]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/utils.c
import gdb-1999-12-06 snapshot
[thirdparty/binutils-gdb.git] / gdb / utils.c
CommitLineData
c906108c
SS
1/* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 89, 90, 91, 92, 95, 96, 1998 Free Software Foundation, Inc.
3
c5aa993b 4 This file is part of GDB.
c906108c 5
c5aa993b
JM
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
c906108c 10
c5aa993b
JM
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
c906108c 15
c5aa993b
JM
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
c906108c
SS
20
21#include "defs.h"
22#include <ctype.h>
23#include "gdb_string.h"
c2c6d25f 24#include "event-top.h"
c906108c
SS
25
26#ifdef HAVE_CURSES_H
27#include <curses.h>
28#endif
29#ifdef HAVE_TERM_H
30#include <term.h>
31#endif
32
33/* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
34#ifdef reg
35#undef reg
36#endif
37
38#include "signals.h"
39#include "gdbcmd.h"
40#include "serial.h"
41#include "bfd.h"
42#include "target.h"
43#include "demangle.h"
44#include "expression.h"
45#include "language.h"
46#include "annotate.h"
47
48#include <readline/readline.h>
49
917317f4
JM
50#undef XMALLOC
51#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
52
c906108c
SS
53/* readline defines this. */
54#undef savestring
55
56void (*error_begin_hook) PARAMS ((void));
57
2acceee2
JM
58/* Holds the last error message issued by gdb */
59
60static GDB_FILE *gdb_lasterr;
61
c906108c
SS
62/* Prototypes for local functions */
63
64static void vfprintf_maybe_filtered PARAMS ((GDB_FILE *, const char *,
65 va_list, int));
66
67static void fputs_maybe_filtered PARAMS ((const char *, GDB_FILE *, int));
68
69#if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
70static void malloc_botch PARAMS ((void));
71#endif
72
c906108c
SS
73static void
74prompt_for_continue PARAMS ((void));
75
c5aa993b 76static void
c906108c
SS
77set_width_command PARAMS ((char *, int, struct cmd_list_element *));
78
79static void
80set_width PARAMS ((void));
81
c906108c 82#ifndef GDB_FILE_ISATTY
c5aa993b 83#define GDB_FILE_ISATTY(GDB_FILE_PTR) (gdb_file_isatty(GDB_FILE_PTR))
c906108c
SS
84#endif
85
86/* Chain of cleanup actions established with make_cleanup,
87 to be executed if an error happens. */
88
c5aa993b
JM
89static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
90static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
91static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
92static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
6426a772
JM
93/* cleaned up on each error from within an execution command */
94static struct cleanup *exec_error_cleanup_chain;
43ff13b4
JM
95
96/* Pointer to what is left to do for an execution command after the
97 target stops. Used only in asynchronous mode, by targets that
98 support async execution. The finish and until commands use it. So
99 does the target extended-remote command. */
100struct continuation *cmd_continuation;
c2d11a7d 101struct continuation *intermediate_continuation;
c906108c
SS
102
103/* Nonzero if we have job control. */
104
105int job_control;
106
107/* Nonzero means a quit has been requested. */
108
109int quit_flag;
110
111/* Nonzero means quit immediately if Control-C is typed now, rather
112 than waiting until QUIT is executed. Be careful in setting this;
113 code which executes with immediate_quit set has to be very careful
114 about being able to deal with being interrupted at any time. It is
115 almost always better to use QUIT; the only exception I can think of
116 is being able to quit out of a system call (using EINTR loses if
117 the SIGINT happens between the previous QUIT and the system call).
118 To immediately quit in the case in which a SIGINT happens between
119 the previous QUIT and setting immediate_quit (desirable anytime we
120 expect to block), call QUIT after setting immediate_quit. */
121
122int immediate_quit;
123
124/* Nonzero means that encoded C++ names should be printed out in their
125 C++ form rather than raw. */
126
127int demangle = 1;
128
129/* Nonzero means that encoded C++ names should be printed out in their
130 C++ form even in assembler language displays. If this is set, but
131 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
132
133int asm_demangle = 0;
134
135/* Nonzero means that strings with character values >0x7F should be printed
136 as octal escapes. Zero means just print the value (e.g. it's an
137 international character, and the terminal or window can cope.) */
138
139int sevenbit_strings = 0;
140
141/* String to be printed before error messages, if any. */
142
143char *error_pre_print;
144
145/* String to be printed before quit messages, if any. */
146
147char *quit_pre_print;
148
149/* String to be printed before warning messages, if any. */
150
151char *warning_pre_print = "\nwarning: ";
152
153int pagination_enabled = 1;
c906108c 154\f
c5aa993b 155
c906108c
SS
156/* Add a new cleanup to the cleanup_chain,
157 and return the previous chain pointer
158 to be passed later to do_cleanups or discard_cleanups.
159 Args are FUNCTION to clean up with, and ARG to pass to it. */
160
161struct cleanup *
162make_cleanup (function, arg)
163 void (*function) PARAMS ((PTR));
164 PTR arg;
165{
c5aa993b 166 return make_my_cleanup (&cleanup_chain, function, arg);
c906108c
SS
167}
168
169struct cleanup *
170make_final_cleanup (function, arg)
171 void (*function) PARAMS ((PTR));
172 PTR arg;
173{
c5aa993b 174 return make_my_cleanup (&final_cleanup_chain, function, arg);
c906108c 175}
7a292a7a 176
c906108c
SS
177struct cleanup *
178make_run_cleanup (function, arg)
179 void (*function) PARAMS ((PTR));
180 PTR arg;
181{
c5aa993b 182 return make_my_cleanup (&run_cleanup_chain, function, arg);
c906108c 183}
7a292a7a 184
43ff13b4
JM
185struct cleanup *
186make_exec_cleanup (function, arg)
187 void (*function) PARAMS ((PTR));
188 PTR arg;
189{
c5aa993b 190 return make_my_cleanup (&exec_cleanup_chain, function, arg);
43ff13b4
JM
191}
192
6426a772
JM
193struct cleanup *
194make_exec_error_cleanup (function, arg)
195 void (*function) PARAMS ((PTR));
196 PTR arg;
197{
198 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
199}
200
7a292a7a
SS
201static void
202do_freeargv (arg)
203 void *arg;
204{
c5aa993b 205 freeargv ((char **) arg);
7a292a7a
SS
206}
207
208struct cleanup *
209make_cleanup_freeargv (arg)
210 char **arg;
211{
212 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
213}
214
11cf8741
JM
215static void
216do_gdb_file_delete (void *arg)
217{
218 gdb_file_delete (arg);
219}
220
221struct cleanup *
222make_cleanup_gdb_file_delete (struct gdb_file *arg)
223{
224 return make_my_cleanup (&cleanup_chain, do_gdb_file_delete, arg);
225}
226
c906108c
SS
227struct cleanup *
228make_my_cleanup (pmy_chain, function, arg)
229 struct cleanup **pmy_chain;
230 void (*function) PARAMS ((PTR));
231 PTR arg;
232{
233 register struct cleanup *new
c5aa993b 234 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
c906108c
SS
235 register struct cleanup *old_chain = *pmy_chain;
236
237 new->next = *pmy_chain;
238 new->function = function;
239 new->arg = arg;
240 *pmy_chain = new;
241
242 return old_chain;
243}
244
245/* Discard cleanups and do the actions they describe
246 until we get back to the point OLD_CHAIN in the cleanup_chain. */
247
248void
249do_cleanups (old_chain)
250 register struct cleanup *old_chain;
251{
c5aa993b 252 do_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
253}
254
255void
256do_final_cleanups (old_chain)
257 register struct cleanup *old_chain;
258{
c5aa993b 259 do_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
260}
261
262void
263do_run_cleanups (old_chain)
264 register struct cleanup *old_chain;
265{
c5aa993b 266 do_my_cleanups (&run_cleanup_chain, old_chain);
c906108c
SS
267}
268
43ff13b4
JM
269void
270do_exec_cleanups (old_chain)
271 register struct cleanup *old_chain;
272{
c5aa993b 273 do_my_cleanups (&exec_cleanup_chain, old_chain);
43ff13b4
JM
274}
275
6426a772
JM
276void
277do_exec_error_cleanups (old_chain)
278 register struct cleanup *old_chain;
279{
280 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
281}
282
c906108c
SS
283void
284do_my_cleanups (pmy_chain, old_chain)
285 register struct cleanup **pmy_chain;
286 register struct cleanup *old_chain;
287{
288 register struct cleanup *ptr;
289 while ((ptr = *pmy_chain) != old_chain)
290 {
291 *pmy_chain = ptr->next; /* Do this first incase recursion */
292 (*ptr->function) (ptr->arg);
293 free (ptr);
294 }
295}
296
297/* Discard cleanups, not doing the actions they describe,
298 until we get back to the point OLD_CHAIN in the cleanup_chain. */
299
300void
301discard_cleanups (old_chain)
302 register struct cleanup *old_chain;
303{
c5aa993b 304 discard_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
305}
306
307void
308discard_final_cleanups (old_chain)
309 register struct cleanup *old_chain;
310{
c5aa993b 311 discard_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
312}
313
6426a772
JM
314void
315discard_exec_error_cleanups (old_chain)
316 register struct cleanup *old_chain;
317{
318 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
319}
320
c906108c
SS
321void
322discard_my_cleanups (pmy_chain, old_chain)
323 register struct cleanup **pmy_chain;
324 register struct cleanup *old_chain;
325{
326 register struct cleanup *ptr;
327 while ((ptr = *pmy_chain) != old_chain)
328 {
329 *pmy_chain = ptr->next;
c5aa993b 330 free ((PTR) ptr);
c906108c
SS
331 }
332}
333
334/* Set the cleanup_chain to 0, and return the old cleanup chain. */
335struct cleanup *
336save_cleanups ()
337{
c5aa993b 338 return save_my_cleanups (&cleanup_chain);
c906108c
SS
339}
340
341struct cleanup *
342save_final_cleanups ()
343{
c5aa993b 344 return save_my_cleanups (&final_cleanup_chain);
c906108c
SS
345}
346
347struct cleanup *
348save_my_cleanups (pmy_chain)
c5aa993b 349 struct cleanup **pmy_chain;
c906108c
SS
350{
351 struct cleanup *old_chain = *pmy_chain;
352
353 *pmy_chain = 0;
354 return old_chain;
355}
356
357/* Restore the cleanup chain from a previously saved chain. */
358void
359restore_cleanups (chain)
360 struct cleanup *chain;
361{
c5aa993b 362 restore_my_cleanups (&cleanup_chain, chain);
c906108c
SS
363}
364
365void
366restore_final_cleanups (chain)
367 struct cleanup *chain;
368{
c5aa993b 369 restore_my_cleanups (&final_cleanup_chain, chain);
c906108c
SS
370}
371
372void
373restore_my_cleanups (pmy_chain, chain)
374 struct cleanup **pmy_chain;
375 struct cleanup *chain;
376{
377 *pmy_chain = chain;
378}
379
380/* This function is useful for cleanups.
381 Do
382
c5aa993b
JM
383 foo = xmalloc (...);
384 old_chain = make_cleanup (free_current_contents, &foo);
c906108c
SS
385
386 to arrange to free the object thus allocated. */
387
388void
389free_current_contents (location)
390 char **location;
391{
392 free (*location);
393}
394
395/* Provide a known function that does nothing, to use as a base for
396 for a possibly long chain of cleanups. This is useful where we
397 use the cleanup chain for handling normal cleanups as well as dealing
398 with cleanups that need to be done as a result of a call to error().
399 In such cases, we may not be certain where the first cleanup is, unless
400 we have a do-nothing one to always use as the base. */
401
402/* ARGSUSED */
403void
404null_cleanup (arg)
c5aa993b 405 PTR arg;
c906108c
SS
406{
407}
408
43ff13b4 409/* Add a continuation to the continuation list, the gloabl list
c2d11a7d 410 cmd_continuation. The new continuation will be added at the front.*/
43ff13b4
JM
411void
412add_continuation (continuation_hook, arg_list)
c5aa993b
JM
413 void (*continuation_hook) PARAMS ((struct continuation_arg *));
414 struct continuation_arg *arg_list;
43ff13b4 415{
c5aa993b 416 struct continuation *continuation_ptr;
43ff13b4 417
c5aa993b
JM
418 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
419 continuation_ptr->continuation_hook = continuation_hook;
420 continuation_ptr->arg_list = arg_list;
421 continuation_ptr->next = cmd_continuation;
422 cmd_continuation = continuation_ptr;
43ff13b4
JM
423}
424
425/* Walk down the cmd_continuation list, and execute all the
c2d11a7d
JM
426 continuations. There is a problem though. In some cases new
427 continuations may be added while we are in the middle of this
428 loop. If this happens they will be added in the front, and done
429 before we have a chance of exhausting those that were already
430 there. We need to then save the beginning of the list in a pointer
431 and do the continuations from there on, instead of using the
432 global beginning of list as our iteration pointer.*/
c5aa993b 433void
43ff13b4 434do_all_continuations ()
c2d11a7d
JM
435{
436 struct continuation *continuation_ptr;
437 struct continuation *saved_continuation;
438
439 /* Copy the list header into another pointer, and set the global
440 list header to null, so that the global list can change as a side
441 effect of invoking the continuations and the processing of
442 the preexisting continuations will not be affected. */
443 continuation_ptr = cmd_continuation;
444 cmd_continuation = NULL;
445
446 /* Work now on the list we have set aside. */
447 while (continuation_ptr)
448 {
449 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
450 saved_continuation = continuation_ptr;
451 continuation_ptr = continuation_ptr->next;
452 free (saved_continuation);
453 }
454}
455
456/* Walk down the cmd_continuation list, and get rid of all the
457 continuations. */
458void
459discard_all_continuations ()
43ff13b4 460{
c5aa993b 461 struct continuation *continuation_ptr;
43ff13b4 462
c5aa993b
JM
463 while (cmd_continuation)
464 {
c5aa993b
JM
465 continuation_ptr = cmd_continuation;
466 cmd_continuation = continuation_ptr->next;
467 free (continuation_ptr);
468 }
43ff13b4 469}
c2c6d25f 470
c2d11a7d
JM
471/* Add a continuation to the continuation list, the gloabl list
472 intermediate_continuation. The new continuation will be added at the front.*/
473void
474add_intermediate_continuation (continuation_hook, arg_list)
475 void (*continuation_hook) PARAMS ((struct continuation_arg *));
476 struct continuation_arg *arg_list;
477{
478 struct continuation *continuation_ptr;
479
480 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
481 continuation_ptr->continuation_hook = continuation_hook;
482 continuation_ptr->arg_list = arg_list;
483 continuation_ptr->next = intermediate_continuation;
484 intermediate_continuation = continuation_ptr;
485}
486
487/* Walk down the cmd_continuation list, and execute all the
488 continuations. There is a problem though. In some cases new
489 continuations may be added while we are in the middle of this
490 loop. If this happens they will be added in the front, and done
491 before we have a chance of exhausting those that were already
492 there. We need to then save the beginning of the list in a pointer
493 and do the continuations from there on, instead of using the
494 global beginning of list as our iteration pointer.*/
495void
496do_all_intermediate_continuations ()
497{
498 struct continuation *continuation_ptr;
499 struct continuation *saved_continuation;
500
501 /* Copy the list header into another pointer, and set the global
502 list header to null, so that the global list can change as a side
503 effect of invoking the continuations and the processing of
504 the preexisting continuations will not be affected. */
505 continuation_ptr = intermediate_continuation;
506 intermediate_continuation = NULL;
507
508 /* Work now on the list we have set aside. */
509 while (continuation_ptr)
510 {
511 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
512 saved_continuation = continuation_ptr;
513 continuation_ptr = continuation_ptr->next;
514 free (saved_continuation);
515 }
516}
517
c2c6d25f
JM
518/* Walk down the cmd_continuation list, and get rid of all the
519 continuations. */
520void
c2d11a7d 521discard_all_intermediate_continuations ()
c2c6d25f
JM
522{
523 struct continuation *continuation_ptr;
524
c2d11a7d 525 while (intermediate_continuation)
c2c6d25f 526 {
c2d11a7d
JM
527 continuation_ptr = intermediate_continuation;
528 intermediate_continuation = continuation_ptr->next;
c2c6d25f
JM
529 free (continuation_ptr);
530 }
531}
532
c906108c 533\f
c5aa993b 534
c906108c
SS
535/* Print a warning message. Way to use this is to call warning_begin,
536 output the warning message (use unfiltered output to gdb_stderr),
537 ending in a newline. There is not currently a warning_end that you
538 call afterwards, but such a thing might be added if it is useful
539 for a GUI to separate warning messages from other output.
