]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/target.c
Garbage collecting debug sections
[thirdparty/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
32d0add0 3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c 23#include "target.h"
68c765e2 24#include "target-dcache.h"
c906108c
SS
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
45741a9c 28#include "infrun.h"
c906108c
SS
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
4930751a 32#include "dcache.h"
c906108c 33#include <signal.h>
4e052eda 34#include "regcache.h"
b6591e8b 35#include "gdbcore.h"
424163ea 36#include "target-descriptions.h"
e1ac3328 37#include "gdbthread.h"
b9db4ced 38#include "solib.h"
07b82ea5 39#include "exec.h"
edb3359d 40#include "inline-frame.h"
2f4d8875 41#include "tracepoint.h"
7313baad 42#include "gdb/fileio.h"
8ffcbaaf 43#include "agent.h"
8de71aab 44#include "auxv.h"
a7068b60 45#include "target-debug.h"
c906108c 46
a14ed312 47static void target_info (char *, int);
c906108c 48
f0f9ff95
TT
49static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
0a4f40a2 51static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 52
5009afc5
AS
53static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
31568a15
TT
56static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
e0d24f8d 58
a30bf1f1 59static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
a53f3625 60
4229b31d
TT
61static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
098dba18
TT
64static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
8d657035
TT
67static void default_mourn_inferior (struct target_ops *self);
68
58a5184e
TT
69static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
936d2992
PA
76static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
8eaff7cd
TT
80static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
c25c4a8b 83static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 84
555bbdeb
TT
85static int return_zero (struct target_ops *);
86
87static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 88
a14ed312 89static void target_command (char *, int);
c906108c 90
a14ed312 91static struct target_ops *find_default_run_target (char *);
c906108c 92
c2250ad1
UW
93static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
0b5a2719
TT
96static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
16f796b1
TT
100static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
770234d3
TT
103static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
fe31bf5b
TT
105static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
a7068b60
TT
108static struct target_ops debug_target;
109
1101cb7b
TT
110#include "target-delegates.c"
111
a14ed312 112static void init_dummy_target (void);
c906108c 113
3cecbbbe
TT
114static void update_current_target (void);
115
89a1c21a
SM
116/* Vector of existing target structures. */
117typedef struct target_ops *target_ops_p;
118DEF_VEC_P (target_ops_p);
119static VEC (target_ops_p) *target_structs;
c906108c
SS
120
121/* The initial current target, so that there is always a semi-valid
122 current target. */
123
124static struct target_ops dummy_target;
125
126/* Top of target stack. */
127
258b763a 128static struct target_ops *target_stack;
c906108c
SS
129
130/* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133struct target_ops current_target;
134
135/* Command list for target. */
136
137static struct cmd_list_element *targetlist = NULL;
138
cf7a04e8
DJ
139/* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142static int trust_readonly = 0;
143
8defab1a
DJ
144/* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147static int show_memory_breakpoints = 0;
148
d914c394
SS
149/* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153int may_write_registers = 1;
154
155int may_write_memory = 1;
156
157int may_insert_breakpoints = 1;
158
159int may_insert_tracepoints = 1;
160
161int may_insert_fast_tracepoints = 1;
162
163int may_stop = 1;
164
c906108c
SS
165/* Non-zero if we want to see trace of target level stuff. */
166
ccce17b0 167static unsigned int targetdebug = 0;
3cecbbbe
TT
168
169static void
170set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
171{
172 update_current_target ();
173}
174
920d2a44
AC
175static void
176show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180}
c906108c 181
a14ed312 182static void setup_target_debug (void);
c906108c 183
c906108c
SS
184/* The user just typed 'target' without the name of a target. */
185
c906108c 186static void
fba45db2 187target_command (char *arg, int from_tty)
c906108c
SS
188{
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191}
192
c35b1492
PA
193/* Default target_has_* methods for process_stratum targets. */
194
195int
196default_child_has_all_memory (struct target_ops *ops)
197{
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203}
204
205int
206default_child_has_memory (struct target_ops *ops)
207{
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213}
214
215int
216default_child_has_stack (struct target_ops *ops)
217{
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223}
224
225int
226default_child_has_registers (struct target_ops *ops)
227{
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233}
234
235int
aeaec162 236default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
237{
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
aeaec162 240 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
241 return 0;
242
243 return 1;
244}
245
246
247int
248target_has_all_memory_1 (void)
249{
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257}
258
259int
260target_has_memory_1 (void)
261{
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269}
270
271int
272target_has_stack_1 (void)
273{
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281}
282
283int
284target_has_registers_1 (void)
285{
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293}
294
295int
aeaec162 296target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
297{
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 301 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
302 return 1;
303
304 return 0;
305}
306
aeaec162
TT
307int
308target_has_execution_current (void)
309{
310 return target_has_execution_1 (inferior_ptid);
311}
312
c22a2b88
TT
313/* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
c906108c
SS
315
316void
c22a2b88 317complete_target_initialization (struct target_ops *t)
c906108c 318{
0088c768 319 /* Provide default values for all "must have" methods. */
0088c768 320
c35b1492 321 if (t->to_has_all_memory == NULL)
555bbdeb 322 t->to_has_all_memory = return_zero;
c35b1492
PA
323
324 if (t->to_has_memory == NULL)
555bbdeb 325 t->to_has_memory = return_zero;
c35b1492
PA
326
327 if (t->to_has_stack == NULL)
555bbdeb 328 t->to_has_stack = return_zero;
c35b1492
PA
329
330 if (t->to_has_registers == NULL)
555bbdeb 331 t->to_has_registers = return_zero;
c35b1492
PA
332
333 if (t->to_has_execution == NULL)
555bbdeb 334 t->to_has_execution = return_zero_has_execution;
1101cb7b 335
b3ccfe11
TT
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
1101cb7b 342 install_delegators (t);
c22a2b88
TT
343}
344
8981c758
TT
345/* This is used to implement the various target commands. */
346
347static void
348open_target (char *args, int from_tty, struct cmd_list_element *command)
349{
350 struct target_ops *ops = get_cmd_context (command);
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361}
362
c22a2b88
TT
363/* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367void
368add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370{
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
c35b1492 374
89a1c21a 375 VEC_safe_push (target_ops_p, target_structs, t);
c906108c
SS
376
377 if (targetlist == NULL)
1bedd215
AC
378 add_prefix_cmd ("target", class_run, target_command, _("\
379Connect to a target machine or process.\n\
c906108c
SS
380The first argument is the type or protocol of the target machine.\n\
381Remaining arguments are interpreted by the target protocol. For more\n\
382information on the arguments for a particular protocol, type\n\
1bedd215 383`help target ' followed by the protocol name."),
c906108c 384 &targetlist, "target ", 0, &cmdlist);
8981c758
TT
385 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
9852c492
YQ
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390}
391
392/* Add a possible target architecture to the list. */
393
394void
395add_target (struct target_ops *t)
396{
397 add_target_with_completer (t, NULL);
c906108c
SS
398}
399
b48d48eb
MM
400/* See target.h. */
401
402void
403add_deprecated_target_alias (struct target_ops *t, char *alias)
404{
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
8981c758
TT
410 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
b48d48eb
MM
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415}
416
c906108c
SS
417/* Stub functions */
418
7d85a9c0
JB
419void
420target_kill (void)
421{
423a4807 422 current_target.to_kill (&current_target);
7d85a9c0
JB
423}
424
11cf8741 425void
9cbe5fff 426target_load (const char *arg, int from_tty)
11cf8741 427{
4e5d721f 428 target_dcache_invalidate ();
71a9f134 429 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
430}
431
5842f62a
PA
432/* Possible terminal states. */
433
434enum terminal_state
435 {
436 /* The inferior's terminal settings are in effect. */
437 terminal_is_inferior = 0,
438
439 /* Some of our terminal settings are in effect, enough to get
440 proper output. */
441 terminal_is_ours_for_output = 1,
442
443 /* Our terminal settings are in effect, for output and input. */
444 terminal_is_ours = 2
445 };
446
447static enum terminal_state terminal_state;
448
449/* See target.h. */
450
451void
452target_terminal_init (void)
453{
454 (*current_target.to_terminal_init) (&current_target);
455
456 terminal_state = terminal_is_ours;
457}
458
459/* See target.h. */
460
6fdebc3d
PA
461int
462target_terminal_is_inferior (void)
463{
464 return (terminal_state == terminal_is_inferior);
465}
466
467/* See target.h. */
468
d9d2d8b6
PA
469void
470target_terminal_inferior (void)
471{
472 /* A background resume (``run&'') should leave GDB in control of the
c378eb4e 473 terminal. Use target_can_async_p, not target_is_async_p, since at
ba7f6c64
VP
474 this point the target is not async yet. However, if sync_execution
475 is not set, we know it will become async prior to resume. */
476 if (target_can_async_p () && !sync_execution)
d9d2d8b6
PA
477 return;
478
5842f62a
PA
479 if (terminal_state == terminal_is_inferior)
480 return;
481
d9d2d8b6
PA
482 /* If GDB is resuming the inferior in the foreground, install
483 inferior's terminal modes. */
d2f640d4 484 (*current_target.to_terminal_inferior) (&current_target);
5842f62a
PA
485 terminal_state = terminal_is_inferior;
486}
487
488/* See target.h. */
489
490void
491target_terminal_ours (void)
492{
493 if (terminal_state == terminal_is_ours)
494 return;
495
496 (*current_target.to_terminal_ours) (&current_target);
497 terminal_state = terminal_is_ours;
498}
499
500/* See target.h. */
501
502void
503target_terminal_ours_for_output (void)
504{
505 if (terminal_state != terminal_is_inferior)
506 return;
507 (*current_target.to_terminal_ours_for_output) (&current_target);
508 terminal_state = terminal_is_ours_for_output;
d9d2d8b6 509}
136d6dae 510
b0ed115f
TT
511/* See target.h. */
512
513int
514target_supports_terminal_ours (void)
515{
516 struct target_ops *t;
517
518 for (t = current_target.beneath; t != NULL; t = t->beneath)
519 {
520 if (t->to_terminal_ours != delegate_terminal_ours
521 && t->to_terminal_ours != tdefault_terminal_ours)
522 return 1;
523 }
524
525 return 0;
526}
527
1abf3a14
SM
528/* Restore the terminal to its previous state (helper for
529 make_cleanup_restore_target_terminal). */
530
531static void
532cleanup_restore_target_terminal (void *arg)
533{
534 enum terminal_state *previous_state = arg;
535
536 switch (*previous_state)
537 {
538 case terminal_is_ours:
539 target_terminal_ours ();
540 break;
541 case terminal_is_ours_for_output:
542 target_terminal_ours_for_output ();
543 break;
544 case terminal_is_inferior:
545 target_terminal_inferior ();
546 break;
547 }
548}
549
550/* See target.h. */
551
552struct cleanup *
553make_cleanup_restore_target_terminal (void)
554{
555 enum terminal_state *ts = xmalloc (sizeof (*ts));
556
557 *ts = terminal_state;
558
559 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
560}
561
c906108c 562static void
fba45db2 563tcomplain (void)
c906108c 564{
8a3fe4f8 565 error (_("You can't do that when your target is `%s'"),
c906108c
SS
566 current_target.to_shortname);
567}
568
569void
fba45db2 570noprocess (void)
c906108c 571{
8a3fe4f8 572 error (_("You can't do that without a process to debug."));
c906108c
SS
573}
574
c906108c 575static void
0a4f40a2 576default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 577{
a3f17187 578 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
579}
580
0ef643c8
JB
581/* A default implementation for the to_get_ada_task_ptid target method.
582
583 This function builds the PTID by using both LWP and TID as part of
584 the PTID lwp and tid elements. The pid used is the pid of the
585 inferior_ptid. */
586
2c0b251b 587static ptid_t
1e6b91a4 588default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
589{
590 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
591}
592
32231432 593static enum exec_direction_kind
4c612759 594default_execution_direction (struct target_ops *self)
32231432
PA
595{
596 if (!target_can_execute_reverse)
597 return EXEC_FORWARD;
598 else if (!target_can_async_p ())
599 return EXEC_FORWARD;
600 else
601 gdb_assert_not_reached ("\
602to_execution_direction must be implemented for reverse async");
603}
604
7998dfc3
AC
605/* Go through the target stack from top to bottom, copying over zero
606 entries in current_target, then filling in still empty entries. In
607 effect, we are doing class inheritance through the pushed target
608 vectors.
609
610 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
611 is currently implemented, is that it discards any knowledge of
612 which target an inherited method originally belonged to.
613 Consequently, new new target methods should instead explicitly and
614 locally search the target stack for the target that can handle the
615 request. */
c906108c
SS
616
617static void
7998dfc3 618update_current_target (void)
c906108c 619{
7998dfc3
AC
620 struct target_ops *t;
621
08d8bcd7 622 /* First, reset current's contents. */
7998dfc3
AC
623 memset (&current_target, 0, sizeof (current_target));
624
1101cb7b
TT
625 /* Install the delegators. */
626 install_delegators (&current_target);
627
be4ddd36
TT
628 current_target.to_stratum = target_stack->to_stratum;
629
7998dfc3
AC
630#define INHERIT(FIELD, TARGET) \
631 if (!current_target.FIELD) \
632 current_target.FIELD = (TARGET)->FIELD
633
be4ddd36
TT
634 /* Do not add any new INHERITs here. Instead, use the delegation
635 mechanism provided by make-target-delegates. */
7998dfc3
AC
636 for (t = target_stack; t; t = t->beneath)
637 {
638 INHERIT (to_shortname, t);
639 INHERIT (to_longname, t);
dc177b7a 640 INHERIT (to_attach_no_wait, t);
74174d2e 641 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 642 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 643 INHERIT (to_has_thread_control, t);
7998dfc3
AC
644 }
645#undef INHERIT
646
7998dfc3
AC
647 /* Finally, position the target-stack beneath the squashed
648 "current_target". That way code looking for a non-inherited
649 target method can quickly and simply find it. */
650 current_target.beneath = target_stack;
b4b61fdb
DJ
651
652 if (targetdebug)
653 setup_target_debug ();
c906108c
SS
654}
655
656/* Push a new target type into the stack of the existing target accessors,
657 possibly superseding some of the existing accessors.
