]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/target.h
This commit was manufactured by cvs2svn to create branch
[thirdparty/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
9b254dd1 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
da3331ec 33
c906108c
SS
34/* This include file defines the interface between the main part
35 of the debugger, and the part which is target-specific, or
36 specific to the communications interface between us and the
37 target.
38
2146d243
RM
39 A TARGET is an interface between the debugger and a particular
40 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
41 so that more than one target can potentially respond to a request.
42 In particular, memory accesses will walk down the stack of targets
43 until they find a target that is interested in handling that particular
44 address. STRATA are artificial boundaries on the stack, within
45 which particular kinds of targets live. Strata exist so that
46 people don't get confused by pushing e.g. a process target and then
47 a file target, and wondering why they can't see the current values
48 of variables any more (the file target is handling them and they
49 never get to the process target). So when you push a file target,
50 it goes into the file stratum, which is always below the process
51 stratum. */
52
53#include "bfd.h"
54#include "symtab.h"
4930751a 55#include "dcache.h"
29e57380 56#include "memattr.h"
fd79ecee 57#include "vec.h"
c906108c 58
c5aa993b
JM
59enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
4d8ac244 63 core_stratum, /* Core dump files */
d4f3574e
SS
64 process_stratum, /* Executing processes */
65 thread_stratum /* Executing threads */
c5aa993b 66 };
c906108c 67
c5aa993b
JM
68enum thread_control_capabilities
69 {
0d06e24b
JM
70 tc_none = 0, /* Default: can't control thread execution. */
71 tc_schedlock = 1, /* Can lock the thread scheduler. */
c5aa993b 72 };
c906108c
SS
73
74/* Stuff for target_wait. */
75
76/* Generally, what has the program done? */
c5aa993b
JM
77enum target_waitkind
78 {
79 /* The program has exited. The exit status is in value.integer. */
80 TARGET_WAITKIND_EXITED,
c906108c 81
0d06e24b
JM
82 /* The program has stopped with a signal. Which signal is in
83 value.sig. */
c5aa993b 84 TARGET_WAITKIND_STOPPED,
c906108c 85
c5aa993b
JM
86 /* The program has terminated with a signal. Which signal is in
87 value.sig. */
88 TARGET_WAITKIND_SIGNALLED,
c906108c 89
c5aa993b
JM
90 /* The program is letting us know that it dynamically loaded something
91 (e.g. it called load(2) on AIX). */
92 TARGET_WAITKIND_LOADED,
c906108c 93
3a3e9ee3 94 /* The program has forked. A "related" process' PTID is in
0d06e24b
JM
95 value.related_pid. I.e., if the child forks, value.related_pid
96 is the parent's ID. */
97
c5aa993b 98 TARGET_WAITKIND_FORKED,
c906108c 99
3a3e9ee3 100 /* The program has vforked. A "related" process's PTID is in
0d06e24b
JM
101 value.related_pid. */
102
c5aa993b 103 TARGET_WAITKIND_VFORKED,
c906108c 104
0d06e24b
JM
105 /* The program has exec'ed a new executable file. The new file's
106 pathname is pointed to by value.execd_pathname. */
107
c5aa993b 108 TARGET_WAITKIND_EXECD,
c906108c 109
0d06e24b
JM
110 /* The program has entered or returned from a system call. On
111 HP-UX, this is used in the hardware watchpoint implementation.
112 The syscall's unique integer ID number is in value.syscall_id */
113
c5aa993b
JM
114 TARGET_WAITKIND_SYSCALL_ENTRY,
115 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 116
c5aa993b
JM
117 /* Nothing happened, but we stopped anyway. This perhaps should be handled
118 within target_wait, but I'm not sure target_wait should be resuming the
119 inferior. */
c4093a6a
JM
120 TARGET_WAITKIND_SPURIOUS,
121
8e7d2c16
DJ
122 /* An event has occured, but we should wait again.
123 Remote_async_wait() returns this when there is an event
c4093a6a
JM
124 on the inferior, but the rest of the world is not interested in
125 it. The inferior has not stopped, but has just sent some output
126 to the console, for instance. In this case, we want to go back
127 to the event loop and wait there for another event from the
128 inferior, rather than being stuck in the remote_async_wait()
129 function. This way the event loop is responsive to other events,
0d06e24b 130 like for instance the user typing. */
b4812cfe 131 TARGET_WAITKIND_IGNORE,
132
133 /* The target has run out of history information,
134 and cannot run backward any further. */
135 TARGET_WAITKIND_NO_HISTORY
c906108c
SS
136 };
137
c5aa993b
JM
138struct target_waitstatus
139 {
140 enum target_waitkind kind;
141
142 /* Forked child pid, execd pathname, exit status or signal number. */
143 union
144 {
145 int integer;
146 enum target_signal sig;
3a3e9ee3 147 ptid_t related_pid;
c5aa993b
JM
148 char *execd_pathname;
149 int syscall_id;
150 }
151 value;
152 };
c906108c 153
2acceee2 154/* Possible types of events that the inferior handler will have to
0d06e24b 155 deal with. */
2acceee2
JM
156enum inferior_event_type
157 {
0d06e24b 158 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
159 INF_QUIT_REQ,
160 /* Process a normal inferior event which will result in target_wait
0d06e24b 161 being called. */
2146d243 162 INF_REG_EVENT,
0d06e24b 163 /* Deal with an error on the inferior. */
2acceee2 164 INF_ERROR,
0d06e24b 165 /* We are called because a timer went off. */
2acceee2 166 INF_TIMER,
0d06e24b 167 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
168 INF_EXEC_COMPLETE,
169 /* We are called to do some stuff after the inferior stops, but we
170 are expected to reenter the proceed() and
171 handle_inferior_event() functions. This is used only in case of
0d06e24b 172 'step n' like commands. */
c2d11a7d 173 INF_EXEC_CONTINUE
2acceee2
JM
174 };
175
c906108c 176/* Return the string for a signal. */
a14ed312 177extern char *target_signal_to_string (enum target_signal);
c906108c
SS
178
179/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 180extern char *target_signal_to_name (enum target_signal);
c906108c
SS
181
182/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 183enum target_signal target_signal_from_name (char *);
c906108c 184\f
13547ab6
DJ
185/* Target objects which can be transfered using target_read,
186 target_write, et cetera. */
1e3ff5ad
AC
187
188enum target_object
189{
1e3ff5ad
AC
190 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
191 TARGET_OBJECT_AVR,
23d964e7
UW
192 /* SPU target specific transfer. See "spu-tdep.c". */
193 TARGET_OBJECT_SPU,
1e3ff5ad 194 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 195 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
196 /* Memory, avoiding GDB's data cache and trusting the executable.
