]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/target.h
* config/tc-alpha.c (alpha_align): Check, don't assert, that
[thirdparty/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c
SS
1/* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 91, 92, 93, 94, 1999 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by John Gilmore.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#if !defined (TARGET_H)
23#define TARGET_H
24
25/* This include file defines the interface between the main part
26 of the debugger, and the part which is target-specific, or
27 specific to the communications interface between us and the
28 target.
29
30 A TARGET is an interface between the debugger and a particular
31 kind of file or process. Targets can be STACKED in STRATA,
32 so that more than one target can potentially respond to a request.
33 In particular, memory accesses will walk down the stack of targets
34 until they find a target that is interested in handling that particular
35 address. STRATA are artificial boundaries on the stack, within
36 which particular kinds of targets live. Strata exist so that
37 people don't get confused by pushing e.g. a process target and then
38 a file target, and wondering why they can't see the current values
39 of variables any more (the file target is handling them and they
40 never get to the process target). So when you push a file target,
41 it goes into the file stratum, which is always below the process
42 stratum. */
43
44#include "bfd.h"
45#include "symtab.h"
46
c5aa993b
JM
47enum strata
48 {
49 dummy_stratum, /* The lowest of the low */
50 file_stratum, /* Executable files, etc */
51 core_stratum, /* Core dump files */
52 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
53 process_stratum, /* Executing processes */
54 thread_stratum /* Executing threads */
c5aa993b 55 };
c906108c 56
c5aa993b
JM
57enum thread_control_capabilities
58 {
59 tc_none = 0, /* Default: can't control thread execution. */
60 tc_schedlock = 1, /* Can lock the thread scheduler. */
61 tc_switch = 2 /* Can switch the running thread on demand. */
62 };
c906108c
SS
63
64/* Stuff for target_wait. */
65
66/* Generally, what has the program done? */
c5aa993b
JM
67enum target_waitkind
68 {
69 /* The program has exited. The exit status is in value.integer. */
70 TARGET_WAITKIND_EXITED,
c906108c 71
c5aa993b
JM
72 /* The program has stopped with a signal. Which signal is in value.sig. */
73 TARGET_WAITKIND_STOPPED,
c906108c 74
c5aa993b
JM
75 /* The program has terminated with a signal. Which signal is in
76 value.sig. */
77 TARGET_WAITKIND_SIGNALLED,
c906108c 78
c5aa993b
JM
79 /* The program is letting us know that it dynamically loaded something
80 (e.g. it called load(2) on AIX). */
81 TARGET_WAITKIND_LOADED,
c906108c 82
c5aa993b
JM
83 /* The program has forked. A "related" process' ID is in value.related_pid.
84 I.e., if the child forks, value.related_pid is the parent's ID.
c906108c 85 */
c5aa993b 86 TARGET_WAITKIND_FORKED,
c906108c 87
c5aa993b 88 /* The program has vforked. A "related" process's ID is in value.related_pid.
c906108c 89 */
c5aa993b 90 TARGET_WAITKIND_VFORKED,
c906108c 91
c5aa993b
JM
92 /* The program has exec'ed a new executable file. The new file's pathname
93 is pointed to by value.execd_pathname.
c906108c 94 */
c5aa993b 95 TARGET_WAITKIND_EXECD,
c906108c 96
c5aa993b
JM
97 /* The program has entered or returned from a system call. On HP-UX, this
98 is used in the hardware watchpoint implementation. The syscall's unique
99 integer ID number is in value.syscall_id;
c906108c 100 */
c5aa993b
JM
101 TARGET_WAITKIND_SYSCALL_ENTRY,
102 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 103
c5aa993b
JM
104 /* Nothing happened, but we stopped anyway. This perhaps should be handled
105 within target_wait, but I'm not sure target_wait should be resuming the
106 inferior. */
107 TARGET_WAITKIND_SPURIOUS
c906108c
SS
108 };
109
110/* The numbering of these signals is chosen to match traditional unix
111 signals (insofar as various unices use the same numbers, anyway).
112 It is also the numbering of the GDB remote protocol. Other remote
113 protocols, if they use a different numbering, should make sure to
cd0fc7c3 114 translate appropriately.
c906108c 115
cd0fc7c3
SS
116 Since these numbers have actually made it out into other software
117 (stubs, etc.), you mustn't disturb the assigned numbering. If you
118 need to add new signals here, add them to the end of the explicitly
119 numbered signals.
120
121 This is based strongly on Unix/POSIX signals for several reasons:
c906108c
SS
122 (1) This set of signals represents a widely-accepted attempt to
123 represent events of this sort in a portable fashion, (2) we want a
124 signal to make it from wait to child_wait to the user intact, (3) many
125 remote protocols use a similar encoding. However, it is
126 recognized that this set of signals has limitations (such as not
127 distinguishing between various kinds of SIGSEGV, or not
128 distinguishing hitting a breakpoint from finishing a single step).
