IO if any
578d3588
PA
1336 error occurs. If an error occurs, no guarantee is made about how
1337 much data got written. Callers that can deal with partial writes
1338 should call target_write. */
7f79c47e 1339
c906108c 1340int
45aa4659 1341target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1342{
aee4bf85
PA
1343 /* See comment in target_read_memory about why the request starts at
1344 current_target.beneath. */
c35b1492 1345 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1346 myaddr, memaddr, len) == len)
1347 return 0;
0779438d 1348 else
578d3588 1349 return TARGET_XFER_E_IO;
c906108c 1350}
c5aa993b 1351
f0ba3972 1352/* Write LEN bytes from MYADDR to target raw memory at address
9b409511 1353 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
578d3588
PA
1354 if any error occurs. If an error occurs, no guarantee is made
1355 about how much data got written. Callers that can deal with
1356 partial writes should call target_write. */
f0ba3972
PA
1357
1358int
45aa4659 1359target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1360{
aee4bf85
PA
1361 /* See comment in target_read_memory about why the request starts at
1362 current_target.beneath. */
f0ba3972
PA
1363 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1364 myaddr, memaddr, len) == len)
1365 return 0;
1366 else
578d3588 1367 return TARGET_XFER_E_IO;
f0ba3972
PA
1368}
1369
fd79ecee
DJ
1370/* Fetch the target's memory map. */
1371
1372VEC(mem_region_s) *
1373target_memory_map (void)
1374{
1375 VEC(mem_region_s) *result;
1376 struct mem_region *last_one, *this_one;
1377 int ix;
1378 struct target_ops *t;
1379
6b2c5a57 1380 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1381 if (result == NULL)
1382 return NULL;
1383
1384 qsort (VEC_address (mem_region_s, result),
1385 VEC_length (mem_region_s, result),
1386 sizeof (struct mem_region), mem_region_cmp);
1387
1388 /* Check that regions do not overlap. Simultaneously assign
1389 a numbering for the "mem" commands to use to refer to
1390 each region. */
1391 last_one = NULL;
1392 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1393 {
1394 this_one->number = ix;
1395
1396 if (last_one && last_one->hi > this_one->lo)
1397 {
1398 warning (_("Overlapping regions in memory map: ignoring"));
1399 VEC_free (mem_region_s, result);
1400 return NULL;
1401 }
1402 last_one = this_one;
1403 }
1404
1405 return result;
1406}
1407
a76d924d
DJ
1408void
1409target_flash_erase (ULONGEST address, LONGEST length)
1410{
e8a6c6ac 1411 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1412}
1413
1414void
1415target_flash_done (void)
1416{
f6fb2925 1417 current_target.to_flash_done (&current_target);
a76d924d
DJ
1418}
1419
920d2a44
AC
1420static void
1421show_trust_readonly (struct ui_file *file, int from_tty,
1422 struct cmd_list_element *c, const char *value)
1423{
3e43a32a
MS
1424 fprintf_filtered (file,
1425 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1426 value);
1427}
3a11626d 1428
7f79c47e 1429/* Target vector read/write partial wrapper functions. */
0088c768 1430
9b409511 1431static enum target_xfer_status
1e3ff5ad
AC
1432target_read_partial (struct target_ops *ops,
1433 enum target_object object,
1b0ba102 1434 const char *annex, gdb_byte *buf,
9b409511
YQ
1435 ULONGEST offset, ULONGEST len,
1436 ULONGEST *xfered_len)
1e3ff5ad 1437{
9b409511
YQ
1438 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1439 xfered_len);
1e3ff5ad
AC
1440}
1441
8a55ffb0 1442static enum target_xfer_status
1e3ff5ad
AC
1443target_write_partial (struct target_ops *ops,
1444 enum target_object object,
1b0ba102 1445 const char *annex, const gdb_byte *buf,
9b409511 1446 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1447{
9b409511
YQ
1448 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1449 xfered_len);
1e3ff5ad
AC
1450}
1451
1452/* Wrappers to perform the full transfer. */
7f79c47e
DE
1453
1454/* For docs on target_read see target.h. */
1455
1e3ff5ad
AC
1456LONGEST
1457target_read (struct target_ops *ops,
1458 enum target_object object,
1b0ba102 1459 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1460 ULONGEST offset, LONGEST len)
1461{
1462 LONGEST xfered = 0;
5d502164 1463
1e3ff5ad
AC
1464 while (xfered < len)
1465 {
9b409511
YQ
1466 ULONGEST xfered_len;
1467 enum target_xfer_status status;
1468
1469 status = target_read_partial (ops, object, annex,
1470 (gdb_byte *) buf + xfered,
1471 offset + xfered, len - xfered,
1472 &xfered_len);
5d502164 1473
1e3ff5ad 1474 /* Call an observer, notifying them of the xfer progress? */
9b409511 1475 if (status == TARGET_XFER_EOF)
13547ab6 1476 return xfered;
9b409511
YQ
1477 else if (status == TARGET_XFER_OK)
1478 {
1479 xfered += xfered_len;
1480 QUIT;
1481 }
1482 else
0088c768 1483 return -1;
9b409511 1484
1e3ff5ad
AC
1485 }
1486 return len;
1487}
1488
f1a507a1
JB
1489/* Assuming that the entire [begin, end) range of memory cannot be
1490 read, try to read whatever subrange is possible to read.
1491
1492 The function returns, in RESULT, either zero or one memory block.
1493 If there's a readable subrange at the beginning, it is completely
1494 read and returned. Any further readable subrange will not be read.
1495 Otherwise, if there's a readable subrange at the end, it will be
1496 completely read and returned. Any readable subranges before it
1497 (obviously, not starting at the beginning), will be ignored. In
1498 other cases -- either no readable subrange, or readable subrange(s)
1499 that is neither at the beginning, or end, nothing is returned.
1500
1501 The purpose of this function is to handle a read across a boundary
1502 of accessible memory in a case when memory map is not available.
1503 The above restrictions are fine for this case, but will give
1504 incorrect results if the memory is 'patchy'. However, supporting
1505 'patchy' memory would require trying to read every single byte,
1506 and it seems unacceptable solution. Explicit memory map is
1507 recommended for this case -- and target_read_memory_robust will
1508 take care of reading multiple ranges then. */
8dedea02
VP
1509
1510static void
3e43a32a
MS
1511read_whatever_is_readable (struct target_ops *ops,
1512 ULONGEST begin, ULONGEST end,
8dedea02 1513 VEC(memory_read_result_s) **result)
d5086790 1514{
f1a507a1 1515 gdb_byte *buf = xmalloc (end - begin);
8dedea02
VP
1516 ULONGEST current_begin = begin;
1517 ULONGEST current_end = end;
1518 int forward;
1519 memory_read_result_s r;
9b409511 1520 ULONGEST xfered_len;
8dedea02
VP
1521
1522 /* If we previously failed to read 1 byte, nothing can be done here. */
1523 if (end - begin <= 1)
13b3fd9b
MS
1524 {
1525 xfree (buf);
1526 return;
1527 }
8dedea02
VP
1528
1529 /* Check that either first or the last byte is readable, and give up
c378eb4e 1530 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1531 at the boundary of accessible region. */
1532 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1533 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1534 {
1535 forward = 1;
1536 ++current_begin;
1537 }
1538 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1539 buf + (end-begin) - 1, end - 1, 1,
1540 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1541 {
1542 forward = 0;
1543 --current_end;
1544 }
1545 else
1546 {
13b3fd9b 1547 xfree (buf);
8dedea02
VP
1548 return;
1549 }
1550
1551 /* Loop invariant is that the [current_begin, current_end) was previously
1552 found to be not readable as a whole.
1553
1554 Note loop condition -- if the range has 1 byte, we can't divide the range
1555 so there's no point trying further. */
1556 while (current_end - current_begin > 1)
1557 {
1558 ULONGEST first_half_begin, first_half_end;
1559 ULONGEST second_half_begin, second_half_end;
1560 LONGEST xfer;
8dedea02 1561 ULONGEST middle = current_begin + (current_end - current_begin)/2;
f1a507a1 1562
8dedea02
VP
1563 if (forward)
1564 {
1565 first_half_begin = current_begin;
1566 first_half_end = middle;
1567 second_half_begin = middle;
1568 second_half_end = current_end;
1569 }
1570 else
1571 {
1572 first_half_begin = middle;
1573 first_half_end = current_end;
1574 second_half_begin = current_begin;
1575 second_half_end = middle;
1576 }
1577
1578 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1579 buf + (first_half_begin - begin),
1580 first_half_begin,
1581 first_half_end - first_half_begin);
1582
1583 if (xfer == first_half_end - first_half_begin)
1584 {
c378eb4e 1585 /* This half reads up fine. So, the error must be in the
3e43a32a 1586 other half. */
8dedea02
VP
1587 current_begin = second_half_begin;
1588 current_end = second_half_end;
1589 }
1590 else
1591 {
c378eb4e
MS
1592 /* This half is not readable. Because we've tried one byte, we
1593 know some part of this half if actually redable. Go to the next
8dedea02
VP
1594 iteration to divide again and try to read.