540
541 FIXME: Why do warnings use unfiltered output and errors filtered?
542 Is this anything other than a historical accident? */
543
544void
545warning_begin ()
546{
547 target_terminal_ours ();
c5aa993b 548 wrap_here (""); /* Force out any buffered output */
c906108c
SS
549 gdb_flush (gdb_stdout);
550 if (warning_pre_print)
551 fprintf_unfiltered (gdb_stderr, warning_pre_print);
552}
553
554/* Print a warning message.
555 The first argument STRING is the warning message, used as a fprintf string,
556 and the remaining args are passed as arguments to it.
557 The primary difference between warnings and errors is that a warning
558 does not force the return to command level. */
559
c906108c 560void
c5aa993b 561warning (const char *string,...)
c906108c
SS
562{
563 va_list args;
c906108c 564 va_start (args, string);
c906108c
SS
565 if (warning_hook)
566 (*warning_hook) (string, args);
567 else
c5aa993b
JM
568 {
569 warning_begin ();
570 vfprintf_unfiltered (gdb_stderr, string, args);
571 fprintf_unfiltered (gdb_stderr, "\n");
572 va_end (args);
573 }
c906108c
SS
574}
575
576/* Start the printing of an error message. Way to use this is to call
577 this, output the error message (use filtered output to gdb_stderr
578 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
579 in a newline, and then call return_to_top_level (RETURN_ERROR).
580 error() provides a convenient way to do this for the special case
581 that the error message can be formatted with a single printf call,
582 but this is more general. */
583void
584error_begin ()
585{
586 if (error_begin_hook)
587 error_begin_hook ();
588
589 target_terminal_ours ();
c5aa993b 590 wrap_here (""); /* Force out any buffered output */
c906108c
SS
591 gdb_flush (gdb_stdout);
592
593 annotate_error_begin ();
594
595 if (error_pre_print)
596 fprintf_filtered (gdb_stderr, error_pre_print);
597}
598
599/* Print an error message and return to command level.
600 The first argument STRING is the error message, used as a fprintf string,
601 and the remaining args are passed as arguments to it. */
602
4ce44c66
JM
603NORETURN void
604verror (const char *string, va_list args)
605{
c2d11a7d
JM
606 char *err_string;
607 struct cleanup *err_string_cleanup;
4ce44c66
JM
608 /* FIXME: cagney/1999-11-10: All error calls should come here.
609 Unfortunatly some code uses the sequence: error_begin(); print
610 error message; return_to_top_level. That code should be
611 flushed. */
612 error_begin ();
c2d11a7d
JM
613 /* NOTE: It's tempting to just do the following...
614 vfprintf_filtered (gdb_stderr, string, args);
615 and then follow with a similar looking statement to cause the message
616 to also go to gdb_lasterr. But if we do this, we'll be traversing the
617 va_list twice which works on some platforms and fails miserably on
618 others. */
619 /* Save it as the last error */
4ce44c66
JM
620 gdb_file_rewind (gdb_lasterr);
621 vfprintf_filtered (gdb_lasterr, string, args);
c2d11a7d
JM
622 /* Retrieve the last error and print it to gdb_stderr */
623 err_string = error_last_message ();
624 err_string_cleanup = make_cleanup (free, err_string);
625 fputs_filtered (err_string, gdb_stderr);
626 fprintf_filtered (gdb_stderr, "\n");
627 do_cleanups (err_string_cleanup);
4ce44c66
JM
628 return_to_top_level (RETURN_ERROR);
629}
630
c906108c 631NORETURN void
c5aa993b 632error (const char *string,...)
c906108c
SS
633{
634 va_list args;
c906108c 635 va_start (args, string);
4ce44c66
JM
636 verror (string, args);
637 va_end (args);
c906108c
SS
638}
639
2acceee2
JM
640NORETURN void
641error_stream (GDB_FILE *stream)
642{
4ce44c66
JM
643 long size;
644 char *msg = gdb_file_xstrdup (stream, &size);
645 make_cleanup (free, msg);
646 error ("%s", msg);
2acceee2
JM
647}
648
649/* Get the last error message issued by gdb */
650
651char *
652error_last_message (void)
653{
4ce44c66
JM
654 long len;
655 return gdb_file_xstrdup (gdb_lasterr, &len);
2acceee2 656}
4ce44c66 657
2acceee2
JM
658/* This is to be called by main() at the very beginning */
659
660void
661error_init (void)
662{
4ce44c66 663 gdb_lasterr = mem_fileopen ();
2acceee2 664}
c906108c 665
96baa820
JM
666/* Print a message reporting an internal error. Ask the user if they
667 want to continue, dump core, or just exit. */
c906108c 668
c906108c 669NORETURN void
4ce44c66 670internal_verror (const char *fmt, va_list ap)
c906108c 671{
96baa820
JM
672 static char msg[] = "Internal GDB error: recursive internal error.\n";
673 static int dejavu = 0;
7be570e7
JM
674 int continue_p;
675 int dump_core_p;
c906108c 676
96baa820
JM
677 /* don't allow infinite error recursion. */
678 switch (dejavu)
679 {
680 case 0:
681 dejavu = 1;
682 break;
683 case 1:
684 dejavu = 2;
685 fputs_unfiltered (msg, gdb_stderr);
686 abort ();
687 default:
688 dejavu = 3;
689 write (STDERR_FILENO, msg, sizeof (msg));
690 exit (1);
691 }
c906108c 692
96baa820 693 /* Try to get the message out */
7be570e7 694 fputs_unfiltered ("gdb-internal-error: ", gdb_stderr);
4ce44c66 695 vfprintf_unfiltered (gdb_stderr, fmt, ap);
96baa820 696 fputs_unfiltered ("\n", gdb_stderr);
c906108c 697
7be570e7
JM
698 /* Default (no case) is to quit GDB. When in batch mode this
699 lessens the likelhood of GDB going into an infinate loop. */
700 continue_p = query ("\
701An internal GDB error was detected. This may make make further\n\
702debugging unreliable. Continue this debugging session? ");
703
704 /* Default (no case) is to not dump core. Lessen the chance of GDB
705 leaving random core files around. */
706 dump_core_p = query ("\
707Create a core file containing the current state of GDB? ");
708
709 if (continue_p)
710 {
711 if (dump_core_p)
712 {
713 if (fork () == 0)
714 abort ();
715 }
716 }
717 else
718 {
719 if (dump_core_p)
720 abort ();
721 else
722 exit (1);
723 }
96baa820
JM
724
725 dejavu = 0;
726 return_to_top_level (RETURN_ERROR);
c906108c
SS
727}
728
4ce44c66
JM
729NORETURN void
730internal_error (char *string, ...)
731{
732 va_list ap;
733 va_start (ap, string);
734 internal_verror (string, ap);
735 va_end (ap);
736}
737
c906108c
SS
738/* The strerror() function can return NULL for errno values that are
739 out of range. Provide a "safe" version that always returns a
740 printable string. */
741
742char *
743safe_strerror (errnum)
744 int errnum;
745{
746 char *msg;
747 static char buf[32];
748
749 if ((msg = strerror (errnum)) == NULL)
750 {
751 sprintf (buf, "(undocumented errno %d)", errnum);
752 msg = buf;
753 }
754 return (msg);
755}
756
757/* The strsignal() function can return NULL for signal values that are
758 out of range. Provide a "safe" version that always returns a
759 printable string. */
760
761char *
762safe_strsignal (signo)
763 int signo;
764{
765 char *msg;
766 static char buf[32];
767
768 if ((msg = strsignal (signo)) == NULL)
769 {
770 sprintf (buf, "(undocumented signal %d)", signo);
771 msg = buf;
772 }
773 return (msg);
774}
775
776
777/* Print the system error message for errno, and also mention STRING
778 as the file name for which the error was encountered.
779 Then return to command level. */
780
781NORETURN void
782perror_with_name (string)
783 char *string;
784{
785 char *err;
786 char *combined;
787
788 err = safe_strerror (errno);
789 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
790 strcpy (combined, string);
791 strcat (combined, ": ");
792 strcat (combined, err);
793
794 /* I understand setting these is a matter of taste. Still, some people
795 may clear errno but not know about bfd_error. Doing this here is not
796 unreasonable. */
797 bfd_set_error (bfd_error_no_error);
798 errno = 0;
799
c5aa993b 800 error ("%s.", combined);
c906108c
SS
801}
802
803/* Print the system error message for ERRCODE, and also mention STRING
804 as the file name for which the error was encountered. */
805
806void
807print_sys_errmsg (string, errcode)
808 char *string;
809 int errcode;
810{
811 char *err;
812 char *combined;
813
814 err = safe_strerror (errcode);
815 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
816 strcpy (combined, string);
817 strcat (combined, ": ");
818 strcat (combined, err);
819
820 /* We want anything which was printed on stdout to come out first, before
821 this message. */
822 gdb_flush (gdb_stdout);
823 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
824}
825
826/* Control C eventually causes this to be called, at a convenient time. */
827
828void
829quit ()
830{
831 serial_t gdb_stdout_serial = serial_fdopen (1);
832
833 target_terminal_ours ();
834
835 /* We want all output to appear now, before we print "Quit". We
836 have 3 levels of buffering we have to flush (it's possible that
837 some of these should be changed to flush the lower-level ones
838 too): */
839
840 /* 1. The _filtered buffer. */
c5aa993b 841 wrap_here ((char *) 0);
c906108c
SS
842
843 /* 2. The stdio buffer. */
844 gdb_flush (gdb_stdout);
845 gdb_flush (gdb_stderr);
846
847 /* 3. The system-level buffer. */
848 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
849 SERIAL_UN_FDOPEN (gdb_stdout_serial);
850
851 annotate_error_begin ();
852
853 /* Don't use *_filtered; we don't want to prompt the user to continue. */
854 if (quit_pre_print)
855 fprintf_unfiltered (gdb_stderr, quit_pre_print);
856
7be570e7
JM
857#ifdef __MSDOS__
858 /* No steenking SIGINT will ever be coming our way when the
859 program is resumed. Don't lie. */
860 fprintf_unfiltered (gdb_stderr, "Quit\n");
861#else
c906108c 862 if (job_control
c5aa993b
JM
863 /* If there is no terminal switching for this target, then we can't
864 possibly get screwed by the lack of job control. */
c906108c
SS
865 || current_target.to_terminal_ours == NULL)
866 fprintf_unfiltered (gdb_stderr, "Quit\n");
867 else
868 fprintf_unfiltered (gdb_stderr,
c5aa993b 869 "Quit (expect signal SIGINT when the program is resumed)\n");
7be570e7 870#endif
c906108c
SS
871 return_to_top_level (RETURN_QUIT);
872}
873
874
7be570e7 875#if defined(_MSC_VER) /* should test for wingdb instead? */
c906108c
SS
876
877/*
878 * Windows translates all keyboard and mouse events
879 * into a message which is appended to the message
880 * queue for the process.
881 */
882
c5aa993b
JM
883void
884notice_quit ()
c906108c 885{
c5aa993b 886 int k = win32pollquit ();
c906108c
SS
887 if (k == 1)
888 quit_flag = 1;
889 else if (k == 2)
890 immediate_quit = 1;
891}
892
4ce44c66 893#else /* !defined(_MSC_VER) */
c906108c 894
c5aa993b
JM
895void
896notice_quit ()
c906108c
SS
897{
898 /* Done by signals */
899}
900
4ce44c66 901#endif /* !defined(_MSC_VER) */
c906108c 902
c906108c 903/* Control C comes here */
c906108c
SS
904void
905request_quit (signo)
906 int signo;
907{
908 quit_flag = 1;
909 /* Restore the signal handler. Harmless with BSD-style signals, needed
910 for System V-style signals. So just always do it, rather than worrying
911 about USG defines and stuff like that. */
912 signal (signo, request_quit);
913
914#ifdef REQUEST_QUIT
915 REQUEST_QUIT;
916#else
c5aa993b 917 if (immediate_quit)
c906108c
SS
918 quit ();
919#endif
920}
c906108c
SS
921\f
922/* Memory management stuff (malloc friends). */
923
924/* Make a substitute size_t for non-ANSI compilers. */
925
926#ifndef HAVE_STDDEF_H
927#ifndef size_t
928#define size_t unsigned int
929#endif
930#endif
931
932#if !defined (USE_MMALLOC)
933
934PTR
935mmalloc (md, size)
936 PTR md;
937 size_t size;
938{
939 return malloc (size);
940}
941
942PTR
943mrealloc (md, ptr, size)
944 PTR md;
945 PTR ptr;
946 size_t size;
947{
c5aa993b 948 if (ptr == 0) /* Guard against old realloc's */
c906108c
SS
949 return malloc (size);
950 else
951 return realloc (ptr, size);
952}
953
954void
955mfree (md, ptr)
956 PTR md;
957 PTR ptr;
958{
959 free (ptr);
960}
961
c5aa993b 962#endif /* USE_MMALLOC */
c906108c
SS
963
964#if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
965
966void
967init_malloc (md)
968 PTR md;
969{
970}
971
972#else /* Have mmalloc and want corruption checking */
973
974static void
975malloc_botch ()
976{
96baa820
JM
977 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
978 abort ();
c906108c
SS
979}
980
981/* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
982 by MD, to detect memory corruption. Note that MD may be NULL to specify
983 the default heap that grows via sbrk.
984
985 Note that for freshly created regions, we must call mmcheckf prior to any
986 mallocs in the region. Otherwise, any region which was allocated prior to
987 installing the checking hooks, which is later reallocated or freed, will
988 fail the checks! The mmcheck function only allows initial hooks to be
989 installed before the first mmalloc. However, anytime after we have called
990 mmcheck the first time to install the checking hooks, we can call it again
991 to update the function pointer to the memory corruption handler.
