]>
Commit | Line | Data |
---|---|---|
181124bc CV |
1 | /* Target-dependent code for the NEC V850 for GDB, the GNU debugger. |
2 | ||
e2882c85 | 3 | Copyright (C) 1996-2018 Free Software Foundation, Inc. |
181124bc CV |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
181124bc CV |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
181124bc CV |
19 | |
20 | #include "defs.h" | |
21 | #include "frame.h" | |
22 | #include "frame-base.h" | |
23 | #include "trad-frame.h" | |
24 | #include "frame-unwind.h" | |
25 | #include "dwarf2-frame.h" | |
26 | #include "gdbtypes.h" | |
27 | #include "inferior.h" | |
181124bc CV |
28 | #include "gdbcore.h" |
29 | #include "arch-utils.h" | |
30 | #include "regcache.h" | |
31 | #include "dis-asm.h" | |
32 | #include "osabi.h" | |
83b2706a KB |
33 | #include "elf-bfd.h" |
34 | #include "elf/v850.h" | |
181124bc CV |
35 | |
36 | enum | |
37 | { | |
a2d13a0d | 38 | /* General purpose registers. */ |
181124bc CV |
39 | E_R0_REGNUM, |
40 | E_R1_REGNUM, | |
41 | E_R2_REGNUM, | |
42 | E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM, | |
43 | E_R4_REGNUM, | |
44 | E_R5_REGNUM, | |
45 | E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM, | |
46 | E_R7_REGNUM, | |
47 | E_R8_REGNUM, | |
48 | E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM, | |
49 | E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM, | |
50 | E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM, | |
51 | E_R12_REGNUM, | |
52 | E_R13_REGNUM, | |
53 | E_R14_REGNUM, | |
54 | E_R15_REGNUM, | |
55 | E_R16_REGNUM, | |
56 | E_R17_REGNUM, | |
57 | E_R18_REGNUM, | |
58 | E_R19_REGNUM, | |
59 | E_R20_REGNUM, | |
60 | E_R21_REGNUM, | |
61 | E_R22_REGNUM, | |
62 | E_R23_REGNUM, | |
63 | E_R24_REGNUM, | |
64 | E_R25_REGNUM, | |
65 | E_R26_REGNUM, | |
66 | E_R27_REGNUM, | |
67 | E_R28_REGNUM, | |
68 | E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM, | |
69 | E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM, | |
70 | E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM, | |
a2d13a0d KB |
71 | |
72 | /* System registers - main banks. */ | |
181124bc CV |
73 | E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM, |
74 | E_R33_REGNUM, | |
75 | E_R34_REGNUM, | |
76 | E_R35_REGNUM, | |
77 | E_R36_REGNUM, | |
78 | E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM, | |
79 | E_R38_REGNUM, | |
80 | E_R39_REGNUM, | |
81 | E_R40_REGNUM, | |
82 | E_R41_REGNUM, | |
83 | E_R42_REGNUM, | |
84 | E_R43_REGNUM, | |
85 | E_R44_REGNUM, | |
86 | E_R45_REGNUM, | |
87 | E_R46_REGNUM, | |
88 | E_R47_REGNUM, | |
89 | E_R48_REGNUM, | |
90 | E_R49_REGNUM, | |
91 | E_R50_REGNUM, | |
92 | E_R51_REGNUM, | |
93 | E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM, | |
94 | E_R53_REGNUM, | |
95 | E_R54_REGNUM, | |
96 | E_R55_REGNUM, | |
97 | E_R56_REGNUM, | |
98 | E_R57_REGNUM, | |
99 | E_R58_REGNUM, | |
100 | E_R59_REGNUM, | |
101 | E_R60_REGNUM, | |
102 | E_R61_REGNUM, | |
103 | E_R62_REGNUM, | |
104 | E_R63_REGNUM, | |
a2d13a0d KB |
105 | |
106 | /* PC. */ | |
181124bc | 107 | E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM, |
55fa75c3 KB |
108 | E_R65_REGNUM, |
109 | E_NUM_OF_V850_REGS, | |
110 | E_NUM_OF_V850E_REGS = E_NUM_OF_V850_REGS, | |
2aaed979 | 111 | |
a2d13a0d | 112 | /* System registers - MPV (PROT00) bank. */ |
55fa75c3 | 113 | E_R66_REGNUM = E_NUM_OF_V850_REGS, |
2aaed979 KB |
114 | E_R67_REGNUM, |
115 | E_R68_REGNUM, | |
116 | E_R69_REGNUM, | |
117 | E_R70_REGNUM, | |
118 | E_R71_REGNUM, | |
119 | E_R72_REGNUM, | |
120 | E_R73_REGNUM, | |
121 | E_R74_REGNUM, | |
122 | E_R75_REGNUM, | |
123 | E_R76_REGNUM, | |
124 | E_R77_REGNUM, | |
125 | E_R78_REGNUM, | |
126 | E_R79_REGNUM, | |
127 | E_R80_REGNUM, | |
128 | E_R81_REGNUM, | |
129 | E_R82_REGNUM, | |
130 | E_R83_REGNUM, | |
131 | E_R84_REGNUM, | |
132 | E_R85_REGNUM, | |
133 | E_R86_REGNUM, | |
134 | E_R87_REGNUM, | |
135 | E_R88_REGNUM, | |
136 | E_R89_REGNUM, | |
137 | E_R90_REGNUM, | |
138 | E_R91_REGNUM, | |
139 | E_R92_REGNUM, | |
140 | E_R93_REGNUM, | |
141 | ||
a2d13a0d | 142 | /* System registers - MPU (PROT01) bank. */ |
2aaed979 KB |
143 | E_R94_REGNUM, |
144 | E_R95_REGNUM, | |
145 | E_R96_REGNUM, | |
146 | E_R97_REGNUM, | |
147 | E_R98_REGNUM, | |
148 | E_R99_REGNUM, | |
149 | E_R100_REGNUM, | |
150 | E_R101_REGNUM, | |
151 | E_R102_REGNUM, | |
152 | E_R103_REGNUM, | |
153 | E_R104_REGNUM, | |
154 | E_R105_REGNUM, | |
155 | E_R106_REGNUM, | |
156 | E_R107_REGNUM, | |
157 | E_R108_REGNUM, | |
158 | E_R109_REGNUM, | |
159 | E_R110_REGNUM, | |
160 | E_R111_REGNUM, | |
161 | E_R112_REGNUM, | |
162 | E_R113_REGNUM, | |
163 | E_R114_REGNUM, | |
164 | E_R115_REGNUM, | |
165 | E_R116_REGNUM, | |
166 | E_R117_REGNUM, | |
167 | E_R118_REGNUM, | |
168 | E_R119_REGNUM, | |
169 | E_R120_REGNUM, | |
170 | E_R121_REGNUM, | |
171 | ||
a2d13a0d | 172 | /* FPU system registers. */ |
2aaed979 KB |
173 | E_R122_REGNUM, |
174 | E_R123_REGNUM, | |
175 | E_R124_REGNUM, | |
176 | E_R125_REGNUM, | |
177 | E_R126_REGNUM, | |
178 | E_R127_REGNUM, | |
179 | E_R128_REGNUM, E_FPSR_REGNUM = E_R128_REGNUM, | |
180 | E_R129_REGNUM, E_FPEPC_REGNUM = E_R129_REGNUM, | |
181 | E_R130_REGNUM, E_FPST_REGNUM = E_R130_REGNUM, | |
182 | E_R131_REGNUM, E_FPCC_REGNUM = E_R131_REGNUM, | |
183 | E_R132_REGNUM, E_FPCFG_REGNUM = E_R132_REGNUM, | |
184 | E_R133_REGNUM, | |
185 | E_R134_REGNUM, | |
186 | E_R135_REGNUM, | |
187 | E_R136_REGNUM, | |
188 | E_R137_REGNUM, | |
189 | E_R138_REGNUM, | |
190 | E_R139_REGNUM, | |
191 | E_R140_REGNUM, | |
192 | E_R141_REGNUM, | |
193 | E_R142_REGNUM, | |
194 | E_R143_REGNUM, | |
195 | E_R144_REGNUM, | |
196 | E_R145_REGNUM, | |
197 | E_R146_REGNUM, | |
198 | E_R147_REGNUM, | |
199 | E_R148_REGNUM, | |
83b2706a KB |
200 | E_R149_REGNUM, |
201 | E_NUM_OF_V850E2_REGS, | |
202 | ||
203 | /* v850e3v5 system registers, selID 1 thru 7. */ | |
204 | E_SELID_1_R0_REGNUM = E_NUM_OF_V850E2_REGS, | |
205 | E_SELID_1_R31_REGNUM = E_SELID_1_R0_REGNUM + 31, | |
206 | ||
207 | E_SELID_2_R0_REGNUM, | |
208 | E_SELID_2_R31_REGNUM = E_SELID_2_R0_REGNUM + 31, | |
209 | ||
210 | E_SELID_3_R0_REGNUM, | |
211 | E_SELID_3_R31_REGNUM = E_SELID_3_R0_REGNUM + 31, | |
212 | ||
213 | E_SELID_4_R0_REGNUM, | |
214 | E_SELID_4_R31_REGNUM = E_SELID_4_R0_REGNUM + 31, | |
215 | ||
216 | E_SELID_5_R0_REGNUM, | |
217 | E_SELID_5_R31_REGNUM = E_SELID_5_R0_REGNUM + 31, | |
218 | ||
219 | E_SELID_6_R0_REGNUM, | |
220 | E_SELID_6_R31_REGNUM = E_SELID_6_R0_REGNUM + 31, | |
221 | ||
222 | E_SELID_7_R0_REGNUM, | |
223 | E_SELID_7_R31_REGNUM = E_SELID_7_R0_REGNUM + 31, | |
224 | ||
225 | /* v850e3v5 vector registers. */ | |
226 | E_VR0_REGNUM, | |
227 | E_VR31_REGNUM = E_VR0_REGNUM + 31, | |
228 | ||
229 | E_NUM_OF_V850E3V5_REGS, | |
230 | ||
231 | /* Total number of possible registers. */ | |
232 | E_NUM_REGS = E_NUM_OF_V850E3V5_REGS | |
181124bc CV |
233 | }; |
234 | ||
235 | enum | |
236 | { | |
237 | v850_reg_size = 4 | |
238 | }; | |
239 | ||
240 | /* Size of return datatype which fits into all return registers. */ | |
241 | enum | |