129 So in the future we may get around this either by adding additional
130 signals for breakpoint, single-step, etc., or by adding signal
131 codes; the latter seems more in the spirit of what BSD, System V,
132 etc. are doing to address these issues. */
133
134/* For an explanation of what each signal means, see
135 target_signal_to_string. */
136
c5aa993b
JM
137enum target_signal
138 {
139 /* Used some places (e.g. stop_signal) to record the concept that
140 there is no signal. */
141 TARGET_SIGNAL_0 = 0,
142 TARGET_SIGNAL_FIRST = 0,
143 TARGET_SIGNAL_HUP = 1,
144 TARGET_SIGNAL_INT = 2,
145 TARGET_SIGNAL_QUIT = 3,
146 TARGET_SIGNAL_ILL = 4,
147 TARGET_SIGNAL_TRAP = 5,
148 TARGET_SIGNAL_ABRT = 6,
149 TARGET_SIGNAL_EMT = 7,
150 TARGET_SIGNAL_FPE = 8,
151 TARGET_SIGNAL_KILL = 9,
152 TARGET_SIGNAL_BUS = 10,
153 TARGET_SIGNAL_SEGV = 11,
154 TARGET_SIGNAL_SYS = 12,
155 TARGET_SIGNAL_PIPE = 13,
156 TARGET_SIGNAL_ALRM = 14,
157 TARGET_SIGNAL_TERM = 15,
158 TARGET_SIGNAL_URG = 16,
159 TARGET_SIGNAL_STOP = 17,
160 TARGET_SIGNAL_TSTP = 18,
161 TARGET_SIGNAL_CONT = 19,
162 TARGET_SIGNAL_CHLD = 20,
163 TARGET_SIGNAL_TTIN = 21,
164 TARGET_SIGNAL_TTOU = 22,
165 TARGET_SIGNAL_IO = 23,
166 TARGET_SIGNAL_XCPU = 24,
167 TARGET_SIGNAL_XFSZ = 25,
168 TARGET_SIGNAL_VTALRM = 26,
169 TARGET_SIGNAL_PROF = 27,
170 TARGET_SIGNAL_WINCH = 28,
171 TARGET_SIGNAL_LOST = 29,
172 TARGET_SIGNAL_USR1 = 30,
173 TARGET_SIGNAL_USR2 = 31,
174 TARGET_SIGNAL_PWR = 32,
175 /* Similar to SIGIO. Perhaps they should have the same number. */
176 TARGET_SIGNAL_POLL = 33,
177 TARGET_SIGNAL_WIND = 34,
178 TARGET_SIGNAL_PHONE = 35,
179 TARGET_SIGNAL_WAITING = 36,
180 TARGET_SIGNAL_LWP = 37,
181 TARGET_SIGNAL_DANGER = 38,
182 TARGET_SIGNAL_GRANT = 39,
183 TARGET_SIGNAL_RETRACT = 40,
184 TARGET_SIGNAL_MSG = 41,
185 TARGET_SIGNAL_SOUND = 42,
186 TARGET_SIGNAL_SAK = 43,
187 TARGET_SIGNAL_PRIO = 44,
188 TARGET_SIGNAL_REALTIME_33 = 45,
189 TARGET_SIGNAL_REALTIME_34 = 46,
190 TARGET_SIGNAL_REALTIME_35 = 47,
191 TARGET_SIGNAL_REALTIME_36 = 48,
192 TARGET_SIGNAL_REALTIME_37 = 49,
193 TARGET_SIGNAL_REALTIME_38 = 50,
194 TARGET_SIGNAL_REALTIME_39 = 51,
195 TARGET_SIGNAL_REALTIME_40 = 52,
196 TARGET_SIGNAL_REALTIME_41 = 53,
197 TARGET_SIGNAL_REALTIME_42 = 54,
198 TARGET_SIGNAL_REALTIME_43 = 55,
199 TARGET_SIGNAL_REALTIME_44 = 56,
200 TARGET_SIGNAL_REALTIME_45 = 57,
201 TARGET_SIGNAL_REALTIME_46 = 58,
202 TARGET_SIGNAL_REALTIME_47 = 59,
203 TARGET_SIGNAL_REALTIME_48 = 60,
204 TARGET_SIGNAL_REALTIME_49 = 61,
205 TARGET_SIGNAL_REALTIME_50 = 62,
206 TARGET_SIGNAL_REALTIME_51 = 63,
207 TARGET_SIGNAL_REALTIME_52 = 64,
208 TARGET_SIGNAL_REALTIME_53 = 65,
209 TARGET_SIGNAL_REALTIME_54 = 66,
210 TARGET_SIGNAL_REALTIME_55 = 67,
211 TARGET_SIGNAL_REALTIME_56 = 68,
212 TARGET_SIGNAL_REALTIME_57 = 69,
213 TARGET_SIGNAL_REALTIME_58 = 70,
214 TARGET_SIGNAL_REALTIME_59 = 71,
215 TARGET_SIGNAL_REALTIME_60 = 72,
216 TARGET_SIGNAL_REALTIME_61 = 73,
217 TARGET_SIGNAL_REALTIME_62 = 74,
218 TARGET_SIGNAL_REALTIME_63 = 75,
219
220 /* Used internally by Solaris threads. See signal(5) on Solaris. */
221 TARGET_SIGNAL_CANCEL = 76,
cd0fc7c3 222
d4f3574e
SS
223 /* Yes, this pains me, too. But LynxOS didn't have SIG32, and now
224 Linux does, and we can't disturb the numbering, since it's part
225 of the protocol. Note that in some GDB's TARGET_SIGNAL_REALTIME_32
226 is number 76. */
227 TARGET_SIGNAL_REALTIME_32,
228
c906108c 229#if defined(MACH) || defined(__MACH__)
c5aa993b
JM
230 /* Mach exceptions */
231 TARGET_EXC_BAD_ACCESS,
232 TARGET_EXC_BAD_INSTRUCTION,
233 TARGET_EXC_ARITHMETIC,
234 TARGET_EXC_EMULATION,
235 TARGET_EXC_SOFTWARE,
236 TARGET_EXC_BREAKPOINT,
c906108c 237#endif
c5aa993b 238 TARGET_SIGNAL_INFO,
c906108c 239
c5aa993b
JM
240 /* Some signal we don't know about. */
241 TARGET_SIGNAL_UNKNOWN,
c906108c 242
c5aa993b
JM
243 /* Use whatever signal we use when one is not specifically specified
244 (for passing to proceed and so on). */
245 TARGET_SIGNAL_DEFAULT,
c906108c 246
c5aa993b
JM
247 /* Last and unused enum value, for sizing arrays, etc. */
248 TARGET_SIGNAL_LAST
249 };
c906108c 250
c5aa993b
JM
251struct target_waitstatus
252 {
253 enum target_waitkind kind;
254
255 /* Forked child pid, execd pathname, exit status or signal number. */
256 union
257 {
258 int integer;
259 enum target_signal sig;
260 int related_pid;
261 char *execd_pathname;
262 int syscall_id;
263 }
264 value;
265 };
c906108c 266
2acceee2
JM
267/* Possible types of events that the inferior handler will have to
268 deal with. */
269enum inferior_event_type
270 {
271 /* There is a request to quit the inferior, abandon it. */
272 INF_QUIT_REQ,
273 /* Process a normal inferior event which will result in target_wait
274 being called. */
275 INF_REG_EVENT,
276 /* Deal with an error on the inferior. */
277 INF_ERROR,
278 /* We are called because a timer went off. */
279 INF_TIMER,
280 /* We are called to do stuff after the inferior stops. */
281 INF_EXEC_COMPLETE
282 };
283
c906108c
SS
284/* Return the string for a signal. */
285extern char *target_signal_to_string PARAMS ((enum target_signal));
286
287/* Return the name (SIGHUP, etc.) for a signal. */
288extern char *target_signal_to_name PARAMS ((enum target_signal));
289
290/* Given a name (SIGHUP, etc.), return its signal. */
291enum target_signal target_signal_from_name PARAMS ((char *));
c906108c 292\f
c5aa993b 293
c906108c
SS
294/* If certain kinds of activity happen, target_wait should perform
295 callbacks. */
296/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
297 on TARGET_ACTIVITY_FD. */
298extern int target_activity_fd;
299/* Returns zero to leave the inferior alone, one to interrupt it. */
300extern int (*target_activity_function) PARAMS ((void));
301\f
302struct target_ops
c5aa993b
JM
303 {
304 char *to_shortname; /* Name this target type */
305 char *to_longname; /* Name for printing */
306 char *to_doc; /* Documentation. Does not include trailing
c906108c
SS
307 newline, and starts with a one-line descrip-
308 tion (probably similar to to_longname). */
c5aa993b
JM
309 void (*to_open) PARAMS ((char *, int));
310 void (*to_close) PARAMS ((int));
311 void (*to_attach) PARAMS ((char *, int));
312 void (*to_post_attach) PARAMS ((int));
313 void (*to_require_attach) PARAMS ((char *, int));
314 void (*to_detach) PARAMS ((char *, int));
315 void (*to_require_detach) PARAMS ((int, char *, int));
316 void (*to_resume) PARAMS ((int, int, enum target_signal));
317 int (*to_wait) PARAMS ((int, struct target_waitstatus *));
318 void (*to_post_wait) PARAMS ((int, int));
319 void (*to_fetch_registers) PARAMS ((int));
320 void (*to_store_registers) PARAMS ((int));
321 void (*to_prepare_to_store) PARAMS ((void));
322
323 /* Transfer LEN bytes of memory between GDB address MYADDR and
324 target address MEMADDR. If WRITE, transfer them to the target, else
325 transfer them from the target. TARGET is the target from which we
326 get this function.
