]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/tic6x-tdep.c
x86: drop "mem" operand type attribute
[thirdparty/binutils-gdb.git] / gdb / tic6x-tdep.c
CommitLineData
8cd64e00
YQ
1/* Target dependent code for GDB on TI C6x systems.
2
e2882c85 3 Copyright (C) 2010-2018 Free Software Foundation, Inc.
8cd64e00
YQ
4 Contributed by Andrew Jenner <andrew@codesourcery.com>
5 Contributed by Yao Qi <yao@codesourcery.com>
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "frame.h"
24#include "frame-unwind.h"
25#include "frame-base.h"
26#include "trad-frame.h"
27#include "dwarf2-frame.h"
28#include "symtab.h"
29#include "inferior.h"
30#include "gdbtypes.h"
31#include "gdbcore.h"
32#include "gdbcmd.h"
33#include "target.h"
34#include "dis-asm.h"
35#include "regcache.h"
36#include "value.h"
37#include "symfile.h"
38#include "arch-utils.h"
8cd64e00
YQ
39#include "glibc-tdep.h"
40#include "infcall.h"
41#include "regset.h"
42#include "tramp-frame.h"
43#include "linux-tdep.h"
44#include "solib.h"
45#include "objfiles.h"
8cd64e00
YQ
46#include "osabi.h"
47#include "tic6x-tdep.h"
48#include "language.h"
49#include "target-descriptions.h"
325fac50 50#include <algorithm>
8cd64e00 51
8cd64e00
YQ
52#define TIC6X_OPCODE_SIZE 4
53#define TIC6X_FETCH_PACKET_SIZE 32
54
55#define INST_S_BIT(INST) ((INST >> 1) & 1)
56#define INST_X_BIT(INST) ((INST >> 12) & 1)
57
85661b1e
YQ
58const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 };
59const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 };
60
8cd64e00
YQ
61struct tic6x_unwind_cache
62{
63 /* The frame's base, optionally used by the high-level debug info. */
64 CORE_ADDR base;
65
66 /* The previous frame's inner most stack address. Used as this
67 frame ID's stack_addr. */
68 CORE_ADDR cfa;
69
70 /* The address of the first instruction in this function */
71 CORE_ADDR pc;
72
73 /* Which register holds the return address for the frame. */
74 int return_regnum;
75
76 /* The offset of register saved on stack. If register is not saved, the
77 corresponding element is -1. */
78 CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS];
79};
80
81
82/* Name of TI C6x core registers. */
83static const char *const tic6x_register_names[] =
84{
85 "A0", "A1", "A2", "A3", /* 0 1 2 3 */
86 "A4", "A5", "A6", "A7", /* 4 5 6 7 */
87 "A8", "A9", "A10", "A11", /* 8 9 10 11 */
88 "A12", "A13", "A14", "A15", /* 12 13 14 15 */
89 "B0", "B1", "B2", "B3", /* 16 17 18 19 */
90 "B4", "B5", "B6", "B7", /* 20 21 22 23 */
91 "B8", "B9", "B10", "B11", /* 24 25 26 27 */
92 "B12", "B13", "B14", "B15", /* 28 29 30 31 */
93 "CSR", "PC", /* 32 33 */
94};
95
96/* This array maps the arguments to the register number which passes argument
97 in function call according to C6000 ELF ABI. */
98static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 };
99
100/* This is the implementation of gdbarch method register_name. */
101
102static const char *
103tic6x_register_name (struct gdbarch *gdbarch, int regno)
104{
105 if (regno < 0)
106 return NULL;
107
108 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
109 return tdesc_register_name (gdbarch, regno);
110 else if (regno >= ARRAY_SIZE (tic6x_register_names))
111 return "";
112 else
113 return tic6x_register_names[regno];
114}
115
116/* This is the implementation of gdbarch method register_type. */
117
118static struct type *
119tic6x_register_type (struct gdbarch *gdbarch, int regno)
120{
121
122 if (regno == TIC6X_PC_REGNUM)
123 return builtin_type (gdbarch)->builtin_func_ptr;
124 else
125 return builtin_type (gdbarch)->builtin_uint32;
126}
127
128static void
129tic6x_setup_default (struct tic6x_unwind_cache *cache)
130{
131 int i;
132
133 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
134 cache->reg_saved[i] = -1;
135}
136
137static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR);
138static int tic6x_register_number (int reg, int side, int crosspath);
139
140/* Do a full analysis of the prologue at START_PC and update CACHE accordingly.
141 Bail out early if CURRENT_PC is reached. Returns the address of the first
142 instruction after the prologue. */
143
693be288 144static CORE_ADDR
8cd64e00
YQ
145tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
146 const CORE_ADDR current_pc,
147 struct tic6x_unwind_cache *cache,
148 struct frame_info *this_frame)
149{
8cd64e00
YQ
150 unsigned long inst;
151 unsigned int src_reg, base_reg, dst_reg;
152 int i;
153 CORE_ADDR pc = start_pc;
154 CORE_ADDR return_pc = start_pc;
155 int frame_base_offset_to_sp = 0;
156 /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'. */
157 int non_stw_insn_counter = 0;
158
159 if (start_pc >= current_pc)
160 return_pc = current_pc;
161
162 cache->base = 0;
163
164 /* The landmarks in prologue is one or two SUB instructions to SP.