242 | { | |
243 | E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size | |
244 | }; | |
245 | ||
83b2706a KB |
246 | /* When v850 support was added to GCC in the late nineties, the intention |
247 | was to follow the Green Hills ABI for v850. In fact, the authors of | |
248 | that support at the time thought that they were doing so. As far as | |
249 | I can tell, the calling conventions are correct, but the return value | |
250 | conventions were not quite right. Over time, the return value code | |
251 | in this file was modified to mostly reflect what GCC was actually | |
252 | doing instead of to actually follow the Green Hills ABI as it did | |
253 | when the code was first written. | |
254 | ||
255 | Renesas defined the RH850 ABI which they use in their compiler. It | |
256 | is similar to the original Green Hills ABI with some minor | |
257 | differences. */ | |
258 | ||
259 | enum v850_abi | |
260 | { | |
261 | V850_ABI_GCC, | |
262 | V850_ABI_RH850 | |
263 | }; | |
264 | ||
265 | /* Architecture specific data. */ | |
266 | ||
267 | struct gdbarch_tdep | |
268 | { | |
269 | /* Fields from the ELF header. */ | |
270 | int e_flags; | |
271 | int e_machine; | |
272 | ||
273 | /* Which ABI are we using? */ | |
274 | enum v850_abi abi; | |
275 | int eight_byte_align; | |
276 | }; | |
277 | ||
181124bc CV |
278 | struct v850_frame_cache |
279 | { | |
280 | /* Base address. */ | |
281 | CORE_ADDR base; | |
282 | LONGEST sp_offset; | |
283 | CORE_ADDR pc; | |
284 | ||
285 | /* Flag showing that a frame has been created in the prologue code. */ | |
286 | int uses_fp; | |
287 | ||
288 | /* Saved registers. */ | |
289 | struct trad_frame_saved_reg *saved_regs; | |
290 | }; | |
291 | ||
292 | /* Info gleaned from scanning a function's prologue. */ | |
293 | struct pifsr /* Info about one saved register. */ | |
294 | { | |
295 | int offset; /* Offset from sp or fp. */ | |
296 | int cur_frameoffset; /* Current frameoffset. */ | |
297 | int reg; /* Saved register number. */ | |
298 | }; | |
299 | ||
300 | static const char * | |
d93859e2 | 301 | v850_register_name (struct gdbarch *gdbarch, int regnum) |
181124bc CV |
302 | { |
303 | static const char *v850_reg_names[] = | |
304 | { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
305 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
306 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
307 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
308 | "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7", | |
309 | "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15", | |
310 | "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23", | |
311 | "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31", | |
312 | "pc", "fp" | |
313 | }; | |
2aaed979 | 314 | if (regnum < 0 || regnum > E_NUM_OF_V850_REGS) |
181124bc CV |
315 | return NULL; |
316 | return v850_reg_names[regnum]; | |
317 | } | |
318 | ||
319 | static const char * | |
d93859e2 | 320 | v850e_register_name (struct gdbarch *gdbarch, int regnum) |
181124bc CV |
321 | { |
322 | static const char *v850e_reg_names[] = | |
323 | { | |
324 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
325 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
326 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
327 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
328 | "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7", | |
329 | "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15", | |
330 | "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23", | |
331 | "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31", | |
332 | "pc", "fp" | |
333 | }; | |
2aaed979 | 334 | if (regnum < 0 || regnum > E_NUM_OF_V850E_REGS) |
181124bc CV |
335 | return NULL; |
336 | return v850e_reg_names[regnum]; | |
337 | } | |
338 | ||
2aaed979 KB |
339 | static const char * |
340 | v850e2_register_name (struct gdbarch *gdbarch, int regnum) | |
341 | { | |
342 | static const char *v850e2_reg_names[] = | |
343 | { | |
a2d13a0d | 344 | /* General purpose registers. */ |
2aaed979 KB |
345 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
346 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
347 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
348 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
349 | ||
a2d13a0d KB |
350 | /* System registers - main banks. */ |
351 | "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "pid", "cfg", | |
352 | "", "", "", "sccfg", "scbp", "eiic", "feic", "dbic", | |
353 | "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "dir", "", "", | |
354 | "", "", "", "", "eiwr", "fewr", "dbwr", "bsel", | |
355 | ||
356 | ||
357 | /* PC. */ | |
358 | "pc", "", | |
2aaed979 | 359 | |
a2d13a0d KB |
360 | /* System registers - MPV (PROT00) bank. */ |
361 | "vsecr", "vstid", "vsadr", "", "vmecr", "vmtid", "vmadr", "", | |
362 | "vpecr", "vptid", "vpadr", "", "", "", "", "", | |
363 | "", "", "", "", "", "", "", "", | |
364 | "mca", "mcs", "mcc", "mcr", | |
2aaed979 | 365 | |
a2d13a0d KB |
366 | /* System registers - MPU (PROT01) bank. */ |
367 | "mpm", "mpc", "tid", "", "", "", "ipa0l", "ipa0u", | |
368 | "ipa1l", "ipa1u", "ipa2l", "ipa2u", "ipa3l", "ipa3u", "ipa4l", "ipa4u", | |
369 | "dpa0l", "dpa0u", "dpa1l", "dpa1u", "dpa2l", "dpa2u", "dpa3l", "dpa3u", | |
370 | "dpa4l", "dpa4u", "dpa5l", "dpa5u", | |
2aaed979 | 371 | |
a2d13a0d KB |
372 | /* FPU system registers. */ |
373 | "", "", "", "", "", "", "fpsr", "fpepc", | |
374 | "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "", | |
375 | "", "", "", "", "", "", "", "", | |
376 | "", "", "", "fpspc" | |
2aaed979 | 377 | }; |
83b2706a | 378 | if (regnum < 0 || regnum >= E_NUM_OF_V850E2_REGS) |
2aaed979 KB |
379 | return NULL; |
380 | return v850e2_reg_names[regnum]; | |
381 | } | |
382 | ||
83b2706a KB |
383 | /* Implement the "register_name" gdbarch method for v850e3v5. */ |
384 | ||
385 | static const char * | |
386 | v850e3v5_register_name (struct gdbarch *gdbarch, int regnum) | |
387 | { | |
388 | static const char *v850e3v5_reg_names[] = | |
389 | { | |
390 | /* General purpose registers. */ | |
391 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
392 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
393 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
394 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
395 | ||
396 | /* selID 0, not including FPU registers. The FPU registers are | |
397 | listed later on. */ | |
398 | "eipc", "eipsw", "fepc", "fepsw", | |
399 | "", "psw", "" /* fpsr */, "" /* fpepc */, | |
400 | "" /* fpst */, "" /* fpcc */, "" /* fpcfg */, "" /* fpec */, | |
401 | "sesr", "eiic", "feic", "", | |
402 | "ctpc", "ctpsw", "", "", "ctbp", "", "", "", | |
403 | "", "", "", "", "eiwr", "fewr", "", "bsel", | |
404 | ||
405 | ||
406 | /* PC. */ | |
407 | "pc", "", | |
408 | ||
409 | /* v850e2 MPV bank. */ | |
410 | "", "", "", "", "", "", "", "", | |
411 | "", "", "", "", "", "", "", "", | |
412 | "", "", "", "", "", "", "", "", | |