327
328 Return value, N, is one of the following:
329
330 0 means that we can't handle this. If errno has been set, it is the
331 error which prevented us from doing it (FIXME: What about bfd_error?).
332
333 positive (call it N) means that we have transferred N bytes
334 starting at MEMADDR. We might be able to handle more bytes
335 beyond this length, but no promises.
336
337 negative (call its absolute value N) means that we cannot
338 transfer right at MEMADDR, but we could transfer at least
339 something at MEMADDR + N. */
340
341 int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
342 int len, int write,
343 struct target_ops * target));
c906108c
SS
344
345#if 0
c5aa993b 346 /* Enable this after 4.12. */
c906108c 347
c5aa993b
JM
348 /* Search target memory. Start at STARTADDR and take LEN bytes of
349 target memory, and them with MASK, and compare to DATA. If they
350 match, set *ADDR_FOUND to the address we found it at, store the data
351 we found at LEN bytes starting at DATA_FOUND, and return. If
352 not, add INCREMENT to the search address and keep trying until
353 the search address is outside of the range [LORANGE,HIRANGE).
c906108c 354
c5aa993b
JM
355 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and return. */
356 void (*to_search) PARAMS ((int len, char *data, char *mask,
357 CORE_ADDR startaddr, int increment,
358 CORE_ADDR lorange, CORE_ADDR hirange,
359 CORE_ADDR * addr_found, char *data_found));
c906108c
SS
360
361#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
362 (*current_target.to_search) (len, data, mask, startaddr, increment, \
363 lorange, hirange, addr_found, data_found)
c5aa993b
JM
364#endif /* 0 */
365
366 void (*to_files_info) PARAMS ((struct target_ops *));
367 int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
368 int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
369 void (*to_terminal_init) PARAMS ((void));
370 void (*to_terminal_inferior) PARAMS ((void));
371 void (*to_terminal_ours_for_output) PARAMS ((void));
372 void (*to_terminal_ours) PARAMS ((void));
373 void (*to_terminal_info) PARAMS ((char *, int));
374 void (*to_kill) PARAMS ((void));
375 void (*to_load) PARAMS ((char *, int));
376 int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
377 void (*to_create_inferior) PARAMS ((char *, char *, char **));
378 void (*to_post_startup_inferior) PARAMS ((int));
379 void (*to_acknowledge_created_inferior) PARAMS ((int));
380 void (*to_clone_and_follow_inferior) PARAMS ((int, int *));
381 void (*to_post_follow_inferior_by_clone) PARAMS ((void));
382 int (*to_insert_fork_catchpoint) PARAMS ((int));
383 int (*to_remove_fork_catchpoint) PARAMS ((int));
384 int (*to_insert_vfork_catchpoint) PARAMS ((int));
385 int (*to_remove_vfork_catchpoint) PARAMS ((int));
386 int (*to_has_forked) PARAMS ((int, int *));
387 int (*to_has_vforked) PARAMS ((int, int *));
388 int (*to_can_follow_vfork_prior_to_exec) PARAMS ((void));
389 void (*to_post_follow_vfork) PARAMS ((int, int, int, int));
390 int (*to_insert_exec_catchpoint) PARAMS ((int));
391 int (*to_remove_exec_catchpoint) PARAMS ((int));
392 int (*to_has_execd) PARAMS ((int, char **));
393 int (*to_reported_exec_events_per_exec_call) PARAMS ((void));
394 int (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *));
395 int (*to_has_exited) PARAMS ((int, int, int *));
396 void (*to_mourn_inferior) PARAMS ((void));
397 int (*to_can_run) PARAMS ((void));
398 void (*to_notice_signals) PARAMS ((int pid));
399 int (*to_thread_alive) PARAMS ((int pid));
400 void (*to_find_new_threads) PARAMS ((void));
401 void (*to_stop) PARAMS ((void));
402 int (*to_query) PARAMS ((int /*char */ , char *, char *, int *));
96baa820 403 void (*to_rcmd) (char *command, struct gdb_file *output);
c5aa993b
JM
404 struct symtab_and_line *(*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int));
405 struct exception_event_record *(*to_get_current_exception_event) PARAMS ((void));
406 char *(*to_pid_to_exec_file) PARAMS ((int pid));
407 char *(*to_core_file_to_sym_file) PARAMS ((char *));
408 enum strata to_stratum;
409 struct target_ops
410 *DONT_USE; /* formerly to_next */
411 int to_has_all_memory;
412 int to_has_memory;
413 int to_has_stack;
414 int to_has_registers;
415 int to_has_execution;
416 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
417 struct section_table
418 *to_sections;
419 struct section_table
420 *to_sections_end;
6426a772
JM
421 /* ASYNC target controls */
422 int (*to_can_async_p) (void);
423 int (*to_is_async_p) (void);
2acceee2 424 void (*to_async) (void (*cb) (enum inferior_event_type, void *context), void *context);
c5aa993b
JM
425 int to_magic;
426 /* Need sub-structure for target machine related rather than comm related? */
427 };
c906108c
SS
428
429/* Magic number for checking ops size. If a struct doesn't end with this
430 number, somebody changed the declaration but didn't change all the
431 places that initialize one. */
432
433#define OPS_MAGIC 3840
434
435/* The ops structure for our "current" target process. This should
436 never be NULL. If there is no target, it points to the dummy_target. */
437
c5aa993b 438extern struct target_ops current_target;
c906108c
SS
439
440/* An item on the target stack. */
441
442struct target_stack_item
c5aa993b
JM
443 {
444 struct target_stack_item *next;
445 struct target_ops *target_ops;
446 };
c906108c
SS
447
448/* The target stack. */
449
450extern struct target_stack_item *target_stack;
451
452/* Define easy words for doing these operations on our current target. */
453
454#define target_shortname (current_target.to_shortname)
455#define target_longname (current_target.to_longname)
456
457/* The open routine takes the rest of the parameters from the command,
458 and (if successful) pushes a new target onto the stack.