197 Target implementations of to_xfer_partial never need to handle
198 this object, and most callers should not use it. */
199 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
200 /* Kernel Unwind Table. See "ia64-tdep.c". */
201 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
202 /* Transfer auxilliary vector. */
203 TARGET_OBJECT_AUXV,
baf92889 204 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
205 TARGET_OBJECT_WCOOKIE,
206 /* Target memory map in XML format. */
207 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
208 /* Flash memory. This object can be used to write contents to
209 a previously erased flash memory. Using it without erasing
210 flash can have unexpected results. Addresses are physical
211 address on target, and not relative to flash start. */
23181151
DJ
212 TARGET_OBJECT_FLASH,
213 /* Available target-specific features, e.g. registers and coprocessors.
214 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
215 TARGET_OBJECT_AVAILABLE_FEATURES,
216 /* Currently loaded libraries, in XML format. */
6f581415 217 TARGET_OBJECT_LIBRARIES,
218 /* Get OS specific data. The ANNEX specifies the type (running
219 processes, etc.). */
220 TARGET_OBJECT_OSDATA
221 /* Possible future objects: TARGET_OBJECT_FILE, ... */
1e3ff5ad
AC
222};
223
13547ab6
DJ
224/* Request that OPS transfer up to LEN 8-bit bytes of the target's
225 OBJECT. The OFFSET, for a seekable object, specifies the
226 starting point. The ANNEX can be used to provide additional
227 data-specific information to the target.
1e3ff5ad 228
13547ab6
DJ
229 Return the number of bytes actually transfered, or -1 if the
230 transfer is not supported or otherwise fails. Return of a positive
231 value less than LEN indicates that no further transfer is possible.
232 Unlike the raw to_xfer_partial interface, callers of these
233 functions do not need to retry partial transfers. */
1e3ff5ad 234
1e3ff5ad
AC
235extern LONGEST target_read (struct target_ops *ops,
236 enum target_object object,
1b0ba102 237 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
238 ULONGEST offset, LONGEST len);
239
d5086790
VP
240extern LONGEST target_read_until_error (struct target_ops *ops,
241 enum target_object object,
242 const char *annex, gdb_byte *buf,
243 ULONGEST offset, LONGEST len);
244
1e3ff5ad
AC
245extern LONGEST target_write (struct target_ops *ops,
246 enum target_object object,
1b0ba102 247 const char *annex, const gdb_byte *buf,
1e3ff5ad 248 ULONGEST offset, LONGEST len);
b6591e8b 249
a76d924d
DJ
250/* Similar to target_write, except that it also calls PROGRESS with
251 the number of bytes written and the opaque BATON after every
252 successful partial write (and before the first write). This is
253 useful for progress reporting and user interaction while writing
254 data. To abort the transfer, the progress callback can throw an
255 exception. */
256
cf7a04e8
DJ
257LONGEST target_write_with_progress (struct target_ops *ops,
258 enum target_object object,
259 const char *annex, const gdb_byte *buf,
260 ULONGEST offset, LONGEST len,
261 void (*progress) (ULONGEST, void *),
262 void *baton);
263
13547ab6
DJ
264/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
265 be read using OPS. The return value will be -1 if the transfer
266 fails or is not supported; 0 if the object is empty; or the length
267 of the object otherwise. If a positive value is returned, a
268 sufficiently large buffer will be allocated using xmalloc and
269 returned in *BUF_P containing the contents of the object.
270
271 This method should be used for objects sufficiently small to store
272 in a single xmalloc'd buffer, when no fixed bound on the object's
273 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
274 through this function. */
275
276extern LONGEST target_read_alloc (struct target_ops *ops,
277 enum target_object object,
278 const char *annex, gdb_byte **buf_p);
279
159f81f3
DJ
280/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
281 returned as a string, allocated using xmalloc. If an error occurs
282 or the transfer is unsupported, NULL is returned. Empty objects
283 are returned as allocated but empty strings. A warning is issued
284 if the result contains any embedded NUL bytes. */
285
286extern char *target_read_stralloc (struct target_ops *ops,
287 enum target_object object,
288 const char *annex);
289
b6591e8b
AC
290/* Wrappers to target read/write that perform memory transfers. They
291 throw an error if the memory transfer fails.
292
293 NOTE: cagney/2003-10-23: The naming schema is lifted from
294 "frame.h". The parameter order is lifted from get_frame_memory,
295 which in turn lifted it from read_memory. */
296
297extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 298 gdb_byte *buf, LONGEST len);
b6591e8b
AC
299extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
300 CORE_ADDR addr, int len);
1e3ff5ad 301\f
0d06e24b
JM
302struct thread_info; /* fwd decl for parameter list below: */
303
c906108c 304struct target_ops
c5aa993b 305 {
258b763a 306 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
307 char *to_shortname; /* Name this target type */
308 char *to_longname; /* Name for printing */
309 char *to_doc; /* Documentation. Does not include trailing
c906108c 310 newline, and starts with a one-line descrip-
0d06e24b 311 tion (probably similar to to_longname). */
bba2d28d
AC
312 /* Per-target scratch pad. */
313 void *to_data;
f1c07ab0
AC
314 /* The open routine takes the rest of the parameters from the
315 command, and (if successful) pushes a new target onto the
316 stack. Targets should supply this routine, if only to provide
317 an error message. */
507f3c78 318 void (*to_open) (char *, int);
f1c07ab0
AC
319 /* Old targets with a static target vector provide "to_close".
320 New re-entrant targets provide "to_xclose" and that is expected
321 to xfree everything (including the "struct target_ops"). */
322 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78 323 void (*to_close) (int);
b4812cfe 324 void (*to_attach) (struct target_ops *ops, char *, int);
507f3c78 325 void (*to_post_attach) (int);
b4812cfe 326 void (*to_detach) (struct target_ops *ops, char *, int);
597320e7 327 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
328 void (*to_resume) (ptid_t, int, enum target_signal);
329 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
56be3814
UW
330 void (*to_fetch_registers) (struct regcache *, int);
331 void (*to_store_registers) (struct regcache *, int);
316f2060 332 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
333
334 /* Transfer LEN bytes of memory between GDB address MYADDR and
335 target address MEMADDR. If WRITE, transfer them to the target, else
336 transfer them from the target. TARGET is the target from which we
337 get this function.