413 | "", "", "", "", | |
414 | ||
415 | /* Skip v850e2 MPU bank. It's tempting to reuse these, but we need | |
416 | 32 entries for this bank. */ | |
417 | "", "", "", "", "", "", "", "", | |
418 | "", "", "", "", "", "", "", "", | |
419 | "", "", "", "", "", "", "", "", | |
420 | "", "", "", "", | |
421 | ||
422 | /* FPU system registers. These are actually in selID 0, but | |
423 | are placed here to preserve register numbering compatibility | |
424 | with previous architectures. */ | |
425 | "", "", "", "", "", "", "fpsr", "fpepc", | |
426 | "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "", | |
427 | "", "", "", "", "", "", "", "", | |
428 | "", "", "", "", | |
429 | ||
430 | /* selID 1. */ | |
431 | "mcfg0", "mcfg1", "rbase", "ebase", "intbp", "mctl", "pid", "fpipr", | |
432 | "", "", "tcsel", "sccfg", "scbp", "hvccfg", "hvcbp", "vsel", | |
433 | "vmprt0", "vmprt1", "vmprt2", "", "", "", "", "vmscctl", | |
434 | "vmsctbl0", "vmsctbl1", "vmsctbl2", "vmsctbl3", "", "", "", "", | |
435 | ||
436 | /* selID 2. */ | |
437 | "htcfg0", "", "", "", "", "htctl", "mea", "asid", | |
438 | "mei", "ispr", "pmr", "icsr", "intcfg", "", "", "", | |
439 | "tlbsch", "", "", "", "", "", "", "htscctl", | |
440 | "htsctbl0", "htsctbl1", "htsctbl2", "htsctbl3", | |
441 | "htsctbl4", "htsctbl5", "htsctbl6", "htsctbl7", | |
442 | ||
443 | /* selID 3. */ | |
444 | "", "", "", "", "", "", "", "", | |
445 | "", "", "", "", "", "", "", "", | |
446 | "", "", "", "", "", "", "", "", | |
447 | "", "", "", "", "", "", "", "", | |
448 | ||
449 | /* selID 4. */ | |
450 | "tlbidx", "", "", "", "telo0", "telo1", "tehi0", "tehi1", | |
451 | "", "", "tlbcfg", "", "bwerrl", "bwerrh", "brerrl", "brerrh", | |
452 | "ictagl", "ictagh", "icdatl", "icdath", | |
453 | "dctagl", "dctagh", "dcdatl", "dcdath", | |
454 | "icctrl", "dcctrl", "iccfg", "dccfg", "icerr", "dcerr", "", "", | |
455 | ||
456 | /* selID 5. */ | |
457 | "mpm", "mprc", "", "", "mpbrgn", "mptrgn", "", "", | |
458 | "mca", "mcs", "mcc", "mcr", "", "", "", "", | |
459 | "", "", "", "", "mpprt0", "mpprt1", "mpprt2", "", | |
460 | "", "", "", "", "", "", "", "", | |
461 | ||
462 | /* selID 6. */ | |
463 | "mpla0", "mpua0", "mpat0", "", "mpla1", "mpua1", "mpat1", "", | |
464 | "mpla2", "mpua2", "mpat2", "", "mpla3", "mpua3", "mpat3", "", | |
465 | "mpla4", "mpua4", "mpat4", "", "mpla5", "mpua5", "mpat5", "", | |
466 | "mpla6", "mpua6", "mpat6", "", "mpla7", "mpua7", "mpat7", "", | |
467 | ||
468 | /* selID 7. */ | |
469 | "mpla8", "mpua8", "mpat8", "", "mpla9", "mpua9", "mpat9", "", | |
470 | "mpla10", "mpua10", "mpat10", "", "mpla11", "mpua11", "mpat11", "", | |
471 | "mpla12", "mpua12", "mpat12", "", "mpla13", "mpua13", "mpat13", "", | |
472 | "mpla14", "mpua14", "mpat14", "", "mpla15", "mpua15", "mpat15", "", | |
473 | ||
474 | /* Vector Registers */ | |
475 | "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7", | |
476 | "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15", | |
477 | "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23", | |
478 | "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31", | |
479 | }; | |
480 | ||
481 | if (regnum < 0 || regnum >= E_NUM_OF_V850E3V5_REGS) | |
482 | return NULL; | |
483 | return v850e3v5_reg_names[regnum]; | |
484 | } | |
485 | ||
181124bc CV |
486 | /* Returns the default type for register N. */ |
487 | ||
488 | static struct type * | |
489 | v850_register_type (struct gdbarch *gdbarch, int regnum) | |
490 | { | |
491 | if (regnum == E_PC_REGNUM) | |
0dfff4cb | 492 | return builtin_type (gdbarch)->builtin_func_ptr; |
83b2706a KB |
493 | else if (E_VR0_REGNUM <= regnum && regnum <= E_VR31_REGNUM) |
494 | return builtin_type (gdbarch)->builtin_uint64; | |
df4df182 | 495 | return builtin_type (gdbarch)->builtin_int32; |
181124bc CV |
496 | } |
497 | ||
498 | static int | |
499 | v850_type_is_scalar (struct type *t) | |
500 | { | |
501 | return (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
502 | && TYPE_CODE (t) != TYPE_CODE_UNION | |
503 | && TYPE_CODE (t) != TYPE_CODE_ARRAY); | |
504 | } | |
505 | ||
506 | /* Should call_function allocate stack space for a struct return? */ | |
83b2706a | 507 | |
181124bc | 508 | static int |
83b2706a | 509 | v850_use_struct_convention (struct gdbarch *gdbarch, struct type *type) |
181124bc CV |
510 | { |
511 | int i; | |
512 | struct type *fld_type, *tgt_type; | |
513 | ||
83b2706a KB |
514 | if (gdbarch_tdep (gdbarch)->abi == V850_ABI_RH850) |
515 | { | |
516 | if (v850_type_is_scalar (type) && TYPE_LENGTH(type) <= 8) | |
517 | return 0; | |
518 | ||
519 | /* Structs are never returned in registers for this ABI. */ | |
520 | return 1; | |
521 | } | |
181124bc CV |
522 | /* 1. The value is greater than 8 bytes -> returned by copying. */ |
523 | if (TYPE_LENGTH (type) > 8) | |
524 | return 1; | |
525 | ||
526 | /* 2. The value is a single basic type -> returned in register. */ | |
527 | if (v850_type_is_scalar (type)) | |
528 | return 0; | |
529 | ||
530 | /* The value is a structure or union with a single element and that | |
531 | element is either a single basic type or an array of a single basic | |
532 | type whose size is greater than or equal to 4 -> returned in register. */ | |
533 | if ((TYPE_CODE (type) == TYPE_CODE_STRUCT | |
534 | || TYPE_CODE (type) == TYPE_CODE_UNION) | |
535 | && TYPE_NFIELDS (type) == 1) | |
536 | { | |
537 | fld_type = TYPE_FIELD_TYPE (type, 0); | |
538 | if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4) | |
539 | return 0; | |
540 | ||
541 | if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY) | |
542 | { | |
543 | tgt_type = TYPE_TARGET_TYPE (fld_type); | |
544 | if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4) | |
545 | return 0; | |
546 | } | |
547 | } | |
548 | ||
549 | /* The value is a structure whose first element is an integer or a float, | |
550 | and which contains no arrays of more than two elements -> returned in | |
551 | register. */ | |
552 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
553 | && v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0)) | |
554 | && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4) | |
555 | { | |
556 | for (i = 1; i < TYPE_NFIELDS (type); ++i) | |
557 | { | |
558 | fld_type = TYPE_FIELD_TYPE (type, 0); | |
559 | if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY) | |
560 | { | |
561 | tgt_type = TYPE_TARGET_TYPE (fld_type); | |
4bf5402d | 562 | if (TYPE_LENGTH (tgt_type) > 0 |
181124bc CV |
563 | && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2) |
564 | return 1; | |
565 | } | |
566 | } | |
567 | return 0; | |
568 | } | |
569 | ||
581e13c1 MS |
570 | /* The value is a union which contains at least one field which |
571 | would be returned in registers according to these rules -> | |
572 | returned in register. */ | |
181124bc CV |
573 | if (TYPE_CODE (type) == TYPE_CODE_UNION) |
574 | { | |
575 | for (i = 0; i < TYPE_NFIELDS (type); ++i) | |
576 | { | |
577 | fld_type = TYPE_FIELD_TYPE (type, 0); | |