658
c906108c
SS
659 Rather than allow an empty stack, we always have the dummy target at
660 the bottom stratum, so we can call the function vectors without
661 checking them. */
662
b26a4dcb 663void
fba45db2 664push_target (struct target_ops *t)
c906108c 665{
258b763a 666 struct target_ops **cur;
c906108c
SS
667
668 /* Check magic number. If wrong, it probably means someone changed
669 the struct definition, but not all the places that initialize one. */
670 if (t->to_magic != OPS_MAGIC)
671 {
c5aa993b
JM
672 fprintf_unfiltered (gdb_stderr,
673 "Magic number of %s target struct wrong\n",
674 t->to_shortname);
3e43a32a
MS
675 internal_error (__FILE__, __LINE__,
676 _("failed internal consistency check"));
c906108c
SS
677 }
678
258b763a
AC
679 /* Find the proper stratum to install this target in. */
680 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 681 {
258b763a 682 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
683 break;
684 }
685
258b763a 686 /* If there's already targets at this stratum, remove them. */
88c231eb 687 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
688 targets to CUR, and not just those at this stratum level. */
689 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
690 {
691 /* There's already something at this stratum level. Close it,
692 and un-hook it from the stack. */
693 struct target_ops *tmp = (*cur);
5d502164 694
258b763a
AC
695 (*cur) = (*cur)->beneath;
696 tmp->beneath = NULL;
460014f5 697 target_close (tmp);
258b763a 698 }
c906108c
SS
699
700 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
701 t->beneath = (*cur);
702 (*cur) = t;
c906108c
SS
703
704 update_current_target ();
c906108c
SS
705}
706
2bc416ba 707/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
708 Return how many times it was removed (0 or 1). */
709
710int
fba45db2 711unpush_target (struct target_ops *t)
c906108c 712{
258b763a
AC
713 struct target_ops **cur;
714 struct target_ops *tmp;
c906108c 715
c8d104ad
PA
716 if (t->to_stratum == dummy_stratum)
717 internal_error (__FILE__, __LINE__,
9b20d036 718 _("Attempt to unpush the dummy target"));
c8d104ad 719
c906108c 720 /* Look for the specified target. Note that we assume that a target
c378eb4e 721 can only occur once in the target stack. */
c906108c 722
258b763a
AC
723 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
724 {
725 if ((*cur) == t)
726 break;
727 }
c906108c 728
305436e0
PA
729 /* If we don't find target_ops, quit. Only open targets should be
730 closed. */
258b763a 731 if ((*cur) == NULL)
305436e0 732 return 0;
5269965e 733
c378eb4e 734 /* Unchain the target. */
258b763a
AC
735 tmp = (*cur);
736 (*cur) = (*cur)->beneath;
737 tmp->beneath = NULL;
c906108c
SS
738
739 update_current_target ();
c906108c 740
305436e0
PA
741 /* Finally close the target. Note we do this after unchaining, so
742 any target method calls from within the target_close
743 implementation don't end up in T anymore. */
460014f5 744 target_close (t);
305436e0 745
c906108c
SS
746 return 1;
747}
748
aa76d38d 749void
460014f5 750pop_all_targets_above (enum strata above_stratum)
aa76d38d 751{
87ab71f0 752 while ((int) (current_target.to_stratum) > (int) above_stratum)
aa76d38d 753 {
aa76d38d
PA
754 if (!unpush_target (target_stack))
755 {
756 fprintf_unfiltered (gdb_stderr,
757 "pop_all_targets couldn't find target %s\n",
b52323fa 758 target_stack->to_shortname);
aa76d38d
PA
759 internal_error (__FILE__, __LINE__,
760 _("failed internal consistency check"));
761 break;
762 }
763 }
764}
765
87ab71f0 766void
460014f5 767pop_all_targets (void)
87ab71f0 768{
460014f5 769 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
770}
771
c0edd9ed
JK
772/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
773
774int
775target_is_pushed (struct target_ops *t)
776{
84202f9c 777 struct target_ops *cur;
c0edd9ed
JK
778
779 /* Check magic number. If wrong, it probably means someone changed
780 the struct definition, but not all the places that initialize one. */
781 if (t->to_magic != OPS_MAGIC)
782 {
783 fprintf_unfiltered (gdb_stderr,
784 "Magic number of %s target struct wrong\n",
785 t->to_shortname);
3e43a32a
MS
786 internal_error (__FILE__, __LINE__,
787 _("failed internal consistency check"));
c0edd9ed
JK
788 }
789
84202f9c
TT
790 for (cur = target_stack; cur != NULL; cur = cur->beneath)
791 if (cur == t)
c0edd9ed
JK
792 return 1;
793
794 return 0;
795}
796
f0f9ff95
TT
797/* Default implementation of to_get_thread_local_address. */
798
799static void
800generic_tls_error (void)
801{
802 throw_error (TLS_GENERIC_ERROR,
803 _("Cannot find thread-local variables on this target"));
804}
805
72f5cf0e 806/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
807 current thread's thread-local storage with offset OFFSET. */
808CORE_ADDR
809target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
810{
811 volatile CORE_ADDR addr = 0;
f0f9ff95 812 struct target_ops *target = &current_target;
9e35dae4 813
f0f9ff95 814 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
815 {
816 ptid_t ptid = inferior_ptid;
9e35dae4 817
492d29ea 818 TRY
9e35dae4
DJ
819 {
820 CORE_ADDR lm_addr;
821
822 /* Fetch the load module address for this objfile. */
f5656ead 823 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4 824 objfile);
9e35dae4 825
3e43a32a
MS
826 addr = target->to_get_thread_local_address (target, ptid,
827 lm_addr, offset);
9e35dae4
DJ
828 }
829 /* If an error occurred, print TLS related messages here. Otherwise,
830 throw the error to some higher catcher. */
492d29ea 831 CATCH (ex, RETURN_MASK_ALL)
9e35dae4
DJ
832 {
833 int objfile_is_library = (objfile->flags & OBJF_SHARED);
834
835 switch (ex.error)
836 {
837 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
838 error (_("Cannot find thread-local variables "
839 "in this thread library."));
9e35dae4
DJ
840 break;
841 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
842 if (objfile_is_library)
843 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 844 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
845 else
846 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 847 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
848 break;
849 case TLS_NOT_ALLOCATED_YET_ERROR:
850 if (objfile_is_library)
851 error (_("The inferior has not yet allocated storage for"
852 " thread-local variables in\n"
853 "the shared library `%s'\n"
854 "for %s"),
4262abfb 855 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
856 else
857 error (_("The inferior has not yet allocated storage for"
858 " thread-local variables in\n"
859 "the executable `%s'\n"
860 "for %s"),
4262abfb 861 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
862 break;
863 case TLS_GENERIC_ERROR:
864 if (objfile_is_library)
865 error (_("Cannot find thread-local storage for %s, "
866 "shared library %s:\n%s"),
867 target_pid_to_str (ptid),
4262abfb 868 objfile_name (objfile), ex.message);
9e35dae4
DJ
869 else
870 error (_("Cannot find thread-local storage for %s, "
871 "executable file %s:\n%s"),
872 target_pid_to_str (ptid),
4262abfb 873 objfile_name (objfile), ex.message);
9e35dae4
DJ
874 break;
875 default:
876 throw_exception (ex);
877 break;
878 }
879 }
492d29ea 880 END_CATCH
9e35dae4
DJ
881 }
882 /* It wouldn't be wrong here to try a gdbarch method, too; finding
883 TLS is an ABI-specific thing. But we don't do that yet. */
884 else
885 error (_("Cannot find thread-local variables on this target"));
886
887 return addr;
888}
889
6be7b56e 890const char *
01cb8804 891target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
892{
893#define CASE(X) case X: return #X
01cb8804 894 switch (status)
6be7b56e
PA
895 {
896 CASE(TARGET_XFER_E_IO);
bc113b4e 897 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
898 default:
899 return "<unknown>";
900 }
901#undef CASE
902};
903
904
c906108c
SS
905#undef MIN
906#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
907
908/* target_read_string -- read a null terminated string, up to LEN bytes,
909 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
910 Set *STRING to a pointer to malloc'd memory containing the data; the caller
911 is responsible for freeing it. Return the number of bytes successfully
912 read. */
913
914int
fba45db2 915target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 916{
c2e8b827 917 int tlen, offset, i;
1b0ba102 918 gdb_byte buf[4];
c906108c
SS
919 int errcode = 0;
920 char *buffer;
921 int buffer_allocated;
922 char *bufptr;
923 unsigned int nbytes_read = 0;
924
6217bf3e
MS
925 gdb_assert (string);
926
c906108c
SS
927 /* Small for testing. */
928 buffer_allocated = 4;
929 buffer = xmalloc (buffer_allocated);
930 bufptr = buffer;
931
c906108c
SS
932 while (len > 0)
933 {
934 tlen = MIN (len, 4 - (memaddr & 3));
935 offset = memaddr & 3;
936
1b0ba102 937 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
938 if (errcode != 0)
939 {
940 /* The transfer request might have crossed the boundary to an
c378eb4e 941 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
942 a single byte. */
943 tlen = 1;
944 offset = 0;
b8eb5af0 945 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
946 if (errcode != 0)
947 goto done;
948 }
949
950 if (bufptr - buffer + tlen > buffer_allocated)
951 {
952 unsigned int bytes;
5d502164 953
c906108c
SS
954 bytes = bufptr - buffer;
955 buffer_allocated *= 2;
956 buffer = xrealloc (buffer, buffer_allocated);
957 bufptr = buffer + bytes;
958 }
959
960 for (i = 0; i < tlen; i++)
961 {
962 *bufptr++ = buf[i + offset];
963 if (buf[i + offset] == '\000')
964 {
965 nbytes_read += i + 1;
966 goto done;
967 }
968 }
969
970 memaddr += tlen;
971 len -= tlen;
972 nbytes_read += tlen;
973 }
c5aa993b 974done:
6217bf3e 975 *string = buffer;
c906108c
SS
976 if (errnop != NULL)
977 *errnop = errcode;
c906108c
SS
978 return nbytes_read;
979}
980
07b82ea5
PA
981struct target_section_table *
982target_get_section_table (struct target_ops *target)
983{
7e35c012 984 return (*target->to_get_section_table) (target);
07b82ea5
PA
985}
986
8db32d44 987/* Find a section containing ADDR. */
07b82ea5 988
0542c86d 989struct target_section *
8db32d44
AC
990target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
991{
07b82ea5 992 struct target_section_table *table = target_get_section_table (target);
0542c86d 993 struct target_section *secp;
07b82ea5
PA
994
995 if (table == NULL)
996 return NULL;
997
998 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
999 {
1000 if (addr >= secp->addr && addr < secp->endaddr)
1001 return secp;
1002 }
1003 return NULL;
1004}
1005
0fec99e8
PA
1006
1007/* Helper for the memory xfer routines. Checks the attributes of the
1008 memory region of MEMADDR against the read or write being attempted.
1009 If the access is permitted returns true, otherwise returns false.
1010 REGION_P is an optional output parameter. If not-NULL, it is
1011 filled with a pointer to the memory region of MEMADDR. REG_LEN
1012 returns LEN trimmed to the end of the region. This is how much the
1013 caller can continue requesting, if the access is permitted. A
1014 single xfer request must not straddle memory region boundaries. */
1015
1016static int
1017memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1018 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1019 struct mem_region **region_p)
1020{
1021 struct mem_region *region;
1022
1023 region = lookup_mem_region (memaddr);
1024
1025 if (region_p != NULL)
1026 *region_p = region;
1027
1028 switch (region->attrib.mode)
1029 {
1030 case MEM_RO:
1031 if (writebuf != NULL)
1032 return 0;
1033 break;
1034
1035 case MEM_WO:
1036 if (readbuf != NULL)
1037 return 0;
1038 break;
1039
1040 case MEM_FLASH:
1041 /* We only support writing to flash during "load" for now. */
1042 if (writebuf != NULL)
1043 error (_("Writing to flash memory forbidden in this context"));
1044 break;
1045
1046 case MEM_NONE:
1047 return 0;
1048 }
1049
1050 /* region->hi == 0 means there's no upper bound. */
1051 if (memaddr + len < region->hi || region->hi == 0)
1052 *reg_len = len;
1053 else
1054 *reg_len = region->hi - memaddr;
1055
1056 return 1;
1057}
1058
9f713294
YQ
1059/* Read memory from more than one valid target. A core file, for
1060 instance, could have some of memory but delegate other bits to
1061 the target below it. So, we must manually try all targets. */
1062
9b409511 1063static enum target_xfer_status
17fde6d0 1064raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
1065 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1066 ULONGEST *xfered_len)
9f713294 1067{
9b409511 1068 enum target_xfer_status res;
9f713294
YQ
1069
1070 do
1071 {
1072 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1073 readbuf, writebuf, memaddr, len,
1074 xfered_len);
1075 if (res == TARGET_XFER_OK)
9f713294
YQ
1076 break;
1077
633785ff 1078 /* Stop if the target reports that the memory is not available. */
bc113b4e 1079 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
1080 break;
1081
9f713294
YQ
1082 /* We want to continue past core files to executables, but not
1083 past a running target's memory. */
1084 if (ops->to_has_all_memory (ops))
1085 break;
1086
1087 ops = ops->beneath;
1088 }
1089 while (ops != NULL);
1090
0f26cec1
PA
1091 /* The cache works at the raw memory level. Make sure the cache
1092 gets updated with raw contents no matter what kind of memory
1093 object was originally being written. Note we do write-through
1094 first, so that if it fails, we don't write to the cache contents
1095 that never made it to the target. */
1096 if (writebuf != NULL
1097 && !ptid_equal (inferior_ptid, null_ptid)
1098 && target_dcache_init_p ()
1099 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1100 {
1101 DCACHE *dcache = target_dcache_get ();
1102
1103 /* Note that writing to an area of memory which wasn't present
1104 in the cache doesn't cause it to be loaded in. */
1105 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1106 }
1107
9f713294
YQ
1108 return res;
1109}
1110
7f79c47e
DE
1111/* Perform a partial memory transfer.
