]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/target.h
gdb/
[thirdparty/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
da3331ec 33
c906108c
SS
34/* This include file defines the interface between the main part
35 of the debugger, and the part which is target-specific, or
36 specific to the communications interface between us and the
37 target.
38
2146d243
RM
39 A TARGET is an interface between the debugger and a particular
40 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
41 so that more than one target can potentially respond to a request.
42 In particular, memory accesses will walk down the stack of targets
43 until they find a target that is interested in handling that particular
44 address. STRATA are artificial boundaries on the stack, within
45 which particular kinds of targets live. Strata exist so that
46 people don't get confused by pushing e.g. a process target and then
47 a file target, and wondering why they can't see the current values
48 of variables any more (the file target is handling them and they
49 never get to the process target). So when you push a file target,
50 it goes into the file stratum, which is always below the process
51 stratum. */
52
53#include "bfd.h"
54#include "symtab.h"
4930751a 55#include "dcache.h"
29e57380 56#include "memattr.h"
fd79ecee 57#include "vec.h"
c906108c 58
c5aa993b
JM
59enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
4d8ac244 63 core_stratum, /* Core dump files */
d4f3574e
SS
64 process_stratum, /* Executing processes */
65 thread_stratum /* Executing threads */
c5aa993b 66 };
c906108c 67
c5aa993b
JM
68enum thread_control_capabilities
69 {
0d06e24b
JM
70 tc_none = 0, /* Default: can't control thread execution. */
71 tc_schedlock = 1, /* Can lock the thread scheduler. */
c5aa993b 72 };
c906108c
SS
73
74/* Stuff for target_wait. */
75
76/* Generally, what has the program done? */
c5aa993b
JM
77enum target_waitkind
78 {
79 /* The program has exited. The exit status is in value.integer. */
80 TARGET_WAITKIND_EXITED,
c906108c 81
0d06e24b
JM
82 /* The program has stopped with a signal. Which signal is in
83 value.sig. */
c5aa993b 84 TARGET_WAITKIND_STOPPED,
c906108c 85
c5aa993b
JM
86 /* The program has terminated with a signal. Which signal is in
87 value.sig. */
88 TARGET_WAITKIND_SIGNALLED,
c906108c 89
c5aa993b
JM
90 /* The program is letting us know that it dynamically loaded something
91 (e.g. it called load(2) on AIX). */
92 TARGET_WAITKIND_LOADED,
c906108c 93
3a3e9ee3 94 /* The program has forked. A "related" process' PTID is in
0d06e24b
JM
95 value.related_pid. I.e., if the child forks, value.related_pid
96 is the parent's ID. */
97
c5aa993b 98 TARGET_WAITKIND_FORKED,
c906108c 99
3a3e9ee3 100 /* The program has vforked. A "related" process's PTID is in
0d06e24b
JM
101 value.related_pid. */
102
c5aa993b 103 TARGET_WAITKIND_VFORKED,
c906108c 104
0d06e24b
JM
105 /* The program has exec'ed a new executable file. The new file's
106 pathname is pointed to by value.execd_pathname. */
107
c5aa993b 108 TARGET_WAITKIND_EXECD,
c906108c 109
0d06e24b
JM
110 /* The program has entered or returned from a system call. On
111 HP-UX, this is used in the hardware watchpoint implementation.
112 The syscall's unique integer ID number is in value.syscall_id */
113
c5aa993b
JM
114 TARGET_WAITKIND_SYSCALL_ENTRY,
115 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 116
c5aa993b
JM
117 /* Nothing happened, but we stopped anyway. This perhaps should be handled
118 within target_wait, but I'm not sure target_wait should be resuming the
119 inferior. */
c4093a6a
JM
120 TARGET_WAITKIND_SPURIOUS,
121
8e7d2c16
DJ
122 /* An event has occured, but we should wait again.
123 Remote_async_wait() returns this when there is an event
c4093a6a
JM
124 on the inferior, but the rest of the world is not interested in
125 it. The inferior has not stopped, but has just sent some output
126 to the console, for instance. In this case, we want to go back
127 to the event loop and wait there for another event from the
128 inferior, rather than being stuck in the remote_async_wait()
129 function. This way the event loop is responsive to other events,
0d06e24b 130 like for instance the user typing. */
b2175913
MS
131 TARGET_WAITKIND_IGNORE,
132
133 /* The target has run out of history information,
134 and cannot run backward any further. */
135 TARGET_WAITKIND_NO_HISTORY
c906108c
SS
136 };
137
c5aa993b
JM
138struct target_waitstatus
139 {
140 enum target_waitkind kind;
141
142 /* Forked child pid, execd pathname, exit status or signal number. */
143 union
144 {
145 int integer;
146 enum target_signal sig;
3a3e9ee3 147 ptid_t related_pid;
c5aa993b
JM
148 char *execd_pathname;
149 int syscall_id;
150 }
151 value;
152 };
c906108c 153
f00150c9
DE
154/* Return a pretty printed form of target_waitstatus.
155 Space for the result is malloc'd, caller must free. */
156extern char *target_waitstatus_to_string (const struct target_waitstatus *);
157
2acceee2 158/* Possible types of events that the inferior handler will have to
0d06e24b 159 deal with. */
2acceee2
JM
160enum inferior_event_type
161 {
0d06e24b 162 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
163 INF_QUIT_REQ,
164 /* Process a normal inferior event which will result in target_wait
0d06e24b 165 being called. */
2146d243 166 INF_REG_EVENT,
0d06e24b 167 /* Deal with an error on the inferior. */
2acceee2 168 INF_ERROR,
0d06e24b 169 /* We are called because a timer went off. */
2acceee2 170 INF_TIMER,
0d06e24b 171 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
172 INF_EXEC_COMPLETE,
173 /* We are called to do some stuff after the inferior stops, but we
174 are expected to reenter the proceed() and
175 handle_inferior_event() functions. This is used only in case of
0d06e24b 176 'step n' like commands. */
c2d11a7d 177 INF_EXEC_CONTINUE
2acceee2
JM
178 };
179
c906108c 180/* Return the string for a signal. */
54363045 181extern const char *target_signal_to_string (enum target_signal);
c906108c
SS
182
183/* Return the name (SIGHUP, etc.) for a signal. */
54363045 184extern const char *target_signal_to_name (enum target_signal);
c906108c
SS
185
186/* Given a name (SIGHUP, etc.), return its signal. */
54363045 187enum target_signal target_signal_from_name (const char *);
c906108c 188\f
13547ab6
DJ
189/* Target objects which can be transfered using target_read,
190 target_write, et cetera. */
1e3ff5ad
AC
191
192enum target_object
193{
1e3ff5ad
AC
194 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
195 TARGET_OBJECT_AVR,
23d964e7
UW
196 /* SPU target specific transfer. See "spu-tdep.c". */
197 TARGET_OBJECT_SPU,
1e3ff5ad 198 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 199 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
200 /* Memory, avoiding GDB's data cache and trusting the executable.
