]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/target.h
import gdb-2000-01-10 snapshot
[thirdparty/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c
SS
1/* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 91, 92, 93, 94, 1999 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by John Gilmore.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#if !defined (TARGET_H)
23#define TARGET_H
24
25/* This include file defines the interface between the main part
26 of the debugger, and the part which is target-specific, or
27 specific to the communications interface between us and the
28 target.
29
30 A TARGET is an interface between the debugger and a particular
31 kind of file or process. Targets can be STACKED in STRATA,
32 so that more than one target can potentially respond to a request.
33 In particular, memory accesses will walk down the stack of targets
34 until they find a target that is interested in handling that particular
35 address. STRATA are artificial boundaries on the stack, within
36 which particular kinds of targets live. Strata exist so that
37 people don't get confused by pushing e.g. a process target and then
38 a file target, and wondering why they can't see the current values
39 of variables any more (the file target is handling them and they
40 never get to the process target). So when you push a file target,
41 it goes into the file stratum, which is always below the process
42 stratum. */
43
44#include "bfd.h"
45#include "symtab.h"
46
c5aa993b
JM
47enum strata
48 {
49 dummy_stratum, /* The lowest of the low */
50 file_stratum, /* Executable files, etc */
51 core_stratum, /* Core dump files */
52 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
53 process_stratum, /* Executing processes */
54 thread_stratum /* Executing threads */
c5aa993b 55 };
c906108c 56
c5aa993b
JM
57enum thread_control_capabilities
58 {
59 tc_none = 0, /* Default: can't control thread execution. */
60 tc_schedlock = 1, /* Can lock the thread scheduler. */
61 tc_switch = 2 /* Can switch the running thread on demand. */
62 };
c906108c
SS
63
64/* Stuff for target_wait. */
65
66/* Generally, what has the program done? */
c5aa993b
JM
67enum target_waitkind
68 {
69 /* The program has exited. The exit status is in value.integer. */
70 TARGET_WAITKIND_EXITED,
c906108c 71
c5aa993b
JM
72 /* The program has stopped with a signal. Which signal is in value.sig. */
73 TARGET_WAITKIND_STOPPED,
c906108c 74
c5aa993b
JM
75 /* The program has terminated with a signal. Which signal is in
76 value.sig. */
77 TARGET_WAITKIND_SIGNALLED,
c906108c 78
c5aa993b
JM
79 /* The program is letting us know that it dynamically loaded something
80 (e.g. it called load(2) on AIX). */
81 TARGET_WAITKIND_LOADED,
c906108c 82
c5aa993b
JM
83 /* The program has forked. A "related" process' ID is in value.related_pid.
84 I.e., if the child forks, value.related_pid is the parent's ID.
c906108c 85 */
c5aa993b 86 TARGET_WAITKIND_FORKED,
c906108c 87
c5aa993b 88 /* The program has vforked. A "related" process's ID is in value.related_pid.
c906108c 89 */
c5aa993b 90 TARGET_WAITKIND_VFORKED,
c906108c 91
c5aa993b
JM
92 /* The program has exec'ed a new executable file. The new file's pathname
93 is pointed to by value.execd_pathname.
c906108c 94 */
c5aa993b 95 TARGET_WAITKIND_EXECD,
c906108c 96
c5aa993b
JM
97 /* The program has entered or returned from a system call. On HP-UX, this
98 is used in the hardware watchpoint implementation. The syscall's unique
99 integer ID number is in value.syscall_id;
c906108c 100 */
c5aa993b
JM
101 TARGET_WAITKIND_SYSCALL_ENTRY,
102 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 103
c5aa993b
JM
104 /* Nothing happened, but we stopped anyway. This perhaps should be handled
105 within target_wait, but I'm not sure target_wait should be resuming the
106 inferior. */
c4093a6a
JM
107 TARGET_WAITKIND_SPURIOUS,
108
109 /* This is used for target async and extended-async
110 only. Remote_async_wait() returns this when there is an event
111 on the inferior, but the rest of the world is not interested in
112 it. The inferior has not stopped, but has just sent some output
113 to the console, for instance. In this case, we want to go back
114 to the event loop and wait there for another event from the
115 inferior, rather than being stuck in the remote_async_wait()
116 function. This way the event loop is responsive to other events,
117 like for instance the user typing. */
118 TARGET_WAITKIND_IGNORE
c906108c
SS
119 };
120
121/* The numbering of these signals is chosen to match traditional unix
122 signals (insofar as various unices use the same numbers, anyway).
123 It is also the numbering of the GDB remote protocol. Other remote
124 protocols, if they use a different numbering, should make sure to
cd0fc7c3 125 translate appropriately.
c906108c 126
cd0fc7c3
SS
127 Since these numbers have actually made it out into other software
128 (stubs, etc.), you mustn't disturb the assigned numbering. If you
129 need to add new signals here, add them to the end of the explicitly
130 numbered signals.
131
132 This is based strongly on Unix/POSIX signals for several reasons:
c906108c
SS
133 (1) This set of signals represents a widely-accepted attempt to
134 represent events of this sort in a portable fashion, (2) we want a
135 signal to make it from wait to child_wait to the user intact, (3) many
136 remote protocols use a similar encoding. However, it is
137 recognized that this set of signals has limitations (such as not
138 distinguishing between various kinds of SIGSEGV, or not
139 distinguishing hitting a breakpoint from finishing a single step).