1112 For docs see target.h, to_xfer_partial. */
cf7a04e8 1113
9b409511 1114static enum target_xfer_status
f0ba3972 1115memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 1116 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 1117 ULONGEST len, ULONGEST *xfered_len)
0779438d 1118{
9b409511 1119 enum target_xfer_status res;
0fec99e8 1120 ULONGEST reg_len;
cf7a04e8 1121 struct mem_region *region;
4e5d721f 1122 struct inferior *inf;
cf7a04e8 1123
07b82ea5
PA
1124 /* For accesses to unmapped overlay sections, read directly from
1125 files. Must do this first, as MEMADDR may need adjustment. */
1126 if (readbuf != NULL && overlay_debugging)
1127 {
1128 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 1129
07b82ea5
PA
1130 if (pc_in_unmapped_range (memaddr, section))
1131 {
1132 struct target_section_table *table
1133 = target_get_section_table (ops);
1134 const char *section_name = section->the_bfd_section->name;
5d502164 1135
07b82ea5
PA
1136 memaddr = overlay_mapped_address (memaddr, section);
1137 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1138 memaddr, len, xfered_len,
07b82ea5
PA
1139 table->sections,
1140 table->sections_end,
1141 section_name);
1142 }
1143 }
1144
1145 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
1146 if (readbuf != NULL && trust_readonly)
1147 {
0542c86d 1148 struct target_section *secp;
07b82ea5 1149 struct target_section_table *table;
cf7a04e8
DJ
1150
1151 secp = target_section_by_addr (ops, memaddr);
1152 if (secp != NULL
2b2848e2
DE
1153 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1154 secp->the_bfd_section)
cf7a04e8 1155 & SEC_READONLY))
07b82ea5
PA
1156 {
1157 table = target_get_section_table (ops);
1158 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1159 memaddr, len, xfered_len,
07b82ea5
PA
1160 table->sections,
1161 table->sections_end,
1162 NULL);
1163 }
98646950
UW
1164 }
1165
cf7a04e8 1166 /* Try GDB's internal data cache. */
cf7a04e8 1167
0fec99e8
PA
1168 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1169 &region))
1170 return TARGET_XFER_E_IO;
cf7a04e8 1171
6c95b8df 1172 if (!ptid_equal (inferior_ptid, null_ptid))
c9657e70 1173 inf = find_inferior_ptid (inferior_ptid);
6c95b8df
PA
1174 else
1175 inf = NULL;
4e5d721f
DE
1176
1177 if (inf != NULL
0f26cec1 1178 && readbuf != NULL
2f4d8875
PA
1179 /* The dcache reads whole cache lines; that doesn't play well
1180 with reading from a trace buffer, because reading outside of
1181 the collected memory range fails. */
1182 && get_traceframe_number () == -1
4e5d721f 1183 && (region->attrib.cache
29453a14
YQ
1184 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1185 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1186 {
2a2f9fe4
YQ
1187 DCACHE *dcache = target_dcache_get_or_init ();
1188
0f26cec1
PA
1189 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1190 reg_len, xfered_len);
cf7a04e8
DJ
1191 }
1192
1193 /* If none of those methods found the memory we wanted, fall back
1194 to a target partial transfer. Normally a single call to
1195 to_xfer_partial is enough; if it doesn't recognize an object
1196 it will call the to_xfer_partial of the next target down.
1197 But for memory this won't do. Memory is the only target
9b409511
YQ
1198 object which can be read from more than one valid target.
1199 A core file, for instance, could have some of memory but
1200 delegate other bits to the target below it. So, we must
1201 manually try all targets. */
1202
1203 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1204 xfered_len);
cf7a04e8
DJ
1205
1206 /* If we still haven't got anything, return the last error. We
1207 give up. */
1208 return res;
0779438d
AC
1209}
1210
f0ba3972
PA
1211/* Perform a partial memory transfer. For docs see target.h,
1212 to_xfer_partial. */
1213
9b409511 1214static enum target_xfer_status
f0ba3972 1215memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1216 gdb_byte *readbuf, const gdb_byte *writebuf,
1217 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1218{
9b409511 1219 enum target_xfer_status res;
f0ba3972
PA
1220
1221 /* Zero length requests are ok and require no work. */
1222 if (len == 0)
9b409511 1223 return TARGET_XFER_EOF;
f0ba3972
PA
1224
1225 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1226 breakpoint insns, thus hiding out from higher layers whether
1227 there are software breakpoints inserted in the code stream. */
1228 if (readbuf != NULL)
1229 {
9b409511
YQ
1230 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1231 xfered_len);
f0ba3972 1232
9b409511 1233 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1234 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1235 }
1236 else
1237 {
1238 void *buf;
1239 struct cleanup *old_chain;
1240
67c059c2
AB
1241 /* A large write request is likely to be partially satisfied
1242 by memory_xfer_partial_1. We will continually malloc
1243 and free a copy of the entire write request for breakpoint
1244 shadow handling even though we only end up writing a small
1245 subset of it. Cap writes to 4KB to mitigate this. */
1246 len = min (4096, len);
1247
f0ba3972
PA
1248 buf = xmalloc (len);
1249 old_chain = make_cleanup (xfree, buf);
1250 memcpy (buf, writebuf, len);
1251
1252 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1253 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1254 xfered_len);
f0ba3972
PA
1255
1256 do_cleanups (old_chain);
1257 }
1258
1259 return res;
1260}
1261
8defab1a
DJ
1262static void
1263restore_show_memory_breakpoints (void *arg)
1264{
1265 show_memory_breakpoints = (uintptr_t) arg;
1266}
1267
1268struct cleanup *
1269make_show_memory_breakpoints_cleanup (int show)
1270{
1271 int current = show_memory_breakpoints;
8defab1a 1272
5d502164 1273 show_memory_breakpoints = show;
8defab1a
DJ
1274 return make_cleanup (restore_show_memory_breakpoints,
1275 (void *) (uintptr_t) current);
1276}
1277
7f79c47e
DE
1278/* For docs see target.h, to_xfer_partial. */
1279
9b409511 1280enum target_xfer_status
27394598
AC
1281target_xfer_partial (struct target_ops *ops,
1282 enum target_object object, const char *annex,
4ac248ca 1283 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1284 ULONGEST offset, ULONGEST len,
1285 ULONGEST *xfered_len)
27394598 1286{
9b409511 1287 enum target_xfer_status retval;
27394598
AC
1288
1289 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1290
ce6d0892
YQ
1291 /* Transfer is done when LEN is zero. */
1292 if (len == 0)
9b409511 1293 return TARGET_XFER_EOF;
ce6d0892 1294
d914c394
SS
1295 if (writebuf && !may_write_memory)
1296 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1297 core_addr_to_string_nz (offset), plongest (len));
1298
9b409511
YQ
1299 *xfered_len = 0;
1300
cf7a04e8
DJ
1301 /* If this is a memory transfer, let the memory-specific code
1302 have a look at it instead. Memory transfers are more
1303 complicated. */
29453a14
YQ
1304 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1305 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1306 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1307 writebuf, offset, len, xfered_len);
9f713294 1308 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1309 {
0fec99e8
PA
1310 /* Skip/avoid accessing the target if the memory region
1311 attributes block the access. Check this here instead of in
1312 raw_memory_xfer_partial as otherwise we'd end up checking
1313 this twice in the case of the memory_xfer_partial path is
1314 taken; once before checking the dcache, and another in the
1315 tail call to raw_memory_xfer_partial. */
1316 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1317 NULL))
1318 return TARGET_XFER_E_IO;
1319
9f713294 1320 /* Request the normal memory object from other layers. */
9b409511
YQ
1321 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1322 xfered_len);
cf7a04e8 1323 }
9f713294
YQ
1324 else
1325 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1326 writebuf, offset, len, xfered_len);
cf7a04e8 1327
27394598
AC
1328 if (targetdebug)
1329 {
1330 const unsigned char *myaddr = NULL;
1331
1332 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1333 "%s:target_xfer_partial "
9b409511 1334 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1335 ops->to_shortname,
1336 (int) object,
1337 (annex ? annex : "(null)"),
53b71562
JB
1338 host_address_to_string (readbuf),
1339 host_address_to_string (writebuf),
0b1553bc 1340 core_addr_to_string_nz (offset),
9b409511
YQ
1341 pulongest (len), retval,
1342 pulongest (*xfered_len));
27394598
AC
1343
1344 if (readbuf)
1345 myaddr = readbuf;
1346 if (writebuf)
1347 myaddr = writebuf;
9b409511 1348 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1349 {
1350 int i;
2bc416ba 1351
27394598 1352 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1353 for (i = 0; i < *xfered_len; i++)
27394598 1354 {
53b71562 1355 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1356 {
1357 if (targetdebug < 2 && i > 0)
1358 {
1359 fprintf_unfiltered (gdb_stdlog, " ...");
1360 break;
1361 }
1362 fprintf_unfiltered (gdb_stdlog, "\n");
1363 }
2bc416ba 1364
27394598
AC
1365 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1366 }
1367 }
2bc416ba 1368
27394598
AC
1369 fputc_unfiltered ('\n', gdb_stdlog);
1370 }
9b409511
YQ
1371
1372 /* Check implementations of to_xfer_partial update *XFERED_LEN
1373 properly. Do assertion after printing debug messages, so that we
1374 can find more clues on assertion failure from debugging messages. */
bc113b4e 1375 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1376 gdb_assert (*xfered_len > 0);
1377
27394598
AC
1378 return retval;
1379}
1380
578d3588
PA
1381/* Read LEN bytes of target memory at address MEMADDR, placing the
1382 results in GDB's memory at MYADDR. Returns either 0 for success or
9b409511 1383 TARGET_XFER_E_IO if any error occurs.
c906108c
SS
1384
1385 If an error occurs, no guarantee is made about the contents of the data at
1386 MYADDR. In particular, the caller should not depend upon partial reads
1387 filling the buffer with good data. There is no way for the caller to know
1388 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1389 deal with partial reads should call target_read (which will retry until
c378eb4e 1390 it makes no progress, and then return how much was transferred). */
c906108c
SS
1391
1392int
1b162304 1393target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1394{
c35b1492
PA
1395 /* Dispatch to the topmost target, not the flattened current_target.
1396 Memory accesses check target->to_has_(all_)memory, and the
1397 flattened target doesn't inherit those. */
1398 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1399 myaddr, memaddr, len) == len)
1400 return 0;
0779438d 1401 else
578d3588 1402 return TARGET_XFER_E_IO;
c906108c
SS
1403}
1404
721ec300
GB
1405/* See target/target.h. */
1406
1407int
1408target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1409{
1410 gdb_byte buf[4];
1411 int r;
1412
1413 r = target_read_memory (memaddr, buf, sizeof buf);
1414 if (r != 0)
1415 return r;
1416 *result = extract_unsigned_integer (buf, sizeof buf,
1417 gdbarch_byte_order (target_gdbarch ()));
1418 return 0;
1419}
1420
aee4bf85
PA
1421/* Like target_read_memory, but specify explicitly that this is a read
1422 from the target's raw memory. That is, this read bypasses the
1423 dcache, breakpoint shadowing, etc. */
1424
1425int
1426target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1427{
1428 /* See comment in target_read_memory about why the request starts at
1429 current_target.beneath. */
1430 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1431 myaddr, memaddr, len) == len)
1432 return 0;
1433 else
1434 return TARGET_XFER_E_IO;
1435}
1436
4e5d721f
DE
1437/* Like target_read_memory, but specify explicitly that this is a read from
1438 the target's stack. This may trigger different cache behavior. */
1439
1440int
45aa4659 1441target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1442{
aee4bf85
PA
1443 /* See comment in target_read_memory about why the request starts at
1444 current_target.beneath. */
4e5d721f
DE
1445 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1446 myaddr, memaddr, len) == len)
1447 return 0;
1448 else
578d3588 1449 return TARGET_XFER_E_IO;
4e5d721f
DE
1450}
1451
29453a14
YQ
1452/* Like target_read_memory, but specify explicitly that this is a read from
1453 the target's code. This may trigger different cache behavior. */
1454
1455int
1456target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1457{
aee4bf85
PA
1458 /* See comment in target_read_memory about why the request starts at
1459 current_target.beneath. */
29453a14
YQ
1460 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1461 myaddr, memaddr, len) == len)
1462 return 0;
1463 else
1464 return TARGET_XFER_E_IO;
1465}
1466
7f79c47e 1467/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
9b409511 1468 Returns either 0 for success or TARGET_XFER_E_IO if any
578d3588
PA
1469 error occurs. If an error occurs, no guarantee is made about how
1470 much data got written. Callers that can deal with partial writes
1471 should call target_write. */
7f79c47e 1472
c906108c 1473int
45aa4659 1474target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1475{
aee4bf85
PA
1476 /* See comment in target_read_memory about why the request starts at
1477 current_target.beneath. */
c35b1492 1478 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1479 myaddr, memaddr, len) == len)
1480 return 0;
0779438d 1481 else
578d3588 1482 return TARGET_XFER_E_IO;
c906108c 1483}
c5aa993b 1484
f0ba3972 1485/* Write LEN bytes from MYADDR to target raw memory at address
9b409511 1486 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
578d3588
PA
1487 if any error occurs. If an error occurs, no guarantee is made
1488 about how much data got written. Callers that can deal with
1489 partial writes should call target_write. */
f0ba3972
PA
1490
1491int
45aa4659 1492target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1493{
aee4bf85
PA
1494 /* See comment in target_read_memory about why the request starts at
1495 current_target.beneath. */
f0ba3972
PA
1496 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1497 myaddr, memaddr, len) == len)
1498 return 0;
1499 else
578d3588 1500 return TARGET_XFER_E_IO;
f0ba3972
PA
1501}
1502
fd79ecee
DJ
1503/* Fetch the target's memory map. */
1504
1505VEC(mem_region_s) *
1506target_memory_map (void)
1507{
1508 VEC(mem_region_s) *result;
1509 struct mem_region *last_one, *this_one;
1510 int ix;
1511 struct target_ops *t;
1512
6b2c5a57 1513 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1514 if (result == NULL)
1515 return NULL;
1516
1517 qsort (VEC_address (mem_region_s, result),
1518 VEC_length (mem_region_s, result),
1519 sizeof (struct mem_region), mem_region_cmp);
1520
1521 /* Check that regions do not overlap. Simultaneously assign
1522 a numbering for the "mem" commands to use to refer to
1523 each region. */
1524 last_one = NULL;
1525 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1526 {
1527 this_one->number = ix;
1528
1529 if (last_one && last_one->hi > this_one->lo)
1530 {
1531 warning (_("Overlapping regions in memory map: ignoring"));
1532 VEC_free (mem_region_s, result);
1533 return NULL;
1534 }
1535 last_one = this_one;
1536 }
1537
1538 return result;
1539}
1540
a76d924d
DJ
1541void
1542target_flash_erase (ULONGEST address, LONGEST length)
1543{
e8a6c6ac 1544 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1545}
1546
1547void
1548target_flash_done (void)
1549{
f6fb2925 1550 current_target.to_flash_done (&current_target);
a76d924d
DJ
1551}
1552
920d2a44
AC
1553static void
1554show_trust_readonly (struct ui_file *file, int from_tty,
1555 struct cmd_list_element *c, const char *value)
1556{
3e43a32a
MS
1557 fprintf_filtered (file,
1558 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1559 value);
1560}
3a11626d 1561
7f79c47e 1562/* Target vector read/write partial wrapper functions. */
0088c768 1563
9b409511 1564static enum target_xfer_status
1e3ff5ad
AC
1565target_read_partial (struct target_ops *ops,
1566 enum target_object object,
1b0ba102 1567 const char *annex, gdb_byte *buf,
9b409511
YQ
1568 ULONGEST offset, ULONGEST len,
1569 ULONGEST *xfered_len)
1e3ff5ad 1570{
9b409511
YQ
1571 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1572 xfered_len);
1e3ff5ad
AC
1573}
1574
8a55ffb0 1575static enum target_xfer_status
1e3ff5ad
AC
1576target_write_partial (struct target_ops *ops,
1577 enum target_object object,
1b0ba102 1578 const char *annex, const gdb_byte *buf,
9b409511 1579 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1580{
9b409511
YQ
1581 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1582 xfered_len);
1e3ff5ad
AC
1583}
1584
1585/* Wrappers to perform the full transfer. */
7f79c47e
DE
1586
1587/* For docs on target_read see target.h. */
1588
1e3ff5ad
AC
1589LONGEST
1590target_read (struct target_ops *ops,
1591 enum target_object object,
1b0ba102 1592 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1593 ULONGEST offset, LONGEST len)
1594{
1595 LONGEST xfered = 0;
5d502164 1596
1e3ff5ad
AC
1597 while (xfered < len)
1598 {
9b409511
YQ
1599 ULONGEST xfered_len;
1600 enum target_xfer_status status;
1601
1602 status = target_read_partial (ops, object, annex,
1603 (gdb_byte *) buf + xfered,
1604 offset + xfered, len - xfered,
1605 &xfered_len);
5d502164 1606
1e3ff5ad 1607 /* Call an observer, notifying them of the xfer progress? */
9b409511 1608 if (status == TARGET_XFER_EOF)
13547ab6 1609 return xfered;
9b409511
YQ
1610 else if (status == TARGET_XFER_OK)
1611 {
1612 xfered += xfered_len;
1613 QUIT;
1614 }
1615 else
0088c768 1616 return -1;
9b409511 1617
1e3ff5ad
AC
1618 }
1619 return len;
1620}
1621
f1a507a1
JB
1622/* Assuming that the entire [begin, end) range of memory cannot be
1623 read, try to read whatever subrange is possible to read.