201 Target implementations of to_xfer_partial never need to handle
202 this object, and most callers should not use it. */
203 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
204 /* Kernel Unwind Table. See "ia64-tdep.c". */
205 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
206 /* Transfer auxilliary vector. */
207 TARGET_OBJECT_AUXV,
baf92889 208 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
209 TARGET_OBJECT_WCOOKIE,
210 /* Target memory map in XML format. */
211 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
212 /* Flash memory. This object can be used to write contents to
213 a previously erased flash memory. Using it without erasing
214 flash can have unexpected results. Addresses are physical
215 address on target, and not relative to flash start. */
23181151
DJ
216 TARGET_OBJECT_FLASH,
217 /* Available target-specific features, e.g. registers and coprocessors.
218 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
219 TARGET_OBJECT_AVAILABLE_FEATURES,
220 /* Currently loaded libraries, in XML format. */
07e059b5
VP
221 TARGET_OBJECT_LIBRARIES,
222 /* Get OS specific data. The ANNEX specifies the type (running
223 processes, etc.). */
224 TARGET_OBJECT_OSDATA
225 /* Possible future objects: TARGET_OBJECT_FILE, ... */
1e3ff5ad
AC
226};
227
13547ab6
DJ
228/* Request that OPS transfer up to LEN 8-bit bytes of the target's
229 OBJECT. The OFFSET, for a seekable object, specifies the
230 starting point. The ANNEX can be used to provide additional
231 data-specific information to the target.
1e3ff5ad 232
13547ab6
DJ
233 Return the number of bytes actually transfered, or -1 if the
234 transfer is not supported or otherwise fails. Return of a positive
235 value less than LEN indicates that no further transfer is possible.
236 Unlike the raw to_xfer_partial interface, callers of these
237 functions do not need to retry partial transfers. */
1e3ff5ad 238
1e3ff5ad
AC
239extern LONGEST target_read (struct target_ops *ops,
240 enum target_object object,
1b0ba102 241 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
242 ULONGEST offset, LONGEST len);
243
d5086790
VP
244extern LONGEST target_read_until_error (struct target_ops *ops,
245 enum target_object object,
246 const char *annex, gdb_byte *buf,
247 ULONGEST offset, LONGEST len);
248
1e3ff5ad
AC
249extern LONGEST target_write (struct target_ops *ops,
250 enum target_object object,
1b0ba102 251 const char *annex, const gdb_byte *buf,
1e3ff5ad 252 ULONGEST offset, LONGEST len);
b6591e8b 253
a76d924d
DJ
254/* Similar to target_write, except that it also calls PROGRESS with
255 the number of bytes written and the opaque BATON after every
256 successful partial write (and before the first write). This is
257 useful for progress reporting and user interaction while writing
258 data. To abort the transfer, the progress callback can throw an
259 exception. */
260
cf7a04e8
DJ
261LONGEST target_write_with_progress (struct target_ops *ops,
262 enum target_object object,
263 const char *annex, const gdb_byte *buf,
264 ULONGEST offset, LONGEST len,
265 void (*progress) (ULONGEST, void *),
266 void *baton);
267
13547ab6
DJ
268/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
269 be read using OPS. The return value will be -1 if the transfer
270 fails or is not supported; 0 if the object is empty; or the length
271 of the object otherwise. If a positive value is returned, a
272 sufficiently large buffer will be allocated using xmalloc and
273 returned in *BUF_P containing the contents of the object.
274
275 This method should be used for objects sufficiently small to store
276 in a single xmalloc'd buffer, when no fixed bound on the object's
277 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
278 through this function. */
279
280extern LONGEST target_read_alloc (struct target_ops *ops,
281 enum target_object object,
282 const char *annex, gdb_byte **buf_p);
283
159f81f3
DJ
284/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
285 returned as a string, allocated using xmalloc. If an error occurs
286 or the transfer is unsupported, NULL is returned. Empty objects
287 are returned as allocated but empty strings. A warning is issued
288 if the result contains any embedded NUL bytes. */
289
290extern char *target_read_stralloc (struct target_ops *ops,
291 enum target_object object,
292 const char *annex);
293
b6591e8b
AC
294/* Wrappers to target read/write that perform memory transfers. They
295 throw an error if the memory transfer fails.
296
297 NOTE: cagney/2003-10-23: The naming schema is lifted from
298 "frame.h". The parameter order is lifted from get_frame_memory,
299 which in turn lifted it from read_memory. */
300
301extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 302 gdb_byte *buf, LONGEST len);
b6591e8b
AC
303extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
304 CORE_ADDR addr, int len);
1e3ff5ad 305\f
0d06e24b
JM
306struct thread_info; /* fwd decl for parameter list below: */
307
c906108c 308struct target_ops
c5aa993b 309 {
258b763a 310 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
311 char *to_shortname; /* Name this target type */
312 char *to_longname; /* Name for printing */
313 char *to_doc; /* Documentation. Does not include trailing
c906108c 314 newline, and starts with a one-line descrip-
0d06e24b 315 tion (probably similar to to_longname). */
bba2d28d
AC
316 /* Per-target scratch pad. */
317 void *to_data;
f1c07ab0
AC
318 /* The open routine takes the rest of the parameters from the
319 command, and (if successful) pushes a new target onto the
320 stack. Targets should supply this routine, if only to provide
321 an error message. */
507f3c78 322 void (*to_open) (char *, int);
f1c07ab0
AC
323 /* Old targets with a static target vector provide "to_close".
324 New re-entrant targets provide "to_xclose" and that is expected
325 to xfree everything (including the "struct target_ops"). */
326 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78 327 void (*to_close) (int);
136d6dae 328 void (*to_attach) (struct target_ops *ops, char *, int);
507f3c78 329 void (*to_post_attach) (int);
136d6dae 330 void (*to_detach) (struct target_ops *ops, char *, int);
597320e7 331 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
332 void (*to_resume) (ptid_t, int, enum target_signal);
333 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
56be3814
UW
334 void (*to_fetch_registers) (struct regcache *, int);
335 void (*to_store_registers) (struct regcache *, int);
316f2060 336 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
337
338 /* Transfer LEN bytes of memory between GDB address MYADDR and
339 target address MEMADDR. If WRITE, transfer them to the target, else
340 transfer them from the target. TARGET is the target from which we
341 get this function.