140 So in the future we may get around this either by adding additional
141 signals for breakpoint, single-step, etc., or by adding signal
142 codes; the latter seems more in the spirit of what BSD, System V,
143 etc. are doing to address these issues. */
144
145/* For an explanation of what each signal means, see
146 target_signal_to_string. */
147
c5aa993b
JM
148enum target_signal
149 {
150 /* Used some places (e.g. stop_signal) to record the concept that
151 there is no signal. */
152 TARGET_SIGNAL_0 = 0,
153 TARGET_SIGNAL_FIRST = 0,
154 TARGET_SIGNAL_HUP = 1,
155 TARGET_SIGNAL_INT = 2,
156 TARGET_SIGNAL_QUIT = 3,
157 TARGET_SIGNAL_ILL = 4,
158 TARGET_SIGNAL_TRAP = 5,
159 TARGET_SIGNAL_ABRT = 6,
160 TARGET_SIGNAL_EMT = 7,
161 TARGET_SIGNAL_FPE = 8,
162 TARGET_SIGNAL_KILL = 9,
163 TARGET_SIGNAL_BUS = 10,
164 TARGET_SIGNAL_SEGV = 11,
165 TARGET_SIGNAL_SYS = 12,
166 TARGET_SIGNAL_PIPE = 13,
167 TARGET_SIGNAL_ALRM = 14,
168 TARGET_SIGNAL_TERM = 15,
169 TARGET_SIGNAL_URG = 16,
170 TARGET_SIGNAL_STOP = 17,
171 TARGET_SIGNAL_TSTP = 18,
172 TARGET_SIGNAL_CONT = 19,
173 TARGET_SIGNAL_CHLD = 20,
174 TARGET_SIGNAL_TTIN = 21,
175 TARGET_SIGNAL_TTOU = 22,
176 TARGET_SIGNAL_IO = 23,
177 TARGET_SIGNAL_XCPU = 24,
178 TARGET_SIGNAL_XFSZ = 25,
179 TARGET_SIGNAL_VTALRM = 26,
180 TARGET_SIGNAL_PROF = 27,
181 TARGET_SIGNAL_WINCH = 28,
182 TARGET_SIGNAL_LOST = 29,
183 TARGET_SIGNAL_USR1 = 30,
184 TARGET_SIGNAL_USR2 = 31,
185 TARGET_SIGNAL_PWR = 32,
186 /* Similar to SIGIO. Perhaps they should have the same number. */
187 TARGET_SIGNAL_POLL = 33,
188 TARGET_SIGNAL_WIND = 34,
189 TARGET_SIGNAL_PHONE = 35,
190 TARGET_SIGNAL_WAITING = 36,
191 TARGET_SIGNAL_LWP = 37,
192 TARGET_SIGNAL_DANGER = 38,
193 TARGET_SIGNAL_GRANT = 39,
194 TARGET_SIGNAL_RETRACT = 40,
195 TARGET_SIGNAL_MSG = 41,
196 TARGET_SIGNAL_SOUND = 42,
197 TARGET_SIGNAL_SAK = 43,
198 TARGET_SIGNAL_PRIO = 44,
199 TARGET_SIGNAL_REALTIME_33 = 45,
200 TARGET_SIGNAL_REALTIME_34 = 46,
201 TARGET_SIGNAL_REALTIME_35 = 47,
202 TARGET_SIGNAL_REALTIME_36 = 48,
203 TARGET_SIGNAL_REALTIME_37 = 49,
204 TARGET_SIGNAL_REALTIME_38 = 50,
205 TARGET_SIGNAL_REALTIME_39 = 51,
206 TARGET_SIGNAL_REALTIME_40 = 52,
207 TARGET_SIGNAL_REALTIME_41 = 53,
208 TARGET_SIGNAL_REALTIME_42 = 54,
209 TARGET_SIGNAL_REALTIME_43 = 55,
210 TARGET_SIGNAL_REALTIME_44 = 56,
211 TARGET_SIGNAL_REALTIME_45 = 57,
212 TARGET_SIGNAL_REALTIME_46 = 58,
213 TARGET_SIGNAL_REALTIME_47 = 59,
214 TARGET_SIGNAL_REALTIME_48 = 60,
215 TARGET_SIGNAL_REALTIME_49 = 61,
216 TARGET_SIGNAL_REALTIME_50 = 62,
217 TARGET_SIGNAL_REALTIME_51 = 63,
218 TARGET_SIGNAL_REALTIME_52 = 64,
219 TARGET_SIGNAL_REALTIME_53 = 65,
220 TARGET_SIGNAL_REALTIME_54 = 66,
221 TARGET_SIGNAL_REALTIME_55 = 67,
222 TARGET_SIGNAL_REALTIME_56 = 68,
223 TARGET_SIGNAL_REALTIME_57 = 69,
224 TARGET_SIGNAL_REALTIME_58 = 70,
225 TARGET_SIGNAL_REALTIME_59 = 71,
226 TARGET_SIGNAL_REALTIME_60 = 72,
227 TARGET_SIGNAL_REALTIME_61 = 73,
228 TARGET_SIGNAL_REALTIME_62 = 74,
229 TARGET_SIGNAL_REALTIME_63 = 75,
230
231 /* Used internally by Solaris threads. See signal(5) on Solaris. */
232 TARGET_SIGNAL_CANCEL = 76,
cd0fc7c3 233
d4f3574e
SS
234 /* Yes, this pains me, too. But LynxOS didn't have SIG32, and now
235 Linux does, and we can't disturb the numbering, since it's part
236 of the protocol. Note that in some GDB's TARGET_SIGNAL_REALTIME_32
237 is number 76. */
238 TARGET_SIGNAL_REALTIME_32,
239
c906108c 240#if defined(MACH) || defined(__MACH__)
c5aa993b
JM
241 /* Mach exceptions */
242 TARGET_EXC_BAD_ACCESS,
243 TARGET_EXC_BAD_INSTRUCTION,
244 TARGET_EXC_ARITHMETIC,
245 TARGET_EXC_EMULATION,
246 TARGET_EXC_SOFTWARE,
247 TARGET_EXC_BREAKPOINT,
c906108c 248#endif
c5aa993b 249 TARGET_SIGNAL_INFO,
c906108c 250
c5aa993b
JM
251 /* Some signal we don't know about. */
252 TARGET_SIGNAL_UNKNOWN,
c906108c 253
c5aa993b
JM
254 /* Use whatever signal we use when one is not specifically specified
255 (for passing to proceed and so on). */
256 TARGET_SIGNAL_DEFAULT,
c906108c 257
c5aa993b
JM
258 /* Last and unused enum value, for sizing arrays, etc. */
259 TARGET_SIGNAL_LAST
260 };
c906108c 261
c5aa993b
JM
262struct target_waitstatus
263 {
264 enum target_waitkind kind;
265
266 /* Forked child pid, execd pathname, exit status or signal number. */
267 union
268 {
269 int integer;
270 enum target_signal sig;
271 int related_pid;
272 char *execd_pathname;
273 int syscall_id;
274 }
275 value;
276 };
c906108c 277
2acceee2
JM
278/* Possible types of events that the inferior handler will have to
279 deal with. */
280enum inferior_event_type
281 {
282 /* There is a request to quit the inferior, abandon it. */
283 INF_QUIT_REQ,
284 /* Process a normal inferior event which will result in target_wait
285 being called. */
286 INF_REG_EVENT,
287 /* Deal with an error on the inferior. */
288 INF_ERROR,
289 /* We are called because a timer went off. */
290 INF_TIMER,
291 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
292 INF_EXEC_COMPLETE,
293 /* We are called to do some stuff after the inferior stops, but we
294 are expected to reenter the proceed() and
295 handle_inferior_event() functions. This is used only in case of
296 'step n' like commands. */
297 INF_EXEC_CONTINUE
2acceee2
JM
298 };
299
c906108c
SS
300/* Return the string for a signal. */
301extern char *target_signal_to_string PARAMS ((enum target_signal));
302
303/* Return the name (SIGHUP, etc.) for a signal. */
304extern char *target_signal_to_name PARAMS ((enum target_signal));
305
306/* Given a name (SIGHUP, etc.), return its signal. */
307enum target_signal target_signal_from_name PARAMS ((char *));
c906108c 308\f
c5aa993b 309
c906108c
SS
310/* If certain kinds of activity happen, target_wait should perform
311 callbacks. */
312/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
313 on TARGET_ACTIVITY_FD. */
314extern int target_activity_fd;
315/* Returns zero to leave the inferior alone, one to interrupt it. */
316extern int (*target_activity_function) PARAMS ((void));
317\f
318struct target_ops
c5aa993b
JM
319 {
320 char *to_shortname; /* Name this target type */
321 char *to_longname; /* Name for printing */
322 char *to_doc; /* Documentation. Does not include trailing
c906108c
SS
323 newline, and starts with a one-line descrip-
324 tion (probably similar to to_longname). */
c5aa993b
JM
325 void (*to_open) PARAMS ((char *, int));
326 void (*to_close) PARAMS ((int));
327 void (*to_attach) PARAMS ((char *, int));
328 void (*to_post_attach) PARAMS ((int));
329 void (*to_require_attach) PARAMS ((char *, int));
330 void (*to_detach) PARAMS ((char *, int));
331 void (*to_require_detach) PARAMS ((int, char *, int));
332 void (*to_resume) PARAMS ((int, int, enum target_signal));
333 int (*to_wait) PARAMS ((int, struct target_waitstatus *));
334 void (*to_post_wait) PARAMS ((int, int));
335 void (*to_fetch_registers) PARAMS ((int));
336 void (*to_store_registers) PARAMS ((int));
337 void (*to_prepare_to_store) PARAMS ((void));
338
339 /* Transfer LEN bytes of memory between GDB address MYADDR and
340 target address MEMADDR. If WRITE, transfer them to the target, else
341 transfer them from the target. TARGET is the target from which we
342 get this function.
