]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/varobj.c
Implement CONVERT_SYMBOLIC_ATTRIBUTE for MIPS.
[thirdparty/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
ecd75fc8 3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
a6c442d8 19#include "exceptions.h"
8b93c638
JM
20#include "value.h"
21#include "expression.h"
22#include "frame.h"
8b93c638 23#include "language.h"
8b93c638 24#include "gdbcmd.h"
d2353924 25#include "block.h"
79a45b7d 26#include "valprint.h"
a6c442d8
MK
27
28#include "gdb_assert.h"
0e9f083f 29#include <string.h>
0cc7d26f 30#include "gdb_regex.h"
8b93c638
JM
31
32#include "varobj.h"
28335dcc 33#include "vec.h"
6208b47d
VP
34#include "gdbthread.h"
35#include "inferior.h"
8b93c638 36
b6313243
TT
37#if HAVE_PYTHON
38#include "python/python.h"
39#include "python/python-internal.h"
50389644
PA
40#else
41typedef int PyObject;
b6313243
TT
42#endif
43
8b93c638
JM
44/* Non-zero if we want to see trace of varobj level stuff. */
45
ccce17b0 46unsigned int varobjdebug = 0;
920d2a44
AC
47static void
48show_varobjdebug (struct ui_file *file, int from_tty,
49 struct cmd_list_element *c, const char *value)
50{
51 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
52}
8b93c638 53
581e13c1 54/* String representations of gdb's format codes. */
8b93c638 55char *varobj_format_string[] =
72330bd6 56 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 57
0cc7d26f
TT
58/* True if we want to allow Python-based pretty-printing. */
59static int pretty_printing = 0;
60
61void
62varobj_enable_pretty_printing (void)
63{
64 pretty_printing = 1;
65}
66
8b93c638
JM
67/* Data structures */
68
69/* Every root variable has one of these structures saved in its
581e13c1 70 varobj. Members which must be free'd are noted. */
8b93c638 71struct varobj_root
72330bd6 72{
8b93c638 73
581e13c1 74 /* Alloc'd expression for this parent. */
72330bd6 75 struct expression *exp;
8b93c638 76
581e13c1 77 /* Block for which this expression is valid. */
270140bd 78 const struct block *valid_block;
8b93c638 79
44a67aa7
VP
80 /* The frame for this expression. This field is set iff valid_block is
81 not NULL. */
e64d9b3d 82 struct frame_id frame;
8b93c638 83
c5b48eac 84 /* The thread ID that this varobj_root belong to. This field
581e13c1 85 is only valid if valid_block is not NULL.
c5b48eac
VP
86 When not 0, indicates which thread 'frame' belongs to.
87 When 0, indicates that the thread list was empty when the varobj_root
88 was created. */
89 int thread_id;
90
a5defcdc
VP
91 /* If 1, the -var-update always recomputes the value in the
92 current thread and frame. Otherwise, variable object is
581e13c1 93 always updated in the specific scope/thread/frame. */
a5defcdc 94 int floating;
73a93a32 95
8756216b
DP
96 /* Flag that indicates validity: set to 0 when this varobj_root refers
97 to symbols that do not exist anymore. */
98 int is_valid;
99
99ad9427
YQ
100 /* Language-related operations for this variable and its
101 children. */
ca20d462 102 const struct lang_varobj_ops *lang_ops;
8b93c638 103
581e13c1 104 /* The varobj for this root node. */
72330bd6 105 struct varobj *rootvar;
8b93c638 106
72330bd6
AC
107 /* Next root variable */
108 struct varobj_root *next;
109};
8b93c638 110
bb5ce47a 111/* Dynamic part of varobj. */
8b93c638 112
bb5ce47a
YQ
113struct varobj_dynamic
114{
b6313243
TT
115 /* Whether the children of this varobj were requested. This field is
116 used to decide if dynamic varobj should recompute their children.