338
339 Return value, N, is one of the following:
340
341 0 means that we can't handle this. If errno has been set, it is the
342 error which prevented us from doing it (FIXME: What about bfd_error?).
343
344 positive (call it N) means that we have transferred N bytes
345 starting at MEMADDR. We might be able to handle more bytes
346 beyond this length, but no promises.
347
348 negative (call its absolute value N) means that we cannot
349 transfer right at MEMADDR, but we could transfer at least
c8e73a31 350 something at MEMADDR + N.
c5aa993b 351
c8e73a31
AC
352 NOTE: cagney/2004-10-01: This has been entirely superseeded by
353 to_xfer_partial and inferior inheritance. */
354
1b0ba102 355 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
356 int len, int write,
357 struct mem_attrib *attrib,
358 struct target_ops *target);
c906108c 359
507f3c78 360 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
361 int (*to_insert_breakpoint) (struct bp_target_info *);
362 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 363 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
364 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
365 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
366 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
367 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
368 int (*to_stopped_by_watchpoint) (void);
74174d2e 369 int to_have_steppable_watchpoint;
7df1a324 370 int to_have_continuable_watchpoint;
4aa7a7f5 371 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
5009afc5
AS
372 int (*to_watchpoint_addr_within_range) (struct target_ops *,
373 CORE_ADDR, CORE_ADDR, int);
e0d24f8d 374 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
375 void (*to_terminal_init) (void);
376 void (*to_terminal_inferior) (void);
377 void (*to_terminal_ours_for_output) (void);
378 void (*to_terminal_ours) (void);
a790ad35 379 void (*to_terminal_save_ours) (void);
507f3c78
KB
380 void (*to_terminal_info) (char *, int);
381 void (*to_kill) (void);
382 void (*to_load) (char *, int);
383 int (*to_lookup_symbol) (char *, CORE_ADDR *);
b4812cfe 384 void (*to_create_inferior) (struct target_ops *,
385 char *, char *, char **, int);
39f77062 386 void (*to_post_startup_inferior) (ptid_t);
507f3c78 387 void (*to_acknowledge_created_inferior) (int);
fa113d1a 388 void (*to_insert_fork_catchpoint) (int);
507f3c78 389 int (*to_remove_fork_catchpoint) (int);
fa113d1a 390 void (*to_insert_vfork_catchpoint) (int);
507f3c78 391 int (*to_remove_vfork_catchpoint) (int);
ee057212 392 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 393 void (*to_insert_exec_catchpoint) (int);
507f3c78 394 int (*to_remove_exec_catchpoint) (int);
507f3c78 395 int (*to_has_exited) (int, int, int *);
b4812cfe 396 void (*to_mourn_inferior) (struct target_ops *);
507f3c78 397 int (*to_can_run) (void);
39f77062
KB
398 void (*to_notice_signals) (ptid_t ptid);
399 int (*to_thread_alive) (ptid_t ptid);
507f3c78 400 void (*to_find_new_threads) (void);
39f77062 401 char *(*to_pid_to_str) (ptid_t);
507f3c78 402 char *(*to_extra_thread_info) (struct thread_info *);
94cc34af 403 void (*to_stop) (ptid_t);
d9fcf2fb 404 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 405 char *(*to_pid_to_exec_file) (int pid);
49d03eab 406 void (*to_log_command) (const char *);
c5aa993b 407 enum strata to_stratum;
c5aa993b
JM
408 int to_has_all_memory;
409 int to_has_memory;
410 int to_has_stack;
411 int to_has_registers;
412 int to_has_execution;
413 int to_has_thread_control; /* control thread execution */
dc177b7a 414 int to_attach_no_wait;
c5aa993b
JM
415 struct section_table
416 *to_sections;
417 struct section_table
418 *to_sections_end;
6426a772
JM
419 /* ASYNC target controls */
420 int (*to_can_async_p) (void);
421 int (*to_is_async_p) (void);
b84876c2
PA
422 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
423 int (*to_async_mask) (int);
9908b566 424 int (*to_supports_non_stop) (void);
2146d243
RM
425 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
426 unsigned long,
427 int, int, int,
428 void *),
be4d1333
MS
429 void *);
430 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
431
432 /* Return the thread-local address at OFFSET in the
433 thread-local storage for the thread PTID and the shared library
434 or executable file given by OBJFILE. If that block of
435 thread-local storage hasn't been allocated yet, this function
436 may return an error. */
437 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 438 CORE_ADDR load_module_addr,
3f47be5c
EZ
439 CORE_ADDR offset);
440
13547ab6
DJ
441 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
442 OBJECT. The OFFSET, for a seekable object, specifies the
443 starting point. The ANNEX can be used to provide additional
444 data-specific information to the target.
445
446 Return the number of bytes actually transfered, zero when no
447 further transfer is possible, and -1 when the transfer is not
448 supported. Return of a positive value smaller than LEN does
449 not indicate the end of the object, only the end of the
450 transfer; higher level code should continue transferring if
451 desired. This is handled in target.c.
452
453 The interface does not support a "retry" mechanism. Instead it
454 assumes that at least one byte will be transfered on each
455 successful call.
456
457 NOTE: cagney/2003-10-17: The current interface can lead to
458 fragmented transfers. Lower target levels should not implement
459 hacks, such as enlarging the transfer, in an attempt to
460 compensate for this. Instead, the target stack should be
461 extended so that it implements supply/collect methods and a
462 look-aside object cache. With that available, the lowest
463 target can safely and freely "push" data up the stack.
464
465 See target_read and target_write for more information. One,
466 and only one, of readbuf or writebuf must be non-NULL. */
467
4b8a223f 468 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 469 enum target_object object, const char *annex,
1b0ba102 470 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 471 ULONGEST offset, LONGEST len);
1e3ff5ad 472
fd79ecee
DJ
473 /* Returns the memory map for the target. A return value of NULL
474 means that no memory map is available. If a memory address
475 does not fall within any returned regions, it's assumed to be
476 RAM. The returned memory regions should not overlap.
477
478 The order of regions does not matter; target_memory_map will
479 sort regions by starting address. For that reason, this
480 function should not be called directly except via
481 target_memory_map.
482
483 This method should not cache data; if the memory map could
484 change unexpectedly, it should be invalidated, and higher
485 layers will re-fetch it. */
486 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
487
a76d924d
DJ
488 /* Erases the region of flash memory starting at ADDRESS, of
489 length LENGTH.