83b2706a | 578 | if (!v850_use_struct_convention (gdbarch, fld_type)) |
181124bc CV |
579 | return 0; |
580 | } | |
581 | } | |
582 | ||
583 | return 1; | |
584 | } | |
585 | ||
586 | /* Structure for mapping bits in register lists to register numbers. */ | |
83b2706a | 587 | |
181124bc CV |
588 | struct reg_list |
589 | { | |
590 | long mask; | |
591 | int regno; | |
592 | }; | |
593 | ||
594 | /* Helper function for v850_scan_prologue to handle prepare instruction. */ | |
595 | ||
596 | static void | |
597 | v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr, | |
598 | struct v850_frame_cache *pi, struct pifsr **pifsr_ptr) | |
599 | { | |
600 | CORE_ADDR current_pc = *current_pc_ptr; | |
601 | struct pifsr *pifsr = *pifsr_ptr; | |
602 | long next = insn2 & 0xffff; | |
603 | long list12 = ((insn & 1) << 16) + (next & 0xffe0); | |
604 | long offset = (insn & 0x3e) << 1; | |
605 | static struct reg_list reg_table[] = | |
606 | { | |
607 | {0x00800, 20}, /* r20 */ | |
608 | {0x00400, 21}, /* r21 */ | |
609 | {0x00200, 22}, /* r22 */ | |
610 | {0x00100, 23}, /* r23 */ | |
611 | {0x08000, 24}, /* r24 */ | |
612 | {0x04000, 25}, /* r25 */ | |
613 | {0x02000, 26}, /* r26 */ | |
614 | {0x01000, 27}, /* r27 */ | |
615 | {0x00080, 28}, /* r28 */ | |
616 | {0x00040, 29}, /* r29 */ | |
617 | {0x10000, 30}, /* ep */ | |
618 | {0x00020, 31}, /* lp */ | |
619 | {0, 0} /* end of table */ | |
620 | }; | |
621 | int i; | |
622 | ||
623 | if ((next & 0x1f) == 0x0b) /* skip imm16 argument */ | |
624 | current_pc += 2; | |
625 | else if ((next & 0x1f) == 0x13) /* skip imm16 argument */ | |
626 | current_pc += 2; | |
627 | else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */ | |
628 | current_pc += 4; | |
629 | ||
630 | /* Calculate the total size of the saved registers, and add it to the | |
631 | immediate value used to adjust SP. */ | |
632 | for (i = 0; reg_table[i].mask != 0; i++) | |
633 | if (list12 & reg_table[i].mask) | |
634 | offset += v850_reg_size; | |
635 | pi->sp_offset -= offset; | |
636 | ||
637 | /* Calculate the offsets of the registers relative to the value the SP | |
638 | will have after the registers have been pushed and the imm5 value has | |
639 | been subtracted from it. */ | |
640 | if (pifsr) | |
641 | { | |
642 | for (i = 0; reg_table[i].mask != 0; i++) | |
643 | { | |
644 | if (list12 & reg_table[i].mask) | |
645 | { | |
646 | int reg = reg_table[i].regno; | |
647 | offset -= v850_reg_size; | |
648 | pifsr->reg = reg; | |
649 | pifsr->offset = offset; | |
650 | pifsr->cur_frameoffset = pi->sp_offset; | |
651 | pifsr++; | |
652 | } | |
653 | } | |
654 | } | |
655 | ||
656 | /* Set result parameters. */ | |
657 | *current_pc_ptr = current_pc; | |
658 | *pifsr_ptr = pifsr; | |
659 | } | |
660 | ||
661 | ||
662 | /* Helper function for v850_scan_prologue to handle pushm/pushl instructions. | |
663 | The SR bit of the register list is not supported. gcc does not generate | |
664 | this bit. */ | |
665 | ||
666 | static void | |
667 | v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi, | |
668 | struct pifsr **pifsr_ptr) | |
669 | { | |
670 | struct pifsr *pifsr = *pifsr_ptr; | |
671 | long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0); | |
672 | long offset = 0; | |
673 | static struct reg_list pushml_reg_table[] = | |
674 | { | |
675 | {0x80000, E_PS_REGNUM}, /* PSW */ | |
676 | {0x40000, 1}, /* r1 */ | |
677 | {0x20000, 2}, /* r2 */ | |
678 | {0x10000, 3}, /* r3 */ | |
679 | {0x00800, 4}, /* r4 */ | |
680 | {0x00400, 5}, /* r5 */ | |
681 | {0x00200, 6}, /* r6 */ | |
682 | {0x00100, 7}, /* r7 */ | |
683 | {0x08000, 8}, /* r8 */ | |
684 | {0x04000, 9}, /* r9 */ | |
685 | {0x02000, 10}, /* r10 */ | |
686 | {0x01000, 11}, /* r11 */ | |
687 | {0x00080, 12}, /* r12 */ | |
688 | {0x00040, 13}, /* r13 */ | |
689 | {0x00020, 14}, /* r14 */ | |
690 | {0x00010, 15}, /* r15 */ | |
691 | {0, 0} /* end of table */ | |
692 | }; | |
693 | static struct reg_list pushmh_reg_table[] = | |
694 | { | |
695 | {0x80000, 16}, /* r16 */ | |
696 | {0x40000, 17}, /* r17 */ | |
697 | {0x20000, 18}, /* r18 */ | |
698 | {0x10000, 19}, /* r19 */ | |
699 | {0x00800, 20}, /* r20 */ | |
700 | {0x00400, 21}, /* r21 */ | |
701 | {0x00200, 22}, /* r22 */ | |
702 | {0x00100, 23}, /* r23 */ | |
703 | {0x08000, 24}, /* r24 */ | |
704 | {0x04000, 25}, /* r25 */ | |
705 | {0x02000, 26}, /* r26 */ | |
706 | {0x01000, 27}, /* r27 */ | |
707 | {0x00080, 28}, /* r28 */ | |
708 | {0x00040, 29}, /* r29 */ | |
709 | {0x00010, 30}, /* r30 */ | |
710 | {0x00020, 31}, /* r31 */ | |
711 | {0, 0} /* end of table */ | |
712 | }; | |
713 | struct reg_list *reg_table; | |
714 | int i; | |
715 | ||
716 | /* Is this a pushml or a pushmh? */ | |
717 | if ((insn2 & 7) == 1) | |
718 | reg_table = pushml_reg_table; | |
719 | else | |
720 | reg_table = pushmh_reg_table; | |
721 | ||
7a9dd1b2 | 722 | /* Calculate the total size of the saved registers, and add it to the |
181124bc CV |
723 | immediate value used to adjust SP. */ |
724 | for (i = 0; reg_table[i].mask != 0; i++) | |
725 | if (list12 & reg_table[i].mask) | |
726 | offset += v850_reg_size; | |
727 | pi->sp_offset -= offset; | |
728 | ||
729 | /* Calculate the offsets of the registers relative to the value the SP | |
730 | will have after the registers have been pushed and the imm5 value is | |
731 | subtracted from it. */ | |
732 | if (pifsr) | |
733 | { | |
734 | for (i = 0; reg_table[i].mask != 0; i++) | |
735 | { | |
736 | if (list12 & reg_table[i].mask) | |
737 | { | |
738 | int reg = reg_table[i].regno; | |
739 | offset -= v850_reg_size; | |
740 | pifsr->reg = reg; | |
741 | pifsr->offset = offset; | |
742 | pifsr->cur_frameoffset = pi->sp_offset; | |
743 | pifsr++; | |
744 | } | |
745 | } | |
746 | } | |
747 | ||
748 | /* Set result parameters. */ | |
749 | *pifsr_ptr = pifsr; | |
750 | } | |
751 | ||
752 | /* Helper function to evaluate if register is one of the "save" registers. | |
753 | This allows to simplify conditionals in v850_analyze_prologue a lot. */ | |
754 | ||
755 | static int | |
756 | v850_is_save_register (int reg) | |
757 | { | |
758 | /* The caller-save registers are R2, R20 - R29 and R31. All other | |
759 | registers are either special purpose (PC, SP), argument registers, | |
581e13c1 | 760 | or just considered free for use in the caller. */ |
181124bc CV |
761 | return reg == E_R2_REGNUM |
762 | || (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM) | |
763 | || reg == E_R31_REGNUM; | |
764 | } | |
765 | ||
766 | /* Scan the prologue of the function that contains PC, and record what | |
767 | we find in PI. Returns the pc after the prologue. Note that the | |
768 | addresses saved in frame->saved_regs are just frame relative (negative | |
769 | offsets from the frame pointer). This is because we don't know the | |
770 | actual value of the frame pointer yet. In some circumstances, the | |
771 | frame pointer can't be determined till after we have scanned the | |
772 | prologue. */ | |
773 | ||
774 | static CORE_ADDR | |