343
344 Return value, N, is one of the following:
345
346 0 means that we can't handle this. If errno has been set, it is the
347 error which prevented us from doing it (FIXME: What about bfd_error?).
348
349 positive (call it N) means that we have transferred N bytes
350 starting at MEMADDR. We might be able to handle more bytes
351 beyond this length, but no promises.
352
353 negative (call its absolute value N) means that we cannot
354 transfer right at MEMADDR, but we could transfer at least
355 something at MEMADDR + N. */
356
357 int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
358 int len, int write,
359 struct target_ops * target));
c906108c
SS
360
361#if 0
c5aa993b 362 /* Enable this after 4.12. */
c906108c 363
c5aa993b
JM
364 /* Search target memory. Start at STARTADDR and take LEN bytes of
365 target memory, and them with MASK, and compare to DATA. If they
366 match, set *ADDR_FOUND to the address we found it at, store the data
367 we found at LEN bytes starting at DATA_FOUND, and return. If
368 not, add INCREMENT to the search address and keep trying until
369 the search address is outside of the range [LORANGE,HIRANGE).
c906108c 370
c5aa993b
JM
371 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and return. */
372 void (*to_search) PARAMS ((int len, char *data, char *mask,
373 CORE_ADDR startaddr, int increment,
374 CORE_ADDR lorange, CORE_ADDR hirange,
375 CORE_ADDR * addr_found, char *data_found));
c906108c
SS
376
377#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
378 (*current_target.to_search) (len, data, mask, startaddr, increment, \
379 lorange, hirange, addr_found, data_found)
c5aa993b
JM
380#endif /* 0 */
381
382 void (*to_files_info) PARAMS ((struct target_ops *));
383 int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
384 int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
385 void (*to_terminal_init) PARAMS ((void));
386 void (*to_terminal_inferior) PARAMS ((void));
387 void (*to_terminal_ours_for_output) PARAMS ((void));
388 void (*to_terminal_ours) PARAMS ((void));
389 void (*to_terminal_info) PARAMS ((char *, int));
390 void (*to_kill) PARAMS ((void));
391 void (*to_load) PARAMS ((char *, int));
392 int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
393 void (*to_create_inferior) PARAMS ((char *, char *, char **));
394 void (*to_post_startup_inferior) PARAMS ((int));
395 void (*to_acknowledge_created_inferior) PARAMS ((int));
396 void (*to_clone_and_follow_inferior) PARAMS ((int, int *));
397 void (*to_post_follow_inferior_by_clone) PARAMS ((void));
398 int (*to_insert_fork_catchpoint) PARAMS ((int));
399 int (*to_remove_fork_catchpoint) PARAMS ((int));
400 int (*to_insert_vfork_catchpoint) PARAMS ((int));
401 int (*to_remove_vfork_catchpoint) PARAMS ((int));
402 int (*to_has_forked) PARAMS ((int, int *));
403 int (*to_has_vforked) PARAMS ((int, int *));
404 int (*to_can_follow_vfork_prior_to_exec) PARAMS ((void));
405 void (*to_post_follow_vfork) PARAMS ((int, int, int, int));
406 int (*to_insert_exec_catchpoint) PARAMS ((int));
407 int (*to_remove_exec_catchpoint) PARAMS ((int));
408 int (*to_has_execd) PARAMS ((int, char **));
409 int (*to_reported_exec_events_per_exec_call) PARAMS ((void));
410 int (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *));
411 int (*to_has_exited) PARAMS ((int, int, int *));
412 void (*to_mourn_inferior) PARAMS ((void));
413 int (*to_can_run) PARAMS ((void));
414 void (*to_notice_signals) PARAMS ((int pid));
415 int (*to_thread_alive) PARAMS ((int pid));
416 void (*to_find_new_threads) PARAMS ((void));
ed9a39eb 417 char *(*to_pid_to_str) PARAMS ((int));
c5aa993b
JM
418 void (*to_stop) PARAMS ((void));
419 int (*to_query) PARAMS ((int /*char */ , char *, char *, int *));
96baa820 420 void (*to_rcmd) (char *command, struct gdb_file *output);
c5aa993b
JM
421 struct symtab_and_line *(*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int));
422 struct exception_event_record *(*to_get_current_exception_event) PARAMS ((void));
423 char *(*to_pid_to_exec_file) PARAMS ((int pid));
424 char *(*to_core_file_to_sym_file) PARAMS ((char *));
425 enum strata to_stratum;
426 struct target_ops
427 *DONT_USE; /* formerly to_next */
428 int to_has_all_memory;
429 int to_has_memory;
430 int to_has_stack;
431 int to_has_registers;
432 int to_has_execution;
433 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
434 struct section_table
435 *to_sections;
436 struct section_table
437 *to_sections_end;
6426a772
JM
438 /* ASYNC target controls */
439 int (*to_can_async_p) (void);
440 int (*to_is_async_p) (void);
2acceee2 441 void (*to_async) (void (*cb) (enum inferior_event_type, void *context), void *context);
ed9a39eb 442 int to_async_mask_value;
c5aa993b
JM
443 int to_magic;
444 /* Need sub-structure for target machine related rather than comm related? */
445 };
c906108c
SS
446
447/* Magic number for checking ops size. If a struct doesn't end with this
448 number, somebody changed the declaration but didn't change all the
449 places that initialize one. */
450
451#define OPS_MAGIC 3840
452
453/* The ops structure for our "current" target process. This should
454 never be NULL. If there is no target, it points to the dummy_target. */
455
c5aa993b 456extern struct target_ops current_target;
c906108c
SS
457
458/* An item on the target stack. */
459
460struct target_stack_item
c5aa993b
JM
461 {
462 struct target_stack_item *next;
463 struct target_ops *target_ops;
464 };
c906108c
SS
465
466/* The target stack. */
467
468extern struct target_stack_item *target_stack;
469
470/* Define easy words for doing these operations on our current target. */
471
472#define target_shortname (current_target.to_shortname)
473#define target_longname (current_target.to_longname)
474
475/* The open routine takes the rest of the parameters from the command,
476 and (if successful) pushes a new target onto the stack.
