]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/target.h
2003-10-17 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
b6ba6518 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
be4d1333 3 2000, 2001, 2002 Free Software Foundation, Inc.
c906108c
SS
4 Contributed by Cygnus Support. Written by John Gilmore.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#if !defined (TARGET_H)
24#define TARGET_H
25
da3331ec
AC
26struct objfile;
27struct ui_file;
28struct mem_attrib;
1e3ff5ad 29struct target_ops;
da3331ec 30
c906108c
SS
31/* This include file defines the interface between the main part
32 of the debugger, and the part which is target-specific, or
33 specific to the communications interface between us and the
34 target.
35
36 A TARGET is an interface between the debugger and a particular
37 kind of file or process. Targets can be STACKED in STRATA,
38 so that more than one target can potentially respond to a request.
39 In particular, memory accesses will walk down the stack of targets
40 until they find a target that is interested in handling that particular
41 address. STRATA are artificial boundaries on the stack, within
42 which particular kinds of targets live. Strata exist so that
43 people don't get confused by pushing e.g. a process target and then
44 a file target, and wondering why they can't see the current values
45 of variables any more (the file target is handling them and they
46 never get to the process target). So when you push a file target,
47 it goes into the file stratum, which is always below the process
48 stratum. */
49
50#include "bfd.h"
51#include "symtab.h"
4930751a 52#include "dcache.h"
29e57380 53#include "memattr.h"
c906108c 54
c5aa993b
JM
55enum strata
56 {
57 dummy_stratum, /* The lowest of the low */
58 file_stratum, /* Executable files, etc */
59 core_stratum, /* Core dump files */
60 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
61 process_stratum, /* Executing processes */
62 thread_stratum /* Executing threads */
c5aa993b 63 };
c906108c 64
c5aa993b
JM
65enum thread_control_capabilities
66 {
0d06e24b
JM
67 tc_none = 0, /* Default: can't control thread execution. */
68 tc_schedlock = 1, /* Can lock the thread scheduler. */
69 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 70 };
c906108c
SS
71
72/* Stuff for target_wait. */
73
74/* Generally, what has the program done? */
c5aa993b
JM
75enum target_waitkind
76 {
77 /* The program has exited. The exit status is in value.integer. */
78 TARGET_WAITKIND_EXITED,
c906108c 79
0d06e24b
JM
80 /* The program has stopped with a signal. Which signal is in
81 value.sig. */
c5aa993b 82 TARGET_WAITKIND_STOPPED,
c906108c 83
c5aa993b
JM
84 /* The program has terminated with a signal. Which signal is in
85 value.sig. */
86 TARGET_WAITKIND_SIGNALLED,
c906108c 87
c5aa993b
JM
88 /* The program is letting us know that it dynamically loaded something
89 (e.g. it called load(2) on AIX). */
90 TARGET_WAITKIND_LOADED,
c906108c 91
0d06e24b
JM
92 /* The program has forked. A "related" process' ID is in
93 value.related_pid. I.e., if the child forks, value.related_pid
94 is the parent's ID. */
95
c5aa993b 96 TARGET_WAITKIND_FORKED,
c906108c 97
0d06e24b
JM
98 /* The program has vforked. A "related" process's ID is in
99 value.related_pid. */
100
c5aa993b 101 TARGET_WAITKIND_VFORKED,
c906108c 102
0d06e24b
JM
103 /* The program has exec'ed a new executable file. The new file's
104 pathname is pointed to by value.execd_pathname. */
105
c5aa993b 106 TARGET_WAITKIND_EXECD,
c906108c 107
0d06e24b
JM
108 /* The program has entered or returned from a system call. On
109 HP-UX, this is used in the hardware watchpoint implementation.
110 The syscall's unique integer ID number is in value.syscall_id */
111
c5aa993b
JM
112 TARGET_WAITKIND_SYSCALL_ENTRY,
113 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 114
c5aa993b
JM
115 /* Nothing happened, but we stopped anyway. This perhaps should be handled
116 within target_wait, but I'm not sure target_wait should be resuming the
117 inferior. */
c4093a6a
JM
118 TARGET_WAITKIND_SPURIOUS,
119
8e7d2c16
DJ
120 /* An event has occured, but we should wait again.
121 Remote_async_wait() returns this when there is an event
c4093a6a
JM
122 on the inferior, but the rest of the world is not interested in
123 it. The inferior has not stopped, but has just sent some output
124 to the console, for instance. In this case, we want to go back
125 to the event loop and wait there for another event from the
126 inferior, rather than being stuck in the remote_async_wait()
127 function. This way the event loop is responsive to other events,
0d06e24b 128 like for instance the user typing. */
c4093a6a 129 TARGET_WAITKIND_IGNORE
c906108c
SS
130 };
131
c5aa993b
JM
132struct target_waitstatus
133 {
134 enum target_waitkind kind;
135
136 /* Forked child pid, execd pathname, exit status or signal number. */
137 union
138 {
139 int integer;
140 enum target_signal sig;
141 int related_pid;
142 char *execd_pathname;
143 int syscall_id;
144 }
145 value;
146 };
c906108c 147
2acceee2 148/* Possible types of events that the inferior handler will have to
0d06e24b 149 deal with. */
2acceee2
JM
150enum inferior_event_type
151 {
0d06e24b 152 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
153 INF_QUIT_REQ,
154 /* Process a normal inferior event which will result in target_wait
0d06e24b 155 being called. */
2acceee2 156 INF_REG_EVENT,
0d06e24b 157 /* Deal with an error on the inferior. */
2acceee2 158 INF_ERROR,
0d06e24b 159 /* We are called because a timer went off. */
2acceee2 160 INF_TIMER,
0d06e24b 161 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
162 INF_EXEC_COMPLETE,
163 /* We are called to do some stuff after the inferior stops, but we
164 are expected to reenter the proceed() and
165 handle_inferior_event() functions. This is used only in case of
0d06e24b 166 'step n' like commands. */
c2d11a7d 167 INF_EXEC_CONTINUE
2acceee2
JM
168 };
169
c906108c 170/* Return the string for a signal. */
a14ed312 171extern char *target_signal_to_string (enum target_signal);
c906108c
SS
172
173/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 174extern char *target_signal_to_name (enum target_signal);
c906108c
SS
175
176/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 177enum target_signal target_signal_from_name (char *);
c906108c 178\f
1e3ff5ad
AC
179/* Request the transfer of up to LEN 8-bit bytes of the target's
180 OBJECT. The OFFSET, for a seekable object, specifies the starting
181 point. The ANNEX can be used to provide additional data-specific
182 information to the target.