1624
1625 The function returns, in RESULT, either zero or one memory block.
1626 If there's a readable subrange at the beginning, it is completely
1627 read and returned. Any further readable subrange will not be read.
1628 Otherwise, if there's a readable subrange at the end, it will be
1629 completely read and returned. Any readable subranges before it
1630 (obviously, not starting at the beginning), will be ignored. In
1631 other cases -- either no readable subrange, or readable subrange(s)
1632 that is neither at the beginning, or end, nothing is returned.
1633
1634 The purpose of this function is to handle a read across a boundary
1635 of accessible memory in a case when memory map is not available.
1636 The above restrictions are fine for this case, but will give
1637 incorrect results if the memory is 'patchy'. However, supporting
1638 'patchy' memory would require trying to read every single byte,
1639 and it seems unacceptable solution. Explicit memory map is
1640 recommended for this case -- and target_read_memory_robust will
1641 take care of reading multiple ranges then. */
8dedea02
VP
1642
1643static void
3e43a32a
MS
1644read_whatever_is_readable (struct target_ops *ops,
1645 ULONGEST begin, ULONGEST end,
8dedea02 1646 VEC(memory_read_result_s) **result)
d5086790 1647{
f1a507a1 1648 gdb_byte *buf = xmalloc (end - begin);
8dedea02
VP
1649 ULONGEST current_begin = begin;
1650 ULONGEST current_end = end;
1651 int forward;
1652 memory_read_result_s r;
9b409511 1653 ULONGEST xfered_len;
8dedea02
VP
1654
1655 /* If we previously failed to read 1 byte, nothing can be done here. */
1656 if (end - begin <= 1)
13b3fd9b
MS
1657 {
1658 xfree (buf);
1659 return;
1660 }
8dedea02
VP
1661
1662 /* Check that either first or the last byte is readable, and give up
c378eb4e 1663 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1664 at the boundary of accessible region. */
1665 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1666 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1667 {
1668 forward = 1;
1669 ++current_begin;
1670 }
1671 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1672 buf + (end-begin) - 1, end - 1, 1,
1673 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1674 {
1675 forward = 0;
1676 --current_end;
1677 }
1678 else
1679 {
13b3fd9b 1680 xfree (buf);
8dedea02
VP
1681 return;
1682 }
1683
1684 /* Loop invariant is that the [current_begin, current_end) was previously
1685 found to be not readable as a whole.
1686
1687 Note loop condition -- if the range has 1 byte, we can't divide the range
1688 so there's no point trying further. */
1689 while (current_end - current_begin > 1)
1690 {
1691 ULONGEST first_half_begin, first_half_end;
1692 ULONGEST second_half_begin, second_half_end;
1693 LONGEST xfer;
8dedea02 1694 ULONGEST middle = current_begin + (current_end - current_begin)/2;
f1a507a1 1695
8dedea02
VP
1696 if (forward)
1697 {
1698 first_half_begin = current_begin;
1699 first_half_end = middle;
1700 second_half_begin = middle;
1701 second_half_end = current_end;
1702 }
1703 else
1704 {
1705 first_half_begin = middle;
1706 first_half_end = current_end;
1707 second_half_begin = current_begin;
1708 second_half_end = middle;
1709 }
1710
1711 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1712 buf + (first_half_begin - begin),
1713 first_half_begin,
1714 first_half_end - first_half_begin);
1715
1716 if (xfer == first_half_end - first_half_begin)
1717 {
c378eb4e 1718 /* This half reads up fine. So, the error must be in the
3e43a32a 1719 other half. */
8dedea02
VP
1720 current_begin = second_half_begin;
1721 current_end = second_half_end;
1722 }
1723 else
1724 {
c378eb4e
MS
1725 /* This half is not readable. Because we've tried one byte, we
1726 know some part of this half if actually redable. Go to the next
8dedea02
VP
1727 iteration to divide again and try to read.
1728
1729 We don't handle the other half, because this function only tries
1730 to read a single readable subrange. */
1731 current_begin = first_half_begin;
1732 current_end = first_half_end;
1733 }
1734 }
1735
1736 if (forward)
1737 {
1738 /* The [begin, current_begin) range has been read. */
1739 r.begin = begin;
1740 r.end = current_begin;
1741 r.data = buf;
1742 }
1743 else
1744 {
1745 /* The [current_end, end) range has been read. */
1746 LONGEST rlen = end - current_end;
f1a507a1 1747
8dedea02
VP
1748 r.data = xmalloc (rlen);
1749 memcpy (r.data, buf + current_end - begin, rlen);
1750 r.begin = current_end;
1751 r.end = end;
1752 xfree (buf);
1753 }
1754 VEC_safe_push(memory_read_result_s, (*result), &r);
1755}
1756
1757void
1758free_memory_read_result_vector (void *x)
1759{
1760 VEC(memory_read_result_s) *v = x;
1761 memory_read_result_s *current;
1762 int ix;
1763
1764 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1765 {
1766 xfree (current->data);
1767 }
1768 VEC_free (memory_read_result_s, v);
1769}
1770
1771VEC(memory_read_result_s) *
1772read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1773{
1774 VEC(memory_read_result_s) *result = 0;
1775
1776 LONGEST xfered = 0;
d5086790
VP
1777 while (xfered < len)
1778 {
8dedea02
VP
1779 struct mem_region *region = lookup_mem_region (offset + xfered);
1780 LONGEST rlen;
5d502164 1781
8dedea02
VP
1782 /* If there is no explicit region, a fake one should be created. */
1783 gdb_assert (region);
1784
1785 if (region->hi == 0)
1786 rlen = len - xfered;
1787 else
1788 rlen = region->hi - offset;
1789
1790 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1791 {
c378eb4e 1792 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1793 if the region is explicitly marked inaccessible, or
1794 'inaccessible-by-default' is in effect. */
1795 xfered += rlen;
1796 }
1797 else
1798 {
1799 LONGEST to_read = min (len - xfered, rlen);
1800 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1801
1802 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1803 (gdb_byte *) buffer,
1804 offset + xfered, to_read);
1805 /* Call an observer, notifying them of the xfer progress? */
d5086790 1806 if (xfer <= 0)
d5086790 1807 {
c378eb4e 1808 /* Got an error reading full chunk. See if maybe we can read
8dedea02
VP
1809 some subrange. */
1810 xfree (buffer);
3e43a32a
MS
1811 read_whatever_is_readable (ops, offset + xfered,
1812 offset + xfered + to_read, &result);
8dedea02 1813 xfered += to_read;
d5086790 1814 }
8dedea02
VP
1815 else
1816 {
1817 struct memory_read_result r;
1818 r.data = buffer;
1819 r.begin = offset + xfered;
1820 r.end = r.begin + xfer;
1821 VEC_safe_push (memory_read_result_s, result, &r);
1822 xfered += xfer;
1823 }
1824 QUIT;
d5086790 1825 }
d5086790 1826 }
8dedea02 1827 return result;
d5086790
VP
1828}
1829
8dedea02 1830
cf7a04e8
DJ
1831/* An alternative to target_write with progress callbacks. */
1832
1e3ff5ad 1833LONGEST
cf7a04e8
DJ
1834target_write_with_progress (struct target_ops *ops,
1835 enum target_object object,
1836 const char *annex, const gdb_byte *buf,
1837 ULONGEST offset, LONGEST len,
1838 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad
AC
1839{
1840 LONGEST xfered = 0;
a76d924d
DJ
1841
1842 /* Give the progress callback a chance to set up. */
1843 if (progress)
1844 (*progress) (0, baton);
1845
1e3ff5ad
AC
1846 while (xfered < len)
1847 {
9b409511
YQ
1848 ULONGEST xfered_len;
1849 enum target_xfer_status status;
1850
1851 status = target_write_partial (ops, object, annex,
1852 (gdb_byte *) buf + xfered,
1853 offset + xfered, len - xfered,
1854 &xfered_len);
cf7a04e8 1855
5c328c05
YQ
1856 if (status != TARGET_XFER_OK)
1857 return status == TARGET_XFER_EOF ? xfered : -1;
cf7a04e8
DJ
1858
1859 if (progress)
9b409511 1860 (*progress) (xfered_len, baton);
cf7a04e8 1861
9b409511 1862 xfered += xfered_len;
1e3ff5ad
AC
1863 QUIT;
1864 }
1865 return len;
1866}
1867
7f79c47e
DE
1868/* For docs on target_write see target.h. */
1869
cf7a04e8
DJ
1870LONGEST
1871target_write (struct target_ops *ops,
1872 enum target_object object,
1873 const char *annex, const gdb_byte *buf,
1874 ULONGEST offset, LONGEST len)
1875{
1876 return target_write_with_progress (ops, object, annex, buf, offset, len,
1877 NULL, NULL);
1878}
1879
159f81f3
DJ
1880/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1881 the size of the transferred data. PADDING additional bytes are
1882 available in *BUF_P. This is a helper function for
1883 target_read_alloc; see the declaration of that function for more
1884 information. */
13547ab6 1885
159f81f3
DJ
1886static LONGEST
1887target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1888 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1889{
1890 size_t buf_alloc, buf_pos;
1891 gdb_byte *buf;
13547ab6
DJ
1892
1893 /* This function does not have a length parameter; it reads the
1894 entire OBJECT). Also, it doesn't support objects fetched partly
1895 from one target and partly from another (in a different stratum,
1896 e.g. a core file and an executable). Both reasons make it
1897 unsuitable for reading memory. */
1898 gdb_assert (object != TARGET_OBJECT_MEMORY);
1899
1900 /* Start by reading up to 4K at a time. The target will throttle
1901 this number down if necessary. */
1902 buf_alloc = 4096;
1903 buf = xmalloc (buf_alloc);
1904 buf_pos = 0;
1905 while (1)
1906 {
9b409511
YQ
1907 ULONGEST xfered_len;
1908 enum target_xfer_status status;
1909
1910 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1911 buf_pos, buf_alloc - buf_pos - padding,
1912 &xfered_len);
1913
1914 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1915 {
1916 /* Read all there was. */
1917 if (buf_pos == 0)
1918 xfree (buf);
1919 else
1920 *buf_p = buf;
1921 return buf_pos;
1922 }
9b409511
YQ
1923 else if (status != TARGET_XFER_OK)
1924 {
1925 /* An error occurred. */
1926 xfree (buf);
1927 return TARGET_XFER_E_IO;
1928 }
13547ab6 1929
9b409511 1930 buf_pos += xfered_len;
13547ab6
DJ
1931
1932 /* If the buffer is filling up, expand it. */
1933 if (buf_alloc < buf_pos * 2)
1934 {
1935 buf_alloc *= 2;
1936 buf = xrealloc (buf, buf_alloc);
1937 }
1938
1939 QUIT;
1940 }
1941}
1942
159f81f3
DJ
1943/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1944 the size of the transferred data. See the declaration in "target.h"
1945 function for more information about the return value. */
1946
1947LONGEST
1948target_read_alloc (struct target_ops *ops, enum target_object object,
1949 const char *annex, gdb_byte **buf_p)
1950{
1951 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1952}
1953
1954/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1955 returned as a string, allocated using xmalloc. If an error occurs
1956 or the transfer is unsupported, NULL is returned. Empty objects
1957 are returned as allocated but empty strings. A warning is issued
1958 if the result contains any embedded NUL bytes. */
1959
1960char *
1961target_read_stralloc (struct target_ops *ops, enum target_object object,
1962 const char *annex)
1963{
39086a0e
PA
1964 gdb_byte *buffer;
1965 char *bufstr;
7313baad 1966 LONGEST i, transferred;
159f81f3 1967
39086a0e
PA
1968 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1969 bufstr = (char *) buffer;
159f81f3
DJ
1970
1971 if (transferred < 0)
1972 return NULL;
1973
1974 if (transferred == 0)
1975 return xstrdup ("");
1976
39086a0e 1977 bufstr[transferred] = 0;
7313baad
UW
1978
1979 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
1980 for (i = strlen (bufstr); i < transferred; i++)
1981 if (bufstr[i] != 0)
7313baad
UW
1982 {
1983 warning (_("target object %d, annex %s, "
1984 "contained unexpected null characters"),
1985 (int) object, annex ? annex : "(none)");
1986 break;
1987 }
159f81f3 1988
39086a0e 1989 return bufstr;
159f81f3
DJ
1990}
1991
b6591e8b
AC
1992/* Memory transfer methods. */
1993
1994void
1b0ba102 1995get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
1996 LONGEST len)
1997{
07b82ea5
PA
1998 /* This method is used to read from an alternate, non-current
1999 target. This read must bypass the overlay support (as symbols
2000 don't match this target), and GDB's internal cache (wrong cache
2001 for this target). */
2002 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 2003 != len)
578d3588 2004 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
2005}
2006
2007ULONGEST
5d502164
MS
2008get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2009 int len, enum bfd_endian byte_order)
b6591e8b 2010{
f6519ebc 2011 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
2012
2013 gdb_assert (len <= sizeof (buf));
2014 get_target_memory (ops, addr, buf, len);
e17a4113 2015 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
2016}
2017
3db08215
MM
2018/* See target.h. */
2019
d914c394
SS
2020int
2021target_insert_breakpoint (struct gdbarch *gdbarch,
2022 struct bp_target_info *bp_tgt)
2023{
2024 if (!may_insert_breakpoints)
2025 {
2026 warning (_("May not insert breakpoints"));
2027 return 1;
2028 }
2029
6b84065d
TT
2030 return current_target.to_insert_breakpoint (&current_target,
2031 gdbarch, bp_tgt);
d914c394
SS
2032}
2033
3db08215
MM
2034/* See target.h. */
2035
d914c394 2036int
6b84065d
TT
2037target_remove_breakpoint (struct gdbarch *gdbarch,
2038 struct bp_target_info *bp_tgt)
d914c394
SS
2039{
2040 /* This is kind of a weird case to handle, but the permission might
2041 have been changed after breakpoints were inserted - in which case
2042 we should just take the user literally and assume that any
2043 breakpoints should be left in place. */
2044 if (!may_insert_breakpoints)
2045 {
2046 warning (_("May not remove breakpoints"));
2047 return 1;
2048 }
2049
6b84065d
TT
2050 return current_target.to_remove_breakpoint (&current_target,
2051 gdbarch, bp_tgt);
d914c394
SS
2052}
2053
c906108c 2054static void
fba45db2 2055target_info (char *args, int from_tty)
c906108c
SS
2056{
2057 struct target_ops *t;
c906108c 2058 int has_all_mem = 0;
c5aa993b 2059
c906108c 2060 if (symfile_objfile != NULL)
4262abfb
JK
2061 printf_unfiltered (_("Symbols from \"%s\".\n"),
2062 objfile_name (symfile_objfile));
c906108c 2063
258b763a 2064 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 2065 {
c35b1492 2066 if (!(*t->to_has_memory) (t))
c906108c
SS
2067 continue;
2068
c5aa993b 2069 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
2070 continue;
2071 if (has_all_mem)
3e43a32a
MS
2072 printf_unfiltered (_("\tWhile running this, "
2073 "GDB does not access memory from...\n"));
c5aa993b
JM
2074 printf_unfiltered ("%s:\n", t->to_longname);
2075 (t->to_files_info) (t);
c35b1492 2076 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
2077 }
2078}
2079
fd79ecee
DJ
2080/* This function is called before any new inferior is created, e.g.