477 Targets should supply this routine, if only to provide an error message. */
478#define target_open(name, from_tty) \
479 (*current_target.to_open) (name, from_tty)
480
481/* Does whatever cleanup is required for a target that we are no longer
482 going to be calling. Argument says whether we are quitting gdb and
483 should not get hung in case of errors, or whether we want a clean
484 termination even if it takes a while. This routine is automatically
485 always called just before a routine is popped off the target stack.
486 Closing file descriptors and freeing memory are typical things it should
487 do. */
488
489#define target_close(quitting) \
490 (*current_target.to_close) (quitting)
491
492/* Attaches to a process on the target side. Arguments are as passed
493 to the `attach' command by the user. This routine can be called
494 when the target is not on the target-stack, if the target_can_run
495 routine returns 1; in that case, it must push itself onto the stack.
496 Upon exit, the target should be ready for normal operations, and
497 should be ready to deliver the status of the process immediately
498 (without waiting) to an upcoming target_wait call. */
499
500#define target_attach(args, from_tty) \
501 (*current_target.to_attach) (args, from_tty)
502
503/* The target_attach operation places a process under debugger control,
504 and stops the process.
505
506 This operation provides a target-specific hook that allows the
507 necessary bookkeeping to be performed after an attach completes.
c5aa993b 508 */
c906108c
SS
509#define target_post_attach(pid) \
510 (*current_target.to_post_attach) (pid)
511
512/* Attaches to a process on the target side, if not already attached.
513 (If already attached, takes no action.)
514
515 This operation can be used to follow the child process of a fork.
516 On some targets, such child processes of an original inferior process
517 are automatically under debugger control, and thus do not require an
518 actual attach operation. */
519
520#define target_require_attach(args, from_tty) \
521 (*current_target.to_require_attach) (args, from_tty)
522
523/* Takes a program previously attached to and detaches it.
524 The program may resume execution (some targets do, some don't) and will
525 no longer stop on signals, etc. We better not have left any breakpoints
526 in the program or it'll die when it hits one. ARGS is arguments
527 typed by the user (e.g. a signal to send the process). FROM_TTY
528 says whether to be verbose or not. */
529
530extern void
531target_detach PARAMS ((char *, int));
532
533/* Detaches from a process on the target side, if not already dettached.
534 (If already detached, takes no action.)
535
536 This operation can be used to follow the parent process of a fork.
537 On some targets, such child processes of an original inferior process
538 are automatically under debugger control, and thus do require an actual
539 detach operation.
540
541 PID is the process id of the child to detach from.
542 ARGS is arguments typed by the user (e.g. a signal to send the process).
543 FROM_TTY says whether to be verbose or not. */
544
545#define target_require_detach(pid, args, from_tty) \
546 (*current_target.to_require_detach) (pid, args, from_tty)
547
548/* Resume execution of the target process PID. STEP says whether to
549 single-step or to run free; SIGGNAL is the signal to be given to
550 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
551 pass TARGET_SIGNAL_DEFAULT. */
552
553#define target_resume(pid, step, siggnal) \
554 (*current_target.to_resume) (pid, step, siggnal)
555
556/* Wait for process pid to do something. Pid = -1 to wait for any pid
557 to do something. Return pid of child, or -1 in case of error;
558 store status through argument pointer STATUS. Note that it is
559 *not* OK to return_to_top_level out of target_wait without popping
560 the debugging target from the stack; GDB isn't prepared to get back
561 to the prompt with a debugging target but without the frame cache,
562 stop_pc, etc., set up. */
563
564#define target_wait(pid, status) \
565 (*current_target.to_wait) (pid, status)
566
567/* The target_wait operation waits for a process event to occur, and
568 thereby stop the process.
569
570 On some targets, certain events may happen in sequences. gdb's
571 correct response to any single event of such a sequence may require
572 knowledge of what earlier events in the sequence have been seen.
573
574 This operation provides a target-specific hook that allows the
575 necessary bookkeeping to be performed to track such sequences.
c5aa993b 576 */
c906108c
SS
577
578#define target_post_wait(pid, status) \
579 (*current_target.to_post_wait) (pid, status)
580
581/* Fetch register REGNO, or all regs if regno == -1. No result. */
582
583#define target_fetch_registers(regno) \
584 (*current_target.to_fetch_registers) (regno)
585
586/* Store at least register REGNO, or all regs if REGNO == -1.
587 It can store as many registers as it wants to, so target_prepare_to_store
588 must have been previously called. Calls error() if there are problems. */
589
590#define target_store_registers(regs) \
591 (*current_target.to_store_registers) (regs)
592
593/* Get ready to modify the registers array. On machines which store
594 individual registers, this doesn't need to do anything. On machines
595 which store all the registers in one fell swoop, this makes sure
596 that REGISTERS contains all the registers from the program being
597 debugged. */
598
599#define target_prepare_to_store() \
600 (*current_target.to_prepare_to_store) ()
601
ed9a39eb
JM
602extern int
603target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
c906108c
SS
604
605extern int
606target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
607
608extern int
609target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
c5aa993b 610 asection * bfd_section));
c906108c 611
c906108c
SS
612extern int
613target_write_memory PARAMS ((CORE_ADDR, char *, int));
614
615extern int
616xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
617
618extern int
619child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
620
917317f4
JM
621/* Make a single attempt at transfering LEN bytes. On a successful
622 transfer, the number of bytes actually transfered is returned and
623 ERR is set to 0. When a transfer fails, -1 is returned (the number
624 of bytes actually transfered is not defined) and ERR is set to a
625 non-zero error indication. */
626
ed9a39eb
JM
627extern int
628target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 629
ed9a39eb
JM
630extern int
631target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 632
c906108c 633extern char *
ed9a39eb 634child_pid_to_exec_file PARAMS ((int));
c906108c
SS
635
636extern char *
ed9a39eb 637child_core_file_to_sym_file PARAMS ((char *));
c906108c
SS
638
639#if defined(CHILD_POST_ATTACH)
640extern void
641child_post_attach PARAMS ((int));
642#endif
643
644extern void
645child_post_wait PARAMS ((int, int));
646
647extern void
648child_post_startup_inferior PARAMS ((int));
649
650extern void
651child_acknowledge_created_inferior PARAMS ((int));
652
653extern void
654child_clone_and_follow_inferior PARAMS ((int, int *));
655
656extern void
657child_post_follow_inferior_by_clone PARAMS ((void));
658
659extern int
660child_insert_fork_catchpoint PARAMS ((int));
661
662extern int
663child_remove_fork_catchpoint PARAMS ((int));
664
665extern int
666child_insert_vfork_catchpoint PARAMS ((int));
667
668extern int
669child_remove_vfork_catchpoint PARAMS ((int));
670
671extern int
672child_has_forked PARAMS ((int, int *));
673
674extern int
675child_has_vforked PARAMS ((int, int *));
676
677extern void
678child_acknowledge_created_inferior PARAMS ((int));
679
680extern int
681child_can_follow_vfork_prior_to_exec PARAMS ((void));
682
683extern void
684child_post_follow_vfork PARAMS ((int, int, int, int));
685
686extern int
687child_insert_exec_catchpoint PARAMS ((int));
688
689extern int
690child_remove_exec_catchpoint PARAMS ((int));
691
692extern int
693child_has_execd PARAMS ((int, char **));
694
695extern int
696child_reported_exec_events_per_exec_call PARAMS ((void));
697
698extern int
699child_has_syscall_event PARAMS ((int, enum target_waitkind *, int *));
700
701extern int
702child_has_exited PARAMS ((int, int, int *));
703
704extern int
705child_thread_alive PARAMS ((int));
706
707/* From exec.c */
708
709extern void
710print_section_info PARAMS ((struct target_ops *, bfd *));
711
712/* Print a line about the current target. */
713
714#define target_files_info() \
715 (*current_target.to_files_info) (&current_target)
716
717/* Insert a breakpoint at address ADDR in the target machine.