459 Targets should supply this routine, if only to provide an error message. */
460#define target_open(name, from_tty) \
461 (*current_target.to_open) (name, from_tty)
462
463/* Does whatever cleanup is required for a target that we are no longer
464 going to be calling. Argument says whether we are quitting gdb and
465 should not get hung in case of errors, or whether we want a clean
466 termination even if it takes a while. This routine is automatically
467 always called just before a routine is popped off the target stack.
468 Closing file descriptors and freeing memory are typical things it should
469 do. */
470
471#define target_close(quitting) \
472 (*current_target.to_close) (quitting)
473
474/* Attaches to a process on the target side. Arguments are as passed
475 to the `attach' command by the user. This routine can be called
476 when the target is not on the target-stack, if the target_can_run
477 routine returns 1; in that case, it must push itself onto the stack.
478 Upon exit, the target should be ready for normal operations, and
479 should be ready to deliver the status of the process immediately
480 (without waiting) to an upcoming target_wait call. */
481
482#define target_attach(args, from_tty) \
483 (*current_target.to_attach) (args, from_tty)
484
485/* The target_attach operation places a process under debugger control,
486 and stops the process.
487
488 This operation provides a target-specific hook that allows the
489 necessary bookkeeping to be performed after an attach completes.
c5aa993b 490 */
c906108c
SS
491#define target_post_attach(pid) \
492 (*current_target.to_post_attach) (pid)
493
494/* Attaches to a process on the target side, if not already attached.
495 (If already attached, takes no action.)
496
497 This operation can be used to follow the child process of a fork.
498 On some targets, such child processes of an original inferior process
499 are automatically under debugger control, and thus do not require an
500 actual attach operation. */
501
502#define target_require_attach(args, from_tty) \
503 (*current_target.to_require_attach) (args, from_tty)
504
505/* Takes a program previously attached to and detaches it.
506 The program may resume execution (some targets do, some don't) and will
507 no longer stop on signals, etc. We better not have left any breakpoints
508 in the program or it'll die when it hits one. ARGS is arguments
509 typed by the user (e.g. a signal to send the process). FROM_TTY
510 says whether to be verbose or not. */
511
512extern void
513target_detach PARAMS ((char *, int));
514
515/* Detaches from a process on the target side, if not already dettached.
516 (If already detached, takes no action.)
517
518 This operation can be used to follow the parent process of a fork.
519 On some targets, such child processes of an original inferior process
520 are automatically under debugger control, and thus do require an actual
521 detach operation.
522
523 PID is the process id of the child to detach from.
524 ARGS is arguments typed by the user (e.g. a signal to send the process).
525 FROM_TTY says whether to be verbose or not. */
526
527#define target_require_detach(pid, args, from_tty) \
528 (*current_target.to_require_detach) (pid, args, from_tty)
529
530/* Resume execution of the target process PID. STEP says whether to
531 single-step or to run free; SIGGNAL is the signal to be given to
532 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
533 pass TARGET_SIGNAL_DEFAULT. */
534
535#define target_resume(pid, step, siggnal) \
536 (*current_target.to_resume) (pid, step, siggnal)
537
538/* Wait for process pid to do something. Pid = -1 to wait for any pid
539 to do something. Return pid of child, or -1 in case of error;
540 store status through argument pointer STATUS. Note that it is
541 *not* OK to return_to_top_level out of target_wait without popping
542 the debugging target from the stack; GDB isn't prepared to get back
543 to the prompt with a debugging target but without the frame cache,
544 stop_pc, etc., set up. */
545
546#define target_wait(pid, status) \
547 (*current_target.to_wait) (pid, status)
548
549/* The target_wait operation waits for a process event to occur, and
550 thereby stop the process.
551
552 On some targets, certain events may happen in sequences. gdb's
553 correct response to any single event of such a sequence may require
554 knowledge of what earlier events in the sequence have been seen.
555
556 This operation provides a target-specific hook that allows the
557 necessary bookkeeping to be performed to track such sequences.
c5aa993b 558 */
c906108c
SS
559
560#define target_post_wait(pid, status) \
561 (*current_target.to_post_wait) (pid, status)
562
563/* Fetch register REGNO, or all regs if regno == -1. No result. */
564
565#define target_fetch_registers(regno) \
566 (*current_target.to_fetch_registers) (regno)
567
568/* Store at least register REGNO, or all regs if REGNO == -1.