2081 by running a program, attaching, or connecting to a target.
2082 It cleans up any state from previous invocations which might
2083 change between runs. This is a subset of what target_preopen
2084 resets (things which might change between targets). */
2085
2086void
2087target_pre_inferior (int from_tty)
2088{
c378eb4e 2089 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 2090 inferior might have survived and is entirely wrong for the new
c378eb4e 2091 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
2092 to reproduce:
2093
2094 bash$ ./foo&
2095 [1] 4711
2096 bash$ ./foo&
2097 [1] 4712
2098 bash$ gdb ./foo
2099 [...]
2100 (gdb) attach 4711
2101 (gdb) detach
2102 (gdb) attach 4712
2103 Cannot access memory at address 0xdeadbeef
2104 */
b9db4ced 2105
50c71eaf
PA
2106 /* In some OSs, the shared library list is the same/global/shared
2107 across inferiors. If code is shared between processes, so are
2108 memory regions and features. */
f5656ead 2109 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
2110 {
2111 no_shared_libraries (NULL, from_tty);
2112
2113 invalidate_target_mem_regions ();
424163ea 2114
50c71eaf
PA
2115 target_clear_description ();
2116 }
8ffcbaaf
YQ
2117
2118 agent_capability_invalidate ();
fd79ecee
DJ
2119}
2120
b8fa0bfa
PA
2121/* Callback for iterate_over_inferiors. Gets rid of the given
2122 inferior. */
2123
2124static int
2125dispose_inferior (struct inferior *inf, void *args)
2126{
2127 struct thread_info *thread;
2128
2129 thread = any_thread_of_process (inf->pid);
2130 if (thread)
2131 {
2132 switch_to_thread (thread->ptid);
2133
2134 /* Core inferiors actually should be detached, not killed. */
2135 if (target_has_execution)
2136 target_kill ();
2137 else
2138 target_detach (NULL, 0);
2139 }
2140
2141 return 0;
2142}
2143
c906108c
SS
2144/* This is to be called by the open routine before it does
2145 anything. */
2146
2147void
fba45db2 2148target_preopen (int from_tty)
c906108c 2149{
c5aa993b 2150 dont_repeat ();
c906108c 2151
b8fa0bfa 2152 if (have_inferiors ())
c5aa993b 2153 {
adf40b2e 2154 if (!from_tty
b8fa0bfa
PA
2155 || !have_live_inferiors ()
2156 || query (_("A program is being debugged already. Kill it? ")))
2157 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2158 else
8a3fe4f8 2159 error (_("Program not killed."));
c906108c
SS
2160 }
2161
2162 /* Calling target_kill may remove the target from the stack. But if
2163 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2164 /* Leave the exec target, though. The user may be switching from a
2165 live process to a core of the same program. */
460014f5 2166 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2167
2168 target_pre_inferior (from_tty);
c906108c
SS
2169}
2170
2171/* Detach a target after doing deferred register stores. */
2172
2173void
52554a0e 2174target_detach (const char *args, int from_tty)
c906108c 2175{
136d6dae
VP
2176 struct target_ops* t;
2177
f5656ead 2178 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2179 /* Don't remove global breakpoints here. They're removed on
2180 disconnection from the target. */
2181 ;
2182 else
2183 /* If we're in breakpoints-always-inserted mode, have to remove
2184 them before detaching. */
dfd4cc63 2185 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2186
24291992
PA
2187 prepare_for_detach ();
2188
09da0d0a 2189 current_target.to_detach (&current_target, args, from_tty);
c906108c
SS
2190}
2191
6ad8ae5c 2192void
fee354ee 2193target_disconnect (const char *args, int from_tty)
6ad8ae5c 2194{
50c71eaf
PA
2195 /* If we're in breakpoints-always-inserted mode or if breakpoints
2196 are global across processes, we have to remove them before
2197 disconnecting. */
74960c60
VP
2198 remove_breakpoints ();
2199
86a0854a 2200 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2201}
2202
117de6a9 2203ptid_t
47608cb1 2204target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9 2205{
a7068b60 2206 return (current_target.to_wait) (&current_target, ptid, status, options);
117de6a9
PA
2207}
2208
2209char *
2210target_pid_to_str (ptid_t ptid)
2211{
770234d3 2212 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2213}
2214
4694da01
TT
2215char *
2216target_thread_name (struct thread_info *info)
2217{
825828fc 2218 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2219}
2220
e1ac3328 2221void
2ea28649 2222target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2223{
28439f5e
PA
2224 struct target_ops *t;
2225
4e5d721f 2226 target_dcache_invalidate ();
28439f5e 2227
6b84065d 2228 current_target.to_resume (&current_target, ptid, step, signal);
28439f5e 2229
6b84065d 2230 registers_changed_ptid (ptid);
251bde03
PA
2231 /* We only set the internal executing state here. The user/frontend
2232 running state is set at a higher level. */
6b84065d 2233 set_executing (ptid, 1);
6b84065d 2234 clear_inline_frame_state (ptid);
e1ac3328 2235}
2455069d
UW
2236
2237void
2238target_pass_signals (int numsigs, unsigned char *pass_signals)
2239{
035cad7f 2240 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2241}
2242
9b224c5e
PA
2243void
2244target_program_signals (int numsigs, unsigned char *program_signals)
2245{
7d4f8efa
TT
2246 (*current_target.to_program_signals) (&current_target,
2247 numsigs, program_signals);
9b224c5e
PA
2248}
2249
098dba18
TT
2250static int
2251default_follow_fork (struct target_ops *self, int follow_child,
2252 int detach_fork)
2253{
2254 /* Some target returned a fork event, but did not know how to follow it. */
2255 internal_error (__FILE__, __LINE__,
2256 _("could not find a target to follow fork"));
2257}
2258
ee057212
DJ
2259/* Look through the list of possible targets for a target that can
2260 follow forks. */
2261
2262int
07107ca6 2263target_follow_fork (int follow_child, int detach_fork)
ee057212 2264{
a7068b60
TT
2265 return current_target.to_follow_fork (&current_target,
2266 follow_child, detach_fork);
ee057212
DJ
2267}
2268
8d657035
TT
2269static void
2270default_mourn_inferior (struct target_ops *self)
2271{
2272 internal_error (__FILE__, __LINE__,
2273 _("could not find a target to follow mourn inferior"));
2274}
2275
136d6dae
VP
2276void
2277target_mourn_inferior (void)
2278{
8d657035 2279 current_target.to_mourn_inferior (&current_target);
136d6dae 2280
8d657035
TT
2281 /* We no longer need to keep handles on any of the object files.
2282 Make sure to release them to avoid unnecessarily locking any
2283 of them while we're not actually debugging. */
2284 bfd_cache_close_all ();
136d6dae
VP
2285}
2286
424163ea
DJ
2287/* Look for a target which can describe architectural features, starting
2288 from TARGET. If we find one, return its description. */
2289
2290const struct target_desc *
2291target_read_description (struct target_ops *target)
2292{
2117c711 2293 return target->to_read_description (target);
424163ea
DJ
2294}
2295
58a5184e 2296/* This implements a basic search of memory, reading target memory and
08388c79
DE
2297 performing the search here (as opposed to performing the search in on the
2298 target side with, for example, gdbserver). */
2299
2300int
2301simple_search_memory (struct target_ops *ops,
2302 CORE_ADDR start_addr, ULONGEST search_space_len,
2303 const gdb_byte *pattern, ULONGEST pattern_len,
2304 CORE_ADDR *found_addrp)
2305{
2306 /* NOTE: also defined in find.c testcase. */
2307#define SEARCH_CHUNK_SIZE 16000
2308 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2309 /* Buffer to hold memory contents for searching. */
2310 gdb_byte *search_buf;
2311 unsigned search_buf_size;
2312 struct cleanup *old_cleanups;
2313
2314 search_buf_size = chunk_size + pattern_len - 1;
2315
2316 /* No point in trying to allocate a buffer larger than the search space. */
2317 if (search_space_len < search_buf_size)
2318 search_buf_size = search_space_len;
2319
2320 search_buf = malloc (search_buf_size);
2321 if (search_buf == NULL)
5e1471f5 2322 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2323 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2324
2325 /* Prime the search buffer. */
2326
2327 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2328 search_buf, start_addr, search_buf_size) != search_buf_size)
2329 {
b3dc46ff
AB
2330 warning (_("Unable to access %s bytes of target "
2331 "memory at %s, halting search."),
2332 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2333 do_cleanups (old_cleanups);
2334 return -1;
2335 }
2336
2337 /* Perform the search.
2338
2339 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2340 When we've scanned N bytes we copy the trailing bytes to the start and
2341 read in another N bytes. */
2342
2343 while (search_space_len >= pattern_len)
2344 {
2345 gdb_byte *found_ptr;
2346 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2347
2348 found_ptr = memmem (search_buf, nr_search_bytes,
2349 pattern, pattern_len);
2350
2351 if (found_ptr != NULL)
2352 {
2353 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2354
08388c79
DE
2355 *found_addrp = found_addr;
2356 do_cleanups (old_cleanups);
2357 return 1;
2358 }
2359
2360 /* Not found in this chunk, skip to next chunk. */
2361
2362 /* Don't let search_space_len wrap here, it's unsigned. */
2363 if (search_space_len >= chunk_size)
2364 search_space_len -= chunk_size;
2365 else
2366 search_space_len = 0;
2367
2368 if (search_space_len >= pattern_len)
2369 {
2370 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2371 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2372 int nr_to_read;
2373
2374 /* Copy the trailing part of the previous iteration to the front
2375 of the buffer for the next iteration. */
2376 gdb_assert (keep_len == pattern_len - 1);
2377 memcpy (search_buf, search_buf + chunk_size, keep_len);
2378
2379 nr_to_read = min (search_space_len - keep_len, chunk_size);
2380
2381 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2382 search_buf + keep_len, read_addr,
2383 nr_to_read) != nr_to_read)
2384 {
b3dc46ff 2385 warning (_("Unable to access %s bytes of target "
9b20d036 2386 "memory at %s, halting search."),
b3dc46ff 2387 plongest (nr_to_read),
08388c79
DE
2388 hex_string (read_addr));
2389 do_cleanups (old_cleanups);
2390 return -1;
2391 }
2392
2393 start_addr += chunk_size;
2394 }
2395 }
2396
2397 /* Not found. */
2398
2399 do_cleanups (old_cleanups);
2400 return 0;
2401}
2402
58a5184e
TT
2403/* Default implementation of memory-searching. */
2404
2405static int
2406default_search_memory (struct target_ops *self,
2407 CORE_ADDR start_addr, ULONGEST search_space_len,
2408 const gdb_byte *pattern, ULONGEST pattern_len,
2409 CORE_ADDR *found_addrp)
2410{
2411 /* Start over from the top of the target stack. */
2412 return simple_search_memory (current_target.beneath,
2413 start_addr, search_space_len,
2414 pattern, pattern_len, found_addrp);
2415}
2416
08388c79
DE
2417/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2418 sequence of bytes in PATTERN with length PATTERN_LEN.
2419
2420 The result is 1 if found, 0 if not found, and -1 if there was an error
2421 requiring halting of the search (e.g. memory read error).
