]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/utils.c
* remote-udi.c (udi_wait): Make type, instead of name, of first
[thirdparty/binutils-gdb.git] / gdb / utils.c
CommitLineData
c906108c 1/* General utility routines for GDB, the GNU debugger.
b6ba6518
KB
2 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1997, 1998, 1999, 2000, 2001
d9fcf2fb 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
39424bef 24#include "gdb_assert.h"
c906108c
SS
25#include <ctype.h>
26#include "gdb_string.h"
c2c6d25f 27#include "event-top.h"
c906108c
SS
28
29#ifdef HAVE_CURSES_H
30#include <curses.h>
31#endif
32#ifdef HAVE_TERM_H
33#include <term.h>
34#endif
35
9d271fd8
AC
36#ifdef __GO32__
37#include <pc.h>
38#endif
39
c906108c
SS
40/* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
41#ifdef reg
42#undef reg
43#endif
44
042be3a9 45#include <signal.h>
c906108c
SS
46#include "gdbcmd.h"
47#include "serial.h"
48#include "bfd.h"
49#include "target.h"
50#include "demangle.h"
51#include "expression.h"
52#include "language.h"
53#include "annotate.h"
54
ac2e2ef7
AC
55#include "inferior.h" /* for signed_pointer_to_address */
56
c906108c
SS
57#include <readline/readline.h>
58
81b8eb80 59#ifndef MALLOC_INCOMPATIBLE
3c37485b
AC
60#ifdef NEED_DECLARATION_MALLOC
61extern PTR malloc ();
62#endif
0e52036f
AC
63#ifdef NEED_DECLARATION_REALLOC
64extern PTR realloc ();
65#endif
81b8eb80
AC
66#ifdef NEED_DECLARATION_FREE
67extern void free ();
68#endif
69#endif
70
917317f4
JM
71#undef XMALLOC
72#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
73
c906108c
SS
74/* readline defines this. */
75#undef savestring
76
507f3c78 77void (*error_begin_hook) (void);
c906108c 78
2acceee2
JM
79/* Holds the last error message issued by gdb */
80
d9fcf2fb 81static struct ui_file *gdb_lasterr;
2acceee2 82
c906108c
SS
83/* Prototypes for local functions */
84
d9fcf2fb
JM
85static void vfprintf_maybe_filtered (struct ui_file *, const char *,
86 va_list, int);
c906108c 87
d9fcf2fb 88static void fputs_maybe_filtered (const char *, struct ui_file *, int);
c906108c
SS
89
90#if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
a14ed312 91static void malloc_botch (void);
c906108c
SS
92#endif
93
a14ed312 94static void prompt_for_continue (void);
c906108c 95
a14ed312 96static void set_width_command (char *, int, struct cmd_list_element *);
c906108c 97
a14ed312 98static void set_width (void);
c906108c 99
c906108c
SS
100/* Chain of cleanup actions established with make_cleanup,
101 to be executed if an error happens. */
102
c5aa993b
JM
103static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
104static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
105static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
106static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
6426a772
JM
107/* cleaned up on each error from within an execution command */
108static struct cleanup *exec_error_cleanup_chain;
43ff13b4
JM
109
110/* Pointer to what is left to do for an execution command after the
111 target stops. Used only in asynchronous mode, by targets that
112 support async execution. The finish and until commands use it. So
113 does the target extended-remote command. */
114struct continuation *cmd_continuation;
c2d11a7d 115struct continuation *intermediate_continuation;
c906108c
SS
116
117/* Nonzero if we have job control. */
118
119int job_control;
120
121/* Nonzero means a quit has been requested. */
122
123int quit_flag;
124
125/* Nonzero means quit immediately if Control-C is typed now, rather
126 than waiting until QUIT is executed. Be careful in setting this;
127 code which executes with immediate_quit set has to be very careful
128 about being able to deal with being interrupted at any time. It is
129 almost always better to use QUIT; the only exception I can think of
130 is being able to quit out of a system call (using EINTR loses if
131 the SIGINT happens between the previous QUIT and the system call).
132 To immediately quit in the case in which a SIGINT happens between
133 the previous QUIT and setting immediate_quit (desirable anytime we
134 expect to block), call QUIT after setting immediate_quit. */
135
136int immediate_quit;
137
138/* Nonzero means that encoded C++ names should be printed out in their
139 C++ form rather than raw. */
140
141int demangle = 1;
142
143/* Nonzero means that encoded C++ names should be printed out in their
144 C++ form even in assembler language displays. If this is set, but
145 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
146
147int asm_demangle = 0;
148
149/* Nonzero means that strings with character values >0x7F should be printed
150 as octal escapes. Zero means just print the value (e.g. it's an
151 international character, and the terminal or window can cope.) */
152
153int sevenbit_strings = 0;
154
155/* String to be printed before error messages, if any. */
156
157char *error_pre_print;
158
159/* String to be printed before quit messages, if any. */
160
161char *quit_pre_print;
162
163/* String to be printed before warning messages, if any. */
164
165char *warning_pre_print = "\nwarning: ";
166
167int pagination_enabled = 1;
c906108c 168\f
c5aa993b 169
c906108c
SS
170/* Add a new cleanup to the cleanup_chain,
171 and return the previous chain pointer
172 to be passed later to do_cleanups or discard_cleanups.
173 Args are FUNCTION to clean up with, and ARG to pass to it. */
174
175struct cleanup *
e4005526 176make_cleanup (make_cleanup_ftype *function, void *arg)
c906108c 177{
c5aa993b 178 return make_my_cleanup (&cleanup_chain, function, arg);
c906108c
SS
179}
180
181struct cleanup *
e4005526 182make_final_cleanup (make_cleanup_ftype *function, void *arg)
c906108c 183{
c5aa993b 184 return make_my_cleanup (&final_cleanup_chain, function, arg);
c906108c 185}
7a292a7a 186
c906108c 187struct cleanup *
e4005526 188make_run_cleanup (make_cleanup_ftype *function, void *arg)
c906108c 189{
c5aa993b 190 return make_my_cleanup (&run_cleanup_chain, function, arg);
c906108c 191}
7a292a7a 192
43ff13b4 193struct cleanup *
e4005526 194make_exec_cleanup (make_cleanup_ftype *function, void *arg)
43ff13b4 195{
c5aa993b 196 return make_my_cleanup (&exec_cleanup_chain, function, arg);
43ff13b4
JM
197}
198
6426a772 199struct cleanup *
e4005526 200make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
6426a772
JM
201{
202 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
203}
204
7a292a7a 205static void
fba45db2 206do_freeargv (void *arg)
7a292a7a 207{
c5aa993b 208 freeargv ((char **) arg);
7a292a7a
SS
209}
210
211struct cleanup *
fba45db2 212make_cleanup_freeargv (char **arg)
7a292a7a
SS
213{
214 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
215}
216
5c65bbb6
AC
217static void
218do_bfd_close_cleanup (void *arg)
219{
220 bfd_close (arg);
221}
222
223struct cleanup *
224make_cleanup_bfd_close (bfd *abfd)
225{
226 return make_cleanup (do_bfd_close_cleanup, abfd);
227}
228
f5ff8c83
AC
229static void
230do_close_cleanup (void *arg)
231{
f042532c
AC
232 int *fd = arg;
233 close (*fd);
234 xfree (fd);
f5ff8c83
AC
235}
236
237struct cleanup *
238make_cleanup_close (int fd)
239{
f042532c
AC
240 int *saved_fd = xmalloc (sizeof (fd));
241 *saved_fd = fd;
242 return make_cleanup (do_close_cleanup, saved_fd);
f5ff8c83
AC
243}
244
11cf8741 245static void
d9fcf2fb 246do_ui_file_delete (void *arg)
11cf8741 247{
d9fcf2fb 248 ui_file_delete (arg);
11cf8741
JM
249}
250
251struct cleanup *
d9fcf2fb 252make_cleanup_ui_file_delete (struct ui_file *arg)
11cf8741 253{
d9fcf2fb 254 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
11cf8741
JM
255}
256
c906108c 257struct cleanup *
e4005526
AC
258make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
259 void *arg)
c906108c
SS
260{
261 register struct cleanup *new
c5aa993b 262 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
c906108c
SS
263 register struct cleanup *old_chain = *pmy_chain;
264
265 new->next = *pmy_chain;
266 new->function = function;
267 new->arg = arg;
268 *pmy_chain = new;
269
270 return old_chain;
271}
272
273/* Discard cleanups and do the actions they describe
274 until we get back to the point OLD_CHAIN in the cleanup_chain. */
275
276void
fba45db2 277do_cleanups (register struct cleanup *old_chain)
c906108c 278{
c5aa993b 279 do_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
280}
281
282void
fba45db2 283do_final_cleanups (register struct cleanup *old_chain)
c906108c 284{
c5aa993b 285 do_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
286}
287
288void
fba45db2 289do_run_cleanups (register struct cleanup *old_chain)
c906108c 290{
c5aa993b 291 do_my_cleanups (&run_cleanup_chain, old_chain);
c906108c
SS
292}
293
43ff13b4 294void
fba45db2 295do_exec_cleanups (register struct cleanup *old_chain)
43ff13b4 296{
c5aa993b 297 do_my_cleanups (&exec_cleanup_chain, old_chain);
43ff13b4
JM
298}
299
6426a772 300void
fba45db2 301do_exec_error_cleanups (register struct cleanup *old_chain)
6426a772
JM
302{
303 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
304}
305
c906108c 306void
fba45db2
KB
307do_my_cleanups (register struct cleanup **pmy_chain,
308 register struct cleanup *old_chain)
c906108c
SS
309{
310 register struct cleanup *ptr;
311 while ((ptr = *pmy_chain) != old_chain)
312 {
313 *pmy_chain = ptr->next; /* Do this first incase recursion */
314 (*ptr->function) (ptr->arg);
b8c9b27d 315 xfree (ptr);
c906108c
SS
316 }
317}
318
319/* Discard cleanups, not doing the actions they describe,
320 until we get back to the point OLD_CHAIN in the cleanup_chain. */
321
322void
fba45db2 323discard_cleanups (register struct cleanup *old_chain)
c906108c 324{
c5aa993b 325 discard_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
326}
327
328void
fba45db2 329discard_final_cleanups (register struct cleanup *old_chain)
c906108c 330{
c5aa993b 331 discard_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
332}
333
6426a772 334void
fba45db2 335discard_exec_error_cleanups (register struct cleanup *old_chain)
6426a772
JM
336{
337 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
338}
339
c906108c 340void
fba45db2
KB
341discard_my_cleanups (register struct cleanup **pmy_chain,
342 register struct cleanup *old_chain)
c906108c
SS
343{
344 register struct cleanup *ptr;
345 while ((ptr = *pmy_chain) != old_chain)
346 {
347 *pmy_chain = ptr->next;
b8c9b27d 348 xfree (ptr);
c906108c
SS
349 }
350}
351
352/* Set the cleanup_chain to 0, and return the old cleanup chain. */
353struct cleanup *
fba45db2 354save_cleanups (void)
c906108c 355{
c5aa993b 356 return save_my_cleanups (&cleanup_chain);
c906108c
SS
357}
358
359struct cleanup *
fba45db2 360save_final_cleanups (void)
c906108c 361{
c5aa993b 362 return save_my_cleanups (&final_cleanup_chain);
c906108c
SS
363}
364
365struct cleanup *
fba45db2 366save_my_cleanups (struct cleanup **pmy_chain)
c906108c
SS
367{
368 struct cleanup *old_chain = *pmy_chain;
369
370 *pmy_chain = 0;
371 return old_chain;
372}
373
374/* Restore the cleanup chain from a previously saved chain. */
375void
fba45db2 376restore_cleanups (struct cleanup *chain)
c906108c 377{
c5aa993b 378 restore_my_cleanups (&cleanup_chain, chain);
c906108c
SS
379}
380
381void
fba45db2 382restore_final_cleanups (struct cleanup *chain)
c906108c 383{
c5aa993b 384 restore_my_cleanups (&final_cleanup_chain, chain);
c906108c
SS
385}
386
387void
fba45db2 388restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
c906108c
SS
389{
390 *pmy_chain = chain;
391}
392
393/* This function is useful for cleanups.