342
343 Return value, N, is one of the following:
344
345 0 means that we can't handle this. If errno has been set, it is the
346 error which prevented us from doing it (FIXME: What about bfd_error?).
347
348 positive (call it N) means that we have transferred N bytes
349 starting at MEMADDR. We might be able to handle more bytes
350 beyond this length, but no promises.
351
352 negative (call its absolute value N) means that we cannot
353 transfer right at MEMADDR, but we could transfer at least
c8e73a31 354 something at MEMADDR + N.
c5aa993b 355
c8e73a31
AC
356 NOTE: cagney/2004-10-01: This has been entirely superseeded by
357 to_xfer_partial and inferior inheritance. */
358
1b0ba102 359 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
360 int len, int write,
361 struct mem_attrib *attrib,
362 struct target_ops *target);
c906108c 363
507f3c78 364 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
365 int (*to_insert_breakpoint) (struct bp_target_info *);
366 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 367 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
368 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
369 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
370 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
371 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
372 int (*to_stopped_by_watchpoint) (void);
74174d2e 373 int to_have_steppable_watchpoint;
7df1a324 374 int to_have_continuable_watchpoint;
4aa7a7f5 375 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
5009afc5
AS
376 int (*to_watchpoint_addr_within_range) (struct target_ops *,
377 CORE_ADDR, CORE_ADDR, int);
e0d24f8d 378 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
379 void (*to_terminal_init) (void);
380 void (*to_terminal_inferior) (void);
381 void (*to_terminal_ours_for_output) (void);
382 void (*to_terminal_ours) (void);
a790ad35 383 void (*to_terminal_save_ours) (void);
507f3c78
KB
384 void (*to_terminal_info) (char *, int);
385 void (*to_kill) (void);
386 void (*to_load) (char *, int);
387 int (*to_lookup_symbol) (char *, CORE_ADDR *);
136d6dae
VP
388 void (*to_create_inferior) (struct target_ops *,
389 char *, char *, char **, int);
39f77062 390 void (*to_post_startup_inferior) (ptid_t);
507f3c78 391 void (*to_acknowledge_created_inferior) (int);
fa113d1a 392 void (*to_insert_fork_catchpoint) (int);
507f3c78 393 int (*to_remove_fork_catchpoint) (int);
fa113d1a 394 void (*to_insert_vfork_catchpoint) (int);
507f3c78 395 int (*to_remove_vfork_catchpoint) (int);
ee057212 396 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 397 void (*to_insert_exec_catchpoint) (int);
507f3c78 398 int (*to_remove_exec_catchpoint) (int);
507f3c78 399 int (*to_has_exited) (int, int, int *);
136d6dae 400 void (*to_mourn_inferior) (struct target_ops *);
507f3c78 401 int (*to_can_run) (void);
39f77062
KB
402 void (*to_notice_signals) (ptid_t ptid);
403 int (*to_thread_alive) (ptid_t ptid);
507f3c78 404 void (*to_find_new_threads) (void);
39f77062 405 char *(*to_pid_to_str) (ptid_t);
507f3c78 406 char *(*to_extra_thread_info) (struct thread_info *);
94cc34af 407 void (*to_stop) (ptid_t);
d9fcf2fb 408 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 409 char *(*to_pid_to_exec_file) (int pid);
49d03eab 410 void (*to_log_command) (const char *);
c5aa993b 411 enum strata to_stratum;
c5aa993b
JM
412 int to_has_all_memory;
413 int to_has_memory;
414 int to_has_stack;
415 int to_has_registers;
416 int to_has_execution;
417 int to_has_thread_control; /* control thread execution */
dc177b7a 418 int to_attach_no_wait;
c5aa993b
JM
419 struct section_table
420 *to_sections;
421 struct section_table
422 *to_sections_end;
6426a772
JM
423 /* ASYNC target controls */
424 int (*to_can_async_p) (void);
425 int (*to_is_async_p) (void);
b84876c2
PA
426 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
427 int (*to_async_mask) (int);
9908b566 428 int (*to_supports_non_stop) (void);
2146d243
RM
429 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
430 unsigned long,
431 int, int, int,
432 void *),
be4d1333
MS
433 void *);
434 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
435
436 /* Return the thread-local address at OFFSET in the
437 thread-local storage for the thread PTID and the shared library
438 or executable file given by OBJFILE. If that block of
439 thread-local storage hasn't been allocated yet, this function
440 may return an error. */
441 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 442 CORE_ADDR load_module_addr,
3f47be5c
EZ
443 CORE_ADDR offset);
444
13547ab6
DJ
445 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
446 OBJECT. The OFFSET, for a seekable object, specifies the
447 starting point. The ANNEX can be used to provide additional
448 data-specific information to the target.
449
450 Return the number of bytes actually transfered, zero when no
451 further transfer is possible, and -1 when the transfer is not
452 supported. Return of a positive value smaller than LEN does
453 not indicate the end of the object, only the end of the
454 transfer; higher level code should continue transferring if
455 desired. This is handled in target.c.
456
457 The interface does not support a "retry" mechanism. Instead it
458 assumes that at least one byte will be transfered on each
459 successful call.
460
461 NOTE: cagney/2003-10-17: The current interface can lead to
462 fragmented transfers. Lower target levels should not implement
463 hacks, such as enlarging the transfer, in an attempt to
464 compensate for this. Instead, the target stack should be
465 extended so that it implements supply/collect methods and a
466 look-aside object cache. With that available, the lowest
467 target can safely and freely "push" data up the stack.
468
469 See target_read and target_write for more information. One,
470 and only one, of readbuf or writebuf must be non-NULL. */
471
4b8a223f 472 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 473 enum target_object object, const char *annex,
1b0ba102 474 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 475 ULONGEST offset, LONGEST len);
1e3ff5ad 476
fd79ecee
DJ
477 /* Returns the memory map for the target. A return value of NULL
478 means that no memory map is available. If a memory address
479 does not fall within any returned regions, it's assumed to be
480 RAM. The returned memory regions should not overlap.
481
482 The order of regions does not matter; target_memory_map will
483 sort regions by starting address. For that reason, this
484 function should not be called directly except via
485 target_memory_map.