490
491 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
492 on flash block boundaries, as reported by 'to_memory_map'. */
493 void (*to_flash_erase) (struct target_ops *,
494 ULONGEST address, LONGEST length);
495
496 /* Finishes a flash memory write sequence. After this operation
497 all flash memory should be available for writing and the result
498 of reading from areas written by 'to_flash_write' should be
499 equal to what was written. */
500 void (*to_flash_done) (struct target_ops *);
501
424163ea
DJ
502 /* Describe the architecture-specific features of this target.
503 Returns the description found, or NULL if no description
504 was available. */
505 const struct target_desc *(*to_read_description) (struct target_ops *ops);
506
b4812cfe 507 /* Build the PTID of the thread on which a given task is running,
508 based on LWP and THREAD. These values are extracted from the
509 task Private_Data section of the Ada Task Control Block, and
510 their interpretation depends on the target. */
511 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
512
c47ffbe3
VP
513 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
514 Return 0 if *READPTR is already at the end of the buffer.
515 Return -1 if there is insufficient buffer for a whole entry.
516 Return 1 if an entry was read into *TYPEP and *VALP. */
517 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
518 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
519
08388c79
DE
520 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
521 sequence of bytes in PATTERN with length PATTERN_LEN.
522
523 The result is 1 if found, 0 if not found, and -1 if there was an error
524 requiring halting of the search (e.g. memory read error).
525 If the pattern is found the address is recorded in FOUND_ADDRP. */
526 int (*to_search_memory) (struct target_ops *ops,
527 CORE_ADDR start_addr, ULONGEST search_space_len,
528 const gdb_byte *pattern, ULONGEST pattern_len,
529 CORE_ADDR *found_addrp);
530
b4812cfe 531 /* Can target execute in reverse? */
532 int (*to_can_execute_reverse) ();
533
534 /* Does this target support debugging multiple processes
535 simultaneously? */
536 int (*to_supports_multi_process) (void);
537
c5aa993b 538 int to_magic;
0d06e24b
JM
539 /* Need sub-structure for target machine related rather than comm related?
540 */
c5aa993b 541 };
c906108c
SS
542
543/* Magic number for checking ops size. If a struct doesn't end with this
544 number, somebody changed the declaration but didn't change all the
545 places that initialize one. */
546
547#define OPS_MAGIC 3840
548
549/* The ops structure for our "current" target process. This should
550 never be NULL. If there is no target, it points to the dummy_target. */
551
c5aa993b 552extern struct target_ops current_target;
c906108c 553
c906108c
SS
554/* Define easy words for doing these operations on our current target. */
555
556#define target_shortname (current_target.to_shortname)
557#define target_longname (current_target.to_longname)
558
f1c07ab0
AC
559/* Does whatever cleanup is required for a target that we are no
560 longer going to be calling. QUITTING indicates that GDB is exiting
561 and should not get hung on an error (otherwise it is important to
562 perform clean termination, even if it takes a while). This routine
563 is automatically always called when popping the target off the
564 target stack (to_beneath is undefined). Closing file descriptors
565 and freeing all memory allocated memory are typical things it
566 should do. */
567
568void target_close (struct target_ops *targ, int quitting);
c906108c
SS
569
570/* Attaches to a process on the target side. Arguments are as passed
571 to the `attach' command by the user. This routine can be called
572 when the target is not on the target-stack, if the target_can_run
2146d243 573 routine returns 1; in that case, it must push itself onto the stack.
c906108c 574 Upon exit, the target should be ready for normal operations, and
2146d243 575 should be ready to deliver the status of the process immediately
c906108c
SS
576 (without waiting) to an upcoming target_wait call. */
577
b4812cfe 578void target_attach (char *, int);
c906108c 579
dc177b7a
PA
580/* Some targets don't generate traps when attaching to the inferior,
581 or their target_attach implementation takes care of the waiting.
582 These targets must set to_attach_no_wait. */
583
584#define target_attach_no_wait \
585 (current_target.to_attach_no_wait)
586
c906108c
SS
587/* The target_attach operation places a process under debugger control,
588 and stops the process.
589
590 This operation provides a target-specific hook that allows the
0d06e24b 591 necessary bookkeeping to be performed after an attach completes. */
c906108c 592#define target_post_attach(pid) \
0d06e24b 593 (*current_target.to_post_attach) (pid)
c906108c 594
c906108c
SS
595/* Takes a program previously attached to and detaches it.
596 The program may resume execution (some targets do, some don't) and will
597 no longer stop on signals, etc. We better not have left any breakpoints
598 in the program or it'll die when it hits one. ARGS is arguments
599 typed by the user (e.g. a signal to send the process). FROM_TTY
600 says whether to be verbose or not. */
601
a14ed312 602extern void target_detach (char *, int);
c906108c 603
6ad8ae5c
DJ
604/* Disconnect from the current target without resuming it (leaving it
605 waiting for a debugger). */
606
607extern void target_disconnect (char *, int);
608
39f77062 609/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
610 single-step or to run free; SIGGNAL is the signal to be given to
611 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
612 pass TARGET_SIGNAL_DEFAULT. */
613
e1ac3328 614extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
c906108c 615
b5a2688f
AC
616/* Wait for process pid to do something. PTID = -1 to wait for any
617 pid to do something. Return pid of child, or -1 in case of error;
c906108c 618 store status through argument pointer STATUS. Note that it is
b5a2688f 619 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
620 the debugging target from the stack; GDB isn't prepared to get back
621 to the prompt with a debugging target but without the frame cache,
622 stop_pc, etc., set up. */
623
39f77062
KB
624#define target_wait(ptid, status) \
625 (*current_target.to_wait) (ptid, status)
c906108c 626
17dee195 627/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 628
56be3814
UW
629#define target_fetch_registers(regcache, regno) \
630 (*current_target.to_fetch_registers) (regcache, regno)
c906108c
SS
631
632/* Store at least register REGNO, or all regs if REGNO == -1.