1595
1596 We don't handle the other half, because this function only tries
1597 to read a single readable subrange. */
1598 current_begin = first_half_begin;
1599 current_end = first_half_end;
1600 }
1601 }
1602
1603 if (forward)
1604 {
1605 /* The [begin, current_begin) range has been read. */
1606 r.begin = begin;
1607 r.end = current_begin;
1608 r.data = buf;
1609 }
1610 else
1611 {
1612 /* The [current_end, end) range has been read. */
1613 LONGEST rlen = end - current_end;
f1a507a1 1614
8dedea02
VP
1615 r.data = xmalloc (rlen);
1616 memcpy (r.data, buf + current_end - begin, rlen);
1617 r.begin = current_end;
1618 r.end = end;
1619 xfree (buf);
1620 }
1621 VEC_safe_push(memory_read_result_s, (*result), &r);
1622}
1623
1624void
1625free_memory_read_result_vector (void *x)
1626{
1627 VEC(memory_read_result_s) *v = x;
1628 memory_read_result_s *current;
1629 int ix;
1630
1631 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1632 {
1633 xfree (current->data);
1634 }
1635 VEC_free (memory_read_result_s, v);
1636}
1637
1638VEC(memory_read_result_s) *
1639read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1640{
1641 VEC(memory_read_result_s) *result = 0;
1642
1643 LONGEST xfered = 0;
d5086790
VP
1644 while (xfered < len)
1645 {
8dedea02
VP
1646 struct mem_region *region = lookup_mem_region (offset + xfered);
1647 LONGEST rlen;
5d502164 1648
8dedea02
VP
1649 /* If there is no explicit region, a fake one should be created. */
1650 gdb_assert (region);
1651
1652 if (region->hi == 0)
1653 rlen = len - xfered;
1654 else
1655 rlen = region->hi - offset;
1656
1657 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1658 {
c378eb4e 1659 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1660 if the region is explicitly marked inaccessible, or
1661 'inaccessible-by-default' is in effect. */
1662 xfered += rlen;
1663 }
1664 else
1665 {
1666 LONGEST to_read = min (len - xfered, rlen);
1667 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1668
1669 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1670 (gdb_byte *) buffer,
1671 offset + xfered, to_read);
1672 /* Call an observer, notifying them of the xfer progress? */
d5086790 1673 if (xfer <= 0)
d5086790 1674 {
c378eb4e 1675 /* Got an error reading full chunk. See if maybe we can read
8dedea02
VP
1676 some subrange. */
1677 xfree (buffer);
3e43a32a
MS
1678 read_whatever_is_readable (ops, offset + xfered,
1679 offset + xfered + to_read, &result);
8dedea02 1680 xfered += to_read;
d5086790 1681 }
8dedea02
VP
1682 else
1683 {
1684 struct memory_read_result r;
1685 r.data = buffer;
1686 r.begin = offset + xfered;
1687 r.end = r.begin + xfer;
1688 VEC_safe_push (memory_read_result_s, result, &r);
1689 xfered += xfer;
1690 }
1691 QUIT;
d5086790 1692 }
d5086790 1693 }
8dedea02 1694 return result;
d5086790
VP
1695}
1696
8dedea02 1697
cf7a04e8
DJ
1698/* An alternative to target_write with progress callbacks. */
1699
1e3ff5ad 1700LONGEST
cf7a04e8
DJ
1701target_write_with_progress (struct target_ops *ops,
1702 enum target_object object,
1703 const char *annex, const gdb_byte *buf,
1704 ULONGEST offset, LONGEST len,
1705 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad
AC
1706{
1707 LONGEST xfered = 0;
a76d924d
DJ
1708
1709 /* Give the progress callback a chance to set up. */
1710 if (progress)
1711 (*progress) (0, baton);
1712
1e3ff5ad
AC
1713 while (xfered < len)
1714 {
9b409511
YQ
1715 ULONGEST xfered_len;
1716 enum target_xfer_status status;
1717
1718 status = target_write_partial (ops, object, annex,
1719 (gdb_byte *) buf + xfered,
1720 offset + xfered, len - xfered,
1721 &xfered_len);
cf7a04e8 1722
5c328c05
YQ
1723 if (status != TARGET_XFER_OK)
1724 return status == TARGET_XFER_EOF ? xfered : -1;
cf7a04e8
DJ
1725
1726 if (progress)
9b409511 1727 (*progress) (xfered_len, baton);
cf7a04e8 1728
9b409511 1729 xfered += xfered_len;
1e3ff5ad
AC
1730 QUIT;
1731 }
1732 return len;
1733}
1734
7f79c47e
DE
1735/* For docs on target_write see target.h. */
1736
cf7a04e8
DJ
1737LONGEST
1738target_write (struct target_ops *ops,
1739 enum target_object object,
1740 const char *annex, const gdb_byte *buf,
1741 ULONGEST offset, LONGEST len)
1742{
1743 return target_write_with_progress (ops, object, annex, buf, offset, len,
1744 NULL, NULL);
1745}
1746
159f81f3
DJ
1747/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1748 the size of the transferred data. PADDING additional bytes are
1749 available in *BUF_P. This is a helper function for
1750 target_read_alloc; see the declaration of that function for more
1751 information. */
13547ab6 1752
159f81f3
DJ
1753static LONGEST
1754target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1755 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1756{
1757 size_t buf_alloc, buf_pos;
1758 gdb_byte *buf;
13547ab6
DJ
1759
1760 /* This function does not have a length parameter; it reads the
1761 entire OBJECT). Also, it doesn't support objects fetched partly
1762 from one target and partly from another (in a different stratum,
1763 e.g. a core file and an executable). Both reasons make it
1764 unsuitable for reading memory. */
1765 gdb_assert (object != TARGET_OBJECT_MEMORY);
1766
1767 /* Start by reading up to 4K at a time. The target will throttle
1768 this number down if necessary. */
1769 buf_alloc = 4096;
1770 buf = xmalloc (buf_alloc);
1771 buf_pos = 0;
1772 while (1)
1773 {
9b409511
YQ
1774 ULONGEST xfered_len;
1775 enum target_xfer_status status;
1776
1777 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1778 buf_pos, buf_alloc - buf_pos - padding,
1779 &xfered_len);
1780
1781 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1782 {
1783 /* Read all there was. */
1784 if (buf_pos == 0)
1785 xfree (buf);
1786 else
1787 *buf_p = buf;
1788 return buf_pos;
1789 }
9b409511
YQ
1790 else if (status != TARGET_XFER_OK)
1791 {
1792 /* An error occurred. */
1793 xfree (buf);
1794 return TARGET_XFER_E_IO;
1795 }
13547ab6 1796
9b409511 1797 buf_pos += xfered_len;
13547ab6
DJ
1798
1799 /* If the buffer is filling up, expand it. */
1800 if (buf_alloc < buf_pos * 2)
1801 {
1802 buf_alloc *= 2;
1803 buf = xrealloc (buf, buf_alloc);
1804 }
1805
1806 QUIT;
1807 }
1808}
1809
159f81f3
DJ
1810/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1811 the size of the transferred data. See the declaration in "target.h"
1812 function for more information about the return value. */
1813
1814LONGEST
1815target_read_alloc (struct target_ops *ops, enum target_object object,
1816 const char *annex, gdb_byte **buf_p)
1817{
1818 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1819}
1820
1821/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1822 returned as a string, allocated using xmalloc. If an error occurs
1823 or the transfer is unsupported, NULL is returned. Empty objects
1824 are returned as allocated but empty strings. A warning is issued
1825 if the result contains any embedded NUL bytes. */
1826
1827char *
1828target_read_stralloc (struct target_ops *ops, enum target_object object,
1829 const char *annex)
1830{
39086a0e
PA
1831 gdb_byte *buffer;
1832 char *bufstr;
7313baad 1833 LONGEST i, transferred;
159f81f3 1834
39086a0e
PA
1835 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1836 bufstr = (char *) buffer;
159f81f3
DJ
1837
1838 if (transferred < 0)
1839 return NULL;
1840
1841 if (transferred == 0)
1842 return xstrdup ("");
1843
39086a0e 1844 bufstr[transferred] = 0;
7313baad
UW
1845
1846 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
1847 for (i = strlen (bufstr); i < transferred; i++)
1848 if (bufstr[i] != 0)
7313baad
UW
1849 {
1850 warning (_("target object %d, annex %s, "
1851 "contained unexpected null characters"),
1852 (int) object, annex ? annex : "(none)");
1853 break;
1854 }
159f81f3 1855
39086a0e 1856 return bufstr;
159f81f3
DJ
1857}
1858
b6591e8b
AC
1859/* Memory transfer methods. */
1860
1861void
1b0ba102 1862get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
1863 LONGEST len)
1864{
07b82ea5
PA
1865 /* This method is used to read from an alternate, non-current
1866 target. This read must bypass the overlay support (as symbols
1867 don't match this target), and GDB's internal cache (wrong cache
1868 for this target). */
1869 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 1870 != len)
578d3588 1871 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
1872}
1873
1874ULONGEST
5d502164
MS
1875get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1876 int len, enum bfd_endian byte_order)
b6591e8b 1877{
f6519ebc 1878 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
1879
1880 gdb_assert (len <= sizeof (buf));
1881 get_target_memory (ops, addr, buf, len);
e17a4113 1882 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
1883}
1884
3db08215
MM
1885/* See target.h. */
1886
d914c394
SS
1887int
1888target_insert_breakpoint (struct gdbarch *gdbarch,
1889 struct bp_target_info *bp_tgt)
1890{
1891 if (!may_insert_breakpoints)
1892 {
1893 warning (_("May not insert breakpoints"));
1894 return 1;
1895 }
1896
6b84065d
TT
1897 return current_target.to_insert_breakpoint (&current_target,
1898 gdbarch, bp_tgt);
d914c394
SS
1899}
1900
3db08215
MM
1901/* See target.h. */
1902
d914c394 1903int
6b84065d
TT
1904target_remove_breakpoint (struct gdbarch *gdbarch,
1905 struct bp_target_info *bp_tgt)
d914c394
SS
1906{
1907 /* This is kind of a weird case to handle, but the permission might
1908 have been changed after breakpoints were inserted - in which case
1909 we should just take the user literally and assume that any
1910 breakpoints should be left in place. */
1911 if (!may_insert_breakpoints)
1912 {
1913 warning (_("May not remove breakpoints"));
1914 return 1;
1915 }
1916
6b84065d
TT
1917 return current_target.to_remove_breakpoint (&current_target,
1918 gdbarch, bp_tgt);
d914c394
SS
1919}
1920
c906108c 1921static void
fba45db2 1922target_info (char *args, int from_tty)
c906108c
SS
1923{
1924 struct target_ops *t;
c906108c 1925 int has_all_mem = 0;
c5aa993b 1926
c906108c 1927 if (symfile_objfile != NULL)
4262abfb
JK
1928 printf_unfiltered (_("Symbols from \"%s\".\n"),
1929 objfile_name (symfile_objfile));
c906108c 1930
258b763a 1931 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 1932 {
c35b1492 1933 if (!(*t->to_has_memory) (t))
c906108c
SS
1934 continue;
1935
c5aa993b 1936 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
1937 continue;
1938 if (has_all_mem)
3e43a32a
MS
1939 printf_unfiltered (_("\tWhile running this, "
1940 "GDB does not access memory from...\n"));
c5aa993b
JM
1941 printf_unfiltered ("%s:\n", t->to_longname);
1942 (t->to_files_info) (t);
c35b1492 1943 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
1944 }
1945}
1946
fd79ecee
DJ
1947/* This function is called before any new inferior is created, e.g.