486
487 This method should not cache data; if the memory map could
488 change unexpectedly, it should be invalidated, and higher
489 layers will re-fetch it. */
490 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
491
a76d924d
DJ
492 /* Erases the region of flash memory starting at ADDRESS, of
493 length LENGTH.
494
495 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
496 on flash block boundaries, as reported by 'to_memory_map'. */
497 void (*to_flash_erase) (struct target_ops *,
498 ULONGEST address, LONGEST length);
499
500 /* Finishes a flash memory write sequence. After this operation
501 all flash memory should be available for writing and the result
502 of reading from areas written by 'to_flash_write' should be
503 equal to what was written. */
504 void (*to_flash_done) (struct target_ops *);
505
424163ea
DJ
506 /* Describe the architecture-specific features of this target.
507 Returns the description found, or NULL if no description
508 was available. */
509 const struct target_desc *(*to_read_description) (struct target_ops *ops);
510
0ef643c8
JB
511 /* Build the PTID of the thread on which a given task is running,
512 based on LWP and THREAD. These values are extracted from the
513 task Private_Data section of the Ada Task Control Block, and
514 their interpretation depends on the target. */
515 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
516
c47ffbe3
VP
517 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
518 Return 0 if *READPTR is already at the end of the buffer.
519 Return -1 if there is insufficient buffer for a whole entry.
520 Return 1 if an entry was read into *TYPEP and *VALP. */
521 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
522 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
523
08388c79
DE
524 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
525 sequence of bytes in PATTERN with length PATTERN_LEN.
526
527 The result is 1 if found, 0 if not found, and -1 if there was an error
528 requiring halting of the search (e.g. memory read error).
529 If the pattern is found the address is recorded in FOUND_ADDRP. */
530 int (*to_search_memory) (struct target_ops *ops,
531 CORE_ADDR start_addr, ULONGEST search_space_len,
532 const gdb_byte *pattern, ULONGEST pattern_len,
533 CORE_ADDR *found_addrp);
534
b2175913
MS
535 /* Can target execute in reverse? */
536 int (*to_can_execute_reverse) ();
537
8a305172
PA
538 /* Does this target support debugging multiple processes
539 simultaneously? */
540 int (*to_supports_multi_process) (void);
541
c5aa993b 542 int to_magic;
0d06e24b
JM
543 /* Need sub-structure for target machine related rather than comm related?
544 */
c5aa993b 545 };
c906108c
SS
546
547/* Magic number for checking ops size. If a struct doesn't end with this
548 number, somebody changed the declaration but didn't change all the
549 places that initialize one. */
550
551#define OPS_MAGIC 3840
552
553/* The ops structure for our "current" target process. This should
554 never be NULL. If there is no target, it points to the dummy_target. */
555
c5aa993b 556extern struct target_ops current_target;
c906108c 557
c906108c
SS
558/* Define easy words for doing these operations on our current target. */
559
560#define target_shortname (current_target.to_shortname)
561#define target_longname (current_target.to_longname)
562
f1c07ab0
AC
563/* Does whatever cleanup is required for a target that we are no
564 longer going to be calling. QUITTING indicates that GDB is exiting
565 and should not get hung on an error (otherwise it is important to
566 perform clean termination, even if it takes a while). This routine
567 is automatically always called when popping the target off the
568 target stack (to_beneath is undefined). Closing file descriptors
569 and freeing all memory allocated memory are typical things it
570 should do. */
571
572void target_close (struct target_ops *targ, int quitting);
c906108c
SS
573
574/* Attaches to a process on the target side. Arguments are as passed
575 to the `attach' command by the user. This routine can be called
576 when the target is not on the target-stack, if the target_can_run
2146d243 577 routine returns 1; in that case, it must push itself onto the stack.
c906108c 578 Upon exit, the target should be ready for normal operations, and
2146d243 579 should be ready to deliver the status of the process immediately
c906108c
SS
580 (without waiting) to an upcoming target_wait call. */
581
136d6dae 582void target_attach (char *, int);
c906108c 583
dc177b7a
PA
584/* Some targets don't generate traps when attaching to the inferior,
585 or their target_attach implementation takes care of the waiting.
586 These targets must set to_attach_no_wait. */
587
588#define target_attach_no_wait \
589 (current_target.to_attach_no_wait)
590
c906108c
SS
591/* The target_attach operation places a process under debugger control,
592 and stops the process.
593
594 This operation provides a target-specific hook that allows the
0d06e24b 595 necessary bookkeeping to be performed after an attach completes. */
c906108c 596#define target_post_attach(pid) \
0d06e24b 597 (*current_target.to_post_attach) (pid)
c906108c 598
c906108c
SS
599/* Takes a program previously attached to and detaches it.
600 The program may resume execution (some targets do, some don't) and will
601 no longer stop on signals, etc. We better not have left any breakpoints
602 in the program or it'll die when it hits one. ARGS is arguments
603 typed by the user (e.g. a signal to send the process). FROM_TTY
604 says whether to be verbose or not. */
605
a14ed312 606extern void target_detach (char *, int);
c906108c 607
6ad8ae5c
DJ
608/* Disconnect from the current target without resuming it (leaving it
609 waiting for a debugger). */
610
611extern void target_disconnect (char *, int);
612
39f77062 613/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
614 single-step or to run free; SIGGNAL is the signal to be given to
615 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
616 pass TARGET_SIGNAL_DEFAULT. */
617
e1ac3328 618extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
c906108c 619
b5a2688f
AC
620/* Wait for process pid to do something. PTID = -1 to wait for any
621 pid to do something. Return pid of child, or -1 in case of error;
c906108c 622 store status through argument pointer STATUS. Note that it is
b5a2688f 623 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
624 the debugging target from the stack; GDB isn't prepared to get back
625 to the prompt with a debugging target but without the frame cache,
626 stop_pc, etc., set up. */
627
39f77062
KB
628#define target_wait(ptid, status) \
629 (*current_target.to_wait) (ptid, status)
c906108c 630
17dee195 631/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 632
56be3814
UW
633#define target_fetch_registers(regcache, regno) \
634 (*current_target.to_fetch_registers) (regcache, regno)
c906108c
SS
635
636/* Store at least register REGNO, or all regs if REGNO == -1.