165 Instructions on setting up dsbt are in the last part of prologue, if
166 needed. In maxim, prologue can be divided to three parts by two
167 `sub sp, xx, sp' insns. */
168
169 /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp', in which, the
170 2nd one is optional. */
171 while (pc < current_pc)
172 {
8cd64e00
YQ
173 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
174
175 if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0
176 || (inst & 0x0ffc) == 0x9c0)
177 {
178 /* SUBAW/SUBAH/SUB, and src1 is ucst 5. */
179 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
180 INST_S_BIT (inst), 0);
181 unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f,
182 INST_S_BIT (inst), 0);
183
184 if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM)
185 {
186 /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to
187 offset. The constant offset is decoded in bit 13-17 in all
188 these three kinds of instructions. */
189 unsigned int ucst5 = (inst >> 13) & 0x1f;
190
191 if ((inst & 0x1ffc) == 0x1dc0) /* SUBAW */
192 frame_base_offset_to_sp += ucst5 << 2;
193 else if ((inst & 0x1ffc) == 0x1bc0) /* SUBAH */
194 frame_base_offset_to_sp += ucst5 << 1;
195 else if ((inst & 0x0ffc) == 0x9c0) /* SUB */
196 frame_base_offset_to_sp += ucst5;
197 else
198 gdb_assert_not_reached ("unexpected instruction");
199
200 return_pc = pc + 4;
201 }
202 }
203 else if ((inst & 0x174) == 0x74) /* stw SRC, *+b15(uconst) */
204 {
205 /* The y bit determines which file base is read from. */
206 base_reg = tic6x_register_number ((inst >> 18) & 0x1f,
207 (inst >> 7) & 1, 0);
208
209 if (base_reg == TIC6X_SP_REGNUM)
210 {
211 src_reg = tic6x_register_number ((inst >> 23) & 0x1f,
212 INST_S_BIT (inst), 0);
213
214 cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2;
215
216 return_pc = pc + 4;
217 }
218 non_stw_insn_counter = 0;
219 }
220 else
221 {
222 non_stw_insn_counter++;
223 /* Following instruction sequence may be emitted in prologue:
224
225 <+0>: subah .D2 b15,28,b15
226 <+4>: or .L2X 0,a4,b0
227 <+8>: || stw .D2T2 b14,*+b15(56)
228 <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220>
229 <+16>:|| stw .D2T1 a10,*+b15(48)
230 <+20>:stw .D2T2 b3,*+b15(52)
231 <+24>:stw .D2T1 a4,*+b15(40)
232
233 we should look forward for next instruction instead of breaking loop
234 here. So far, we allow almost two sequential non-stw instructions
235 in prologue. */
236 if (non_stw_insn_counter >= 2)
237 break;
238 }
239
240
241 pc += 4;
242 }
243 /* Step 2: Skip insn on setting up dsbt if it is. Usually, it looks like,
244 ldw .D2T2 *+b14(0),b14 */
245 inst = tic6x_fetch_instruction (gdbarch, pc);
246 /* The s bit determines which file dst will be loaded into, same effect as
247 other places. */
248 dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0);
249 /* The y bit (bit 7), instead of s bit, determines which file base be
250 used. */
251 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0);
252
253 if ((inst & 0x164) == 0x64 /* ldw */
254 && dst_reg == TIC6X_DP_REGNUM /* dst is B14 */
255 && base_reg == TIC6X_DP_REGNUM) /* baseR is B14 */
256 {
257 return_pc = pc + 4;
258 }
259
260 if (this_frame)
261 {
262 cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
263
264 if (cache->reg_saved[TIC6X_FP_REGNUM] != -1)
265 {
266 /* If the FP now holds an offset from the CFA then this is a frame
267 which uses the frame pointer. */
268
269 cache->cfa = get_frame_register_unsigned (this_frame,
270 TIC6X_FP_REGNUM);
271 }
272 else
273 {
274 /* FP doesn't hold an offset from the CFA. If SP still holds an
275 offset from the CFA then we might be in a function which omits
276 the frame pointer. */
277
278 cache->cfa = cache->base + frame_base_offset_to_sp;
279 }
280 }
281
282 /* Adjust all the saved registers such that they contain addresses
283 instead of offsets. */
284 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
285 if (cache->reg_saved[i] != -1)
286 cache->reg_saved[i] = cache->base + cache->reg_saved[i];
287
288 return return_pc;
289}
290
291/* This is the implementation of gdbarch method skip_prologue. */
292
693be288 293static CORE_ADDR
8cd64e00
YQ
294tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
295{
8cd64e00
YQ
296 CORE_ADDR func_addr;
297 struct tic6x_unwind_cache cache;
298
299 /* See if we can determine the end of the prologue via the symbol table.