183
184 Return the number of bytes actually transfered, zero when no
185 further transfer is possible, and -1 when the transfer is not
186 supported.
187
188 NOTE: cagney/2003-10-17: The current interface does not support a
189 "retry" mechanism. Instead it assumes that at least one byte will
190 be transfered on each call.
191
192 NOTE: cagney/2003-10-17: The current interface can lead to
193 fragmented transfers. Lower target levels should not implement
194 hacks, such as enlarging the transfer, in an attempt to compensate
195 for this. Instead, the target stack should be extended so that it
196 implements supply/collect methods and a look-aside object cache.
197 With that available, the lowest target can safely and freely "push"
198 data up the stack.
199
200 NOTE: cagney/2003-10-17: Unlike the old query and the memory
201 transfer mechanisms, these methods are explicitly parameterized by
202 the target that it should be applied to.
203
204 NOTE: cagney/2003-10-17: Just like the old query and memory xfer
205 methods, these new methods perform partial transfers. The only
206 difference is that these new methods thought to include "partial"
207 in the name. The old code's failure to do this lead to much
208 confusion and duplication of effort as each target object attempted
209 to locally take responsibility for something it didn't have to
210 worry about.
211
212 NOTE: cagney/2003-10-17: For backward compatibility with the
213 "target_query" method that this replaced, when BUF, OFFSET and LEN
214 are NULL/zero, return the "minimum" buffer size. See "remote.c"
215 for further information. */
216
217enum target_object
218{
219 /* Kernel Object Display transfer. See "kod.c" and "remote.c". */
220 TARGET_OBJECT_KOD,
221 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
222 TARGET_OBJECT_AVR,
223 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
224 TARGET_OBJECT_MEORY
225 /* Possible future ojbects: TARGET_OJBECT_FILE, TARGET_OBJECT_PROC,
226 TARGET_OBJECT_AUXV, ... */
227};
228
229extern LONGEST target_read_partial (struct target_ops *ops,
230 enum target_object object,
231 const char *annex, void *buf,
232 ULONGEST offset, LONGEST len);
233
234extern LONGEST target_write_partial (struct target_ops *ops,
235 enum target_object object,
236 const char *annex, const void *buf,
237 ULONGEST offset, LONGEST len);
238
239/* Wrappers to perform the full transfer. */
240extern LONGEST target_read (struct target_ops *ops,
241 enum target_object object,
242 const char *annex, void *buf,
243 ULONGEST offset, LONGEST len);
244
245extern LONGEST target_write (struct target_ops *ops,
246 enum target_object object,
247 const char *annex, const void *buf,
248 ULONGEST offset, LONGEST len);
249\f
c5aa993b 250
c906108c
SS
251/* If certain kinds of activity happen, target_wait should perform
252 callbacks. */
253/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 254 on TARGET_ACTIVITY_FD. */
c906108c
SS
255extern int target_activity_fd;
256/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 257extern int (*target_activity_function) (void);
c906108c 258\f
0d06e24b
JM
259struct thread_info; /* fwd decl for parameter list below: */
260
c906108c 261struct target_ops
c5aa993b 262 {
258b763a 263 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
264 char *to_shortname; /* Name this target type */
265 char *to_longname; /* Name for printing */
266 char *to_doc; /* Documentation. Does not include trailing
c906108c 267 newline, and starts with a one-line descrip-
0d06e24b 268 tion (probably similar to to_longname). */
507f3c78
KB
269 void (*to_open) (char *, int);
270 void (*to_close) (int);
271 void (*to_attach) (char *, int);
272 void (*to_post_attach) (int);
507f3c78 273 void (*to_detach) (char *, int);
6ad8ae5c 274 void (*to_disconnect) (char *, int);
39f77062
KB
275 void (*to_resume) (ptid_t, int, enum target_signal);
276 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
277 void (*to_post_wait) (ptid_t, int);
507f3c78
KB
278 void (*to_fetch_registers) (int);
279 void (*to_store_registers) (int);
280 void (*to_prepare_to_store) (void);
c5aa993b
JM
281
282 /* Transfer LEN bytes of memory between GDB address MYADDR and
283 target address MEMADDR. If WRITE, transfer them to the target, else
284 transfer them from the target. TARGET is the target from which we
285 get this function.
286
287 Return value, N, is one of the following:
288
289 0 means that we can't handle this. If errno has been set, it is the
290 error which prevented us from doing it (FIXME: What about bfd_error?).
291
292 positive (call it N) means that we have transferred N bytes
293 starting at MEMADDR. We might be able to handle more bytes
294 beyond this length, but no promises.