e17a4113 UW |
775 | v850_analyze_prologue (struct gdbarch *gdbarch, |
776 | CORE_ADDR func_addr, CORE_ADDR pc, | |
d2ca4222 | 777 | struct v850_frame_cache *pi, ULONGEST ctbp) |
181124bc | 778 | { |
e17a4113 | 779 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
181124bc CV |
780 | CORE_ADDR prologue_end, current_pc; |
781 | struct pifsr pifsrs[E_NUM_REGS + 1]; | |
782 | struct pifsr *pifsr, *pifsr_tmp; | |
181124bc CV |
783 | int ep_used; |
784 | int reg; | |
785 | CORE_ADDR save_pc, save_end; | |
786 | int regsave_func_p; | |
787 | int r12_tmp; | |
788 | ||
789 | memset (&pifsrs, 0, sizeof pifsrs); | |
790 | pifsr = &pifsrs[0]; | |
791 | ||
792 | prologue_end = pc; | |
793 | ||
794 | /* Now, search the prologue looking for instructions that setup fp, save | |
795 | rp, adjust sp and such. We also record the frame offset of any saved | |
796 | registers. */ | |
797 | ||
798 | pi->sp_offset = 0; | |
799 | pi->uses_fp = 0; | |
800 | ep_used = 0; | |
801 | regsave_func_p = 0; | |
802 | save_pc = 0; | |
803 | save_end = 0; | |
804 | r12_tmp = 0; | |
805 | ||
806 | for (current_pc = func_addr; current_pc < prologue_end;) | |
807 | { | |
808 | int insn; | |
809 | int insn2 = -1; /* dummy value */ | |
810 | ||
e17a4113 | 811 | insn = read_memory_integer (current_pc, 2, byte_order); |
181124bc | 812 | current_pc += 2; |
581e13c1 | 813 | if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */ |
181124bc | 814 | { |
e17a4113 | 815 | insn2 = read_memory_integer (current_pc, 2, byte_order); |
181124bc CV |
816 | current_pc += 2; |
817 | } | |
818 | ||
819 | if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p) | |
820 | { /* jarl <func>,10 */ | |
821 | long low_disp = insn2 & ~(long) 1; | |
822 | long disp = (((((insn & 0x3f) << 16) + low_disp) | |
823 | & ~(long) 1) ^ 0x00200000) - 0x00200000; | |
824 | ||
825 | save_pc = current_pc; | |
826 | save_end = prologue_end; | |
827 | regsave_func_p = 1; | |
828 | current_pc += disp - 4; | |
829 | prologue_end = (current_pc | |
830 | + (2 * 3) /* moves to/from ep */ | |
831 | + 4 /* addi <const>,sp,sp */ | |
832 | + 2 /* jmp [r10] */ | |
833 | + (2 * 12) /* sst.w to save r2, r20-r29, r31 */ | |
834 | + 20); /* slop area */ | |
835 | } | |
836 | else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p) | |
837 | { /* callt <imm6> */ | |
181124bc CV |
838 | long adr = ctbp + ((insn & 0x3f) << 1); |
839 | ||
840 | save_pc = current_pc; | |
841 | save_end = prologue_end; | |
842 | regsave_func_p = 1; | |
e17a4113 UW |
843 | current_pc = ctbp + (read_memory_unsigned_integer (adr, 2, byte_order) |
844 | & 0xffff); | |
181124bc CV |
845 | prologue_end = (current_pc |
846 | + (2 * 3) /* prepare list2,imm5,sp/imm */ | |
847 | + 4 /* ctret */ | |
848 | + 20); /* slop area */ | |
849 | continue; | |
850 | } | |
851 | else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */ | |
852 | { | |
853 | v850_handle_prepare (insn, insn2, ¤t_pc, pi, &pifsr); | |
854 | continue; | |
855 | } | |
856 | else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144) | |
857 | { /* ctret after processing register save. */ | |
858 | current_pc = save_pc; | |
859 | prologue_end = save_end; | |
860 | regsave_func_p = 0; | |
861 | continue; | |
862 | } | |
863 | else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1) | |
864 | { /* pushml, pushmh */ | |
865 | v850_handle_pushm (insn, insn2, pi, &pifsr); | |
866 | continue; | |
867 | } | |
868 | else if ((insn & 0xffe0) == 0x0060 && regsave_func_p) | |
869 | { /* jmp after processing register save. */ | |
870 | current_pc = save_pc; | |
871 | prologue_end = save_end; | |
872 | regsave_func_p = 0; | |
873 | continue; | |
874 | } | |
875 | else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */ | |
876 | || (insn & 0xffe0) == 0x0060 /* jmp */ | |
877 | || (insn & 0x0780) == 0x0580) /* branch */ | |
878 | { | |
581e13c1 | 879 | break; /* Ran into end of prologue. */ |
181124bc CV |
880 | } |
881 | ||
882 | else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240)) | |
883 | /* add <imm>,sp */ | |
884 | pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10; | |
885 | else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM)) | |
886 | /* addi <imm>,sp,sp */ | |
887 | pi->sp_offset += insn2; | |
888 | else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM)) | |
889 | /* mov sp,fp */ | |
890 | pi->uses_fp = 1; | |
891 | else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM)) | |
892 | /* movhi hi(const),r0,r12 */ | |
893 | r12_tmp = insn2 << 16; | |
894 | else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM)) | |
895 | /* movea lo(const),r12,r12 */ | |
896 | r12_tmp += insn2; | |
897 | else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp) | |
898 | /* add r12,sp */ | |
899 | pi->sp_offset += r12_tmp; | |
900 | else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM)) | |
901 | /* mov sp,ep */ | |
902 | ep_used = 1; | |
903 | else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM)) | |
904 | /* mov r1,ep */ | |
905 | ep_used = 0; | |
906 | else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM) | |
907 | || (pi->uses_fp | |
908 | && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM))) | |
909 | && pifsr | |
910 | && v850_is_save_register (reg = (insn >> 11) & 0x1f)) | |
911 | { | |
912 | /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */ | |
913 | pifsr->reg = reg; | |
914 | pifsr->offset = insn2 & ~1; | |
915 | pifsr->cur_frameoffset = pi->sp_offset; | |
916 | pifsr++; | |
917 | } | |
918 | else if (ep_used | |
919 | && ((insn & 0x0781) == 0x0501) | |
920 | && pifsr | |
921 | && v850_is_save_register (reg = (insn >> 11) & 0x1f)) | |
922 | { | |
923 | /* sst.w <reg>,<offset>[ep] */ | |
924 | pifsr->reg = reg; | |
925 | pifsr->offset = (insn & 0x007e) << 1; | |
926 | pifsr->cur_frameoffset = pi->sp_offset; | |
927 | pifsr++; | |
928 | } | |
929 | } | |
930 | ||
931 | /* Fix up any offsets to the final offset. If a frame pointer was created, | |
932 | use it instead of the stack pointer. */ | |
933 | for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++) | |
934 | { | |
935 | pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset; | |
936 | pi->saved_regs[pifsr_tmp->reg].addr = pifsr_tmp->offset; | |
937 | } | |
938 | ||
939 | return current_pc; | |
940 | } | |
941 | ||
942 | /* Return the address of the first code past the prologue of the function. */ | |
943 | ||
944 | static CORE_ADDR | |
6093d2eb | 945 | v850_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
181124bc CV |
946 | { |
947 | CORE_ADDR func_addr, func_end; | |
948 | ||
581e13c1 | 949 | /* See what the symbol table says. */ |
181124bc CV |
950 | |
951 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
952 | { | |
953 | struct symtab_and_line sal; | |
954 | ||
955 | sal = find_pc_line (func_addr, 0); | |
956 | if (sal.line != 0 && sal.end < func_end) | |
957 | return sal.end; | |
958 | ||
959 | /* Either there's no line info, or the line after the prologue is after | |