300 If so, then return either PC, or the PC after the prologue, whichever is
301 greater. */
302 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
303 {
304 CORE_ADDR post_prologue_pc
305 = skip_prologue_using_sal (gdbarch, func_addr);
306 if (post_prologue_pc != 0)
325fac50 307 return std::max (start_pc, post_prologue_pc);
8cd64e00
YQ
308 }
309
310 /* Can't determine prologue from the symbol table, need to examine
311 instructions. */
312 return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache,
313 NULL);
314}
315
cd6c3b4f
YQ
316/* Implement the breakpoint_kind_from_pc gdbarch method. */
317
d19280ad
YQ
318static int
319tic6x_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
320{
321 return 4;
322}
8cd64e00 323
cd6c3b4f
YQ
324/* Implement the sw_breakpoint_from_kind gdbarch method. */
325
948f8e3d 326static const gdb_byte *
d19280ad 327tic6x_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
8cd64e00
YQ
328{
329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
330
d19280ad 331 *size = kind;
8cd64e00
YQ
332
333 if (tdep == NULL || tdep->breakpoint == NULL)
334 {
335 if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch))
336 return tic6x_bkpt_illegal_opcode_be;
337 else
338 return tic6x_bkpt_illegal_opcode_le;
339 }
340 else
341 return tdep->breakpoint;
342}
343
8cd64e00
YQ
344static void
345tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
346 struct dwarf2_frame_state_reg *reg,
347 struct frame_info *this_frame)
348{
349 /* Mark the PC as the destination for the return address. */
350 if (regnum == gdbarch_pc_regnum (gdbarch))
351 reg->how = DWARF2_FRAME_REG_RA;
352
353 /* Mark the stack pointer as the call frame address. */
354 else if (regnum == gdbarch_sp_regnum (gdbarch))
355 reg->how = DWARF2_FRAME_REG_CFA;
356
357 /* The above was taken from the default init_reg in dwarf2-frame.c
358 while the below is c6x specific. */
359
360 /* Callee save registers. The ABI designates A10-A15 and B10-B15 as
361 callee-save. */
362 else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31))
363 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
364 else
365 /* All other registers are caller-save. */
366 reg->how = DWARF2_FRAME_REG_UNDEFINED;
367}
368
369/* This is the implementation of gdbarch method unwind_pc. */
370
371static CORE_ADDR
372tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
373{
374 gdb_byte buf[8];
375
376 frame_unwind_register (next_frame, TIC6X_PC_REGNUM, buf);
377 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
378}
379
380/* This is the implementation of gdbarch method unwind_sp. */
381
382static CORE_ADDR
383tic6x_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
384{
385 return frame_unwind_register_unsigned (this_frame, TIC6X_SP_REGNUM);
386}
387
388
389/* Frame base handling. */
390
693be288 391static struct tic6x_unwind_cache*
8cd64e00
YQ
392tic6x_frame_unwind_cache (struct frame_info *this_frame,
393 void **this_prologue_cache)
394{
395 struct gdbarch *gdbarch = get_frame_arch (this_frame);
396 CORE_ADDR current_pc;
397 struct tic6x_unwind_cache *cache;
8cd64e00
YQ
398
399 if (*this_prologue_cache)
19ba03f4 400 return (struct tic6x_unwind_cache *) *this_prologue_cache;
8cd64e00
YQ
401
402 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
403 (*this_prologue_cache) = cache;
404
405 cache->return_regnum = TIC6X_RA_REGNUM;
406
407 tic6x_setup_default (cache);
408
409 cache->pc = get_frame_func (this_frame);
410 current_pc = get_frame_pc (this_frame);
411
412 /* Prologue analysis does the rest... */
413 if (cache->pc != 0)
414 tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
415
416 return cache;
417}
418
419static void
420tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache,
421 struct frame_id *this_id)
422{
423 struct tic6x_unwind_cache *cache =
424 tic6x_frame_unwind_cache (this_frame, this_cache);
425
426 /* This marks the outermost frame. */
427 if (cache->base == 0)
428 return;
429
430 (*this_id) = frame_id_build (cache->cfa, cache->pc);
431}
432
433static struct value *
434tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache,
435 int regnum)
436{
437 struct tic6x_unwind_cache *cache =
438 tic6x_frame_unwind_cache (this_frame, this_cache);
439
440 gdb_assert (regnum >= 0);
441
442 /* The PC of the previous frame is stored in the RA register of
443 the current frame. Frob regnum so that we pull the value from
444 the correct place. */
445 if (regnum == TIC6X_PC_REGNUM)
446 regnum = cache->return_regnum;
447
448 if (regnum == TIC6X_SP_REGNUM && cache->cfa)
449 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
450
451 /* If we've worked out where a register is stored then load it from
452 there. */
453 if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1)
454 return frame_unwind_got_memory (this_frame, regnum,
455 cache->reg_saved[regnum]);
456
457 return frame_unwind_got_register (this_frame, regnum, regnum);
458}
459
460static CORE_ADDR
461tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache)
462{
463 struct tic6x_unwind_cache *info
464 = tic6x_frame_unwind_cache (this_frame, this_cache);
465 return info->base;
466}
467
468static const struct frame_unwind tic6x_frame_unwind =
469{
470 NORMAL_FRAME,
471 default_frame_unwind_stop_reason,
472 tic6x_frame_this_id,
473 tic6x_frame_prev_register,
474 NULL,
475 default_frame_sniffer
476};
477
478static const struct frame_base tic6x_frame_base =
479{
480 &tic6x_frame_unwind,
481 tic6x_frame_base_address,
482 tic6x_frame_base_address,
483 tic6x_frame_base_address
484};
485
486
487static struct tic6x_unwind_cache *
488tic6x_make_stub_cache (struct frame_info *this_frame)
489{
490 struct tic6x_unwind_cache *cache;
491
492 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
493
494 cache->return_regnum = TIC6X_RA_REGNUM;
495
496 tic6x_setup_default (cache);
497
498 cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
499
500 return cache;
501}
502
503static void
504tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache,
505 struct frame_id *this_id)
506{
507 struct tic6x_unwind_cache *cache;
508
509 if (*this_cache == NULL)
