]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/v850-tdep.c
Fix a GDB assert failure on windows
[thirdparty/binutils-gdb.git] / gdb / v850-tdep.c
CommitLineData
181124bc
CV
1/* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
2
ecd75fc8 3 Copyright (C) 1996-2014 Free Software Foundation, Inc.
181124bc
CV
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
181124bc
CV
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
181124bc
CV
19
20#include "defs.h"
21#include "frame.h"
22#include "frame-base.h"
23#include "trad-frame.h"
24#include "frame-unwind.h"
25#include "dwarf2-frame.h"
26#include "gdbtypes.h"
27#include "inferior.h"
0e9f083f 28#include <string.h>
181124bc
CV
29#include "gdb_assert.h"
30#include "gdbcore.h"
31#include "arch-utils.h"
32#include "regcache.h"
33#include "dis-asm.h"
34#include "osabi.h"
83b2706a
KB
35#include "elf-bfd.h"
36#include "elf/v850.h"
181124bc
CV
37
38enum
39 {
a2d13a0d 40 /* General purpose registers. */
181124bc
CV
41 E_R0_REGNUM,
42 E_R1_REGNUM,
43 E_R2_REGNUM,
44 E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
45 E_R4_REGNUM,
46 E_R5_REGNUM,
47 E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
48 E_R7_REGNUM,
49 E_R8_REGNUM,
50 E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
51 E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
52 E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
53 E_R12_REGNUM,
54 E_R13_REGNUM,
55 E_R14_REGNUM,
56 E_R15_REGNUM,
57 E_R16_REGNUM,
58 E_R17_REGNUM,
59 E_R18_REGNUM,
60 E_R19_REGNUM,
61 E_R20_REGNUM,
62 E_R21_REGNUM,
63 E_R22_REGNUM,
64 E_R23_REGNUM,
65 E_R24_REGNUM,
66 E_R25_REGNUM,
67 E_R26_REGNUM,
68 E_R27_REGNUM,
69 E_R28_REGNUM,
70 E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM,
71 E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
72 E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM,
a2d13a0d
KB
73
74 /* System registers - main banks. */
181124bc
CV
75 E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
76 E_R33_REGNUM,
77 E_R34_REGNUM,
78 E_R35_REGNUM,
79 E_R36_REGNUM,
80 E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
81 E_R38_REGNUM,
82 E_R39_REGNUM,
83 E_R40_REGNUM,
84 E_R41_REGNUM,
85 E_R42_REGNUM,
86 E_R43_REGNUM,
87 E_R44_REGNUM,
88 E_R45_REGNUM,
89 E_R46_REGNUM,
90 E_R47_REGNUM,
91 E_R48_REGNUM,
92 E_R49_REGNUM,
93 E_R50_REGNUM,
94 E_R51_REGNUM,
95 E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
96 E_R53_REGNUM,
97 E_R54_REGNUM,
98 E_R55_REGNUM,
99 E_R56_REGNUM,
100 E_R57_REGNUM,
101 E_R58_REGNUM,
102 E_R59_REGNUM,
103 E_R60_REGNUM,
104 E_R61_REGNUM,
105 E_R62_REGNUM,
106 E_R63_REGNUM,
a2d13a0d
KB
107
108 /* PC. */
181124bc 109 E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
55fa75c3
KB
110 E_R65_REGNUM,
111 E_NUM_OF_V850_REGS,
112 E_NUM_OF_V850E_REGS = E_NUM_OF_V850_REGS,
2aaed979 113
a2d13a0d 114 /* System registers - MPV (PROT00) bank. */
55fa75c3 115 E_R66_REGNUM = E_NUM_OF_V850_REGS,
2aaed979
KB
116 E_R67_REGNUM,
117 E_R68_REGNUM,
118 E_R69_REGNUM,
119 E_R70_REGNUM,
120 E_R71_REGNUM,
121 E_R72_REGNUM,
122 E_R73_REGNUM,
123 E_R74_REGNUM,
124 E_R75_REGNUM,
125 E_R76_REGNUM,
126 E_R77_REGNUM,
127 E_R78_REGNUM,
128 E_R79_REGNUM,
129 E_R80_REGNUM,
130 E_R81_REGNUM,
131 E_R82_REGNUM,
132 E_R83_REGNUM,
133 E_R84_REGNUM,
134 E_R85_REGNUM,
135 E_R86_REGNUM,
136 E_R87_REGNUM,
137 E_R88_REGNUM,
138 E_R89_REGNUM,
139 E_R90_REGNUM,
140 E_R91_REGNUM,
141 E_R92_REGNUM,
142 E_R93_REGNUM,
143
a2d13a0d 144 /* System registers - MPU (PROT01) bank. */
2aaed979
KB
145 E_R94_REGNUM,
146 E_R95_REGNUM,
147 E_R96_REGNUM,
148 E_R97_REGNUM,
149 E_R98_REGNUM,
150 E_R99_REGNUM,
151 E_R100_REGNUM,
152 E_R101_REGNUM,
153 E_R102_REGNUM,
154 E_R103_REGNUM,
155 E_R104_REGNUM,
156 E_R105_REGNUM,
157 E_R106_REGNUM,
158 E_R107_REGNUM,
159 E_R108_REGNUM,
160 E_R109_REGNUM,
161 E_R110_REGNUM,
162 E_R111_REGNUM,
163 E_R112_REGNUM,
164 E_R113_REGNUM,
165 E_R114_REGNUM,
166 E_R115_REGNUM,
167 E_R116_REGNUM,
168 E_R117_REGNUM,
169 E_R118_REGNUM,
170 E_R119_REGNUM,
171 E_R120_REGNUM,
172 E_R121_REGNUM,
173
a2d13a0d 174 /* FPU system registers. */
2aaed979
KB
175 E_R122_REGNUM,
176 E_R123_REGNUM,
177 E_R124_REGNUM,
178 E_R125_REGNUM,
179 E_R126_REGNUM,
180 E_R127_REGNUM,
181 E_R128_REGNUM, E_FPSR_REGNUM = E_R128_REGNUM,
182 E_R129_REGNUM, E_FPEPC_REGNUM = E_R129_REGNUM,
183 E_R130_REGNUM, E_FPST_REGNUM = E_R130_REGNUM,
184 E_R131_REGNUM, E_FPCC_REGNUM = E_R131_REGNUM,
185 E_R132_REGNUM, E_FPCFG_REGNUM = E_R132_REGNUM,
186 E_R133_REGNUM,
187 E_R134_REGNUM,
188 E_R135_REGNUM,
189 E_R136_REGNUM,
190 E_R137_REGNUM,
191 E_R138_REGNUM,
192 E_R139_REGNUM,
193 E_R140_REGNUM,
194 E_R141_REGNUM,
195 E_R142_REGNUM,
196 E_R143_REGNUM,
197 E_R144_REGNUM,
198 E_R145_REGNUM,
199 E_R146_REGNUM,
200 E_R147_REGNUM,
201 E_R148_REGNUM,
83b2706a
KB
202 E_R149_REGNUM,
203 E_NUM_OF_V850E2_REGS,
204
205 /* v850e3v5 system registers, selID 1 thru 7. */
206 E_SELID_1_R0_REGNUM = E_NUM_OF_V850E2_REGS,
207 E_SELID_1_R31_REGNUM = E_SELID_1_R0_REGNUM + 31,
208
209 E_SELID_2_R0_REGNUM,
210 E_SELID_2_R31_REGNUM = E_SELID_2_R0_REGNUM + 31,
211
212 E_SELID_3_R0_REGNUM,
213 E_SELID_3_R31_REGNUM = E_SELID_3_R0_REGNUM + 31,
214
215 E_SELID_4_R0_REGNUM,
216 E_SELID_4_R31_REGNUM = E_SELID_4_R0_REGNUM + 31,
217
218 E_SELID_5_R0_REGNUM,
219 E_SELID_5_R31_REGNUM = E_SELID_5_R0_REGNUM + 31,
220
221 E_SELID_6_R0_REGNUM,
222 E_SELID_6_R31_REGNUM = E_SELID_6_R0_REGNUM + 31,
223
224 E_SELID_7_R0_REGNUM,
225 E_SELID_7_R31_REGNUM = E_SELID_7_R0_REGNUM + 31,
226
227 /* v850e3v5 vector registers. */
228 E_VR0_REGNUM,
229 E_VR31_REGNUM = E_VR0_REGNUM + 31,
230
231 E_NUM_OF_V850E3V5_REGS,
232
233 /* Total number of possible registers. */
234 E_NUM_REGS = E_NUM_OF_V850E3V5_REGS
181124bc
CV