633 It can store as many registers as it wants to, so target_prepare_to_store
634 must have been previously called. Calls error() if there are problems. */
635
56be3814
UW
636#define target_store_registers(regcache, regs) \
637 (*current_target.to_store_registers) (regcache, regs)
c906108c
SS
638
639/* Get ready to modify the registers array. On machines which store
640 individual registers, this doesn't need to do anything. On machines
641 which store all the registers in one fell swoop, this makes sure
642 that REGISTERS contains all the registers from the program being
643 debugged. */
644
316f2060
UW
645#define target_prepare_to_store(regcache) \
646 (*current_target.to_prepare_to_store) (regcache)
c906108c 647
b4812cfe 648/* Returns true if this target can debug multiple processes
649 simultaneously. */
650
651#define target_supports_multi_process() \
652 (*current_target.to_supports_multi_process) ()
653
4930751a
C
654extern DCACHE *target_dcache;
655
a14ed312 656extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 657
fc1a4b47 658extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 659
fc1a4b47 660extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 661 int len);
c906108c 662
1b0ba102 663extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 664 struct mem_attrib *, struct target_ops *);
c906108c 665
fd79ecee
DJ
666/* Fetches the target's memory map. If one is found it is sorted
667 and returned, after some consistency checking. Otherwise, NULL
668 is returned. */
669VEC(mem_region_s) *target_memory_map (void);
670
a76d924d
DJ
671/* Erase the specified flash region. */
672void target_flash_erase (ULONGEST address, LONGEST length);
673
674/* Finish a sequence of flash operations. */
675void target_flash_done (void);
676
677/* Describes a request for a memory write operation. */
678struct memory_write_request
679 {
680 /* Begining address that must be written. */
681 ULONGEST begin;
682 /* Past-the-end address. */
683 ULONGEST end;
684 /* The data to write. */
685 gdb_byte *data;
686 /* A callback baton for progress reporting for this request. */
687 void *baton;
688 };
689typedef struct memory_write_request memory_write_request_s;
690DEF_VEC_O(memory_write_request_s);
691
692/* Enumeration specifying different flash preservation behaviour. */
693enum flash_preserve_mode
694 {
695 flash_preserve,
696 flash_discard
697 };
698
699/* Write several memory blocks at once. This version can be more
700 efficient than making several calls to target_write_memory, in
701 particular because it can optimize accesses to flash memory.
702
703 Moreover, this is currently the only memory access function in gdb
704 that supports writing to flash memory, and it should be used for
705 all cases where access to flash memory is desirable.
706
707 REQUESTS is the vector (see vec.h) of memory_write_request.
708 PRESERVE_FLASH_P indicates what to do with blocks which must be
709 erased, but not completely rewritten.
710 PROGRESS_CB is a function that will be periodically called to provide
711 feedback to user. It will be called with the baton corresponding
712 to the request currently being written. It may also be called
713 with a NULL baton, when preserved flash sectors are being rewritten.
714
715 The function returns 0 on success, and error otherwise. */
716int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
717 enum flash_preserve_mode preserve_flash_p,
718 void (*progress_cb) (ULONGEST, void *));
719
47932f85
DJ
720/* From infrun.c. */
721
3a3e9ee3 722extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
47932f85 723
3a3e9ee3 724extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
47932f85 725
3a3e9ee3 726extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
47932f85 727
c906108c
SS
728/* From exec.c */
729
a14ed312 730extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
731
732/* Print a line about the current target. */
733
734#define target_files_info() \
0d06e24b 735 (*current_target.to_files_info) (&current_target)
c906108c 736
8181d85f
DJ
737/* Insert a breakpoint at address BP_TGT->placed_address in the target
738 machine. Result is 0 for success, or an errno value. */
c906108c 739
8181d85f
DJ
740#define target_insert_breakpoint(bp_tgt) \
741 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 742
8181d85f
DJ
743/* Remove a breakpoint at address BP_TGT->placed_address in the target
744 machine. Result is 0 for success, or an errno value. */
c906108c 745
8181d85f
DJ
746#define target_remove_breakpoint(bp_tgt) \
747 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
748
749/* Initialize the terminal settings we record for the inferior,
750 before we actually run the inferior. */
751
752#define target_terminal_init() \
0d06e24b 753 (*current_target.to_terminal_init) ()
c906108c
SS
754
755/* Put the inferior's terminal settings into effect.
756 This is preparation for starting or resuming the inferior. */
757
758#define target_terminal_inferior() \
0d06e24b 759 (*current_target.to_terminal_inferior) ()
c906108c
SS
760
761/* Put some of our terminal settings into effect,
762 enough to get proper results from our output,
763 but do not change into or out of RAW mode
764 so that no input is discarded.
765
766 After doing this, either terminal_ours or terminal_inferior
767 should be called to get back to a normal state of affairs. */
768
769#define target_terminal_ours_for_output() \
0d06e24b 770 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
771
772/* Put our terminal settings into effect.
773 First record the inferior's terminal settings
774 so they can be restored properly later. */
775
776#define target_terminal_ours() \
0d06e24b 777 (*current_target.to_terminal_ours) ()
c906108c 778
a790ad35
SC
779/* Save our terminal settings.
780 This is called from TUI after entering or leaving the curses
781 mode. Since curses modifies our terminal this call is here
782 to take this change into account. */
783
784#define target_terminal_save_ours() \
785 (*current_target.to_terminal_save_ours) ()
786
c906108c
SS
787/* Print useful information about our terminal status, if such a thing
788 exists. */
789
790#define target_terminal_info(arg, from_tty) \
0d06e24b 791 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
792
793/* Kill the inferior process. Make it go away. */
794
795#define target_kill() \
0d06e24b 796 (*current_target.to_kill) ()
c906108c 797
0d06e24b
JM
798/* Load an executable file into the target process. This is expected
799 to not only bring new code into the target process, but also to
1986bccd
AS
800 update GDB's symbol tables to match.
801
802 ARG contains command-line arguments, to be broken down with
803 buildargv (). The first non-switch argument is the filename to
804 load, FILE; the second is a number (as parsed by strtoul (..., ...,
805 0)), which is an offset to apply to the load addresses of FILE's
806 sections. The target may define switches, or other non-switch
807 arguments, as it pleases. */
c906108c 808
11cf8741 809extern void target_load (char *arg, int from_tty);
c906108c
SS
810
811/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
812 name. ADDRP is a CORE_ADDR * pointing to where the value of the
813 symbol should be returned. The result is 0 if successful, nonzero
814 if the symbol does not exist in the target environment. This
815 function should not call error() if communication with the target
816 is interrupted, since it is called from symbol reading, but should
817 return nonzero, possibly doing a complain(). */
c906108c 818
0d06e24b
JM
819#define target_lookup_symbol(name, addrp) \
820 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 821
39f77062 822/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
823 EXEC_FILE is the file to run.
824 ALLARGS is a string containing the arguments to the program.
825 ENV is the environment vector to pass. Errors reported with error().
826 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 827
b4812cfe 828void target_create_inferior (char *exec_file, char *args,
829 char **env, int from_tty);
c906108c
SS
830
831/* Some targets (such as ttrace-based HPUX) don't allow us to request
832 notification of inferior events such as fork and vork immediately
833 after the inferior is created. (This because of how gdb gets an
834 inferior created via invoking a shell to do it. In such a scenario,
835 if the shell init file has commands in it, the shell will fork and
836 exec for each of those commands, and we will see each such fork
837 event. Very bad.)