510 *this_cache = tic6x_make_stub_cache (this_frame);
19ba03f4 511 cache = (struct tic6x_unwind_cache *) *this_cache;
8cd64e00
YQ
512
513 *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame));
514}
515
516static int
517tic6x_stub_unwind_sniffer (const struct frame_unwind *self,
518 struct frame_info *this_frame,
519 void **this_prologue_cache)
520{
521 CORE_ADDR addr_in_block;
522
523 addr_in_block = get_frame_address_in_block (this_frame);
3e5d3a5a 524 if (in_plt_section (addr_in_block))
8cd64e00
YQ
525 return 1;
526
527 return 0;
528}
529
530static const struct frame_unwind tic6x_stub_unwind =
531{
532 NORMAL_FRAME,
533 default_frame_unwind_stop_reason,
534 tic6x_stub_this_id,
535 tic6x_frame_prev_register,
536 NULL,
537 tic6x_stub_unwind_sniffer
538};
539
540/* Return the instruction on address PC. */
541
542static unsigned long
543tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
544{
545 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
546 return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order);
547}
548
549/* Compute the condition of INST if it is a conditional instruction. Always
550 return 1 if INST is not a conditional instruction. */
551
552static int
fb090cfa 553tic6x_condition_true (struct regcache *regcache, unsigned long inst)
8cd64e00
YQ
554{
555 int register_number;
556 int register_value;
557 static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 };
558
559 register_number = register_numbers[(inst >> 29) & 7];
560 if (register_number == -1)
561 return 1;
562
fb090cfa 563 register_value = regcache_raw_get_signed (regcache, register_number);
8cd64e00
YQ
564 if ((inst & 0x10000000) != 0)
565 return register_value == 0;
566 return register_value != 0;
567}
568
569/* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in
570 instruction. */
571
572static int
573tic6x_register_number (int reg, int side, int crosspath)
574{
575 int r = (reg & 15) | ((crosspath ^ side) << 4);
576 if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */
577 r += 37;
578 return r;
579}
580
581static int
582tic6x_extract_signed_field (int value, int low_bit, int bits)
583{
584 int mask = (1 << bits) - 1;
585 int r = (value >> low_bit) & mask;
586 if ((r & (1 << (bits - 1))) != 0)
587 r -= mask + 1;
588 return r;
589}
590
591/* Determine where to set a single step breakpoint. */
592
593static CORE_ADDR
fb090cfa 594tic6x_get_next_pc (struct regcache *regcache, CORE_ADDR pc)
8cd64e00 595{
ac7936df 596 struct gdbarch *gdbarch = regcache->arch ();
8cd64e00 597 unsigned long inst;
8cd64e00
YQ
598 int register_number;
599 int last = 0;
600
601 do
602 {
603 inst = tic6x_fetch_instruction (gdbarch, pc);
604
605 last = !(inst & 1);
606
607 if (inst == TIC6X_INST_SWE)
608 {
609 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
610
611 if (tdep->syscall_next_pc != NULL)
fb090cfa 612 return tdep->syscall_next_pc (get_current_frame ());
8cd64e00
YQ
613 }
614
fb090cfa 615 if (tic6x_condition_true (regcache, inst))
8cd64e00
YQ
616 {
617 if ((inst & 0x0000007c) == 0x00000010)
618 {
619 /* B with displacement */
620 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
621 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
622 break;
623 }
624 if ((inst & 0x0f83effc) == 0x00000360)
625 {
626 /* B with register */
627
628 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
629 INST_S_BIT (inst),
630 INST_X_BIT (inst));
fb090cfa 631 pc = regcache_raw_get_unsigned (regcache, register_number);
8cd64e00
YQ
632 break;
633 }
634 if ((inst & 0x00001ffc) == 0x00001020)
635 {
636 /* BDEC */
637 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
638 INST_S_BIT (inst), 0);
fb090cfa 639 if (regcache_raw_get_signed (regcache, register_number) >= 0)
8cd64e00
YQ
640 {
641 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
642 pc += tic6x_extract_signed_field (inst, 7, 10) << 2;
643 }
644 break;
645 }
646 if ((inst & 0x00001ffc) == 0x00000120)
647 {
648 /* BNOP with displacement */
649 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
650 pc += tic6x_extract_signed_field (inst, 16, 12) << 2;
651 break;
652 }
653 if ((inst & 0x0f830ffe) == 0x00800362)
654 {
655 /* BNOP with register */
656 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
657 1, INST_X_BIT (inst));
fb090cfa 658 pc = regcache_raw_get_unsigned (regcache, register_number);
8cd64e00
YQ
659 break;
660 }
661 if ((inst & 0x00001ffc) == 0x00000020)
662 {
663 /* BPOS */
664 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
665 INST_S_BIT (inst), 0);
fb090cfa 666 if (regcache_raw_get_signed (regcache, register_number) >= 0)
8cd64e00
YQ
667 {
668 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
669 pc += tic6x_extract_signed_field (inst, 13, 10) << 2;
670 }
671 break;
672 }
673 if ((inst & 0xf000007c) == 0x10000010)
674 {
675 /* CALLP */
676 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
677 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
678 break;
679 }
680 }
681 pc += TIC6X_OPCODE_SIZE;
682 }
683 while (!last);
684 return pc;
685}
686
687/* This is the implementation of gdbarch method software_single_step. */
688
a0ff9e1a 689static std::vector<CORE_ADDR>
f5ea389a 690tic6x_software_single_step (struct regcache *regcache)
8cd64e00 691{
fb090cfa 692 CORE_ADDR next_pc = tic6x_get_next_pc (regcache, regcache_read_pc (regcache));
8cd64e00 693
a0ff9e1a 694 return {next_pc};
8cd64e00
YQ
695}
696
697/* This is the implementation of gdbarch method frame_align. */
698
699static CORE_ADDR
700tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
701{
702 return align_down (addr, 8);
703}
704
8cd64e00
YQ
705/* Given a return value in REGCACHE with a type VALTYPE, extract and copy its
706 value into VALBUF. */
707
708static void
709tic6x_extract_return_value (struct type *valtype, struct regcache *regcache,
710 enum bfd_endian byte_order, gdb_byte *valbuf)
711{
712 int len = TYPE_LENGTH (valtype);
713
714 /* pointer types are returned in register A4,
715 up to 32-bit types in A4
716 up to 64-bit types in A5:A4 */
717 if (len <= 4)
718 {
719 /* In big-endian,
720 - one-byte structure or union occupies the LSB of single even register.