2422 If the pattern is found the address is recorded in FOUND_ADDRP. */
2423
2424int
2425target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2426 const gdb_byte *pattern, ULONGEST pattern_len,
2427 CORE_ADDR *found_addrp)
2428{
a7068b60
TT
2429 return current_target.to_search_memory (&current_target, start_addr,
2430 search_space_len,
2431 pattern, pattern_len, found_addrp);
08388c79
DE
2432}
2433
8edfe269
DJ
2434/* Look through the currently pushed targets. If none of them will
2435 be able to restart the currently running process, issue an error
2436 message. */
2437
2438void
2439target_require_runnable (void)
2440{
2441 struct target_ops *t;
2442
2443 for (t = target_stack; t != NULL; t = t->beneath)
2444 {
2445 /* If this target knows how to create a new program, then
2446 assume we will still be able to after killing the current
2447 one. Either killing and mourning will not pop T, or else
2448 find_default_run_target will find it again. */
2449 if (t->to_create_inferior != NULL)
2450 return;
2451
548740d6 2452 /* Do not worry about targets at certain strata that can not
8edfe269
DJ
2453 create inferiors. Assume they will be pushed again if
2454 necessary, and continue to the process_stratum. */
85e747d2 2455 if (t->to_stratum == thread_stratum
548740d6 2456 || t->to_stratum == record_stratum
85e747d2 2457 || t->to_stratum == arch_stratum)
8edfe269
DJ
2458 continue;
2459
3e43a32a
MS
2460 error (_("The \"%s\" target does not support \"run\". "
2461 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2462 t->to_shortname);
2463 }
2464
2465 /* This function is only called if the target is running. In that
2466 case there should have been a process_stratum target and it
c378eb4e 2467 should either know how to create inferiors, or not... */
9b20d036 2468 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2469}
2470
6a3cb8e8
PA
2471/* Whether GDB is allowed to fall back to the default run target for
2472 "run", "attach", etc. when no target is connected yet. */
2473static int auto_connect_native_target = 1;
2474
2475static void
2476show_auto_connect_native_target (struct ui_file *file, int from_tty,
2477 struct cmd_list_element *c, const char *value)
2478{
2479 fprintf_filtered (file,
2480 _("Whether GDB may automatically connect to the "
2481 "native target is %s.\n"),
2482 value);
2483}
2484
c906108c
SS
2485/* Look through the list of possible targets for a target that can
2486 execute a run or attach command without any other data. This is
2487 used to locate the default process stratum.
2488
5f667f2d
PA
2489 If DO_MESG is not NULL, the result is always valid (error() is
2490 called for errors); else, return NULL on error. */
c906108c
SS
2491
2492static struct target_ops *
fba45db2 2493find_default_run_target (char *do_mesg)
c906108c 2494{
c906108c 2495 struct target_ops *runable = NULL;
c906108c 2496
6a3cb8e8 2497 if (auto_connect_native_target)
c906108c 2498 {
89a1c21a 2499 struct target_ops *t;
6a3cb8e8 2500 int count = 0;
89a1c21a 2501 int i;
6a3cb8e8 2502
89a1c21a 2503 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
c906108c 2504 {
89a1c21a 2505 if (t->to_can_run != delegate_can_run && target_can_run (t))
6a3cb8e8 2506 {
89a1c21a 2507 runable = t;
6a3cb8e8
PA
2508 ++count;
2509 }
c906108c 2510 }
6a3cb8e8
PA
2511
2512 if (count != 1)
2513 runable = NULL;
c906108c
SS
2514 }
2515
6a3cb8e8 2516 if (runable == NULL)
5f667f2d
PA
2517 {
2518 if (do_mesg)
2519 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2520 else
2521 return NULL;
2522 }
c906108c
SS
2523
2524 return runable;
2525}
2526
b3ccfe11 2527/* See target.h. */
c906108c 2528
b3ccfe11
TT
2529struct target_ops *
2530find_attach_target (void)
c906108c
SS
2531{
2532 struct target_ops *t;
2533
b3ccfe11
TT
2534 /* If a target on the current stack can attach, use it. */
2535 for (t = current_target.beneath; t != NULL; t = t->beneath)
2536 {
2537 if (t->to_attach != NULL)
2538 break;
2539 }
c906108c 2540
b3ccfe11
TT
2541 /* Otherwise, use the default run target for attaching. */
2542 if (t == NULL)
2543 t = find_default_run_target ("attach");
b84876c2 2544
b3ccfe11 2545 return t;
b84876c2
PA
2546}
2547
b3ccfe11 2548/* See target.h. */
b84876c2 2549
b3ccfe11
TT
2550struct target_ops *
2551find_run_target (void)
9908b566
VP
2552{
2553 struct target_ops *t;
2554
b3ccfe11
TT
2555 /* If a target on the current stack can attach, use it. */
2556 for (t = current_target.beneath; t != NULL; t = t->beneath)
2557 {
2558 if (t->to_create_inferior != NULL)
2559 break;
2560 }
5d502164 2561
b3ccfe11
TT
2562 /* Otherwise, use the default run target. */
2563 if (t == NULL)
2564 t = find_default_run_target ("run");
9908b566 2565
b3ccfe11 2566 return t;
9908b566
VP
2567}
2568
145b16a9
UW
2569/* Implement the "info proc" command. */
2570
451b7c33 2571int
7bc112c1 2572target_info_proc (const char *args, enum info_proc_what what)
145b16a9
UW
2573{
2574 struct target_ops *t;
2575
2576 /* If we're already connected to something that can get us OS
2577 related data, use it. Otherwise, try using the native
2578 target. */
2579 if (current_target.to_stratum >= process_stratum)
2580 t = current_target.beneath;
2581 else
2582 t = find_default_run_target (NULL);
2583
2584 for (; t != NULL; t = t->beneath)
2585 {
2586 if (t->to_info_proc != NULL)
2587 {
2588 t->to_info_proc (t, args, what);
2589
2590 if (targetdebug)
2591 fprintf_unfiltered (gdb_stdlog,
2592 "target_info_proc (\"%s\", %d)\n", args, what);
2593
451b7c33 2594 return 1;
145b16a9
UW
2595 }
2596 }
2597
451b7c33 2598 return 0;
145b16a9
UW
2599}
2600
03583c20 2601static int
2bfc0540 2602find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2603{
2604 struct target_ops *t;
2605
2606 t = find_default_run_target (NULL);
2607 if (t && t->to_supports_disable_randomization)
2bfc0540 2608 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2609 return 0;
2610}
2611
2612int
2613target_supports_disable_randomization (void)
2614{
2615 struct target_ops *t;
2616
2617 for (t = &current_target; t != NULL; t = t->beneath)
2618 if (t->to_supports_disable_randomization)
2bfc0540 2619 return t->to_supports_disable_randomization (t);
03583c20
UW
2620
2621 return 0;
2622}
9908b566 2623
07e059b5
VP
2624char *
2625target_get_osdata (const char *type)
2626{
07e059b5
VP
2627 struct target_ops *t;
2628
739ef7fb
PA
2629 /* If we're already connected to something that can get us OS
2630 related data, use it. Otherwise, try using the native
2631 target. */
2632 if (current_target.to_stratum >= process_stratum)
6d097e65 2633 t = current_target.beneath;
739ef7fb
PA
2634 else
2635 t = find_default_run_target ("get OS data");
07e059b5
VP
2636
2637 if (!t)
2638 return NULL;
2639
6d097e65 2640 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2641}
2642
8eaff7cd
TT
2643static struct address_space *
2644default_thread_address_space (struct target_ops *self, ptid_t ptid)
6c95b8df
PA
2645{
2646 struct inferior *inf;
6c95b8df
PA
2647
2648 /* Fall-back to the "main" address space of the inferior. */
c9657e70 2649 inf = find_inferior_ptid (ptid);
6c95b8df
PA
2650
2651 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2652 internal_error (__FILE__, __LINE__,
9b20d036
MS
2653 _("Can't determine the current "
2654 "address space of thread %s\n"),
6c95b8df
PA
2655 target_pid_to_str (ptid));
2656
2657 return inf->aspace;
2658}
2659
8eaff7cd
TT
2660/* Determine the current address space of thread PTID. */
2661
2662struct address_space *
2663target_thread_address_space (ptid_t ptid)
2664{
2665 struct address_space *aspace;
2666
2667 aspace = current_target.to_thread_address_space (&current_target, ptid);
2668 gdb_assert (aspace != NULL);
2669
8eaff7cd
TT
2670 return aspace;
2671}
2672
7313baad
UW
2673
2674/* Target file operations. */
2675
2676static struct target_ops *
2677default_fileio_target (void)
2678{
2679 /* If we're already connected to something that can perform
2680 file I/O, use it. Otherwise, try using the native target. */
2681 if (current_target.to_stratum >= process_stratum)
2682 return current_target.beneath;
2683 else
2684 return find_default_run_target ("file I/O");
2685}
2686
2687/* Open FILENAME on the target, using FLAGS and MODE. Return a
2688 target file descriptor, or -1 if an error occurs (and set
2689 *TARGET_ERRNO). */
2690int
2691target_fileio_open (const char *filename, int flags, int mode,
2692 int *target_errno)
2693{
2694 struct target_ops *t;
2695
2696 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2697 {
2698 if (t->to_fileio_open != NULL)
2699 {
cd897586 2700 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
7313baad
UW
2701
2702 if (targetdebug)
2703 fprintf_unfiltered (gdb_stdlog,
2704 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2705 filename, flags, mode,
2706 fd, fd != -1 ? 0 : *target_errno);
2707 return fd;
2708 }
2709 }
2710
2711 *target_errno = FILEIO_ENOSYS;
2712 return -1;
2713}
2714
2715/* Write up to LEN bytes from WRITE_BUF to FD on the target.
2716 Return the number of bytes written, or -1 if an error occurs
2717 (and set *TARGET_ERRNO). */
2718int
2719target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2720 ULONGEST offset, int *target_errno)
2721{
2722 struct target_ops *t;
2723
2724 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2725 {
2726 if (t->to_fileio_pwrite != NULL)
2727 {
0d866f62 2728 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
7313baad
UW
2729 target_errno);
2730
2731 if (targetdebug)
2732 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2733 "target_fileio_pwrite (%d,...,%d,%s) "
7313baad 2734 "= %d (%d)\n",
a71b5a38 2735 fd, len, pulongest (offset),
7313baad
UW
2736 ret, ret != -1 ? 0 : *target_errno);
2737 return ret;
2738 }
2739 }
2740
2741 *target_errno = FILEIO_ENOSYS;
2742 return -1;
2743}
2744
2745/* Read up to LEN bytes FD on the target into READ_BUF.
2746 Return the number of bytes read, or -1 if an error occurs
2747 (and set *TARGET_ERRNO). */
2748int
2749target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2750 ULONGEST offset, int *target_errno)
2751{
2752 struct target_ops *t;
2753
2754 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2755 {
2756 if (t->to_fileio_pread != NULL)
2757 {
a3be983c 2758 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
7313baad
UW
2759 target_errno);
2760
2761 if (targetdebug)
2762 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2763 "target_fileio_pread (%d,...,%d,%s) "
7313baad 2764 "= %d (%d)\n",
a71b5a38 2765 fd, len, pulongest (offset),
7313baad
UW
2766 ret, ret != -1 ? 0 : *target_errno);
2767 return ret;
2768 }
2769 }
2770
2771 *target_errno = FILEIO_ENOSYS;
2772 return -1;
2773}
2774
2775/* Close FD on the target. Return 0, or -1 if an error occurs
2776 (and set *TARGET_ERRNO). */
2777int
2778target_fileio_close (int fd, int *target_errno)
2779{
2780 struct target_ops *t;
2781
2782 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2783 {
2784 if (t->to_fileio_close != NULL)
2785 {
df39ea25 2786 int ret = t->to_fileio_close (t, fd, target_errno);
7313baad
UW
2787
2788 if (targetdebug)
2789 fprintf_unfiltered (gdb_stdlog,
2790 "target_fileio_close (%d) = %d (%d)\n",
2791 fd, ret, ret != -1 ? 0 : *target_errno);
2792 return ret;
2793 }
2794 }
2795
2796 *target_errno = FILEIO_ENOSYS;
2797 return -1;
2798}
2799
2800/* Unlink FILENAME on the target. Return 0, or -1 if an error
2801 occurs (and set *TARGET_ERRNO). */
2802int
2803target_fileio_unlink (const char *filename, int *target_errno)
2804{
2805 struct target_ops *t;
2806
2807 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2808 {
2809 if (t->to_fileio_unlink != NULL)
2810 {
dbbca37d 2811 int ret = t->to_fileio_unlink (t, filename, target_errno);
7313baad
UW
2812
2813 if (targetdebug)
2814 fprintf_unfiltered (gdb_stdlog,
2815 "target_fileio_unlink (%s) = %d (%d)\n",
2816 filename, ret, ret != -1 ? 0 : *target_errno);
2817 return ret;
2818 }
2819 }
2820
2821 *target_errno = FILEIO_ENOSYS;
2822 return -1;
2823}
2824
b9e7b9c3
UW
2825/* Read value of symbolic link FILENAME on the target. Return a
2826 null-terminated string allocated via xmalloc, or NULL if an error
2827 occurs (and set *TARGET_ERRNO). */
2828char *
2829target_fileio_readlink (const char *filename, int *target_errno)
2830{
2831 struct target_ops *t;
2832
2833 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2834 {
2835 if (t->to_fileio_readlink != NULL)
2836 {
fab5aa7c 2837 char *ret = t->to_fileio_readlink (t, filename, target_errno);
b9e7b9c3
UW
2838
2839 if (targetdebug)
2840 fprintf_unfiltered (gdb_stdlog,
2841 "target_fileio_readlink (%s) = %s (%d)\n",
2842 filename, ret? ret : "(nil)",
2843 ret? 0 : *target_errno);
2844 return ret;
2845 }
2846 }
2847
2848 *target_errno = FILEIO_ENOSYS;
2849 return NULL;
2850}
2851
7313baad
UW
2852static void
2853target_fileio_close_cleanup (void *opaque)
2854{
2855 int fd = *(int *) opaque;
2856 int target_errno;
2857
2858 target_fileio_close (fd, &target_errno);
2859}
2860
2861/* Read target file FILENAME. Store the result in *BUF_P and
2862 return the size of the transferred data. PADDING additional bytes are
2863 available in *BUF_P. This is a helper function for
2864 target_fileio_read_alloc; see the declaration of that function for more
2865 information. */
2866
2867static LONGEST
2868target_fileio_read_alloc_1 (const char *filename,
2869 gdb_byte **buf_p, int padding)
2870{
2871 struct cleanup *close_cleanup;
2872 size_t buf_alloc, buf_pos;
2873 gdb_byte *buf;
2874 LONGEST n;
2875 int fd;
2876 int target_errno;
2877
2878 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2879 if (fd == -1)
2880 return -1;
2881
2882 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2883
2884 /* Start by reading up to 4K at a time. The target will throttle
2885 this number down if necessary. */
2886 buf_alloc = 4096;
2887 buf = xmalloc (buf_alloc);
2888 buf_pos = 0;
2889 while (1)
2890 {
2891 n = target_fileio_pread (fd, &buf[buf_pos],
2892 buf_alloc - buf_pos - padding, buf_pos,
2893 &target_errno);
2894 if (n < 0)
2895 {
2896 /* An error occurred. */
2897 do_cleanups (close_cleanup);
2898 xfree (buf);
2899 return -1;
2900 }
2901 else if (n == 0)
2902 {
2903 /* Read all there was. */
2904 do_cleanups (close_cleanup);
2905 if (buf_pos == 0)
2906 xfree (buf);
2907 else
2908 *buf_p = buf;
2909 return buf_pos;
2910 }
2911
2912 buf_pos += n;
2913
2914 /* If the buffer is filling up, expand it. */
2915 if (buf_alloc < buf_pos * 2)
2916 {
2917 buf_alloc *= 2;
2918 buf = xrealloc (buf, buf_alloc);
2919 }
2920
2921 QUIT;
2922 }
2923}
2924
2925/* Read target file FILENAME. Store the result in *BUF_P and return
2926 the size of the transferred data. See the declaration in "target.h"
2927 function for more information about the return value. */
2928
2929LONGEST
2930target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2931{
2932 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2933}
2934
2935/* Read target file FILENAME. The result is NUL-terminated and
2936 returned as a string, allocated using xmalloc. If an error occurs
2937 or the transfer is unsupported, NULL is returned. Empty objects
2938 are returned as allocated but empty strings. A warning is issued
2939 if the result contains any embedded NUL bytes. */
2940
2941char *
2942target_fileio_read_stralloc (const char *filename)
2943{
39086a0e
PA
2944 gdb_byte *buffer;
2945 char *bufstr;
7313baad
UW
2946 LONGEST i, transferred;
2947
39086a0e
PA
2948 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2949 bufstr = (char *) buffer;
7313baad
UW
2950
2951 if (transferred < 0)
2952 return NULL;
2953
2954 if (transferred == 0)
2955 return xstrdup ("");
2956
39086a0e 2957 bufstr[transferred] = 0;
7313baad
UW
2958
2959 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2960 for (i = strlen (bufstr); i < transferred; i++)
2961 if (bufstr[i] != 0)
7313baad
UW
2962 {
2963 warning (_("target file %s "
2964 "contained unexpected null characters"),
2965 filename);
2966 break;
2967 }
2968
39086a0e 2969 return bufstr;
7313baad
UW
2970}
2971
2972
e0d24f8d 2973static int
31568a15
TT
2974default_region_ok_for_hw_watchpoint (struct target_ops *self,
2975 CORE_ADDR addr, int len)
e0d24f8d 2976{
f5656ead 2977 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
2978}
2979
5009afc5
AS
2980static int
2981default_watchpoint_addr_within_range (struct target_ops *target,
2982 CORE_ADDR addr,
2983 CORE_ADDR start, int length)
2984{
2985 return addr >= start && addr < start + length;
2986}
2987
c2250ad1
UW
2988static struct gdbarch *
2989default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2990{
f5656ead 2991 return target_gdbarch ();
c2250ad1
UW
2992}
2993
c906108c 2994static int
555bbdeb
TT
2995return_zero (struct target_ops *ignore)
2996{
2997 return 0;
2998}
2999
3000static int
3001return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
3002{
3003 return 0;
3004}
3005
ed9a39eb
JM
3006/*
3007 * Find the next target down the stack from the specified target.