637 It can store as many registers as it wants to, so target_prepare_to_store
638 must have been previously called. Calls error() if there are problems. */
639
56be3814
UW
640#define target_store_registers(regcache, regs) \
641 (*current_target.to_store_registers) (regcache, regs)
c906108c
SS
642
643/* Get ready to modify the registers array. On machines which store
644 individual registers, this doesn't need to do anything. On machines
645 which store all the registers in one fell swoop, this makes sure
646 that REGISTERS contains all the registers from the program being
647 debugged. */
648
316f2060
UW
649#define target_prepare_to_store(regcache) \
650 (*current_target.to_prepare_to_store) (regcache)
c906108c 651
8a305172
PA
652/* Returns true if this target can debug multiple processes
653 simultaneously. */
654
655#define target_supports_multi_process() \
656 (*current_target.to_supports_multi_process) ()
657
4930751a
C
658extern DCACHE *target_dcache;
659
a14ed312 660extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 661
fc1a4b47 662extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 663
fc1a4b47 664extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 665 int len);
c906108c 666
1b0ba102 667extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 668 struct mem_attrib *, struct target_ops *);
c906108c 669
fd79ecee
DJ
670/* Fetches the target's memory map. If one is found it is sorted
671 and returned, after some consistency checking. Otherwise, NULL
672 is returned. */
673VEC(mem_region_s) *target_memory_map (void);
674
a76d924d
DJ
675/* Erase the specified flash region. */
676void target_flash_erase (ULONGEST address, LONGEST length);
677
678/* Finish a sequence of flash operations. */
679void target_flash_done (void);
680
681/* Describes a request for a memory write operation. */
682struct memory_write_request
683 {
684 /* Begining address that must be written. */
685 ULONGEST begin;
686 /* Past-the-end address. */
687 ULONGEST end;
688 /* The data to write. */
689 gdb_byte *data;
690 /* A callback baton for progress reporting for this request. */
691 void *baton;
692 };
693typedef struct memory_write_request memory_write_request_s;
694DEF_VEC_O(memory_write_request_s);
695
696/* Enumeration specifying different flash preservation behaviour. */
697enum flash_preserve_mode
698 {
699 flash_preserve,
700 flash_discard
701 };
702
703/* Write several memory blocks at once. This version can be more
704 efficient than making several calls to target_write_memory, in
705 particular because it can optimize accesses to flash memory.
706
707 Moreover, this is currently the only memory access function in gdb
708 that supports writing to flash memory, and it should be used for
709 all cases where access to flash memory is desirable.
710
711 REQUESTS is the vector (see vec.h) of memory_write_request.
712 PRESERVE_FLASH_P indicates what to do with blocks which must be
713 erased, but not completely rewritten.
714 PROGRESS_CB is a function that will be periodically called to provide
715 feedback to user. It will be called with the baton corresponding
716 to the request currently being written. It may also be called
717 with a NULL baton, when preserved flash sectors are being rewritten.
718
719 The function returns 0 on success, and error otherwise. */
720int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
721 enum flash_preserve_mode preserve_flash_p,
722 void (*progress_cb) (ULONGEST, void *));
723
47932f85
DJ
724/* From infrun.c. */
725
3a3e9ee3 726extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
47932f85 727
3a3e9ee3 728extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
47932f85 729
3a3e9ee3 730extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
47932f85 731
c906108c
SS
732/* From exec.c */
733
a14ed312 734extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
735
736/* Print a line about the current target. */
737
738#define target_files_info() \
0d06e24b 739 (*current_target.to_files_info) (&current_target)
c906108c 740
8181d85f
DJ
741/* Insert a breakpoint at address BP_TGT->placed_address in the target
742 machine. Result is 0 for success, or an errno value. */
c906108c 743
8181d85f
DJ
744#define target_insert_breakpoint(bp_tgt) \
745 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 746
8181d85f
DJ
747/* Remove a breakpoint at address BP_TGT->placed_address in the target
748 machine. Result is 0 for success, or an errno value. */
c906108c 749
8181d85f
DJ
750#define target_remove_breakpoint(bp_tgt) \
751 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
752
753/* Initialize the terminal settings we record for the inferior,
754 before we actually run the inferior. */
755
756#define target_terminal_init() \
0d06e24b 757 (*current_target.to_terminal_init) ()
c906108c
SS
758
759/* Put the inferior's terminal settings into effect.
760 This is preparation for starting or resuming the inferior. */
761
762#define target_terminal_inferior() \
0d06e24b 763 (*current_target.to_terminal_inferior) ()
c906108c
SS
764
765/* Put some of our terminal settings into effect,
766 enough to get proper results from our output,
767 but do not change into or out of RAW mode
768 so that no input is discarded.
769
770 After doing this, either terminal_ours or terminal_inferior
771 should be called to get back to a normal state of affairs. */
772
773#define target_terminal_ours_for_output() \
0d06e24b 774 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
775
776/* Put our terminal settings into effect.
777 First record the inferior's terminal settings
778 so they can be restored properly later. */
779
780#define target_terminal_ours() \
0d06e24b 781 (*current_target.to_terminal_ours) ()
c906108c 782
a790ad35
SC
783/* Save our terminal settings.
784 This is called from TUI after entering or leaving the curses
785 mode. Since curses modifies our terminal this call is here
786 to take this change into account. */
787
788#define target_terminal_save_ours() \
789 (*current_target.to_terminal_save_ours) ()
790
c906108c
SS
791/* Print useful information about our terminal status, if such a thing
792 exists. */
793
794#define target_terminal_info(arg, from_tty) \
0d06e24b 795 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
796
797/* Kill the inferior process. Make it go away. */
798
799#define target_kill() \
0d06e24b 800 (*current_target.to_kill) ()
c906108c 801
0d06e24b
JM
802/* Load an executable file into the target process. This is expected
803 to not only bring new code into the target process, but also to
1986bccd
AS
804 update GDB's symbol tables to match.