394 Do
395
c5aa993b
JM
396 foo = xmalloc (...);
397 old_chain = make_cleanup (free_current_contents, &foo);
c906108c
SS
398
399 to arrange to free the object thus allocated. */
400
401void
2f9429ae 402free_current_contents (void *ptr)
c906108c 403{
2f9429ae 404 void **location = ptr;
e2f9c474 405 if (location == NULL)
8e65ff28
AC
406 internal_error (__FILE__, __LINE__,
407 "free_current_contents: NULL pointer");
2f9429ae 408 if (*location != NULL)
e2f9c474 409 {
b8c9b27d 410 xfree (*location);
e2f9c474
AC
411 *location = NULL;
412 }
c906108c
SS
413}
414
415/* Provide a known function that does nothing, to use as a base for
416 for a possibly long chain of cleanups. This is useful where we
417 use the cleanup chain for handling normal cleanups as well as dealing
418 with cleanups that need to be done as a result of a call to error().
419 In such cases, we may not be certain where the first cleanup is, unless
420 we have a do-nothing one to always use as the base. */
421
422/* ARGSUSED */
423void
e4005526 424null_cleanup (void *arg)
c906108c
SS
425{
426}
427
74f832da 428/* Add a continuation to the continuation list, the global list
c2d11a7d 429 cmd_continuation. The new continuation will be added at the front.*/
43ff13b4 430void
74f832da
KB
431add_continuation (void (*continuation_hook) (struct continuation_arg *),
432 struct continuation_arg *arg_list)
43ff13b4 433{
c5aa993b 434 struct continuation *continuation_ptr;
43ff13b4 435
c5aa993b
JM
436 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
437 continuation_ptr->continuation_hook = continuation_hook;
438 continuation_ptr->arg_list = arg_list;
439 continuation_ptr->next = cmd_continuation;
440 cmd_continuation = continuation_ptr;
43ff13b4
JM
441}
442
443/* Walk down the cmd_continuation list, and execute all the
c2d11a7d
JM
444 continuations. There is a problem though. In some cases new
445 continuations may be added while we are in the middle of this
446 loop. If this happens they will be added in the front, and done
447 before we have a chance of exhausting those that were already
448 there. We need to then save the beginning of the list in a pointer
449 and do the continuations from there on, instead of using the
450 global beginning of list as our iteration pointer.*/
c5aa993b 451void
fba45db2 452do_all_continuations (void)
c2d11a7d
JM
453{
454 struct continuation *continuation_ptr;
455 struct continuation *saved_continuation;
456
457 /* Copy the list header into another pointer, and set the global
458 list header to null, so that the global list can change as a side
459 effect of invoking the continuations and the processing of
460 the preexisting continuations will not be affected. */
461 continuation_ptr = cmd_continuation;
462 cmd_continuation = NULL;
463
464 /* Work now on the list we have set aside. */
465 while (continuation_ptr)
466 {
467 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
468 saved_continuation = continuation_ptr;
469 continuation_ptr = continuation_ptr->next;
b8c9b27d 470 xfree (saved_continuation);
c2d11a7d
JM
471 }
472}
473
474/* Walk down the cmd_continuation list, and get rid of all the
475 continuations. */
476void
fba45db2 477discard_all_continuations (void)
43ff13b4 478{
c5aa993b 479 struct continuation *continuation_ptr;
43ff13b4 480
c5aa993b
JM
481 while (cmd_continuation)
482 {
c5aa993b
JM
483 continuation_ptr = cmd_continuation;
484 cmd_continuation = continuation_ptr->next;
b8c9b27d 485 xfree (continuation_ptr);
c5aa993b 486 }
43ff13b4 487}
c2c6d25f 488
57e687d9 489/* Add a continuation to the continuation list, the global list
c2d11a7d
JM
490 intermediate_continuation. The new continuation will be added at the front.*/
491void
74f832da
KB
492add_intermediate_continuation (void (*continuation_hook)
493 (struct continuation_arg *),
494 struct continuation_arg *arg_list)
c2d11a7d
JM
495{
496 struct continuation *continuation_ptr;
497
498 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
499 continuation_ptr->continuation_hook = continuation_hook;
500 continuation_ptr->arg_list = arg_list;
501 continuation_ptr->next = intermediate_continuation;
502 intermediate_continuation = continuation_ptr;
503}
504
505/* Walk down the cmd_continuation list, and execute all the
506 continuations. There is a problem though. In some cases new
507 continuations may be added while we are in the middle of this
508 loop. If this happens they will be added in the front, and done
509 before we have a chance of exhausting those that were already
510 there. We need to then save the beginning of the list in a pointer
511 and do the continuations from there on, instead of using the
512 global beginning of list as our iteration pointer.*/
513void
fba45db2 514do_all_intermediate_continuations (void)
c2d11a7d
JM
515{
516 struct continuation *continuation_ptr;
517 struct continuation *saved_continuation;
518
519 /* Copy the list header into another pointer, and set the global
520 list header to null, so that the global list can change as a side
521 effect of invoking the continuations and the processing of
522 the preexisting continuations will not be affected. */
523 continuation_ptr = intermediate_continuation;
524 intermediate_continuation = NULL;
525
526 /* Work now on the list we have set aside. */
527 while (continuation_ptr)
528 {
529 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
530 saved_continuation = continuation_ptr;
531 continuation_ptr = continuation_ptr->next;
b8c9b27d 532 xfree (saved_continuation);
c2d11a7d
JM
533 }
534}
535
c2c6d25f
JM
536/* Walk down the cmd_continuation list, and get rid of all the
537 continuations. */
538void
fba45db2 539discard_all_intermediate_continuations (void)
c2c6d25f
JM
540{
541 struct continuation *continuation_ptr;
542
c2d11a7d 543 while (intermediate_continuation)
c2c6d25f 544 {
c2d11a7d
JM
545 continuation_ptr = intermediate_continuation;
546 intermediate_continuation = continuation_ptr->next;
b8c9b27d 547 xfree (continuation_ptr);
c2c6d25f
JM
548 }
549}
550
c906108c 551\f
c5aa993b 552
c906108c
SS
553/* Print a warning message. Way to use this is to call warning_begin,
554 output the warning message (use unfiltered output to gdb_stderr),
555 ending in a newline. There is not currently a warning_end that you
556 call afterwards, but such a thing might be added if it is useful
557 for a GUI to separate warning messages from other output.
558
559 FIXME: Why do warnings use unfiltered output and errors filtered?
560 Is this anything other than a historical accident? */
561
562void
fba45db2 563warning_begin (void)
c906108c
SS
564{
565 target_terminal_ours ();
c5aa993b 566 wrap_here (""); /* Force out any buffered output */
c906108c
SS
567 gdb_flush (gdb_stdout);
568 if (warning_pre_print)
569 fprintf_unfiltered (gdb_stderr, warning_pre_print);
570}
571
572/* Print a warning message.
573 The first argument STRING is the warning message, used as a fprintf string,
574 and the remaining args are passed as arguments to it.
575 The primary difference between warnings and errors is that a warning
576 does not force the return to command level. */
577
c906108c 578void
c5aa993b 579warning (const char *string,...)
c906108c
SS
580{
581 va_list args;
c906108c 582 va_start (args, string);
c906108c
SS
583 if (warning_hook)
584 (*warning_hook) (string, args);
585 else
c5aa993b
JM
586 {
587 warning_begin ();
588 vfprintf_unfiltered (gdb_stderr, string, args);
589 fprintf_unfiltered (gdb_stderr, "\n");
590 va_end (args);
591 }
c906108c
SS
592}
593
594/* Start the printing of an error message. Way to use this is to call
595 this, output the error message (use filtered output to gdb_stderr
596 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
597 in a newline, and then call return_to_top_level (RETURN_ERROR).
598 error() provides a convenient way to do this for the special case
599 that the error message can be formatted with a single printf call,
600 but this is more general. */
601void
fba45db2 602error_begin (void)
c906108c
SS
603{
604 if (error_begin_hook)
605 error_begin_hook ();
606
607 target_terminal_ours ();
c5aa993b 608 wrap_here (""); /* Force out any buffered output */
c906108c
SS
609 gdb_flush (gdb_stdout);
610
611 annotate_error_begin ();
612
613 if (error_pre_print)
614 fprintf_filtered (gdb_stderr, error_pre_print);
615}
616
617/* Print an error message and return to command level.
618 The first argument STRING is the error message, used as a fprintf string,
619 and the remaining args are passed as arguments to it. */
620
4ce44c66
JM
621NORETURN void
622verror (const char *string, va_list args)
623{
c2d11a7d
JM
624 char *err_string;
625 struct cleanup *err_string_cleanup;
4ce44c66 626 /* FIXME: cagney/1999-11-10: All error calls should come here.
e26cc349 627 Unfortunately some code uses the sequence: error_begin(); print
4ce44c66
JM
628 error message; return_to_top_level. That code should be
629 flushed. */
630 error_begin ();
c2d11a7d
JM
631 /* NOTE: It's tempting to just do the following...
632 vfprintf_filtered (gdb_stderr, string, args);
633 and then follow with a similar looking statement to cause the message
634 to also go to gdb_lasterr. But if we do this, we'll be traversing the
635 va_list twice which works on some platforms and fails miserably on
636 others. */
637 /* Save it as the last error */
d9fcf2fb 638 ui_file_rewind (gdb_lasterr);
4ce44c66 639 vfprintf_filtered (gdb_lasterr, string, args);
c2d11a7d
JM
640 /* Retrieve the last error and print it to gdb_stderr */
641 err_string = error_last_message ();
b8c9b27d 642 err_string_cleanup = make_cleanup (xfree, err_string);
c2d11a7d
JM
643 fputs_filtered (err_string, gdb_stderr);
644 fprintf_filtered (gdb_stderr, "\n");
645 do_cleanups (err_string_cleanup);
4ce44c66
JM
646 return_to_top_level (RETURN_ERROR);
647}
648
c906108c 649NORETURN void
c5aa993b 650error (const char *string,...)
c906108c
SS
651{
652 va_list args;
c906108c 653 va_start (args, string);
4ce44c66
JM
654 verror (string, args);
655 va_end (args);
c906108c
SS
656}
657
2acceee2 658NORETURN void
d9fcf2fb 659error_stream (struct ui_file *stream)
2acceee2 660{
4ce44c66 661 long size;
d9fcf2fb 662 char *msg = ui_file_xstrdup (stream, &size);
b8c9b27d 663 make_cleanup (xfree, msg);
4ce44c66 664 error ("%s", msg);
2acceee2
JM
665}
666
667/* Get the last error message issued by gdb */
668
669char *
670error_last_message (void)
671{
4ce44c66 672 long len;
d9fcf2fb 673 return ui_file_xstrdup (gdb_lasterr, &len);
2acceee2 674}
4ce44c66 675
2acceee2
JM
676/* This is to be called by main() at the very beginning */
677
678void
679error_init (void)
680{
4ce44c66 681 gdb_lasterr = mem_fileopen ();
2acceee2 682}
c906108c 683
96baa820
JM
684/* Print a message reporting an internal error. Ask the user if they
685 want to continue, dump core, or just exit. */
c906108c 686
c906108c 687NORETURN void
8e65ff28
AC
688internal_verror (const char *file, int line,
689 const char *fmt, va_list ap)
c906108c 690{
96baa820
JM
691 static char msg[] = "Internal GDB error: recursive internal error.\n";
692 static int dejavu = 0;
7be570e7
JM
693 int continue_p;
694 int dump_core_p;
c906108c 695
96baa820
JM
696 /* don't allow infinite error recursion. */
697 switch (dejavu)
698 {
699 case 0:
700 dejavu = 1;
701 break;
702 case 1:
703 dejavu = 2;
704 fputs_unfiltered (msg, gdb_stderr);
e1e9e218 705 internal_error (__FILE__, __LINE__, "failed internal consistency check");
96baa820
JM
706 default:
707 dejavu = 3;
708 write (STDERR_FILENO, msg, sizeof (msg));
709 exit (1);
710 }
c906108c 711
96baa820 712 /* Try to get the message out */
4261bedc 713 target_terminal_ours ();
8e65ff28 714 fprintf_unfiltered (gdb_stderr, "%s:%d: gdb-internal-error: ", file, line);
4ce44c66 715 vfprintf_unfiltered (gdb_stderr, fmt, ap);
96baa820 716 fputs_unfiltered ("\n", gdb_stderr);
c906108c 717
7be570e7
JM
718 /* Default (no case) is to quit GDB. When in batch mode this
719 lessens the likelhood of GDB going into an infinate loop. */
720 continue_p = query ("\
62fd9fad 721An internal GDB error was detected. This may make further\n\
7be570e7
JM
722debugging unreliable. Continue this debugging session? ");
723
724 /* Default (no case) is to not dump core. Lessen the chance of GDB
725 leaving random core files around. */
726 dump_core_p = query ("\
727Create a core file containing the current state of GDB? ");
728
729 if (continue_p)
730 {
731 if (dump_core_p)
732 {
733 if (fork () == 0)
e1e9e218 734 internal_error (__FILE__, __LINE__, "failed internal consistency check");
7be570e7
JM
735 }
736 }
737 else
738 {
739 if (dump_core_p)
e1e9e218 740 internal_error (__FILE__, __LINE__, "failed internal consistency check");
7be570e7
JM
741 else
742 exit (1);
743 }
96baa820
JM
744
745 dejavu = 0;
746 return_to_top_level (RETURN_ERROR);
c906108c
SS
747}
748
4ce44c66 749NORETURN void
8e65ff28 750internal_error (const char *file, int line, const char *string, ...)