3008 */
3009
3010struct target_ops *
fba45db2 3011find_target_beneath (struct target_ops *t)
ed9a39eb 3012{
258b763a 3013 return t->beneath;
ed9a39eb
JM
3014}
3015
8b06beed
TT
3016/* See target.h. */
3017
3018struct target_ops *
3019find_target_at (enum strata stratum)
3020{
3021 struct target_ops *t;
3022
3023 for (t = current_target.beneath; t != NULL; t = t->beneath)
3024 if (t->to_stratum == stratum)
3025 return t;
3026
3027 return NULL;
3028}
3029
c906108c
SS
3030\f
3031/* The inferior process has died. Long live the inferior! */
3032
3033void
fba45db2 3034generic_mourn_inferior (void)
c906108c 3035{
7f9f62ba 3036 ptid_t ptid;
c906108c 3037
7f9f62ba 3038 ptid = inferior_ptid;
39f77062 3039 inferior_ptid = null_ptid;
7f9f62ba 3040
f59f708a
PA
3041 /* Mark breakpoints uninserted in case something tries to delete a
3042 breakpoint while we delete the inferior's threads (which would
3043 fail, since the inferior is long gone). */
3044 mark_breakpoints_out ();
3045
7f9f62ba
PA
3046 if (!ptid_equal (ptid, null_ptid))
3047 {
3048 int pid = ptid_get_pid (ptid);
6c95b8df 3049 exit_inferior (pid);
7f9f62ba
PA
3050 }
3051
f59f708a
PA
3052 /* Note this wipes step-resume breakpoints, so needs to be done
3053 after exit_inferior, which ends up referencing the step-resume
3054 breakpoints through clear_thread_inferior_resources. */
c906108c 3055 breakpoint_init_inferior (inf_exited);
f59f708a 3056
c906108c
SS
3057 registers_changed ();
3058
c906108c
SS
3059 reopen_exec_file ();
3060 reinit_frame_cache ();
3061
9a4105ab
AC
3062 if (deprecated_detach_hook)
3063 deprecated_detach_hook ();
c906108c
SS
3064}
3065\f
fd0a2a6f
MK
3066/* Convert a normal process ID to a string. Returns the string in a
3067 static buffer. */
c906108c
SS
3068
3069char *
39f77062 3070normal_pid_to_str (ptid_t ptid)
c906108c 3071{
fd0a2a6f 3072 static char buf[32];
c906108c 3073
5fff8fc0 3074 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
3075 return buf;
3076}
3077
2c0b251b 3078static char *
770234d3 3079default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
3080{
3081 return normal_pid_to_str (ptid);
3082}
3083
9b4eba8e
HZ
3084/* Error-catcher for target_find_memory_regions. */
3085static int
2e73927c
TT
3086dummy_find_memory_regions (struct target_ops *self,
3087 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 3088{
9b4eba8e 3089 error (_("Command not implemented for this target."));
be4d1333
MS
3090 return 0;
3091}
3092
9b4eba8e
HZ
3093/* Error-catcher for target_make_corefile_notes. */
3094static char *
fc6691b2
TT
3095dummy_make_corefile_notes (struct target_ops *self,
3096 bfd *ignore1, int *ignore2)
be4d1333 3097{
9b4eba8e 3098 error (_("Command not implemented for this target."));
be4d1333
MS
3099 return NULL;
3100}
3101
c906108c
SS
3102/* Set up the handful of non-empty slots needed by the dummy target
3103 vector. */
3104
3105static void
fba45db2 3106init_dummy_target (void)
c906108c
SS
3107{
3108 dummy_target.to_shortname = "None";
3109 dummy_target.to_longname = "None";
3110 dummy_target.to_doc = "";
03583c20
UW
3111 dummy_target.to_supports_disable_randomization
3112 = find_default_supports_disable_randomization;
c906108c 3113 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
3114 dummy_target.to_has_all_memory = return_zero;
3115 dummy_target.to_has_memory = return_zero;
3116 dummy_target.to_has_stack = return_zero;
3117 dummy_target.to_has_registers = return_zero;
3118 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 3119 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
3120
3121 install_dummy_methods (&dummy_target);
c906108c 3122}
c906108c 3123\f
c906108c 3124
f1c07ab0 3125void
460014f5 3126target_close (struct target_ops *targ)
f1c07ab0 3127{
7fdc1521
TT
3128 gdb_assert (!target_is_pushed (targ));
3129
f1c07ab0 3130 if (targ->to_xclose != NULL)
460014f5 3131 targ->to_xclose (targ);
f1c07ab0 3132 else if (targ->to_close != NULL)
de90e03d 3133 targ->to_close (targ);
947b8855
PA
3134
3135 if (targetdebug)
460014f5 3136 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
3137}
3138
28439f5e
PA
3139int
3140target_thread_alive (ptid_t ptid)
c906108c 3141{
a7068b60 3142 return current_target.to_thread_alive (&current_target, ptid);
28439f5e
PA
3143}
3144
3145void
e8032dde 3146target_update_thread_list (void)
28439f5e 3147{
e8032dde 3148 current_target.to_update_thread_list (&current_target);
c906108c
SS
3149}
3150
d914c394
SS
3151void
3152target_stop (ptid_t ptid)
3153{
3154 if (!may_stop)
3155 {
3156 warning (_("May not interrupt or stop the target, ignoring attempt"));
3157 return;
3158 }
3159
1eab8a48 3160 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3161}
3162
f8c1d06b
GB
3163/* See target/target.h. */
3164
3165void
03f4463b 3166target_stop_and_wait (ptid_t ptid)
f8c1d06b
GB
3167{
3168 struct target_waitstatus status;
3169 int was_non_stop = non_stop;
3170
3171 non_stop = 1;
3172 target_stop (ptid);
3173
3174 memset (&status, 0, sizeof (status));
3175 target_wait (ptid, &status, 0);
3176
3177 non_stop = was_non_stop;
3178}
3179
3180/* See target/target.h. */
3181
3182void
03f4463b 3183target_continue_no_signal (ptid_t ptid)
f8c1d06b
GB
3184{
3185 target_resume (ptid, 0, GDB_SIGNAL_0);
3186}
3187
09826ec5
PA
3188/* Concatenate ELEM to LIST, a comma separate list, and return the
3189 result. The LIST incoming argument is released. */
3190
3191static char *
3192str_comma_list_concat_elem (char *list, const char *elem)
3193{
3194 if (list == NULL)
3195 return xstrdup (elem);
3196 else
3197 return reconcat (list, list, ", ", elem, (char *) NULL);
3198}
3199
3200/* Helper for target_options_to_string. If OPT is present in
3201 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3202 Returns the new resulting string. OPT is removed from
3203 TARGET_OPTIONS. */
3204
3205static char *
3206do_option (int *target_options, char *ret,
3207 int opt, char *opt_str)
3208{
3209 if ((*target_options & opt) != 0)
3210 {
3211 ret = str_comma_list_concat_elem (ret, opt_str);
3212 *target_options &= ~opt;
3213 }
3214
3215 return ret;
3216}
3217
3218char *
3219target_options_to_string (int target_options)
3220{
3221 char *ret = NULL;
3222
3223#define DO_TARG_OPTION(OPT) \
3224 ret = do_option (&target_options, ret, OPT, #OPT)
3225
3226 DO_TARG_OPTION (TARGET_WNOHANG);
3227
3228 if (target_options != 0)
3229 ret = str_comma_list_concat_elem (ret, "unknown???");
3230
3231 if (ret == NULL)
3232 ret = xstrdup ("");
3233 return ret;
3234}
3235
bf0c5130 3236static void
56be3814
UW
3237debug_print_register (const char * func,
3238 struct regcache *regcache, int regno)
bf0c5130 3239{
f8d29908 3240 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3241
bf0c5130 3242 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3243 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3244 && gdbarch_register_name (gdbarch, regno) != NULL
3245 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3246 fprintf_unfiltered (gdb_stdlog, "(%s)",
3247 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3248 else
3249 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3250 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3251 {
e17a4113 3252 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3253 int i, size = register_size (gdbarch, regno);
e362b510 3254 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3255
0ff58721 3256 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3257 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3258 for (i = 0; i < size; i++)
bf0c5130
AC
3259 {
3260 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3261 }
81c4a259 3262 if (size <= sizeof (LONGEST))
bf0c5130 3263 {
e17a4113 3264 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3265
0b1553bc
UW
3266 fprintf_unfiltered (gdb_stdlog, " %s %s",
3267 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3268 }
3269 }
3270 fprintf_unfiltered (gdb_stdlog, "\n");
3271}
3272
28439f5e
PA
3273void
3274target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3275{
ad5989bd
TT
3276 current_target.to_fetch_registers (&current_target, regcache, regno);
3277 if (targetdebug)
3278 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3279}
3280
28439f5e
PA
3281void
3282target_store_registers (struct regcache *regcache, int regno)
c906108c 3283{
28439f5e 3284 struct target_ops *t;
5d502164 3285
d914c394
SS
3286 if (!may_write_registers)
3287 error (_("Writing to registers is not allowed (regno %d)"), regno);
3288
6b84065d
TT
3289 current_target.to_store_registers (&current_target, regcache, regno);
3290 if (targetdebug)
28439f5e 3291 {
6b84065d 3292 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3293 }
c906108c
SS
3294}
3295
dc146f7c
VP
3296int
3297target_core_of_thread (ptid_t ptid)
3298{
a7068b60 3299 return current_target.to_core_of_thread (&current_target, ptid);
dc146f7c
VP
3300}
3301
936d2992
PA
3302int
3303simple_verify_memory (struct target_ops *ops,
3304 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3305{
3306 LONGEST total_xfered = 0;
3307
3308 while (total_xfered < size)
3309 {
3310 ULONGEST xfered_len;
3311 enum target_xfer_status status;
3312 gdb_byte buf[1024];
3313 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3314
3315 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3316 buf, NULL, lma + total_xfered, howmuch,
3317 &xfered_len);
3318 if (status == TARGET_XFER_OK
3319 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3320 {
3321 total_xfered += xfered_len;
3322 QUIT;
3323 }
3324 else
3325 return 0;
3326 }
3327 return 1;
3328}
3329
3330/* Default implementation of memory verification. */
3331
3332static int
3333default_verify_memory (struct target_ops *self,
3334 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3335{
3336 /* Start over from the top of the target stack. */
3337 return simple_verify_memory (current_target.beneath,
3338 data, memaddr, size);
3339}
3340
4a5e7a5b
PA
3341int
3342target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3343{
a7068b60
TT
3344 return current_target.to_verify_memory (&current_target,
3345 data, memaddr, size);
4a5e7a5b
PA
3346}
3347
9c06b0b4
TJB
3348/* The documentation for this function is in its prototype declaration in
3349 target.h. */
3350
3351int
3352target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3353{
a7068b60
TT
3354 return current_target.to_insert_mask_watchpoint (&current_target,
3355 addr, mask, rw);
9c06b0b4
TJB
3356}
3357
3358/* The documentation for this function is in its prototype declaration in
3359 target.h. */
3360
3361int
3362target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3363{
a7068b60
TT
3364 return current_target.to_remove_mask_watchpoint (&current_target,
3365 addr, mask, rw);
9c06b0b4
TJB
3366}
3367
3368/* The documentation for this function is in its prototype declaration
3369 in target.h. */
3370
3371int
3372target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3373{
6c7e5e5c
TT
3374 return current_target.to_masked_watch_num_registers (&current_target,
3375 addr, mask);
9c06b0b4
TJB
3376}
3377
f1310107
TJB
3378/* The documentation for this function is in its prototype declaration
3379 in target.h. */
3380
3381int
3382target_ranged_break_num_registers (void)
3383{
a134316b 3384 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3385}
3386
02d27625
MM
3387/* See target.h. */
3388
043c3577
MM
3389int
3390target_supports_btrace (enum btrace_format format)
3391{
3392 return current_target.to_supports_btrace (&current_target, format);
3393}
3394
3395/* See target.h. */
3396
02d27625 3397struct btrace_target_info *
f4abbc16 3398target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
02d27625 3399{
f4abbc16 3400 return current_target.to_enable_btrace (&current_target, ptid, conf);
02d27625
MM
3401}
3402
3403/* See target.h. */
3404
3405void
3406target_disable_btrace (struct btrace_target_info *btinfo)
3407{
8dc292d3 3408 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3409}
3410
3411/* See target.h. */
3412
3413void
3414target_teardown_btrace (struct btrace_target_info *btinfo)
3415{
9ace480d 3416 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3417}
3418
3419/* See target.h. */
3420
969c39fb 3421enum btrace_error
734b0e4b 3422target_read_btrace (struct btrace_data *btrace,
969c39fb 3423 struct btrace_target_info *btinfo,
02d27625
MM
3424 enum btrace_read_type type)
3425{
eb5b20d4 3426 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3427}
3428
d02ed0bb
MM
3429/* See target.h. */
3430
f4abbc16
MM
3431const struct btrace_config *
3432target_btrace_conf (const struct btrace_target_info *btinfo)
3433{
3434 return current_target.to_btrace_conf (&current_target, btinfo);
3435}
3436