721 - for two-byte structure or union, the first byte occupies byte 1 of
722 register and the second byte occupies byte 0.
723 so, we read the contents in VAL from the LSBs of register. */
724 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
73bb0000 725 regcache->cooked_read_part (TIC6X_A4_REGNUM, 4 - len, len, valbuf);
8cd64e00 726 else
dca08e1f 727 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf);
8cd64e00
YQ
728 }
729 else if (len <= 8)
730 {
731 /* For a 5-8 byte structure or union in big-endian, the first byte
732 occupies byte 3 (the MSB) of the upper (odd) register and the
733 remaining bytes fill the decreasingly significant bytes. 5-7
734 byte structures or unions have padding in the LSBs of the
735 lower (even) register. */
736 if (byte_order == BFD_ENDIAN_BIG)
737 {
dca08e1f
SM
738 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf + 4);
739 regcache->cooked_read (TIC6X_A5_REGNUM, valbuf);
8cd64e00
YQ
740 }
741 else
742 {
dca08e1f
SM
743 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf);
744 regcache->cooked_read (TIC6X_A5_REGNUM, valbuf + 4);
8cd64e00
YQ
745 }
746 }
747}
748
749/* Write into appropriate registers a function return value
750 of type TYPE, given in virtual format. */
751
752static void
753tic6x_store_return_value (struct type *valtype, struct regcache *regcache,
754 enum bfd_endian byte_order, const gdb_byte *valbuf)
755{
756 int len = TYPE_LENGTH (valtype);
757
758 /* return values of up to 8 bytes are returned in A5:A4 */
759
760 if (len <= 4)
761 {
762 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
e4c4a59b 763 regcache->cooked_write_part (TIC6X_A4_REGNUM, 4 - len, len, valbuf);
8cd64e00 764 else
b66f5587 765 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf);
8cd64e00
YQ
766 }
767 else if (len <= 8)
768 {
769 if (byte_order == BFD_ENDIAN_BIG)
770 {
b66f5587
SM
771 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf + 4);
772 regcache->cooked_write (TIC6X_A5_REGNUM, valbuf);
8cd64e00
YQ
773 }
774 else
775 {
b66f5587
SM
776 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf);
777 regcache->cooked_write (TIC6X_A5_REGNUM, valbuf + 4);
8cd64e00
YQ
778 }
779 }
780}
781
782/* This is the implementation of gdbarch method return_value. */
783
784static enum return_value_convention
6a3a010b 785tic6x_return_value (struct gdbarch *gdbarch, struct value *function,
8cd64e00
YQ
786 struct type *type, struct regcache *regcache,
787 gdb_byte *readbuf, const gdb_byte *writebuf)
788{
18648a37
YQ
789 /* In C++, when function returns an object, even its size is small
790 enough, it stii has to be passed via reference, pointed by register
791 A3. */
792 if (current_language->la_language == language_cplus)
793 {
794 if (type != NULL)
795 {
f168693b 796 type = check_typedef (type);
18648a37
YQ
797 if (language_pass_by_reference (type))
798 return RETURN_VALUE_STRUCT_CONVENTION;
799 }
800 }
801
8cd64e00
YQ
802 if (TYPE_LENGTH (type) > 8)
803 return RETURN_VALUE_STRUCT_CONVENTION;
804
805 if (readbuf)
806 tic6x_extract_return_value (type, regcache,
807 gdbarch_byte_order (gdbarch), readbuf);
808 if (writebuf)
809 tic6x_store_return_value (type, regcache,
810 gdbarch_byte_order (gdbarch), writebuf);
811
812 return RETURN_VALUE_REGISTER_CONVENTION;
813}
814
815/* This is the implementation of gdbarch method dummy_id. */
816
817static struct frame_id
818tic6x_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
819{
820 return frame_id_build
821 (get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM),
822 get_frame_pc (this_frame));
823}
824
825/* Get the alignment requirement of TYPE. */
826
827static int
828tic6x_arg_type_alignment (struct type *type)
829{
830 int len = TYPE_LENGTH (check_typedef (type));
831 enum type_code typecode = TYPE_CODE (check_typedef (type));
832
833 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
834 {
835 /* The stack alignment of a structure (and union) passed by value is the
836 smallest power of two greater than or equal to its size.