4ce44c66
JM
751{
752 va_list ap;
753 va_start (ap, string);
4261bedc 754
8e65ff28 755 internal_verror (file, line, string, ap);
4ce44c66
JM
756 va_end (ap);
757}
758
c906108c
SS
759/* The strerror() function can return NULL for errno values that are
760 out of range. Provide a "safe" version that always returns a
761 printable string. */
762
763char *
fba45db2 764safe_strerror (int errnum)
c906108c
SS
765{
766 char *msg;
767 static char buf[32];
768
769 if ((msg = strerror (errnum)) == NULL)
770 {
771 sprintf (buf, "(undocumented errno %d)", errnum);
772 msg = buf;
773 }
774 return (msg);
775}
776
c906108c
SS
777/* Print the system error message for errno, and also mention STRING
778 as the file name for which the error was encountered.
779 Then return to command level. */
780
781NORETURN void
fba45db2 782perror_with_name (char *string)
c906108c
SS
783{
784 char *err;
785 char *combined;
786
787 err = safe_strerror (errno);
788 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
789 strcpy (combined, string);
790 strcat (combined, ": ");
791 strcat (combined, err);
792
793 /* I understand setting these is a matter of taste. Still, some people
794 may clear errno but not know about bfd_error. Doing this here is not
795 unreasonable. */
796 bfd_set_error (bfd_error_no_error);
797 errno = 0;
798
c5aa993b 799 error ("%s.", combined);
c906108c
SS
800}
801
802/* Print the system error message for ERRCODE, and also mention STRING
803 as the file name for which the error was encountered. */
804
805void
fba45db2 806print_sys_errmsg (char *string, int errcode)
c906108c
SS
807{
808 char *err;
809 char *combined;
810
811 err = safe_strerror (errcode);
812 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
813 strcpy (combined, string);
814 strcat (combined, ": ");
815 strcat (combined, err);
816
817 /* We want anything which was printed on stdout to come out first, before
818 this message. */
819 gdb_flush (gdb_stdout);
820 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
821}
822
823/* Control C eventually causes this to be called, at a convenient time. */
824
825void
fba45db2 826quit (void)
c906108c
SS
827{
828 serial_t gdb_stdout_serial = serial_fdopen (1);
829
830 target_terminal_ours ();
831
832 /* We want all output to appear now, before we print "Quit". We
833 have 3 levels of buffering we have to flush (it's possible that
834 some of these should be changed to flush the lower-level ones
835 too): */
836
837 /* 1. The _filtered buffer. */
c5aa993b 838 wrap_here ((char *) 0);
c906108c
SS
839
840 /* 2. The stdio buffer. */
841 gdb_flush (gdb_stdout);
842 gdb_flush (gdb_stderr);
843
844 /* 3. The system-level buffer. */
845 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
846 SERIAL_UN_FDOPEN (gdb_stdout_serial);
847
848 annotate_error_begin ();
849
850 /* Don't use *_filtered; we don't want to prompt the user to continue. */
851 if (quit_pre_print)
852 fprintf_unfiltered (gdb_stderr, quit_pre_print);
853
7be570e7
JM
854#ifdef __MSDOS__
855 /* No steenking SIGINT will ever be coming our way when the
856 program is resumed. Don't lie. */
857 fprintf_unfiltered (gdb_stderr, "Quit\n");
858#else
c906108c 859 if (job_control
c5aa993b
JM
860 /* If there is no terminal switching for this target, then we can't
861 possibly get screwed by the lack of job control. */
c906108c
SS
862 || current_target.to_terminal_ours == NULL)
863 fprintf_unfiltered (gdb_stderr, "Quit\n");
864 else
865 fprintf_unfiltered (gdb_stderr,
c5aa993b 866 "Quit (expect signal SIGINT when the program is resumed)\n");
7be570e7 867#endif
c906108c
SS
868 return_to_top_level (RETURN_QUIT);
869}
870
c906108c 871/* Control C comes here */
c906108c 872void
fba45db2 873request_quit (int signo)
c906108c
SS
874{
875 quit_flag = 1;
876 /* Restore the signal handler. Harmless with BSD-style signals, needed
877 for System V-style signals. So just always do it, rather than worrying
878 about USG defines and stuff like that. */
879 signal (signo, request_quit);
880
881#ifdef REQUEST_QUIT
882 REQUEST_QUIT;
883#else
c5aa993b 884 if (immediate_quit)
c906108c
SS
885 quit ();
886#endif
887}
c906108c
SS
888\f
889/* Memory management stuff (malloc friends). */
890
c906108c
SS
891#if !defined (USE_MMALLOC)
892
c0e61796
AC
893/* NOTE: These must use PTR so that their definition matches the
894 declaration found in "mmalloc.h". */
ed9a39eb 895
c906108c 896PTR
fba45db2 897mmalloc (PTR md, size_t size)
c906108c 898{
c0e61796 899 return malloc (size); /* NOTE: GDB's only call to malloc() */
c906108c
SS
900}
901
902PTR
fba45db2 903mrealloc (PTR md, PTR ptr, size_t size)
c906108c 904{
c5aa993b 905 if (ptr == 0) /* Guard against old realloc's */
c0e61796 906 return mmalloc (md, size);
c906108c 907 else
c0e61796
AC
908 return realloc (ptr, size); /* NOTE: GDB's only call to ralloc() */
909}
910
911PTR
912mcalloc (PTR md, size_t number, size_t size)
913{
914 return calloc (number, size); /* NOTE: GDB's only call to calloc() */
c906108c
SS
915}
916
917void
fba45db2 918mfree (PTR md, PTR ptr)
c906108c 919{
c0e61796 920 free (ptr); /* NOTE: GDB's only call to free() */
c906108c
SS
921}
922
c5aa993b 923#endif /* USE_MMALLOC */
c906108c
SS
924
925#if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
926
927void
082faf24 928init_malloc (void *md)
c906108c
SS
929{
930}
931
932#else /* Have mmalloc and want corruption checking */
933
934static void
fba45db2 935malloc_botch (void)
c906108c 936{
96baa820 937 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
e1e9e218 938 internal_error (__FILE__, __LINE__, "failed internal consistency check");
c906108c
SS
939}
940
941/* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
942 by MD, to detect memory corruption. Note that MD may be NULL to specify
943 the default heap that grows via sbrk.
944
945 Note that for freshly created regions, we must call mmcheckf prior to any
946 mallocs in the region. Otherwise, any region which was allocated prior to
947 installing the checking hooks, which is later reallocated or freed, will
948 fail the checks! The mmcheck function only allows initial hooks to be
949 installed before the first mmalloc. However, anytime after we have called
950 mmcheck the first time to install the checking hooks, we can call it again
951 to update the function pointer to the memory corruption handler.
952
953 Returns zero on failure, non-zero on success. */
954
955#ifndef MMCHECK_FORCE
956#define MMCHECK_FORCE 0
957#endif
958
959void
082faf24 960init_malloc (void *md)
c906108c
SS
961{
962 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
963 {
964 /* Don't use warning(), which relies on current_target being set
c5aa993b
JM
965 to something other than dummy_target, until after
966 initialize_all_files(). */
c906108c
SS
967
968 fprintf_unfiltered
969 (gdb_stderr, "warning: failed to install memory consistency checks; ");
970 fprintf_unfiltered
971 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
972 }
973
974 mmtrace ();
975}
976
977#endif /* Have mmalloc and want corruption checking */
978
979/* Called when a memory allocation fails, with the number of bytes of
980 memory requested in SIZE. */
981
982NORETURN void
fba45db2 983nomem (long size)
c906108c
SS
984{
985 if (size > 0)
986 {
8e65ff28
AC
987 internal_error (__FILE__, __LINE__,
988 "virtual memory exhausted: can't allocate %ld bytes.", size);
c906108c
SS
989 }
990 else
991 {
8e65ff28
AC
992 internal_error (__FILE__, __LINE__,
993 "virtual memory exhausted.");
c906108c
SS
994 }
995}
996
c0e61796 997/* The xmmalloc() family of memory management routines.
c906108c 998
c0e61796
AC
999 These are are like the mmalloc() family except that they implement
1000 consistent semantics and guard against typical memory management
1001 problems: if a malloc fails, an internal error is thrown; if
1002 free(NULL) is called, it is ignored; if *alloc(0) is called, NULL
1003 is returned.
1004
1005 All these routines are implemented using the mmalloc() family. */
1006
1007void *
1008xmmalloc (void *md, size_t size)
c906108c 1009{
c0e61796 1010 void *val;
c906108c
SS
1011
1012 if (size == 0)
1013 {
1014 val = NULL;
1015 }
c0e61796 1016 else
c906108c 1017 {
c0e61796
AC
1018 val = mmalloc (md, size);
1019 if (val == NULL)
1020 nomem (size);
c906108c
SS
1021 }
1022 return (val);
1023}
1024
c0e61796
AC
1025void *
1026xmrealloc (void *md, void *ptr, size_t size)
c906108c 1027{
c0e61796 1028 void *val;
c906108c 1029
d7fa9de0 1030 if (size == 0)
c906108c 1031 {
d7fa9de0
KB
1032 if (ptr != NULL)
1033 mfree (md, ptr);
1034 val = NULL;
c906108c
SS
1035 }
1036 else
1037 {
d7fa9de0
KB
1038 if (ptr != NULL)
1039 {
1040 val = mrealloc (md, ptr, size);
1041 }
1042 else
1043 {
1044 val = mmalloc (md, size);
1045 }
1046 if (val == NULL)
1047 {
1048 nomem (size);
1049 }
c906108c
SS
1050 }
1051 return (val);
1052}
1053
c0e61796
AC
1054void *
1055xmcalloc (void *md, size_t number, size_t size)
ed9a39eb 1056{
d7fa9de0 1057 void *mem;
d7fa9de0
KB
1058 if (number == 0 || size == 0)
1059 mem = NULL;
1060 else
1061 {
c0e61796 1062 mem = mcalloc (md, number, size);
d7fa9de0
KB
1063 if (mem == NULL)
1064 nomem (number * size);
1065 }
ed9a39eb
JM
1066 return mem;
1067}
1068
c0e61796
AC
1069void
1070xmfree (void *md, void *ptr)
1071{
1072 if (ptr != NULL)
1073 mfree (md, ptr);
1074}
1075
1076/* The xmalloc() (libiberty.h) family of memory management routines.
1077
1078 These are like the ISO-C malloc() family except that they implement
1079 consistent semantics and guard against typical memory management
1080 problems. See xmmalloc() above for further information.
1081
1082 All these routines are wrappers to the xmmalloc() family. */
1083
1084/* NOTE: These are declared using PTR to ensure consistency with
1085 "libiberty.h". xfree() is GDB local. */
1086
1087PTR
1088xmalloc (size_t size)
1089{
1090 return xmmalloc (NULL, size);
1091}
c906108c
SS
1092
1093PTR
fba45db2 1094xrealloc (PTR ptr, size_t size)
c906108c 1095{
c0e61796 1096 return xmrealloc (NULL, ptr, size);
c906108c 1097}
b8c9b27d 1098
c0e61796
AC
1099PTR
1100xcalloc (size_t number, size_t size)
1101{
1102 return xmcalloc (NULL, number, size);
1103}
b8c9b27d
KB
1104
1105void
1106xfree (void *ptr)
1107{
c0e61796 1108 xmfree (NULL, ptr);
b8c9b27d 1109}
c906108c 1110\f
c5aa993b 1111
76995688
AC
1112/* Like asprintf/vasprintf but get an internal_error if the call
1113 fails. */
1114
1115void
1116xasprintf (char **ret, const char *format, ...)