569 It can store as many registers as it wants to, so target_prepare_to_store
570 must have been previously called. Calls error() if there are problems. */
571
572#define target_store_registers(regs) \
573 (*current_target.to_store_registers) (regs)
574
575/* Get ready to modify the registers array. On machines which store
576 individual registers, this doesn't need to do anything. On machines
577 which store all the registers in one fell swoop, this makes sure
578 that REGISTERS contains all the registers from the program being
579 debugged. */
580
581#define target_prepare_to_store() \
582 (*current_target.to_prepare_to_store) ()
583
584extern int target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
585
586extern int
587target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
588
589extern int
590target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
c5aa993b 591 asection * bfd_section));
c906108c 592
c906108c
SS
593extern int
594target_write_memory PARAMS ((CORE_ADDR, char *, int));
595
596extern int
597xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
598
599extern int
600child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
601
917317f4
JM
602/* Make a single attempt at transfering LEN bytes. On a successful
603 transfer, the number of bytes actually transfered is returned and
604 ERR is set to 0. When a transfer fails, -1 is returned (the number
605 of bytes actually transfered is not defined) and ERR is set to a
606 non-zero error indication. */
607
608extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
609
610extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
611
c906108c 612extern char *
c5aa993b 613 child_pid_to_exec_file PARAMS ((int));
c906108c
SS
614
615extern char *
c5aa993b 616 child_core_file_to_sym_file PARAMS ((char *));
c906108c
SS
617
618#if defined(CHILD_POST_ATTACH)
619extern void
620child_post_attach PARAMS ((int));
621#endif
622
623extern void
624child_post_wait PARAMS ((int, int));
625
626extern void
627child_post_startup_inferior PARAMS ((int));
628
629extern void
630child_acknowledge_created_inferior PARAMS ((int));
631
632extern void
633child_clone_and_follow_inferior PARAMS ((int, int *));
634
635extern void
636child_post_follow_inferior_by_clone PARAMS ((void));
637
638extern int
639child_insert_fork_catchpoint PARAMS ((int));
640
641extern int
642child_remove_fork_catchpoint PARAMS ((int));
643
644extern int
645child_insert_vfork_catchpoint PARAMS ((int));
646
647extern int
648child_remove_vfork_catchpoint PARAMS ((int));
649
650extern int
651child_has_forked PARAMS ((int, int *));
652
653extern int
654child_has_vforked PARAMS ((int, int *));
655
656extern void
657child_acknowledge_created_inferior PARAMS ((int));
658
659extern int
660child_can_follow_vfork_prior_to_exec PARAMS ((void));
661
662extern void
663child_post_follow_vfork PARAMS ((int, int, int, int));
664
665extern int
666child_insert_exec_catchpoint PARAMS ((int));
667
668extern int
669child_remove_exec_catchpoint PARAMS ((int));
670
671extern int
672child_has_execd PARAMS ((int, char **));
673
674extern int
675child_reported_exec_events_per_exec_call PARAMS ((void));
676
677extern int
678child_has_syscall_event PARAMS ((int, enum target_waitkind *, int *));
679
680extern int
681child_has_exited PARAMS ((int, int, int *));
682
683extern int
684child_thread_alive PARAMS ((int));
685
686/* From exec.c */
687
688extern void
689print_section_info PARAMS ((struct target_ops *, bfd *));
690
691/* Print a line about the current target. */
692
693#define target_files_info() \
694 (*current_target.to_files_info) (&current_target)
695
696/* Insert a breakpoint at address ADDR in the target machine.
697 SAVE is a pointer to memory allocated for saving the
698 target contents. It is guaranteed by the caller to be long enough
699 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
700 an errno value. */
701
702#define target_insert_breakpoint(addr, save) \
703 (*current_target.to_insert_breakpoint) (addr, save)
704
705/* Remove a breakpoint at address ADDR in the target machine.
706 SAVE is a pointer to the same save area
707 that was previously passed to target_insert_breakpoint.
708 Result is 0 for success, or an errno value. */
709
710#define target_remove_breakpoint(addr, save) \
711 (*current_target.to_remove_breakpoint) (addr, save)
712
713/* Initialize the terminal settings we record for the inferior,
714 before we actually run the inferior. */
715
716#define target_terminal_init() \
717 (*current_target.to_terminal_init) ()
718
719/* Put the inferior's terminal settings into effect.
720 This is preparation for starting or resuming the inferior. */
721
722#define target_terminal_inferior() \
723 (*current_target.to_terminal_inferior) ()
724
725/* Put some of our terminal settings into effect,
726 enough to get proper results from our output,
727 but do not change into or out of RAW mode
728 so that no input is discarded.
729
730 After doing this, either terminal_ours or terminal_inferior
731 should be called to get back to a normal state of affairs. */
732
733#define target_terminal_ours_for_output() \
734 (*current_target.to_terminal_ours_for_output) ()
735
736/* Put our terminal settings into effect.
737 First record the inferior's terminal settings
738 so they can be restored properly later. */
739
740#define target_terminal_ours() \
741 (*current_target.to_terminal_ours) ()
742
743/* Print useful information about our terminal status, if such a thing
744 exists. */
745
746#define target_terminal_info(arg, from_tty) \
747 (*current_target.to_terminal_info) (arg, from_tty)
748
749/* Kill the inferior process. Make it go away. */
750
751#define target_kill() \
752 (*current_target.to_kill) ()
753
754/* Load an executable file into the target process. This is expected to
755 not only bring new code into the target process, but also to update
756 GDB's symbol tables to match. */
757
758#define target_load(arg, from_tty) \
759 (*current_target.to_load) (arg, from_tty)
760
761/* Look up a symbol in the target's symbol table. NAME is the symbol
762 name. ADDRP is a CORE_ADDR * pointing to where the value of the symbol
763 should be returned. The result is 0 if successful, nonzero if the
764 symbol does not exist in the target environment. This function should
765 not call error() if communication with the target is interrupted, since
766 it is called from symbol reading, but should return nonzero, possibly
767 doing a complain(). */
768
769#define target_lookup_symbol(name, addrp) \
770 (*current_target.to_lookup_symbol) (name, addrp)
771
772/* Start an inferior process and set inferior_pid to its pid.
773 EXEC_FILE is the file to run.
774 ALLARGS is a string containing the arguments to the program.
775 ENV is the environment vector to pass. Errors reported with error().
776 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 777
c906108c
SS
778#define target_create_inferior(exec_file, args, env) \
779 (*current_target.to_create_inferior) (exec_file, args, env)
780
781
782/* Some targets (such as ttrace-based HPUX) don't allow us to request
783 notification of inferior events such as fork and vork immediately
784 after the inferior is created. (This because of how gdb gets an
785 inferior created via invoking a shell to do it. In such a scenario,
786 if the shell init file has commands in it, the shell will fork and
787 exec for each of those commands, and we will see each such fork
788 event. Very bad.)
c5aa993b 789
c906108c 790 Such targets will supply an appropriate definition for this function.
c5aa993b 791 */
c906108c
SS
792#define target_post_startup_inferior(pid) \
793 (*current_target.to_post_startup_inferior) (pid)
794
795/* On some targets, the sequence of starting up an inferior requires
796 some synchronization between gdb and the new inferior process, PID.
c5aa993b 797 */
c906108c
SS
798#define target_acknowledge_created_inferior(pid) \
799 (*current_target.to_acknowledge_created_inferior) (pid)
800
801/* An inferior process has been created via a fork() or similar
802 system call. This function will clone the debugger, then ensure
803 that CHILD_PID is attached to by that debugger.