992
993 Returns zero on failure, non-zero on success. */
994
995#ifndef MMCHECK_FORCE
996#define MMCHECK_FORCE 0
997#endif
998
999void
1000init_malloc (md)
1001 PTR md;
1002{
1003 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
1004 {
1005 /* Don't use warning(), which relies on current_target being set
c5aa993b
JM
1006 to something other than dummy_target, until after
1007 initialize_all_files(). */
c906108c
SS
1008
1009 fprintf_unfiltered
1010 (gdb_stderr, "warning: failed to install memory consistency checks; ");
1011 fprintf_unfiltered
1012 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1013 }
1014
1015 mmtrace ();
1016}
1017
1018#endif /* Have mmalloc and want corruption checking */
1019
1020/* Called when a memory allocation fails, with the number of bytes of
1021 memory requested in SIZE. */
1022
1023NORETURN void
1024nomem (size)
1025 long size;
1026{
1027 if (size > 0)
1028 {
96baa820 1029 internal_error ("virtual memory exhausted: can't allocate %ld bytes.", size);
c906108c
SS
1030 }
1031 else
1032 {
96baa820 1033 internal_error ("virtual memory exhausted.");
c906108c
SS
1034 }
1035}
1036
1037/* Like mmalloc but get error if no storage available, and protect against
1038 the caller wanting to allocate zero bytes. Whether to return NULL for
1039 a zero byte request, or translate the request into a request for one
1040 byte of zero'd storage, is a religious issue. */
1041
1042PTR
1043xmmalloc (md, size)
1044 PTR md;
1045 long size;
1046{
1047 register PTR val;
1048
1049 if (size == 0)
1050 {
1051 val = NULL;
1052 }
1053 else if ((val = mmalloc (md, size)) == NULL)
1054 {
1055 nomem (size);
1056 }
1057 return (val);
1058}
1059
1060/* Like mrealloc but get error if no storage available. */
1061
1062PTR
1063xmrealloc (md, ptr, size)
1064 PTR md;
1065 PTR ptr;
1066 long size;
1067{
1068 register PTR val;
1069
1070 if (ptr != NULL)
1071 {
1072 val = mrealloc (md, ptr, size);
1073 }
1074 else
1075 {
1076 val = mmalloc (md, size);
1077 }
1078 if (val == NULL)
1079 {
1080 nomem (size);
1081 }
1082 return (val);
1083}
1084
1085/* Like malloc but get error if no storage available, and protect against
1086 the caller wanting to allocate zero bytes. */
1087
1088PTR
1089xmalloc (size)
1090 size_t size;
1091{
1092 return (xmmalloc ((PTR) NULL, size));
1093}
1094
1095/* Like mrealloc but get error if no storage available. */
1096
1097PTR
1098xrealloc (ptr, size)
1099 PTR ptr;
1100 size_t size;
1101{
1102 return (xmrealloc ((PTR) NULL, ptr, size));
1103}
c906108c 1104\f
c5aa993b 1105
c906108c
SS
1106/* My replacement for the read system call.
1107 Used like `read' but keeps going if `read' returns too soon. */
1108
1109int
1110myread (desc, addr, len)
1111 int desc;
1112 char *addr;
1113 int len;
1114{
1115 register int val;
1116 int orglen = len;
1117
1118 while (len > 0)
1119 {
1120 val = read (desc, addr, len);
1121 if (val < 0)
1122 return val;
1123 if (val == 0)
1124 return orglen - len;
1125 len -= val;
1126 addr += val;
1127 }
1128 return orglen;
1129}
1130\f
1131/* Make a copy of the string at PTR with SIZE characters
1132 (and add a null character at the end in the copy).
1133 Uses malloc to get the space. Returns the address of the copy. */
1134
1135char *
1136savestring (ptr, size)
1137 const char *ptr;
1138 int size;
1139{
1140 register char *p = (char *) xmalloc (size + 1);
1141 memcpy (p, ptr, size);
1142 p[size] = 0;
1143 return p;
1144}
1145
1146char *
1147msavestring (md, ptr, size)
1148 PTR md;
1149 const char *ptr;
1150 int size;
1151{
1152 register char *p = (char *) xmmalloc (md, size + 1);
1153 memcpy (p, ptr, size);
1154 p[size] = 0;
1155 return p;
1156}
1157
1158/* The "const" is so it compiles under DGUX (which prototypes strsave
1159 in <string.h>. FIXME: This should be named "xstrsave", shouldn't it?
1160 Doesn't real strsave return NULL if out of memory? */
1161char *
1162strsave (ptr)
1163 const char *ptr;
1164{
1165 return savestring (ptr, strlen (ptr));
1166}
1167
1168char *
1169mstrsave (md, ptr)
1170 PTR md;
1171 const char *ptr;
1172{
1173 return (msavestring (md, ptr, strlen (ptr)));
1174}
1175
1176void
1177print_spaces (n, file)
1178 register int n;
1179 register GDB_FILE *file;
1180{
392a587b 1181 fputs_unfiltered (n_spaces (n), file);
c906108c
SS
1182}
1183
1184/* Print a host address. */
1185
1186void
d4f3574e 1187gdb_print_host_address (void *addr, struct gdb_file *stream)
c906108c
SS
1188{
1189
1190 /* We could use the %p conversion specifier to fprintf if we had any
1191 way of knowing whether this host supports it. But the following
1192 should work on the Alpha and on 32 bit machines. */
1193
c5aa993b 1194 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
c906108c
SS
1195}
1196
1197/* Ask user a y-or-n question and return 1 iff answer is yes.
1198 Takes three args which are given to printf to print the question.
1199 The first, a control string, should end in "? ".
1200 It should not say how to answer, because we do that. */
1201
1202/* VARARGS */
1203int
c5aa993b 1204query (char *ctlstr,...)
c906108c
SS
1205{
1206 va_list args;
1207 register int answer;
1208 register int ans2;
1209 int retval;
1210
c906108c 1211 va_start (args, ctlstr);
c906108c
SS
1212
1213 if (query_hook)
1214 {
1215 return query_hook (ctlstr, args);
1216 }
1217
1218 /* Automatically answer "yes" if input is not from a terminal. */
1219 if (!input_from_terminal_p ())
1220 return 1;
1221#ifdef MPW
1222 /* FIXME Automatically answer "yes" if called from MacGDB. */
1223 if (mac_app)
1224 return 1;
1225#endif /* MPW */
1226
1227 while (1)
1228 {
1229 wrap_here (""); /* Flush any buffered output */
1230 gdb_flush (gdb_stdout);
1231
1232 if (annotation_level > 1)
1233 printf_filtered ("\n\032\032pre-query\n");
1234
1235 vfprintf_filtered (gdb_stdout, ctlstr, args);
1236 printf_filtered ("(y or n) ");
1237
1238 if (annotation_level > 1)
1239 printf_filtered ("\n\032\032query\n");
1240
1241#ifdef MPW
1242 /* If not in MacGDB, move to a new line so the entered line doesn't
c5aa993b 1243 have a prompt on the front of it. */
c906108c
SS
1244 if (!mac_app)
1245 fputs_unfiltered ("\n", gdb_stdout);
1246#endif /* MPW */
1247
c5aa993b 1248 wrap_here ("");
c906108c
SS
1249 gdb_flush (gdb_stdout);
1250
1251#if defined(TUI)
c5aa993b 1252 if (!tui_version || cmdWin == tuiWinWithFocus ())
c906108c
SS
1253#endif
1254 answer = fgetc (stdin);
1255#if defined(TUI)
1256 else
c5aa993b 1257 answer = (unsigned char) tuiBufferGetc ();
c906108c
SS
1258
1259#endif
1260 clearerr (stdin); /* in case of C-d */
1261 if (answer == EOF) /* C-d */
c5aa993b 1262 {
c906108c
SS
1263 retval = 1;
1264 break;
1265 }
1266 /* Eat rest of input line, to EOF or newline */
1267 if ((answer != '\n') || (tui_version && answer != '\r'))
c5aa993b 1268 do
c906108c
SS
1269 {
1270#if defined(TUI)
c5aa993b 1271 if (!tui_version || cmdWin == tuiWinWithFocus ())
c906108c
SS
1272#endif
1273 ans2 = fgetc (stdin);
1274#if defined(TUI)
1275 else
c5aa993b 1276 ans2 = (unsigned char) tuiBufferGetc ();
c906108c
SS
1277#endif
1278 clearerr (stdin);
1279 }
c5aa993b
JM
1280 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1281 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
c906108c
SS
1282
1283 if (answer >= 'a')
1284 answer -= 040;
1285 if (answer == 'Y')
1286 {
1287 retval = 1;
1288 break;
1289 }
1290 if (answer == 'N')
1291 {
1292 retval = 0;
1293 break;
1294 }
1295 printf_filtered ("Please answer y or n.\n");
1296 }
1297
1298 if (annotation_level > 1)
1299 printf_filtered ("\n\032\032post-query\n");
1300 return retval;
1301}
c906108c 1302\f
c5aa993b 1303
c906108c
SS
1304/* Parse a C escape sequence. STRING_PTR points to a variable
1305 containing a pointer to the string to parse. That pointer
1306 should point to the character after the \. That pointer
1307 is updated past the characters we use. The value of the
1308 escape sequence is returned.
1309
1310 A negative value means the sequence \ newline was seen,
1311 which is supposed to be equivalent to nothing at all.
1312
1313 If \ is followed by a null character, we return a negative
1314 value and leave the string pointer pointing at the null character.
1315
1316 If \ is followed by 000, we return 0 and leave the string pointer
1317 after the zeros. A value of 0 does not mean end of string. */
1318
1319int
1320parse_escape (string_ptr)
1321 char **string_ptr;
1322{
1323 register int c = *(*string_ptr)++;
1324 switch (c)
1325 {
1326 case 'a':
1327 return 007; /* Bell (alert) char */
1328 case 'b':
1329 return '\b';
1330 case 'e': /* Escape character */
1331 return 033;
1332 case 'f':
1333 return '\f';
1334 case 'n':
1335 return '\n';
1336 case 'r':
1337 return '\r';
1338 case 't':
1339 return '\t';
1340 case 'v':
1341 return '\v';
1342 case '\n':
1343 return -2;
1344 case 0:
1345 (*string_ptr)--;
1346 return 0;
1347 case '^':
1348 c = *(*string_ptr)++;
1349 if (c == '\\')
1350 c = parse_escape (string_ptr);
1351 if (c == '?')
1352 return 0177;
1353 return (c & 0200) | (c & 037);
c5aa993b 1354
c906108c
SS
1355 case '0':
1356 case '1':
1357 case '2':
1358 case '3':
1359 case '4':
1360 case '5':
1361 case '6':
1362 case '7':
1363 {
1364 register int i = c - '0';
1365 register int count = 0;
1366 while (++count < 3)
1367 {
1368 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1369 {
1370 i *= 8;
1371 i += c - '0';
1372 }
1373 else
1374 {
1375 (*string_ptr)--;
1376 break;
1377 }
1378 }
1379 return i;
1380 }
1381 default:
1382 return c;
1383 }
1384}
1385\f
1386/* Print the character C on STREAM as part of the contents of a literal
1387 string whose delimiter is QUOTER. Note that this routine should only
1388 be call for printing things which are independent of the language
1389 of the program being debugged. */
1390
43e526b9
JM
1391static void printchar PARAMS ((int c, void (*do_fputs) (const char *, GDB_FILE*), void (*do_fprintf) (GDB_FILE*, const char *, ...), GDB_FILE *stream, int quoter));
1392
1393static void
1394printchar (c, do_fputs, do_fprintf, stream, quoter)
1395 int c;
1396 void (*do_fputs) PARAMS ((const char *, GDB_FILE*));
1397 void (*do_fprintf) PARAMS ((GDB_FILE*, const char *, ...));
c906108c
SS
1398 GDB_FILE *stream;
1399 int quoter;
1400{
1401
1402 c &= 0xFF; /* Avoid sign bit follies */
1403
c5aa993b
JM
1404 if (c < 0x20 || /* Low control chars */
1405 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1406 (sevenbit_strings && c >= 0x80))
1407 { /* high order bit set */
1408 switch (c)
1409 {
1410 case '\n':
43e526b9 1411 do_fputs ("\\n", stream);
c5aa993b
JM
1412 break;
1413 case '\b':
43e526b9 1414 do_fputs ("\\b", stream);
c5aa993b
JM
1415 break;
1416 case '\t':
43e526b9 1417 do_fputs ("\\t", stream);
c5aa993b
JM
1418 break;
1419 case '\f':
43e526b9 1420 do_fputs ("\\f", stream);
c5aa993b
JM
1421 break;
1422 case '\r':
43e526b9 1423 do_fputs ("\\r", stream);
c5aa993b
JM
1424 break;
1425 case '\033':
43e526b9 1426 do_fputs ("\\e", stream);
c5aa993b
JM
1427 break;
1428 case '\007':
43e526b9 1429 do_fputs ("\\a", stream);
c5aa993b
JM
1430 break;
1431 default:
43e526b9 1432 do_fprintf (stream, "\\%.3o", (unsigned int) c);
c5aa993b
JM
1433 break;
1434 }
1435 }
1436 else
1437 {
1438 if (c == '\\' || c == quoter)
43e526b9
JM
1439 do_fputs ("\\", stream);
1440 do_fprintf (stream, "%c", c);
c5aa993b 1441 }
c906108c 1442}
43e526b9
JM
1443
1444/* Print the character C on STREAM as part of the contents of a
1445 literal string whose delimiter is QUOTER. Note that these routines
1446 should only be call for printing things which are independent of
1447 the language of the program being debugged. */
1448
1449void
1450fputstr_filtered (str, quoter, stream)
1451 const char *str;
1452 int quoter;
1453 GDB_FILE *stream;
1454{
1455 while (*str)
1456 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1457}
1458
1459void
1460fputstr_unfiltered (str, quoter, stream)
1461 const char *str;
1462 int quoter;
1463 GDB_FILE *stream;
1464{
1465 while (*str)
1466 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1467}
1468
1469void
1470fputstrn_unfiltered (str, n, quoter, stream)
1471 const char *str;
1472 int n;
1473 int quoter;
1474 GDB_FILE *stream;
1475{
1476 int i;
1477 for (i = 0; i < n; i++)
1478 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1479}
1480
c906108c 1481\f
c5aa993b 1482
c906108c
SS
1483/* Number of lines per page or UINT_MAX if paging is disabled. */
1484static unsigned int lines_per_page;
e514a9d6 1485/* Number of chars per line or UNIT_MAX if line folding is disabled. */
c906108c
SS
1486static unsigned int chars_per_line;
1487/* Current count of lines printed on this page, chars on this line. */
1488static unsigned int lines_printed, chars_printed;
1489
1490/* Buffer and start column of buffered text, for doing smarter word-
1491 wrapping. When someone calls wrap_here(), we start buffering output
1492 that comes through fputs_filtered(). If we see a newline, we just
1493 spit it out and forget about the wrap_here(). If we see another
1494 wrap_here(), we spit it out and remember the newer one. If we see
1495 the end of the line, we spit out a newline, the indent, and then
1496 the buffered output. */
1497
1498/* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1499 are waiting to be output (they have already been counted in chars_printed).