235 };
236
237enum
238{
239 v850_reg_size = 4
240};
241
242/* Size of return datatype which fits into all return registers. */
243enum
244{
245 E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
246};
247
83b2706a
KB
248/* When v850 support was added to GCC in the late nineties, the intention
249 was to follow the Green Hills ABI for v850. In fact, the authors of
250 that support at the time thought that they were doing so. As far as
251 I can tell, the calling conventions are correct, but the return value
252 conventions were not quite right. Over time, the return value code
253 in this file was modified to mostly reflect what GCC was actually
254 doing instead of to actually follow the Green Hills ABI as it did
255 when the code was first written.
256
257 Renesas defined the RH850 ABI which they use in their compiler. It
258 is similar to the original Green Hills ABI with some minor
259 differences. */
260
261enum v850_abi
262{
263 V850_ABI_GCC,
264 V850_ABI_RH850
265};
266
267/* Architecture specific data. */
268
269struct gdbarch_tdep
270{
271 /* Fields from the ELF header. */
272 int e_flags;
273 int e_machine;
274
275 /* Which ABI are we using? */
276 enum v850_abi abi;
277 int eight_byte_align;
278};
279
181124bc
CV
280struct v850_frame_cache
281{
282 /* Base address. */
283 CORE_ADDR base;
284 LONGEST sp_offset;
285 CORE_ADDR pc;
286
287 /* Flag showing that a frame has been created in the prologue code. */
288 int uses_fp;
289
290 /* Saved registers. */
291 struct trad_frame_saved_reg *saved_regs;
292};
293
294/* Info gleaned from scanning a function's prologue. */
295struct pifsr /* Info about one saved register. */
296{
297 int offset; /* Offset from sp or fp. */
298 int cur_frameoffset; /* Current frameoffset. */
299 int reg; /* Saved register number. */
300};
301
302static const char *
d93859e2 303v850_register_name (struct gdbarch *gdbarch, int regnum)
181124bc
CV
304{
305 static const char *v850_reg_names[] =
306 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
307 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
308 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
309 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
310 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
311 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
312 "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
313 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
314 "pc", "fp"
315 };
2aaed979 316 if (regnum < 0 || regnum > E_NUM_OF_V850_REGS)
181124bc
CV
317 return NULL;
318 return v850_reg_names[regnum];
319}
320
321static const char *
d93859e2 322v850e_register_name (struct gdbarch *gdbarch, int regnum)
181124bc
CV
323{
324 static const char *v850e_reg_names[] =
325 {
326 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
327 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
328 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
329 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
330 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
331 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
332 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
333 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
334 "pc", "fp"
335 };
2aaed979 336 if (regnum < 0 || regnum > E_NUM_OF_V850E_REGS)
181124bc
CV
337 return NULL;
338 return v850e_reg_names[regnum];
339}
340
2aaed979
KB
341static const char *
342v850e2_register_name (struct gdbarch *gdbarch, int regnum)
343{
344 static const char *v850e2_reg_names[] =
345 {
a2d13a0d 346 /* General purpose registers. */
2aaed979
KB
347 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
348 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
349 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
350 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
351
a2d13a0d
KB
352 /* System registers - main banks. */
353 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "pid", "cfg",
354 "", "", "", "sccfg", "scbp", "eiic", "feic", "dbic",
355 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "dir", "", "",
356 "", "", "", "", "eiwr", "fewr", "dbwr", "bsel",
357
358
359 /* PC. */
360 "pc", "",
2aaed979 361
a2d13a0d
KB
362 /* System registers - MPV (PROT00) bank. */
363 "vsecr", "vstid", "vsadr", "", "vmecr", "vmtid", "vmadr", "",
364 "vpecr", "vptid", "vpadr", "", "", "", "", "",
365 "", "", "", "", "", "", "", "",
366 "mca", "mcs", "mcc", "mcr",
2aaed979 367
a2d13a0d
KB
368 /* System registers - MPU (PROT01) bank. */
369 "mpm", "mpc", "tid", "", "", "", "ipa0l", "ipa0u",
370 "ipa1l", "ipa1u", "ipa2l", "ipa2u", "ipa3l", "ipa3u", "ipa4l", "ipa4u",
371 "dpa0l", "dpa0u", "dpa1l", "dpa1u", "dpa2l", "dpa2u", "dpa3l", "dpa3u",
372 "dpa4l", "dpa4u", "dpa5l", "dpa5u",
2aaed979 373
a2d13a0d
KB
374 /* FPU system registers. */
375 "", "", "", "", "", "", "fpsr", "fpepc",
376 "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
377 "", "", "", "", "", "", "", "",
378 "", "", "", "fpspc"
2aaed979 379 };
83b2706a 380 if (regnum < 0 || regnum >= E_NUM_OF_V850E2_REGS)
2aaed979
KB
381 return NULL;
382 return v850e2_reg_names[regnum];
383}
384
83b2706a
KB
385/* Implement the "register_name" gdbarch method for v850e3v5. */
386
387static const char *
388v850e3v5_register_name (struct gdbarch *gdbarch, int regnum)
389{
390 static const char *v850e3v5_reg_names[] =
391 {
392 /* General purpose registers. */
393 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
394 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
395 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
396 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
397
398 /* selID 0, not including FPU registers. The FPU registers are