295
296 negative (call its absolute value N) means that we cannot
297 transfer right at MEMADDR, but we could transfer at least
298 something at MEMADDR + N. */
299
507f3c78 300 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
29e57380
C
301 int len, int write,
302 struct mem_attrib *attrib,
303 struct target_ops *target);
c906108c 304
507f3c78
KB
305 void (*to_files_info) (struct target_ops *);
306 int (*to_insert_breakpoint) (CORE_ADDR, char *);
307 int (*to_remove_breakpoint) (CORE_ADDR, char *);
ccaa32c7
GS
308 int (*to_can_use_hw_breakpoint) (int, int, int);
309 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
310 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
311 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
312 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
313 int (*to_stopped_by_watchpoint) (void);
7df1a324 314 int to_have_continuable_watchpoint;
ccaa32c7
GS
315 CORE_ADDR (*to_stopped_data_address) (void);
316 int (*to_region_size_ok_for_hw_watchpoint) (int);
507f3c78
KB
317 void (*to_terminal_init) (void);
318 void (*to_terminal_inferior) (void);
319 void (*to_terminal_ours_for_output) (void);
320 void (*to_terminal_ours) (void);
a790ad35 321 void (*to_terminal_save_ours) (void);
507f3c78
KB
322 void (*to_terminal_info) (char *, int);
323 void (*to_kill) (void);
324 void (*to_load) (char *, int);
325 int (*to_lookup_symbol) (char *, CORE_ADDR *);
326 void (*to_create_inferior) (char *, char *, char **);
39f77062 327 void (*to_post_startup_inferior) (ptid_t);
507f3c78 328 void (*to_acknowledge_created_inferior) (int);
507f3c78
KB
329 int (*to_insert_fork_catchpoint) (int);
330 int (*to_remove_fork_catchpoint) (int);
331 int (*to_insert_vfork_catchpoint) (int);
332 int (*to_remove_vfork_catchpoint) (int);
6604731b 333 int (*to_follow_fork) (int);
507f3c78
KB
334 int (*to_insert_exec_catchpoint) (int);
335 int (*to_remove_exec_catchpoint) (int);
507f3c78 336 int (*to_reported_exec_events_per_exec_call) (void);
507f3c78
KB
337 int (*to_has_exited) (int, int, int *);
338 void (*to_mourn_inferior) (void);
339 int (*to_can_run) (void);
39f77062
KB
340 void (*to_notice_signals) (ptid_t ptid);
341 int (*to_thread_alive) (ptid_t ptid);
507f3c78 342 void (*to_find_new_threads) (void);
39f77062 343 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
344 char *(*to_extra_thread_info) (struct thread_info *);
345 void (*to_stop) (void);
d9fcf2fb 346 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78
KB
347 struct symtab_and_line *(*to_enable_exception_callback) (enum
348 exception_event_kind,
349 int);
350 struct exception_event_record *(*to_get_current_exception_event) (void);
351 char *(*to_pid_to_exec_file) (int pid);
c5aa993b 352 enum strata to_stratum;
c5aa993b
JM
353 int to_has_all_memory;
354 int to_has_memory;
355 int to_has_stack;
356 int to_has_registers;
357 int to_has_execution;
358 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
359 struct section_table
360 *to_sections;
361 struct section_table
362 *to_sections_end;
6426a772
JM
363 /* ASYNC target controls */
364 int (*to_can_async_p) (void);
365 int (*to_is_async_p) (void);
0d06e24b
JM
366 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
367 void *context);
ed9a39eb 368 int to_async_mask_value;
be4d1333
MS
369 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
370 unsigned long,
371 int, int, int,
372 void *),
373 void *);
374 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
375
376 /* Return the thread-local address at OFFSET in the
377 thread-local storage for the thread PTID and the shared library
378 or executable file given by OBJFILE. If that block of
379 thread-local storage hasn't been allocated yet, this function
380 may return an error. */
381 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
382 struct objfile *objfile,
383 CORE_ADDR offset);
384
1e3ff5ad
AC
385 /* See above. */
386 LONGEST (*to_read_partial) (struct target_ops *ops,
387 enum target_object object,
388 const char *annex, void *buf,
389 ULONGEST offset, LONGEST len);
390 LONGEST (*to_write_partial) (struct target_ops *ops,
391 enum target_object object,
392 const char *annex, const void *buf,
393 ULONGEST offset, LONGEST len);
394
c5aa993b 395 int to_magic;
0d06e24b
JM
396 /* Need sub-structure for target machine related rather than comm related?
397 */
c5aa993b 398 };
c906108c
SS
399
400/* Magic number for checking ops size. If a struct doesn't end with this
401 number, somebody changed the declaration but didn't change all the
402 places that initialize one. */
403
404#define OPS_MAGIC 3840
405
406/* The ops structure for our "current" target process. This should
407 never be NULL. If there is no target, it points to the dummy_target. */
408
c5aa993b 409extern struct target_ops current_target;
c906108c 410
c906108c
SS
411/* Define easy words for doing these operations on our current target. */
412
413#define target_shortname (current_target.to_shortname)
414#define target_longname (current_target.to_longname)
415
416/* The open routine takes the rest of the parameters from the command,
417 and (if successful) pushes a new target onto the stack.
418 Targets should supply this routine, if only to provide an error message. */
0d06e24b 419
4930751a
C
420#define target_open(name, from_tty) \
421 do { \
422 dcache_invalidate (target_dcache); \
423 (*current_target.to_open) (name, from_tty); \
424 } while (0)
c906108c
SS
425
426/* Does whatever cleanup is required for a target that we are no longer
427 going to be calling. Argument says whether we are quitting gdb and
428 should not get hung in case of errors, or whether we want a clean
429 termination even if it takes a while. This routine is automatically
430 always called just before a routine is popped off the target stack.
431 Closing file descriptors and freeing memory are typical things it should
432 do. */
433
434#define target_close(quitting) \
0d06e24b 435 (*current_target.to_close) (quitting)
c906108c
SS
436
437/* Attaches to a process on the target side. Arguments are as passed
438 to the `attach' command by the user. This routine can be called
439 when the target is not on the target-stack, if the target_can_run
440 routine returns 1; in that case, it must push itself onto the stack.
441 Upon exit, the target should be ready for normal operations, and
442 should be ready to deliver the status of the process immediately
443 (without waiting) to an upcoming target_wait call. */
444
445#define target_attach(args, from_tty) \
0d06e24b 446 (*current_target.to_attach) (args, from_tty)
c906108c
SS
447
448/* The target_attach operation places a process under debugger control,
449 and stops the process.