805
806 ARG contains command-line arguments, to be broken down with
807 buildargv (). The first non-switch argument is the filename to
808 load, FILE; the second is a number (as parsed by strtoul (..., ...,
809 0)), which is an offset to apply to the load addresses of FILE's
810 sections. The target may define switches, or other non-switch
811 arguments, as it pleases. */
c906108c 812
11cf8741 813extern void target_load (char *arg, int from_tty);
c906108c
SS
814
815/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
816 name. ADDRP is a CORE_ADDR * pointing to where the value of the
817 symbol should be returned. The result is 0 if successful, nonzero
818 if the symbol does not exist in the target environment. This
819 function should not call error() if communication with the target
820 is interrupted, since it is called from symbol reading, but should
821 return nonzero, possibly doing a complain(). */
c906108c 822
0d06e24b
JM
823#define target_lookup_symbol(name, addrp) \
824 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 825
39f77062 826/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
827 EXEC_FILE is the file to run.
828 ALLARGS is a string containing the arguments to the program.
829 ENV is the environment vector to pass. Errors reported with error().
830 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 831
136d6dae
VP
832void target_create_inferior (char *exec_file, char *args,
833 char **env, int from_tty);
c906108c
SS
834
835/* Some targets (such as ttrace-based HPUX) don't allow us to request
836 notification of inferior events such as fork and vork immediately
837 after the inferior is created. (This because of how gdb gets an
838 inferior created via invoking a shell to do it. In such a scenario,
839 if the shell init file has commands in it, the shell will fork and
840 exec for each of those commands, and we will see each such fork
841 event. Very bad.)
c5aa993b 842
0d06e24b
JM
843 Such targets will supply an appropriate definition for this function. */
844
39f77062
KB
845#define target_post_startup_inferior(ptid) \
846 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
847
848/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
849 some synchronization between gdb and the new inferior process, PID. */
850
c906108c 851#define target_acknowledge_created_inferior(pid) \
0d06e24b 852 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 853
0d06e24b
JM
854/* On some targets, we can catch an inferior fork or vfork event when
855 it occurs. These functions insert/remove an already-created
856 catchpoint for such events. */
c906108c 857
c906108c 858#define target_insert_fork_catchpoint(pid) \
0d06e24b 859 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
860
861#define target_remove_fork_catchpoint(pid) \
0d06e24b 862 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
863
864#define target_insert_vfork_catchpoint(pid) \
0d06e24b 865 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
866
867#define target_remove_vfork_catchpoint(pid) \
0d06e24b 868 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 869
6604731b
DJ
870/* If the inferior forks or vforks, this function will be called at
871 the next resume in order to perform any bookkeeping and fiddling
872 necessary to continue debugging either the parent or child, as
873 requested, and releasing the other. Information about the fork
874 or vfork event is available via get_last_target_status ().
875 This function returns 1 if the inferior should not be resumed
876 (i.e. there is another event pending). */
0d06e24b 877
ee057212 878int target_follow_fork (int follow_child);
c906108c
SS
879
880/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
881 occurs. These functions insert/remove an already-created
882 catchpoint for such events. */
883
c906108c 884#define target_insert_exec_catchpoint(pid) \
0d06e24b 885 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 886
c906108c 887#define target_remove_exec_catchpoint(pid) \
0d06e24b 888 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 889
c906108c 890/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
891 exit code of PID, if any. */
892
c906108c 893#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 894 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
895
896/* The debugger has completed a blocking wait() call. There is now
2146d243 897 some process event that must be processed. This function should
c906108c 898 be defined by those targets that require the debugger to perform
0d06e24b 899 cleanup or internal state changes in response to the process event. */
c906108c
SS
900
901/* The inferior process has died. Do what is right. */
902
136d6dae 903void target_mourn_inferior (void);
c906108c
SS
904
905/* Does target have enough data to do a run or attach command? */
906
907#define target_can_run(t) \
0d06e24b 908 ((t)->to_can_run) ()
c906108c
SS
909
910/* post process changes to signal handling in the inferior. */
911
39f77062
KB
912#define target_notice_signals(ptid) \
913 (*current_target.to_notice_signals) (ptid)
c906108c
SS
914
915/* Check to see if a thread is still alive. */
916
39f77062
KB
917#define target_thread_alive(ptid) \
918 (*current_target.to_thread_alive) (ptid)
c906108c 919
b83266a0
SS
920/* Query for new threads and add them to the thread list. */
921
922#define target_find_new_threads() \
4becf47c 923 (*current_target.to_find_new_threads) ()
b83266a0 924
0d06e24b
JM
925/* Make target stop in a continuable fashion. (For instance, under
926 Unix, this should act like SIGSTOP). This function is normally
927 used by GUIs to implement a stop button. */
c906108c 928
94cc34af 929#define target_stop(ptid) (*current_target.to_stop) (ptid)
c906108c 930
96baa820
JM
931/* Send the specified COMMAND to the target's monitor
932 (shell,interpreter) for execution. The result of the query is
0d06e24b 933 placed in OUTBUF. */
96baa820
JM
934
935#define target_rcmd(command, outbuf) \
936 (*current_target.to_rcmd) (command, outbuf)
937
938
c906108c
SS
939/* Does the target include all of memory, or only part of it? This
940 determines whether we look up the target chain for other parts of
941 memory if this target can't satisfy a request. */
942
943#define target_has_all_memory \
0d06e24b 944 (current_target.to_has_all_memory)
c906108c
SS
945
946/* Does the target include memory? (Dummy targets don't.) */
947
948#define target_has_memory \
0d06e24b 949 (current_target.to_has_memory)
c906108c
SS
950
951/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
952 we start a process.) */
c5aa993b 953
c906108c 954#define target_has_stack \
0d06e24b 955 (current_target.to_has_stack)
c906108c
SS
956
957/* Does the target have registers? (Exec files don't.) */
958
959#define target_has_registers \
0d06e24b 960 (current_target.to_has_registers)
c906108c
SS
961
962/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
963 hoops), or pop its stack a few times? This means that the current
964 target is currently executing; for some targets, that's the same as
965 whether or not the target is capable of execution, but there are
966 also targets which can be current while not executing. In that
967 case this will become true after target_create_inferior or
968 target_attach. */
c906108c
SS
969
970#define target_has_execution \
0d06e24b 971 (current_target.to_has_execution)
c906108c
SS
972
973/* Can the target support the debugger control of thread execution?