1117{
1118 va_list args;
1119 va_start (args, format);
1120 xvasprintf (ret, format, args);
1121 va_end (args);
1122}
1123
1124void
1125xvasprintf (char **ret, const char *format, va_list ap)
1126{
1127 int status = vasprintf (ret, format, ap);
1128 /* NULL could be returned due to a memory allocation problem; a
1129 badly format string; or something else. */
1130 if ((*ret) == NULL)
8e65ff28
AC
1131 internal_error (__FILE__, __LINE__,
1132 "vasprintf returned NULL buffer (errno %d)",
1133 errno);
76995688
AC
1134 /* A negative status with a non-NULL buffer shouldn't never
1135 happen. But to be sure. */
1136 if (status < 0)
8e65ff28
AC
1137 internal_error (__FILE__, __LINE__,
1138 "vasprintf call failed (errno %d)",
1139 errno);
76995688
AC
1140}
1141
1142
c906108c
SS
1143/* My replacement for the read system call.
1144 Used like `read' but keeps going if `read' returns too soon. */
1145
1146int
fba45db2 1147myread (int desc, char *addr, int len)
c906108c
SS
1148{
1149 register int val;
1150 int orglen = len;
1151
1152 while (len > 0)
1153 {
1154 val = read (desc, addr, len);
1155 if (val < 0)
1156 return val;
1157 if (val == 0)
1158 return orglen - len;
1159 len -= val;
1160 addr += val;
1161 }
1162 return orglen;
1163}
1164\f
1165/* Make a copy of the string at PTR with SIZE characters
1166 (and add a null character at the end in the copy).
1167 Uses malloc to get the space. Returns the address of the copy. */
1168
1169char *
5565b556 1170savestring (const char *ptr, size_t size)
c906108c
SS
1171{
1172 register char *p = (char *) xmalloc (size + 1);
1173 memcpy (p, ptr, size);
1174 p[size] = 0;
1175 return p;
1176}
1177
1178char *
5565b556 1179msavestring (void *md, const char *ptr, size_t size)
c906108c
SS
1180{
1181 register char *p = (char *) xmmalloc (md, size + 1);
1182 memcpy (p, ptr, size);
1183 p[size] = 0;
1184 return p;
1185}
1186
c906108c 1187char *
082faf24 1188mstrsave (void *md, const char *ptr)
c906108c
SS
1189{
1190 return (msavestring (md, ptr, strlen (ptr)));
1191}
1192
1193void
fba45db2 1194print_spaces (register int n, register struct ui_file *file)
c906108c 1195{
392a587b 1196 fputs_unfiltered (n_spaces (n), file);
c906108c
SS
1197}
1198
1199/* Print a host address. */
1200
1201void
d9fcf2fb 1202gdb_print_host_address (void *addr, struct ui_file *stream)
c906108c
SS
1203{
1204
1205 /* We could use the %p conversion specifier to fprintf if we had any
1206 way of knowing whether this host supports it. But the following
1207 should work on the Alpha and on 32 bit machines. */
1208
c5aa993b 1209 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
c906108c
SS
1210}
1211
1212/* Ask user a y-or-n question and return 1 iff answer is yes.
1213 Takes three args which are given to printf to print the question.
1214 The first, a control string, should end in "? ".
1215 It should not say how to answer, because we do that. */
1216
1217/* VARARGS */
1218int
c5aa993b 1219query (char *ctlstr,...)
c906108c
SS
1220{
1221 va_list args;
1222 register int answer;
1223 register int ans2;
1224 int retval;
1225
c906108c 1226 va_start (args, ctlstr);
c906108c
SS
1227
1228 if (query_hook)
1229 {
1230 return query_hook (ctlstr, args);
1231 }
1232
1233 /* Automatically answer "yes" if input is not from a terminal. */
1234 if (!input_from_terminal_p ())
1235 return 1;
d036b4d9
AC
1236 /* OBSOLETE #ifdef MPW */
1237 /* OBSOLETE *//* FIXME Automatically answer "yes" if called from MacGDB. */
1238 /* OBSOLETE if (mac_app) */
1239 /* OBSOLETE return 1; */
1240 /* OBSOLETE #endif *//* MPW */
c906108c
SS
1241
1242 while (1)
1243 {
1244 wrap_here (""); /* Flush any buffered output */
1245 gdb_flush (gdb_stdout);
1246
1247 if (annotation_level > 1)
1248 printf_filtered ("\n\032\032pre-query\n");
1249
1250 vfprintf_filtered (gdb_stdout, ctlstr, args);
1251 printf_filtered ("(y or n) ");
1252
1253 if (annotation_level > 1)
1254 printf_filtered ("\n\032\032query\n");
1255
d036b4d9
AC
1256 /* OBSOLETE #ifdef MPW */
1257 /* OBSOLETE *//* If not in MacGDB, move to a new line so the entered line doesn't */
1258 /* OBSOLETE have a prompt on the front of it. */
1259 /* OBSOLETE if (!mac_app) */
1260 /* OBSOLETE fputs_unfiltered ("\n", gdb_stdout); */
1261 /* OBSOLETE #endif *//* MPW */
c906108c 1262
c5aa993b 1263 wrap_here ("");
c906108c
SS
1264 gdb_flush (gdb_stdout);
1265
1266#if defined(TUI)
c5aa993b 1267 if (!tui_version || cmdWin == tuiWinWithFocus ())
c906108c
SS
1268#endif
1269 answer = fgetc (stdin);
1270#if defined(TUI)
1271 else
c5aa993b 1272 answer = (unsigned char) tuiBufferGetc ();
c906108c
SS
1273
1274#endif
1275 clearerr (stdin); /* in case of C-d */
1276 if (answer == EOF) /* C-d */
c5aa993b 1277 {
c906108c
SS
1278 retval = 1;
1279 break;
1280 }
1281 /* Eat rest of input line, to EOF or newline */
1282 if ((answer != '\n') || (tui_version && answer != '\r'))
c5aa993b 1283 do
c906108c
SS
1284 {
1285#if defined(TUI)
c5aa993b 1286 if (!tui_version || cmdWin == tuiWinWithFocus ())
c906108c
SS
1287#endif
1288 ans2 = fgetc (stdin);
1289#if defined(TUI)
1290 else
c5aa993b 1291 ans2 = (unsigned char) tuiBufferGetc ();
c906108c
SS
1292#endif
1293 clearerr (stdin);
1294 }
c5aa993b
JM
1295 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1296 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
c906108c
SS
1297
1298 if (answer >= 'a')
1299 answer -= 040;
1300 if (answer == 'Y')
1301 {
1302 retval = 1;
1303 break;
1304 }
1305 if (answer == 'N')
1306 {
1307 retval = 0;
1308 break;
1309 }
1310 printf_filtered ("Please answer y or n.\n");
1311 }
1312
1313 if (annotation_level > 1)
1314 printf_filtered ("\n\032\032post-query\n");
1315 return retval;
1316}
c906108c 1317\f
c5aa993b 1318
c906108c
SS
1319/* Parse a C escape sequence. STRING_PTR points to a variable
1320 containing a pointer to the string to parse. That pointer
1321 should point to the character after the \. That pointer
1322 is updated past the characters we use. The value of the
1323 escape sequence is returned.
1324
1325 A negative value means the sequence \ newline was seen,
1326 which is supposed to be equivalent to nothing at all.
1327
1328 If \ is followed by a null character, we return a negative
1329 value and leave the string pointer pointing at the null character.
1330
1331 If \ is followed by 000, we return 0 and leave the string pointer
1332 after the zeros. A value of 0 does not mean end of string. */
1333
1334int
fba45db2 1335parse_escape (char **string_ptr)
c906108c
SS
1336{
1337 register int c = *(*string_ptr)++;
1338 switch (c)
1339 {
1340 case 'a':
1341 return 007; /* Bell (alert) char */
1342 case 'b':
1343 return '\b';
1344 case 'e': /* Escape character */
1345 return 033;
1346 case 'f':
1347 return '\f';
1348 case 'n':
1349 return '\n';
1350 case 'r':
1351 return '\r';
1352 case 't':
1353 return '\t';
1354 case 'v':
1355 return '\v';
1356 case '\n':
1357 return -2;
1358 case 0:
1359 (*string_ptr)--;
1360 return 0;
1361 case '^':
1362 c = *(*string_ptr)++;
1363 if (c == '\\')
1364 c = parse_escape (string_ptr);
1365 if (c == '?')
1366 return 0177;
1367 return (c & 0200) | (c & 037);
c5aa993b 1368
c906108c
SS
1369 case '0':
1370 case '1':
1371 case '2':
1372 case '3':
1373 case '4':
1374 case '5':
1375 case '6':
1376 case '7':
1377 {
1378 register int i = c - '0';
1379 register int count = 0;
1380 while (++count < 3)
1381 {
1382 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1383 {
1384 i *= 8;
1385 i += c - '0';
1386 }
1387 else
1388 {
1389 (*string_ptr)--;
1390 break;
1391 }
1392 }
1393 return i;
1394 }
1395 default:
1396 return c;
1397 }
1398}
1399\f
1400/* Print the character C on STREAM as part of the contents of a literal
1401 string whose delimiter is QUOTER. Note that this routine should only
1402 be call for printing things which are independent of the language
1403 of the program being debugged. */
1404
43e526b9 1405static void
74f832da
KB
1406printchar (int c, void (*do_fputs) (const char *, struct ui_file *),
1407 void (*do_fprintf) (struct ui_file *, const char *, ...),
1408 struct ui_file *stream, int quoter)
c906108c
SS
1409{
1410
1411 c &= 0xFF; /* Avoid sign bit follies */
1412
c5aa993b
JM
1413 if (c < 0x20 || /* Low control chars */
1414 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1415 (sevenbit_strings && c >= 0x80))
1416 { /* high order bit set */
1417 switch (c)
1418 {
1419 case '\n':
43e526b9 1420 do_fputs ("\\n", stream);
c5aa993b
JM
1421 break;
1422 case '\b':
43e526b9 1423 do_fputs ("\\b", stream);
c5aa993b
JM
1424 break;
1425 case '\t':
43e526b9 1426 do_fputs ("\\t", stream);
c5aa993b
JM
1427 break;
1428 case '\f':
43e526b9 1429 do_fputs ("\\f", stream);
c5aa993b
JM
1430 break;
1431 case '\r':
43e526b9 1432 do_fputs ("\\r", stream);
c5aa993b
JM
1433 break;
1434 case '\033':
43e526b9 1435 do_fputs ("\\e", stream);
c5aa993b
JM
1436 break;
1437 case '\007':
43e526b9 1438 do_fputs ("\\a", stream);
c5aa993b
JM
1439 break;
1440 default:
43e526b9 1441 do_fprintf (stream, "\\%.3o", (unsigned int) c);
c5aa993b
JM
1442 break;
1443 }
1444 }
1445 else
1446 {
1447 if (c == '\\' || c == quoter)
43e526b9
JM
1448 do_fputs ("\\", stream);
1449 do_fprintf (stream, "%c", c);
c5aa993b 1450 }
c906108c 1451}
43e526b9
JM
1452
1453/* Print the character C on STREAM as part of the contents of a
1454 literal string whose delimiter is QUOTER. Note that these routines
1455 should only be call for printing things which are independent of
1456 the language of the program being debugged. */
1457
1458void
fba45db2 1459fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
43e526b9
JM
1460{
1461 while (*str)
1462 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1463}
1464
1465void
fba45db2 1466fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
43e526b9
JM
1467{
1468 while (*str)
1469 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1470}
1471
1472void
fba45db2 1473fputstrn_unfiltered (const char *str, int n, int quoter, struct ui_file *stream)
43e526b9
JM
1474{
1475 int i;
1476 for (i = 0; i < n; i++)
1477 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1478}
1479
c906108c 1480\f
c5aa993b 1481
c906108c
SS
1482/* Number of lines per page or UINT_MAX if paging is disabled. */
1483static unsigned int lines_per_page;
cbfbd72a 1484/* Number of chars per line or UINT_MAX if line folding is disabled. */
c906108c
SS
1485static unsigned int chars_per_line;
1486/* Current count of lines printed on this page, chars on this line. */
1487static unsigned int lines_printed, chars_printed;
1488
1489/* Buffer and start column of buffered text, for doing smarter word-
1490 wrapping. When someone calls wrap_here(), we start buffering output
1491 that comes through fputs_filtered(). If we see a newline, we just
1492 spit it out and forget about the wrap_here(). If we see another
1493 wrap_here(), we spit it out and remember the newer one. If we see
1494 the end of the line, we spit out a newline, the indent, and then
1495 the buffered output. */
1496
1497/* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1498 are waiting to be output (they have already been counted in chars_printed).