450
451 This operation provides a target-specific hook that allows the
0d06e24b 452 necessary bookkeeping to be performed after an attach completes. */
c906108c 453#define target_post_attach(pid) \
0d06e24b 454 (*current_target.to_post_attach) (pid)
c906108c 455
c906108c
SS
456/* Takes a program previously attached to and detaches it.
457 The program may resume execution (some targets do, some don't) and will
458 no longer stop on signals, etc. We better not have left any breakpoints
459 in the program or it'll die when it hits one. ARGS is arguments
460 typed by the user (e.g. a signal to send the process). FROM_TTY
461 says whether to be verbose or not. */
462
a14ed312 463extern void target_detach (char *, int);
c906108c 464
6ad8ae5c
DJ
465/* Disconnect from the current target without resuming it (leaving it
466 waiting for a debugger). */
467
468extern void target_disconnect (char *, int);
469
39f77062 470/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
471 single-step or to run free; SIGGNAL is the signal to be given to
472 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
473 pass TARGET_SIGNAL_DEFAULT. */
474
39f77062 475#define target_resume(ptid, step, siggnal) \
4930751a
C
476 do { \
477 dcache_invalidate(target_dcache); \
39f77062 478 (*current_target.to_resume) (ptid, step, siggnal); \
4930751a 479 } while (0)
c906108c 480
b5a2688f
AC
481/* Wait for process pid to do something. PTID = -1 to wait for any
482 pid to do something. Return pid of child, or -1 in case of error;
c906108c 483 store status through argument pointer STATUS. Note that it is
b5a2688f 484 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
485 the debugging target from the stack; GDB isn't prepared to get back
486 to the prompt with a debugging target but without the frame cache,
487 stop_pc, etc., set up. */
488
39f77062
KB
489#define target_wait(ptid, status) \
490 (*current_target.to_wait) (ptid, status)
c906108c
SS
491
492/* The target_wait operation waits for a process event to occur, and
493 thereby stop the process.
494
495 On some targets, certain events may happen in sequences. gdb's
496 correct response to any single event of such a sequence may require
497 knowledge of what earlier events in the sequence have been seen.
498
499 This operation provides a target-specific hook that allows the
0d06e24b 500 necessary bookkeeping to be performed to track such sequences. */
c906108c 501
39f77062
KB
502#define target_post_wait(ptid, status) \
503 (*current_target.to_post_wait) (ptid, status)
c906108c 504
17dee195 505/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c
SS
506
507#define target_fetch_registers(regno) \
0d06e24b 508 (*current_target.to_fetch_registers) (regno)
c906108c
SS
509
510/* Store at least register REGNO, or all regs if REGNO == -1.
511 It can store as many registers as it wants to, so target_prepare_to_store
512 must have been previously called. Calls error() if there are problems. */
513
514#define target_store_registers(regs) \
0d06e24b 515 (*current_target.to_store_registers) (regs)
c906108c
SS
516
517/* Get ready to modify the registers array. On machines which store
518 individual registers, this doesn't need to do anything. On machines
519 which store all the registers in one fell swoop, this makes sure
520 that REGISTERS contains all the registers from the program being
521 debugged. */
522
523#define target_prepare_to_store() \
0d06e24b 524 (*current_target.to_prepare_to_store) ()
c906108c 525
4930751a
C
526extern DCACHE *target_dcache;
527
29e57380
C
528extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
529 struct mem_attrib *attrib);
4930751a 530
a14ed312 531extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 532
a14ed312 533extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 534
4930751a 535extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 536
29e57380
C
537extern int xfer_memory (CORE_ADDR, char *, int, int,
538 struct mem_attrib *, struct target_ops *);
c906108c 539
29e57380
C
540extern int child_xfer_memory (CORE_ADDR, char *, int, int,
541 struct mem_attrib *, struct target_ops *);
c906108c 542
917317f4
JM
543/* Make a single attempt at transfering LEN bytes. On a successful
544 transfer, the number of bytes actually transfered is returned and
545 ERR is set to 0. When a transfer fails, -1 is returned (the number
546 of bytes actually transfered is not defined) and ERR is set to a
0d06e24b 547 non-zero error indication. */
917317f4 548
570b8f7c
AC
549extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
550 int *err);
917317f4 551
570b8f7c
AC
552extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
553 int *err);
917317f4 554
a14ed312 555extern char *child_pid_to_exec_file (int);
c906108c 556
a14ed312 557extern char *child_core_file_to_sym_file (char *);
c906108c
SS
558
559#if defined(CHILD_POST_ATTACH)
a14ed312 560extern void child_post_attach (int);
c906108c
SS
561#endif
562
39f77062 563extern void child_post_wait (ptid_t, int);
c906108c 564
39f77062 565extern void child_post_startup_inferior (ptid_t);
c906108c 566
a14ed312 567extern void child_acknowledge_created_inferior (int);
c906108c 568
a14ed312 569extern int child_insert_fork_catchpoint (int);
c906108c 570
a14ed312 571extern int child_remove_fork_catchpoint (int);
c906108c 572
a14ed312 573extern int child_insert_vfork_catchpoint (int);
c906108c 574
a14ed312 575extern int child_remove_vfork_catchpoint (int);
c906108c 576
a14ed312 577extern void child_acknowledge_created_inferior (int);
c906108c 578
6604731b 579extern int child_follow_fork (int);
c906108c 580
a14ed312 581extern int child_insert_exec_catchpoint (int);
c906108c 582
a14ed312 583extern int child_remove_exec_catchpoint (int);
c906108c 584
a14ed312 585extern int child_reported_exec_events_per_exec_call (void);
c906108c 586
a14ed312 587extern int child_has_exited (int, int, int *);
c906108c 588
39f77062 589extern int child_thread_alive (ptid_t);
c906108c 590
47932f85
DJ
591/* From infrun.c. */
592
593extern int inferior_has_forked (int pid, int *child_pid);
594
595extern int inferior_has_vforked (int pid, int *child_pid);
596
597extern int inferior_has_execd (int pid, char **execd_pathname);
598
c906108c
SS
599/* From exec.c */
600
a14ed312 601extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
602
603/* Print a line about the current target. */
604
605#define target_files_info() \
0d06e24b 606 (*current_target.to_files_info) (&current_target)
c906108c 607
aaab4dba
AC
608/* Insert a breakpoint at address ADDR in the target machine. SAVE is
609 a pointer to memory allocated for saving the target contents. It
610 is guaranteed by the caller to be long enough to save the number of
611 breakpoint bytes indicated by BREAKPOINT_FROM_PC. Result is 0 for
612 success, or an errno value. */
c906108c
SS
613
614#define target_insert_breakpoint(addr, save) \
0d06e24b 615 (*current_target.to_insert_breakpoint) (addr, save)
c906108c
SS
616
617/* Remove a breakpoint at address ADDR in the target machine.