837 This cannot exceed 8 bytes, which is the largest allowable size for
838 a structure passed by value. */
839
840 if (len <= 2)
841 return len;
842 else if (len <= 4)
843 return 4;
844 else if (len <= 8)
845 return 8;
846 else
847 gdb_assert_not_reached ("unexpected length of data");
848 }
849 else
850 {
851 if (len <= 4)
852 return 4;
853 else if (len == 8)
854 {
855 if (typecode == TYPE_CODE_COMPLEX)
856 return 4;
857 else
858 return 8;
859 }
860 else if (len == 16)
861 {
862 if (typecode == TYPE_CODE_COMPLEX)
863 return 8;
864 else
865 return 16;
866 }
867 else
868 internal_error (__FILE__, __LINE__, _("unexpected length %d of type"),
869 len);
870 }
871}
872
873/* This is the implementation of gdbarch method push_dummy_call. */
874
875static CORE_ADDR
876tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
877 struct regcache *regcache, CORE_ADDR bp_addr,
878 int nargs, struct value **args, CORE_ADDR sp,
879 int struct_return, CORE_ADDR struct_addr)
880{
881 int argreg = 0;
882 int argnum;
8cd64e00
YQ
883 int stack_offset = 4;
884 int references_offset = 4;
8cd64e00
YQ
885 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
886 struct type *func_type = value_type (function);
887 /* The first arg passed on stack. Mostly the first 10 args are passed by
888 registers. */
889 int first_arg_on_stack = 10;
8cd64e00 890
8cd64e00
YQ
891 /* Set the return address register to point to the entry point of
892 the program, where a breakpoint lies in wait. */
893 regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr);
894
895 /* The caller must pass an argument in A3 containing a destination address
896 for the returned value. The callee returns the object by copying it to
897 the address in A3. */
898 if (struct_return)
899 regcache_cooked_write_unsigned (regcache, 3, struct_addr);
8cd64e00
YQ
900
901 /* Determine the type of this function. */
902 func_type = check_typedef (func_type);
903 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
904 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
905
906 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
907 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
908
909 /* For a variadic C function, the last explicitly declared argument and all
910 remaining arguments are passed on the stack. */
911 if (TYPE_VARARGS (func_type))
912 first_arg_on_stack = TYPE_NFIELDS (func_type) - 1;
913
18648a37
YQ
914 /* Now make space on the stack for the args. */
915 for (argnum = 0; argnum < nargs; argnum++)
8cd64e00
YQ
916 {
917 int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
918 if (argnum >= 10 - argreg)
919 references_offset += len;
920 stack_offset += len;
921 }
922 sp -= stack_offset;
923 /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1
924 Stack Alignment. */
925 sp = align_down (sp, 8);
926 stack_offset = 4;
927
928 /* Now load as many as possible of the first arguments into
929 registers, and push the rest onto the stack. Loop through args
930 from first to last. */
18648a37 931 for (argnum = 0; argnum < nargs; argnum++)
8cd64e00
YQ
932 {
933 const gdb_byte *val;
934 struct value *arg = args[argnum];
935 struct type *arg_type = check_typedef (value_type (arg));
936 int len = TYPE_LENGTH (arg_type);
937 enum type_code typecode = TYPE_CODE (arg_type);
938
939 val = value_contents (arg);
940
941 /* Copy the argument to general registers or the stack in
942 register-sized pieces. */
943 if (argreg < first_arg_on_stack)
944 {
945 if (len <= 4)
946 {
947 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
948 {
949 /* In big-endian,
950 - one-byte structure or union occupies the LSB of single
951 even register.
952 - for two-byte structure or union, the first byte
953 occupies byte 1 of register and the second byte occupies
954 byte 0.