c5aa993b 838
0d06e24b
JM
839 Such targets will supply an appropriate definition for this function. */
840
39f77062
KB
841#define target_post_startup_inferior(ptid) \
842 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
843
844/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
845 some synchronization between gdb and the new inferior process, PID. */
846
c906108c 847#define target_acknowledge_created_inferior(pid) \
0d06e24b 848 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 849
0d06e24b
JM
850/* On some targets, we can catch an inferior fork or vfork event when
851 it occurs. These functions insert/remove an already-created
852 catchpoint for such events. */
c906108c 853
c906108c 854#define target_insert_fork_catchpoint(pid) \
0d06e24b 855 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
856
857#define target_remove_fork_catchpoint(pid) \
0d06e24b 858 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
859
860#define target_insert_vfork_catchpoint(pid) \
0d06e24b 861 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
862
863#define target_remove_vfork_catchpoint(pid) \
0d06e24b 864 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 865
6604731b
DJ
866/* If the inferior forks or vforks, this function will be called at
867 the next resume in order to perform any bookkeeping and fiddling
868 necessary to continue debugging either the parent or child, as
869 requested, and releasing the other. Information about the fork
870 or vfork event is available via get_last_target_status ().
871 This function returns 1 if the inferior should not be resumed
872 (i.e. there is another event pending). */
0d06e24b 873
ee057212 874int target_follow_fork (int follow_child);
c906108c
SS
875
876/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
877 occurs. These functions insert/remove an already-created
878 catchpoint for such events. */
879
c906108c 880#define target_insert_exec_catchpoint(pid) \
0d06e24b 881 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 882
c906108c 883#define target_remove_exec_catchpoint(pid) \
0d06e24b 884 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 885
c906108c 886/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
887 exit code of PID, if any. */
888
c906108c 889#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 890 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
891
892/* The debugger has completed a blocking wait() call. There is now
2146d243 893 some process event that must be processed. This function should
c906108c 894 be defined by those targets that require the debugger to perform
0d06e24b 895 cleanup or internal state changes in response to the process event. */
c906108c
SS
896
897/* The inferior process has died. Do what is right. */
898
b4812cfe 899void target_mourn_inferior (void);
c906108c
SS
900
901/* Does target have enough data to do a run or attach command? */
902
903#define target_can_run(t) \
0d06e24b 904 ((t)->to_can_run) ()
c906108c
SS
905
906/* post process changes to signal handling in the inferior. */
907
39f77062
KB
908#define target_notice_signals(ptid) \
909 (*current_target.to_notice_signals) (ptid)
c906108c
SS
910
911/* Check to see if a thread is still alive. */
912
39f77062
KB
913#define target_thread_alive(ptid) \
914 (*current_target.to_thread_alive) (ptid)
c906108c 915
b83266a0
SS
916/* Query for new threads and add them to the thread list. */
917
918#define target_find_new_threads() \
4becf47c 919 (*current_target.to_find_new_threads) ()
b83266a0 920
0d06e24b
JM
921/* Make target stop in a continuable fashion. (For instance, under
922 Unix, this should act like SIGSTOP). This function is normally
923 used by GUIs to implement a stop button. */
c906108c 924
94cc34af 925#define target_stop(ptid) (*current_target.to_stop) (ptid)
c906108c 926
96baa820
JM
927/* Send the specified COMMAND to the target's monitor
928 (shell,interpreter) for execution. The result of the query is
0d06e24b 929 placed in OUTBUF. */
96baa820
JM
930
931#define target_rcmd(command, outbuf) \
932 (*current_target.to_rcmd) (command, outbuf)
933
934
c906108c
SS
935/* Does the target include all of memory, or only part of it? This
936 determines whether we look up the target chain for other parts of
937 memory if this target can't satisfy a request. */
938
939#define target_has_all_memory \
0d06e24b 940 (current_target.to_has_all_memory)
c906108c
SS
941
942/* Does the target include memory? (Dummy targets don't.) */
943
944#define target_has_memory \
0d06e24b 945 (current_target.to_has_memory)
c906108c
SS
946
947/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
948 we start a process.) */
c5aa993b 949
c906108c 950#define target_has_stack \
0d06e24b 951 (current_target.to_has_stack)
c906108c
SS
952
953/* Does the target have registers? (Exec files don't.) */
954
955#define target_has_registers \
0d06e24b 956 (current_target.to_has_registers)
c906108c
SS
957
958/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
959 hoops), or pop its stack a few times? This means that the current
960 target is currently executing; for some targets, that's the same as
961 whether or not the target is capable of execution, but there are
962 also targets which can be current while not executing. In that
963 case this will become true after target_create_inferior or
964 target_attach. */
c906108c
SS
965
966#define target_has_execution \
0d06e24b 967 (current_target.to_has_execution)
c906108c
SS
968
969/* Can the target support the debugger control of thread execution?