1499 When wrap_buffer[0] is null, the buffer is empty. */
1500static char *wrap_buffer;
1501
1502/* Pointer in wrap_buffer to the next character to fill. */
1503static char *wrap_pointer;
1504
1505/* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1506 is non-zero. */
1507static char *wrap_indent;
1508
1509/* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1510 is not in effect. */
1511static int wrap_column;
c906108c 1512\f
c5aa993b 1513
c906108c
SS
1514/* Inialize the lines and chars per page */
1515void
fba45db2 1516init_page_info (void)
c906108c
SS
1517{
1518#if defined(TUI)
c5aa993b 1519 if (tui_version && m_winPtrNotNull (cmdWin))
c906108c
SS
1520 {
1521 lines_per_page = cmdWin->generic.height;
1522 chars_per_line = cmdWin->generic.width;
1523 }
1524 else
1525#endif
1526 {
1527 /* These defaults will be used if we are unable to get the correct
1528 values from termcap. */
1529#if defined(__GO32__)
c5aa993b
JM
1530 lines_per_page = ScreenRows ();
1531 chars_per_line = ScreenCols ();
1532#else
c906108c
SS
1533 lines_per_page = 24;
1534 chars_per_line = 80;
1535
d036b4d9 1536#if !defined (_WIN32)
c906108c
SS
1537 /* No termcap under MPW, although might be cool to do something
1538 by looking at worksheet or console window sizes. */
1539 /* Initialize the screen height and width from termcap. */
1540 {
c5aa993b 1541 char *termtype = getenv ("TERM");
c906108c 1542
c5aa993b
JM
1543 /* Positive means success, nonpositive means failure. */
1544 int status;
c906108c 1545
c5aa993b
JM
1546 /* 2048 is large enough for all known terminals, according to the
1547 GNU termcap manual. */
1548 char term_buffer[2048];
c906108c 1549
c5aa993b
JM
1550 if (termtype)
1551 {
c906108c
SS
1552 status = tgetent (term_buffer, termtype);
1553 if (status > 0)
1554 {
c5aa993b 1555 int val;
c906108c 1556 int running_in_emacs = getenv ("EMACS") != NULL;
c5aa993b
JM
1557
1558 val = tgetnum ("li");
1559 if (val >= 0 && !running_in_emacs)
1560 lines_per_page = val;
1561 else
1562 /* The number of lines per page is not mentioned
c906108c
SS
1563 in the terminal description. This probably means
1564 that paging is not useful (e.g. emacs shell window),
1565 so disable paging. */
c5aa993b
JM
1566 lines_per_page = UINT_MAX;
1567
1568 val = tgetnum ("co");
1569 if (val >= 0)
1570 chars_per_line = val;
c906108c 1571 }
c5aa993b 1572 }
c906108c
SS
1573 }
1574#endif /* MPW */
1575
1576#if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1577
1578 /* If there is a better way to determine the window size, use it. */
1579 SIGWINCH_HANDLER (SIGWINCH);
1580#endif
1581#endif
1582 /* If the output is not a terminal, don't paginate it. */
d9fcf2fb 1583 if (!ui_file_isatty (gdb_stdout))
c5aa993b
JM
1584 lines_per_page = UINT_MAX;
1585 } /* the command_line_version */
1586 set_width ();
c906108c
SS
1587}
1588
1589static void
fba45db2 1590set_width (void)
c906108c
SS
1591{
1592 if (chars_per_line == 0)
c5aa993b 1593 init_page_info ();
c906108c
SS
1594
1595 if (!wrap_buffer)
1596 {
1597 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1598 wrap_buffer[0] = '\0';
1599 }
1600 else
1601 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
c5aa993b 1602 wrap_pointer = wrap_buffer; /* Start it at the beginning */
c906108c
SS
1603}
1604
1605/* ARGSUSED */
c5aa993b 1606static void
fba45db2 1607set_width_command (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
1608{
1609 set_width ();
1610}
1611
1612/* Wait, so the user can read what's on the screen. Prompt the user
1613 to continue by pressing RETURN. */
1614
1615static void
fba45db2 1616prompt_for_continue (void)
c906108c
SS
1617{
1618 char *ignore;
1619 char cont_prompt[120];
1620
1621 if (annotation_level > 1)
1622 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1623
1624 strcpy (cont_prompt,
1625 "---Type <return> to continue, or q <return> to quit---");
1626 if (annotation_level > 1)
1627 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1628
1629 /* We must do this *before* we call gdb_readline, else it will eventually
1630 call us -- thinking that we're trying to print beyond the end of the
1631 screen. */
1632 reinitialize_more_filter ();
1633
1634 immediate_quit++;
1635 /* On a real operating system, the user can quit with SIGINT.
1636 But not on GO32.
1637
1638 'q' is provided on all systems so users don't have to change habits
1639 from system to system, and because telling them what to do in
1640 the prompt is more user-friendly than expecting them to think of
1641 SIGINT. */
1642 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1643 whereas control-C to gdb_readline will cause the user to get dumped
1644 out to DOS. */
1645 ignore = readline (cont_prompt);
1646
1647 if (annotation_level > 1)
1648 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1649
1650 if (ignore)
1651 {
1652 char *p = ignore;
1653 while (*p == ' ' || *p == '\t')
1654 ++p;
1655 if (p[0] == 'q')
0f71a2f6 1656 {
6426a772 1657 if (!event_loop_p)
0f71a2f6
JM
1658 request_quit (SIGINT);
1659 else
c5aa993b 1660 async_request_quit (0);
0f71a2f6 1661 }
b8c9b27d 1662 xfree (ignore);
c906108c
SS
1663 }
1664 immediate_quit--;
1665
1666 /* Now we have to do this again, so that GDB will know that it doesn't
1667 need to save the ---Type <return>--- line at the top of the screen. */
1668 reinitialize_more_filter ();
1669
1670 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1671}
1672
1673/* Reinitialize filter; ie. tell it to reset to original values. */
1674
1675void
fba45db2 1676reinitialize_more_filter (void)
c906108c
SS
1677{
1678 lines_printed = 0;
1679 chars_printed = 0;
1680}
1681
1682/* Indicate that if the next sequence of characters overflows the line,
1683 a newline should be inserted here rather than when it hits the end.
1684 If INDENT is non-null, it is a string to be printed to indent the
1685 wrapped part on the next line. INDENT must remain accessible until
1686 the next call to wrap_here() or until a newline is printed through
1687 fputs_filtered().
1688
1689 If the line is already overfull, we immediately print a newline and
1690 the indentation, and disable further wrapping.
1691
1692 If we don't know the width of lines, but we know the page height,
1693 we must not wrap words, but should still keep track of newlines
1694 that were explicitly printed.
1695
1696 INDENT should not contain tabs, as that will mess up the char count
1697 on the next line. FIXME.
1698
1699 This routine is guaranteed to force out any output which has been
1700 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1701 used to force out output from the wrap_buffer. */
1702
1703void
fba45db2 1704wrap_here (char *indent)
c906108c
SS
1705{
1706 /* This should have been allocated, but be paranoid anyway. */
1707 if (!wrap_buffer)
e1e9e218 1708 internal_error (__FILE__, __LINE__, "failed internal consistency check");
c906108c
SS
1709
1710 if (wrap_buffer[0])
1711 {
1712 *wrap_pointer = '\0';
1713 fputs_unfiltered (wrap_buffer, gdb_stdout);
1714 }
1715 wrap_pointer = wrap_buffer;
1716 wrap_buffer[0] = '\0';
c5aa993b 1717 if (chars_per_line == UINT_MAX) /* No line overflow checking */
c906108c
SS
1718 {
1719 wrap_column = 0;
1720 }
1721 else if (chars_printed >= chars_per_line)
1722 {
1723 puts_filtered ("\n");
1724 if (indent != NULL)
1725 puts_filtered (indent);
1726 wrap_column = 0;
1727 }
1728 else
1729 {
1730 wrap_column = chars_printed;
1731 if (indent == NULL)
1732 wrap_indent = "";
1733 else
1734 wrap_indent = indent;
1735 }
1736}
1737
1738/* Ensure that whatever gets printed next, using the filtered output
1739 commands, starts at the beginning of the line. I.E. if there is
1740 any pending output for the current line, flush it and start a new
1741 line. Otherwise do nothing. */
1742
1743void
fba45db2 1744begin_line (void)
c906108c
SS
1745{
1746 if (chars_printed > 0)
1747 {
1748 puts_filtered ("\n");
1749 }
1750}
1751
ac9a91a7 1752
c906108c
SS
1753/* Like fputs but if FILTER is true, pause after every screenful.
1754
1755 Regardless of FILTER can wrap at points other than the final
1756 character of a line.
1757
1758 Unlike fputs, fputs_maybe_filtered does not return a value.
1759 It is OK for LINEBUFFER to be NULL, in which case just don't print
1760 anything.
1761
1762 Note that a longjmp to top level may occur in this routine (only if
1763 FILTER is true) (since prompt_for_continue may do so) so this
1764 routine should not be called when cleanups are not in place. */
1765
1766static void
fba45db2
KB
1767fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
1768 int filter)
c906108c
SS
1769{
1770 const char *lineptr;
1771
1772 if (linebuffer == 0)
1773 return;
1774
1775 /* Don't do any filtering if it is disabled. */
7a292a7a 1776 if ((stream != gdb_stdout) || !pagination_enabled
c5aa993b 1777 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
c906108c
SS
1778 {
1779 fputs_unfiltered (linebuffer, stream);
1780 return;
1781 }
1782
1783 /* Go through and output each character. Show line extension
1784 when this is necessary; prompt user for new page when this is
1785 necessary. */
c5aa993b 1786
c906108c
SS
1787 lineptr = linebuffer;
1788 while (*lineptr)
1789 {
1790 /* Possible new page. */
1791 if (filter &&
1792 (lines_printed >= lines_per_page - 1))
1793 prompt_for_continue ();
1794
1795 while (*lineptr && *lineptr != '\n')
1796 {
1797 /* Print a single line. */
1798 if (*lineptr == '\t')
1799 {
1800 if (wrap_column)
1801 *wrap_pointer++ = '\t';
1802 else
1803 fputc_unfiltered ('\t', stream);
1804 /* Shifting right by 3 produces the number of tab stops
1805 we have already passed, and then adding one and
c5aa993b 1806 shifting left 3 advances to the next tab stop. */
c906108c
SS
1807 chars_printed = ((chars_printed >> 3) + 1) << 3;
1808 lineptr++;
1809 }
1810 else
1811 {
1812 if (wrap_column)
1813 *wrap_pointer++ = *lineptr;
1814 else
c5aa993b 1815 fputc_unfiltered (*lineptr, stream);
c906108c
SS
1816 chars_printed++;
1817 lineptr++;
1818 }
c5aa993b 1819
c906108c
SS
1820 if (chars_printed >= chars_per_line)
1821 {
1822 unsigned int save_chars = chars_printed;
1823
1824 chars_printed = 0;
1825 lines_printed++;
1826 /* If we aren't actually wrapping, don't output newline --
c5aa993b
JM
1827 if chars_per_line is right, we probably just overflowed
1828 anyway; if it's wrong, let us keep going. */
c906108c
SS
1829 if (wrap_column)
1830 fputc_unfiltered ('\n', stream);
1831
1832 /* Possible new page. */
1833 if (lines_printed >= lines_per_page - 1)
1834 prompt_for_continue ();
1835
1836 /* Now output indentation and wrapped string */
1837 if (wrap_column)
1838 {
1839 fputs_unfiltered (wrap_indent, stream);
c5aa993b
JM
1840 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1841 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
c906108c
SS
1842 /* FIXME, this strlen is what prevents wrap_indent from
1843 containing tabs. However, if we recurse to print it
1844 and count its chars, we risk trouble if wrap_indent is
1845 longer than (the user settable) chars_per_line.
1846 Note also that this can set chars_printed > chars_per_line
1847 if we are printing a long string. */
1848 chars_printed = strlen (wrap_indent)
c5aa993b 1849 + (save_chars - wrap_column);
c906108c
SS
1850 wrap_pointer = wrap_buffer; /* Reset buffer */
1851 wrap_buffer[0] = '\0';
c5aa993b
JM
1852 wrap_column = 0; /* And disable fancy wrap */
1853 }
c906108c
SS
1854 }
1855 }
1856
1857 if (*lineptr == '\n')
1858 {
1859 chars_printed = 0;
c5aa993b 1860 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
c906108c
SS
1861 lines_printed++;
1862 fputc_unfiltered ('\n', stream);
1863 lineptr++;
1864 }
1865 }
1866}
1867
1868void
fba45db2 1869fputs_filtered (const char *linebuffer, struct ui_file *stream)
c906108c
SS
1870{
1871 fputs_maybe_filtered (linebuffer, stream, 1);
1872}
1873
1874int
fba45db2 1875putchar_unfiltered (int c)
c906108c 1876{
11cf8741 1877 char buf = c;
d9fcf2fb 1878 ui_file_write (gdb_stdout, &buf, 1);
c906108c
SS
1879 return c;
1880}
1881
d1f4cff8
AC
1882/* Write character C to gdb_stdout using GDB's paging mechanism and return C.