1500 When wrap_buffer[0] is null, the buffer is empty. */
1501static char *wrap_buffer;
1502
1503/* Pointer in wrap_buffer to the next character to fill. */
1504static char *wrap_pointer;
1505
1506/* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1507 is non-zero. */
1508static char *wrap_indent;
1509
1510/* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1511 is not in effect. */
1512static int wrap_column;
c906108c 1513\f
c5aa993b 1514
c906108c
SS
1515/* Inialize the lines and chars per page */
1516void
c5aa993b 1517init_page_info ()
c906108c
SS
1518{
1519#if defined(TUI)
c5aa993b 1520 if (tui_version && m_winPtrNotNull (cmdWin))
c906108c
SS
1521 {
1522 lines_per_page = cmdWin->generic.height;
1523 chars_per_line = cmdWin->generic.width;
1524 }
1525 else
1526#endif
1527 {
1528 /* These defaults will be used if we are unable to get the correct
1529 values from termcap. */
1530#if defined(__GO32__)
c5aa993b
JM
1531 lines_per_page = ScreenRows ();
1532 chars_per_line = ScreenCols ();
1533#else
c906108c
SS
1534 lines_per_page = 24;
1535 chars_per_line = 80;
1536
1537#if !defined (MPW) && !defined (_WIN32)
1538 /* No termcap under MPW, although might be cool to do something
1539 by looking at worksheet or console window sizes. */
1540 /* Initialize the screen height and width from termcap. */
1541 {
c5aa993b 1542 char *termtype = getenv ("TERM");
c906108c 1543
c5aa993b
JM
1544 /* Positive means success, nonpositive means failure. */
1545 int status;
c906108c 1546
c5aa993b
JM
1547 /* 2048 is large enough for all known terminals, according to the
1548 GNU termcap manual. */
1549 char term_buffer[2048];
c906108c 1550
c5aa993b
JM
1551 if (termtype)
1552 {
c906108c
SS
1553 status = tgetent (term_buffer, termtype);
1554 if (status > 0)
1555 {
c5aa993b 1556 int val;
c906108c 1557 int running_in_emacs = getenv ("EMACS") != NULL;
c5aa993b
JM
1558
1559 val = tgetnum ("li");
1560 if (val >= 0 && !running_in_emacs)
1561 lines_per_page = val;
1562 else
1563 /* The number of lines per page is not mentioned
c906108c
SS
1564 in the terminal description. This probably means
1565 that paging is not useful (e.g. emacs shell window),
1566 so disable paging. */
c5aa993b
JM
1567 lines_per_page = UINT_MAX;
1568
1569 val = tgetnum ("co");
1570 if (val >= 0)
1571 chars_per_line = val;
c906108c 1572 }
c5aa993b 1573 }
c906108c
SS
1574 }
1575#endif /* MPW */
1576
1577#if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1578
1579 /* If there is a better way to determine the window size, use it. */
1580 SIGWINCH_HANDLER (SIGWINCH);
1581#endif
1582#endif
1583 /* If the output is not a terminal, don't paginate it. */
1584 if (!GDB_FILE_ISATTY (gdb_stdout))
c5aa993b
JM
1585 lines_per_page = UINT_MAX;
1586 } /* the command_line_version */
1587 set_width ();
c906108c
SS
1588}
1589
1590static void
c5aa993b 1591set_width ()
c906108c
SS
1592{
1593 if (chars_per_line == 0)
c5aa993b 1594 init_page_info ();
c906108c
SS
1595
1596 if (!wrap_buffer)
1597 {
1598 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1599 wrap_buffer[0] = '\0';
1600 }
1601 else
1602 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
c5aa993b 1603 wrap_pointer = wrap_buffer; /* Start it at the beginning */
c906108c
SS
1604}
1605
1606/* ARGSUSED */
c5aa993b 1607static void
c906108c
SS
1608set_width_command (args, from_tty, c)
1609 char *args;
1610 int from_tty;
1611 struct cmd_list_element *c;
1612{
1613 set_width ();
1614}
1615
1616/* Wait, so the user can read what's on the screen. Prompt the user
1617 to continue by pressing RETURN. */
1618
1619static void
1620prompt_for_continue ()
1621{
1622 char *ignore;
1623 char cont_prompt[120];
1624
1625 if (annotation_level > 1)
1626 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1627
1628 strcpy (cont_prompt,
1629 "---Type <return> to continue, or q <return> to quit---");
1630 if (annotation_level > 1)
1631 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1632
1633 /* We must do this *before* we call gdb_readline, else it will eventually
1634 call us -- thinking that we're trying to print beyond the end of the
1635 screen. */
1636 reinitialize_more_filter ();
1637
1638 immediate_quit++;
1639 /* On a real operating system, the user can quit with SIGINT.
1640 But not on GO32.
1641
1642 'q' is provided on all systems so users don't have to change habits
1643 from system to system, and because telling them what to do in
1644 the prompt is more user-friendly than expecting them to think of
1645 SIGINT. */
1646 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1647 whereas control-C to gdb_readline will cause the user to get dumped
1648 out to DOS. */
1649 ignore = readline (cont_prompt);
1650
1651 if (annotation_level > 1)
1652 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1653
1654 if (ignore)
1655 {
1656 char *p = ignore;
1657 while (*p == ' ' || *p == '\t')
1658 ++p;
1659 if (p[0] == 'q')
0f71a2f6 1660 {
6426a772 1661 if (!event_loop_p)
0f71a2f6
JM
1662 request_quit (SIGINT);
1663 else
c5aa993b 1664 async_request_quit (0);
0f71a2f6 1665 }
c906108c
SS
1666 free (ignore);
1667 }
1668 immediate_quit--;
1669
1670 /* Now we have to do this again, so that GDB will know that it doesn't
1671 need to save the ---Type <return>--- line at the top of the screen. */
1672 reinitialize_more_filter ();
1673
1674 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1675}
1676
1677/* Reinitialize filter; ie. tell it to reset to original values. */
1678
1679void
1680reinitialize_more_filter ()
1681{
1682 lines_printed = 0;
1683 chars_printed = 0;
1684}
1685
1686/* Indicate that if the next sequence of characters overflows the line,
1687 a newline should be inserted here rather than when it hits the end.
1688 If INDENT is non-null, it is a string to be printed to indent the
1689 wrapped part on the next line. INDENT must remain accessible until
1690 the next call to wrap_here() or until a newline is printed through
1691 fputs_filtered().
1692
1693 If the line is already overfull, we immediately print a newline and
1694 the indentation, and disable further wrapping.
1695
1696 If we don't know the width of lines, but we know the page height,
1697 we must not wrap words, but should still keep track of newlines
1698 that were explicitly printed.
1699
1700 INDENT should not contain tabs, as that will mess up the char count
1701 on the next line. FIXME.
1702
1703 This routine is guaranteed to force out any output which has been
1704 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1705 used to force out output from the wrap_buffer. */
1706
1707void
c5aa993b 1708wrap_here (indent)
c906108c
SS
1709 char *indent;
1710{
1711 /* This should have been allocated, but be paranoid anyway. */
1712 if (!wrap_buffer)
1713 abort ();
1714
1715 if (wrap_buffer[0])
1716 {
1717 *wrap_pointer = '\0';
1718 fputs_unfiltered (wrap_buffer, gdb_stdout);
1719 }
1720 wrap_pointer = wrap_buffer;
1721 wrap_buffer[0] = '\0';
c5aa993b 1722 if (chars_per_line == UINT_MAX) /* No line overflow checking */
c906108c
SS
1723 {
1724 wrap_column = 0;
1725 }
1726 else if (chars_printed >= chars_per_line)
1727 {
1728 puts_filtered ("\n");
1729 if (indent != NULL)
1730 puts_filtered (indent);
1731 wrap_column = 0;
1732 }
1733 else
1734 {
1735 wrap_column = chars_printed;
1736 if (indent == NULL)
1737 wrap_indent = "";
1738 else
1739 wrap_indent = indent;
1740 }
1741}
1742
1743/* Ensure that whatever gets printed next, using the filtered output
1744 commands, starts at the beginning of the line. I.E. if there is
1745 any pending output for the current line, flush it and start a new
1746 line. Otherwise do nothing. */
1747
1748void
1749begin_line ()
1750{
1751 if (chars_printed > 0)
1752 {
1753 puts_filtered ("\n");
1754 }
1755}
1756
ac9a91a7
JM
1757
1758/* ``struct gdb_file'' implementation that maps directly onto
1759 <stdio.h>'s FILE. */
1760
11cf8741 1761static gdb_file_write_ftype stdio_file_write;
ac9a91a7
JM
1762static gdb_file_fputs_ftype stdio_file_fputs;
1763static gdb_file_isatty_ftype stdio_file_isatty;
1764static gdb_file_delete_ftype stdio_file_delete;
c5aa993b 1765static struct gdb_file *stdio_file_new PARAMS ((FILE * file, int close_p));
ac9a91a7
JM
1766static gdb_file_flush_ftype stdio_file_flush;
1767
1768static int stdio_file_magic;
1769
1770struct stdio_file
c5aa993b
JM
1771 {
1772 int *magic;
1773 FILE *file;
1774 int close_p;
1775 };
ac9a91a7
JM
1776
1777static struct gdb_file *
1778stdio_file_new (file, close_p)
1779 FILE *file;
1780 int close_p;
1781{
1782 struct gdb_file *gdb_file = gdb_file_new ();
1783 struct stdio_file *stdio = xmalloc (sizeof (struct stdio_file));
1784 stdio->magic = &stdio_file_magic;
1785 stdio->file = file;
1786 stdio->close_p = close_p;
1787 set_gdb_file_data (gdb_file, stdio, stdio_file_delete);
1788 set_gdb_file_flush (gdb_file, stdio_file_flush);
11cf8741 1789 set_gdb_file_write (gdb_file, stdio_file_write);
ac9a91a7
JM
1790 set_gdb_file_fputs (gdb_file, stdio_file_fputs);
1791 set_gdb_file_isatty (gdb_file, stdio_file_isatty);
1792 return gdb_file;
1793}
1794
1795static void
1796stdio_file_delete (file)
1797 struct gdb_file *file;
1798{
1799 struct stdio_file *stdio = gdb_file_data (file);
1800 if (stdio->magic != &stdio_file_magic)
11cf8741 1801 internal_error ("stdio_file_delete: bad magic number");
ac9a91a7
JM
1802 if (stdio->close_p)
1803 {
1804 fclose (stdio->file);
1805 }
1806 free (stdio);
1807}
1808
1809static void
1810stdio_file_flush (file)
1811 struct gdb_file *file;
c906108c 1812{
ac9a91a7
JM
1813 struct stdio_file *stdio = gdb_file_data (file);
1814 if (stdio->magic != &stdio_file_magic)
11cf8741 1815 internal_error ("stdio_file_flush: bad magic number");
ac9a91a7
JM
1816 fflush (stdio->file);
1817}
1818
11cf8741
JM
1819static void
1820stdio_file_write (struct gdb_file *file, const char *buf, long length_buf)
1821{
1822 struct stdio_file *stdio = gdb_file_data (file);
1823 if (stdio->magic != &stdio_file_magic)
1824 internal_error ("stdio_file_write: bad magic number");
1825 fwrite (buf, length_buf, 1, stdio->file);
1826}
1827
ac9a91a7
JM
1828static void
1829stdio_file_fputs (linebuffer, file)
1830 const char *linebuffer;
1831 struct gdb_file *file;
1832{
1833 struct stdio_file *stdio = gdb_file_data (file);
1834 if (stdio->magic != &stdio_file_magic)
11cf8741 1835 internal_error ("stdio_file_fputs: bad magic number");
ac9a91a7
JM
1836 fputs (linebuffer, stdio->file);
1837}
1838
1839static int
1840stdio_file_isatty (file)
1841 struct gdb_file *file;
1842{
1843 struct stdio_file *stdio = gdb_file_data (file);
1844 if (stdio->magic != &stdio_file_magic)
11cf8741 1845 internal_error ("stdio_file_isatty: bad magic number");
ac9a91a7
JM
1846 return (isatty (fileno (stdio->file)));
1847}
1848
1849/* Like fdopen(). Create a gdb_file from a previously opened FILE. */
1850
1851struct gdb_file *
1852stdio_fileopen (file)
1853 FILE *file;
1854{
1855 return stdio_file_new (file, 0);
1856}
1857
1858
917317f4 1859/* A pure memory based ``struct gdb_file'' that can be used an output
4ce44c66
JM
1860 buffer. The buffers accumulated contents are available via
1861 gdb_file_put(). */
917317f4
JM
1862
1863struct mem_file
1864 {
1865 int *magic;
1866 char *buffer;
1867 int sizeof_buffer;
4ce44c66 1868 int length_buffer;
917317f4
JM
1869 };
1870
917317f4
JM
1871static gdb_file_rewind_ftype mem_file_rewind;
1872static gdb_file_put_ftype mem_file_put;
4ce44c66 1873static gdb_file_write_ftype mem_file_write;
917317f4
JM
1874static gdb_file_delete_ftype mem_file_delete;
1875static struct gdb_file *mem_file_new PARAMS ((void));
1876static int mem_file_magic;
1877
1878static struct gdb_file *
1879mem_file_new (void)
1880{
1881 struct mem_file *stream = XMALLOC (struct mem_file);
1882 struct gdb_file *file = gdb_file_new ();
1883 set_gdb_file_data (file, stream, mem_file_delete);
917317f4
JM
1884 set_gdb_file_rewind (file, mem_file_rewind);
1885 set_gdb_file_put (file, mem_file_put);
4ce44c66 1886 set_gdb_file_write (file, mem_file_write);
917317f4
JM
1887 stream->magic = &mem_file_magic;
1888 stream->buffer = NULL;
1889 stream->sizeof_buffer = 0;
4ce44c66 1890 stream->length_buffer = 0;
917317f4
JM
1891 return file;
1892}
1893
1894static void
1895mem_file_delete (struct gdb_file *file)
1896{
1897 struct mem_file *stream = gdb_file_data (file);
1898 if (stream->magic != &mem_file_magic)
1899 internal_error ("mem_file_delete: bad magic number");
1900 if (stream->buffer != NULL)
1901 free (stream->buffer);