618 SAVE is a pointer to the same save area
619 that was previously passed to target_insert_breakpoint.
620 Result is 0 for success, or an errno value. */
621
622#define target_remove_breakpoint(addr, save) \
0d06e24b 623 (*current_target.to_remove_breakpoint) (addr, save)
c906108c
SS
624
625/* Initialize the terminal settings we record for the inferior,
626 before we actually run the inferior. */
627
628#define target_terminal_init() \
0d06e24b 629 (*current_target.to_terminal_init) ()
c906108c
SS
630
631/* Put the inferior's terminal settings into effect.
632 This is preparation for starting or resuming the inferior. */
633
634#define target_terminal_inferior() \
0d06e24b 635 (*current_target.to_terminal_inferior) ()
c906108c
SS
636
637/* Put some of our terminal settings into effect,
638 enough to get proper results from our output,
639 but do not change into or out of RAW mode
640 so that no input is discarded.
641
642 After doing this, either terminal_ours or terminal_inferior
643 should be called to get back to a normal state of affairs. */
644
645#define target_terminal_ours_for_output() \
0d06e24b 646 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
647
648/* Put our terminal settings into effect.
649 First record the inferior's terminal settings
650 so they can be restored properly later. */
651
652#define target_terminal_ours() \
0d06e24b 653 (*current_target.to_terminal_ours) ()
c906108c 654
a790ad35
SC
655/* Save our terminal settings.
656 This is called from TUI after entering or leaving the curses
657 mode. Since curses modifies our terminal this call is here
658 to take this change into account. */
659
660#define target_terminal_save_ours() \
661 (*current_target.to_terminal_save_ours) ()
662
c906108c
SS
663/* Print useful information about our terminal status, if such a thing
664 exists. */
665
666#define target_terminal_info(arg, from_tty) \
0d06e24b 667 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
668
669/* Kill the inferior process. Make it go away. */
670
671#define target_kill() \
0d06e24b 672 (*current_target.to_kill) ()
c906108c 673
0d06e24b
JM
674/* Load an executable file into the target process. This is expected
675 to not only bring new code into the target process, but also to
676 update GDB's symbol tables to match. */
c906108c 677
11cf8741 678extern void target_load (char *arg, int from_tty);
c906108c
SS
679
680/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
681 name. ADDRP is a CORE_ADDR * pointing to where the value of the
682 symbol should be returned. The result is 0 if successful, nonzero
683 if the symbol does not exist in the target environment. This
684 function should not call error() if communication with the target
685 is interrupted, since it is called from symbol reading, but should
686 return nonzero, possibly doing a complain(). */
c906108c 687
0d06e24b
JM
688#define target_lookup_symbol(name, addrp) \
689 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 690
39f77062 691/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
692 EXEC_FILE is the file to run.
693 ALLARGS is a string containing the arguments to the program.
694 ENV is the environment vector to pass. Errors reported with error().
695 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 696
c906108c 697#define target_create_inferior(exec_file, args, env) \
0d06e24b 698 (*current_target.to_create_inferior) (exec_file, args, env)
c906108c
SS
699
700
701/* Some targets (such as ttrace-based HPUX) don't allow us to request
702 notification of inferior events such as fork and vork immediately
703 after the inferior is created. (This because of how gdb gets an
704 inferior created via invoking a shell to do it. In such a scenario,
705 if the shell init file has commands in it, the shell will fork and
706 exec for each of those commands, and we will see each such fork
707 event. Very bad.)
c5aa993b 708
0d06e24b
JM
709 Such targets will supply an appropriate definition for this function. */
710
39f77062
KB
711#define target_post_startup_inferior(ptid) \
712 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
713
714/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
715 some synchronization between gdb and the new inferior process, PID. */
716
c906108c 717#define target_acknowledge_created_inferior(pid) \
0d06e24b 718 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 719
0d06e24b
JM
720/* On some targets, we can catch an inferior fork or vfork event when
721 it occurs. These functions insert/remove an already-created
722 catchpoint for such events. */
c906108c 723
c906108c 724#define target_insert_fork_catchpoint(pid) \
0d06e24b 725 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
726
727#define target_remove_fork_catchpoint(pid) \
0d06e24b 728 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
729
730#define target_insert_vfork_catchpoint(pid) \
0d06e24b 731 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
732
733#define target_remove_vfork_catchpoint(pid) \
0d06e24b 734 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 735
6604731b
DJ
736/* If the inferior forks or vforks, this function will be called at
737 the next resume in order to perform any bookkeeping and fiddling
738 necessary to continue debugging either the parent or child, as
739 requested, and releasing the other. Information about the fork
740 or vfork event is available via get_last_target_status ().