960 | the end of the function. In this case, there probably isn't a | |
961 | prologue. */ | |
962 | return pc; | |
963 | } | |
964 | ||
581e13c1 MS |
965 | /* We can't find the start of this function, so there's nothing we |
966 | can do. */ | |
181124bc CV |
967 | return pc; |
968 | } | |
969 | ||
83b2706a KB |
970 | /* Return 1 if the data structure has any 8-byte fields that'll require |
971 | the entire data structure to be aligned. Otherwise, return 0. */ | |
972 | ||
973 | static int | |
974 | v850_eight_byte_align_p (struct type *type) | |
975 | { | |
976 | type = check_typedef (type); | |
977 | ||
978 | if (v850_type_is_scalar (type)) | |
979 | return (TYPE_LENGTH (type) == 8); | |
980 | else | |
981 | { | |
982 | int i; | |
983 | ||
984 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
985 | { | |
986 | if (v850_eight_byte_align_p (TYPE_FIELD_TYPE (type, i))) | |
987 | return 1; | |
988 | } | |
989 | } | |
990 | return 0; | |
991 | } | |
992 | ||
181124bc CV |
993 | static CORE_ADDR |
994 | v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp) | |
995 | { | |
996 | return sp & ~3; | |
997 | } | |
998 | ||
999 | /* Setup arguments and LP for a call to the target. First four args | |
1000 | go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs | |
1001 | are passed by reference. 64 bit quantities (doubles and long longs) | |
1002 | may be split between the regs and the stack. When calling a function | |
1003 | that returns a struct, a pointer to the struct is passed in as a secret | |
1004 | first argument (always in R6). | |
1005 | ||
1006 | Stack space for the args has NOT been allocated: that job is up to us. */ | |
1007 | ||
1008 | static CORE_ADDR | |
1009 | v850_push_dummy_call (struct gdbarch *gdbarch, | |
1010 | struct value *function, | |
1011 | struct regcache *regcache, | |
1012 | CORE_ADDR bp_addr, | |
1013 | int nargs, | |
1014 | struct value **args, | |
1015 | CORE_ADDR sp, | |
cf84fa6b | 1016 | function_call_return_method return_method, |
181124bc CV |
1017 | CORE_ADDR struct_addr) |
1018 | { | |
e17a4113 | 1019 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
181124bc CV |
1020 | int argreg; |
1021 | int argnum; | |
b926417a | 1022 | int arg_space = 0; |
181124bc CV |
1023 | int stack_offset; |
1024 | ||
83b2706a KB |
1025 | if (gdbarch_tdep (gdbarch)->abi == V850_ABI_RH850) |
1026 | stack_offset = 0; | |
1027 | else | |
181124bc CV |
1028 | /* The offset onto the stack at which we will start copying parameters |
1029 | (after the registers are used up) begins at 16 rather than at zero. | |
1030 | That's how the ABI is defined, though there's no indication that these | |
1031 | 16 bytes are used for anything, not even for saving incoming | |
1032 | argument registers. */ | |
1033 | stack_offset = 16; | |
1034 | ||
1035 | /* Now make space on the stack for the args. */ | |
1036 | for (argnum = 0; argnum < nargs; argnum++) | |
b926417a TT |
1037 | arg_space += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3); |
1038 | sp -= arg_space + stack_offset; | |
181124bc CV |
1039 | |
1040 | argreg = E_ARG0_REGNUM; | |
1041 | /* The struct_return pointer occupies the first parameter register. */ | |
cf84fa6b | 1042 | if (return_method == return_method_struct) |
181124bc CV |
1043 | regcache_cooked_write_unsigned (regcache, argreg++, struct_addr); |
1044 | ||
1045 | /* Now load as many as possible of the first arguments into | |
1046 | registers, and push the rest onto the stack. There are 16 bytes | |
1047 | in four registers available. Loop thru args from first to last. */ | |
1048 | for (argnum = 0; argnum < nargs; argnum++) | |
1049 | { | |
1050 | int len; | |
1051 | gdb_byte *val; | |
1052 | gdb_byte valbuf[v850_reg_size]; | |
1053 | ||
1054 | if (!v850_type_is_scalar (value_type (*args)) | |
83b2706a | 1055 | && gdbarch_tdep (gdbarch)->abi == V850_ABI_GCC |
181124bc CV |
1056 | && TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS) |
1057 | { | |
e17a4113 UW |
1058 | store_unsigned_integer (valbuf, 4, byte_order, |
1059 | value_address (*args)); | |
181124bc CV |
1060 | len = 4; |
1061 | val = valbuf; | |
1062 | } | |
1063 | else | |
1064 | { | |
1065 | len = TYPE_LENGTH (value_type (*args)); | |
1066 | val = (gdb_byte *) value_contents (*args); | |
1067 | } | |
1068 | ||
83b2706a KB |
1069 | if (gdbarch_tdep (gdbarch)->eight_byte_align |
1070 | && v850_eight_byte_align_p (value_type (*args))) | |
1071 | { | |
1072 | if (argreg <= E_ARGLAST_REGNUM && (argreg & 1)) | |
1073 | argreg++; | |
1074 | else if (stack_offset & 0x4) | |
1075 | stack_offset += 4; | |
1076 | } | |
1077 | ||
181124bc CV |
1078 | while (len > 0) |
1079 | if (argreg <= E_ARGLAST_REGNUM) | |
1080 | { | |
1081 | CORE_ADDR regval; | |
1082 | ||
e17a4113 | 1083 | regval = extract_unsigned_integer (val, v850_reg_size, byte_order); |
181124bc CV |
1084 | regcache_cooked_write_unsigned (regcache, argreg, regval); |
1085 | ||
1086 | len -= v850_reg_size; | |
1087 | val += v850_reg_size; | |
1088 | argreg++; | |
1089 | } | |
1090 | else | |
1091 | { | |
1092 | write_memory (sp + stack_offset, val, 4); | |
1093 | ||
1094 | len -= 4; | |
1095 | val += 4; | |
1096 | stack_offset += 4; | |
1097 | } | |
1098 | args++; | |
1099 | } | |
1100 | ||
1101 | /* Store return address. */ | |
1102 | regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr); | |
1103 | ||
1104 | /* Update stack pointer. */ | |
1105 | regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp); | |
1106 | ||
1107 | return sp; | |
1108 | } | |
1109 | ||
1110 | static void | |
1111 | v850_extract_return_value (struct type *type, struct regcache *regcache, | |
1112 | gdb_byte *valbuf) | |
1113 | { | |
ac7936df | 1114 | struct gdbarch *gdbarch = regcache->arch (); |
e17a4113 | 1115 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
181124bc CV |
1116 | int len = TYPE_LENGTH (type); |
1117 | ||
1118 | if (len <= v850_reg_size) | |
1119 | { | |
1120 | ULONGEST val; | |
1121 | ||
1122 | regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val); | |
e17a4113 | 1123 | store_unsigned_integer (valbuf, len, byte_order, val); |
181124bc CV |
1124 | } |
1125 | else if (len <= 2 * v850_reg_size) | |
1126 | { | |
1127 | int i, regnum = E_V0_REGNUM; | |
1128 | gdb_byte buf[v850_reg_size]; | |
1129 | for (i = 0; len > 0; i += 4, len -= 4) | |
1130 | { | |
0b883586 | 1131 | regcache->raw_read (regnum++, buf); |
181124bc CV |
1132 | memcpy (valbuf + i, buf, len > 4 ? 4 : len); |
1133 | } | |
1134 | } | |
1135 | } | |
1136 | ||
1137 | static void | |
1138 | v850_store_return_value (struct type *type, struct regcache *regcache, | |
1139 | const gdb_byte *valbuf) | |
1140 | { | |
ac7936df | 1141 | struct gdbarch *gdbarch = regcache->arch (); |
e17a4113 | 1142 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
181124bc CV |
1143 | int len = TYPE_LENGTH (type); |
1144 | ||
1145 | if (len <= v850_reg_size) | |
e17a4113 UW |
1146 | regcache_cooked_write_unsigned |
1147 | (regcache, E_V0_REGNUM, | |