1902 free (stream);
1903}
1904
1905struct gdb_file *
1906mem_fileopen (void)
1907{
1908 return mem_file_new ();
1909}
1910
1911static void
1912mem_file_rewind (struct gdb_file *file)
1913{
1914 struct mem_file *stream = gdb_file_data (file);
1915 if (stream->magic != &mem_file_magic)
1916 internal_error ("mem_file_rewind: bad magic number");
4ce44c66 1917 stream->length_buffer = 0;
917317f4
JM
1918}
1919
1920static void
4ce44c66
JM
1921mem_file_put (struct gdb_file *file,
1922 gdb_file_put_method_ftype *write,
1923 void *dest)
917317f4
JM
1924{
1925 struct mem_file *stream = gdb_file_data (file);
1926 if (stream->magic != &mem_file_magic)
1927 internal_error ("mem_file_put: bad magic number");
4ce44c66
JM
1928 if (stream->length_buffer > 0)
1929 write (dest, stream->buffer, stream->length_buffer);
917317f4
JM
1930}
1931
1932void
4ce44c66
JM
1933mem_file_write (struct gdb_file *file,
1934 const char *buffer,
1935 long length_buffer)
917317f4
JM
1936{
1937 struct mem_file *stream = gdb_file_data (file);
1938 if (stream->magic != &mem_file_magic)
4ce44c66 1939 internal_error ("mem_file_write: bad magic number");
917317f4
JM
1940 if (stream->buffer == NULL)
1941 {
4ce44c66
JM
1942 stream->length_buffer = length_buffer;
1943 stream->sizeof_buffer = length_buffer;
917317f4 1944 stream->buffer = xmalloc (stream->sizeof_buffer);
4ce44c66 1945 memcpy (stream->buffer, buffer, length_buffer);
917317f4
JM
1946 }
1947 else
1948 {
4ce44c66
JM
1949 int new_length = stream->length_buffer + length_buffer;
1950 if (new_length >= stream->sizeof_buffer)
917317f4 1951 {
4ce44c66 1952 stream->sizeof_buffer = new_length;
917317f4
JM
1953 stream->buffer = xrealloc (stream->buffer, stream->sizeof_buffer);
1954 }
4ce44c66
JM
1955 memcpy (stream->buffer + stream->length_buffer, buffer, length_buffer);
1956 stream->length_buffer = new_length;
917317f4
JM
1957 }
1958}
1959
ac9a91a7
JM
1960/* A ``struct gdb_file'' that is compatible with all the legacy
1961 code. */
c906108c 1962
104c1213
JM
1963/* new */
1964enum streamtype
1965{
1966 afile,
1967 astring
1968};
1969
1970/* new */
1971struct tui_stream
1972{
1973 int *ts_magic;
1974 enum streamtype ts_streamtype;
1975 FILE *ts_filestream;
1976 char *ts_strbuf;
1977 int ts_buflen;
1978};
1979
ac9a91a7
JM
1980static gdb_file_flush_ftype tui_file_flush;
1981extern gdb_file_fputs_ftype tui_file_fputs;
1982static gdb_file_isatty_ftype tui_file_isatty;
0f71a2f6
JM
1983static gdb_file_rewind_ftype tui_file_rewind;
1984static gdb_file_put_ftype tui_file_put;
ac9a91a7
JM
1985static gdb_file_delete_ftype tui_file_delete;
1986static struct gdb_file *tui_file_new PARAMS ((void));
1987static int tui_file_magic;
1988
1989static struct gdb_file *
1990tui_file_new ()
1991{
1992 struct tui_stream *tui = xmalloc (sizeof (struct tui_stream));
1993 struct gdb_file *file = gdb_file_new ();
1994 set_gdb_file_data (file, tui, tui_file_delete);
1995 set_gdb_file_flush (file, tui_file_flush);
1996 set_gdb_file_fputs (file, tui_file_fputs);
1997 set_gdb_file_isatty (file, tui_file_isatty);
0f71a2f6
JM
1998 set_gdb_file_rewind (file, tui_file_rewind);
1999 set_gdb_file_put (file, tui_file_put);
ac9a91a7
JM
2000 tui->ts_magic = &tui_file_magic;
2001 return file;
2002}
2003
2004static void
2005tui_file_delete (file)
2006 struct gdb_file *file;
2007{
2008 struct tui_stream *tmpstream = gdb_file_data (file);
2009 if (tmpstream->ts_magic != &tui_file_magic)
11cf8741 2010 internal_error ("tui_file_delete: bad magic number");
ac9a91a7 2011 if ((tmpstream->ts_streamtype == astring) &&
c5aa993b 2012 (tmpstream->ts_strbuf != NULL))
ac9a91a7
JM
2013 {
2014 free (tmpstream->ts_strbuf);
2015 }
2016 free (tmpstream);
2017}
2018
2019struct gdb_file *
2020tui_fileopen (stream)
2021 FILE *stream;
2022{
2023 struct gdb_file *file = tui_file_new ();
2024 struct tui_stream *tmpstream = gdb_file_data (file);
2025 tmpstream->ts_streamtype = afile;
2026 tmpstream->ts_filestream = stream;
2027 tmpstream->ts_strbuf = NULL;
2028 tmpstream->ts_buflen = 0;
2029 return file;
2030}
2031
2acceee2
JM
2032struct gdb_file *
2033tui_sfileopen (n)
2034 int n;
2035{
2036 struct gdb_file *file = tui_file_new ();
2037 struct tui_stream *tmpstream = gdb_file_data (file);
2038 tmpstream->ts_streamtype = astring;
2039 tmpstream->ts_filestream = NULL;
2040 if (n > 0)
2041 {
2042 tmpstream->ts_strbuf = xmalloc ((n + 1) * sizeof (char));
2043 tmpstream->ts_strbuf[0] = '\0';
2044 }
2045 else
2046 /* Do not allocate the buffer now. The first time something is printed
11cf8741 2047 one will be allocated by tui_file_adjust_strbuf() */
2acceee2
JM
2048 tmpstream->ts_strbuf = NULL;
2049 tmpstream->ts_buflen = n;
2050 return file;
2051}
2052
c5aa993b 2053static int
ac9a91a7 2054tui_file_isatty (file)
c5aa993b 2055 struct gdb_file *file;
ac9a91a7
JM
2056{
2057 struct tui_stream *stream = gdb_file_data (file);
2058 if (stream->ts_magic != &tui_file_magic)
11cf8741 2059 internal_error ("tui_file_isatty: bad magic number");
c906108c 2060 if (stream->ts_streamtype == afile)
c5aa993b
JM
2061 return (isatty (fileno (stream->ts_filestream)));
2062 else
2063 return 0;
c906108c
SS
2064}
2065
0f71a2f6
JM
2066static void
2067tui_file_rewind (file)
c5aa993b 2068 struct gdb_file *file;
0f71a2f6
JM
2069{
2070 struct tui_stream *stream = gdb_file_data (file);
2071 if (stream->ts_magic != &tui_file_magic)
11cf8741 2072 internal_error ("tui_file_rewind: bad magic number");
0f71a2f6
JM
2073 stream->ts_strbuf[0] = '\0';
2074}
2075
2076static void
4ce44c66
JM
2077tui_file_put (struct gdb_file *file,
2078 gdb_file_put_method_ftype *write,
2079 void *dest)
0f71a2f6
JM
2080{
2081 struct tui_stream *stream = gdb_file_data (file);
2082 if (stream->ts_magic != &tui_file_magic)
11cf8741 2083 internal_error ("tui_file_put: bad magic number");
0f71a2f6 2084 if (stream->ts_streamtype == astring)
4ce44c66 2085 write (dest, stream->ts_strbuf, strlen (stream->ts_strbuf));
0f71a2f6
JM
2086}
2087
104c1213
JM
2088/* All TUI I/O sent to the *_filtered and *_unfiltered functions
2089 eventually ends up here. The fputs_unfiltered_hook is primarily
2090 used by GUIs to collect all output and send it to the GUI, instead
2091 of the controlling terminal. Only output to gdb_stdout and
2092 gdb_stderr are sent to the hook. Everything else is sent on to
2093 fputs to allow file I/O to be handled appropriately. */
2094
2095/* FIXME: Should be broken up and moved to a TUI specific file. */
2096
2097void
2098tui_file_fputs (linebuffer, file)
2099 const char *linebuffer;
2100 GDB_FILE *file;
2101{
2102 struct tui_stream *stream = gdb_file_data (file);
2103#if defined(TUI)
2104 extern int tui_owns_terminal;
2105#endif
917317f4
JM
2106 /* NOTE: cagney/1999-10-13: The use of fputs_unfiltered_hook is
2107 seriously discouraged. Those wanting to hook output should
2108 instead implement their own gdb_file object and install that. See
2109 also tui_file_flush(). */
104c1213
JM
2110 if (fputs_unfiltered_hook
2111 && (file == gdb_stdout
2112 || file == gdb_stderr))
2113 fputs_unfiltered_hook (linebuffer, file);
2114 else
2115 {
2116#if defined(TUI)
2117 if (tui_version && tui_owns_terminal)
2118 {
2119 /* If we get here somehow while updating the TUI (from
2120 * within a tuiDo(), then we need to temporarily
2121 * set up the terminal for GDB output. This probably just
2122 * happens on error output.
2123 */
2124
2125 if (stream->ts_streamtype == astring)
2126 {
11cf8741 2127 tui_file_adjust_strbuf (strlen (linebuffer), stream);
104c1213
JM
2128 strcat (stream->ts_strbuf, linebuffer);
2129 }
2130 else
2131 {
2132 tuiTermUnsetup (0, (tui_version) ? cmdWin->detail.commandInfo.curch : 0);
2133 fputs (linebuffer, stream->ts_filestream);
2134 tuiTermSetup (0);
2135 if (linebuffer[strlen (linebuffer) - 1] == '\n')
2136 tuiClearCommandCharCount ();
2137 else
2138 tuiIncrCommandCharCountBy (strlen (linebuffer));
2139 }
2140 }
2141 else
2142 {
2143 /* The normal case - just do a fputs() */
2144 if (stream->ts_streamtype == astring)
2145 {
11cf8741 2146 tui_file_adjust_strbuf (strlen (linebuffer), stream);
104c1213
JM
2147 strcat (stream->ts_strbuf, linebuffer);
2148 }
2149 else
2150 fputs (linebuffer, stream->ts_filestream);
2151 }
2152
2153
2154#else
2155 if (stream->ts_streamtype == astring)
2156 {
11cf8741 2157 tui_file_adjust_strbuf (strlen (linebuffer), file);
104c1213
JM
2158 strcat (stream->ts_strbuf, linebuffer);
2159 }
2160 else
2161 fputs (linebuffer, stream->ts_filestream);
2162#endif
2163 }
2164}
2165
c906108c 2166char *
11cf8741 2167tui_file_get_strbuf (struct gdb_file *file)
c906108c 2168{
ac9a91a7
JM
2169 struct tui_stream *stream = gdb_file_data (file);
2170 if (stream->ts_magic != &tui_file_magic)
11cf8741 2171 internal_error ("tui_file_get_strbuf: bad magic number");
c906108c
SS
2172 return (stream->ts_strbuf);
2173}
2174
2175/* adjust the length of the buffer by the amount necessary
2176 to accomodate appending a string of length N to the buffer contents */
2177void
11cf8741 2178tui_file_adjust_strbuf (int n, struct gdb_file *file)
c906108c 2179{
ac9a91a7 2180 struct tui_stream *stream = gdb_file_data (file);
c906108c 2181 int non_null_chars;
ac9a91a7 2182 if (stream->ts_magic != &tui_file_magic)
11cf8741 2183 internal_error ("tui_file_adjust_strbuf: bad magic number");
392a587b
JM
2184
2185 if (stream->ts_streamtype != astring)
2186 return;
c5aa993b 2187
392a587b 2188 if (stream->ts_strbuf)
c906108c 2189 {
392a587b 2190 /* There is already a buffer allocated */
c5aa993b
JM
2191 non_null_chars = strlen (stream->ts_strbuf);
2192
2193 if (n > (stream->ts_buflen - non_null_chars - 1))
2194 {
2195 stream->ts_buflen = n + non_null_chars + 1;
2196 stream->ts_strbuf = xrealloc (stream->ts_strbuf, stream->ts_buflen);
2197 }
2198 }
392a587b
JM
2199 else
2200 /* No buffer yet, so allocate one of the desired size */
2201 stream->ts_strbuf = xmalloc ((n + 1) * sizeof (char));
c5aa993b 2202}
c906108c
SS
2203
2204GDB_FILE *
2205gdb_fopen (name, mode)
c5aa993b
JM
2206 char *name;
2207 char *mode;
c906108c 2208{
ac9a91a7
JM
2209 FILE *f = fopen (name, mode);
2210 if (f == NULL)
2211 return NULL;
2212 return stdio_file_new (f, 1);
c906108c
SS
2213}
2214
ac9a91a7
JM
2215static void
2216tui_file_flush (file)
2217 GDB_FILE *file;
c906108c 2218{
ac9a91a7
JM
2219 struct tui_stream *stream = gdb_file_data (file);
2220 if (stream->ts_magic != &tui_file_magic)
917317f4
JM
2221 internal_error ("tui_file_flush: bad magic number");
2222
2223 /* NOTE: cagney/1999-10-12: If we've been linked with code that uses
2224 fputs_unfiltered_hook then we assume that it doesn't need to know
2225 about flushes. Code that does need to know about flushes can
2226 implement a proper gdb_file object. */
2227 if (fputs_unfiltered_hook)
2228 return;
2229
2230 switch (stream->ts_streamtype)
c906108c 2231 {
917317f4
JM
2232 case astring:
2233 break;
2234 case afile:
2235 fflush (stream->ts_filestream);
2236 break;
c906108c 2237 }
c906108c
SS
2238}
2239
ac9a91a7
JM
2240/* Implement the ``struct gdb_file'' object. */
2241
2242static gdb_file_isatty_ftype null_file_isatty;
11cf8741 2243static gdb_file_write_ftype null_file_write;
ac9a91a7
JM
2244static gdb_file_fputs_ftype null_file_fputs;
2245static gdb_file_flush_ftype null_file_flush;
2246static gdb_file_delete_ftype null_file_delete;
0f71a2f6
JM
2247static gdb_file_rewind_ftype null_file_rewind;
2248static gdb_file_put_ftype null_file_put;
ac9a91a7
JM
2249
2250struct gdb_file
c5aa993b 2251 {
4ce44c66 2252 int *magic;
c5aa993b 2253 gdb_file_flush_ftype *to_flush;
11cf8741 2254 gdb_file_write_ftype *to_write;
c5aa993b
JM
2255 gdb_file_fputs_ftype *to_fputs;
2256 gdb_file_delete_ftype *to_delete;
2257 gdb_file_isatty_ftype *to_isatty;
2258 gdb_file_rewind_ftype *to_rewind;
2259 gdb_file_put_ftype *to_put;
2260 void *to_data;
2261 };
4ce44c66 2262int gdb_file_magic;
ac9a91a7
JM
2263
2264struct gdb_file *
2265gdb_file_new ()
2266{
2267 struct gdb_file *file = xmalloc (sizeof (struct gdb_file));
4ce44c66 2268 file->magic = &gdb_file_magic;
ac9a91a7
JM
2269 set_gdb_file_data (file, NULL, null_file_delete);
2270 set_gdb_file_flush (file, null_file_flush);
11cf8741 2271 set_gdb_file_write (file, null_file_write);
ac9a91a7
JM
2272 set_gdb_file_fputs (file, null_file_fputs);
2273 set_gdb_file_isatty (file, null_file_isatty);
0f71a2f6
JM
2274 set_gdb_file_rewind (file, null_file_rewind);
2275 set_gdb_file_put (file, null_file_put);
ac9a91a7
JM
2276 return file;
2277}
c906108c 2278