d6350901 974 Can it lock the thread scheduler? */
c906108c
SS
975
976#define target_can_lock_scheduler \
0d06e24b 977 (current_target.to_has_thread_control & tc_schedlock)
c906108c 978
c6ebd6cf
VP
979/* Should the target enable async mode if it is supported? Temporary
980 cludge until async mode is a strict superset of sync mode. */
981extern int target_async_permitted;
982
6426a772
JM
983/* Can the target support asynchronous execution? */
984#define target_can_async_p() (current_target.to_can_async_p ())
985
986/* Is the target in asynchronous execution mode? */
b84876c2 987#define target_is_async_p() (current_target.to_is_async_p ())
6426a772 988
9908b566
VP
989int target_supports_non_stop (void);
990
6426a772 991/* Put the target in async mode with the specified callback function. */
0d06e24b 992#define target_async(CALLBACK,CONTEXT) \
b84876c2 993 (current_target.to_async ((CALLBACK), (CONTEXT)))
43ff13b4 994
04714b91
AC
995/* This is to be used ONLY within call_function_by_hand(). It provides
996 a workaround, to have inferior function calls done in sychronous
997 mode, even though the target is asynchronous. After
ed9a39eb
JM
998 target_async_mask(0) is called, calls to target_can_async_p() will
999 return FALSE , so that target_resume() will not try to start the
1000 target asynchronously. After the inferior stops, we IMMEDIATELY
1001 restore the previous nature of the target, by calling
1002 target_async_mask(1). After that, target_can_async_p() will return
04714b91 1003 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
1004
1005 FIXME ezannoni 1999-12-13: we won't need this once we move
1006 the turning async on and off to the single execution commands,
0d06e24b 1007 from where it is done currently, in remote_resume(). */
ed9a39eb 1008
b84876c2
PA
1009#define target_async_mask(MASK) \
1010 (current_target.to_async_mask (MASK))
ed9a39eb 1011
c906108c
SS
1012/* Converts a process id to a string. Usually, the string just contains
1013 `process xyz', but on some systems it may contain
1014 `process xyz thread abc'. */
1015
ed9a39eb
JM
1016#undef target_pid_to_str
1017#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c 1018
39f77062 1019extern char *normal_pid_to_str (ptid_t ptid);
c5aa993b 1020
0d06e24b
JM
1021/* Return a short string describing extra information about PID,
1022 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1023 is okay. */
1024
1025#define target_extra_thread_info(TP) \
1026 (current_target.to_extra_thread_info (TP))
ed9a39eb 1027
c906108c
SS
1028/* Attempts to find the pathname of the executable file
1029 that was run to create a specified process.
1030
1031 The process PID must be stopped when this operation is used.
c5aa993b 1032
c906108c
SS
1033 If the executable file cannot be determined, NULL is returned.
1034
1035 Else, a pointer to a character string containing the pathname
1036 is returned. This string should be copied into a buffer by
1037 the client if the string will not be immediately used, or if
0d06e24b 1038 it must persist. */
c906108c
SS
1039
1040#define target_pid_to_exec_file(pid) \
0d06e24b 1041 (current_target.to_pid_to_exec_file) (pid)
c906108c 1042
be4d1333
MS
1043/*
1044 * Iterator function for target memory regions.
1045 * Calls a callback function once for each memory region 'mapped'
1046 * in the child process. Defined as a simple macro rather than
2146d243 1047 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1048 */
1049
1050#define target_find_memory_regions(FUNC, DATA) \
1051 (current_target.to_find_memory_regions) (FUNC, DATA)
1052
1053/*
1054 * Compose corefile .note section.
1055 */
1056
1057#define target_make_corefile_notes(BFD, SIZE_P) \
1058 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1059
3f47be5c
EZ
1060/* Thread-local values. */
1061#define target_get_thread_local_address \
1062 (current_target.to_get_thread_local_address)
1063#define target_get_thread_local_address_p() \
1064 (target_get_thread_local_address != NULL)
1065
c906108c
SS
1066
1067/* Hardware watchpoint interfaces. */
1068
1069/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1070 write). */
1071
1072#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1073#define STOPPED_BY_WATCHPOINT(w) \
1074 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1075#endif
7df1a324 1076
74174d2e
UW
1077/* Non-zero if we have steppable watchpoints */
1078
1079#ifndef HAVE_STEPPABLE_WATCHPOINT
1080#define HAVE_STEPPABLE_WATCHPOINT \
1081 (current_target.to_have_steppable_watchpoint)
1082#endif
1083
7df1a324
KW
1084/* Non-zero if we have continuable watchpoints */
1085
1086#ifndef HAVE_CONTINUABLE_WATCHPOINT
1087#define HAVE_CONTINUABLE_WATCHPOINT \
1088 (current_target.to_have_continuable_watchpoint)
1089#endif
c906108c 1090
ccaa32c7 1091/* Provide defaults for hardware watchpoint functions. */
c906108c 1092
2146d243 1093/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1094 elsewhere use the definitions in the target vector. */
c906108c
SS
1095
1096/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1097 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1098 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1099 (including this one?). OTHERTYPE is who knows what... */
1100
ccaa32c7
GS
1101#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1102#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1103 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1104#endif
c906108c 1105
e0d24f8d
WZ
1106#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1107#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1108 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1109#endif
1110
c906108c
SS
1111
1112/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1113 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1114 success, non-zero for failure. */
1115
ccaa32c7
GS
1116#ifndef target_insert_watchpoint
1117#define target_insert_watchpoint(addr, len, type) \
1118 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1119
ccaa32c7
GS
1120#define target_remove_watchpoint(addr, len, type) \
1121 (*current_target.to_remove_watchpoint) (addr, len, type)
1122#endif
c906108c
SS
1123
1124#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1125#define target_insert_hw_breakpoint(bp_tgt) \
1126 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1127
8181d85f
DJ
1128#define target_remove_hw_breakpoint(bp_tgt) \
1129 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1130#endif
1131
1132#ifndef target_stopped_data_address
4aa7a7f5
JJ
1133#define target_stopped_data_address(target, x) \
1134 (*target.to_stopped_data_address) (target, x)
c906108c
SS
1135#endif
1136
5009afc5
AS
1137#define target_watchpoint_addr_within_range(target, addr, start, length) \
1138 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1139
b2175913
MS
1140/* Target can execute in reverse? */
1141#define target_can_execute_reverse \
1142 (current_target.to_can_execute_reverse ? \
1143 current_target.to_can_execute_reverse () : 0)
1144
424163ea
DJ
1145extern const struct target_desc *target_read_description (struct target_ops *);
1146
0ef643c8
JB
1147#define target_get_ada_task_ptid(lwp, tid) \
1148 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1149
08388c79
DE
1150/* Utility implementation of searching memory. */
1151extern int simple_search_memory (struct target_ops* ops,
1152 CORE_ADDR start_addr,
1153 ULONGEST search_space_len,
1154 const gdb_byte *pattern,
1155 ULONGEST pattern_len,
1156 CORE_ADDR *found_addrp);
1157
1158/* Main entry point for searching memory. */
1159extern int target_search_memory (CORE_ADDR start_addr,
1160 ULONGEST search_space_len,
1161 const gdb_byte *pattern,
1162 ULONGEST pattern_len,
1163 CORE_ADDR *found_addrp);
1164
49d03eab
MR
1165/* Command logging facility. */
1166
1167#define target_log_command(p) \
1168 do \
1169 if (current_target.to_log_command) \
1170 (*current_target.to_log_command) (p); \
1171 while (0)
1172
c906108c
SS
1173/* Routines for maintenance of the target structures...