399 listed later on. */
400 "eipc", "eipsw", "fepc", "fepsw",
401 "", "psw", "" /* fpsr */, "" /* fpepc */,
402 "" /* fpst */, "" /* fpcc */, "" /* fpcfg */, "" /* fpec */,
403 "sesr", "eiic", "feic", "",
404 "ctpc", "ctpsw", "", "", "ctbp", "", "", "",
405 "", "", "", "", "eiwr", "fewr", "", "bsel",
406
407
408 /* PC. */
409 "pc", "",
410
411 /* v850e2 MPV bank. */
412 "", "", "", "", "", "", "", "",
413 "", "", "", "", "", "", "", "",
414 "", "", "", "", "", "", "", "",
415 "", "", "", "",
416
417 /* Skip v850e2 MPU bank. It's tempting to reuse these, but we need
418 32 entries for this bank. */
419 "", "", "", "", "", "", "", "",
420 "", "", "", "", "", "", "", "",
421 "", "", "", "", "", "", "", "",
422 "", "", "", "",
423
424 /* FPU system registers. These are actually in selID 0, but
425 are placed here to preserve register numbering compatibility
426 with previous architectures. */
427 "", "", "", "", "", "", "fpsr", "fpepc",
428 "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
429 "", "", "", "", "", "", "", "",
430 "", "", "", "",
431
432 /* selID 1. */
433 "mcfg0", "mcfg1", "rbase", "ebase", "intbp", "mctl", "pid", "fpipr",
434 "", "", "tcsel", "sccfg", "scbp", "hvccfg", "hvcbp", "vsel",
435 "vmprt0", "vmprt1", "vmprt2", "", "", "", "", "vmscctl",
436 "vmsctbl0", "vmsctbl1", "vmsctbl2", "vmsctbl3", "", "", "", "",
437
438 /* selID 2. */
439 "htcfg0", "", "", "", "", "htctl", "mea", "asid",
440 "mei", "ispr", "pmr", "icsr", "intcfg", "", "", "",
441 "tlbsch", "", "", "", "", "", "", "htscctl",
442 "htsctbl0", "htsctbl1", "htsctbl2", "htsctbl3",
443 "htsctbl4", "htsctbl5", "htsctbl6", "htsctbl7",
444
445 /* selID 3. */
446 "", "", "", "", "", "", "", "",
447 "", "", "", "", "", "", "", "",
448 "", "", "", "", "", "", "", "",
449 "", "", "", "", "", "", "", "",
450
451 /* selID 4. */
452 "tlbidx", "", "", "", "telo0", "telo1", "tehi0", "tehi1",
453 "", "", "tlbcfg", "", "bwerrl", "bwerrh", "brerrl", "brerrh",
454 "ictagl", "ictagh", "icdatl", "icdath",
455 "dctagl", "dctagh", "dcdatl", "dcdath",
456 "icctrl", "dcctrl", "iccfg", "dccfg", "icerr", "dcerr", "", "",
457
458 /* selID 5. */
459 "mpm", "mprc", "", "", "mpbrgn", "mptrgn", "", "",
460 "mca", "mcs", "mcc", "mcr", "", "", "", "",
461 "", "", "", "", "mpprt0", "mpprt1", "mpprt2", "",
462 "", "", "", "", "", "", "", "",
463
464 /* selID 6. */
465 "mpla0", "mpua0", "mpat0", "", "mpla1", "mpua1", "mpat1", "",
466 "mpla2", "mpua2", "mpat2", "", "mpla3", "mpua3", "mpat3", "",
467 "mpla4", "mpua4", "mpat4", "", "mpla5", "mpua5", "mpat5", "",
468 "mpla6", "mpua6", "mpat6", "", "mpla7", "mpua7", "mpat7", "",
469
470 /* selID 7. */
471 "mpla8", "mpua8", "mpat8", "", "mpla9", "mpua9", "mpat9", "",
472 "mpla10", "mpua10", "mpat10", "", "mpla11", "mpua11", "mpat11", "",
473 "mpla12", "mpua12", "mpat12", "", "mpla13", "mpua13", "mpat13", "",
474 "mpla14", "mpua14", "mpat14", "", "mpla15", "mpua15", "mpat15", "",
475
476 /* Vector Registers */
477 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
478 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
479 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
480 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31",
481 };
482
483 if (regnum < 0 || regnum >= E_NUM_OF_V850E3V5_REGS)
484 return NULL;
485 return v850e3v5_reg_names[regnum];
486}
487
181124bc
CV
488/* Returns the default type for register N. */
489
490static struct type *
491v850_register_type (struct gdbarch *gdbarch, int regnum)
492{
493 if (regnum == E_PC_REGNUM)
0dfff4cb 494 return builtin_type (gdbarch)->builtin_func_ptr;
83b2706a
KB
495 else if (E_VR0_REGNUM <= regnum && regnum <= E_VR31_REGNUM)
496 return builtin_type (gdbarch)->builtin_uint64;
df4df182 497 return builtin_type (gdbarch)->builtin_int32;
181124bc
CV
498}
499
500static int
501v850_type_is_scalar (struct type *t)
502{
503 return (TYPE_CODE (t) != TYPE_CODE_STRUCT
504 && TYPE_CODE (t) != TYPE_CODE_UNION
505 && TYPE_CODE (t) != TYPE_CODE_ARRAY);
506}
507
508/* Should call_function allocate stack space for a struct return? */
83b2706a 509
181124bc 510static int
83b2706a 511v850_use_struct_convention (struct gdbarch *gdbarch, struct type *type)
181124bc
CV
512{
513 int i;
514 struct type *fld_type, *tgt_type;
515
83b2706a
KB
516 if (gdbarch_tdep (gdbarch)->abi == V850_ABI_RH850)
517 {
518 if (v850_type_is_scalar (type) && TYPE_LENGTH(type) <= 8)
519 return 0;
520
521 /* Structs are never returned in registers for this ABI. */
522 return 1;
523 }
181124bc
CV
524 /* 1. The value is greater than 8 bytes -> returned by copying. */
525 if (TYPE_LENGTH (type) > 8)
526 return 1;
527
528 /* 2. The value is a single basic type -> returned in register. */
529 if (v850_type_is_scalar (type))
530 return 0;
531
532 /* The value is a structure or union with a single element and that
533 element is either a single basic type or an array of a single basic
534 type whose size is greater than or equal to 4 -> returned in register. */
535 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
536 || TYPE_CODE (type) == TYPE_CODE_UNION)
537 && TYPE_NFIELDS (type) == 1)
538 {
539 fld_type = TYPE_FIELD_TYPE (type, 0);
540 if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
541 return 0;
542
543 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
544 {
545 tgt_type = TYPE_TARGET_TYPE (fld_type);
546 if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
547 return 0;
548 }
549 }
550
551 /* The value is a structure whose first element is an integer or a float,
552 and which contains no arrays of more than two elements -> returned in
553 register. */
554 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