ac9a91a7
JM
2279void
2280gdb_file_delete (file)
2281 struct gdb_file *file;
2282{
2283 file->to_delete (file);
2284 free (file);
2285}
2286
2287static int
2288null_file_isatty (file)
2289 struct gdb_file *file;
2290{
2291 return 0;
2292}
2293
0f71a2f6
JM
2294static void
2295null_file_rewind (file)
2296 struct gdb_file *file;
2297{
2298 return;
2299}
2300
2301static void
4ce44c66
JM
2302null_file_put (struct gdb_file *file,
2303 gdb_file_put_method_ftype *write,
2304 void *dest)
0f71a2f6
JM
2305{
2306 return;
2307}
2308
ac9a91a7
JM
2309static void
2310null_file_flush (file)
2311 struct gdb_file *file;
2312{
2313 return;
2314}
2315
11cf8741
JM
2316static void
2317null_file_write (struct gdb_file *file,
2318 const char *buf,
2319 long sizeof_buf)
2320{
2321 if (file->to_fputs == null_file_fputs)
2322 /* Both the write and fputs methods are null. Discard the
2323 request. */
2324 return;
2325 else
2326 {
2327 /* The fputs method isn't null, slowly pass the write request
2328 onto that. FYI, this isn't as bad as it may look - the
2329 current (as of 1999-11-07) printf_* function calls fputc and
2330 fputc does exactly the below. By having a write function it
2331 is possible to clean up that code. */
2332 int i;
2333 char b[2];
2334 b[1] = '\0';
2335 for (i = 0; i < sizeof_buf; i++)
2336 {
2337 b[0] = buf[i];
2338 file->to_fputs (b, file);
2339 }
2340 return;
2341 }
2342}
2343
ac9a91a7
JM
2344static void
2345null_file_fputs (buf, file)
2346 const char *buf;
2347 struct gdb_file *file;
2348{
11cf8741
JM
2349 if (file->to_write == null_file_write)
2350 /* Both the write and fputs methods are null. Discard the
2351 request. */
2352 return;
2353 else
2354 {
2355 /* The write method was implemented, use that. */
2356 file->to_write (file, buf, strlen (buf));
2357 }
ac9a91a7
JM
2358}
2359
2360static void
2361null_file_delete (file)
2362 struct gdb_file *file;
2363{
2364 return;
2365}
2366
2367void *
2368gdb_file_data (file)
2369 struct gdb_file *file;
2370{
4ce44c66
JM
2371 if (file->magic != &gdb_file_magic)
2372 internal_error ("gdb_file_data: bad magic number");
ac9a91a7
JM
2373 return file->to_data;
2374}
2375
2376void
2377gdb_flush (file)
2378 struct gdb_file *file;
2379{
2380 file->to_flush (file);
2381}
2382
2383int
2384gdb_file_isatty (file)
2385 struct gdb_file *file;
2386{
2387 return file->to_isatty (file);
2388}
2389
0f71a2f6
JM
2390void
2391gdb_file_rewind (file)
2392 struct gdb_file *file;
2393{
085dd6e6 2394 file->to_rewind (file);
0f71a2f6
JM
2395}
2396
2397void
4ce44c66
JM
2398gdb_file_put (struct gdb_file *file,
2399 gdb_file_put_method_ftype *write,
2400 void *dest)
0f71a2f6 2401{
4ce44c66 2402 file->to_put (file, write, dest);
0f71a2f6
JM
2403}
2404
11cf8741
JM
2405void
2406gdb_file_write (struct gdb_file *file,
2407 const char *buf,
2408 long length_buf)
2409{
2410 file->to_write (file, buf, length_buf);
2411}
2412
ac9a91a7
JM
2413void
2414fputs_unfiltered (buf, file)
2415 const char *buf;
2416 struct gdb_file *file;
2417{
2418 file->to_fputs (buf, file);
2419}
2420
2421void
2422set_gdb_file_flush (file, flush)
2423 struct gdb_file *file;
2424 gdb_file_flush_ftype *flush;
2425{
2426 file->to_flush = flush;
2427}
2428
2429void
2430set_gdb_file_isatty (file, isatty)
2431 struct gdb_file *file;
2432 gdb_file_isatty_ftype *isatty;
2433{
2434 file->to_isatty = isatty;
2435}
2436
0f71a2f6
JM
2437void
2438set_gdb_file_rewind (file, rewind)
2439 struct gdb_file *file;
2440 gdb_file_rewind_ftype *rewind;
2441{
2442 file->to_rewind = rewind;
2443}
2444
2445void
2446set_gdb_file_put (file, put)
2447 struct gdb_file *file;
2448 gdb_file_put_ftype *put;
2449{
2450 file->to_put = put;
2451}
2452
11cf8741
JM
2453void
2454set_gdb_file_write (struct gdb_file *file,
2455 gdb_file_write_ftype *write)
2456{
2457 file->to_write = write;
2458}
2459
ac9a91a7
JM
2460void
2461set_gdb_file_fputs (file, fputs)
2462 struct gdb_file *file;
2463 gdb_file_fputs_ftype *fputs;
2464{
2465 file->to_fputs = fputs;
2466}
2467
2468void
2469set_gdb_file_data (file, data, delete)
2470 struct gdb_file *file;
2471 void *data;
2472 gdb_file_delete_ftype *delete;
2473{
2474 file->to_data = data;
2475 file->to_delete = delete;
c906108c
SS
2476}
2477
4ce44c66
JM
2478/* gdb_file utility function for converting a ``struct gdb_file'' into
2479 a memory buffer''. */
2480
2481struct accumulated_gdb_file
2482{
2483 char *buffer;
2484 long length;
2485};
2486
2487static void
2488do_gdb_file_xstrdup (void *context, const char *buffer, long length)
2489{
2490 struct accumulated_gdb_file *acc = context;
2491 if (acc->buffer == NULL)
2492 acc->buffer = xmalloc (length + 1);
2493 else
2494 acc->buffer = xrealloc (acc->buffer, acc->length + length + 1);
2495 memcpy (acc->buffer + acc->length, buffer, length);
2496 acc->length += length;
2497 acc->buffer[acc->length] = '\0';
2498}
2499
2500char *
2501gdb_file_xstrdup (struct gdb_file *file,
2502 long *length)
2503{
2504 struct accumulated_gdb_file acc;
2505 acc.buffer = NULL;
2506 acc.length = 0;
2507 gdb_file_put (file, do_gdb_file_xstrdup, &acc);
2508 if (acc.buffer == NULL)
2509 acc.buffer = xstrdup ("");
2510 *length = acc.length;
2511 return acc.buffer;
2512}
2513
2514
c906108c
SS
2515/* Like fputs but if FILTER is true, pause after every screenful.
2516
2517 Regardless of FILTER can wrap at points other than the final
2518 character of a line.
2519
2520 Unlike fputs, fputs_maybe_filtered does not return a value.
2521 It is OK for LINEBUFFER to be NULL, in which case just don't print
2522 anything.
2523
2524 Note that a longjmp to top level may occur in this routine (only if
2525 FILTER is true) (since prompt_for_continue may do so) so this
2526 routine should not be called when cleanups are not in place. */
2527
2528static void
2529fputs_maybe_filtered (linebuffer, stream, filter)
2530 const char *linebuffer;
2531 GDB_FILE *stream;
2532 int filter;
2533{
2534 const char *lineptr;
2535
2536 if (linebuffer == 0)
2537 return;
2538
2539 /* Don't do any filtering if it is disabled. */
7a292a7a 2540 if ((stream != gdb_stdout) || !pagination_enabled
c5aa993b 2541 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
c906108c
SS
2542 {
2543 fputs_unfiltered (linebuffer, stream);
2544 return;
2545 }
2546
2547 /* Go through and output each character. Show line extension
2548 when this is necessary; prompt user for new page when this is
2549 necessary. */
c5aa993b 2550
c906108c
SS
2551 lineptr = linebuffer;
2552 while (*lineptr)
2553 {
2554 /* Possible new page. */
2555 if (filter &&
2556 (lines_printed >= lines_per_page - 1))
2557 prompt_for_continue ();
2558
2559 while (*lineptr && *lineptr != '\n')
2560 {
2561 /* Print a single line. */
2562 if (*lineptr == '\t')
2563 {
2564 if (wrap_column)
2565 *wrap_pointer++ = '\t';
2566 else
2567 fputc_unfiltered ('\t', stream);
2568 /* Shifting right by 3 produces the number of tab stops
2569 we have already passed, and then adding one and
c5aa993b 2570 shifting left 3 advances to the next tab stop. */
c906108c
SS
2571 chars_printed = ((chars_printed >> 3) + 1) << 3;
2572 lineptr++;
2573 }
2574 else
2575 {
2576 if (wrap_column)
2577 *wrap_pointer++ = *lineptr;
2578 else
c5aa993b 2579 fputc_unfiltered (*lineptr, stream);
c906108c
SS
2580 chars_printed++;
2581 lineptr++;
2582 }
c5aa993b 2583
c906108c
SS
2584 if (chars_printed >= chars_per_line)
2585 {
2586 unsigned int save_chars = chars_printed;
2587
2588 chars_printed = 0;
2589 lines_printed++;
2590 /* If we aren't actually wrapping, don't output newline --
c5aa993b
JM
2591 if chars_per_line is right, we probably just overflowed
2592 anyway; if it's wrong, let us keep going. */
c906108c
SS
2593 if (wrap_column)
2594 fputc_unfiltered ('\n', stream);
2595
2596 /* Possible new page. */
2597 if (lines_printed >= lines_per_page - 1)
2598 prompt_for_continue ();
2599
2600 /* Now output indentation and wrapped string */
2601 if (wrap_column)
2602 {
2603 fputs_unfiltered (wrap_indent, stream);
c5aa993b
JM
2604 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
2605 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
c906108c
SS
2606 /* FIXME, this strlen is what prevents wrap_indent from
2607 containing tabs. However, if we recurse to print it
2608 and count its chars, we risk trouble if wrap_indent is
2609 longer than (the user settable) chars_per_line.
2610 Note also that this can set chars_printed > chars_per_line
2611 if we are printing a long string. */
2612 chars_printed = strlen (wrap_indent)
c5aa993b 2613 + (save_chars - wrap_column);
c906108c
SS
2614 wrap_pointer = wrap_buffer; /* Reset buffer */
2615 wrap_buffer[0] = '\0';
c5aa993b
JM
2616 wrap_column = 0; /* And disable fancy wrap */
2617 }
c906108c
SS
2618 }
2619 }
2620
2621 if (*lineptr == '\n')
2622 {
2623 chars_printed = 0;
c5aa993b 2624 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
c906108c
SS
2625 lines_printed++;
2626 fputc_unfiltered ('\n', stream);
2627 lineptr++;
2628 }
2629 }
2630}
2631
2632void
2633fputs_filtered (linebuffer, stream)
2634 const char *linebuffer;
2635 GDB_FILE *stream;
2636{
2637 fputs_maybe_filtered (linebuffer, stream, 1);
2638}
2639
2640int
2641putchar_unfiltered (c)
2642 int c;
2643{
11cf8741
JM
2644 char buf = c;
2645 gdb_file_write (gdb_stdout, &buf, 1);
c906108c
SS
2646 return c;
2647}
2648
2649int
2650fputc_unfiltered (c, stream)
2651 int c;
c5aa993b 2652 GDB_FILE *stream;
c906108c 2653{
11cf8741
JM
2654 char buf = c;
2655 gdb_file_write (stream, &buf, 1);
c906108c
SS
2656 return c;
2657}
2658
2659int
2660fputc_filtered (c, stream)
2661 int c;
c5aa993b 2662 GDB_FILE *stream;
c906108c
SS
2663{
2664 char buf[2];
2665
2666 buf[0] = c;
2667 buf[1] = 0;
2668 fputs_filtered (buf, stream);
2669 return c;
2670}
2671
2672/* puts_debug is like fputs_unfiltered, except it prints special
2673 characters in printable fashion. */
2674
2675void
2676puts_debug (prefix, string, suffix)
2677 char *prefix;
2678 char *string;
2679 char *suffix;
2680{
2681 int ch;
2682
2683 /* Print prefix and suffix after each line. */
2684 static int new_line = 1;
2685 static int return_p = 0;
2686 static char *prev_prefix = "";
2687 static char *prev_suffix = "";
2688
2689 if (*string == '\n')
2690 return_p = 0;
2691
2692 /* If the prefix is changing, print the previous suffix, a new line,
2693 and the new prefix. */
c5aa993b 2694 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
c906108c 2695 {
9846de1b
JM
2696 fputs_unfiltered (prev_suffix, gdb_stdlog);
2697 fputs_unfiltered ("\n", gdb_stdlog);
2698 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
2699 }
2700
2701 /* Print prefix if we printed a newline during the previous call. */
2702 if (new_line)
2703 {
2704 new_line = 0;
9846de1b 2705 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
2706 }
2707
2708 prev_prefix = prefix;
2709 prev_suffix = suffix;
2710
2711 /* Output characters in a printable format. */
2712 while ((ch = *string++) != '\0')
2713 {
2714 switch (ch)
c5aa993b 2715 {
c906108c
SS
2716 default:
2717 if (isprint (ch))
9846de1b 2718 fputc_unfiltered (ch, gdb_stdlog);
c906108c
SS
2719
2720 else
9846de1b 2721 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
c906108c
SS
2722 break;
2723
c5aa993b
JM
2724 case '\\':
2725 fputs_unfiltered ("\\\\", gdb_stdlog);
2726 break;
2727 case '\b':
2728 fputs_unfiltered ("\\b", gdb_stdlog);
2729 break;
2730 case '\f':
2731 fputs_unfiltered ("\\f", gdb_stdlog);
2732 break;
2733 case '\n':
2734 new_line = 1;
2735 fputs_unfiltered ("\\n", gdb_stdlog);
2736 break;
2737 case '\r':
2738 fputs_unfiltered ("\\r", gdb_stdlog);
2739 break;
2740 case '\t':
2741 fputs_unfiltered ("\\t", gdb_stdlog);
2742 break;
2743 case '\v':
2744 fputs_unfiltered ("\\v", gdb_stdlog);
2745 break;
2746 }
c906108c
SS
2747
2748 return_p = ch == '\r';
2749 }
2750
2751 /* Print suffix if we printed a newline. */
2752 if (new_line)
2753 {
9846de1b
JM
2754 fputs_unfiltered (suffix, gdb_stdlog);
2755 fputs_unfiltered ("\n", gdb_stdlog);
c906108c
SS
2756 }
2757}
2758
2759
2760/* Print a variable number of ARGS using format FORMAT. If this
2761 information is going to put the amount written (since the last call
2762 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2763 call prompt_for_continue to get the users permision to continue.
2764
2765 Unlike fprintf, this function does not return a value.
2766
2767 We implement three variants, vfprintf (takes a vararg list and stream),
2768 fprintf (takes a stream to write on), and printf (the usual).