1148 | extract_unsigned_integer (valbuf, len, byte_order)); | |
181124bc CV |
1149 | else if (len <= 2 * v850_reg_size) |
1150 | { | |
1151 | int i, regnum = E_V0_REGNUM; | |
1152 | for (i = 0; i < len; i += 4) | |
10eaee5f | 1153 | regcache->raw_write (regnum++, valbuf + i); |
181124bc CV |
1154 | } |
1155 | } | |
1156 | ||
1157 | static enum return_value_convention | |
6a3a010b | 1158 | v850_return_value (struct gdbarch *gdbarch, struct value *function, |
c055b101 | 1159 | struct type *type, struct regcache *regcache, |
181124bc CV |
1160 | gdb_byte *readbuf, const gdb_byte *writebuf) |
1161 | { | |
83b2706a | 1162 | if (v850_use_struct_convention (gdbarch, type)) |
181124bc CV |
1163 | return RETURN_VALUE_STRUCT_CONVENTION; |
1164 | if (writebuf) | |
1165 | v850_store_return_value (type, regcache, writebuf); | |
1166 | else if (readbuf) | |
1167 | v850_extract_return_value (type, regcache, readbuf); | |
1168 | return RETURN_VALUE_REGISTER_CONVENTION; | |
1169 | } | |
1170 | ||
cd6c3b4f YQ |
1171 | /* Implement the breakpoint_kind_from_pc gdbarch method. */ |
1172 | ||
d19280ad YQ |
1173 | static int |
1174 | v850_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) | |
181124bc | 1175 | { |
d19280ad YQ |
1176 | return 2; |
1177 | } | |
83b2706a | 1178 | |
cd6c3b4f YQ |
1179 | /* Implement the sw_breakpoint_from_kind gdbarch method. */ |
1180 | ||
d19280ad YQ |
1181 | static const gdb_byte * |
1182 | v850_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) | |
1183 | { | |
1184 | *size = kind; | |
1185 | ||
1186 | switch (gdbarch_bfd_arch_info (gdbarch)->mach) | |
ff12a659 YQ |
1187 | { |
1188 | case bfd_mach_v850e2: | |
1189 | case bfd_mach_v850e2v3: | |
1190 | case bfd_mach_v850e3v5: | |
1191 | { | |
1192 | /* Implement software breakpoints by using the dbtrap instruction. | |
1193 | Older architectures had no such instruction. For those, an | |
1194 | unconditional branch to self instruction is used. */ | |
83b2706a | 1195 | |
ff12a659 | 1196 | static unsigned char dbtrap_breakpoint[] = { 0x40, 0xf8 }; |
83b2706a | 1197 | |
ff12a659 YQ |
1198 | return dbtrap_breakpoint; |
1199 | } | |
1200 | break; | |
1201 | default: | |
1202 | { | |
1203 | static unsigned char breakpoint[] = { 0x85, 0x05 }; | |
83b2706a | 1204 | |
ff12a659 YQ |
1205 | return breakpoint; |
1206 | } | |
1207 | break; | |
1208 | } | |
181124bc CV |
1209 | } |
1210 | ||
1211 | static struct v850_frame_cache * | |
94afd7a6 | 1212 | v850_alloc_frame_cache (struct frame_info *this_frame) |
181124bc CV |
1213 | { |
1214 | struct v850_frame_cache *cache; | |
181124bc CV |
1215 | |
1216 | cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache); | |
94afd7a6 | 1217 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
181124bc CV |
1218 | |
1219 | /* Base address. */ | |
1220 | cache->base = 0; | |
1221 | cache->sp_offset = 0; | |
1222 | cache->pc = 0; | |
1223 | ||
1224 | /* Frameless until proven otherwise. */ | |
1225 | cache->uses_fp = 0; | |
1226 | ||
1227 | return cache; | |
1228 | } | |
1229 | ||
1230 | static struct v850_frame_cache * | |
94afd7a6 | 1231 | v850_frame_cache (struct frame_info *this_frame, void **this_cache) |
181124bc | 1232 | { |
e17a4113 | 1233 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
181124bc CV |
1234 | struct v850_frame_cache *cache; |
1235 | CORE_ADDR current_pc; | |
1236 | int i; | |
1237 | ||
1238 | if (*this_cache) | |
19ba03f4 | 1239 | return (struct v850_frame_cache *) *this_cache; |
181124bc | 1240 | |
94afd7a6 | 1241 | cache = v850_alloc_frame_cache (this_frame); |
181124bc CV |
1242 | *this_cache = cache; |
1243 | ||
1244 | /* In principle, for normal frames, fp holds the frame pointer, | |
1245 | which holds the base address for the current stack frame. | |
1246 | However, for functions that don't need it, the frame pointer is | |
1247 | optional. For these "frameless" functions the frame pointer is | |
1248 | actually the frame pointer of the calling frame. */ | |
94afd7a6 | 1249 | cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM); |
181124bc CV |
1250 | if (cache->base == 0) |
1251 | return cache; | |
1252 | ||
94afd7a6 UW |
1253 | cache->pc = get_frame_func (this_frame); |
1254 | current_pc = get_frame_pc (this_frame); | |
181124bc | 1255 | if (cache->pc != 0) |
d2ca4222 UW |
1256 | { |
1257 | ULONGEST ctbp; | |
94afd7a6 | 1258 | ctbp = get_frame_register_unsigned (this_frame, E_CTBP_REGNUM); |
e17a4113 | 1259 | v850_analyze_prologue (gdbarch, cache->pc, current_pc, cache, ctbp); |
d2ca4222 | 1260 | } |
181124bc CV |
1261 | |
1262 | if (!cache->uses_fp) | |
1263 | { | |
1264 | /* We didn't find a valid frame, which means that CACHE->base | |
1265 | currently holds the frame pointer for our calling frame. If | |
1266 | we're at the start of a function, or somewhere half-way its | |
1267 | prologue, the function's frame probably hasn't been fully | |
1268 | setup yet. Try to reconstruct the base address for the stack | |
1269 | frame by looking at the stack pointer. For truly "frameless" | |
1270 | functions this might work too. */ | |
94afd7a6 | 1271 | cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM); |
181124bc CV |
1272 | } |
1273 | ||
1274 | /* Now that we have the base address for the stack frame we can | |
1275 | calculate the value of sp in the calling frame. */ | |
1276 | trad_frame_set_value (cache->saved_regs, E_SP_REGNUM, | |
1277 | cache->base - cache->sp_offset); | |
1278 | ||
1279 | /* Adjust all the saved registers such that they contain addresses | |
1280 | instead of offsets. */ | |
55fa75c3 | 1281 | for (i = 0; i < gdbarch_num_regs (gdbarch); i++) |
181124bc CV |
1282 | if (trad_frame_addr_p (cache->saved_regs, i)) |
1283 | cache->saved_regs[i].addr += cache->base; | |
1284 | ||
1285 | /* The call instruction moves the caller's PC in the callee's LP. | |
1286 | Since this is an unwind, do the reverse. Copy the location of LP | |
1287 | into PC (the address / regnum) so that a request for PC will be | |
1288 | converted into a request for the LP. */ | |
1289 | ||
1290 | cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM]; | |
1291 | ||
1292 | return cache; | |
1293 | } | |
1294 | ||
1295 | ||
94afd7a6 UW |
1296 | static struct value * |
1297 | v850_frame_prev_register (struct frame_info *this_frame, | |
1298 | void **this_cache, int regnum) | |
181124bc | 1299 | { |
94afd7a6 | 1300 | struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache); |
181124bc CV |
1301 | |
1302 | gdb_assert (regnum >= 0); | |
1303 | ||
94afd7a6 | 1304 | return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum); |
181124bc CV |
1305 | } |
1306 | ||
1307 | static void | |
94afd7a6 | 1308 | v850_frame_this_id (struct frame_info *this_frame, void **this_cache, |
181124bc CV |
1309 | struct frame_id *this_id) |
1310 | { | |
94afd7a6 | 1311 | struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache); |
181124bc CV |
1312 | |
1313 | /* This marks the outermost frame. */ | |
1314 | if (cache->base == 0) | |
1315 | return; | |
1316 | ||