1948 by running a program, attaching, or connecting to a target.
1949 It cleans up any state from previous invocations which might
1950 change between runs. This is a subset of what target_preopen
1951 resets (things which might change between targets). */
1952
1953void
1954target_pre_inferior (int from_tty)
1955{
c378eb4e 1956 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 1957 inferior might have survived and is entirely wrong for the new
c378eb4e 1958 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
1959 to reproduce:
1960
1961 bash$ ./foo&
1962 [1] 4711
1963 bash$ ./foo&
1964 [1] 4712
1965 bash$ gdb ./foo
1966 [...]
1967 (gdb) attach 4711
1968 (gdb) detach
1969 (gdb) attach 4712
1970 Cannot access memory at address 0xdeadbeef
1971 */
b9db4ced 1972
50c71eaf
PA
1973 /* In some OSs, the shared library list is the same/global/shared
1974 across inferiors. If code is shared between processes, so are
1975 memory regions and features. */
f5656ead 1976 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
1977 {
1978 no_shared_libraries (NULL, from_tty);
1979
1980 invalidate_target_mem_regions ();
424163ea 1981
50c71eaf
PA
1982 target_clear_description ();
1983 }
8ffcbaaf
YQ
1984
1985 agent_capability_invalidate ();
fd79ecee
DJ
1986}
1987
b8fa0bfa
PA
1988/* Callback for iterate_over_inferiors. Gets rid of the given
1989 inferior. */
1990
1991static int
1992dispose_inferior (struct inferior *inf, void *args)
1993{
1994 struct thread_info *thread;
1995
1996 thread = any_thread_of_process (inf->pid);
1997 if (thread)
1998 {
1999 switch_to_thread (thread->ptid);
2000
2001 /* Core inferiors actually should be detached, not killed. */
2002 if (target_has_execution)
2003 target_kill ();
2004 else
2005 target_detach (NULL, 0);
2006 }
2007
2008 return 0;
2009}
2010
c906108c
SS
2011/* This is to be called by the open routine before it does
2012 anything. */
2013
2014void
fba45db2 2015target_preopen (int from_tty)
c906108c 2016{
c5aa993b 2017 dont_repeat ();
c906108c 2018
b8fa0bfa 2019 if (have_inferiors ())
c5aa993b 2020 {
adf40b2e 2021 if (!from_tty
b8fa0bfa
PA
2022 || !have_live_inferiors ()
2023 || query (_("A program is being debugged already. Kill it? ")))
2024 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2025 else
8a3fe4f8 2026 error (_("Program not killed."));
c906108c
SS
2027 }
2028
2029 /* Calling target_kill may remove the target from the stack. But if
2030 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2031 /* Leave the exec target, though. The user may be switching from a
2032 live process to a core of the same program. */
460014f5 2033 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2034
2035 target_pre_inferior (from_tty);
c906108c
SS
2036}
2037
2038/* Detach a target after doing deferred register stores. */
2039
2040void
52554a0e 2041target_detach (const char *args, int from_tty)
c906108c 2042{
136d6dae
VP
2043 struct target_ops* t;
2044
f5656ead 2045 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2046 /* Don't remove global breakpoints here. They're removed on
2047 disconnection from the target. */
2048 ;
2049 else
2050 /* If we're in breakpoints-always-inserted mode, have to remove
2051 them before detaching. */
dfd4cc63 2052 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2053
24291992
PA
2054 prepare_for_detach ();
2055
09da0d0a 2056 current_target.to_detach (&current_target, args, from_tty);
c906108c
SS
2057}
2058
6ad8ae5c 2059void
fee354ee 2060target_disconnect (const char *args, int from_tty)
6ad8ae5c 2061{
50c71eaf
PA
2062 /* If we're in breakpoints-always-inserted mode or if breakpoints
2063 are global across processes, we have to remove them before
2064 disconnecting. */
74960c60
VP
2065 remove_breakpoints ();
2066
86a0854a 2067 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2068}
2069
117de6a9 2070ptid_t
47608cb1 2071target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9 2072{
a7068b60 2073 return (current_target.to_wait) (&current_target, ptid, status, options);
117de6a9
PA
2074}
2075
2076char *
2077target_pid_to_str (ptid_t ptid)
2078{
770234d3 2079 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2080}
2081
4694da01
TT
2082char *
2083target_thread_name (struct thread_info *info)
2084{
825828fc 2085 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2086}
2087
e1ac3328 2088void
2ea28649 2089target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2090{
28439f5e
PA
2091 struct target_ops *t;
2092
4e5d721f 2093 target_dcache_invalidate ();
28439f5e 2094
6b84065d 2095 current_target.to_resume (&current_target, ptid, step, signal);
28439f5e 2096
6b84065d 2097 registers_changed_ptid (ptid);
251bde03
PA
2098 /* We only set the internal executing state here. The user/frontend
2099 running state is set at a higher level. */
6b84065d 2100 set_executing (ptid, 1);
6b84065d 2101 clear_inline_frame_state (ptid);
e1ac3328 2102}
2455069d
UW
2103
2104void
2105target_pass_signals (int numsigs, unsigned char *pass_signals)
2106{
035cad7f 2107 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2108}
2109
9b224c5e
PA
2110void
2111target_program_signals (int numsigs, unsigned char *program_signals)
2112{
7d4f8efa
TT
2113 (*current_target.to_program_signals) (&current_target,
2114 numsigs, program_signals);
9b224c5e
PA
2115}
2116
098dba18
TT
2117static int
2118default_follow_fork (struct target_ops *self, int follow_child,
2119 int detach_fork)
2120{
2121 /* Some target returned a fork event, but did not know how to follow it. */
2122 internal_error (__FILE__, __LINE__,
2123 _("could not find a target to follow fork"));
2124}
2125
ee057212
DJ
2126/* Look through the list of possible targets for a target that can
2127 follow forks. */
2128
2129int
07107ca6 2130target_follow_fork (int follow_child, int detach_fork)
ee057212 2131{
a7068b60
TT
2132 return current_target.to_follow_fork (&current_target,
2133 follow_child, detach_fork);
ee057212
DJ
2134}
2135
8d657035
TT
2136static void
2137default_mourn_inferior (struct target_ops *self)
2138{
2139 internal_error (__FILE__, __LINE__,
2140 _("could not find a target to follow mourn inferior"));
2141}
2142
136d6dae
VP
2143void
2144target_mourn_inferior (void)
2145{
8d657035 2146 current_target.to_mourn_inferior (&current_target);
136d6dae 2147
8d657035
TT
2148 /* We no longer need to keep handles on any of the object files.
2149 Make sure to release them to avoid unnecessarily locking any
2150 of them while we're not actually debugging. */
2151 bfd_cache_close_all ();
136d6dae
VP
2152}
2153
424163ea
DJ
2154/* Look for a target which can describe architectural features, starting
2155 from TARGET. If we find one, return its description. */
2156
2157const struct target_desc *
2158target_read_description (struct target_ops *target)
2159{
2117c711 2160 return target->to_read_description (target);
424163ea
DJ
2161}
2162
58a5184e 2163/* This implements a basic search of memory, reading target memory and
08388c79
DE
2164 performing the search here (as opposed to performing the search in on the
2165 target side with, for example, gdbserver). */
2166
2167int
2168simple_search_memory (struct target_ops *ops,
2169 CORE_ADDR start_addr, ULONGEST search_space_len,
2170 const gdb_byte *pattern, ULONGEST pattern_len,
2171 CORE_ADDR *found_addrp)
2172{
2173 /* NOTE: also defined in find.c testcase. */
2174#define SEARCH_CHUNK_SIZE 16000
2175 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2176 /* Buffer to hold memory contents for searching. */
2177 gdb_byte *search_buf;
2178 unsigned search_buf_size;
2179 struct cleanup *old_cleanups;
2180
2181 search_buf_size = chunk_size + pattern_len - 1;
2182
2183 /* No point in trying to allocate a buffer larger than the search space. */
2184 if (search_space_len < search_buf_size)
2185 search_buf_size = search_space_len;
2186
2187 search_buf = malloc (search_buf_size);
2188 if (search_buf == NULL)
5e1471f5 2189 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2190 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2191
2192 /* Prime the search buffer. */
2193
2194 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2195 search_buf, start_addr, search_buf_size) != search_buf_size)
2196 {
b3dc46ff
AB
2197 warning (_("Unable to access %s bytes of target "
2198 "memory at %s, halting search."),
2199 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2200 do_cleanups (old_cleanups);
2201 return -1;
2202 }
2203
2204 /* Perform the search.