555 && v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0))
556 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
557 {
558 for (i = 1; i < TYPE_NFIELDS (type); ++i)
559 {
560 fld_type = TYPE_FIELD_TYPE (type, 0);
561 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
562 {
563 tgt_type = TYPE_TARGET_TYPE (fld_type);
564 if (TYPE_LENGTH (fld_type) >= 0 && TYPE_LENGTH (tgt_type) >= 0
565 && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
566 return 1;
567 }
568 }
569 return 0;
570 }
571
581e13c1
MS
572 /* The value is a union which contains at least one field which
573 would be returned in registers according to these rules ->
574 returned in register. */
181124bc
CV
575 if (TYPE_CODE (type) == TYPE_CODE_UNION)
576 {
577 for (i = 0; i < TYPE_NFIELDS (type); ++i)
578 {
579 fld_type = TYPE_FIELD_TYPE (type, 0);
83b2706a 580 if (!v850_use_struct_convention (gdbarch, fld_type))
181124bc
CV
581 return 0;
582 }
583 }
584
585 return 1;
586}
587
588/* Structure for mapping bits in register lists to register numbers. */
83b2706a 589
181124bc
CV
590struct reg_list
591{
592 long mask;
593 int regno;
594};
595
596/* Helper function for v850_scan_prologue to handle prepare instruction. */
597
598static void
599v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
600 struct v850_frame_cache *pi, struct pifsr **pifsr_ptr)
601{
602 CORE_ADDR current_pc = *current_pc_ptr;
603 struct pifsr *pifsr = *pifsr_ptr;
604 long next = insn2 & 0xffff;
605 long list12 = ((insn & 1) << 16) + (next & 0xffe0);
606 long offset = (insn & 0x3e) << 1;
607 static struct reg_list reg_table[] =
608 {
609 {0x00800, 20}, /* r20 */
610 {0x00400, 21}, /* r21 */
611 {0x00200, 22}, /* r22 */
612 {0x00100, 23}, /* r23 */
613 {0x08000, 24}, /* r24 */
614 {0x04000, 25}, /* r25 */
615 {0x02000, 26}, /* r26 */
616 {0x01000, 27}, /* r27 */
617 {0x00080, 28}, /* r28 */
618 {0x00040, 29}, /* r29 */
619 {0x10000, 30}, /* ep */
620 {0x00020, 31}, /* lp */
621 {0, 0} /* end of table */
622 };
623 int i;
624
625 if ((next & 0x1f) == 0x0b) /* skip imm16 argument */
626 current_pc += 2;
627 else if ((next & 0x1f) == 0x13) /* skip imm16 argument */
628 current_pc += 2;
629 else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */
630 current_pc += 4;
631
632 /* Calculate the total size of the saved registers, and add it to the
633 immediate value used to adjust SP. */
634 for (i = 0; reg_table[i].mask != 0; i++)
635 if (list12 & reg_table[i].mask)
636 offset += v850_reg_size;
637 pi->sp_offset -= offset;
638
639 /* Calculate the offsets of the registers relative to the value the SP
640 will have after the registers have been pushed and the imm5 value has
641 been subtracted from it. */
642 if (pifsr)
643 {
644 for (i = 0; reg_table[i].mask != 0; i++)
645 {
646 if (list12 & reg_table[i].mask)
647 {
648 int reg = reg_table[i].regno;
649 offset -= v850_reg_size;
650 pifsr->reg = reg;
651 pifsr->offset = offset;
652 pifsr->cur_frameoffset = pi->sp_offset;
653 pifsr++;
654 }
655 }
656 }
657
658 /* Set result parameters. */
659 *current_pc_ptr = current_pc;
660 *pifsr_ptr = pifsr;
661}
662
663
664/* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
665 The SR bit of the register list is not supported. gcc does not generate
666 this bit. */
667
668static void
669v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi,
670 struct pifsr **pifsr_ptr)
671{
672 struct pifsr *pifsr = *pifsr_ptr;
673 long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
674 long offset = 0;
675 static struct reg_list pushml_reg_table[] =
676 {
677 {0x80000, E_PS_REGNUM}, /* PSW */
678 {0x40000, 1}, /* r1 */
679 {0x20000, 2}, /* r2 */
680 {0x10000, 3}, /* r3 */
681 {0x00800, 4}, /* r4 */
682 {0x00400, 5}, /* r5 */
683 {0x00200, 6}, /* r6 */
684 {0x00100, 7}, /* r7 */
685 {0x08000, 8}, /* r8 */
686 {0x04000, 9}, /* r9 */
687 {0x02000, 10}, /* r10 */
688 {0x01000, 11}, /* r11 */
689 {0x00080, 12}, /* r12 */
690 {0x00040, 13}, /* r13 */
691 {0x00020, 14}, /* r14 */
692 {0x00010, 15}, /* r15 */
693 {0, 0} /* end of table */
694 };
695 static struct reg_list pushmh_reg_table[] =
696 {
697 {0x80000, 16}, /* r16 */
698 {0x40000, 17}, /* r17 */
699 {0x20000, 18}, /* r18 */
700 {0x10000, 19}, /* r19 */
701 {0x00800, 20}, /* r20 */
702 {0x00400, 21}, /* r21 */
703 {0x00200, 22}, /* r22 */
704 {0x00100, 23}, /* r23 */
705 {0x08000, 24}, /* r24 */
706 {0x04000, 25}, /* r25 */
707 {0x02000, 26}, /* r26 */
708 {0x01000, 27}, /* r27 */
709 {0x00080, 28}, /* r28 */
710 {0x00040, 29}, /* r29 */
711 {0x00010, 30}, /* r30 */
712 {0x00020, 31}, /* r31 */
713 {0, 0} /* end of table */
714 };
715 struct reg_list *reg_table;
716 int i;
717
718 /* Is this a pushml or a pushmh? */
719 if ((insn2 & 7) == 1)
720 reg_table = pushml_reg_table;
721 else
722 reg_table = pushmh_reg_table;
723
7a9dd1b2 724 /* Calculate the total size of the saved registers, and add it to the
181124bc
CV
725 immediate value used to adjust SP. */
726 for (i = 0; reg_table[i].mask != 0; i++)
727 if (list12 & reg_table[i].mask)
728 offset += v850_reg_size;
729 pi->sp_offset -= offset;
730
731 /* Calculate the offsets of the registers relative to the value the SP
732 will have after the registers have been pushed and the imm5 value is
733 subtracted from it. */
734 if (pifsr)
735 {
736 for (i = 0; reg_table[i].mask != 0; i++)
737 {
738 if (list12 & reg_table[i].mask)
739 {
740 int reg = reg_table[i].regno;
741 offset -= v850_reg_size;
742 pifsr->reg = reg;
743 pifsr->offset = offset;
744 pifsr->cur_frameoffset = pi->sp_offset;
745 pifsr++;
746 }
747 }
748 }
749
750 /* Set result parameters. */
751 *pifsr_ptr = pifsr;
752}
753
754/* Helper function to evaluate if register is one of the "save" registers.