804
805 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
806 and FALSE otherwise. (The original and clone debuggers can use this
807 to determine which they are, if need be.)
808
809 (This is not a terribly useful feature without a GUI to prevent
810 the two debuggers from competing for shell input.)
c5aa993b 811 */
c906108c
SS
812#define target_clone_and_follow_inferior(child_pid,followed_child) \
813 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
814
815/* This operation is intended to be used as the last in a sequence of
816 steps taken when following both parent and child of a fork. This
817 is used by a clone of the debugger, which will follow the child.
818
819 The original debugger has detached from this process, and the
820 clone has attached to it.
821
822 On some targets, this requires a bit of cleanup to make it work
823 correctly.
c5aa993b 824 */
c906108c
SS
825#define target_post_follow_inferior_by_clone() \
826 (*current_target.to_post_follow_inferior_by_clone) ()
827
828/* On some targets, we can catch an inferior fork or vfork event when it
829 occurs. These functions insert/remove an already-created catchpoint for
830 such events.
c5aa993b 831 */
c906108c
SS
832#define target_insert_fork_catchpoint(pid) \
833 (*current_target.to_insert_fork_catchpoint) (pid)
834
835#define target_remove_fork_catchpoint(pid) \
836 (*current_target.to_remove_fork_catchpoint) (pid)
837
838#define target_insert_vfork_catchpoint(pid) \
839 (*current_target.to_insert_vfork_catchpoint) (pid)
840
841#define target_remove_vfork_catchpoint(pid) \
842 (*current_target.to_remove_vfork_catchpoint) (pid)
843
844/* Returns TRUE if PID has invoked the fork() system call. And,
845 also sets CHILD_PID to the process id of the other ("child")
846 inferior process that was created by that call.
c5aa993b 847 */
c906108c
SS
848#define target_has_forked(pid,child_pid) \
849 (*current_target.to_has_forked) (pid,child_pid)
850
851/* Returns TRUE if PID has invoked the vfork() system call. And,
852 also sets CHILD_PID to the process id of the other ("child")
853 inferior process that was created by that call.
c5aa993b 854 */
c906108c
SS
855#define target_has_vforked(pid,child_pid) \
856 (*current_target.to_has_vforked) (pid,child_pid)
857
858/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
859 anything to a vforked child before it subsequently calls exec().
860 On such platforms, we say that the debugger cannot "follow" the
861 child until it has vforked.
862
863 This function should be defined to return 1 by those targets
864 which can allow the debugger to immediately follow a vforked
865 child, and 0 if they cannot.
c5aa993b 866 */
c906108c
SS
867#define target_can_follow_vfork_prior_to_exec() \
868 (*current_target.to_can_follow_vfork_prior_to_exec) ()
869
870/* An inferior process has been created via a vfork() system call.
871 The debugger has followed the parent, the child, or both. The
872 process of setting up for that follow may have required some
873 target-specific trickery to track the sequence of reported events.
874 If so, this function should be defined by those targets that
875 require the debugger to perform cleanup or initialization after
876 the vfork follow.
c5aa993b 877 */
c906108c
SS
878#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
879 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
880
881/* On some targets, we can catch an inferior exec event when it
882 occurs. These functions insert/remove an already-created catchpoint
883 for such events.
c5aa993b 884 */
c906108c
SS
885#define target_insert_exec_catchpoint(pid) \
886 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 887
c906108c
SS
888#define target_remove_exec_catchpoint(pid) \
889 (*current_target.to_remove_exec_catchpoint) (pid)
890
891/* Returns TRUE if PID has invoked a flavor of the exec() system call.
892 And, also sets EXECD_PATHNAME to the pathname of the executable file
893 that was passed to exec(), and is now being executed.
c5aa993b 894 */
c906108c
SS
895#define target_has_execd(pid,execd_pathname) \
896 (*current_target.to_has_execd) (pid,execd_pathname)
897
898/* Returns the number of exec events that are reported when a process
899 invokes a flavor of the exec() system call on this target, if exec
900 events are being reported.
c5aa993b 901 */
c906108c
SS
902#define target_reported_exec_events_per_exec_call() \
903 (*current_target.to_reported_exec_events_per_exec_call) ()
904
905/* Returns TRUE if PID has reported a syscall event. And, also sets
906 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
907 the unique integer ID of the syscall.
c5aa993b 908 */
c906108c
SS
909#define target_has_syscall_event(pid,kind,syscall_id) \
910 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
911
912/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
913 exit code of PID, if any.
c5aa993b 914 */
c906108c
SS
915#define target_has_exited(pid,wait_status,exit_status) \
916 (*current_target.to_has_exited) (pid,wait_status,exit_status)
917
918/* The debugger has completed a blocking wait() call. There is now
919 some process event that must be processed. This function should
920 be defined by those targets that require the debugger to perform
921 cleanup or internal state changes in response to the process event.
c5aa993b 922 */
c906108c
SS
923
924/* The inferior process has died. Do what is right. */
925
926#define target_mourn_inferior() \
927 (*current_target.to_mourn_inferior) ()
928
929/* Does target have enough data to do a run or attach command? */
930
931#define target_can_run(t) \
932 ((t)->to_can_run) ()
933
934/* post process changes to signal handling in the inferior. */
935
936#define target_notice_signals(pid) \
937 (*current_target.to_notice_signals) (pid)
938
939/* Check to see if a thread is still alive. */
940
941#define target_thread_alive(pid) \
942 (*current_target.to_thread_alive) (pid)
943
b83266a0
SS
944/* Query for new threads and add them to the thread list. */
945
946#define target_find_new_threads() \
947 do { \
948 if (current_target.to_find_new_threads) \
949 (*current_target.to_find_new_threads) (); \
950 } while (0);
951
c906108c
SS
952/* Make target stop in a continuable fashion. (For instance, under Unix, this
953 should act like SIGSTOP). This function is normally used by GUIs to
954 implement a stop button. */
955
956#define target_stop current_target.to_stop
957
958/* Queries the target side for some information. The first argument is a
959 letter specifying the type of the query, which is used to determine who
960 should process it. The second argument is a string that specifies which
961 information is desired and the third is a buffer that carries back the
962 response from the target side. The fourth parameter is the size of the
963 output buffer supplied. */
c5aa993b 964
c906108c
SS
965#define target_query(query_type, query, resp_buffer, bufffer_size) \
966 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
967
96baa820
JM
968/* Send the specified COMMAND to the target's monitor
969 (shell,interpreter) for execution. The result of the query is
970 placed in OUTBUF. */
971
972#define target_rcmd(command, outbuf) \
973 (*current_target.to_rcmd) (command, outbuf)
974
975
c906108c
SS
976/* Get the symbol information for a breakpointable routine called when
977 an exception event occurs.