2205
2206 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2207 When we've scanned N bytes we copy the trailing bytes to the start and
2208 read in another N bytes. */
2209
2210 while (search_space_len >= pattern_len)
2211 {
2212 gdb_byte *found_ptr;
2213 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2214
2215 found_ptr = memmem (search_buf, nr_search_bytes,
2216 pattern, pattern_len);
2217
2218 if (found_ptr != NULL)
2219 {
2220 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2221
08388c79
DE
2222 *found_addrp = found_addr;
2223 do_cleanups (old_cleanups);
2224 return 1;
2225 }
2226
2227 /* Not found in this chunk, skip to next chunk. */
2228
2229 /* Don't let search_space_len wrap here, it's unsigned. */
2230 if (search_space_len >= chunk_size)
2231 search_space_len -= chunk_size;
2232 else
2233 search_space_len = 0;
2234
2235 if (search_space_len >= pattern_len)
2236 {
2237 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2238 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2239 int nr_to_read;
2240
2241 /* Copy the trailing part of the previous iteration to the front
2242 of the buffer for the next iteration. */
2243 gdb_assert (keep_len == pattern_len - 1);
2244 memcpy (search_buf, search_buf + chunk_size, keep_len);
2245
2246 nr_to_read = min (search_space_len - keep_len, chunk_size);
2247
2248 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2249 search_buf + keep_len, read_addr,
2250 nr_to_read) != nr_to_read)
2251 {
b3dc46ff 2252 warning (_("Unable to access %s bytes of target "
9b20d036 2253 "memory at %s, halting search."),
b3dc46ff 2254 plongest (nr_to_read),
08388c79
DE
2255 hex_string (read_addr));
2256 do_cleanups (old_cleanups);
2257 return -1;
2258 }
2259
2260 start_addr += chunk_size;
2261 }
2262 }
2263
2264 /* Not found. */
2265
2266 do_cleanups (old_cleanups);
2267 return 0;
2268}
2269
58a5184e
TT
2270/* Default implementation of memory-searching. */
2271
2272static int
2273default_search_memory (struct target_ops *self,
2274 CORE_ADDR start_addr, ULONGEST search_space_len,
2275 const gdb_byte *pattern, ULONGEST pattern_len,
2276 CORE_ADDR *found_addrp)
2277{
2278 /* Start over from the top of the target stack. */
2279 return simple_search_memory (current_target.beneath,
2280 start_addr, search_space_len,
2281 pattern, pattern_len, found_addrp);
2282}
2283
08388c79
DE
2284/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2285 sequence of bytes in PATTERN with length PATTERN_LEN.
2286
2287 The result is 1 if found, 0 if not found, and -1 if there was an error
2288 requiring halting of the search (e.g. memory read error).
2289 If the pattern is found the address is recorded in FOUND_ADDRP. */
2290
2291int
2292target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2293 const gdb_byte *pattern, ULONGEST pattern_len,
2294 CORE_ADDR *found_addrp)
2295{
a7068b60
TT
2296 return current_target.to_search_memory (&current_target, start_addr,
2297 search_space_len,
2298 pattern, pattern_len, found_addrp);
08388c79
DE
2299}
2300
8edfe269
DJ
2301/* Look through the currently pushed targets. If none of them will
2302 be able to restart the currently running process, issue an error
2303 message. */
2304
2305void
2306target_require_runnable (void)
2307{
2308 struct target_ops *t;
2309
2310 for (t = target_stack; t != NULL; t = t->beneath)
2311 {
2312 /* If this target knows how to create a new program, then
2313 assume we will still be able to after killing the current
2314 one. Either killing and mourning will not pop T, or else
2315 find_default_run_target will find it again. */
2316 if (t->to_create_inferior != NULL)
2317 return;
2318
548740d6 2319 /* Do not worry about targets at certain strata that can not
8edfe269
DJ
2320 create inferiors. Assume they will be pushed again if
2321 necessary, and continue to the process_stratum. */
85e747d2 2322 if (t->to_stratum == thread_stratum
548740d6 2323 || t->to_stratum == record_stratum
85e747d2 2324 || t->to_stratum == arch_stratum)
8edfe269
DJ
2325 continue;
2326
3e43a32a
MS
2327 error (_("The \"%s\" target does not support \"run\". "
2328 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2329 t->to_shortname);
2330 }
2331
2332 /* This function is only called if the target is running. In that
2333 case there should have been a process_stratum target and it
c378eb4e 2334 should either know how to create inferiors, or not... */
9b20d036 2335 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2336}
2337
6a3cb8e8
PA
2338/* Whether GDB is allowed to fall back to the default run target for
2339 "run", "attach", etc. when no target is connected yet. */
2340static int auto_connect_native_target = 1;
2341
2342static void
2343show_auto_connect_native_target (struct ui_file *file, int from_tty,
2344 struct cmd_list_element *c, const char *value)
2345{
2346 fprintf_filtered (file,
2347 _("Whether GDB may automatically connect to the "
2348 "native target is %s.\n"),
2349 value);
2350}
2351
c906108c
SS
2352/* Look through the list of possible targets for a target that can
2353 execute a run or attach command without any other data. This is
2354 used to locate the default process stratum.
2355
5f667f2d
PA
2356 If DO_MESG is not NULL, the result is always valid (error() is
2357 called for errors); else, return NULL on error. */
c906108c
SS
2358
2359static struct target_ops *
fba45db2 2360find_default_run_target (char *do_mesg)
c906108c 2361{
c906108c 2362 struct target_ops *runable = NULL;
c906108c 2363
6a3cb8e8 2364 if (auto_connect_native_target)
c906108c 2365 {
89a1c21a 2366 struct target_ops *t;
6a3cb8e8 2367 int count = 0;
89a1c21a 2368 int i;
6a3cb8e8 2369
89a1c21a 2370 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
c906108c 2371 {
89a1c21a 2372 if (t->to_can_run != delegate_can_run && target_can_run (t))
6a3cb8e8 2373 {
89a1c21a 2374 runable = t;
6a3cb8e8
PA
2375 ++count;
2376 }
c906108c 2377 }
6a3cb8e8
PA
2378
2379 if (count != 1)
2380 runable = NULL;
c906108c
SS
2381 }
2382
6a3cb8e8 2383 if (runable == NULL)
5f667f2d
PA
2384 {
2385 if (do_mesg)
2386 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2387 else
2388 return NULL;
2389 }
c906108c
SS
2390
2391 return runable;
2392}
2393
b3ccfe11 2394/* See target.h. */
c906108c 2395
b3ccfe11
TT
2396struct target_ops *
2397find_attach_target (void)
c906108c
SS
2398{
2399 struct target_ops *t;
2400
b3ccfe11
TT
2401 /* If a target on the current stack can attach, use it. */
2402 for (t = current_target.beneath; t != NULL; t = t->beneath)
2403 {
2404 if (t->to_attach != NULL)
2405 break;
2406 }
c906108c 2407
b3ccfe11
TT
2408 /* Otherwise, use the default run target for attaching. */
2409 if (t == NULL)
2410 t = find_default_run_target ("attach");
b84876c2 2411
b3ccfe11 2412 return t;
b84876c2
PA
2413}
2414
b3ccfe11 2415/* See target.h. */
b84876c2 2416
b3ccfe11
TT
2417struct target_ops *
2418find_run_target (void)
9908b566
VP
2419{
2420 struct target_ops *t;
2421
b3ccfe11
TT
2422 /* If a target on the current stack can attach, use it. */
2423 for (t = current_target.beneath; t != NULL; t = t->beneath)
2424 {
2425 if (t->to_create_inferior != NULL)
2426 break;
2427 }
5d502164 2428
b3ccfe11
TT
2429 /* Otherwise, use the default run target. */
2430 if (t == NULL)
2431 t = find_default_run_target ("run");
9908b566 2432
b3ccfe11 2433 return t;
9908b566
VP
2434}
2435
145b16a9
UW
2436/* Implement the "info proc" command. */
2437
451b7c33 2438int
7bc112c1 2439target_info_proc (const char *args, enum info_proc_what what)
145b16a9
UW
2440{
2441 struct target_ops *t;
2442
2443 /* If we're already connected to something that can get us OS
2444 related data, use it. Otherwise, try using the native
2445 target. */
2446 if (current_target.to_stratum >= process_stratum)
2447 t = current_target.beneath;
2448 else
2449 t = find_default_run_target (NULL);
2450
2451 for (; t != NULL; t = t->beneath)
2452 {
2453 if (t->to_info_proc != NULL)
2454 {
2455 t->to_info_proc (t, args, what);
2456
2457 if (targetdebug)
2458 fprintf_unfiltered (gdb_stdlog,
2459 "target_info_proc (\"%s\", %d)\n", args, what);
2460
451b7c33 2461 return 1;
145b16a9
UW
2462 }
2463 }
2464
451b7c33 2465 return 0;
145b16a9
UW
2466}
2467
03583c20 2468static int
2bfc0540 2469find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2470{
2471 struct target_ops *t;
2472
2473 t = find_default_run_target (NULL);
2474 if (t && t->to_supports_disable_randomization)
2bfc0540 2475 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2476 return 0;
2477}
2478
2479int
2480target_supports_disable_randomization (void)
2481{
2482 struct target_ops *t;
2483
2484 for (t = &current_target; t != NULL; t = t->beneath)
2485 if (t->to_supports_disable_randomization)
2bfc0540 2486 return t->to_supports_disable_randomization (t);
03583c20
UW
2487
2488 return 0;
2489}
9908b566 2490
07e059b5
VP
2491char *
2492target_get_osdata (const char *type)