955 so, we write the contents in VAL to the lsp of
956 register. */
957 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
e4c4a59b
SM
958 regcache->cooked_write_part (arg_regs[argreg], 4 - len, len,
959 val);
8cd64e00 960 else
b66f5587 961 regcache->cooked_write (arg_regs[argreg], val);
8cd64e00
YQ
962 }
963 else
964 {
965 /* The argument is being passed by value in a single
966 register. */
967 CORE_ADDR regval = extract_unsigned_integer (val, len,
968 byte_order);
969
970 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
971 regval);
972 }
973 }
974 else
975 {
976 if (len <= 8)
977 {
978 if (typecode == TYPE_CODE_STRUCT
979 || typecode == TYPE_CODE_UNION)
980 {
981 /* For a 5-8 byte structure or union in big-endian, the
982 first byte occupies byte 3 (the MSB) of the upper (odd)
983 register and the remaining bytes fill the decreasingly
984 significant bytes. 5-7 byte structures or unions have
985 padding in the LSBs of the lower (even) register. */
986 if (byte_order == BFD_ENDIAN_BIG)
987 {
b66f5587 988 regcache->cooked_write (arg_regs[argreg] + 1, val);
e4c4a59b
SM
989 regcache->cooked_write_part (arg_regs[argreg], 0,
990 len - 4, val + 4);
8cd64e00
YQ
991 }
992 else
993 {
b66f5587 994 regcache->cooked_write (arg_regs[argreg], val);
e4c4a59b
SM
995 regcache->cooked_write_part (arg_regs[argreg] + 1, 0,
996 len - 4, val + 4);
8cd64e00
YQ
997 }
998 }
999 else
1000 {
1001 /* The argument is being passed by value in a pair of
1002 registers. */
1003 ULONGEST regval = extract_unsigned_integer (val, len,
1004 byte_order);
1005
1006 regcache_cooked_write_unsigned (regcache,
1007 arg_regs[argreg],
1008 regval);
1009 regcache_cooked_write_unsigned (regcache,
1010 arg_regs[argreg] + 1,
1011 regval >> 32);
1012 }
1013 }
1014 else
1015 {
1016 /* The argument is being passed by reference in a single
1017 register. */
1018 CORE_ADDR addr;
1019
1020 /* It is not necessary to adjust REFERENCES_OFFSET to
1021 8-byte aligned in some cases, in which 4-byte alignment
1022 is sufficient. For simplicity, we adjust
1023 REFERENCES_OFFSET to 8-byte aligned. */
1024 references_offset = align_up (references_offset, 8);
1025
1026 addr = sp + references_offset;
1027 write_memory (addr, val, len);
1028 references_offset += align_up (len, 4);
1029 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1030 addr);
1031 }
1032 }
1033 argreg++;
1034 }
1035 else
1036 {
1037 /* The argument is being passed on the stack. */
1038 CORE_ADDR addr;
1039
1040 /* There are six different cases of alignment, and these rules can
1041 be found in tic6x_arg_type_alignment:
1042
1043 1) 4-byte aligned if size is less than or equal to 4 byte, such
1044 as short, int, struct, union etc.
1045 2) 8-byte aligned if size is less than or equal to 8-byte, such
1046 as double, long long,
1047 3) 4-byte aligned if it is of type _Complex float, even its size
1048 is 8-byte.
1049 4) 8-byte aligned if it is of type _Complex double or _Complex
1050 long double, even its size is 16-byte. Because, the address of
1051 variable is passed as reference.
1052 5) struct and union larger than 8-byte are passed by reference, so
1053 it is 4-byte aligned.
1054 6) struct and union of size between 4 byte and 8 byte varies.
1055 alignment of struct variable is the alignment of its first field,
1056 while alignment of union variable is the max of all its fields'
1057 alignment. */
1058
1059 if (len <= 4)
1060 ; /* Default is 4-byte aligned. Nothing to be done. */
1061 else if (len <= 8)
1062 stack_offset = align_up (stack_offset,
1063 tic6x_arg_type_alignment (arg_type));
1064 else if (len == 16)
1065 {
1066 /* _Complex double or _Complex long double */
1067 if (typecode == TYPE_CODE_COMPLEX)
1068 {
1069 /* The argument is being passed by reference on stack. */
1070 CORE_ADDR addr;
1071 references_offset = align_up (references_offset, 8);
1072
1073 addr = sp + references_offset;
1074 /* Store variable on stack. */
1075 write_memory (addr, val, len);
1076
1077 references_offset += align_up (len, 4);
1078
1079 /* Pass the address of variable on stack as reference. */
1080 store_unsigned_integer ((gdb_byte *) val, 4, byte_order,
1081 addr);
1082 len = 4;
1083
1084 }
1085 else
1086 internal_error (__FILE__, __LINE__,
1087 _("unexpected type %d of arg %d"),
1088 typecode, argnum);
1089 }
1090 else
1091 internal_error (__FILE__, __LINE__,
1092 _("unexpected length %d of arg %d"), len, argnum);
1093
1094 addr = sp + stack_offset;
1095 write_memory (addr, val, len);
1096 stack_offset += align_up (len, 4);
1097 }
1098 }
1099
1100 regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp);
1101
1102 /* Return adjusted stack pointer. */
1103 return sp;
1104}
1105
c9cf6e20 1106/* This is the implementation of gdbarch method stack_frame_destroyed_p. */
8cd64e00
YQ
1107
1108static int
c9cf6e20 1109tic6x_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
8cd64e00
YQ
1110{
1111 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
1112 /* Normally, the epilogue is composed by instruction `b .S2 b3'. */
1113 if ((inst & 0x0f83effc) == 0x360)
1114 {
1115 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
1116 INST_S_BIT (inst),
1117 INST_X_BIT (inst));
1118 if (src2 == TIC6X_RA_REGNUM)
1119 return 1;
1120 }
1121
1122 return 0;
1123}
1124
1125/* This is the implementation of gdbarch method get_longjmp_target. */
1126
1127static int
1128tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1129{
1130 struct gdbarch *gdbarch = get_frame_arch (frame);
1131 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1132 CORE_ADDR jb_addr;
e362b510 1133 gdb_byte buf[4];
8cd64e00
YQ
1134
1135 /* JMP_BUF is passed by reference in A4. */
1136 jb_addr = get_frame_register_unsigned (frame, 4);
1137
1138 /* JMP_BUF contains 13 elements of type int, and return address is stored
1139 in the last slot. */
1140 if (target_read_memory (jb_addr + 12 * 4, buf, 4))