d6350901 970 Can it lock the thread scheduler? */
c906108c
SS
971
972#define target_can_lock_scheduler \
0d06e24b 973 (current_target.to_has_thread_control & tc_schedlock)
c906108c 974
c6ebd6cf
VP
975/* Should the target enable async mode if it is supported? Temporary
976 cludge until async mode is a strict superset of sync mode. */
977extern int target_async_permitted;
978
6426a772
JM
979/* Can the target support asynchronous execution? */
980#define target_can_async_p() (current_target.to_can_async_p ())
981
982/* Is the target in asynchronous execution mode? */
b84876c2 983#define target_is_async_p() (current_target.to_is_async_p ())
6426a772 984
9908b566
VP
985int target_supports_non_stop (void);
986
6426a772 987/* Put the target in async mode with the specified callback function. */
0d06e24b 988#define target_async(CALLBACK,CONTEXT) \
b84876c2 989 (current_target.to_async ((CALLBACK), (CONTEXT)))
43ff13b4 990
04714b91
AC
991/* This is to be used ONLY within call_function_by_hand(). It provides
992 a workaround, to have inferior function calls done in sychronous
993 mode, even though the target is asynchronous. After
ed9a39eb
JM
994 target_async_mask(0) is called, calls to target_can_async_p() will
995 return FALSE , so that target_resume() will not try to start the
996 target asynchronously. After the inferior stops, we IMMEDIATELY
997 restore the previous nature of the target, by calling
998 target_async_mask(1). After that, target_can_async_p() will return
04714b91 999 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
1000
1001 FIXME ezannoni 1999-12-13: we won't need this once we move
1002 the turning async on and off to the single execution commands,
0d06e24b 1003 from where it is done currently, in remote_resume(). */
ed9a39eb 1004
b84876c2
PA
1005#define target_async_mask(MASK) \
1006 (current_target.to_async_mask (MASK))
ed9a39eb 1007
c906108c
SS
1008/* Converts a process id to a string. Usually, the string just contains
1009 `process xyz', but on some systems it may contain
1010 `process xyz thread abc'. */
1011
ed9a39eb
JM
1012#undef target_pid_to_str
1013#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
1014
1015#ifndef target_tid_to_str
1016#define target_tid_to_str(PID) \
0d06e24b 1017 target_pid_to_str (PID)
39f77062 1018extern char *normal_pid_to_str (ptid_t ptid);
c906108c 1019#endif
c5aa993b 1020
0d06e24b
JM
1021/* Return a short string describing extra information about PID,
1022 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1023 is okay. */
1024
1025#define target_extra_thread_info(TP) \
1026 (current_target.to_extra_thread_info (TP))
ed9a39eb 1027
c906108c
SS
1028/* Attempts to find the pathname of the executable file
1029 that was run to create a specified process.
1030
1031 The process PID must be stopped when this operation is used.
c5aa993b 1032
c906108c
SS
1033 If the executable file cannot be determined, NULL is returned.
1034
1035 Else, a pointer to a character string containing the pathname
1036 is returned. This string should be copied into a buffer by
1037 the client if the string will not be immediately used, or if
0d06e24b 1038 it must persist. */
c906108c
SS
1039
1040#define target_pid_to_exec_file(pid) \
0d06e24b 1041 (current_target.to_pid_to_exec_file) (pid)
c906108c 1042
be4d1333
MS
1043/*
1044 * Iterator function for target memory regions.
1045 * Calls a callback function once for each memory region 'mapped'
1046 * in the child process. Defined as a simple macro rather than
2146d243 1047 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1048 */
1049
1050#define target_find_memory_regions(FUNC, DATA) \
1051 (current_target.to_find_memory_regions) (FUNC, DATA)
1052
1053/*
1054 * Compose corefile .note section.
1055 */
1056
1057#define target_make_corefile_notes(BFD, SIZE_P) \
1058 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1059
3f47be5c
EZ
1060/* Thread-local values. */
1061#define target_get_thread_local_address \
1062 (current_target.to_get_thread_local_address)
1063#define target_get_thread_local_address_p() \
1064 (target_get_thread_local_address != NULL)
1065
c906108c
SS
1066
1067/* Hardware watchpoint interfaces. */
1068
1069/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1070 write). */
1071
1072#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1073#define STOPPED_BY_WATCHPOINT(w) \
1074 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1075#endif
7df1a324 1076
74174d2e
UW
1077/* Non-zero if we have steppable watchpoints */
1078
1079#ifndef HAVE_STEPPABLE_WATCHPOINT
1080#define HAVE_STEPPABLE_WATCHPOINT \
1081 (current_target.to_have_steppable_watchpoint)
1082#endif
1083
7df1a324
KW
1084/* Non-zero if we have continuable watchpoints */
1085
1086#ifndef HAVE_CONTINUABLE_WATCHPOINT
1087#define HAVE_CONTINUABLE_WATCHPOINT \
1088 (current_target.to_have_continuable_watchpoint)
1089#endif
c906108c 1090
ccaa32c7 1091/* Provide defaults for hardware watchpoint functions. */
c906108c 1092
2146d243 1093/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1094 elsewhere use the definitions in the target vector. */
c906108c
SS
1095
1096/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1097 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1098 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1099 (including this one?). OTHERTYPE is who knows what... */
1100
ccaa32c7
GS
1101#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1102#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1103 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1104#endif
c906108c 1105
e0d24f8d
WZ
1106#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1107#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1108 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1109#endif
1110
c906108c
SS
1111
1112/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1113 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1114 success, non-zero for failure. */
1115
ccaa32c7
GS
1116#ifndef target_insert_watchpoint
1117#define target_insert_watchpoint(addr, len, type) \
1118 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1119
ccaa32c7
GS
1120#define target_remove_watchpoint(addr, len, type) \
1121 (*current_target.to_remove_watchpoint) (addr, len, type)
1122#endif
c906108c
SS
1123
1124#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1125#define target_insert_hw_breakpoint(bp_tgt) \
1126 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1127
8181d85f
DJ
1128#define target_remove_hw_breakpoint(bp_tgt) \
1129 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1130#endif
1131
4aa7a7f5
JJ
1132extern int target_stopped_data_address_p (struct target_ops *);
1133
c906108c 1134#ifndef target_stopped_data_address
4aa7a7f5
JJ
1135#define target_stopped_data_address(target, x) \
1136 (*target.to_stopped_data_address) (target, x)
1137#else
1138/* Horrible hack to get around existing macros :-(. */
1139#define target_stopped_data_address_p(CURRENT_TARGET) (1)
c906108c
SS
1140#endif
1141
5009afc5
AS
1142#define target_watchpoint_addr_within_range(target, addr, start, length) \
1143 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1144
b4812cfe 1145/* Target can execute in reverse? */
1146#define target_can_execute_reverse \
1147 (current_target.to_can_execute_reverse ? \
1148 current_target.to_can_execute_reverse () : 0)
1149
424163ea
DJ
1150extern const struct target_desc *target_read_description (struct target_ops *);
1151
b4812cfe 1152#define target_get_ada_task_ptid(lwp, tid) \
1153 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1154
08388c79
DE
1155/* Utility implementation of searching memory. */
1156extern int simple_search_memory (struct target_ops* ops,
1157 CORE_ADDR start_addr,
1158 ULONGEST search_space_len,
1159 const gdb_byte *pattern,
1160 ULONGEST pattern_len,
1161 CORE_ADDR *found_addrp);
1162
1163/* Main entry point for searching memory. */
1164extern int target_search_memory (CORE_ADDR start_addr,
1165 ULONGEST search_space_len,
1166 const gdb_byte *pattern,
1167 ULONGEST pattern_len,
1168 CORE_ADDR *found_addrp);
1169
49d03eab
MR
1170/* Command logging facility. */
1171
1172#define target_log_command(p) \
1173 do \
1174 if (current_target.to_log_command) \
1175 (*current_target.to_log_command) (p); \
1176 while (0)
1177
c906108c
SS
1178/* Routines for maintenance of the target structures...