755 This allows to simplify conditionals in v850_analyze_prologue a lot. */
756
757static int
758v850_is_save_register (int reg)
759{
760 /* The caller-save registers are R2, R20 - R29 and R31. All other
761 registers are either special purpose (PC, SP), argument registers,
581e13c1 762 or just considered free for use in the caller. */
181124bc
CV
763 return reg == E_R2_REGNUM
764 || (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM)
765 || reg == E_R31_REGNUM;
766}
767
768/* Scan the prologue of the function that contains PC, and record what
769 we find in PI. Returns the pc after the prologue. Note that the
770 addresses saved in frame->saved_regs are just frame relative (negative
771 offsets from the frame pointer). This is because we don't know the
772 actual value of the frame pointer yet. In some circumstances, the
773 frame pointer can't be determined till after we have scanned the
774 prologue. */
775
776static CORE_ADDR
e17a4113
UW
777v850_analyze_prologue (struct gdbarch *gdbarch,
778 CORE_ADDR func_addr, CORE_ADDR pc,
d2ca4222 779 struct v850_frame_cache *pi, ULONGEST ctbp)
181124bc 780{
e17a4113 781 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
181124bc
CV
782 CORE_ADDR prologue_end, current_pc;
783 struct pifsr pifsrs[E_NUM_REGS + 1];
784 struct pifsr *pifsr, *pifsr_tmp;
181124bc
CV
785 int ep_used;
786 int reg;
787 CORE_ADDR save_pc, save_end;
788 int regsave_func_p;
789 int r12_tmp;
790
791 memset (&pifsrs, 0, sizeof pifsrs);
792 pifsr = &pifsrs[0];
793
794 prologue_end = pc;
795
796 /* Now, search the prologue looking for instructions that setup fp, save
797 rp, adjust sp and such. We also record the frame offset of any saved
798 registers. */
799
800 pi->sp_offset = 0;
801 pi->uses_fp = 0;
802 ep_used = 0;
803 regsave_func_p = 0;
804 save_pc = 0;
805 save_end = 0;
806 r12_tmp = 0;
807
808 for (current_pc = func_addr; current_pc < prologue_end;)
809 {
810 int insn;
811 int insn2 = -1; /* dummy value */
812
e17a4113 813 insn = read_memory_integer (current_pc, 2, byte_order);
181124bc 814 current_pc += 2;
581e13c1 815 if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
181124bc 816 {
e17a4113 817 insn2 = read_memory_integer (current_pc, 2, byte_order);
181124bc
CV
818 current_pc += 2;
819 }
820
821 if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
822 { /* jarl <func>,10 */
823 long low_disp = insn2 & ~(long) 1;
824 long disp = (((((insn & 0x3f) << 16) + low_disp)
825 & ~(long) 1) ^ 0x00200000) - 0x00200000;
826
827 save_pc = current_pc;
828 save_end = prologue_end;
829 regsave_func_p = 1;
830 current_pc += disp - 4;
831 prologue_end = (current_pc
832 + (2 * 3) /* moves to/from ep */
833 + 4 /* addi <const>,sp,sp */
834 + 2 /* jmp [r10] */
835 + (2 * 12) /* sst.w to save r2, r20-r29, r31 */
836 + 20); /* slop area */
837 }
838 else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
839 { /* callt <imm6> */
181124bc
CV
840 long adr = ctbp + ((insn & 0x3f) << 1);
841
842 save_pc = current_pc;
843 save_end = prologue_end;
844 regsave_func_p = 1;
e17a4113
UW
845 current_pc = ctbp + (read_memory_unsigned_integer (adr, 2, byte_order)
846 & 0xffff);
181124bc
CV
847 prologue_end = (current_pc
848 + (2 * 3) /* prepare list2,imm5,sp/imm */
849 + 4 /* ctret */
850 + 20); /* slop area */
851 continue;
852 }
853 else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */
854 {
855 v850_handle_prepare (insn, insn2, &current_pc, pi, &pifsr);
856 continue;
857 }
858 else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
859 { /* ctret after processing register save. */
860 current_pc = save_pc;
861 prologue_end = save_end;
862 regsave_func_p = 0;
863 continue;
864 }
865 else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
866 { /* pushml, pushmh */
867 v850_handle_pushm (insn, insn2, pi, &pifsr);
868 continue;
869 }
870 else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
871 { /* jmp after processing register save. */
872 current_pc = save_pc;
873 prologue_end = save_end;
874 regsave_func_p = 0;
875 continue;
876 }
877 else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
878 || (insn & 0xffe0) == 0x0060 /* jmp */
879 || (insn & 0x0780) == 0x0580) /* branch */
880 {
581e13c1 881 break; /* Ran into end of prologue. */
181124bc
CV
882 }
883
884 else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240))
885 /* add <imm>,sp */
886 pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10;
887 else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM))
888 /* addi <imm>,sp,sp */
889 pi->sp_offset += insn2;
890 else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
891 /* mov sp,fp */
892 pi->uses_fp = 1;
893 else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM))
894 /* movhi hi(const),r0,r12 */
895 r12_tmp = insn2 << 16;
896 else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM))
897 /* movea lo(const),r12,r12 */
898 r12_tmp += insn2;
899 else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp)
900 /* add r12,sp */
901 pi->sp_offset += r12_tmp;
902 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
903 /* mov sp,ep */
904 ep_used = 1;
905 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM))
906 /* mov r1,ep */
907 ep_used = 0;
908 else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM)
909 || (pi->uses_fp
910 && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM)))
911 && pifsr
912 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
913 {
914 /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
915 pifsr->reg = reg;
916 pifsr->offset = insn2 & ~1;
917 pifsr->cur_frameoffset = pi->sp_offset;
918 pifsr++;
919 }
920 else if (ep_used
921 && ((insn & 0x0781) == 0x0501)
922 && pifsr
923 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