1883 May return nonlocally. */
1884
1885int
1886putchar_filtered (int c)
1887{
1888 return fputc_filtered (c, gdb_stdout);
1889}
1890
c906108c 1891int
fba45db2 1892fputc_unfiltered (int c, struct ui_file *stream)
c906108c 1893{
11cf8741 1894 char buf = c;
d9fcf2fb 1895 ui_file_write (stream, &buf, 1);
c906108c
SS
1896 return c;
1897}
1898
1899int
fba45db2 1900fputc_filtered (int c, struct ui_file *stream)
c906108c
SS
1901{
1902 char buf[2];
1903
1904 buf[0] = c;
1905 buf[1] = 0;
1906 fputs_filtered (buf, stream);
1907 return c;
1908}
1909
1910/* puts_debug is like fputs_unfiltered, except it prints special
1911 characters in printable fashion. */
1912
1913void
fba45db2 1914puts_debug (char *prefix, char *string, char *suffix)
c906108c
SS
1915{
1916 int ch;
1917
1918 /* Print prefix and suffix after each line. */
1919 static int new_line = 1;
1920 static int return_p = 0;
1921 static char *prev_prefix = "";
1922 static char *prev_suffix = "";
1923
1924 if (*string == '\n')
1925 return_p = 0;
1926
1927 /* If the prefix is changing, print the previous suffix, a new line,
1928 and the new prefix. */
c5aa993b 1929 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
c906108c 1930 {
9846de1b
JM
1931 fputs_unfiltered (prev_suffix, gdb_stdlog);
1932 fputs_unfiltered ("\n", gdb_stdlog);
1933 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
1934 }
1935
1936 /* Print prefix if we printed a newline during the previous call. */
1937 if (new_line)
1938 {
1939 new_line = 0;
9846de1b 1940 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
1941 }
1942
1943 prev_prefix = prefix;
1944 prev_suffix = suffix;
1945
1946 /* Output characters in a printable format. */
1947 while ((ch = *string++) != '\0')
1948 {
1949 switch (ch)
c5aa993b 1950 {
c906108c
SS
1951 default:
1952 if (isprint (ch))
9846de1b 1953 fputc_unfiltered (ch, gdb_stdlog);
c906108c
SS
1954
1955 else
9846de1b 1956 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
c906108c
SS
1957 break;
1958
c5aa993b
JM
1959 case '\\':
1960 fputs_unfiltered ("\\\\", gdb_stdlog);
1961 break;
1962 case '\b':
1963 fputs_unfiltered ("\\b", gdb_stdlog);
1964 break;
1965 case '\f':
1966 fputs_unfiltered ("\\f", gdb_stdlog);
1967 break;
1968 case '\n':
1969 new_line = 1;
1970 fputs_unfiltered ("\\n", gdb_stdlog);
1971 break;
1972 case '\r':
1973 fputs_unfiltered ("\\r", gdb_stdlog);
1974 break;
1975 case '\t':
1976 fputs_unfiltered ("\\t", gdb_stdlog);
1977 break;
1978 case '\v':
1979 fputs_unfiltered ("\\v", gdb_stdlog);
1980 break;
1981 }
c906108c
SS
1982
1983 return_p = ch == '\r';
1984 }
1985
1986 /* Print suffix if we printed a newline. */
1987 if (new_line)
1988 {
9846de1b
JM
1989 fputs_unfiltered (suffix, gdb_stdlog);
1990 fputs_unfiltered ("\n", gdb_stdlog);
c906108c
SS
1991 }
1992}
1993
1994
1995/* Print a variable number of ARGS using format FORMAT. If this
1996 information is going to put the amount written (since the last call
1997 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
1998 call prompt_for_continue to get the users permision to continue.
1999
2000 Unlike fprintf, this function does not return a value.
2001
2002 We implement three variants, vfprintf (takes a vararg list and stream),
2003 fprintf (takes a stream to write on), and printf (the usual).
2004
2005 Note also that a longjmp to top level may occur in this routine
2006 (since prompt_for_continue may do so) so this routine should not be
2007 called when cleanups are not in place. */
2008
2009static void
fba45db2
KB
2010vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
2011 va_list args, int filter)
c906108c
SS
2012{
2013 char *linebuffer;
2014 struct cleanup *old_cleanups;
2015
76995688 2016 xvasprintf (&linebuffer, format, args);
b8c9b27d 2017 old_cleanups = make_cleanup (xfree, linebuffer);
c906108c
SS
2018 fputs_maybe_filtered (linebuffer, stream, filter);
2019 do_cleanups (old_cleanups);
2020}
2021
2022
2023void
fba45db2 2024vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
c906108c
SS
2025{
2026 vfprintf_maybe_filtered (stream, format, args, 1);
2027}
2028
2029void
fba45db2 2030vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
c906108c
SS
2031{
2032 char *linebuffer;
2033 struct cleanup *old_cleanups;
2034
76995688 2035 xvasprintf (&linebuffer, format, args);
b8c9b27d 2036 old_cleanups = make_cleanup (xfree, linebuffer);
c906108c
SS
2037 fputs_unfiltered (linebuffer, stream);
2038 do_cleanups (old_cleanups);
2039}
2040
2041void
fba45db2 2042vprintf_filtered (const char *format, va_list args)
c906108c
SS
2043{
2044 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2045}
2046
2047void
fba45db2 2048vprintf_unfiltered (const char *format, va_list args)
c906108c
SS
2049{
2050 vfprintf_unfiltered (gdb_stdout, format, args);
2051}
2052
c906108c 2053void
d9fcf2fb 2054fprintf_filtered (struct ui_file * stream, const char *format,...)
c906108c
SS
2055{
2056 va_list args;
c906108c 2057 va_start (args, format);
c906108c
SS
2058 vfprintf_filtered (stream, format, args);
2059 va_end (args);
2060}
2061
c906108c 2062void
d9fcf2fb 2063fprintf_unfiltered (struct ui_file * stream, const char *format,...)
c906108c
SS
2064{
2065 va_list args;
c906108c 2066 va_start (args, format);
c906108c
SS
2067 vfprintf_unfiltered (stream, format, args);
2068 va_end (args);
2069}
2070
2071/* Like fprintf_filtered, but prints its result indented.
2072 Called as fprintfi_filtered (spaces, stream, format, ...); */
2073
c906108c 2074void
d9fcf2fb 2075fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
c906108c
SS
2076{
2077 va_list args;
c906108c 2078 va_start (args, format);
c906108c
SS
2079 print_spaces_filtered (spaces, stream);
2080
2081 vfprintf_filtered (stream, format, args);
2082 va_end (args);
2083}
2084
2085
c906108c 2086void
c5aa993b 2087printf_filtered (const char *format,...)
c906108c
SS
2088{
2089 va_list args;
c906108c 2090 va_start (args, format);
c906108c
SS
2091 vfprintf_filtered (gdb_stdout, format, args);
2092 va_end (args);
2093}
2094
2095
c906108c 2096void
c5aa993b 2097printf_unfiltered (const char *format,...)
c906108c
SS
2098{
2099 va_list args;
c906108c 2100 va_start (args, format);
c906108c
SS
2101 vfprintf_unfiltered (gdb_stdout, format, args);
2102 va_end (args);
2103}
2104
2105/* Like printf_filtered, but prints it's result indented.
2106 Called as printfi_filtered (spaces, format, ...); */
2107
c906108c 2108void
c5aa993b 2109printfi_filtered (int spaces, const char *format,...)
c906108c
SS
2110{
2111 va_list args;
c906108c 2112 va_start (args, format);
c906108c
SS
2113 print_spaces_filtered (spaces, gdb_stdout);
2114 vfprintf_filtered (gdb_stdout, format, args);
2115 va_end (args);
2116}
2117
2118/* Easy -- but watch out!
2119
2120 This routine is *not* a replacement for puts()! puts() appends a newline.
2121 This one doesn't, and had better not! */
2122
2123void
fba45db2 2124puts_filtered (const char *string)
c906108c
SS
2125{
2126 fputs_filtered (string, gdb_stdout);
2127}
2128
2129void
fba45db2 2130puts_unfiltered (const char *string)
c906108c
SS
2131{
2132 fputs_unfiltered (string, gdb_stdout);
2133}
2134
2135/* Return a pointer to N spaces and a null. The pointer is good
2136 until the next call to here. */
2137char *
fba45db2 2138n_spaces (int n)
c906108c 2139{
392a587b
JM
2140 char *t;
2141 static char *spaces = 0;
2142 static int max_spaces = -1;
c906108c
SS
2143
2144 if (n > max_spaces)
2145 {
2146 if (spaces)
b8c9b27d 2147 xfree (spaces);
c5aa993b
JM
2148 spaces = (char *) xmalloc (n + 1);
2149 for (t = spaces + n; t != spaces;)
c906108c
SS
2150 *--t = ' ';
2151 spaces[n] = '\0';
2152 max_spaces = n;
2153 }
2154
2155 return spaces + max_spaces - n;
2156}
2157
2158/* Print N spaces. */
2159void
fba45db2 2160print_spaces_filtered (int n, struct ui_file *stream)
c906108c
SS
2161{
2162 fputs_filtered (n_spaces (n), stream);
2163}
2164\f
2165/* C++ demangler stuff. */
2166
2167/* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2168 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2169 If the name is not mangled, or the language for the name is unknown, or
2170 demangling is off, the name is printed in its "raw" form. */
2171
2172void
fba45db2
KB
2173fprintf_symbol_filtered (struct ui_file *stream, char *name, enum language lang,
2174 int arg_mode)
c906108c
SS
2175{
2176 char *demangled;
2177
2178 if (name != NULL)
2179 {
2180 /* If user wants to see raw output, no problem. */
2181 if (!demangle)
2182 {
2183 fputs_filtered (name, stream);
2184 }
2185 else
2186 {
2187 switch (lang)
2188 {
2189 case language_cplus:
2190 demangled = cplus_demangle (name, arg_mode);
2191 break;
2192 case language_java:
2193 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2194 break;
2195 case language_chill:
2196 demangled = chill_demangle (name);
2197 break;
2198 default:
2199 demangled = NULL;
2200 break;
2201 }
2202 fputs_filtered (demangled ? demangled : name, stream);
2203 if (demangled != NULL)
2204 {
b8c9b27d 2205 xfree (demangled);
c906108c
SS
2206 }
2207 }
2208 }
2209}
2210
2211/* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2212 differences in whitespace. Returns 0 if they match, non-zero if they
2213 don't (slightly different than strcmp()'s range of return values).
c5aa993b 2214
c906108c
SS
2215 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2216 This "feature" is useful when searching for matching C++ function names
2217 (such as if the user types 'break FOO', where FOO is a mangled C++
2218 function). */
2219
2220int
fba45db2 2221strcmp_iw (const char *string1, const char *string2)
c906108c
SS
2222{
2223 while ((*string1 != '\0') && (*string2 != '\0'))
2224 {
2225 while (isspace (*string1))
2226 {
2227 string1++;
2228 }
2229 while (isspace (*string2))
2230 {
2231 string2++;
2232 }
2233 if (*string1 != *string2)
2234 {
2235 break;
2236 }
2237 if (*string1 != '\0')
2238 {
2239 string1++;
2240 string2++;
2241 }
2242 }
2243 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2244}
c906108c 2245\f
c5aa993b 2246
c906108c 2247/*
c5aa993b
JM
2248 ** subset_compare()
2249 ** Answer whether string_to_compare is a full or partial match to
2250 ** template_string. The partial match must be in sequence starting
2251 ** at index 0.