718 SAVE is a pointer to memory allocated for saving the
719 target contents. It is guaranteed by the caller to be long enough
720 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
721 an errno value. */
722
723#define target_insert_breakpoint(addr, save) \
724 (*current_target.to_insert_breakpoint) (addr, save)
725
726/* Remove a breakpoint at address ADDR in the target machine.
727 SAVE is a pointer to the same save area
728 that was previously passed to target_insert_breakpoint.
729 Result is 0 for success, or an errno value. */
730
731#define target_remove_breakpoint(addr, save) \
732 (*current_target.to_remove_breakpoint) (addr, save)
733
734/* Initialize the terminal settings we record for the inferior,
735 before we actually run the inferior. */
736
737#define target_terminal_init() \
738 (*current_target.to_terminal_init) ()
739
740/* Put the inferior's terminal settings into effect.
741 This is preparation for starting or resuming the inferior. */
742
743#define target_terminal_inferior() \
744 (*current_target.to_terminal_inferior) ()
745
746/* Put some of our terminal settings into effect,
747 enough to get proper results from our output,
748 but do not change into or out of RAW mode
749 so that no input is discarded.
750
751 After doing this, either terminal_ours or terminal_inferior
752 should be called to get back to a normal state of affairs. */
753
754#define target_terminal_ours_for_output() \
755 (*current_target.to_terminal_ours_for_output) ()
756
757/* Put our terminal settings into effect.
758 First record the inferior's terminal settings
759 so they can be restored properly later. */
760
761#define target_terminal_ours() \
762 (*current_target.to_terminal_ours) ()
763
764/* Print useful information about our terminal status, if such a thing
765 exists. */
766
767#define target_terminal_info(arg, from_tty) \
768 (*current_target.to_terminal_info) (arg, from_tty)
769
770/* Kill the inferior process. Make it go away. */
771
772#define target_kill() \
773 (*current_target.to_kill) ()
774
775/* Load an executable file into the target process. This is expected to
776 not only bring new code into the target process, but also to update
777 GDB's symbol tables to match. */
778
11cf8741 779extern void target_load (char *arg, int from_tty);
c906108c
SS
780
781/* Look up a symbol in the target's symbol table. NAME is the symbol
782 name. ADDRP is a CORE_ADDR * pointing to where the value of the symbol
783 should be returned. The result is 0 if successful, nonzero if the
784 symbol does not exist in the target environment. This function should
785 not call error() if communication with the target is interrupted, since
786 it is called from symbol reading, but should return nonzero, possibly
787 doing a complain(). */
788
789#define target_lookup_symbol(name, addrp) \
790 (*current_target.to_lookup_symbol) (name, addrp)
791
792/* Start an inferior process and set inferior_pid to its pid.
793 EXEC_FILE is the file to run.
794 ALLARGS is a string containing the arguments to the program.
795 ENV is the environment vector to pass. Errors reported with error().
796 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 797
c906108c
SS
798#define target_create_inferior(exec_file, args, env) \
799 (*current_target.to_create_inferior) (exec_file, args, env)
800
801
802/* Some targets (such as ttrace-based HPUX) don't allow us to request
803 notification of inferior events such as fork and vork immediately
804 after the inferior is created. (This because of how gdb gets an
805 inferior created via invoking a shell to do it. In such a scenario,
806 if the shell init file has commands in it, the shell will fork and
807 exec for each of those commands, and we will see each such fork
808 event. Very bad.)
c5aa993b 809
c906108c 810 Such targets will supply an appropriate definition for this function.
c5aa993b 811 */
c906108c
SS
812#define target_post_startup_inferior(pid) \
813 (*current_target.to_post_startup_inferior) (pid)
814
815/* On some targets, the sequence of starting up an inferior requires
816 some synchronization between gdb and the new inferior process, PID.
c5aa993b 817 */
c906108c
SS
818#define target_acknowledge_created_inferior(pid) \
819 (*current_target.to_acknowledge_created_inferior) (pid)
820
821/* An inferior process has been created via a fork() or similar
822 system call. This function will clone the debugger, then ensure
823 that CHILD_PID is attached to by that debugger.
824
825 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
826 and FALSE otherwise. (The original and clone debuggers can use this
827 to determine which they are, if need be.)
828
829 (This is not a terribly useful feature without a GUI to prevent
830 the two debuggers from competing for shell input.)
c5aa993b 831 */
c906108c
SS
832#define target_clone_and_follow_inferior(child_pid,followed_child) \
833 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
834
835/* This operation is intended to be used as the last in a sequence of
836 steps taken when following both parent and child of a fork. This
837 is used by a clone of the debugger, which will follow the child.
838
839 The original debugger has detached from this process, and the
840 clone has attached to it.