2493{
07e059b5
VP
2494 struct target_ops *t;
2495
739ef7fb
PA
2496 /* If we're already connected to something that can get us OS
2497 related data, use it. Otherwise, try using the native
2498 target. */
2499 if (current_target.to_stratum >= process_stratum)
6d097e65 2500 t = current_target.beneath;
739ef7fb
PA
2501 else
2502 t = find_default_run_target ("get OS data");
07e059b5
VP
2503
2504 if (!t)
2505 return NULL;
2506
6d097e65 2507 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2508}
2509
8eaff7cd
TT
2510static struct address_space *
2511default_thread_address_space (struct target_ops *self, ptid_t ptid)
6c95b8df
PA
2512{
2513 struct inferior *inf;
6c95b8df
PA
2514
2515 /* Fall-back to the "main" address space of the inferior. */
2516 inf = find_inferior_pid (ptid_get_pid (ptid));
2517
2518 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2519 internal_error (__FILE__, __LINE__,
9b20d036
MS
2520 _("Can't determine the current "
2521 "address space of thread %s\n"),
6c95b8df
PA
2522 target_pid_to_str (ptid));
2523
2524 return inf->aspace;
2525}
2526
8eaff7cd
TT
2527/* Determine the current address space of thread PTID. */
2528
2529struct address_space *
2530target_thread_address_space (ptid_t ptid)
2531{
2532 struct address_space *aspace;
2533
2534 aspace = current_target.to_thread_address_space (&current_target, ptid);
2535 gdb_assert (aspace != NULL);
2536
8eaff7cd
TT
2537 return aspace;
2538}
2539
7313baad
UW
2540
2541/* Target file operations. */
2542
2543static struct target_ops *
2544default_fileio_target (void)
2545{
2546 /* If we're already connected to something that can perform
2547 file I/O, use it. Otherwise, try using the native target. */
2548 if (current_target.to_stratum >= process_stratum)
2549 return current_target.beneath;
2550 else
2551 return find_default_run_target ("file I/O");
2552}
2553
2554/* Open FILENAME on the target, using FLAGS and MODE. Return a
2555 target file descriptor, or -1 if an error occurs (and set
2556 *TARGET_ERRNO). */
2557int
2558target_fileio_open (const char *filename, int flags, int mode,
2559 int *target_errno)
2560{
2561 struct target_ops *t;
2562
2563 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2564 {
2565 if (t->to_fileio_open != NULL)
2566 {
cd897586 2567 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
7313baad
UW
2568
2569 if (targetdebug)
2570 fprintf_unfiltered (gdb_stdlog,
2571 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2572 filename, flags, mode,
2573 fd, fd != -1 ? 0 : *target_errno);
2574 return fd;
2575 }
2576 }
2577
2578 *target_errno = FILEIO_ENOSYS;
2579 return -1;
2580}
2581
2582/* Write up to LEN bytes from WRITE_BUF to FD on the target.
2583 Return the number of bytes written, or -1 if an error occurs
2584 (and set *TARGET_ERRNO). */
2585int
2586target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2587 ULONGEST offset, int *target_errno)
2588{
2589 struct target_ops *t;
2590
2591 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2592 {
2593 if (t->to_fileio_pwrite != NULL)
2594 {
0d866f62 2595 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
7313baad
UW
2596 target_errno);
2597
2598 if (targetdebug)
2599 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2600 "target_fileio_pwrite (%d,...,%d,%s) "
7313baad 2601 "= %d (%d)\n",
a71b5a38 2602 fd, len, pulongest (offset),
7313baad
UW
2603 ret, ret != -1 ? 0 : *target_errno);
2604 return ret;
2605 }
2606 }
2607
2608 *target_errno = FILEIO_ENOSYS;
2609 return -1;
2610}
2611
2612/* Read up to LEN bytes FD on the target into READ_BUF.
2613 Return the number of bytes read, or -1 if an error occurs
2614 (and set *TARGET_ERRNO). */
2615int
2616target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2617 ULONGEST offset, int *target_errno)
2618{
2619 struct target_ops *t;
2620
2621 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2622 {
2623 if (t->to_fileio_pread != NULL)
2624 {
a3be983c 2625 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
7313baad
UW
2626 target_errno);
2627
2628 if (targetdebug)
2629 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2630 "target_fileio_pread (%d,...,%d,%s) "
7313baad 2631 "= %d (%d)\n",
a71b5a38 2632 fd, len, pulongest (offset),
7313baad
UW
2633 ret, ret != -1 ? 0 : *target_errno);
2634 return ret;
2635 }
2636 }
2637
2638 *target_errno = FILEIO_ENOSYS;
2639 return -1;
2640}
2641
2642/* Close FD on the target. Return 0, or -1 if an error occurs
2643 (and set *TARGET_ERRNO). */
2644int
2645target_fileio_close (int fd, int *target_errno)
2646{
2647 struct target_ops *t;
2648
2649 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2650 {
2651 if (t->to_fileio_close != NULL)
2652 {
df39ea25 2653 int ret = t->to_fileio_close (t, fd, target_errno);
7313baad
UW
2654
2655 if (targetdebug)
2656 fprintf_unfiltered (gdb_stdlog,
2657 "target_fileio_close (%d) = %d (%d)\n",
2658 fd, ret, ret != -1 ? 0 : *target_errno);
2659 return ret;
2660 }
2661 }
2662
2663 *target_errno = FILEIO_ENOSYS;
2664 return -1;
2665}
2666
2667/* Unlink FILENAME on the target. Return 0, or -1 if an error
2668 occurs (and set *TARGET_ERRNO). */
2669int
2670target_fileio_unlink (const char *filename, int *target_errno)
2671{
2672 struct target_ops *t;
2673
2674 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2675 {
2676 if (t->to_fileio_unlink != NULL)
2677 {
dbbca37d 2678 int ret = t->to_fileio_unlink (t, filename, target_errno);
7313baad
UW
2679
2680 if (targetdebug)
2681 fprintf_unfiltered (gdb_stdlog,
2682 "target_fileio_unlink (%s) = %d (%d)\n",
2683 filename, ret, ret != -1 ? 0 : *target_errno);
2684 return ret;
2685 }
2686 }
2687
2688 *target_errno = FILEIO_ENOSYS;
2689 return -1;
2690}
2691
b9e7b9c3
UW
2692/* Read value of symbolic link FILENAME on the target. Return a
2693 null-terminated string allocated via xmalloc, or NULL if an error
2694 occurs (and set *TARGET_ERRNO). */
2695char *
2696target_fileio_readlink (const char *filename, int *target_errno)
2697{
2698 struct target_ops *t;
2699
2700 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2701 {
2702 if (t->to_fileio_readlink != NULL)
2703 {
fab5aa7c 2704 char *ret = t->to_fileio_readlink (t, filename, target_errno);
b9e7b9c3
UW
2705
2706 if (targetdebug)
2707 fprintf_unfiltered (gdb_stdlog,
2708 "target_fileio_readlink (%s) = %s (%d)\n",
2709 filename, ret? ret : "(nil)",
2710 ret? 0 : *target_errno);
2711 return ret;
2712 }
2713 }
2714
2715 *target_errno = FILEIO_ENOSYS;
2716 return NULL;
2717}
2718
7313baad
UW
2719static void
2720target_fileio_close_cleanup (void *opaque)
2721{
2722 int fd = *(int *) opaque;
2723 int target_errno;
2724
2725 target_fileio_close (fd, &target_errno);
2726}
2727
2728/* Read target file FILENAME. Store the result in *BUF_P and
2729 return the size of the transferred data. PADDING additional bytes are
2730 available in *BUF_P. This is a helper function for
2731 target_fileio_read_alloc; see the declaration of that function for more
2732 information. */
2733
2734static LONGEST
2735target_fileio_read_alloc_1 (const char *filename,
2736 gdb_byte **buf_p, int padding)
2737{
2738 struct cleanup *close_cleanup;
2739 size_t buf_alloc, buf_pos;
2740 gdb_byte *buf;
2741 LONGEST n;
2742 int fd;
2743 int target_errno;
2744
2745 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2746 if (fd == -1)
2747 return -1;
2748
2749 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2750
2751 /* Start by reading up to 4K at a time. The target will throttle
2752 this number down if necessary. */
2753 buf_alloc = 4096;
2754 buf = xmalloc (buf_alloc);
2755 buf_pos = 0;
2756 while (1)
2757 {
2758 n = target_fileio_pread (fd, &buf[buf_pos],
2759 buf_alloc - buf_pos - padding, buf_pos,
2760 &target_errno);
2761 if (n < 0)
2762 {
2763 /* An error occurred. */
2764 do_cleanups (close_cleanup);
2765 xfree (buf);
2766 return -1;
2767 }
2768 else if (n == 0)
2769 {
2770 /* Read all there was. */
2771 do_cleanups (close_cleanup);
2772 if (buf_pos == 0)
2773 xfree (buf);
2774 else
2775 *buf_p = buf;
2776 return buf_pos;
2777 }
2778
2779 buf_pos += n;
2780
2781 /* If the buffer is filling up, expand it. */
2782 if (buf_alloc < buf_pos * 2)
2783 {
2784 buf_alloc *= 2;
2785 buf = xrealloc (buf, buf_alloc);
2786 }
2787
2788 QUIT;
2789 }
2790}
2791
2792/* Read target file FILENAME. Store the result in *BUF_P and return
2793 the size of the transferred data. See the declaration in "target.h"
2794 function for more information about the return value. */
2795
2796LONGEST
2797target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2798{
2799 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2800}
2801
2802/* Read target file FILENAME. The result is NUL-terminated and
2803 returned as a string, allocated using xmalloc. If an error occurs
2804 or the transfer is unsupported, NULL is returned. Empty objects