1179
1180 add_target: Add a target to the list of all possible targets.
1181
1182 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1183 targets, within its particular stratum of the stack. Result
1184 is 0 if now atop the stack, nonzero if not on top (maybe
1185 should warn user).
c906108c
SS
1186
1187 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1188 no matter where it is on the list. Returns 0 if no
1189 change, 1 if removed from stack.
c906108c 1190
c5aa993b 1191 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1192
a14ed312 1193extern void add_target (struct target_ops *);
c906108c 1194
a14ed312 1195extern int push_target (struct target_ops *);
c906108c 1196
a14ed312 1197extern int unpush_target (struct target_ops *);
c906108c 1198
fd79ecee
DJ
1199extern void target_pre_inferior (int);
1200
a14ed312 1201extern void target_preopen (int);
c906108c 1202
a14ed312 1203extern void pop_target (void);
c906108c 1204
aa76d38d
PA
1205/* Does whatever cleanup is required to get rid of all pushed targets.
1206 QUITTING is propagated to target_close; it indicates that GDB is
1207 exiting and should not get hung on an error (otherwise it is
1208 important to perform clean termination, even if it takes a
1209 while). */
1210extern void pop_all_targets (int quitting);
1211
87ab71f0
PA
1212/* Like pop_all_targets, but pops only targets whose stratum is
1213 strictly above ABOVE_STRATUM. */
1214extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1215
9e35dae4
DJ
1216extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1217 CORE_ADDR offset);
1218
52bb452f
DJ
1219/* Mark a pushed target as running or exited, for targets which do not
1220 automatically pop when not active. */
1221
1222void target_mark_running (struct target_ops *);
1223
1224void target_mark_exited (struct target_ops *);
1225
c906108c
SS
1226/* Struct section_table maps address ranges to file sections. It is
1227 mostly used with BFD files, but can be used without (e.g. for handling
1228 raw disks, or files not in formats handled by BFD). */
1229
c5aa993b
JM
1230struct section_table
1231 {
1232 CORE_ADDR addr; /* Lowest address in section */
1233 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1234
7be0c536 1235 struct bfd_section *the_bfd_section;
c906108c 1236
c5aa993b
JM
1237 bfd *bfd; /* BFD file pointer */
1238 };
c906108c 1239
8db32d44
AC
1240/* Return the "section" containing the specified address. */
1241struct section_table *target_section_by_addr (struct target_ops *target,
1242 CORE_ADDR addr);
1243
1244
c906108c
SS
1245/* From mem-break.c */
1246
8181d85f 1247extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1248
8181d85f 1249extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1250
ae4b2284 1251extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1252
ae4b2284 1253extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1254
c906108c
SS
1255
1256/* From target.c */
1257
a14ed312 1258extern void initialize_targets (void);
c906108c 1259
a14ed312 1260extern void noprocess (void);
c906108c 1261
8edfe269
DJ
1262extern void target_require_runnable (void);
1263
b4812cfe 1264extern void find_default_attach (struct target_ops *, char *, int);
c906108c 1265
b4812cfe 1266extern void find_default_create_inferior (struct target_ops *,
1267 char *, char *, char **, int);
c906108c 1268
a14ed312 1269extern struct target_ops *find_run_target (void);
7a292a7a 1270
a14ed312 1271extern struct target_ops *find_core_target (void);
6426a772 1272
a14ed312 1273extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1274
570b8f7c
AC
1275extern int target_resize_to_sections (struct target_ops *target,
1276 int num_added);
07cd4b97
JB
1277
1278extern void remove_target_sections (bfd *abfd);
1279
6f581415 1280/* Read OS data object of type TYPE from the target, and return it in
1281 XML format. The result is NUL-terminated and returned as a string,
1282 allocated using xmalloc. If an error occurs or the transfer is
1283 unsupported, NULL is returned. Empty objects are returned as
1284 allocated but empty strings. */
1285
1286extern char *target_get_osdata (const char *type);
1287
c906108c
SS
1288\f
1289/* Stuff that should be shared among the various remote targets. */
1290
1291/* Debugging level. 0 is off, and non-zero values mean to print some debug
1292 information (higher values, more information). */
1293extern int remote_debug;
1294
1295/* Speed in bits per second, or -1 which means don't mess with the speed. */
1296extern int baud_rate;
1297/* Timeout limit for response from target. */
1298extern int remote_timeout;
1299
c906108c
SS
1300\f
1301/* Functions for helping to write a native target. */
1302
1303/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1304extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1305
c2d11a7d 1306/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1307 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1308/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1309 to the shorter target_signal_p() because it is far less ambigious.
1310 In this context ``target_signal'' refers to GDB's internal
1311 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1312 refers to the target operating system's signal. Confused? */
1313
c2d11a7d
JM
1314extern int target_signal_to_host_p (enum target_signal signo);
1315
1316/* Convert between host signal numbers and enum target_signal's.
1317 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1318 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1319/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1320 refering to the target operating system's signal numbering.
1321 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1322 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1323 internal representation of a target operating system's signal. */
1324
a14ed312
KB
1325extern enum target_signal target_signal_from_host (int);
1326extern int target_signal_to_host (enum target_signal);
c906108c 1327
1cded358
AR
1328extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1329 int);
1330extern int default_target_signal_to_host (struct gdbarch *,
1331 enum target_signal);
1332
c906108c 1333/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1334extern enum target_signal target_signal_from_command (int);
c906108c 1335
8defab1a
DJ
1336/* Set the show memory breakpoints mode to show, and installs a cleanup
1337 to restore it back to the current value. */
1338extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1339
c906108c
SS
1340\f
1341/* Imported from machine dependent code */
1342
c906108c 1343/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1344void target_ignore (void);
c906108c 1345
1df84f13 1346extern struct target_ops deprecated_child_ops;
5ac10fd1 1347
c5aa993b 1348#endif /* !defined (TARGET_H) */