924 {
925 /* sst.w <reg>,<offset>[ep] */
926 pifsr->reg = reg;
927 pifsr->offset = (insn & 0x007e) << 1;
928 pifsr->cur_frameoffset = pi->sp_offset;
929 pifsr++;
930 }
931 }
932
933 /* Fix up any offsets to the final offset. If a frame pointer was created,
934 use it instead of the stack pointer. */
935 for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++)
936 {
937 pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset;
938 pi->saved_regs[pifsr_tmp->reg].addr = pifsr_tmp->offset;
939 }
940
941 return current_pc;
942}
943
944/* Return the address of the first code past the prologue of the function. */
945
946static CORE_ADDR
6093d2eb 947v850_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
181124bc
CV
948{
949 CORE_ADDR func_addr, func_end;
950
581e13c1 951 /* See what the symbol table says. */
181124bc
CV
952
953 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
954 {
955 struct symtab_and_line sal;
956
957 sal = find_pc_line (func_addr, 0);
958 if (sal.line != 0 && sal.end < func_end)
959 return sal.end;
960
961 /* Either there's no line info, or the line after the prologue is after
962 the end of the function. In this case, there probably isn't a
963 prologue. */
964 return pc;
965 }
966
581e13c1
MS
967 /* We can't find the start of this function, so there's nothing we
968 can do. */
181124bc
CV
969 return pc;
970}
971
83b2706a
KB
972/* Return 1 if the data structure has any 8-byte fields that'll require
973 the entire data structure to be aligned. Otherwise, return 0. */
974
975static int
976v850_eight_byte_align_p (struct type *type)
977{
978 type = check_typedef (type);
979
980 if (v850_type_is_scalar (type))
981 return (TYPE_LENGTH (type) == 8);
982 else
983 {
984 int i;
985
986 for (i = 0; i < TYPE_NFIELDS (type); i++)
987 {
988 if (v850_eight_byte_align_p (TYPE_FIELD_TYPE (type, i)))
989 return 1;
990 }
991 }
992 return 0;
993}
994
181124bc
CV
995static CORE_ADDR
996v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
997{
998 return sp & ~3;
999}
1000
1001/* Setup arguments and LP for a call to the target. First four args
1002 go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
1003 are passed by reference. 64 bit quantities (doubles and long longs)
1004 may be split between the regs and the stack. When calling a function
1005 that returns a struct, a pointer to the struct is passed in as a secret
1006 first argument (always in R6).
1007
1008 Stack space for the args has NOT been allocated: that job is up to us. */
1009
1010static CORE_ADDR
1011v850_push_dummy_call (struct gdbarch *gdbarch,
1012 struct value *function,
1013 struct regcache *regcache,
1014 CORE_ADDR bp_addr,
1015 int nargs,
1016 struct value **args,
1017 CORE_ADDR sp,
1018 int struct_return,
1019 CORE_ADDR struct_addr)
1020{
e17a4113 1021 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
181124bc
CV
1022 int argreg;
1023 int argnum;
1024 int len = 0;
1025 int stack_offset;
1026
83b2706a
KB
1027 if (gdbarch_tdep (gdbarch)->abi == V850_ABI_RH850)
1028 stack_offset = 0;
1029 else
181124bc
CV
1030 /* The offset onto the stack at which we will start copying parameters
1031 (after the registers are used up) begins at 16 rather than at zero.
1032 That's how the ABI is defined, though there's no indication that these
1033 16 bytes are used for anything, not even for saving incoming
1034 argument registers. */
1035 stack_offset = 16;
1036
1037 /* Now make space on the stack for the args. */
1038 for (argnum = 0; argnum < nargs; argnum++)
1039 len += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
1040 sp -= len + stack_offset;
1041
1042 argreg = E_ARG0_REGNUM;
1043 /* The struct_return pointer occupies the first parameter register. */
1044 if (struct_return)
1045 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1046
1047 /* Now load as many as possible of the first arguments into
1048 registers, and push the rest onto the stack. There are 16 bytes
1049 in four registers available. Loop thru args from first to last. */
1050 for (argnum = 0; argnum < nargs; argnum++)
1051 {
1052 int len;
1053 gdb_byte *val;
1054 gdb_byte valbuf[v850_reg_size];
1055
1056 if (!v850_type_is_scalar (value_type (*args))
83b2706a 1057 && gdbarch_tdep (gdbarch)->abi == V850_ABI_GCC
181124bc
CV
1058 && TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
1059 {
e17a4113
UW
1060 store_unsigned_integer (valbuf, 4, byte_order,
1061 value_address (*args));
181124bc
CV
1062 len = 4;
1063 val = valbuf;
1064 }
1065 else
1066 {
1067 len = TYPE_LENGTH (value_type (*args));
1068 val = (gdb_byte *) value_contents (*args);
1069 }
1070
83b2706a
KB
1071 if (gdbarch_tdep (gdbarch)->eight_byte_align
1072 && v850_eight_byte_align_p (value_type (*args)))
1073 {
1074 if (argreg <= E_ARGLAST_REGNUM && (argreg & 1))
1075 argreg++;
1076 else if (stack_offset & 0x4)
1077 stack_offset += 4;
1078 }
1079
181124bc
CV
1080 while (len > 0)
1081 if (argreg <= E_ARGLAST_REGNUM)
1082 {
1083 CORE_ADDR regval;
1084
e17a4113 1085 regval = extract_unsigned_integer (val, v850_reg_size, byte_order);
181124bc
CV
1086 regcache_cooked_write_unsigned (regcache, argreg, regval);
1087
1088 len -= v850_reg_size;
1089 val += v850_reg_size;
1090 argreg++;
1091 }
1092 else
1093 {
1094 write_memory (sp + stack_offset, val, 4);
1095
1096 len -= 4;
1097 val += 4;
1098 stack_offset += 4;
1099 }
1100 args++;
1101 }
1102
1103 /* Store return address. */
1104 regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr);
1105
1106 /* Update stack pointer. */
1107 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
1108
1109 return sp;
1110}
1111
1112static void
1113v850_extract_return_value (struct type *type, struct regcache *regcache,