1174
1175 add_target: Add a target to the list of all possible targets.
1176
1177 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1178 targets, within its particular stratum of the stack. Result
1179 is 0 if now atop the stack, nonzero if not on top (maybe
1180 should warn user).
c906108c
SS
1181
1182 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1183 no matter where it is on the list. Returns 0 if no
1184 change, 1 if removed from stack.
c906108c 1185
c5aa993b 1186 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1187
a14ed312 1188extern void add_target (struct target_ops *);
c906108c 1189
a14ed312 1190extern int push_target (struct target_ops *);
c906108c 1191
a14ed312 1192extern int unpush_target (struct target_ops *);
c906108c 1193
fd79ecee
DJ
1194extern void target_pre_inferior (int);
1195
a14ed312 1196extern void target_preopen (int);
c906108c 1197
a14ed312 1198extern void pop_target (void);
c906108c 1199
aa76d38d
PA
1200/* Does whatever cleanup is required to get rid of all pushed targets.
1201 QUITTING is propagated to target_close; it indicates that GDB is
1202 exiting and should not get hung on an error (otherwise it is
1203 important to perform clean termination, even if it takes a
1204 while). */
1205extern void pop_all_targets (int quitting);
1206
87ab71f0
PA
1207/* Like pop_all_targets, but pops only targets whose stratum is
1208 strictly above ABOVE_STRATUM. */
1209extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1210
9e35dae4
DJ
1211extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1212 CORE_ADDR offset);
1213
52bb452f
DJ
1214/* Mark a pushed target as running or exited, for targets which do not
1215 automatically pop when not active. */
1216
1217void target_mark_running (struct target_ops *);
1218
1219void target_mark_exited (struct target_ops *);
1220
c906108c
SS
1221/* Struct section_table maps address ranges to file sections. It is
1222 mostly used with BFD files, but can be used without (e.g. for handling
1223 raw disks, or files not in formats handled by BFD). */
1224
c5aa993b
JM
1225struct section_table
1226 {
1227 CORE_ADDR addr; /* Lowest address in section */
1228 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1229
7be0c536 1230 struct bfd_section *the_bfd_section;
c906108c 1231
c5aa993b
JM
1232 bfd *bfd; /* BFD file pointer */
1233 };
c906108c 1234
8db32d44
AC
1235/* Return the "section" containing the specified address. */
1236struct section_table *target_section_by_addr (struct target_ops *target,
1237 CORE_ADDR addr);
1238
1239
c906108c
SS
1240/* From mem-break.c */
1241
8181d85f 1242extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1243
8181d85f 1244extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1245
ae4b2284 1246extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1247
ae4b2284 1248extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1249
c906108c
SS
1250
1251/* From target.c */
1252
a14ed312 1253extern void initialize_targets (void);
c906108c 1254
a14ed312 1255extern void noprocess (void);
c906108c 1256
8edfe269
DJ
1257extern void target_require_runnable (void);
1258
136d6dae 1259extern void find_default_attach (struct target_ops *, char *, int);
c906108c 1260
136d6dae
VP
1261extern void find_default_create_inferior (struct target_ops *,
1262 char *, char *, char **, int);
c906108c 1263
a14ed312 1264extern struct target_ops *find_run_target (void);
7a292a7a 1265
a14ed312 1266extern struct target_ops *find_core_target (void);
6426a772 1267
a14ed312 1268extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1269
570b8f7c
AC
1270extern int target_resize_to_sections (struct target_ops *target,
1271 int num_added);
07cd4b97
JB
1272
1273extern void remove_target_sections (bfd *abfd);
1274
e0665bc8
PA
1275/* Read OS data object of type TYPE from the target, and return it in
1276 XML format. The result is NUL-terminated and returned as a string,
1277 allocated using xmalloc. If an error occurs or the transfer is
1278 unsupported, NULL is returned. Empty objects are returned as
1279 allocated but empty strings. */
1280
07e059b5
VP
1281extern char *target_get_osdata (const char *type);
1282
c906108c
SS
1283\f
1284/* Stuff that should be shared among the various remote targets. */
1285
1286/* Debugging level. 0 is off, and non-zero values mean to print some debug
1287 information (higher values, more information). */
1288extern int remote_debug;
1289
1290/* Speed in bits per second, or -1 which means don't mess with the speed. */
1291extern int baud_rate;
1292/* Timeout limit for response from target. */
1293extern int remote_timeout;
1294
c906108c
SS
1295\f
1296/* Functions for helping to write a native target. */
1297
1298/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1299extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1300
c2d11a7d 1301/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1302 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1303/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1304 to the shorter target_signal_p() because it is far less ambigious.
1305 In this context ``target_signal'' refers to GDB's internal
1306 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1307 refers to the target operating system's signal. Confused? */
1308
c2d11a7d
JM
1309extern int target_signal_to_host_p (enum target_signal signo);
1310
1311/* Convert between host signal numbers and enum target_signal's.
1312 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1313 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1314/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1315 refering to the target operating system's signal numbering.
1316 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1317 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1318 internal representation of a target operating system's signal. */
1319
a14ed312
KB
1320extern enum target_signal target_signal_from_host (int);
1321extern int target_signal_to_host (enum target_signal);
c906108c 1322
1cded358
AR
1323extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1324 int);
1325extern int default_target_signal_to_host (struct gdbarch *,
1326 enum target_signal);
1327
c906108c 1328/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1329extern enum target_signal target_signal_from_command (int);
c906108c 1330
8defab1a
DJ
1331/* Set the show memory breakpoints mode to show, and installs a cleanup
1332 to restore it back to the current value. */
1333extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1334
c906108c
SS
1335\f
1336/* Imported from machine dependent code */
1337
c906108c 1338/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1339void target_ignore (void);
c906108c 1340
1df84f13 1341extern struct target_ops deprecated_child_ops;
5ac10fd1 1342
c5aa993b 1343#endif /* !defined (TARGET_H) */