3437/* See target.h. */
3438
7c1687a9
MM
3439void
3440target_stop_recording (void)
3441{
ee97f592 3442 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3443}
3444
3445/* See target.h. */
3446
d02ed0bb 3447void
85e1311a 3448target_save_record (const char *filename)
d02ed0bb 3449{
f09e2107 3450 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3451}
3452
3453/* See target.h. */
3454
3455int
3456target_supports_delete_record (void)
3457{
3458 struct target_ops *t;
3459
3460 for (t = current_target.beneath; t != NULL; t = t->beneath)
b0ed115f
TT
3461 if (t->to_delete_record != delegate_delete_record
3462 && t->to_delete_record != tdefault_delete_record)
d02ed0bb
MM
3463 return 1;
3464
3465 return 0;
3466}
3467
3468/* See target.h. */
3469
3470void
3471target_delete_record (void)
3472{
07366925 3473 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3474}
3475
3476/* See target.h. */
3477
3478int
3479target_record_is_replaying (void)
3480{
dd2e9d25 3481 return current_target.to_record_is_replaying (&current_target);
d02ed0bb
MM
3482}
3483
3484/* See target.h. */
3485
3486void
3487target_goto_record_begin (void)
3488{
671e76cc 3489 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3490}
3491
3492/* See target.h. */
3493
3494void
3495target_goto_record_end (void)
3496{
e9179bb3 3497 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3498}
3499
3500/* See target.h. */
3501
3502void
3503target_goto_record (ULONGEST insn)
3504{
05969c84 3505 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3506}
3507
67c86d06
MM
3508/* See target.h. */
3509
3510void
3511target_insn_history (int size, int flags)
3512{
3679abfa 3513 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3514}
3515
3516/* See target.h. */
3517
3518void
3519target_insn_history_from (ULONGEST from, int size, int flags)
3520{
8444ab58 3521 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3522}
3523
3524/* See target.h. */
3525
3526void
3527target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3528{
c29302cc 3529 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3530}
3531
15984c13
MM
3532/* See target.h. */
3533
3534void
3535target_call_history (int size, int flags)
3536{
170049d4 3537 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3538}
3539
3540/* See target.h. */
3541
3542void
3543target_call_history_from (ULONGEST begin, int size, int flags)
3544{
16fc27d6 3545 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3546}
3547
3548/* See target.h. */
3549
3550void
3551target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3552{
115d9817 3553 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3554}
3555
ea001bdc
MM
3556/* See target.h. */
3557
3558const struct frame_unwind *
3559target_get_unwinder (void)
3560{
ac01945b 3561 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3562}
3563
3564/* See target.h. */
3565
3566const struct frame_unwind *
3567target_get_tailcall_unwinder (void)
3568{
ac01945b 3569 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3570}
3571
5fff78c4
MM
3572/* See target.h. */
3573
3574void
3575target_prepare_to_generate_core (void)
3576{
3577 current_target.to_prepare_to_generate_core (&current_target);
3578}
3579
3580/* See target.h. */
3581
3582void
3583target_done_generating_core (void)
3584{
3585 current_target.to_done_generating_core (&current_target);
3586}
3587
c906108c 3588static void
fba45db2 3589setup_target_debug (void)
c906108c
SS
3590{
3591 memcpy (&debug_target, &current_target, sizeof debug_target);
3592
a7068b60 3593 init_debug_target (&current_target);
c906108c 3594}
c906108c 3595\f
c5aa993b
JM
3596
3597static char targ_desc[] =
3e43a32a
MS
3598"Names of targets and files being debugged.\nShows the entire \
3599stack of targets currently in use (including the exec-file,\n\
c906108c
SS
3600core-file, and process, if any), as well as the symbol file name.";
3601
a53f3625 3602static void
a30bf1f1
TT
3603default_rcmd (struct target_ops *self, const char *command,
3604 struct ui_file *output)
a53f3625
TT
3605{
3606 error (_("\"monitor\" command not supported by this target."));
3607}
3608
96baa820
JM
3609static void
3610do_monitor_command (char *cmd,
3611 int from_tty)
3612{
96baa820
JM
3613 target_rcmd (cmd, gdb_stdtarg);
3614}
3615
87680a14
JB
3616/* Print the name of each layers of our target stack. */
3617
3618static void
3619maintenance_print_target_stack (char *cmd, int from_tty)
3620{
3621 struct target_ops *t;
3622
3623 printf_filtered (_("The current target stack is:\n"));
3624
3625 for (t = target_stack; t != NULL; t = t->beneath)
3626 {
3627 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3628 }
3629}
3630
329ea579
PA
3631/* Controls if targets can report that they can/are async. This is
3632 just for maintainers to use when debugging gdb. */
3633int target_async_permitted = 1;
c6ebd6cf
VP
3634
3635/* The set command writes to this variable. If the inferior is
b5419e49 3636 executing, target_async_permitted is *not* updated. */
329ea579 3637static int target_async_permitted_1 = 1;
c6ebd6cf
VP
3638
3639static void
329ea579
PA
3640maint_set_target_async_command (char *args, int from_tty,
3641 struct cmd_list_element *c)
c6ebd6cf 3642{
c35b1492 3643 if (have_live_inferiors ())
c6ebd6cf
VP
3644 {
3645 target_async_permitted_1 = target_async_permitted;
3646 error (_("Cannot change this setting while the inferior is running."));
3647 }
3648
3649 target_async_permitted = target_async_permitted_1;
3650}
3651
3652static void
329ea579
PA
3653maint_show_target_async_command (struct ui_file *file, int from_tty,
3654 struct cmd_list_element *c,
3655 const char *value)
c6ebd6cf 3656{
3e43a32a
MS
3657 fprintf_filtered (file,
3658 _("Controlling the inferior in "
3659 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
3660}
3661
d914c394
SS
3662/* Temporary copies of permission settings. */
3663
3664static int may_write_registers_1 = 1;
3665static int may_write_memory_1 = 1;
3666static int may_insert_breakpoints_1 = 1;
3667static int may_insert_tracepoints_1 = 1;
3668static int may_insert_fast_tracepoints_1 = 1;
3669static int may_stop_1 = 1;
3670
3671/* Make the user-set values match the real values again. */
3672
3673void
3674update_target_permissions (void)
3675{
3676 may_write_registers_1 = may_write_registers;
3677 may_write_memory_1 = may_write_memory;
3678 may_insert_breakpoints_1 = may_insert_breakpoints;
3679 may_insert_tracepoints_1 = may_insert_tracepoints;
3680 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3681 may_stop_1 = may_stop;
3682}
3683
3684/* The one function handles (most of) the permission flags in the same
3685 way. */
3686
3687static void
3688set_target_permissions (char *args, int from_tty,
3689 struct cmd_list_element *c)
3690{
3691 if (target_has_execution)
3692 {
3693 update_target_permissions ();
3694 error (_("Cannot change this setting while the inferior is running."));
3695 }
3696
3697 /* Make the real values match the user-changed values. */
3698 may_write_registers = may_write_registers_1;
3699 may_insert_breakpoints = may_insert_breakpoints_1;
3700 may_insert_tracepoints = may_insert_tracepoints_1;
3701 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3702 may_stop = may_stop_1;
3703 update_observer_mode ();
3704}
3705
3706/* Set memory write permission independently of observer mode. */
3707
3708static void
3709set_write_memory_permission (char *args, int from_tty,
3710 struct cmd_list_element *c)
3711{
3712 /* Make the real values match the user-changed values. */
3713 may_write_memory = may_write_memory_1;
3714 update_observer_mode ();
3715}
3716
3717
c906108c 3718void
fba45db2 3719initialize_targets (void)
c906108c
SS
3720{
3721 init_dummy_target ();
3722 push_target (&dummy_target);
3723
3724 add_info ("target", target_info, targ_desc);
3725 add_info ("files", target_info, targ_desc);
3726
ccce17b0 3727 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
3728Set target debugging."), _("\
3729Show target debugging."), _("\
333dabeb 3730When non-zero, target debugging is enabled. Higher numbers are more\n\
3cecbbbe
TT
3731verbose."),
3732 set_targetdebug,
ccce17b0
YQ
3733 show_targetdebug,
3734 &setdebuglist, &showdebuglist);
3a11626d 3735
2bc416ba 3736 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
3737 &trust_readonly, _("\
3738Set mode for reading from readonly sections."), _("\
3739Show mode for reading from readonly sections."), _("\
3a11626d
MS
3740When this mode is on, memory reads from readonly sections (such as .text)\n\
3741will be read from the object file instead of from the target. This will\n\
7915a72c 3742result in significant performance improvement for remote targets."),
2c5b56ce 3743 NULL,
920d2a44 3744 show_trust_readonly,
e707bbc2 3745 &setlist, &showlist);
96baa820
JM
3746
3747 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 3748 _("Send a command to the remote monitor (remote targets only)."));
96baa820 3749
87680a14
JB
3750 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3751 _("Print the name of each layer of the internal target stack."),
3752 &maintenanceprintlist);
3753
c6ebd6cf
VP
3754 add_setshow_boolean_cmd ("target-async", no_class,
3755 &target_async_permitted_1, _("\
3756Set whether gdb controls the inferior in asynchronous mode."), _("\
3757Show whether gdb controls the inferior in asynchronous mode."), _("\
3758Tells gdb whether to control the inferior in asynchronous mode."),
329ea579
PA
3759 maint_set_target_async_command,
3760 maint_show_target_async_command,
3761 &maintenance_set_cmdlist,
3762 &maintenance_show_cmdlist);
c6ebd6cf 3763
d914c394
SS
3764 add_setshow_boolean_cmd ("may-write-registers", class_support,
3765 &may_write_registers_1, _("\
3766Set permission to write into registers."), _("\
3767Show permission to write into registers."), _("\
3768When this permission is on, GDB may write into the target's registers.\n\
3769Otherwise, any sort of write attempt will result in an error."),
3770 set_target_permissions, NULL,
3771 &setlist, &showlist);
3772
3773 add_setshow_boolean_cmd ("may-write-memory", class_support,
3774 &may_write_memory_1, _("\
3775Set permission to write into target memory."), _("\
3776Show permission to write into target memory."), _("\
3777When this permission is on, GDB may write into the target's memory.\n\
3778Otherwise, any sort of write attempt will result in an error."),
3779 set_write_memory_permission, NULL,
3780 &setlist, &showlist);
3781
3782 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3783 &may_insert_breakpoints_1, _("\
3784Set permission to insert breakpoints in the target."), _("\
3785Show permission to insert breakpoints in the target."), _("\
3786When this permission is on, GDB may insert breakpoints in the program.\n\
3787Otherwise, any sort of insertion attempt will result in an error."),
3788 set_target_permissions, NULL,
3789 &setlist, &showlist);
3790
3791 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3792 &may_insert_tracepoints_1, _("\
3793Set permission to insert tracepoints in the target."), _("\
3794Show permission to insert tracepoints in the target."), _("\
3795When this permission is on, GDB may insert tracepoints in the program.\n\
3796Otherwise, any sort of insertion attempt will result in an error."),
3797 set_target_permissions, NULL,
3798 &setlist, &showlist);
3799
3800 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3801 &may_insert_fast_tracepoints_1, _("\
3802Set permission to insert fast tracepoints in the target."), _("\
3803Show permission to insert fast tracepoints in the target."), _("\
3804When this permission is on, GDB may insert fast tracepoints.\n\
3805Otherwise, any sort of insertion attempt will result in an error."),
3806 set_target_permissions, NULL,
3807 &setlist, &showlist);
3808
3809 add_setshow_boolean_cmd ("may-interrupt", class_support,
3810 &may_stop_1, _("\
3811Set permission to interrupt or signal the target."), _("\
3812Show permission to interrupt or signal the target."), _("\
3813When this permission is on, GDB may interrupt/stop the target's execution.\n\
3814Otherwise, any attempt to interrupt or stop will be ignored."),
3815 set_target_permissions, NULL,
3816 &setlist, &showlist);
6a3cb8e8
PA
3817
3818 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3819 &auto_connect_native_target, _("\
3820Set whether GDB may automatically connect to the native target."), _("\
3821Show whether GDB may automatically connect to the native target."), _("\
3822When on, and GDB is not connected to a target yet, GDB\n\
3823attempts \"run\" and other commands with the native target."),
3824 NULL, show_auto_connect_native_target,
3825 &setlist, &showlist);
c906108c 3826}