2805 are returned as allocated but empty strings. A warning is issued
2806 if the result contains any embedded NUL bytes. */
2807
2808char *
2809target_fileio_read_stralloc (const char *filename)
2810{
39086a0e
PA
2811 gdb_byte *buffer;
2812 char *bufstr;
7313baad
UW
2813 LONGEST i, transferred;
2814
39086a0e
PA
2815 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2816 bufstr = (char *) buffer;
7313baad
UW
2817
2818 if (transferred < 0)
2819 return NULL;
2820
2821 if (transferred == 0)
2822 return xstrdup ("");
2823
39086a0e 2824 bufstr[transferred] = 0;
7313baad
UW
2825
2826 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2827 for (i = strlen (bufstr); i < transferred; i++)
2828 if (bufstr[i] != 0)
7313baad
UW
2829 {
2830 warning (_("target file %s "
2831 "contained unexpected null characters"),
2832 filename);
2833 break;
2834 }
2835
39086a0e 2836 return bufstr;
7313baad
UW
2837}
2838
2839
e0d24f8d 2840static int
31568a15
TT
2841default_region_ok_for_hw_watchpoint (struct target_ops *self,
2842 CORE_ADDR addr, int len)
e0d24f8d 2843{
f5656ead 2844 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
2845}
2846
5009afc5
AS
2847static int
2848default_watchpoint_addr_within_range (struct target_ops *target,
2849 CORE_ADDR addr,
2850 CORE_ADDR start, int length)
2851{
2852 return addr >= start && addr < start + length;
2853}
2854
c2250ad1
UW
2855static struct gdbarch *
2856default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2857{
f5656ead 2858 return target_gdbarch ();
c2250ad1
UW
2859}
2860
c906108c 2861static int
555bbdeb
TT
2862return_zero (struct target_ops *ignore)
2863{
2864 return 0;
2865}
2866
2867static int
2868return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
2869{
2870 return 0;
2871}
2872
ed9a39eb
JM
2873/*
2874 * Find the next target down the stack from the specified target.
2875 */
2876
2877struct target_ops *
fba45db2 2878find_target_beneath (struct target_ops *t)
ed9a39eb 2879{
258b763a 2880 return t->beneath;
ed9a39eb
JM
2881}
2882
8b06beed
TT
2883/* See target.h. */
2884
2885struct target_ops *
2886find_target_at (enum strata stratum)
2887{
2888 struct target_ops *t;
2889
2890 for (t = current_target.beneath; t != NULL; t = t->beneath)
2891 if (t->to_stratum == stratum)
2892 return t;
2893
2894 return NULL;
2895}
2896
c906108c
SS
2897\f
2898/* The inferior process has died. Long live the inferior! */
2899
2900void
fba45db2 2901generic_mourn_inferior (void)
c906108c 2902{
7f9f62ba 2903 ptid_t ptid;
c906108c 2904
7f9f62ba 2905 ptid = inferior_ptid;
39f77062 2906 inferior_ptid = null_ptid;
7f9f62ba 2907
f59f708a
PA
2908 /* Mark breakpoints uninserted in case something tries to delete a
2909 breakpoint while we delete the inferior's threads (which would
2910 fail, since the inferior is long gone). */
2911 mark_breakpoints_out ();
2912
7f9f62ba
PA
2913 if (!ptid_equal (ptid, null_ptid))
2914 {
2915 int pid = ptid_get_pid (ptid);
6c95b8df 2916 exit_inferior (pid);
7f9f62ba
PA
2917 }
2918
f59f708a
PA
2919 /* Note this wipes step-resume breakpoints, so needs to be done
2920 after exit_inferior, which ends up referencing the step-resume
2921 breakpoints through clear_thread_inferior_resources. */
c906108c 2922 breakpoint_init_inferior (inf_exited);
f59f708a 2923
c906108c
SS
2924 registers_changed ();
2925
c906108c
SS
2926 reopen_exec_file ();
2927 reinit_frame_cache ();
2928
9a4105ab
AC
2929 if (deprecated_detach_hook)
2930 deprecated_detach_hook ();
c906108c
SS
2931}
2932\f
fd0a2a6f
MK
2933/* Convert a normal process ID to a string. Returns the string in a
2934 static buffer. */
c906108c
SS
2935
2936char *
39f77062 2937normal_pid_to_str (ptid_t ptid)
c906108c 2938{
fd0a2a6f 2939 static char buf[32];
c906108c 2940
5fff8fc0 2941 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
2942 return buf;
2943}
2944
2c0b251b 2945static char *
770234d3 2946default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
2947{
2948 return normal_pid_to_str (ptid);
2949}
2950
9b4eba8e
HZ
2951/* Error-catcher for target_find_memory_regions. */
2952static int
2e73927c
TT
2953dummy_find_memory_regions (struct target_ops *self,
2954 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 2955{
9b4eba8e 2956 error (_("Command not implemented for this target."));
be4d1333
MS
2957 return 0;
2958}
2959
9b4eba8e
HZ
2960/* Error-catcher for target_make_corefile_notes. */
2961static char *
fc6691b2
TT
2962dummy_make_corefile_notes (struct target_ops *self,
2963 bfd *ignore1, int *ignore2)
be4d1333 2964{
9b4eba8e 2965 error (_("Command not implemented for this target."));
be4d1333
MS
2966 return NULL;
2967}
2968
c906108c
SS
2969/* Set up the handful of non-empty slots needed by the dummy target
2970 vector. */
2971
2972static void
fba45db2 2973init_dummy_target (void)
c906108c
SS
2974{
2975 dummy_target.to_shortname = "None";
2976 dummy_target.to_longname = "None";
2977 dummy_target.to_doc = "";
03583c20
UW
2978 dummy_target.to_supports_disable_randomization
2979 = find_default_supports_disable_randomization;
c906108c 2980 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
2981 dummy_target.to_has_all_memory = return_zero;
2982 dummy_target.to_has_memory = return_zero;
2983 dummy_target.to_has_stack = return_zero;
2984 dummy_target.to_has_registers = return_zero;
2985 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 2986 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
2987
2988 install_dummy_methods (&dummy_target);
c906108c 2989}
c906108c 2990\f
c906108c 2991
f1c07ab0 2992void
460014f5 2993target_close (struct target_ops *targ)
f1c07ab0 2994{
7fdc1521
TT
2995 gdb_assert (!target_is_pushed (targ));
2996
f1c07ab0 2997 if (targ->to_xclose != NULL)
460014f5 2998 targ->to_xclose (targ);
f1c07ab0 2999 else if (targ->to_close != NULL)
de90e03d 3000 targ->to_close (targ);
947b8855
PA
3001
3002 if (targetdebug)
460014f5 3003 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
3004}
3005
28439f5e
PA
3006int
3007target_thread_alive (ptid_t ptid)
c906108c 3008{
a7068b60 3009 return current_target.to_thread_alive (&current_target, ptid);
28439f5e
PA
3010}
3011
3012void
3013target_find_new_threads (void)
3014{
09b0dc2b 3015 current_target.to_find_new_threads (&current_target);
c906108c
SS
3016}
3017
d914c394
SS
3018void
3019target_stop (ptid_t ptid)
3020{
3021 if (!may_stop)
3022 {
3023 warning (_("May not interrupt or stop the target, ignoring attempt"));
3024 return;
3025 }
3026
1eab8a48 3027 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3028}
3029
09826ec5
PA
3030/* Concatenate ELEM to LIST, a comma separate list, and return the
3031 result. The LIST incoming argument is released. */
3032
3033static char *
3034str_comma_list_concat_elem (char *list, const char *elem)
3035{
3036 if (list == NULL)
3037 return xstrdup (elem);
3038 else
3039 return reconcat (list, list, ", ", elem, (char *) NULL);
3040}
3041
3042/* Helper for target_options_to_string. If OPT is present in
3043 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3044 Returns the new resulting string. OPT is removed from
3045 TARGET_OPTIONS. */
3046
3047static char *
3048do_option (int *target_options, char *ret,
3049 int opt, char *opt_str)
3050{
3051 if ((*target_options & opt) != 0)
3052 {
3053 ret = str_comma_list_concat_elem (ret, opt_str);
3054 *target_options &= ~opt;
3055 }
3056
3057 return ret;
3058}
3059
3060char *
3061target_options_to_string (int target_options)
3062{
3063 char *ret = NULL;
3064
3065#define DO_TARG_OPTION(OPT) \
3066 ret = do_option (&target_options, ret, OPT, #OPT)
3067
3068 DO_TARG_OPTION (TARGET_WNOHANG);
3069
3070 if (target_options != 0)
3071 ret = str_comma_list_concat_elem (ret, "unknown???");
3072
3073 if (ret == NULL)
3074 ret = xstrdup ("");
3075 return ret;
3076}
3077
bf0c5130 3078static void
56be3814
UW
3079debug_print_register (const char * func,
3080 struct regcache *regcache, int regno)
bf0c5130 3081{
f8d29908 3082 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3083
bf0c5130 3084 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3085 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3086 && gdbarch_register_name (gdbarch, regno) != NULL
3087 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3088 fprintf_unfiltered (gdb_stdlog, "(%s)",
3089 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3090 else
3091 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3092 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3093 {
e17a4113 3094 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3095 int i, size = register_size (gdbarch, regno);
e362b510 3096 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3097
0ff58721 3098 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3099 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3100 for (i = 0; i < size; i++)
bf0c5130
AC
3101 {
3102 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3103 }