841
842 On some targets, this requires a bit of cleanup to make it work
843 correctly.
c5aa993b 844 */
c906108c
SS
845#define target_post_follow_inferior_by_clone() \
846 (*current_target.to_post_follow_inferior_by_clone) ()
847
848/* On some targets, we can catch an inferior fork or vfork event when it
849 occurs. These functions insert/remove an already-created catchpoint for
850 such events.
c5aa993b 851 */
c906108c
SS
852#define target_insert_fork_catchpoint(pid) \
853 (*current_target.to_insert_fork_catchpoint) (pid)
854
855#define target_remove_fork_catchpoint(pid) \
856 (*current_target.to_remove_fork_catchpoint) (pid)
857
858#define target_insert_vfork_catchpoint(pid) \
859 (*current_target.to_insert_vfork_catchpoint) (pid)
860
861#define target_remove_vfork_catchpoint(pid) \
862 (*current_target.to_remove_vfork_catchpoint) (pid)
863
864/* Returns TRUE if PID has invoked the fork() system call. And,
865 also sets CHILD_PID to the process id of the other ("child")
866 inferior process that was created by that call.
c5aa993b 867 */
c906108c
SS
868#define target_has_forked(pid,child_pid) \
869 (*current_target.to_has_forked) (pid,child_pid)
870
871/* Returns TRUE if PID has invoked the vfork() system call. And,
872 also sets CHILD_PID to the process id of the other ("child")
873 inferior process that was created by that call.
c5aa993b 874 */
c906108c
SS
875#define target_has_vforked(pid,child_pid) \
876 (*current_target.to_has_vforked) (pid,child_pid)
877
878/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
879 anything to a vforked child before it subsequently calls exec().
880 On such platforms, we say that the debugger cannot "follow" the
881 child until it has vforked.
882
883 This function should be defined to return 1 by those targets
884 which can allow the debugger to immediately follow a vforked
885 child, and 0 if they cannot.
c5aa993b 886 */
c906108c
SS
887#define target_can_follow_vfork_prior_to_exec() \
888 (*current_target.to_can_follow_vfork_prior_to_exec) ()
889
890/* An inferior process has been created via a vfork() system call.
891 The debugger has followed the parent, the child, or both. The
892 process of setting up for that follow may have required some
893 target-specific trickery to track the sequence of reported events.
894 If so, this function should be defined by those targets that
895 require the debugger to perform cleanup or initialization after
896 the vfork follow.
c5aa993b 897 */
c906108c
SS
898#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
899 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
900
901/* On some targets, we can catch an inferior exec event when it
902 occurs. These functions insert/remove an already-created catchpoint
903 for such events.
c5aa993b 904 */
c906108c
SS
905#define target_insert_exec_catchpoint(pid) \
906 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 907
c906108c
SS
908#define target_remove_exec_catchpoint(pid) \
909 (*current_target.to_remove_exec_catchpoint) (pid)
910
911/* Returns TRUE if PID has invoked a flavor of the exec() system call.
912 And, also sets EXECD_PATHNAME to the pathname of the executable file
913 that was passed to exec(), and is now being executed.
c5aa993b 914 */
c906108c
SS
915#define target_has_execd(pid,execd_pathname) \
916 (*current_target.to_has_execd) (pid,execd_pathname)
917
918/* Returns the number of exec events that are reported when a process
919 invokes a flavor of the exec() system call on this target, if exec
920 events are being reported.
c5aa993b 921 */
c906108c
SS
922#define target_reported_exec_events_per_exec_call() \
923 (*current_target.to_reported_exec_events_per_exec_call) ()
924
925/* Returns TRUE if PID has reported a syscall event. And, also sets
926 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
927 the unique integer ID of the syscall.
c5aa993b 928 */
c906108c
SS
929#define target_has_syscall_event(pid,kind,syscall_id) \
930 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
931
932/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
933 exit code of PID, if any.
c5aa993b 934 */
c906108c
SS
935#define target_has_exited(pid,wait_status,exit_status) \
936 (*current_target.to_has_exited) (pid,wait_status,exit_status)
937
938/* The debugger has completed a blocking wait() call. There is now
939 some process event that must be processed. This function should
940 be defined by those targets that require the debugger to perform
941 cleanup or internal state changes in response to the process event.
c5aa993b 942 */
c906108c
SS
943
944/* The inferior process has died. Do what is right. */
945
946#define target_mourn_inferior() \
947 (*current_target.to_mourn_inferior) ()
948
949/* Does target have enough data to do a run or attach command? */
950
951#define target_can_run(t) \
952 ((t)->to_can_run) ()
953
954/* post process changes to signal handling in the inferior. */
955
956#define target_notice_signals(pid) \
957 (*current_target.to_notice_signals) (pid)
958
959/* Check to see if a thread is still alive. */
960
961#define target_thread_alive(pid) \
962 (*current_target.to_thread_alive) (pid)
963
b83266a0
SS
964/* Query for new threads and add them to the thread list. */
965
966#define target_find_new_threads() \
967 do { \
968 if (current_target.to_find_new_threads) \
969 (*current_target.to_find_new_threads) (); \
970 } while (0);
971
c906108c
SS
972/* Make target stop in a continuable fashion. (For instance, under Unix, this
973 should act like SIGSTOP). This function is normally used by GUIs to
974 implement a stop button. */
975
976#define target_stop current_target.to_stop
977
978/* Queries the target side for some information. The first argument is a
979 letter specifying the type of the query, which is used to determine who
980 should process it. The second argument is a string that specifies which
981 information is desired and the third is a buffer that carries back the
982 response from the target side. The fourth parameter is the size of the
983 output buffer supplied. */
c5aa993b 984
c906108c
SS
985#define target_query(query_type, query, resp_buffer, bufffer_size) \
986 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
987
96baa820
JM
988/* Send the specified COMMAND to the target's monitor
989 (shell,interpreter) for execution. The result of the query is
990 placed in OUTBUF. */
991
992#define target_rcmd(command, outbuf) \
993 (*current_target.to_rcmd) (command, outbuf)
994
995
c906108c
SS
996/* Get the symbol information for a breakpointable routine called when
997 an exception event occurs.
998 Intended mainly for C++, and for those
999 platforms/implementations where such a callback mechanism is available,
1000 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
1001 different mechanisms for debugging exceptions. */
1002
1003#define target_enable_exception_callback(kind, enable) \
1004 (*current_target.to_enable_exception_callback) (kind, enable)
1005
1006/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 1007
c906108c
SS
1008#define target_get_current_exception_event() \
1009 (*current_target.to_get_current_exception_event) ()
1010
1011/* Pointer to next target in the chain, e.g. a core file and an exec file. */
1012
1013#define target_next \
1014 (current_target.to_next)
1015
1016/* Does the target include all of memory, or only part of it? This
1017 determines whether we look up the target chain for other parts of
1018 memory if this target can't satisfy a request. */
1019
1020#define target_has_all_memory \
1021 (current_target.to_has_all_memory)
1022
1023/* Does the target include memory? (Dummy targets don't.) */
1024
1025#define target_has_memory \
1026 (current_target.to_has_memory)
1027
1028/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1029 we start a process.) */
c5aa993b 1030
c906108c
SS
1031#define target_has_stack \
1032 (current_target.to_has_stack)
1033
1034/* Does the target have registers? (Exec files don't.) */
1035
1036#define target_has_registers \
1037 (current_target.to_has_registers)
1038
1039/* Does the target have execution? Can we make it jump (through
1040 hoops), or pop its stack a few times? FIXME: If this is to work that
1041 way, it needs to check whether an inferior actually exists.