2769
2770 Note also that a longjmp to top level may occur in this routine
2771 (since prompt_for_continue may do so) so this routine should not be
2772 called when cleanups are not in place. */
2773
2774static void
2775vfprintf_maybe_filtered (stream, format, args, filter)
2776 GDB_FILE *stream;
2777 const char *format;
2778 va_list args;
2779 int filter;
2780{
2781 char *linebuffer;
2782 struct cleanup *old_cleanups;
2783
2784 vasprintf (&linebuffer, format, args);
2785 if (linebuffer == NULL)
2786 {
2787 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2788 exit (1);
2789 }
2790 old_cleanups = make_cleanup (free, linebuffer);
2791 fputs_maybe_filtered (linebuffer, stream, filter);
2792 do_cleanups (old_cleanups);
2793}
2794
2795
2796void
2797vfprintf_filtered (stream, format, args)
2798 GDB_FILE *stream;
2799 const char *format;
2800 va_list args;
2801{
2802 vfprintf_maybe_filtered (stream, format, args, 1);
2803}
2804
2805void
2806vfprintf_unfiltered (stream, format, args)
2807 GDB_FILE *stream;
2808 const char *format;
2809 va_list args;
2810{
2811 char *linebuffer;
2812 struct cleanup *old_cleanups;
2813
2814 vasprintf (&linebuffer, format, args);
2815 if (linebuffer == NULL)
2816 {
2817 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2818 exit (1);
2819 }
2820 old_cleanups = make_cleanup (free, linebuffer);
2821 fputs_unfiltered (linebuffer, stream);
2822 do_cleanups (old_cleanups);
2823}
2824
2825void
2826vprintf_filtered (format, args)
2827 const char *format;
2828 va_list args;
2829{
2830 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2831}
2832
2833void
2834vprintf_unfiltered (format, args)
2835 const char *format;
2836 va_list args;
2837{
2838 vfprintf_unfiltered (gdb_stdout, format, args);
2839}
2840
c906108c 2841void
c5aa993b 2842fprintf_filtered (GDB_FILE * stream, const char *format,...)
c906108c
SS
2843{
2844 va_list args;
c906108c 2845 va_start (args, format);
c906108c
SS
2846 vfprintf_filtered (stream, format, args);
2847 va_end (args);
2848}
2849
c906108c 2850void
c5aa993b 2851fprintf_unfiltered (GDB_FILE * stream, const char *format,...)
c906108c
SS
2852{
2853 va_list args;
c906108c 2854 va_start (args, format);
c906108c
SS
2855 vfprintf_unfiltered (stream, format, args);
2856 va_end (args);
2857}
2858
2859/* Like fprintf_filtered, but prints its result indented.
2860 Called as fprintfi_filtered (spaces, stream, format, ...); */
2861
c906108c 2862void
c5aa993b 2863fprintfi_filtered (int spaces, GDB_FILE * stream, const char *format,...)
c906108c
SS
2864{
2865 va_list args;
c906108c 2866 va_start (args, format);
c906108c
SS
2867 print_spaces_filtered (spaces, stream);
2868
2869 vfprintf_filtered (stream, format, args);
2870 va_end (args);
2871}
2872
2873
c906108c 2874void
c5aa993b 2875printf_filtered (const char *format,...)
c906108c
SS
2876{
2877 va_list args;
c906108c 2878 va_start (args, format);
c906108c
SS
2879 vfprintf_filtered (gdb_stdout, format, args);
2880 va_end (args);
2881}
2882
2883
c906108c 2884void
c5aa993b 2885printf_unfiltered (const char *format,...)
c906108c
SS
2886{
2887 va_list args;
c906108c 2888 va_start (args, format);
c906108c
SS
2889 vfprintf_unfiltered (gdb_stdout, format, args);
2890 va_end (args);
2891}
2892
2893/* Like printf_filtered, but prints it's result indented.
2894 Called as printfi_filtered (spaces, format, ...); */
2895
c906108c 2896void
c5aa993b 2897printfi_filtered (int spaces, const char *format,...)
c906108c
SS
2898{
2899 va_list args;
c906108c 2900 va_start (args, format);
c906108c
SS
2901 print_spaces_filtered (spaces, gdb_stdout);
2902 vfprintf_filtered (gdb_stdout, format, args);
2903 va_end (args);
2904}
2905
2906/* Easy -- but watch out!
2907
2908 This routine is *not* a replacement for puts()! puts() appends a newline.
2909 This one doesn't, and had better not! */
2910
2911void
2912puts_filtered (string)
2913 const char *string;
2914{
2915 fputs_filtered (string, gdb_stdout);
2916}
2917
2918void
2919puts_unfiltered (string)
2920 const char *string;
2921{
2922 fputs_unfiltered (string, gdb_stdout);
2923}
2924
2925/* Return a pointer to N spaces and a null. The pointer is good
2926 until the next call to here. */
2927char *
2928n_spaces (n)
2929 int n;
2930{
392a587b
JM
2931 char *t;
2932 static char *spaces = 0;
2933 static int max_spaces = -1;
c906108c
SS
2934
2935 if (n > max_spaces)
2936 {
2937 if (spaces)
2938 free (spaces);
c5aa993b
JM
2939 spaces = (char *) xmalloc (n + 1);
2940 for (t = spaces + n; t != spaces;)
c906108c
SS
2941 *--t = ' ';
2942 spaces[n] = '\0';
2943 max_spaces = n;
2944 }
2945
2946 return spaces + max_spaces - n;
2947}
2948
2949/* Print N spaces. */
2950void
2951print_spaces_filtered (n, stream)
2952 int n;
2953 GDB_FILE *stream;
2954{
2955 fputs_filtered (n_spaces (n), stream);
2956}
2957\f
2958/* C++ demangler stuff. */
2959
2960/* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2961 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2962 If the name is not mangled, or the language for the name is unknown, or
2963 demangling is off, the name is printed in its "raw" form. */
2964
2965void
2966fprintf_symbol_filtered (stream, name, lang, arg_mode)
2967 GDB_FILE *stream;
2968 char *name;
2969 enum language lang;
2970 int arg_mode;
2971{
2972 char *demangled;
2973
2974 if (name != NULL)
2975 {
2976 /* If user wants to see raw output, no problem. */
2977 if (!demangle)
2978 {
2979 fputs_filtered (name, stream);
2980 }
2981 else
2982 {
2983 switch (lang)
2984 {
2985 case language_cplus:
2986 demangled = cplus_demangle (name, arg_mode);
2987 break;
2988 case language_java:
2989 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2990 break;
2991 case language_chill:
2992 demangled = chill_demangle (name);
2993 break;
2994 default:
2995 demangled = NULL;
2996 break;
2997 }
2998 fputs_filtered (demangled ? demangled : name, stream);
2999 if (demangled != NULL)
3000 {
3001 free (demangled);
3002 }
3003 }
3004 }
3005}
3006
3007/* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
3008 differences in whitespace. Returns 0 if they match, non-zero if they
3009 don't (slightly different than strcmp()'s range of return values).
c5aa993b 3010
c906108c
SS
3011 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
3012 This "feature" is useful when searching for matching C++ function names
3013 (such as if the user types 'break FOO', where FOO is a mangled C++
3014 function). */
3015
3016int
3017strcmp_iw (string1, string2)
3018 const char *string1;
3019 const char *string2;
3020{
3021 while ((*string1 != '\0') && (*string2 != '\0'))
3022 {
3023 while (isspace (*string1))
3024 {
3025 string1++;
3026 }
3027 while (isspace (*string2))
3028 {
3029 string2++;
3030 }
3031 if (*string1 != *string2)
3032 {
3033 break;
3034 }
3035 if (*string1 != '\0')
3036 {
3037 string1++;
3038 string2++;
3039 }
3040 }
3041 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
3042}
c906108c 3043\f
c5aa993b 3044
c906108c 3045/*
c5aa993b
JM
3046 ** subset_compare()
3047 ** Answer whether string_to_compare is a full or partial match to
3048 ** template_string. The partial match must be in sequence starting
3049 ** at index 0.
3050 */
c906108c 3051int
7a292a7a 3052subset_compare (string_to_compare, template_string)
c5aa993b
JM
3053 char *string_to_compare;
3054 char *template_string;
7a292a7a
SS
3055{
3056 int match;
c5aa993b
JM
3057 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
3058 strlen (string_to_compare) <= strlen (template_string))
3059 match = (strncmp (template_string,
3060 string_to_compare,
3061 strlen (string_to_compare)) == 0);
7a292a7a
SS
3062 else
3063 match = 0;
3064 return match;
3065}
c906108c
SS
3066
3067
7a292a7a
SS
3068static void pagination_on_command PARAMS ((char *arg, int from_tty));
3069static void
3070pagination_on_command (arg, from_tty)
c5aa993b
JM
3071 char *arg;
3072 int from_tty;
c906108c
SS
3073{
3074 pagination_enabled = 1;
3075}
3076
7a292a7a
SS
3077static void pagination_on_command PARAMS ((char *arg, int from_tty));
3078static void
3079pagination_off_command (arg, from_tty)
c5aa993b
JM
3080 char *arg;
3081 int from_tty;
c906108c
SS
3082{
3083 pagination_enabled = 0;
3084}
c906108c 3085\f
c5aa993b 3086
c906108c
SS
3087void
3088initialize_utils ()
3089{
3090 struct cmd_list_element *c;
3091
c5aa993b
JM
3092 c = add_set_cmd ("width", class_support, var_uinteger,
3093 (char *) &chars_per_line,
3094 "Set number of characters gdb thinks are in a line.",
3095 &setlist);
c906108c
SS
3096 add_show_from_set (c, &showlist);
3097 c->function.sfunc = set_width_command;
3098
3099 add_show_from_set
3100 (add_set_cmd ("height", class_support,
c5aa993b 3101 var_uinteger, (char *) &lines_per_page,
c906108c
SS
3102 "Set number of lines gdb thinks are in a page.", &setlist),
3103 &showlist);
c5aa993b 3104
c906108c
SS
3105 init_page_info ();
3106
3107 /* If the output is not a terminal, don't paginate it. */
3108 if (!GDB_FILE_ISATTY (gdb_stdout))
3109 lines_per_page = UINT_MAX;
3110
c5aa993b 3111 set_width_command ((char *) NULL, 0, c);
c906108c
SS
3112
3113 add_show_from_set
c5aa993b
JM
3114 (add_set_cmd ("demangle", class_support, var_boolean,
3115 (char *) &demangle,
3116 "Set demangling of encoded C++ names when displaying symbols.",
c906108c
SS
3117 &setprintlist),
3118 &showprintlist);
3119
3120 add_show_from_set
3121 (add_set_cmd ("pagination", class_support,
c5aa993b 3122 var_boolean, (char *) &pagination_enabled,
c906108c
SS
3123 "Set state of pagination.", &setlist),
3124 &showlist);
3125 if (xdb_commands)
3126 {
c5aa993b
JM
3127 add_com ("am", class_support, pagination_on_command,
3128 "Enable pagination");
3129 add_com ("sm", class_support, pagination_off_command,
3130 "Disable pagination");
c906108c
SS
3131 }
3132
3133 add_show_from_set
c5aa993b
JM
3134 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
3135 (char *) &sevenbit_strings,
3136 "Set printing of 8-bit characters in strings as \\nnn.",
c906108c
SS
3137 &setprintlist),
3138 &showprintlist);
3139
3140 add_show_from_set
c5aa993b
JM
3141 (add_set_cmd ("asm-demangle", class_support, var_boolean,
3142 (char *) &asm_demangle,
3143 "Set demangling of C++ names in disassembly listings.",
c906108c
SS
3144 &setprintlist),
3145 &showprintlist);
3146}
3147
3148/* Machine specific function to handle SIGWINCH signal. */
3149
3150#ifdef SIGWINCH_HANDLER_BODY
c5aa993b 3151SIGWINCH_HANDLER_BODY
c906108c
SS
3152#endif
3153\f
3154/* Support for converting target fp numbers into host DOUBLEST format. */
3155
3156/* XXX - This code should really be in libiberty/floatformat.c, however
3157 configuration issues with libiberty made this very difficult to do in the
3158 available time. */
3159
3160#include "floatformat.h"
3161#include <math.h> /* ldexp */
3162
3163/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
3164 going to bother with trying to muck around with whether it is defined in
3165 a system header, what we do if not, etc. */
3166#define FLOATFORMAT_CHAR_BIT 8
3167
3168static unsigned long get_field PARAMS ((unsigned char *,
3169 enum floatformat_byteorders,
3170 unsigned int,
3171 unsigned int,
3172 unsigned int));
3173
3174/* Extract a field which starts at START and is LEN bytes long. DATA and
3175 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
3176static unsigned long
3177get_field (data, order, total_len, start, len)
3178 unsigned char *data;
3179 enum floatformat_byteorders order;
3180 unsigned int total_len;
3181 unsigned int start;
3182 unsigned int len;
3183{
3184 unsigned long result;
3185 unsigned int cur_byte;
3186 int cur_bitshift;
3187
3188 /* Start at the least significant part of the field. */
3189 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
3190 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
3191 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) - cur_byte - 1;
3192 cur_bitshift =
3193 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
3194 result = *(data + cur_byte) >> (-cur_bitshift);
3195 cur_bitshift += FLOATFORMAT_CHAR_BIT;
3196 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
3197 ++cur_byte;
3198 else
3199 --cur_byte;
3200
3201 /* Move towards the most significant part of the field. */
3202 while (cur_bitshift < len)
3203 {
3204 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
3205 /* This is the last byte; zero out the bits which are not part of
3206 this field. */
3207 result |=
3208 (*(data + cur_byte) & ((1 << (len - cur_bitshift)) - 1))
c5aa993b 3209 << cur_bitshift;
c906108c
SS
3210 else
3211 result |= *(data + cur_byte) << cur_bitshift;
3212 cur_bitshift += FLOATFORMAT_CHAR_BIT;
3213 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
3214 ++cur_byte;
3215 else
3216 --cur_byte;
3217 }
3218 return result;
3219}
c5aa993b 3220
c906108c
SS
3221/* Convert from FMT to a DOUBLEST.
3222 FROM is the address of the extended float.
3223 Store the DOUBLEST in *TO. */
3224
3225void
3226floatformat_to_doublest (fmt, from, to)
3227 const struct floatformat *fmt;
3228 char *from;
3229 DOUBLEST *to;
3230{
c5aa993b 3231 unsigned char *ufrom = (unsigned char *) from;
c906108c
SS
3232 DOUBLEST dto;
3233 long exponent;
3234 unsigned long mant;
3235 unsigned int mant_bits, mant_off;
3236 int mant_bits_left;
3237 int special_exponent; /* It's a NaN, denorm or zero */
3238
3239 /* If the mantissa bits are not contiguous from one end of the
3240 mantissa to the other, we need to make a private copy of the
3241 source bytes that is in the right order since the unpacking
3242 algorithm assumes that the bits are contiguous.