1114 gdb_byte *valbuf)
1115{
e17a4113
UW
1116 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1117 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
181124bc
CV
1118 int len = TYPE_LENGTH (type);
1119
1120 if (len <= v850_reg_size)
1121 {
1122 ULONGEST val;
1123
1124 regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val);
e17a4113 1125 store_unsigned_integer (valbuf, len, byte_order, val);
181124bc
CV
1126 }
1127 else if (len <= 2 * v850_reg_size)
1128 {
1129 int i, regnum = E_V0_REGNUM;
1130 gdb_byte buf[v850_reg_size];
1131 for (i = 0; len > 0; i += 4, len -= 4)
1132 {
1133 regcache_raw_read (regcache, regnum++, buf);
1134 memcpy (valbuf + i, buf, len > 4 ? 4 : len);
1135 }
1136 }
1137}
1138
1139static void
1140v850_store_return_value (struct type *type, struct regcache *regcache,
1141 const gdb_byte *valbuf)
1142{
e17a4113
UW
1143 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1144 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
181124bc
CV
1145 int len = TYPE_LENGTH (type);
1146
1147 if (len <= v850_reg_size)
e17a4113
UW
1148 regcache_cooked_write_unsigned
1149 (regcache, E_V0_REGNUM,
1150 extract_unsigned_integer (valbuf, len, byte_order));
181124bc
CV
1151 else if (len <= 2 * v850_reg_size)
1152 {
1153 int i, regnum = E_V0_REGNUM;
1154 for (i = 0; i < len; i += 4)
1155 regcache_raw_write (regcache, regnum++, valbuf + i);
1156 }
1157}
1158
1159static enum return_value_convention
6a3a010b 1160v850_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 1161 struct type *type, struct regcache *regcache,
181124bc
CV
1162 gdb_byte *readbuf, const gdb_byte *writebuf)
1163{
83b2706a 1164 if (v850_use_struct_convention (gdbarch, type))
181124bc
CV
1165 return RETURN_VALUE_STRUCT_CONVENTION;
1166 if (writebuf)
1167 v850_store_return_value (type, regcache, writebuf);
1168 else if (readbuf)
1169 v850_extract_return_value (type, regcache, readbuf);
1170 return RETURN_VALUE_REGISTER_CONVENTION;
1171}
1172
44d100c3 1173static const unsigned char *
83b2706a
KB
1174v850_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1175 int *lenptr)
181124bc
CV
1176{
1177 static unsigned char breakpoint[] = { 0x85, 0x05 };
83b2706a
KB
1178
1179 *lenptr = sizeof (breakpoint);
1180 return breakpoint;
1181}
1182
1183/* Implement software breakpoints by using the dbtrap instruction.
1184 Older architectures had no such instruction. For those, an
1185 unconditional branch to self instruction is used. */
1186
44d100c3 1187static const unsigned char *
83b2706a
KB
1188v850_dbtrap_breakpoint_from_pc (struct gdbarch *gdbarch,
1189 CORE_ADDR *pcptr, int *lenptr)
1190{
1191 static unsigned char breakpoint[] = { 0x40, 0xf8 };
1192
181124bc
CV
1193 *lenptr = sizeof (breakpoint);
1194 return breakpoint;
1195}
1196
1197static struct v850_frame_cache *
94afd7a6 1198v850_alloc_frame_cache (struct frame_info *this_frame)
181124bc
CV
1199{
1200 struct v850_frame_cache *cache;
181124bc
CV
1201
1202 cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache);
94afd7a6 1203 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
181124bc
CV
1204
1205 /* Base address. */
1206 cache->base = 0;
1207 cache->sp_offset = 0;
1208 cache->pc = 0;
1209
1210 /* Frameless until proven otherwise. */
1211 cache->uses_fp = 0;
1212
1213 return cache;
1214}
1215
1216static struct v850_frame_cache *
94afd7a6 1217v850_frame_cache (struct frame_info *this_frame, void **this_cache)
181124bc 1218{
e17a4113 1219 struct gdbarch *gdbarch = get_frame_arch (this_frame);
181124bc
CV
1220 struct v850_frame_cache *cache;
1221 CORE_ADDR current_pc;
1222 int i;
1223
1224 if (*this_cache)
1225 return *this_cache;
1226
94afd7a6 1227 cache = v850_alloc_frame_cache (this_frame);
181124bc
CV
1228 *this_cache = cache;
1229
1230 /* In principle, for normal frames, fp holds the frame pointer,
1231 which holds the base address for the current stack frame.
1232 However, for functions that don't need it, the frame pointer is
1233 optional. For these "frameless" functions the frame pointer is
1234 actually the frame pointer of the calling frame. */
94afd7a6 1235 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
181124bc
CV
1236 if (cache->base == 0)
1237 return cache;
1238
94afd7a6
UW
1239 cache->pc = get_frame_func (this_frame);
1240 current_pc = get_frame_pc (this_frame);
181124bc 1241 if (cache->pc != 0)
d2ca4222
UW
1242 {
1243 ULONGEST ctbp;
94afd7a6 1244 ctbp = get_frame_register_unsigned (this_frame, E_CTBP_REGNUM);
e17a4113 1245 v850_analyze_prologue (gdbarch, cache->pc, current_pc, cache, ctbp);
d2ca4222 1246 }
181124bc
CV
1247
1248 if (!cache->uses_fp)
1249 {
1250 /* We didn't find a valid frame, which means that CACHE->base
1251 currently holds the frame pointer for our calling frame. If
1252 we're at the start of a function, or somewhere half-way its
1253 prologue, the function's frame probably hasn't been fully
1254 setup yet. Try to reconstruct the base address for the stack
1255 frame by looking at the stack pointer. For truly "frameless"
1256 functions this might work too. */
94afd7a6 1257 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
181124bc
CV
1258 }
1259
1260 /* Now that we have the base address for the stack frame we can
1261 calculate the value of sp in the calling frame. */
1262 trad_frame_set_value (cache->saved_regs, E_SP_REGNUM,
1263 cache->base - cache->sp_offset);
1264
1265 /* Adjust all the saved registers such that they contain addresses
1266 instead of offsets. */
55fa75c3 1267 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
181124bc
CV
1268 if (trad_frame_addr_p (cache->saved_regs, i))
1269 cache->saved_regs[i].addr += cache->base;
1270
1271 /* The call instruction moves the caller's PC in the callee's LP.