741 This function returns 1 if the inferior should not be resumed
742 (i.e. there is another event pending). */
0d06e24b 743
6604731b
DJ
744#define target_follow_fork(follow_child) \
745 (*current_target.to_follow_fork) (follow_child)
c906108c
SS
746
747/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
748 occurs. These functions insert/remove an already-created
749 catchpoint for such events. */
750
c906108c 751#define target_insert_exec_catchpoint(pid) \
0d06e24b 752 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 753
c906108c 754#define target_remove_exec_catchpoint(pid) \
0d06e24b 755 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 756
c906108c
SS
757/* Returns the number of exec events that are reported when a process
758 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
759 events are being reported. */
760
c906108c 761#define target_reported_exec_events_per_exec_call() \
0d06e24b 762 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c 763
c906108c 764/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
765 exit code of PID, if any. */
766
c906108c 767#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 768 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
769
770/* The debugger has completed a blocking wait() call. There is now
0d06e24b 771 some process event that must be processed. This function should
c906108c 772 be defined by those targets that require the debugger to perform
0d06e24b 773 cleanup or internal state changes in response to the process event. */
c906108c
SS
774
775/* The inferior process has died. Do what is right. */
776
777#define target_mourn_inferior() \
0d06e24b 778 (*current_target.to_mourn_inferior) ()
c906108c
SS
779
780/* Does target have enough data to do a run or attach command? */
781
782#define target_can_run(t) \
0d06e24b 783 ((t)->to_can_run) ()
c906108c
SS
784
785/* post process changes to signal handling in the inferior. */
786
39f77062
KB
787#define target_notice_signals(ptid) \
788 (*current_target.to_notice_signals) (ptid)
c906108c
SS
789
790/* Check to see if a thread is still alive. */
791
39f77062
KB
792#define target_thread_alive(ptid) \
793 (*current_target.to_thread_alive) (ptid)
c906108c 794
b83266a0
SS
795/* Query for new threads and add them to the thread list. */
796
797#define target_find_new_threads() \
0d06e24b 798 (*current_target.to_find_new_threads) (); \
b83266a0 799
0d06e24b
JM
800/* Make target stop in a continuable fashion. (For instance, under
801 Unix, this should act like SIGSTOP). This function is normally
802 used by GUIs to implement a stop button. */
c906108c
SS
803
804#define target_stop current_target.to_stop
805
96baa820
JM
806/* Send the specified COMMAND to the target's monitor
807 (shell,interpreter) for execution. The result of the query is
0d06e24b 808 placed in OUTBUF. */
96baa820
JM
809
810#define target_rcmd(command, outbuf) \
811 (*current_target.to_rcmd) (command, outbuf)
812
813
c906108c
SS
814/* Get the symbol information for a breakpointable routine called when
815 an exception event occurs.
816 Intended mainly for C++, and for those
817 platforms/implementations where such a callback mechanism is available,
818 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 819 different mechanisms for debugging exceptions. */
c906108c
SS
820
821#define target_enable_exception_callback(kind, enable) \
0d06e24b 822 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 823
0d06e24b 824/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 825
c906108c 826#define target_get_current_exception_event() \
0d06e24b 827 (*current_target.to_get_current_exception_event) ()
c906108c 828
c906108c
SS
829/* Does the target include all of memory, or only part of it? This
830 determines whether we look up the target chain for other parts of
831 memory if this target can't satisfy a request. */
832
833#define target_has_all_memory \
0d06e24b 834 (current_target.to_has_all_memory)
c906108c
SS
835
836/* Does the target include memory? (Dummy targets don't.) */
837
838#define target_has_memory \
0d06e24b 839 (current_target.to_has_memory)
c906108c
SS
840
841/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
842 we start a process.) */
c5aa993b 843
c906108c 844#define target_has_stack \
0d06e24b 845 (current_target.to_has_stack)
c906108c
SS
846
847/* Does the target have registers? (Exec files don't.) */
848
849#define target_has_registers \
0d06e24b 850 (current_target.to_has_registers)
c906108c
SS
851
852/* Does the target have execution? Can we make it jump (through
853 hoops), or pop its stack a few times? FIXME: If this is to work that
854 way, it needs to check whether an inferior actually exists.
855 remote-udi.c and probably other targets can be the current target
856 when the inferior doesn't actually exist at the moment. Right now
857 this just tells us whether this target is *capable* of execution. */
858
859#define target_has_execution \
0d06e24b 860 (current_target.to_has_execution)
c906108c
SS
861
862/* Can the target support the debugger control of thread execution?
863 a) Can it lock the thread scheduler?
864 b) Can it switch the currently running thread? */
865
866#define target_can_lock_scheduler \
0d06e24b 867 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
868
869#define target_can_switch_threads \
0d06e24b 870 (current_target.to_has_thread_control & tc_switch)
c906108c 871
6426a772
JM
872/* Can the target support asynchronous execution? */
873#define target_can_async_p() (current_target.to_can_async_p ())
874
875/* Is the target in asynchronous execution mode? */
876#define target_is_async_p() (current_target.to_is_async_p())
877
878/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
879#define target_async(CALLBACK,CONTEXT) \
880 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 881
04714b91
AC
882/* This is to be used ONLY within call_function_by_hand(). It provides
883 a workaround, to have inferior function calls done in sychronous
884 mode, even though the target is asynchronous. After
ed9a39eb
JM
885 target_async_mask(0) is called, calls to target_can_async_p() will
886 return FALSE , so that target_resume() will not try to start the
887 target asynchronously. After the inferior stops, we IMMEDIATELY
888 restore the previous nature of the target, by calling
889 target_async_mask(1). After that, target_can_async_p() will return
04714b91 890 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
891
892 FIXME ezannoni 1999-12-13: we won't need this once we move
893 the turning async on and off to the single execution commands,
0d06e24b 894 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
895
896#define target_async_mask_value \
0d06e24b 897 (current_target.to_async_mask_value)
ed9a39eb
JM
898
899extern int target_async_mask (int mask);
900
a14ed312 901extern void target_link (char *, CORE_ADDR *);
c906108c
SS
902
903/* Converts a process id to a string. Usually, the string just contains
904 `process xyz', but on some systems it may contain
905 `process xyz thread abc'. */
906
ed9a39eb
JM
907#undef target_pid_to_str
908#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
909
910#ifndef target_tid_to_str
911#define target_tid_to_str(PID) \
0d06e24b 912 target_pid_to_str (PID)
39f77062 913extern char *normal_pid_to_str (ptid_t ptid);
c906108c 914#endif
c5aa993b 915
0d06e24b
JM
916/* Return a short string describing extra information about PID,
917 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
918 is okay. */
919
920#define target_extra_thread_info(TP) \
921 (current_target.to_extra_thread_info (TP))
ed9a39eb 922
11cf8741
JM
923/*
924 * New Objfile Event Hook:
925 *
926 * Sometimes a GDB component wants to get notified whenever a new
927 * objfile is loaded. Mainly this is used by thread-debugging
928 * implementations that need to know when symbols for the target
929 * thread implemenation are available.