81c4a259 3104 if (size <= sizeof (LONGEST))
bf0c5130 3105 {
e17a4113 3106 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3107
0b1553bc
UW
3108 fprintf_unfiltered (gdb_stdlog, " %s %s",
3109 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3110 }
3111 }
3112 fprintf_unfiltered (gdb_stdlog, "\n");
3113}
3114
28439f5e
PA
3115void
3116target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3117{
ad5989bd
TT
3118 current_target.to_fetch_registers (&current_target, regcache, regno);
3119 if (targetdebug)
3120 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3121}
3122
28439f5e
PA
3123void
3124target_store_registers (struct regcache *regcache, int regno)
c906108c 3125{
28439f5e 3126 struct target_ops *t;
5d502164 3127
d914c394
SS
3128 if (!may_write_registers)
3129 error (_("Writing to registers is not allowed (regno %d)"), regno);
3130
6b84065d
TT
3131 current_target.to_store_registers (&current_target, regcache, regno);
3132 if (targetdebug)
28439f5e 3133 {
6b84065d 3134 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3135 }
c906108c
SS
3136}
3137
dc146f7c
VP
3138int
3139target_core_of_thread (ptid_t ptid)
3140{
a7068b60 3141 return current_target.to_core_of_thread (&current_target, ptid);
dc146f7c
VP
3142}
3143
936d2992
PA
3144int
3145simple_verify_memory (struct target_ops *ops,
3146 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3147{
3148 LONGEST total_xfered = 0;
3149
3150 while (total_xfered < size)
3151 {
3152 ULONGEST xfered_len;
3153 enum target_xfer_status status;
3154 gdb_byte buf[1024];
3155 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3156
3157 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3158 buf, NULL, lma + total_xfered, howmuch,
3159 &xfered_len);
3160 if (status == TARGET_XFER_OK
3161 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3162 {
3163 total_xfered += xfered_len;
3164 QUIT;
3165 }
3166 else
3167 return 0;
3168 }
3169 return 1;
3170}
3171
3172/* Default implementation of memory verification. */
3173
3174static int
3175default_verify_memory (struct target_ops *self,
3176 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3177{
3178 /* Start over from the top of the target stack. */
3179 return simple_verify_memory (current_target.beneath,
3180 data, memaddr, size);
3181}
3182
4a5e7a5b
PA
3183int
3184target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3185{
a7068b60
TT
3186 return current_target.to_verify_memory (&current_target,
3187 data, memaddr, size);
4a5e7a5b
PA
3188}
3189
9c06b0b4
TJB
3190/* The documentation for this function is in its prototype declaration in
3191 target.h. */
3192
3193int
3194target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3195{
a7068b60
TT
3196 return current_target.to_insert_mask_watchpoint (&current_target,
3197 addr, mask, rw);
9c06b0b4
TJB
3198}
3199
3200/* The documentation for this function is in its prototype declaration in
3201 target.h. */
3202
3203int
3204target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3205{
a7068b60
TT
3206 return current_target.to_remove_mask_watchpoint (&current_target,
3207 addr, mask, rw);
9c06b0b4
TJB
3208}
3209
3210/* The documentation for this function is in its prototype declaration
3211 in target.h. */
3212
3213int
3214target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3215{
6c7e5e5c
TT
3216 return current_target.to_masked_watch_num_registers (&current_target,
3217 addr, mask);
9c06b0b4
TJB
3218}
3219
f1310107
TJB
3220/* The documentation for this function is in its prototype declaration
3221 in target.h. */
3222
3223int
3224target_ranged_break_num_registers (void)
3225{
a134316b 3226 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3227}
3228
02d27625
MM
3229/* See target.h. */
3230
02d27625
MM
3231struct btrace_target_info *
3232target_enable_btrace (ptid_t ptid)
3233{
6dc7fcf4 3234 return current_target.to_enable_btrace (&current_target, ptid);
02d27625
MM
3235}
3236
3237/* See target.h. */
3238
3239void
3240target_disable_btrace (struct btrace_target_info *btinfo)
3241{
8dc292d3 3242 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3243}
3244
3245/* See target.h. */
3246
3247void
3248target_teardown_btrace (struct btrace_target_info *btinfo)
3249{
9ace480d 3250 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3251}
3252
3253/* See target.h. */
3254
969c39fb
MM
3255enum btrace_error
3256target_read_btrace (VEC (btrace_block_s) **btrace,
3257 struct btrace_target_info *btinfo,
02d27625
MM
3258 enum btrace_read_type type)
3259{
eb5b20d4 3260 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3261}
3262
d02ed0bb
MM
3263/* See target.h. */
3264
7c1687a9
MM
3265void
3266target_stop_recording (void)
3267{
ee97f592 3268 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3269}
3270
3271/* See target.h. */
3272
d02ed0bb 3273void
85e1311a 3274target_save_record (const char *filename)
d02ed0bb 3275{
f09e2107 3276 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3277}
3278
3279/* See target.h. */
3280
3281int
3282target_supports_delete_record (void)
3283{
3284 struct target_ops *t;
3285
3286 for (t = current_target.beneath; t != NULL; t = t->beneath)
b0ed115f
TT
3287 if (t->to_delete_record != delegate_delete_record
3288 && t->to_delete_record != tdefault_delete_record)
d02ed0bb
MM
3289 return 1;
3290
3291 return 0;
3292}
3293
3294/* See target.h. */
3295
3296void
3297target_delete_record (void)
3298{
07366925 3299 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3300}
3301
3302/* See target.h. */
3303
3304int
3305target_record_is_replaying (void)
3306{
dd2e9d25 3307 return current_target.to_record_is_replaying (&current_target);
d02ed0bb
MM
3308}
3309
3310/* See target.h. */
3311
3312void
3313target_goto_record_begin (void)
3314{
671e76cc 3315 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3316}
3317
3318/* See target.h. */
3319
3320void
3321target_goto_record_end (void)
3322{
e9179bb3 3323 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3324}
3325
3326/* See target.h. */
3327
3328void
3329target_goto_record (ULONGEST insn)
3330{
05969c84 3331 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3332}
3333
67c86d06
MM
3334/* See target.h. */
3335
3336void
3337target_insn_history (int size, int flags)
3338{
3679abfa 3339 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3340}
3341
3342/* See target.h. */
3343
3344void
3345target_insn_history_from (ULONGEST from, int size, int flags)
3346{
8444ab58 3347 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3348}
3349
3350/* See target.h. */
3351
3352void
3353target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3354{
c29302cc 3355 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3356}
3357
15984c13
MM
3358/* See target.h. */
3359
3360void
3361target_call_history (int size, int flags)
3362{
170049d4 3363 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3364}
3365
3366/* See target.h. */
3367
3368void
3369target_call_history_from (ULONGEST begin, int size, int flags)
3370{
16fc27d6 3371 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3372}
3373
3374/* See target.h. */
3375
3376void
3377target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3378{
115d9817 3379 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3380}
3381
ea001bdc
MM
3382/* See target.h. */
3383
3384const struct frame_unwind *
3385target_get_unwinder (void)
3386{
ac01945b 3387 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3388}
3389
3390/* See target.h. */
3391
3392const struct frame_unwind *
3393target_get_tailcall_unwinder (void)
3394{
ac01945b 3395 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3396}
3397
c0eca49f 3398/* Default implementation of to_decr_pc_after_break. */
118e6252 3399
c0eca49f
TT
3400static CORE_ADDR
3401default_target_decr_pc_after_break (struct target_ops *ops,
118e6252
MM
3402 struct gdbarch *gdbarch)
3403{
118e6252
MM
3404 return gdbarch_decr_pc_after_break (gdbarch);
3405}
3406
3407/* See target.h. */
3408
3409CORE_ADDR
3410target_decr_pc_after_break (struct gdbarch *gdbarch)
3411{
c0eca49f 3412 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
118e6252
MM
3413}
3414
5fff78c4
MM
3415/* See target.h. */
3416
3417void
3418target_prepare_to_generate_core (void)
3419{
3420 current_target.to_prepare_to_generate_core (&current_target);
3421}
3422
3423/* See target.h. */
3424
3425void
3426target_done_generating_core (void)
3427{
3428 current_target.to_done_generating_core (&current_target);
3429}
3430
c906108c 3431static void
fba45db2 3432setup_target_debug (void)
c906108c
SS
3433{
3434 memcpy (&debug_target, &current_target, sizeof debug_target);
3435
a7068b60 3436 init_debug_target (&current_target);
c906108c 3437}
c906108c 3438\f
c5aa993b
JM
3439
3440static char targ_desc[] =
3e43a32a
MS
3441"Names of targets and files being debugged.\nShows the entire \
3442stack of targets currently in use (including the exec-file,\n\
c906108c
SS