1317 | *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr, cache->pc); | |
1318 | } | |
1319 | ||
1320 | static const struct frame_unwind v850_frame_unwind = { | |
1321 | NORMAL_FRAME, | |
8fbca658 | 1322 | default_frame_unwind_stop_reason, |
181124bc | 1323 | v850_frame_this_id, |
94afd7a6 UW |
1324 | v850_frame_prev_register, |
1325 | NULL, | |
1326 | default_frame_sniffer | |
181124bc | 1327 | }; |
181124bc CV |
1328 | |
1329 | static CORE_ADDR | |
1330 | v850_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1331 | { | |
3e8c568d | 1332 | return frame_unwind_register_unsigned (next_frame, |
d93859e2 | 1333 | gdbarch_sp_regnum (gdbarch)); |
181124bc CV |
1334 | } |
1335 | ||
1336 | static CORE_ADDR | |
1337 | v850_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1338 | { | |
3e8c568d | 1339 | return frame_unwind_register_unsigned (next_frame, |
d93859e2 | 1340 | gdbarch_pc_regnum (gdbarch)); |
181124bc CV |
1341 | } |
1342 | ||
1343 | static struct frame_id | |
94afd7a6 | 1344 | v850_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
181124bc | 1345 | { |
94afd7a6 UW |
1346 | CORE_ADDR sp = get_frame_register_unsigned (this_frame, |
1347 | gdbarch_sp_regnum (gdbarch)); | |
1348 | return frame_id_build (sp, get_frame_pc (this_frame)); | |
181124bc CV |
1349 | } |
1350 | ||
1351 | static CORE_ADDR | |
94afd7a6 | 1352 | v850_frame_base_address (struct frame_info *this_frame, void **this_cache) |
181124bc | 1353 | { |
94afd7a6 | 1354 | struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache); |
181124bc CV |
1355 | |
1356 | return cache->base; | |
1357 | } | |
1358 | ||
1359 | static const struct frame_base v850_frame_base = { | |
1360 | &v850_frame_unwind, | |
1361 | v850_frame_base_address, | |
1362 | v850_frame_base_address, | |
1363 | v850_frame_base_address | |
1364 | }; | |
1365 | ||
1366 | static struct gdbarch * | |
1367 | v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1368 | { | |
1369 | struct gdbarch *gdbarch; | |
83b2706a KB |
1370 | struct gdbarch_tdep *tdep; |
1371 | int e_flags, e_machine; | |
1372 | ||
1373 | /* Extract the elf_flags if available. */ | |
1374 | if (info.abfd != NULL | |
1375 | && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | |
1376 | { | |
1377 | e_flags = elf_elfheader (info.abfd)->e_flags; | |
1378 | e_machine = elf_elfheader (info.abfd)->e_machine; | |
1379 | } | |
1380 | else | |
1381 | { | |
1382 | e_flags = 0; | |
1383 | e_machine = 0; | |
1384 | } | |
181124bc | 1385 | |
181124bc | 1386 | |
83b2706a KB |
1387 | /* Try to find the architecture in the list of already defined |
1388 | architectures. */ | |
1389 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
1390 | arches != NULL; | |
1391 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
1392 | { | |
1393 | if (gdbarch_tdep (arches->gdbarch)->e_flags != e_flags | |
1394 | || gdbarch_tdep (arches->gdbarch)->e_machine != e_machine) | |
1395 | continue; | |
1396 | ||
1397 | return arches->gdbarch; | |
1398 | } | |
cdd238da | 1399 | tdep = XCNEW (struct gdbarch_tdep); |
83b2706a KB |
1400 | tdep->e_flags = e_flags; |
1401 | tdep->e_machine = e_machine; | |
1402 | ||
1403 | switch (tdep->e_machine) | |
1404 | { | |
1405 | case EM_V800: | |
1406 | tdep->abi = V850_ABI_RH850; | |
1407 | break; | |
1408 | default: | |
1409 | tdep->abi = V850_ABI_GCC; | |
1410 | break; | |
1411 | } | |
1412 | ||
1413 | tdep->eight_byte_align = (tdep->e_flags & EF_RH850_DATA_ALIGN8) ? 1 : 0; | |
1414 | gdbarch = gdbarch_alloc (&info, tdep); | |
181124bc CV |
1415 | |
1416 | switch (info.bfd_arch_info->mach) | |
1417 | { | |
1418 | case bfd_mach_v850: | |
1419 | set_gdbarch_register_name (gdbarch, v850_register_name); | |
55fa75c3 | 1420 | set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850_REGS); |
181124bc CV |
1421 | break; |
1422 | case bfd_mach_v850e: | |
1423 | case bfd_mach_v850e1: | |
1424 | set_gdbarch_register_name (gdbarch, v850e_register_name); | |
55fa75c3 | 1425 | set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E_REGS); |
181124bc | 1426 | break; |
2aaed979 KB |
1427 | case bfd_mach_v850e2: |
1428 | case bfd_mach_v850e2v3: | |
1429 | set_gdbarch_register_name (gdbarch, v850e2_register_name); | |
55fa75c3 | 1430 | set_gdbarch_num_regs (gdbarch, E_NUM_REGS); |
2aaed979 | 1431 | break; |
83b2706a KB |
1432 | case bfd_mach_v850e3v5: |
1433 | set_gdbarch_register_name (gdbarch, v850e3v5_register_name); | |
1434 | set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E3V5_REGS); | |
1435 | break; | |
181124bc CV |
1436 | } |
1437 | ||
181124bc CV |
1438 | set_gdbarch_num_pseudo_regs (gdbarch, 0); |
1439 | set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM); | |
1440 | set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM); | |
1441 | set_gdbarch_fp0_regnum (gdbarch, -1); | |
1442 | ||
1443 | set_gdbarch_register_type (gdbarch, v850_register_type); | |
1444 | ||
351a3e56 | 1445 | set_gdbarch_char_signed (gdbarch, 1); |
181124bc CV |
1446 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); |
1447 | set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1448 | set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1449 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
1450 | ||
1451 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1452 | set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
1453 | set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
1454 | ||
1455 | set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1456 | set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1457 | ||
1458 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
181124bc | 1459 | |
04180708 YQ |
1460 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, v850_breakpoint_kind_from_pc); |
1461 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, v850_sw_breakpoint_from_kind); | |
181124bc CV |
1462 | set_gdbarch_return_value (gdbarch, v850_return_value); |
1463 | set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call); | |
1464 | set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue); | |
1465 | ||
181124bc CV |
1466 | set_gdbarch_frame_align (gdbarch, v850_frame_align); |
1467 | set_gdbarch_unwind_sp (gdbarch, v850_unwind_sp); | |
1468 | set_gdbarch_unwind_pc (gdbarch, v850_unwind_pc); | |
94afd7a6 | 1469 | set_gdbarch_dummy_id (gdbarch, v850_dummy_id); |
181124bc CV |
1470 | frame_base_set_default (gdbarch, &v850_frame_base); |
1471 | ||
1472 | /* Hook in ABI-specific overrides, if they have been registered. */ | |
1473 | gdbarch_init_osabi (info, gdbarch); | |
1474 | ||
94afd7a6 UW |
1475 | dwarf2_append_unwinders (gdbarch); |
1476 | frame_unwind_append_unwinder (gdbarch, &v850_frame_unwind); | |
181124bc CV |
1477 | |
1478 | return gdbarch; | |
1479 | } | |
1480 | ||
181124bc CV |
1481 | void |
1482 | _initialize_v850_tdep (void) | |
1483 | { | |
1484 | register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init); | |
83b2706a | 1485 | register_gdbarch_init (bfd_arch_v850_rh850, v850_gdbarch_init); |
181124bc | 1486 | } |