930 *
931 * The old way of doing this is to define a macro 'target_new_objfile'
932 * that points to the function that you want to be called on every
933 * objfile/shlib load.
934 *
935 * The new way is to grab the function pointer, 'target_new_objfile_hook',
936 * and point it to the function that you want to be called on every
937 * objfile/shlib load.
938 *
939 * If multiple clients are willing to be cooperative, they can each
940 * save a pointer to the previous value of target_new_objfile_hook
941 * before modifying it, and arrange for their function to call the
942 * previous function in the chain. In that way, multiple clients
943 * can receive this notification (something like with signal handlers).
944 */
c906108c 945
507f3c78 946extern void (*target_new_objfile_hook) (struct objfile *);
c906108c
SS
947
948#ifndef target_pid_or_tid_to_str
949#define target_pid_or_tid_to_str(ID) \
0d06e24b 950 target_pid_to_str (ID)
c906108c
SS
951#endif
952
953/* Attempts to find the pathname of the executable file
954 that was run to create a specified process.
955
956 The process PID must be stopped when this operation is used.
c5aa993b 957
c906108c
SS
958 If the executable file cannot be determined, NULL is returned.
959
960 Else, a pointer to a character string containing the pathname
961 is returned. This string should be copied into a buffer by
962 the client if the string will not be immediately used, or if
0d06e24b 963 it must persist. */
c906108c
SS
964
965#define target_pid_to_exec_file(pid) \
0d06e24b 966 (current_target.to_pid_to_exec_file) (pid)
c906108c 967
be4d1333
MS
968/*
969 * Iterator function for target memory regions.
970 * Calls a callback function once for each memory region 'mapped'
971 * in the child process. Defined as a simple macro rather than
972 * as a function macro so that it can be tested for nullity.
973 */
974
975#define target_find_memory_regions(FUNC, DATA) \
976 (current_target.to_find_memory_regions) (FUNC, DATA)
977
978/*
979 * Compose corefile .note section.
980 */
981
982#define target_make_corefile_notes(BFD, SIZE_P) \
983 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
984
3f47be5c
EZ
985/* Thread-local values. */
986#define target_get_thread_local_address \
987 (current_target.to_get_thread_local_address)
988#define target_get_thread_local_address_p() \
989 (target_get_thread_local_address != NULL)
990
9d8a64cb 991/* Hook to call target dependent code just after inferior target process has
c906108c
SS
992 started. */
993
994#ifndef TARGET_CREATE_INFERIOR_HOOK
995#define TARGET_CREATE_INFERIOR_HOOK(PID)
996#endif
997
998/* Hardware watchpoint interfaces. */
999
1000/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1001 write). */
1002
1003#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1004#define STOPPED_BY_WATCHPOINT(w) \
1005 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1006#endif
7df1a324
KW
1007
1008/* Non-zero if we have continuable watchpoints */
1009
1010#ifndef HAVE_CONTINUABLE_WATCHPOINT
1011#define HAVE_CONTINUABLE_WATCHPOINT \
1012 (current_target.to_have_continuable_watchpoint)
1013#endif
c906108c
SS
1014
1015/* HP-UX supplies these operations, which respectively disable and enable
1016 the memory page-protections that are used to implement hardware watchpoints
0d06e24b
JM
1017 on that platform. See wait_for_inferior's use of these. */
1018
c906108c
SS
1019#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1020#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1021#endif
1022
1023#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1024#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1025#endif
1026
ccaa32c7 1027/* Provide defaults for hardware watchpoint functions. */
c906108c 1028
ccaa32c7
GS
1029/* If the *_hw_beakpoint functions have not been defined
1030 elsewhere use the definitions in the target vector. */
c906108c
SS
1031
1032/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1033 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1034 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1035 (including this one?). OTHERTYPE is who knows what... */
1036
ccaa32c7
GS
1037#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1038#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1039 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1040#endif
c906108c
SS
1041
1042#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1043#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
ccaa32c7 1044 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
c906108c
SS
1045#endif
1046
c906108c
SS
1047
1048/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1049 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1050 success, non-zero for failure. */
1051
ccaa32c7
GS
1052#ifndef target_insert_watchpoint
1053#define target_insert_watchpoint(addr, len, type) \
1054 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1055
ccaa32c7
GS
1056#define target_remove_watchpoint(addr, len, type) \
1057 (*current_target.to_remove_watchpoint) (addr, len, type)
1058#endif
c906108c
SS
1059
1060#ifndef target_insert_hw_breakpoint
ccaa32c7
GS
1061#define target_insert_hw_breakpoint(addr, save) \
1062 (*current_target.to_insert_hw_breakpoint) (addr, save)
1063
1064#define target_remove_hw_breakpoint(addr, save) \
1065 (*current_target.to_remove_hw_breakpoint) (addr, save)
c906108c
SS
1066#endif
1067
1068#ifndef target_stopped_data_address
ccaa32c7
GS
1069#define target_stopped_data_address() \
1070 (*current_target.to_stopped_data_address) ()
c906108c
SS
1071#endif
1072
1073/* If defined, then we need to decr pc by this much after a hardware break-
1074 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1075
1076#ifndef DECR_PC_AFTER_HW_BREAK
1077#define DECR_PC_AFTER_HW_BREAK 0
1078#endif
1079
1080/* Sometimes gdb may pick up what appears to be a valid target address
1081 from a minimal symbol, but the value really means, essentially,
1082 "This is an index into a table which is populated when the inferior
0d06e24b
JM
1083 is run. Therefore, do not attempt to use this as a PC." */
1084
c906108c
SS
1085#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1086#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1087#endif
1088
1089/* This will only be defined by a target that supports catching vfork events,
1090 such as HP-UX.