1042 remote-udi.c and probably other targets can be the current target
1043 when the inferior doesn't actually exist at the moment. Right now
1044 this just tells us whether this target is *capable* of execution. */
1045
1046#define target_has_execution \
1047 (current_target.to_has_execution)
1048
1049/* Can the target support the debugger control of thread execution?
1050 a) Can it lock the thread scheduler?
1051 b) Can it switch the currently running thread? */
1052
1053#define target_can_lock_scheduler \
1054 (current_target.to_has_thread_control & tc_schedlock)
1055
1056#define target_can_switch_threads \
1057 (current_target.to_has_thread_control & tc_switch)
1058
6426a772
JM
1059/* Can the target support asynchronous execution? */
1060#define target_can_async_p() (current_target.to_can_async_p ())
1061
1062/* Is the target in asynchronous execution mode? */
1063#define target_is_async_p() (current_target.to_is_async_p())
1064
1065/* Put the target in async mode with the specified callback function. */
1066#define target_async(CALLBACK,CONTEXT) (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 1067
ed9a39eb
JM
1068/* This is to be used ONLY within run_stack_dummy(). It
1069 provides a workaround, to have inferior function calls done in
1070 sychronous mode, even though the target is asynchronous. After
1071 target_async_mask(0) is called, calls to target_can_async_p() will
1072 return FALSE , so that target_resume() will not try to start the
1073 target asynchronously. After the inferior stops, we IMMEDIATELY
1074 restore the previous nature of the target, by calling
1075 target_async_mask(1). After that, target_can_async_p() will return
1076 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1077
1078 FIXME ezannoni 1999-12-13: we won't need this once we move
1079 the turning async on and off to the single execution commands,
1080 from where it is done currently, in remote_resume().*/
1081
1082#define target_async_mask_value \
1083 (current_target.to_async_mask_value)
1084
1085extern int target_async_mask (int mask);
1086
c906108c
SS
1087extern void target_link PARAMS ((char *, CORE_ADDR *));
1088
1089/* Converts a process id to a string. Usually, the string just contains
1090 `process xyz', but on some systems it may contain
1091 `process xyz thread abc'. */
1092
ed9a39eb
JM
1093#undef target_pid_to_str
1094#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
1095
1096#ifndef target_tid_to_str
1097#define target_tid_to_str(PID) \
ed9a39eb 1098 target_pid_to_str (PID)
c906108c
SS
1099extern char *normal_pid_to_str PARAMS ((int pid));
1100#endif
c5aa993b 1101
ed9a39eb 1102
11cf8741
JM
1103/*
1104 * New Objfile Event Hook:
1105 *
1106 * Sometimes a GDB component wants to get notified whenever a new
1107 * objfile is loaded. Mainly this is used by thread-debugging
1108 * implementations that need to know when symbols for the target
1109 * thread implemenation are available.
1110 *
1111 * The old way of doing this is to define a macro 'target_new_objfile'
1112 * that points to the function that you want to be called on every
1113 * objfile/shlib load.
1114 *
1115 * The new way is to grab the function pointer, 'target_new_objfile_hook',
1116 * and point it to the function that you want to be called on every
1117 * objfile/shlib load.
1118 *
1119 * If multiple clients are willing to be cooperative, they can each
1120 * save a pointer to the previous value of target_new_objfile_hook
1121 * before modifying it, and arrange for their function to call the
1122 * previous function in the chain. In that way, multiple clients
1123 * can receive this notification (something like with signal handlers).
1124 */
c906108c 1125
11cf8741 1126extern void (*target_new_objfile_hook) PARAMS ((struct objfile *));
c906108c
SS
1127
1128#ifndef target_pid_or_tid_to_str
1129#define target_pid_or_tid_to_str(ID) \
ed9a39eb 1130 target_pid_to_str (ID)
c906108c
SS
1131#endif
1132
1133/* Attempts to find the pathname of the executable file
1134 that was run to create a specified process.
1135
1136 The process PID must be stopped when this operation is used.
c5aa993b 1137
c906108c
SS
1138 If the executable file cannot be determined, NULL is returned.
1139
1140 Else, a pointer to a character string containing the pathname
1141 is returned. This string should be copied into a buffer by
1142 the client if the string will not be immediately used, or if
1143 it must persist.
c5aa993b 1144 */
c906108c
SS
1145
1146#define target_pid_to_exec_file(pid) \
1147 (current_target.to_pid_to_exec_file) (pid)
1148
1149/* Hook to call target-dependant code after reading in a new symbol table. */
1150
1151#ifndef TARGET_SYMFILE_POSTREAD
1152#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1153#endif
1154
1155/* Hook to call target dependant code just after inferior target process has
1156 started. */
1157
1158#ifndef TARGET_CREATE_INFERIOR_HOOK
1159#define TARGET_CREATE_INFERIOR_HOOK(PID)
1160#endif
1161
1162/* Hardware watchpoint interfaces. */
1163
1164/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1165 write). */
1166
1167#ifndef STOPPED_BY_WATCHPOINT
1168#define STOPPED_BY_WATCHPOINT(w) 0
1169#endif
1170
1171/* HP-UX supplies these operations, which respectively disable and enable
1172 the memory page-protections that are used to implement hardware watchpoints
1173 on that platform. See wait_for_inferior's use of these.
c5aa993b 1174 */
c906108c
SS
1175#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1176#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1177#endif
1178
1179#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1180#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1181#endif
1182
1183/* Provide defaults for systems that don't support hardware watchpoints. */
1184
1185#ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1186
1187/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1188 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1189 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1190 (including this one?). OTHERTYPE is who knows what... */
1191
1192#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1193
1194#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1195#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1196 (LONGEST)(byte_count) <= REGISTER_SIZE
1197#endif
1198
1199/* However, some addresses may not be profitable to use hardware to watch,
1200 or may be difficult to understand when the addressed object is out of
1201 scope, and hence should be unwatched. On some targets, this may have
1202 severe performance penalties, such that we might as well use regular
1203 watchpoints, and save (possibly precious) hardware watchpoints for other
1204 locations.
c5aa993b 1205 */
c906108c
SS
1206#if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1207#define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1208#endif
1209
1210
1211/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1212 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1213 success, non-zero for failure. */
1214
1215#define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1216#define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1217
1218#endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1219
1220#ifndef target_insert_hw_breakpoint
1221#define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1222#define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1223#endif
1224
1225#ifndef target_stopped_data_address
1226#define target_stopped_data_address() 0
1227#endif
1228
1229/* If defined, then we need to decr pc by this much after a hardware break-
1230 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1231
1232#ifndef DECR_PC_AFTER_HW_BREAK
1233#define DECR_PC_AFTER_HW_BREAK 0
1234#endif
1235
1236/* Sometimes gdb may pick up what appears to be a valid target address
1237 from a minimal symbol, but the value really means, essentially,
1238 "This is an index into a table which is populated when the inferior
1239 is run. Therefore, do not attempt to use this as a PC."
c5aa993b 1240 */
c906108c
SS
1241#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1242#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1243#endif
1244
1245/* This will only be defined by a target that supports catching vfork events,
1246 such as HP-UX.