2252 */
c906108c 2253int
fba45db2 2254subset_compare (char *string_to_compare, char *template_string)
7a292a7a
SS
2255{
2256 int match;
c5aa993b
JM
2257 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2258 strlen (string_to_compare) <= strlen (template_string))
2259 match = (strncmp (template_string,
2260 string_to_compare,
2261 strlen (string_to_compare)) == 0);
7a292a7a
SS
2262 else
2263 match = 0;
2264 return match;
2265}
c906108c
SS
2266
2267
a14ed312 2268static void pagination_on_command (char *arg, int from_tty);
7a292a7a 2269static void
fba45db2 2270pagination_on_command (char *arg, int from_tty)
c906108c
SS
2271{
2272 pagination_enabled = 1;
2273}
2274
a14ed312 2275static void pagination_on_command (char *arg, int from_tty);
7a292a7a 2276static void
fba45db2 2277pagination_off_command (char *arg, int from_tty)
c906108c
SS
2278{
2279 pagination_enabled = 0;
2280}
c906108c 2281\f
c5aa993b 2282
c906108c 2283void
fba45db2 2284initialize_utils (void)
c906108c
SS
2285{
2286 struct cmd_list_element *c;
2287
c5aa993b
JM
2288 c = add_set_cmd ("width", class_support, var_uinteger,
2289 (char *) &chars_per_line,
2290 "Set number of characters gdb thinks are in a line.",
2291 &setlist);
c906108c
SS
2292 add_show_from_set (c, &showlist);
2293 c->function.sfunc = set_width_command;
2294
2295 add_show_from_set
2296 (add_set_cmd ("height", class_support,
c5aa993b 2297 var_uinteger, (char *) &lines_per_page,
c906108c
SS
2298 "Set number of lines gdb thinks are in a page.", &setlist),
2299 &showlist);
c5aa993b 2300
c906108c
SS
2301 init_page_info ();
2302
2303 /* If the output is not a terminal, don't paginate it. */
d9fcf2fb 2304 if (!ui_file_isatty (gdb_stdout))
c906108c
SS
2305 lines_per_page = UINT_MAX;
2306
c5aa993b 2307 set_width_command ((char *) NULL, 0, c);
c906108c
SS
2308
2309 add_show_from_set
c5aa993b
JM
2310 (add_set_cmd ("demangle", class_support, var_boolean,
2311 (char *) &demangle,
2312 "Set demangling of encoded C++ names when displaying symbols.",
c906108c
SS
2313 &setprintlist),
2314 &showprintlist);
2315
2316 add_show_from_set
2317 (add_set_cmd ("pagination", class_support,
c5aa993b 2318 var_boolean, (char *) &pagination_enabled,
c906108c
SS
2319 "Set state of pagination.", &setlist),
2320 &showlist);
4261bedc 2321
c906108c
SS
2322 if (xdb_commands)
2323 {
c5aa993b
JM
2324 add_com ("am", class_support, pagination_on_command,
2325 "Enable pagination");
2326 add_com ("sm", class_support, pagination_off_command,
2327 "Disable pagination");
c906108c
SS
2328 }
2329
2330 add_show_from_set
c5aa993b
JM
2331 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2332 (char *) &sevenbit_strings,
2333 "Set printing of 8-bit characters in strings as \\nnn.",
c906108c
SS
2334 &setprintlist),
2335 &showprintlist);
2336
2337 add_show_from_set
c5aa993b
JM
2338 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2339 (char *) &asm_demangle,
2340 "Set demangling of C++ names in disassembly listings.",
c906108c
SS
2341 &setprintlist),
2342 &showprintlist);
2343}
2344
2345/* Machine specific function to handle SIGWINCH signal. */
2346
2347#ifdef SIGWINCH_HANDLER_BODY
c5aa993b 2348SIGWINCH_HANDLER_BODY
c906108c
SS
2349#endif
2350\f
2351/* Support for converting target fp numbers into host DOUBLEST format. */
2352
2353/* XXX - This code should really be in libiberty/floatformat.c, however
2354 configuration issues with libiberty made this very difficult to do in the
2355 available time. */
2356
2357#include "floatformat.h"
2358#include <math.h> /* ldexp */
2359
2360/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2361 going to bother with trying to muck around with whether it is defined in
2362 a system header, what we do if not, etc. */
2363#define FLOATFORMAT_CHAR_BIT 8
2364
a14ed312
KB
2365static unsigned long get_field (unsigned char *,
2366 enum floatformat_byteorders,
2367 unsigned int, unsigned int, unsigned int);
c906108c
SS
2368
2369/* Extract a field which starts at START and is LEN bytes long. DATA and
2370 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2371static unsigned long
fba45db2
KB
2372get_field (unsigned char *data, enum floatformat_byteorders order,
2373 unsigned int total_len, unsigned int start, unsigned int len)
c906108c
SS
2374{
2375 unsigned long result;
2376 unsigned int cur_byte;
2377 int cur_bitshift;
2378
2379 /* Start at the least significant part of the field. */
c906108c 2380 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
0fda6bd2
JM
2381 {
2382 /* We start counting from the other end (i.e, from the high bytes
2383 rather than the low bytes). As such, we need to be concerned
2384 with what happens if bit 0 doesn't start on a byte boundary.
2385 I.e, we need to properly handle the case where total_len is
2386 not evenly divisible by 8. So we compute ``excess'' which
2387 represents the number of bits from the end of our starting
2388 byte needed to get to bit 0. */
2389 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2390 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2391 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2392 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2393 - FLOATFORMAT_CHAR_BIT;
2394 }
2395 else
2396 {
2397 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2398 cur_bitshift =
2399 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2400 }
2401 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2402 result = *(data + cur_byte) >> (-cur_bitshift);
2403 else
2404 result = 0;
c906108c
SS
2405 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2406 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2407 ++cur_byte;
2408 else
2409 --cur_byte;
2410
2411 /* Move towards the most significant part of the field. */
2412 while (cur_bitshift < len)
2413 {
0fda6bd2 2414 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
c906108c
SS
2415 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2416 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2417 ++cur_byte;
2418 else
2419 --cur_byte;
2420 }
0fda6bd2
JM
2421 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2422 /* Mask out bits which are not part of the field */
2423 result &= ((1UL << len) - 1);
c906108c
SS
2424 return result;
2425}
c5aa993b 2426
c906108c
SS
2427/* Convert from FMT to a DOUBLEST.
2428 FROM is the address of the extended float.
2429 Store the DOUBLEST in *TO. */
2430
2431void
fba45db2
KB
2432floatformat_to_doublest (const struct floatformat *fmt, char *from,
2433 DOUBLEST *to)
c906108c 2434{
c5aa993b 2435 unsigned char *ufrom = (unsigned char *) from;
c906108c
SS
2436 DOUBLEST dto;
2437 long exponent;
2438 unsigned long mant;
2439 unsigned int mant_bits, mant_off;
2440 int mant_bits_left;
2441 int special_exponent; /* It's a NaN, denorm or zero */
2442
2443 /* If the mantissa bits are not contiguous from one end of the
2444 mantissa to the other, we need to make a private copy of the
2445 source bytes that is in the right order since the unpacking
2446 algorithm assumes that the bits are contiguous.
2447
2448 Swap the bytes individually rather than accessing them through
2449 "long *" since we have no guarantee that they start on a long
2450 alignment, and also sizeof(long) for the host could be different
2451 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2452 for the target is 4. */
2453
c5aa993b 2454 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
2455 {
2456 static unsigned char *newfrom;
2457 unsigned char *swapin, *swapout;
2458 int longswaps;
2459
c5aa993b 2460 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
c906108c 2461 longswaps >>= 3;
c5aa993b 2462
c906108c
SS
2463 if (newfrom == NULL)
2464 {
c5aa993b 2465 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
c906108c
SS
2466 }
2467 swapout = newfrom;
2468 swapin = ufrom;
2469 ufrom = newfrom;
2470 while (longswaps-- > 0)
2471 {
2472 /* This is ugly, but efficient */
2473 *swapout++ = swapin[4];
2474 *swapout++ = swapin[5];
2475 *swapout++ = swapin[6];
2476 *swapout++ = swapin[7];
2477 *swapout++ = swapin[0];
2478 *swapout++ = swapin[1];
2479 *swapout++ = swapin[2];
2480 *swapout++ = swapin[3];
2481 swapin += 8;
2482 }
2483 }
2484
2485 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2486 fmt->exp_start, fmt->exp_len);
2487 /* Note that if exponent indicates a NaN, we can't really do anything useful
2488 (not knowing if the host has NaN's, or how to build one). So it will
2489 end up as an infinity or something close; that is OK. */
2490
2491 mant_bits_left = fmt->man_len;
2492 mant_off = fmt->man_start;
2493 dto = 0.0;
2494
2495 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2496
11cf8741
JM
2497/* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2498 we don't check for zero as the exponent doesn't matter. */
c906108c
SS
2499 if (!special_exponent)
2500 exponent -= fmt->exp_bias;
11cf8741
JM
2501 else if (exponent == 0)
2502 exponent = 1 - fmt->exp_bias;
c906108c
SS
2503
2504 /* Build the result algebraically. Might go infinite, underflow, etc;
2505 who cares. */
2506
2507/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2508 increment the exponent by one to account for the integer bit. */
2509
2510 if (!special_exponent)
7a292a7a
SS
2511 {
2512 if (fmt->intbit == floatformat_intbit_no)
2513 dto = ldexp (1.0, exponent);
2514 else
2515 exponent++;
2516 }
c906108c
SS
2517
2518 while (mant_bits_left > 0)
2519 {
2520 mant_bits = min (mant_bits_left, 32);
2521
2522 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
c5aa993b 2523 mant_off, mant_bits);
c906108c 2524
c5aa993b 2525 dto += ldexp ((double) mant, exponent - mant_bits);
c906108c
SS
2526 exponent -= mant_bits;
2527 mant_off += mant_bits;
2528 mant_bits_left -= mant_bits;
2529 }
2530
2531 /* Negate it if negative. */
2532 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2533 dto = -dto;
2534 *to = dto;
2535}
2536\f
a14ed312
KB
2537static void put_field (unsigned char *, enum floatformat_byteorders,
2538 unsigned int,
2539 unsigned int, unsigned int, unsigned long);
c906108c
SS
2540
2541/* Set a field which starts at START and is LEN bytes long. DATA and
2542 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2543static void
fba45db2
KB
2544put_field (unsigned char *data, enum floatformat_byteorders order,
2545 unsigned int total_len, unsigned int start, unsigned int len,
2546 unsigned long stuff_to_put)
c906108c
SS
2547{
2548 unsigned int cur_byte;
2549 int cur_bitshift;
2550
2551 /* Start at the least significant part of the field. */
c906108c 2552 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
0fda6bd2
JM
2553 {
2554 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2555 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2556 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2557 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2558 - FLOATFORMAT_CHAR_BIT;
2559 }
2560 else
2561 {
2562 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2563 cur_bitshift =
2564 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2565 }
2566 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2567 {
2568 *(data + cur_byte) &=
2569 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2570 << (-cur_bitshift));
2571 *(data + cur_byte) |=
2572 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2573 }
c906108c
SS
2574 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2575 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2576 ++cur_byte;
2577 else
2578 --cur_byte;
2579
2580 /* Move towards the most significant part of the field. */
2581 while (cur_bitshift < len)
2582 {
2583 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2584 {
2585 /* This is the last byte. */
2586 *(data + cur_byte) &=
2587 ~((1 << (len - cur_bitshift)) - 1);
2588 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2589 }
2590 else
2591 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2592 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2593 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2594 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2595 ++cur_byte;
2596 else
2597 --cur_byte;
2598 }
2599}
2600
2601#ifdef HAVE_LONG_DOUBLE
2602/* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2603 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2604 frexp, but operates on the long double data type. */
2605
a14ed312 2606static long double ldfrexp (long double value, int *eptr);
c906108c
SS
2607
2608static long double
fba45db2 2609ldfrexp (long double value, int *eptr)
c906108c
SS
2610{
2611 long double tmp;
2612 int exp;
2613
2614 /* Unfortunately, there are no portable functions for extracting the exponent
2615 of a long double, so we have to do it iteratively by multiplying or dividing
2616 by two until the fraction is between 0.5 and 1.0. */
2617
2618 if (value < 0.0l)
2619 value = -value;
2620
2621 tmp = 1.0l;
2622 exp = 0;
2623
2624 if (value >= tmp) /* Value >= 1.0 */
2625 while (value >= tmp)
2626 {
2627 tmp *= 2.0l;
2628 exp++;
2629 }
2630 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2631 {
2632 while (value < tmp)
2633 {
2634 tmp /= 2.0l;
2635 exp--;
2636 }
2637 tmp *= 2.0l;
2638 exp++;
2639 }
2640
2641 *eptr = exp;
c5aa993b 2642 return value / tmp;
c906108c
SS
2643}
2644#endif /* HAVE_LONG_DOUBLE */
2645
2646
2647/* The converse: convert the DOUBLEST *FROM to an extended float
2648 and store where TO points. Neither FROM nor TO have any alignment
2649 restrictions. */
2650
2651void
fba45db2
KB
2652floatformat_from_doublest (CONST struct floatformat *fmt, DOUBLEST *from,
2653 char *to)
c906108c
SS
2654{
2655 DOUBLEST dfrom;
2656 int exponent;
2657 DOUBLEST mant;
2658 unsigned int mant_bits, mant_off;
2659 int mant_bits_left;
c5aa993b 2660 unsigned char *uto = (unsigned char *) to;
c906108c
SS
2661
2662 memcpy (&dfrom, from, sizeof (dfrom));
ba8966d6
KB
2663 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
2664 / FLOATFORMAT_CHAR_BIT);
c906108c
SS
2665 if (dfrom == 0)
2666 return; /* Result is zero */
2667 if (dfrom != dfrom) /* Result is NaN */
2668 {
2669 /* From is NaN */
2670 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2671 fmt->exp_len, fmt->exp_nan);
2672 /* Be sure it's not infinity, but NaN value is irrel */
2673 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2674 32, 1);
2675 return;
2676 }
2677
2678 /* If negative, set the sign bit. */
2679 if (dfrom < 0)
2680 {
2681 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2682 dfrom = -dfrom;
2683 }
2684
2685 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2686 {
2687 /* Infinity exponent is same as NaN's. */
2688 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2689 fmt->exp_len, fmt->exp_nan);
2690 /* Infinity mantissa is all zeroes. */
2691 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2692 fmt->man_len, 0);
2693 return;
2694 }
2695
2696#ifdef HAVE_LONG_DOUBLE
2697 mant = ldfrexp (dfrom, &exponent);
2698#else
2699 mant = frexp (dfrom, &exponent);
2700#endif
2701
2702 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2703 exponent + fmt->exp_bias - 1);
2704
2705 mant_bits_left = fmt->man_len;
2706 mant_off = fmt->man_start;
2707 while (mant_bits_left > 0)
2708 {
2709 unsigned long mant_long;
2710 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2711
2712 mant *= 4294967296.0;
ba8966d6 2713 mant_long = ((unsigned long) mant) & 0xffffffffL;
c906108c
SS
2714 mant -= mant_long;
2715
2716 /* If the integer bit is implicit, then we need to discard it.