3243
3244 Swap the bytes individually rather than accessing them through
3245 "long *" since we have no guarantee that they start on a long
3246 alignment, and also sizeof(long) for the host could be different
3247 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
3248 for the target is 4. */
3249
c5aa993b 3250 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
3251 {
3252 static unsigned char *newfrom;
3253 unsigned char *swapin, *swapout;
3254 int longswaps;
3255
c5aa993b 3256 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
c906108c 3257 longswaps >>= 3;
c5aa993b 3258
c906108c
SS
3259 if (newfrom == NULL)
3260 {
c5aa993b 3261 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
c906108c
SS
3262 }
3263 swapout = newfrom;
3264 swapin = ufrom;
3265 ufrom = newfrom;
3266 while (longswaps-- > 0)
3267 {
3268 /* This is ugly, but efficient */
3269 *swapout++ = swapin[4];
3270 *swapout++ = swapin[5];
3271 *swapout++ = swapin[6];
3272 *swapout++ = swapin[7];
3273 *swapout++ = swapin[0];
3274 *swapout++ = swapin[1];
3275 *swapout++ = swapin[2];
3276 *swapout++ = swapin[3];
3277 swapin += 8;
3278 }
3279 }
3280
3281 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
3282 fmt->exp_start, fmt->exp_len);
3283 /* Note that if exponent indicates a NaN, we can't really do anything useful
3284 (not knowing if the host has NaN's, or how to build one). So it will
3285 end up as an infinity or something close; that is OK. */
3286
3287 mant_bits_left = fmt->man_len;
3288 mant_off = fmt->man_start;
3289 dto = 0.0;
3290
3291 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
3292
11cf8741
JM
3293/* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
3294 we don't check for zero as the exponent doesn't matter. */
c906108c
SS
3295 if (!special_exponent)
3296 exponent -= fmt->exp_bias;
11cf8741
JM
3297 else if (exponent == 0)
3298 exponent = 1 - fmt->exp_bias;
c906108c
SS
3299
3300 /* Build the result algebraically. Might go infinite, underflow, etc;
3301 who cares. */
3302
3303/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
3304 increment the exponent by one to account for the integer bit. */
3305
3306 if (!special_exponent)
7a292a7a
SS
3307 {
3308 if (fmt->intbit == floatformat_intbit_no)
3309 dto = ldexp (1.0, exponent);
3310 else
3311 exponent++;
3312 }
c906108c
SS
3313
3314 while (mant_bits_left > 0)
3315 {
3316 mant_bits = min (mant_bits_left, 32);
3317
3318 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
c5aa993b 3319 mant_off, mant_bits);
c906108c 3320
c5aa993b 3321 dto += ldexp ((double) mant, exponent - mant_bits);
c906108c
SS
3322 exponent -= mant_bits;
3323 mant_off += mant_bits;
3324 mant_bits_left -= mant_bits;
3325 }
3326
3327 /* Negate it if negative. */
3328 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
3329 dto = -dto;
3330 *to = dto;
3331}
3332\f
3333static void put_field PARAMS ((unsigned char *, enum floatformat_byteorders,
3334 unsigned int,
3335 unsigned int,
3336 unsigned int,
3337 unsigned long));
3338
3339/* Set a field which starts at START and is LEN bytes long. DATA and
3340 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
3341static void
3342put_field (data, order, total_len, start, len, stuff_to_put)
3343 unsigned char *data;
3344 enum floatformat_byteorders order;
3345 unsigned int total_len;
3346 unsigned int start;
3347 unsigned int len;
3348 unsigned long stuff_to_put;
3349{
3350 unsigned int cur_byte;
3351 int cur_bitshift;
3352
3353 /* Start at the least significant part of the field. */
3354 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
3355 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
3356 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) - cur_byte - 1;
3357 cur_bitshift =
3358 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
3359 *(data + cur_byte) &=
3360 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1) << (-cur_bitshift));
3361 *(data + cur_byte) |=
3362 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
3363 cur_bitshift += FLOATFORMAT_CHAR_BIT;
3364 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
3365 ++cur_byte;
3366 else
3367 --cur_byte;
3368
3369 /* Move towards the most significant part of the field. */
3370 while (cur_bitshift < len)
3371 {
3372 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
3373 {
3374 /* This is the last byte. */
3375 *(data + cur_byte) &=
3376 ~((1 << (len - cur_bitshift)) - 1);
3377 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
3378 }
3379 else
3380 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
3381 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
3382 cur_bitshift += FLOATFORMAT_CHAR_BIT;
3383 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
3384 ++cur_byte;
3385 else
3386 --cur_byte;
3387 }
3388}
3389
3390#ifdef HAVE_LONG_DOUBLE
3391/* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
3392 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
3393 frexp, but operates on the long double data type. */
3394
3395static long double ldfrexp PARAMS ((long double value, int *eptr));
3396
3397static long double
3398ldfrexp (value, eptr)
3399 long double value;
3400 int *eptr;
3401{
3402 long double tmp;
3403 int exp;
3404
3405 /* Unfortunately, there are no portable functions for extracting the exponent
3406 of a long double, so we have to do it iteratively by multiplying or dividing
3407 by two until the fraction is between 0.5 and 1.0. */
3408
3409 if (value < 0.0l)
3410 value = -value;
3411
3412 tmp = 1.0l;
3413 exp = 0;
3414
3415 if (value >= tmp) /* Value >= 1.0 */
3416 while (value >= tmp)
3417 {
3418 tmp *= 2.0l;
3419 exp++;
3420 }
3421 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
3422 {
3423 while (value < tmp)
3424 {
3425 tmp /= 2.0l;
3426 exp--;
3427 }
3428 tmp *= 2.0l;
3429 exp++;
3430 }
3431
3432 *eptr = exp;
c5aa993b 3433 return value / tmp;
c906108c
SS
3434}
3435#endif /* HAVE_LONG_DOUBLE */
3436
3437
3438/* The converse: convert the DOUBLEST *FROM to an extended float
3439 and store where TO points. Neither FROM nor TO have any alignment
3440 restrictions. */
3441
3442void
3443floatformat_from_doublest (fmt, from, to)
3444 CONST struct floatformat *fmt;
3445 DOUBLEST *from;
3446 char *to;
3447{
3448 DOUBLEST dfrom;
3449 int exponent;
3450 DOUBLEST mant;
3451 unsigned int mant_bits, mant_off;
3452 int mant_bits_left;
c5aa993b 3453 unsigned char *uto = (unsigned char *) to;
c906108c
SS
3454
3455 memcpy (&dfrom, from, sizeof (dfrom));
3456 memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
3457 if (dfrom == 0)
3458 return; /* Result is zero */
3459 if (dfrom != dfrom) /* Result is NaN */
3460 {
3461 /* From is NaN */
3462 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
3463 fmt->exp_len, fmt->exp_nan);
3464 /* Be sure it's not infinity, but NaN value is irrel */
3465 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
3466 32, 1);
3467 return;
3468 }
3469
3470 /* If negative, set the sign bit. */
3471 if (dfrom < 0)
3472 {
3473 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
3474 dfrom = -dfrom;
3475 }
3476
3477 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
3478 {
3479 /* Infinity exponent is same as NaN's. */
3480 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
3481 fmt->exp_len, fmt->exp_nan);
3482 /* Infinity mantissa is all zeroes. */
3483 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
3484 fmt->man_len, 0);
3485 return;
3486 }
3487
3488#ifdef HAVE_LONG_DOUBLE
3489 mant = ldfrexp (dfrom, &exponent);
3490#else
3491 mant = frexp (dfrom, &exponent);
3492#endif
3493
3494 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
3495 exponent + fmt->exp_bias - 1);
3496
3497 mant_bits_left = fmt->man_len;
3498 mant_off = fmt->man_start;
3499 while (mant_bits_left > 0)
3500 {
3501 unsigned long mant_long;
3502 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
3503
3504 mant *= 4294967296.0;
c5aa993b 3505 mant_long = (unsigned long) mant;
c906108c
SS
3506 mant -= mant_long;
3507
3508 /* If the integer bit is implicit, then we need to discard it.
c5aa993b
JM
3509 If we are discarding a zero, we should be (but are not) creating
3510 a denormalized number which means adjusting the exponent
3511 (I think). */
c906108c
SS
3512 if (mant_bits_left == fmt->man_len
3513 && fmt->intbit == floatformat_intbit_no)
3514 {
3515 mant_long <<= 1;
3516 mant_bits -= 1;
3517 }
3518
3519 if (mant_bits < 32)
3520 {
3521 /* The bits we want are in the most significant MANT_BITS bits of
3522 mant_long. Move them to the least significant. */
3523 mant_long >>= 32 - mant_bits;
3524 }
3525
3526 put_field (uto, fmt->byteorder, fmt->totalsize,
3527 mant_off, mant_bits, mant_long);
3528 mant_off += mant_bits;
3529 mant_bits_left -= mant_bits;
3530 }
c5aa993b 3531 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
3532 {
3533 int count;
3534 unsigned char *swaplow = uto;
3535 unsigned char *swaphigh = uto + 4;
3536 unsigned char tmp;
3537
3538 for (count = 0; count < 4; count++)
3539 {
3540 tmp = *swaplow;
3541 *swaplow++ = *swaphigh;
3542 *swaphigh++ = tmp;
3543 }
3544 }
3545}
3546
3547/* temporary storage using circular buffer */
3548#define NUMCELLS 16
3549#define CELLSIZE 32
c5aa993b
JM
3550static char *
3551get_cell ()
c906108c
SS
3552{
3553 static char buf[NUMCELLS][CELLSIZE];
c5aa993b
JM
3554 static int cell = 0;
3555 if (++cell >= NUMCELLS)
3556 cell = 0;
c906108c
SS
3557 return buf[cell];
3558}
3559
3560/* print routines to handle variable size regs, etc.
3561
3562 FIXME: Note that t_addr is a bfd_vma, which is currently either an
3563 unsigned long or unsigned long long, determined at configure time.
3564 If t_addr is an unsigned long long and sizeof (unsigned long long)
3565 is greater than sizeof (unsigned long), then I believe this code will
3566 probably lose, at least for little endian machines. I believe that
3567 it would also be better to eliminate the switch on the absolute size
3568 of t_addr and replace it with a sequence of if statements that compare
3569 sizeof t_addr with sizeof the various types and do the right thing,
3570 which includes knowing whether or not the host supports long long.
3571 -fnf
3572
3573 */
3574
d4f3574e
SS
3575int
3576strlen_paddr (void)
3577{
3578 return (TARGET_PTR_BIT / 8 * 2);
3579}
3580
3581
104c1213
JM
3582/* eliminate warning from compiler on 32-bit systems */
3583static int thirty_two = 32;
c906108c 3584
c5aa993b 3585char *
104c1213 3586paddr (CORE_ADDR addr)
c906108c 3587{
c5aa993b 3588 char *paddr_str = get_cell ();
104c1213 3589 switch (TARGET_PTR_BIT / 8)
c906108c 3590 {
c5aa993b
JM
3591 case 8:
3592 sprintf (paddr_str, "%08lx%08lx",
3593 (unsigned long) (addr >> thirty_two), (unsigned long) (addr & 0xffffffff));
3594 break;
3595 case 4:
3596 sprintf (paddr_str, "%08lx", (unsigned long) addr);
3597 break;
3598 case 2:
3599 sprintf (paddr_str, "%04x", (unsigned short) (addr & 0xffff));
3600 break;
3601 default:
3602 sprintf (paddr_str, "%lx", (unsigned long) addr);
c906108c
SS
3603 }
3604 return paddr_str;
3605}
3606
c5aa993b 3607char *
104c1213 3608paddr_nz (CORE_ADDR addr)
c906108c 3609{
c5aa993b 3610 char *paddr_str = get_cell ();
104c1213 3611 switch (TARGET_PTR_BIT / 8)
c906108c 3612 {
c5aa993b
JM
3613 case 8:
3614 {
3615 unsigned long high = (unsigned long) (addr >> thirty_two);
3616 if (high == 0)
3617 sprintf (paddr_str, "%lx", (unsigned long) (addr & 0xffffffff));
3618 else
3619 sprintf (paddr_str, "%lx%08lx",
3620 high, (unsigned long) (addr & 0xffffffff));
c906108c 3621 break;
c5aa993b
JM
3622 }
3623 case 4:
3624 sprintf (paddr_str, "%lx", (unsigned long) addr);
3625 break;
3626 case 2:
3627 sprintf (paddr_str, "%x", (unsigned short) (addr & 0xffff));
3628 break;
3629 default:
3630 sprintf (paddr_str, "%lx", (unsigned long) addr);
c906108c
SS
3631 }
3632 return paddr_str;
3633}
3634
104c1213
JM
3635static void
3636decimal2str (char *paddr_str, char *sign, ULONGEST addr)
3637{
3638 /* steal code from valprint.c:print_decimal(). Should this worry
3639 about the real size of addr as the above does? */
3640 unsigned long temp[3];
3641 int i = 0;
3642 do
3643 {
3644 temp[i] = addr % (1000 * 1000 * 1000);
3645 addr /= (1000 * 1000 * 1000);
3646 i++;
3647 }
3648 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
3649 switch (i)
3650 {
3651 case 1:
3652 sprintf (paddr_str, "%s%lu",
3653 sign, temp[0]);
3654 break;
3655 case 2:
3656 sprintf (paddr_str, "%s%lu%09lu",
3657 sign, temp[1], temp[0]);
3658 break;
3659 case 3:
3660 sprintf (paddr_str, "%s%lu%09lu%09lu",
3661 sign, temp[2], temp[1], temp[0]);
3662 break;
3663 default:
3664 abort ();
3665 }
3666}
3667
3668char *
3669paddr_u (CORE_ADDR addr)
3670{
3671 char *paddr_str = get_cell ();
3672 decimal2str (paddr_str, "", addr);
3673 return paddr_str;
3674}
3675
3676char *
3677paddr_d (LONGEST addr)
3678{
3679 char *paddr_str = get_cell ();
3680 if (addr < 0)
3681 decimal2str (paddr_str, "-", -addr);
3682 else
3683 decimal2str (paddr_str, "", addr);
3684 return paddr_str;
3685}
3686
3687char *
3688preg (reg)
3689 t_reg reg;
3690{
3691 char *preg_str = get_cell ();
3692 switch (sizeof (t_reg))
3693 {
3694 case 8:
3695 sprintf (preg_str, "%08lx%08lx",
3696 (unsigned long) (reg >> thirty_two), (unsigned long) (reg & 0xffffffff));
3697 break;
3698 case 4:
3699 sprintf (preg_str, "%08lx", (unsigned long) reg);
3700 break;
3701 case 2:
3702 sprintf (preg_str, "%04x", (unsigned short) (reg & 0xffff));
3703 break;
3704 default:
3705 sprintf (preg_str, "%lx", (unsigned long) reg);
3706 }
3707 return preg_str;
3708}
3709
c5aa993b
JM
3710char *
3711preg_nz (reg)
3712 t_reg reg;
c906108c 3713{
c5aa993b
JM
3714 char *preg_str = get_cell ();
3715 switch (sizeof (t_reg))
c906108c 3716 {
c5aa993b
JM
3717 case 8:
3718 {
3719 unsigned long high = (unsigned long) (reg >> thirty_two);
3720 if (high == 0)
3721 sprintf (preg_str, "%lx", (unsigned long) (reg & 0xffffffff));
3722 else
3723 sprintf (preg_str, "%lx%08lx",
3724 high, (unsigned long) (reg & 0xffffffff));
c906108c 3725 break;
c5aa993b
JM
3726 }
3727 case 4:
3728 sprintf (preg_str, "%lx", (unsigned long) reg);
3729 break;
3730 case 2:
3731 sprintf (preg_str, "%x", (unsigned short) (reg & 0xffff));
3732 break;
3733 default:
3734 sprintf (preg_str, "%lx", (unsigned long) reg);
c906108c
SS
3735 }
3736 return preg_str;
3737}
392a587b
JM
3738
3739/* Helper functions for INNER_THAN */
3740int
3741core_addr_lessthan (lhs, rhs)
3742 CORE_ADDR lhs;
3743 CORE_ADDR rhs;
3744{
3745 return (lhs < rhs);
3746}
3747
3748int
3749core_addr_greaterthan (lhs, rhs)
3750 CORE_ADDR lhs;
3751 CORE_ADDR rhs;
3752{
3753 return (lhs > rhs);
3754}