1247
1248 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1249 child process after it has exec'd, causes the parent process to resume as
1250 well. To prevent the parent from running spontaneously, such targets should
1251 define this to a function that prevents that from happening.
c5aa993b 1252 */
c906108c
SS
1253#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1254#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1255#endif
1256
1257/* This will only be defined by a target that supports catching vfork events,
1258 such as HP-UX.
1259
1260 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1261 process must be resumed when it delivers its exec event, before the parent
1262 vfork event will be delivered to us.
c5aa993b 1263 */
c906108c
SS
1264#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1265#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1266#endif
1267
1268/* Routines for maintenance of the target structures...
1269
1270 add_target: Add a target to the list of all possible targets.
1271
1272 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1273 targets, within its particular stratum of the stack. Result
1274 is 0 if now atop the stack, nonzero if not on top (maybe
1275 should warn user).
c906108c
SS
1276
1277 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1278 no matter where it is on the list. Returns 0 if no
1279 change, 1 if removed from stack.
c906108c 1280
c5aa993b 1281 pop_target: Remove the top thing on the stack of current targets. */
c906108c
SS
1282
1283extern void
1284add_target PARAMS ((struct target_ops *));
1285
1286extern int
1287push_target PARAMS ((struct target_ops *));
1288
1289extern int
1290unpush_target PARAMS ((struct target_ops *));
1291
1292extern void
1293target_preopen PARAMS ((int));
1294
1295extern void
1296pop_target PARAMS ((void));
1297
1298/* Struct section_table maps address ranges to file sections. It is
1299 mostly used with BFD files, but can be used without (e.g. for handling
1300 raw disks, or files not in formats handled by BFD). */
1301
c5aa993b
JM
1302struct section_table
1303 {
1304 CORE_ADDR addr; /* Lowest address in section */
1305 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1306
c5aa993b 1307 sec_ptr the_bfd_section;
c906108c 1308
c5aa993b
JM
1309 bfd *bfd; /* BFD file pointer */
1310 };
c906108c
SS
1311
1312/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1313 Returns 0 if OK, 1 on error. */
1314
1315extern int
1316build_section_table PARAMS ((bfd *, struct section_table **,
1317 struct section_table **));
1318
1319/* From mem-break.c */
1320
1321extern int memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1322
1323extern int memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1324
917317f4
JM
1325extern int default_memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1326
1327extern int default_memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1328
c906108c
SS
1329extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
1330#ifndef BREAKPOINT_FROM_PC
1331#define BREAKPOINT_FROM_PC(pcptr, lenptr) memory_breakpoint_from_pc (pcptr, lenptr)
1332#endif
1333
1334
1335/* From target.c */
1336
1337extern void
1338initialize_targets PARAMS ((void));
1339
1340extern void
1341noprocess PARAMS ((void));
1342
1343extern void
1344find_default_attach PARAMS ((char *, int));
1345
ed9a39eb 1346extern void
c906108c
SS
1347find_default_require_attach PARAMS ((char *, int));
1348
ed9a39eb 1349extern void
c906108c
SS
1350find_default_require_detach PARAMS ((int, char *, int));
1351
1352extern void
1353find_default_create_inferior PARAMS ((char *, char *, char **));
1354
ed9a39eb 1355extern void
c906108c
SS
1356find_default_clone_and_follow_inferior PARAMS ((int, int *));
1357
ed9a39eb
JM
1358extern struct target_ops *
1359find_run_target PARAMS ((void));
7a292a7a 1360
c906108c 1361extern struct target_ops *
ed9a39eb 1362find_core_target PARAMS ((void));
6426a772 1363
ed9a39eb
JM
1364extern struct target_ops *
1365find_target_beneath PARAMS ((struct target_ops *));
1366
1367extern int
6426a772 1368target_resize_to_sections PARAMS ((struct target_ops *target, int num_added));
c906108c
SS
1369\f
1370/* Stuff that should be shared among the various remote targets. */
1371
1372/* Debugging level. 0 is off, and non-zero values mean to print some debug
1373 information (higher values, more information). */
1374extern int remote_debug;
1375
1376/* Speed in bits per second, or -1 which means don't mess with the speed. */
1377extern int baud_rate;
1378/* Timeout limit for response from target. */
1379extern int remote_timeout;
1380
1381extern asection *target_memory_bfd_section;
1382\f
1383/* Functions for helping to write a native target. */
1384
1385/* This is for native targets which use a unix/POSIX-style waitstatus. */
1386extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
1387
c2d11a7d
JM
1388/* Predicate to target_signal_to_host(). Return non-zero if the enum
1389 targ_signal SIGNO has an equivalent ``host'' representation. */
1390/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1391 to the shorter target_signal_p() because it is far less ambigious.
1392 In this context ``target_signal'' refers to GDB's internal
1393 representation of the target's set of signals while ``host signal''
1394 refers to the target operating system's signal. Confused? */
1395extern int target_signal_to_host_p (enum target_signal signo);
1396
1397/* Convert between host signal numbers and enum target_signal's.
1398 target_signal_to_host() returns 0 and prints a warning() on GDB's
1399 console if SIGNO has no equivalent host representation. */
1400/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1401 refering to the target operating system's signal numbering.
1402 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1403 gdb_signal'' would probably be better as it is refering to GDB's
1404 internal representation of a target operating system's signal. */
c906108c
SS
1405extern enum target_signal target_signal_from_host PARAMS ((int));
1406extern int target_signal_to_host PARAMS ((enum target_signal));
1407
1408/* Convert from a number used in a GDB command to an enum target_signal. */
1409extern enum target_signal target_signal_from_command PARAMS ((int));
1410
1411/* Any target can call this to switch to remote protocol (in remote.c). */
1412extern void push_remote_target PARAMS ((char *name, int from_tty));
1413\f
1414/* Imported from machine dependent code */
1415
1416#ifndef SOFTWARE_SINGLE_STEP_P
1417#define SOFTWARE_SINGLE_STEP_P 0
11cf8741 1418#define SOFTWARE_SINGLE_STEP(sig,bp_p) (internal_error ("SOFTWARE_SINGLE_STEP"), 0)
c906108c
SS
1419#endif /* SOFTWARE_SINGLE_STEP_P */
1420
1421/* Blank target vector entries are initialized to target_ignore. */
1422void target_ignore PARAMS ((void));
1423
1424/* Macro for getting target's idea of a frame pointer.
1425 FIXME: GDB's whole scheme for dealing with "frames" and
1426 "frame pointers" needs a serious shakedown. */
1427#ifndef TARGET_VIRTUAL_FRAME_POINTER
1428#define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1429 do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
1430#endif /* TARGET_VIRTUAL_FRAME_POINTER */
1431
c5aa993b 1432#endif /* !defined (TARGET_H) */