978 Intended mainly for C++, and for those
979 platforms/implementations where such a callback mechanism is available,
980 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
981 different mechanisms for debugging exceptions. */
982
983#define target_enable_exception_callback(kind, enable) \
984 (*current_target.to_enable_exception_callback) (kind, enable)
985
986/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 987
c906108c
SS
988#define target_get_current_exception_event() \
989 (*current_target.to_get_current_exception_event) ()
990
991/* Pointer to next target in the chain, e.g. a core file and an exec file. */
992
993#define target_next \
994 (current_target.to_next)
995
996/* Does the target include all of memory, or only part of it? This
997 determines whether we look up the target chain for other parts of
998 memory if this target can't satisfy a request. */
999
1000#define target_has_all_memory \
1001 (current_target.to_has_all_memory)
1002
1003/* Does the target include memory? (Dummy targets don't.) */
1004
1005#define target_has_memory \
1006 (current_target.to_has_memory)
1007
1008/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1009 we start a process.) */
c5aa993b 1010
c906108c
SS
1011#define target_has_stack \
1012 (current_target.to_has_stack)
1013
1014/* Does the target have registers? (Exec files don't.) */
1015
1016#define target_has_registers \
1017 (current_target.to_has_registers)
1018
1019/* Does the target have execution? Can we make it jump (through
1020 hoops), or pop its stack a few times? FIXME: If this is to work that
1021 way, it needs to check whether an inferior actually exists.
1022 remote-udi.c and probably other targets can be the current target
1023 when the inferior doesn't actually exist at the moment. Right now
1024 this just tells us whether this target is *capable* of execution. */
1025
1026#define target_has_execution \
1027 (current_target.to_has_execution)
1028
1029/* Can the target support the debugger control of thread execution?
1030 a) Can it lock the thread scheduler?
1031 b) Can it switch the currently running thread? */
1032
1033#define target_can_lock_scheduler \
1034 (current_target.to_has_thread_control & tc_schedlock)
1035
1036#define target_can_switch_threads \
1037 (current_target.to_has_thread_control & tc_switch)
1038
6426a772
JM
1039/* Can the target support asynchronous execution? */
1040#define target_can_async_p() (current_target.to_can_async_p ())
1041
1042/* Is the target in asynchronous execution mode? */
1043#define target_is_async_p() (current_target.to_is_async_p())
1044
1045/* Put the target in async mode with the specified callback function. */
1046#define target_async(CALLBACK,CONTEXT) (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 1047
c906108c
SS
1048extern void target_link PARAMS ((char *, CORE_ADDR *));
1049
1050/* Converts a process id to a string. Usually, the string just contains
1051 `process xyz', but on some systems it may contain
1052 `process xyz thread abc'. */
1053
1054#ifndef target_pid_to_str
1055#define target_pid_to_str(PID) \
1056 normal_pid_to_str (PID)
1057extern char *normal_pid_to_str PARAMS ((int pid));
1058#endif
1059
1060#ifndef target_tid_to_str
1061#define target_tid_to_str(PID) \
1062 normal_pid_to_str (PID)
1063extern char *normal_pid_to_str PARAMS ((int pid));
1064#endif
c5aa993b 1065
c906108c
SS
1066
1067#ifndef target_new_objfile
1068#define target_new_objfile(OBJFILE)
1069#endif
1070
1071#ifndef target_pid_or_tid_to_str
1072#define target_pid_or_tid_to_str(ID) \
1073 normal_pid_to_str (ID)
1074#endif
1075
1076/* Attempts to find the pathname of the executable file
1077 that was run to create a specified process.
1078
1079 The process PID must be stopped when this operation is used.
c5aa993b 1080
c906108c
SS
1081 If the executable file cannot be determined, NULL is returned.
1082
1083 Else, a pointer to a character string containing the pathname
1084 is returned. This string should be copied into a buffer by
1085 the client if the string will not be immediately used, or if
1086 it must persist.
c5aa993b 1087 */
c906108c
SS
1088
1089#define target_pid_to_exec_file(pid) \
1090 (current_target.to_pid_to_exec_file) (pid)
1091
1092/* Hook to call target-dependant code after reading in a new symbol table. */
1093
1094#ifndef TARGET_SYMFILE_POSTREAD
1095#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1096#endif
1097
1098/* Hook to call target dependant code just after inferior target process has
1099 started. */
1100
1101#ifndef TARGET_CREATE_INFERIOR_HOOK
1102#define TARGET_CREATE_INFERIOR_HOOK(PID)
1103#endif
1104
1105/* Hardware watchpoint interfaces. */
1106
1107/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1108 write). */
1109
1110#ifndef STOPPED_BY_WATCHPOINT
1111#define STOPPED_BY_WATCHPOINT(w) 0
1112#endif
1113
1114/* HP-UX supplies these operations, which respectively disable and enable
1115 the memory page-protections that are used to implement hardware watchpoints
1116 on that platform. See wait_for_inferior's use of these.
c5aa993b 1117 */
c906108c
SS
1118#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1119#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1120#endif
1121
1122#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1123#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1124#endif
1125
1126/* Provide defaults for systems that don't support hardware watchpoints. */
1127
1128#ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1129
1130/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1131 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1132 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1133 (including this one?). OTHERTYPE is who knows what... */
1134
1135#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1136
1137#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1138#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1139 (LONGEST)(byte_count) <= REGISTER_SIZE
1140#endif
1141
1142/* However, some addresses may not be profitable to use hardware to watch,
1143 or may be difficult to understand when the addressed object is out of
1144 scope, and hence should be unwatched. On some targets, this may have
1145 severe performance penalties, such that we might as well use regular
1146 watchpoints, and save (possibly precious) hardware watchpoints for other
1147 locations.
c5aa993b 1148 */
c906108c
SS
1149#if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1150#define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1151#endif
1152
1153
1154/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1155 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1156 success, non-zero for failure. */
1157
1158#define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1159#define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1160
1161#endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1162
1163#ifndef target_insert_hw_breakpoint
1164#define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1165#define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1166#endif
1167
1168#ifndef target_stopped_data_address
1169#define target_stopped_data_address() 0
1170#endif
1171
1172/* If defined, then we need to decr pc by this much after a hardware break-
1173 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1174
1175#ifndef DECR_PC_AFTER_HW_BREAK
1176#define DECR_PC_AFTER_HW_BREAK 0
1177#endif
1178
1179/* Sometimes gdb may pick up what appears to be a valid target address
1180 from a minimal symbol, but the value really means, essentially,
1181 "This is an index into a table which is populated when the inferior
1182 is run. Therefore, do not attempt to use this as a PC."
c5aa993b 1183 */
c906108c
SS
1184#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1185#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1186#endif
1187
1188/* This will only be defined by a target that supports catching vfork events,
1189 such as HP-UX.