3443core-file, and process, if any), as well as the symbol file name.";
3444
a53f3625 3445static void
a30bf1f1
TT
3446default_rcmd (struct target_ops *self, const char *command,
3447 struct ui_file *output)
a53f3625
TT
3448{
3449 error (_("\"monitor\" command not supported by this target."));
3450}
3451
96baa820
JM
3452static void
3453do_monitor_command (char *cmd,
3454 int from_tty)
3455{
96baa820
JM
3456 target_rcmd (cmd, gdb_stdtarg);
3457}
3458
87680a14
JB
3459/* Print the name of each layers of our target stack. */
3460
3461static void
3462maintenance_print_target_stack (char *cmd, int from_tty)
3463{
3464 struct target_ops *t;
3465
3466 printf_filtered (_("The current target stack is:\n"));
3467
3468 for (t = target_stack; t != NULL; t = t->beneath)
3469 {
3470 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3471 }
3472}
3473
329ea579
PA
3474/* Controls if targets can report that they can/are async. This is
3475 just for maintainers to use when debugging gdb. */
3476int target_async_permitted = 1;
c6ebd6cf
VP
3477
3478/* The set command writes to this variable. If the inferior is
b5419e49 3479 executing, target_async_permitted is *not* updated. */
329ea579 3480static int target_async_permitted_1 = 1;
c6ebd6cf
VP
3481
3482static void
329ea579
PA
3483maint_set_target_async_command (char *args, int from_tty,
3484 struct cmd_list_element *c)
c6ebd6cf 3485{
c35b1492 3486 if (have_live_inferiors ())
c6ebd6cf
VP
3487 {
3488 target_async_permitted_1 = target_async_permitted;
3489 error (_("Cannot change this setting while the inferior is running."));
3490 }
3491
3492 target_async_permitted = target_async_permitted_1;
3493}
3494
3495static void
329ea579
PA
3496maint_show_target_async_command (struct ui_file *file, int from_tty,
3497 struct cmd_list_element *c,
3498 const char *value)
c6ebd6cf 3499{
3e43a32a
MS
3500 fprintf_filtered (file,
3501 _("Controlling the inferior in "
3502 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
3503}
3504
d914c394
SS
3505/* Temporary copies of permission settings. */
3506
3507static int may_write_registers_1 = 1;
3508static int may_write_memory_1 = 1;
3509static int may_insert_breakpoints_1 = 1;
3510static int may_insert_tracepoints_1 = 1;
3511static int may_insert_fast_tracepoints_1 = 1;
3512static int may_stop_1 = 1;
3513
3514/* Make the user-set values match the real values again. */
3515
3516void
3517update_target_permissions (void)
3518{
3519 may_write_registers_1 = may_write_registers;
3520 may_write_memory_1 = may_write_memory;
3521 may_insert_breakpoints_1 = may_insert_breakpoints;
3522 may_insert_tracepoints_1 = may_insert_tracepoints;
3523 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3524 may_stop_1 = may_stop;
3525}
3526
3527/* The one function handles (most of) the permission flags in the same
3528 way. */
3529
3530static void
3531set_target_permissions (char *args, int from_tty,
3532 struct cmd_list_element *c)
3533{
3534 if (target_has_execution)
3535 {
3536 update_target_permissions ();
3537 error (_("Cannot change this setting while the inferior is running."));
3538 }
3539
3540 /* Make the real values match the user-changed values. */
3541 may_write_registers = may_write_registers_1;
3542 may_insert_breakpoints = may_insert_breakpoints_1;
3543 may_insert_tracepoints = may_insert_tracepoints_1;
3544 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3545 may_stop = may_stop_1;
3546 update_observer_mode ();
3547}
3548
3549/* Set memory write permission independently of observer mode. */
3550
3551static void
3552set_write_memory_permission (char *args, int from_tty,
3553 struct cmd_list_element *c)
3554{
3555 /* Make the real values match the user-changed values. */
3556 may_write_memory = may_write_memory_1;
3557 update_observer_mode ();
3558}
3559
3560
c906108c 3561void
fba45db2 3562initialize_targets (void)
c906108c
SS
3563{
3564 init_dummy_target ();
3565 push_target (&dummy_target);
3566
3567 add_info ("target", target_info, targ_desc);
3568 add_info ("files", target_info, targ_desc);
3569
ccce17b0 3570 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
3571Set target debugging."), _("\
3572Show target debugging."), _("\
333dabeb 3573When non-zero, target debugging is enabled. Higher numbers are more\n\
3cecbbbe
TT
3574verbose."),
3575 set_targetdebug,
ccce17b0
YQ
3576 show_targetdebug,
3577 &setdebuglist, &showdebuglist);
3a11626d 3578
2bc416ba 3579 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
3580 &trust_readonly, _("\
3581Set mode for reading from readonly sections."), _("\
3582Show mode for reading from readonly sections."), _("\
3a11626d
MS
3583When this mode is on, memory reads from readonly sections (such as .text)\n\
3584will be read from the object file instead of from the target. This will\n\
7915a72c 3585result in significant performance improvement for remote targets."),
2c5b56ce 3586 NULL,
920d2a44 3587 show_trust_readonly,
e707bbc2 3588 &setlist, &showlist);
96baa820
JM
3589
3590 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 3591 _("Send a command to the remote monitor (remote targets only)."));
96baa820 3592
87680a14
JB
3593 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3594 _("Print the name of each layer of the internal target stack."),
3595 &maintenanceprintlist);
3596
c6ebd6cf
VP
3597 add_setshow_boolean_cmd ("target-async", no_class,
3598 &target_async_permitted_1, _("\
3599Set whether gdb controls the inferior in asynchronous mode."), _("\
3600Show whether gdb controls the inferior in asynchronous mode."), _("\
3601Tells gdb whether to control the inferior in asynchronous mode."),
329ea579
PA
3602 maint_set_target_async_command,
3603 maint_show_target_async_command,
3604 &maintenance_set_cmdlist,
3605 &maintenance_show_cmdlist);
c6ebd6cf 3606
d914c394
SS
3607 add_setshow_boolean_cmd ("may-write-registers", class_support,
3608 &may_write_registers_1, _("\
3609Set permission to write into registers."), _("\
3610Show permission to write into registers."), _("\
3611When this permission is on, GDB may write into the target's registers.\n\
3612Otherwise, any sort of write attempt will result in an error."),
3613 set_target_permissions, NULL,
3614 &setlist, &showlist);
3615
3616 add_setshow_boolean_cmd ("may-write-memory", class_support,
3617 &may_write_memory_1, _("\
3618Set permission to write into target memory."), _("\
3619Show permission to write into target memory."), _("\
3620When this permission is on, GDB may write into the target's memory.\n\
3621Otherwise, any sort of write attempt will result in an error."),
3622 set_write_memory_permission, NULL,
3623 &setlist, &showlist);
3624
3625 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3626 &may_insert_breakpoints_1, _("\
3627Set permission to insert breakpoints in the target."), _("\
3628Show permission to insert breakpoints in the target."), _("\
3629When this permission is on, GDB may insert breakpoints in the program.\n\
3630Otherwise, any sort of insertion attempt will result in an error."),
3631 set_target_permissions, NULL,
3632 &setlist, &showlist);
3633
3634 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3635 &may_insert_tracepoints_1, _("\
3636Set permission to insert tracepoints in the target."), _("\
3637Show permission to insert tracepoints in the target."), _("\
3638When this permission is on, GDB may insert tracepoints in the program.\n\
3639Otherwise, any sort of insertion attempt will result in an error."),
3640 set_target_permissions, NULL,
3641 &setlist, &showlist);
3642
3643 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3644 &may_insert_fast_tracepoints_1, _("\
3645Set permission to insert fast tracepoints in the target."), _("\
3646Show permission to insert fast tracepoints in the target."), _("\
3647When this permission is on, GDB may insert fast tracepoints.\n\
3648Otherwise, any sort of insertion attempt will result in an error."),
3649 set_target_permissions, NULL,
3650 &setlist, &showlist);
3651
3652 add_setshow_boolean_cmd ("may-interrupt", class_support,
3653 &may_stop_1, _("\
3654Set permission to interrupt or signal the target."), _("\
3655Show permission to interrupt or signal the target."), _("\
3656When this permission is on, GDB may interrupt/stop the target's execution.\n\
3657Otherwise, any attempt to interrupt or stop will be ignored."),
3658 set_target_permissions, NULL,
3659 &setlist, &showlist);
6a3cb8e8
PA
3660
3661 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3662 &auto_connect_native_target, _("\
3663Set whether GDB may automatically connect to the native target."), _("\
3664Show whether GDB may automatically connect to the native target."), _("\
3665When on, and GDB is not connected to a target yet, GDB\n\
3666attempts \"run\" and other commands with the native target."),
3667 NULL, show_auto_connect_native_target,
3668 &setlist, &showlist);
c906108c 3669}