1141 return 0;
1142
1143 *pc = extract_unsigned_integer (buf, 4, byte_order);
1144
1145 return 1;
1146}
1147
18648a37
YQ
1148/* This is the implementation of gdbarch method
1149 return_in_first_hidden_param_p. */
1150
1151static int
1152tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1153 struct type *type)
1154{
1155 return 0;
1156}
1157
8cd64e00
YQ
1158static struct gdbarch *
1159tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1160{
1161 struct gdbarch *gdbarch;
1162 struct gdbarch_tdep *tdep;
1163 struct tdesc_arch_data *tdesc_data = NULL;
1164 const struct target_desc *tdesc = info.target_desc;
1165 int has_gp = 0;
1166
1167 /* Check any target description for validity. */
1168 if (tdesc_has_registers (tdesc))
1169 {
1170 const struct tdesc_feature *feature;
1171 int valid_p, i;
1172
1173 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core");
1174
1175 if (feature == NULL)
1176 return NULL;
1177
1178 tdesc_data = tdesc_data_alloc ();
1179
1180 valid_p = 1;
1181 for (i = 0; i < 32; i++) /* A0 - A15, B0 - B15 */
1182 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1183 tic6x_register_names[i]);
1184
1185 /* CSR */
1186 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1187 tic6x_register_names[TIC6X_CSR_REGNUM]);
1188 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1189 tic6x_register_names[TIC6X_PC_REGNUM]);
1190
1191 if (!valid_p)
1192 {
1193 tdesc_data_cleanup (tdesc_data);
1194 return NULL;
1195 }
1196
1197 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp");
1198 if (feature)
1199 {
1200 int j = 0;
1201 static const char *const gp[] =
1202 {
1203 "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",
1204 "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",
1205 "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",
1206 "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",
1207 };
1208
1209 has_gp = 1;
1210 valid_p = 1;
1211 for (j = 0; j < 32; j++) /* A16 - A31, B16 - B31 */
1212 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1213 gp[j]);
1214
1215 if (!valid_p)
1216 {
1217 tdesc_data_cleanup (tdesc_data);
1218 return NULL;
1219 }
1220 }
1221
1222 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp");
1223 if (feature)
1224 {
1225 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR");
1226 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC");
1227 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC");
1228
1229 if (!valid_p)
1230 {
1231 tdesc_data_cleanup (tdesc_data);
1232 return NULL;
1233 }
1234 }
1235
1236 }
1237
1238 /* Find a candidate among extant architectures. */
1239 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1240 arches != NULL;
1241 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1242 {
1243 tdep = gdbarch_tdep (arches->gdbarch);
1244
1245 if (has_gp != tdep->has_gp)
1246 continue;
1247
1248 if (tdep && tdep->breakpoint)
1249 return arches->gdbarch;
1250 }
1251
8d749320 1252 tdep = XCNEW (struct gdbarch_tdep);
8cd64e00
YQ
1253
1254 tdep->has_gp = has_gp;
1255 gdbarch = gdbarch_alloc (&info, tdep);
1256
1257 /* Data type sizes. */
1258 set_gdbarch_ptr_bit (gdbarch, 32);
1259 set_gdbarch_addr_bit (gdbarch, 32);
1260 set_gdbarch_short_bit (gdbarch, 16);
1261 set_gdbarch_int_bit (gdbarch, 32);
1262 set_gdbarch_long_bit (gdbarch, 32);
1263 set_gdbarch_long_long_bit (gdbarch, 64);
1264 set_gdbarch_float_bit (gdbarch, 32);
1265 set_gdbarch_double_bit (gdbarch, 64);
1266
1267 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1268 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1269
1270 /* The register set. */
1271 set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS);
1272 set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM);
1273 set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM);
1274
1275 set_gdbarch_register_name (gdbarch, tic6x_register_name);
1276 set_gdbarch_register_type (gdbarch, tic6x_register_type);
1277
1278 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1279
1280 set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue);
04180708
YQ
1281 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1282 tic6x_breakpoint_kind_from_pc);
1283 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1284 tic6x_sw_breakpoint_from_kind);
8cd64e00
YQ
1285
1286 set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc);
1287 set_gdbarch_unwind_sp (gdbarch, tic6x_unwind_sp);
1288
1289 /* Unwinding. */
1290 dwarf2_append_unwinders (gdbarch);
1291
1292 frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind);
1293 frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind);
195abc10 1294 frame_base_set_default (gdbarch, &tic6x_frame_base);
8cd64e00
YQ
1295
1296 dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg);
1297
1298 /* Single stepping. */
1299 set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step);
1300
8cd64e00
YQ
1301 /* Call dummy code. */
1302 set_gdbarch_frame_align (gdbarch, tic6x_frame_align);
1303
8cd64e00
YQ
1304 set_gdbarch_return_value (gdbarch, tic6x_return_value);
1305
1306 set_gdbarch_dummy_id (gdbarch, tic6x_dummy_id);
1307
1308 /* Enable inferior call support. */
1309 set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call);
1310
1311 set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target);
1312
c9cf6e20 1313 set_gdbarch_stack_frame_destroyed_p (gdbarch, tic6x_stack_frame_destroyed_p);
8cd64e00 1314
18648a37
YQ
1315 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1316 tic6x_return_in_first_hidden_param_p);
1317
8cd64e00
YQ
1318 /* Hook in ABI-specific overrides, if they have been registered. */
1319 gdbarch_init_osabi (info, gdbarch);
1320
1321 if (tdesc_data)
1322 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1323
1324 return gdbarch;
1325}
1326
1327void
1328_initialize_tic6x_tdep (void)
1329{
1330 register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init);
8cd64e00 1331}