1190
1191 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1192 child process after it has exec'd, causes the parent process to resume as
1193 well. To prevent the parent from running spontaneously, such targets should
1194 define this to a function that prevents that from happening.
c5aa993b 1195 */
c906108c
SS
1196#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1197#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1198#endif
1199
1200/* This will only be defined by a target that supports catching vfork events,
1201 such as HP-UX.
1202
1203 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1204 process must be resumed when it delivers its exec event, before the parent
1205 vfork event will be delivered to us.
c5aa993b 1206 */
c906108c
SS
1207#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1208#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1209#endif
1210
1211/* Routines for maintenance of the target structures...
1212
1213 add_target: Add a target to the list of all possible targets.
1214
1215 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1216 targets, within its particular stratum of the stack. Result
1217 is 0 if now atop the stack, nonzero if not on top (maybe
1218 should warn user).
c906108c
SS
1219
1220 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1221 no matter where it is on the list. Returns 0 if no
1222 change, 1 if removed from stack.
c906108c 1223
c5aa993b 1224 pop_target: Remove the top thing on the stack of current targets. */
c906108c
SS
1225
1226extern void
1227add_target PARAMS ((struct target_ops *));
1228
1229extern int
1230push_target PARAMS ((struct target_ops *));
1231
1232extern int
1233unpush_target PARAMS ((struct target_ops *));
1234
1235extern void
1236target_preopen PARAMS ((int));
1237
1238extern void
1239pop_target PARAMS ((void));
1240
1241/* Struct section_table maps address ranges to file sections. It is
1242 mostly used with BFD files, but can be used without (e.g. for handling
1243 raw disks, or files not in formats handled by BFD). */
1244
c5aa993b
JM
1245struct section_table
1246 {
1247 CORE_ADDR addr; /* Lowest address in section */
1248 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1249
c5aa993b 1250 sec_ptr the_bfd_section;
c906108c 1251
c5aa993b
JM
1252 bfd *bfd; /* BFD file pointer */
1253 };
c906108c
SS
1254
1255/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1256 Returns 0 if OK, 1 on error. */
1257
1258extern int
1259build_section_table PARAMS ((bfd *, struct section_table **,
1260 struct section_table **));
1261
1262/* From mem-break.c */
1263
1264extern int memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1265
1266extern int memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1267
917317f4
JM
1268extern int default_memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1269
1270extern int default_memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1271
c906108c
SS
1272extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
1273#ifndef BREAKPOINT_FROM_PC
1274#define BREAKPOINT_FROM_PC(pcptr, lenptr) memory_breakpoint_from_pc (pcptr, lenptr)
1275#endif
1276
1277
1278/* From target.c */
1279
1280extern void
1281initialize_targets PARAMS ((void));
1282
1283extern void
1284noprocess PARAMS ((void));
1285
1286extern void
1287find_default_attach PARAMS ((char *, int));
1288
1289void
1290find_default_require_attach PARAMS ((char *, int));
1291
1292void
1293find_default_require_detach PARAMS ((int, char *, int));
1294
1295extern void
1296find_default_create_inferior PARAMS ((char *, char *, char **));
1297
1298void
1299find_default_clone_and_follow_inferior PARAMS ((int, int *));
1300
7a292a7a
SS
1301extern struct target_ops *find_run_target PARAMS ((void));
1302
c906108c 1303extern struct target_ops *
c5aa993b 1304 find_core_target PARAMS ((void));
6426a772
JM
1305
1306int
1307target_resize_to_sections PARAMS ((struct target_ops *target, int num_added));
c906108c
SS
1308\f
1309/* Stuff that should be shared among the various remote targets. */
1310
1311/* Debugging level. 0 is off, and non-zero values mean to print some debug
1312 information (higher values, more information). */
1313extern int remote_debug;
1314
1315/* Speed in bits per second, or -1 which means don't mess with the speed. */
1316extern int baud_rate;
1317/* Timeout limit for response from target. */
1318extern int remote_timeout;
1319
1320extern asection *target_memory_bfd_section;
1321\f
1322/* Functions for helping to write a native target. */
1323
1324/* This is for native targets which use a unix/POSIX-style waitstatus. */
1325extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
1326
1327/* Convert between host signal numbers and enum target_signal's. */
1328extern enum target_signal target_signal_from_host PARAMS ((int));
1329extern int target_signal_to_host PARAMS ((enum target_signal));
1330
1331/* Convert from a number used in a GDB command to an enum target_signal. */
1332extern enum target_signal target_signal_from_command PARAMS ((int));
1333
1334/* Any target can call this to switch to remote protocol (in remote.c). */
1335extern void push_remote_target PARAMS ((char *name, int from_tty));
1336\f
1337/* Imported from machine dependent code */
1338
1339#ifndef SOFTWARE_SINGLE_STEP_P
1340#define SOFTWARE_SINGLE_STEP_P 0
1341#define SOFTWARE_SINGLE_STEP(sig,bp_p) abort ()
1342#endif /* SOFTWARE_SINGLE_STEP_P */
1343
1344/* Blank target vector entries are initialized to target_ignore. */
1345void target_ignore PARAMS ((void));
1346
1347/* Macro for getting target's idea of a frame pointer.
1348 FIXME: GDB's whole scheme for dealing with "frames" and
1349 "frame pointers" needs a serious shakedown. */
1350#ifndef TARGET_VIRTUAL_FRAME_POINTER
1351#define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1352 do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
1353#endif /* TARGET_VIRTUAL_FRAME_POINTER */
1354
c5aa993b 1355#endif /* !defined (TARGET_H) */