c5aa993b
JM
2717 If we are discarding a zero, we should be (but are not) creating
2718 a denormalized number which means adjusting the exponent
2719 (I think). */
c906108c
SS
2720 if (mant_bits_left == fmt->man_len
2721 && fmt->intbit == floatformat_intbit_no)
2722 {
2723 mant_long <<= 1;
ba8966d6 2724 mant_long &= 0xffffffffL;
c906108c
SS
2725 mant_bits -= 1;
2726 }
2727
2728 if (mant_bits < 32)
2729 {
2730 /* The bits we want are in the most significant MANT_BITS bits of
2731 mant_long. Move them to the least significant. */
2732 mant_long >>= 32 - mant_bits;
2733 }
2734
2735 put_field (uto, fmt->byteorder, fmt->totalsize,
2736 mant_off, mant_bits, mant_long);
2737 mant_off += mant_bits;
2738 mant_bits_left -= mant_bits;
2739 }
c5aa993b 2740 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
2741 {
2742 int count;
2743 unsigned char *swaplow = uto;
2744 unsigned char *swaphigh = uto + 4;
2745 unsigned char tmp;
2746
2747 for (count = 0; count < 4; count++)
2748 {
2749 tmp = *swaplow;
2750 *swaplow++ = *swaphigh;
2751 *swaphigh++ = tmp;
2752 }
2753 }
2754}
2755
39424bef
MK
2756/* Check if VAL (which is assumed to be a floating point number whose
2757 format is described by FMT) is negative. */
2758
2759int
2760floatformat_is_negative (const struct floatformat *fmt, char *val)
2761{
2762 unsigned char *uval = (unsigned char *) val;
2763
2764 return get_field (uval, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1);
2765}
2766
2767/* Check if VAL is "not a number" (NaN) for FMT. */
2768
2769int
2770floatformat_is_nan (const struct floatformat *fmt, char *val)
2771{
2772 unsigned char *uval = (unsigned char *) val;
2773 long exponent;
2774 unsigned long mant;
2775 unsigned int mant_bits, mant_off;
2776 int mant_bits_left;
2777
2778 if (! fmt->exp_nan)
2779 return 0;
2780
2781 exponent = get_field (uval, fmt->byteorder, fmt->totalsize,
2782 fmt->exp_start, fmt->exp_len);
2783
2784 if (exponent != fmt->exp_nan)
2785 return 0;
2786
2787 mant_bits_left = fmt->man_len;
2788 mant_off = fmt->man_start;
2789
2790 while (mant_bits_left > 0)
2791 {
2792 mant_bits = min (mant_bits_left, 32);
2793
2794 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2795 mant_off, mant_bits);
2796
2797 /* If there is an explicit integer bit, mask it off. */
2798 if (mant_off == fmt->man_start
2799 && fmt->intbit == floatformat_intbit_yes)
2800 mant &= ~(1 << (mant_bits - 1));
2801
2802 if (mant)
2803 return 1;
2804
2805 mant_off += mant_bits;
2806 mant_bits_left -= mant_bits;
2807 }
2808
2809 return 0;
2810}
2811
2812/* Convert the mantissa of VAL (which is assumed to be a floating
2813 point number whose format is described by FMT) into a hexadecimal
2814 and store it in a static string. Return a pointer to that string. */
2815
2816char *
2817floatformat_mantissa (const struct floatformat *fmt, char *val)
2818{
2819 unsigned char *uval = (unsigned char *) val;
2820 unsigned long mant;
2821 unsigned int mant_bits, mant_off;
2822 int mant_bits_left;
2823 static char res[50];
2824 char buf[9];
2825
2826 /* Make sure we have enough room to store the mantissa. */
2827 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
2828
2829 mant_off = fmt->man_start;
2830 mant_bits_left = fmt->man_len;
2831 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
2832
2833 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2834 mant_off, mant_bits);
2835
2836 sprintf (res, "%lx", mant);
2837
2838 mant_off += mant_bits;
2839 mant_bits_left -= mant_bits;
2840
2841 while (mant_bits_left > 0)
2842 {
2843 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2844 mant_off, 32);
2845
2846 sprintf (buf, "%08lx", mant);
2847 strcat (res, buf);
2848
2849 mant_off += 32;
2850 mant_bits_left -= 32;
2851 }
2852
2853 return res;
2854}
2855
5683e87a
AC
2856/* print routines to handle variable size regs, etc. */
2857
c906108c
SS
2858/* temporary storage using circular buffer */
2859#define NUMCELLS 16
2860#define CELLSIZE 32
c5aa993b 2861static char *
fba45db2 2862get_cell (void)
c906108c
SS
2863{
2864 static char buf[NUMCELLS][CELLSIZE];
c5aa993b
JM
2865 static int cell = 0;
2866 if (++cell >= NUMCELLS)
2867 cell = 0;
c906108c
SS
2868 return buf[cell];
2869}
2870
d4f3574e
SS
2871int
2872strlen_paddr (void)
2873{
79496e2f 2874 return (TARGET_ADDR_BIT / 8 * 2);
d4f3574e
SS
2875}
2876
c5aa993b 2877char *
104c1213 2878paddr (CORE_ADDR addr)
c906108c 2879{
79496e2f 2880 return phex (addr, TARGET_ADDR_BIT / 8);
c906108c
SS
2881}
2882
c5aa993b 2883char *
104c1213 2884paddr_nz (CORE_ADDR addr)
c906108c 2885{
79496e2f 2886 return phex_nz (addr, TARGET_ADDR_BIT / 8);
c906108c
SS
2887}
2888
104c1213
JM
2889static void
2890decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2891{
2892 /* steal code from valprint.c:print_decimal(). Should this worry
2893 about the real size of addr as the above does? */
2894 unsigned long temp[3];
2895 int i = 0;
2896 do
2897 {
2898 temp[i] = addr % (1000 * 1000 * 1000);
2899 addr /= (1000 * 1000 * 1000);
2900 i++;
2901 }
2902 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2903 switch (i)
2904 {
2905 case 1:
2906 sprintf (paddr_str, "%s%lu",
2907 sign, temp[0]);
2908 break;
2909 case 2:
2910 sprintf (paddr_str, "%s%lu%09lu",
2911 sign, temp[1], temp[0]);
2912 break;
2913 case 3:
2914 sprintf (paddr_str, "%s%lu%09lu%09lu",
2915 sign, temp[2], temp[1], temp[0]);
2916 break;
2917 default:
e1e9e218 2918 internal_error (__FILE__, __LINE__, "failed internal consistency check");
104c1213
JM
2919 }
2920}
2921
2922char *
2923paddr_u (CORE_ADDR addr)
2924{
2925 char *paddr_str = get_cell ();
2926 decimal2str (paddr_str, "", addr);
2927 return paddr_str;
2928}
2929
2930char *
2931paddr_d (LONGEST addr)
2932{
2933 char *paddr_str = get_cell ();
2934 if (addr < 0)
2935 decimal2str (paddr_str, "-", -addr);
2936 else
2937 decimal2str (paddr_str, "", addr);
2938 return paddr_str;
2939}
2940
5683e87a
AC
2941/* eliminate warning from compiler on 32-bit systems */
2942static int thirty_two = 32;
2943
104c1213 2944char *
5683e87a 2945phex (ULONGEST l, int sizeof_l)
104c1213 2946{
5683e87a
AC
2947 char *str = get_cell ();
2948 switch (sizeof_l)
104c1213
JM
2949 {
2950 case 8:
5683e87a
AC
2951 sprintf (str, "%08lx%08lx",
2952 (unsigned long) (l >> thirty_two),
2953 (unsigned long) (l & 0xffffffff));
104c1213
JM
2954 break;
2955 case 4:
5683e87a 2956 sprintf (str, "%08lx", (unsigned long) l);
104c1213
JM
2957 break;
2958 case 2:
5683e87a 2959 sprintf (str, "%04x", (unsigned short) (l & 0xffff));
104c1213
JM
2960 break;
2961 default:
5683e87a
AC
2962 phex (l, sizeof (l));
2963 break;
104c1213 2964 }
5683e87a 2965 return str;
104c1213
JM
2966}
2967
c5aa993b 2968char *
5683e87a 2969phex_nz (ULONGEST l, int sizeof_l)
c906108c 2970{
5683e87a
AC
2971 char *str = get_cell ();
2972 switch (sizeof_l)
c906108c 2973 {
c5aa993b
JM
2974 case 8:
2975 {
5683e87a 2976 unsigned long high = (unsigned long) (l >> thirty_two);
c5aa993b 2977 if (high == 0)
5683e87a 2978 sprintf (str, "%lx", (unsigned long) (l & 0xffffffff));
c5aa993b 2979 else
5683e87a
AC
2980 sprintf (str, "%lx%08lx",
2981 high, (unsigned long) (l & 0xffffffff));
c906108c 2982 break;
c5aa993b
JM
2983 }
2984 case 4:
5683e87a 2985 sprintf (str, "%lx", (unsigned long) l);
c5aa993b
JM
2986 break;
2987 case 2:
5683e87a 2988 sprintf (str, "%x", (unsigned short) (l & 0xffff));
c5aa993b
JM
2989 break;
2990 default:
5683e87a
AC
2991 phex_nz (l, sizeof (l));
2992 break;
c906108c 2993 }
5683e87a 2994 return str;
c906108c 2995}
ac2e2ef7
AC
2996
2997
2998/* Convert to / from the hosts pointer to GDB's internal CORE_ADDR
2999 using the target's conversion routines. */
3000CORE_ADDR
3001host_pointer_to_address (void *ptr)
3002{
3003 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_ptr))
8e65ff28
AC
3004 internal_error (__FILE__, __LINE__,
3005 "core_addr_to_void_ptr: bad cast");
ac2e2ef7
AC
3006 return POINTER_TO_ADDRESS (builtin_type_ptr, &ptr);
3007}
3008
3009void *
3010address_to_host_pointer (CORE_ADDR addr)
3011{
3012 void *ptr;
3013 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_ptr))
8e65ff28
AC
3014 internal_error (__FILE__, __LINE__,
3015 "core_addr_to_void_ptr: bad cast");
ac2e2ef7
AC
3016 ADDRESS_TO_POINTER (builtin_type_ptr, &ptr, addr);
3017 return ptr;
3018}