1091
1092 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1093 child process after it has exec'd, causes the parent process to resume as
1094 well. To prevent the parent from running spontaneously, such targets should
0d06e24b 1095 define this to a function that prevents that from happening. */
c906108c
SS
1096#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1097#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1098#endif
1099
1100/* This will only be defined by a target that supports catching vfork events,
1101 such as HP-UX.
1102
1103 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1104 process must be resumed when it delivers its exec event, before the parent
0d06e24b
JM
1105 vfork event will be delivered to us. */
1106
c906108c
SS
1107#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1108#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1109#endif
1110
1111/* Routines for maintenance of the target structures...
1112
1113 add_target: Add a target to the list of all possible targets.
1114
1115 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1116 targets, within its particular stratum of the stack. Result
1117 is 0 if now atop the stack, nonzero if not on top (maybe
1118 should warn user).
c906108c
SS
1119
1120 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1121 no matter where it is on the list. Returns 0 if no
1122 change, 1 if removed from stack.
c906108c 1123
c5aa993b 1124 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1125
a14ed312 1126extern void add_target (struct target_ops *);
c906108c 1127
a14ed312 1128extern int push_target (struct target_ops *);
c906108c 1129
a14ed312 1130extern int unpush_target (struct target_ops *);
c906108c 1131
a14ed312 1132extern void target_preopen (int);
c906108c 1133
a14ed312 1134extern void pop_target (void);
c906108c
SS
1135
1136/* Struct section_table maps address ranges to file sections. It is
1137 mostly used with BFD files, but can be used without (e.g. for handling
1138 raw disks, or files not in formats handled by BFD). */
1139
c5aa993b
JM
1140struct section_table
1141 {
1142 CORE_ADDR addr; /* Lowest address in section */
1143 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1144
c5aa993b 1145 sec_ptr the_bfd_section;
c906108c 1146
c5aa993b
JM
1147 bfd *bfd; /* BFD file pointer */
1148 };
c906108c
SS
1149
1150/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1151 Returns 0 if OK, 1 on error. */
1152
570b8f7c
AC
1153extern int build_section_table (bfd *, struct section_table **,
1154 struct section_table **);
c906108c
SS
1155
1156/* From mem-break.c */
1157
a14ed312 1158extern int memory_remove_breakpoint (CORE_ADDR, char *);
c906108c 1159
a14ed312 1160extern int memory_insert_breakpoint (CORE_ADDR, char *);
c906108c 1161
a14ed312 1162extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
917317f4 1163
a14ed312 1164extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
917317f4 1165
c906108c
SS
1166
1167/* From target.c */
1168
a14ed312 1169extern void initialize_targets (void);
c906108c 1170
a14ed312 1171extern void noprocess (void);
c906108c 1172
a14ed312 1173extern void find_default_attach (char *, int);
c906108c 1174
a14ed312 1175extern void find_default_create_inferior (char *, char *, char **);
c906108c 1176
a14ed312 1177extern struct target_ops *find_run_target (void);
7a292a7a 1178
a14ed312 1179extern struct target_ops *find_core_target (void);
6426a772 1180
a14ed312 1181extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1182
570b8f7c
AC
1183extern int target_resize_to_sections (struct target_ops *target,
1184 int num_added);
07cd4b97
JB
1185
1186extern void remove_target_sections (bfd *abfd);
1187
c906108c
SS
1188\f
1189/* Stuff that should be shared among the various remote targets. */
1190
1191/* Debugging level. 0 is off, and non-zero values mean to print some debug
1192 information (higher values, more information). */
1193extern int remote_debug;
1194
1195/* Speed in bits per second, or -1 which means don't mess with the speed. */
1196extern int baud_rate;
1197/* Timeout limit for response from target. */
1198extern int remote_timeout;
1199
c906108c
SS
1200\f
1201/* Functions for helping to write a native target. */
1202
1203/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1204extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1205
c2d11a7d 1206/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1207 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1208/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1209 to the shorter target_signal_p() because it is far less ambigious.
1210 In this context ``target_signal'' refers to GDB's internal
1211 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1212 refers to the target operating system's signal. Confused? */
1213
c2d11a7d
JM
1214extern int target_signal_to_host_p (enum target_signal signo);
1215
1216/* Convert between host signal numbers and enum target_signal's.
1217 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1218 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1219/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1220 refering to the target operating system's signal numbering.
1221 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1222 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1223 internal representation of a target operating system's signal. */
1224
a14ed312
KB
1225extern enum target_signal target_signal_from_host (int);
1226extern int target_signal_to_host (enum target_signal);
c906108c
SS
1227
1228/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1229extern enum target_signal target_signal_from_command (int);
c906108c
SS
1230
1231/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1232extern void push_remote_target (char *name, int from_tty);
c906108c
SS
1233\f
1234/* Imported from machine dependent code */
1235
c906108c 1236/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1237void target_ignore (void);
c906108c 1238
c5aa993b 1239#endif /* !defined (TARGET_H) */