1272 Since this is an unwind, do the reverse. Copy the location of LP
1273 into PC (the address / regnum) so that a request for PC will be
1274 converted into a request for the LP. */
1275
1276 cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM];
1277
1278 return cache;
1279}
1280
1281
94afd7a6
UW
1282static struct value *
1283v850_frame_prev_register (struct frame_info *this_frame,
1284 void **this_cache, int regnum)
181124bc 1285{
94afd7a6 1286 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
181124bc
CV
1287
1288 gdb_assert (regnum >= 0);
1289
94afd7a6 1290 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
181124bc
CV
1291}
1292
1293static void
94afd7a6 1294v850_frame_this_id (struct frame_info *this_frame, void **this_cache,
181124bc
CV
1295 struct frame_id *this_id)
1296{
94afd7a6 1297 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
181124bc
CV
1298
1299 /* This marks the outermost frame. */
1300 if (cache->base == 0)
1301 return;
1302
1303 *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr, cache->pc);
1304}
1305
1306static const struct frame_unwind v850_frame_unwind = {
1307 NORMAL_FRAME,
8fbca658 1308 default_frame_unwind_stop_reason,
181124bc 1309 v850_frame_this_id,
94afd7a6
UW
1310 v850_frame_prev_register,
1311 NULL,
1312 default_frame_sniffer
181124bc 1313};
181124bc
CV
1314
1315static CORE_ADDR
1316v850_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1317{
3e8c568d 1318 return frame_unwind_register_unsigned (next_frame,
d93859e2 1319 gdbarch_sp_regnum (gdbarch));
181124bc
CV
1320}
1321
1322static CORE_ADDR
1323v850_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1324{
3e8c568d 1325 return frame_unwind_register_unsigned (next_frame,
d93859e2 1326 gdbarch_pc_regnum (gdbarch));
181124bc
CV
1327}
1328
1329static struct frame_id
94afd7a6 1330v850_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
181124bc 1331{
94afd7a6
UW
1332 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1333 gdbarch_sp_regnum (gdbarch));
1334 return frame_id_build (sp, get_frame_pc (this_frame));
181124bc
CV
1335}
1336
1337static CORE_ADDR
94afd7a6 1338v850_frame_base_address (struct frame_info *this_frame, void **this_cache)
181124bc 1339{
94afd7a6 1340 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
181124bc
CV
1341
1342 return cache->base;
1343}
1344
1345static const struct frame_base v850_frame_base = {
1346 &v850_frame_unwind,
1347 v850_frame_base_address,
1348 v850_frame_base_address,
1349 v850_frame_base_address
1350};
1351
1352static struct gdbarch *
1353v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1354{
1355 struct gdbarch *gdbarch;
83b2706a
KB
1356 struct gdbarch_tdep *tdep;
1357 int e_flags, e_machine;
1358
1359 /* Extract the elf_flags if available. */
1360 if (info.abfd != NULL
1361 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1362 {
1363 e_flags = elf_elfheader (info.abfd)->e_flags;
1364 e_machine = elf_elfheader (info.abfd)->e_machine;
1365 }
1366 else
1367 {
1368 e_flags = 0;
1369 e_machine = 0;
1370 }
181124bc 1371
181124bc 1372
83b2706a
KB
1373 /* Try to find the architecture in the list of already defined
1374 architectures. */
1375 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1376 arches != NULL;
1377 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1378 {
1379 if (gdbarch_tdep (arches->gdbarch)->e_flags != e_flags
1380 || gdbarch_tdep (arches->gdbarch)->e_machine != e_machine)
1381 continue;
1382
1383 return arches->gdbarch;
1384 }
1385 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1386 tdep->e_flags = e_flags;
1387 tdep->e_machine = e_machine;
1388
1389 switch (tdep->e_machine)
1390 {
1391 case EM_V800:
1392 tdep->abi = V850_ABI_RH850;
1393 break;
1394 default:
1395 tdep->abi = V850_ABI_GCC;
1396 break;
1397 }
1398
1399 tdep->eight_byte_align = (tdep->e_flags & EF_RH850_DATA_ALIGN8) ? 1 : 0;
1400 gdbarch = gdbarch_alloc (&info, tdep);
181124bc
CV
1401
1402 switch (info.bfd_arch_info->mach)
1403 {
1404 case bfd_mach_v850:
1405 set_gdbarch_register_name (gdbarch, v850_register_name);
55fa75c3 1406 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850_REGS);
181124bc
CV
1407 break;
1408 case bfd_mach_v850e:
1409 case bfd_mach_v850e1:
1410 set_gdbarch_register_name (gdbarch, v850e_register_name);
55fa75c3 1411 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E_REGS);
181124bc 1412 break;
2aaed979
KB
1413 case bfd_mach_v850e2:
1414 case bfd_mach_v850e2v3:
1415 set_gdbarch_register_name (gdbarch, v850e2_register_name);
55fa75c3 1416 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
2aaed979 1417 break;
83b2706a
KB
1418 case bfd_mach_v850e3v5:
1419 set_gdbarch_register_name (gdbarch, v850e3v5_register_name);
1420 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E3V5_REGS);
1421 break;
181124bc
CV
1422 }
1423
181124bc
CV
1424 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1425 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1426 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1427 set_gdbarch_fp0_regnum (gdbarch, -1);
1428
1429 set_gdbarch_register_type (gdbarch, v850_register_type);
1430
351a3e56 1431 set_gdbarch_char_signed (gdbarch, 1);
181124bc
CV
1432 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1433 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1434 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1435 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1436
1437 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1438 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1439 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1440
1441 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1442 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1443
1444 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
83b2706a
KB
1445 switch (info.bfd_arch_info->mach)
1446 {
1447 case bfd_mach_v850e2:
1448 case bfd_mach_v850e2v3:
1449 case bfd_mach_v850e3v5:
1450 set_gdbarch_breakpoint_from_pc (gdbarch, v850_dbtrap_breakpoint_from_pc);
1451 break;
1452 default:
1453 set_gdbarch_breakpoint_from_pc (gdbarch, v850_breakpoint_from_pc);
1454 break;
1455 }
181124bc
CV
1456
1457 set_gdbarch_return_value (gdbarch, v850_return_value);
1458 set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call);
1459 set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
1460
1461 set_gdbarch_print_insn (gdbarch, print_insn_v850);
1462
1463 set_gdbarch_frame_align (gdbarch, v850_frame_align);
1464 set_gdbarch_unwind_sp (gdbarch, v850_unwind_sp);
1465 set_gdbarch_unwind_pc (gdbarch, v850_unwind_pc);
94afd7a6 1466 set_gdbarch_dummy_id (gdbarch, v850_dummy_id);
181124bc
CV
1467 frame_base_set_default (gdbarch, &v850_frame_base);
1468
1469 /* Hook in ABI-specific overrides, if they have been registered. */
1470 gdbarch_init_osabi (info, gdbarch);
1471
94afd7a6
UW
1472 dwarf2_append_unwinders (gdbarch);
1473 frame_unwind_append_unwinder (gdbarch, &v850_frame_unwind);
181124bc
CV
1474
1475 return gdbarch;
1476}
1477
1478extern initialize_file_ftype _initialize_v850_tdep; /* -Wmissing-prototypes */
1479
1480void
1481_initialize_v850_tdep (void)
1482{
1483 register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
83b2706a 1484 register_gdbarch_init (bfd_arch_v850_rh850, v850_gdbarch_init);
181124bc 1485}