117 In the event that the frontend never asked for the children, we
118 can avoid that. */
119 int children_requested;
120
0cc7d26f
TT
121 /* The pretty-printer constructor. If NULL, then the default
122 pretty-printer will be looked up. If None, then no
123 pretty-printer will be installed. */
124 PyObject *constructor;
125
b6313243
TT
126 /* The pretty-printer that has been constructed. If NULL, then a
127 new printer object is needed, and one will be constructed. */
128 PyObject *pretty_printer;
0cc7d26f
TT
129
130 /* The iterator returned by the printer's 'children' method, or NULL
131 if not available. */
132 PyObject *child_iter;
133
134 /* We request one extra item from the iterator, so that we can
135 report to the caller whether there are more items than we have
136 already reported. However, we don't want to install this value
137 when we read it, because that will mess up future updates. So,
138 we stash it here instead. */
139 PyObject *saved_item;
72330bd6 140};
8b93c638 141
8b93c638 142struct cpstack
72330bd6
AC
143{
144 char *name;
145 struct cpstack *next;
146};
8b93c638
JM
147
148/* A list of varobjs */
149
150struct vlist
72330bd6
AC
151{
152 struct varobj *var;
153 struct vlist *next;
154};
8b93c638
JM
155
156/* Private function prototypes */
157
581e13c1 158/* Helper functions for the above subcommands. */
8b93c638 159
a14ed312 160static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 161
a14ed312
KB
162static void delete_variable_1 (struct cpstack **, int *,
163 struct varobj *, int, int);
8b93c638 164
a14ed312 165static int install_variable (struct varobj *);
8b93c638 166
a14ed312 167static void uninstall_variable (struct varobj *);
8b93c638 168
a14ed312 169static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 170
b6313243 171static struct varobj *
5e5ac9a5 172create_child_with_value (struct varobj *parent, int index, char *name,
b6313243
TT
173 struct value *value);
174
8b93c638
JM
175/* Utility routines */
176
a14ed312 177static struct varobj *new_variable (void);
8b93c638 178
a14ed312 179static struct varobj *new_root_variable (void);
8b93c638 180
a14ed312 181static void free_variable (struct varobj *var);
8b93c638 182
74b7792f
AC
183static struct cleanup *make_cleanup_free_variable (struct varobj *var);
184
a14ed312 185static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 186
a14ed312 187static void cppush (struct cpstack **pstack, char *name);
8b93c638 188
a14ed312 189static char *cppop (struct cpstack **pstack);
8b93c638 190
8264ba82
AG
191static int update_type_if_necessary (struct varobj *var,
192 struct value *new_value);
193
acd65feb
VP
194static int install_new_value (struct varobj *var, struct value *value,
195 int initial);
196
581e13c1 197/* Language-specific routines. */
8b93c638 198
a14ed312 199static int number_of_children (struct varobj *);
8b93c638 200
a14ed312 201static char *name_of_variable (struct varobj *);
8b93c638 202
a14ed312 203static char *name_of_child (struct varobj *, int);
8b93c638 204
30b28db1 205static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 206
30b28db1 207static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 208
de051565
MK
209static char *my_value_of_variable (struct varobj *var,
210 enum varobj_display_formats format);
8b93c638 211
b2c2bd75 212static int is_root_p (struct varobj *var);
8b93c638 213
d8b65138
JK
214#if HAVE_PYTHON
215
9a1edae6 216static struct varobj *varobj_add_child (struct varobj *var,
5e5ac9a5 217 char *name,
9a1edae6 218 struct value *value);
b6313243 219
d8b65138
JK
220#endif /* HAVE_PYTHON */
221
8b93c638
JM
222/* Private data */
223
581e13c1 224/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 225static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 226
581e13c1 227/* Header of the list of root variable objects. */
8b93c638 228static struct varobj_root *rootlist;
8b93c638 229
581e13c1
MS
230/* Prime number indicating the number of buckets in the hash table. */
231/* A prime large enough to avoid too many colisions. */
8b93c638
JM
232#define VAROBJ_TABLE_SIZE 227
233
581e13c1 234/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
235static struct vlist **varobj_table;
236
8b93c638
JM
237\f
238
239/* API Implementation */
b2c2bd75
VP
240static int
241is_root_p (struct varobj *var)
242{
243 return (var->root->rootvar == var);
244}
8b93c638 245
d452c4bc
UW
246#ifdef HAVE_PYTHON
247/* Helper function to install a Python environment suitable for
248 use during operations on VAR. */
70221824 249static struct cleanup *
d452c4bc
UW
250varobj_ensure_python_env (struct varobj *var)
251{
252 return ensure_python_env (var->root->exp->gdbarch,
253 var->root->exp->language_defn);
254}
255#endif
256
581e13c1 257/* Creates a varobj (not its children). */
8b93c638 258
7d8547c9
AC
259/* Return the full FRAME which corresponds to the given CORE_ADDR
260 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
261
262static struct frame_info *
263find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
264{
265 struct frame_info *frame = NULL;
266
267 if (frame_addr == (CORE_ADDR) 0)
268 return NULL;
269
9d49bdc2
PA
270 for (frame = get_current_frame ();
271 frame != NULL;
272 frame = get_prev_frame (frame))
7d8547c9 273 {
1fac167a
UW
274 /* The CORE_ADDR we get as argument was parsed from a string GDB
275 output as $fp. This output got truncated to gdbarch_addr_bit.
276 Truncate the frame base address in the same manner before
277 comparing it against our argument. */
278 CORE_ADDR frame_base = get_frame_base_address (frame);
279 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 280
1fac167a
UW
281 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
282 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
283
284 if (frame_base == frame_addr)
7d8547c9
AC
285 return frame;
286 }
9d49bdc2
PA
287
288 return NULL;
7d8547c9
AC
289}
290
8b93c638
JM
291struct varobj *
292varobj_create (char *objname,
72330bd6 293 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
294{
295 struct varobj *var;
8b93c638
JM
296 struct cleanup *old_chain;
297
581e13c1 298 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 299 var = new_root_variable ();
74b7792f 300 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
301
302 if (expression != NULL)
303 {
e4195b40 304 struct frame_info *fi;
35633fef 305 struct frame_id old_id = null_frame_id;
e4195b40 306 struct block *block;
bbc13ae3 307 const char *p;
e55dccf0 308 struct value *value = NULL;
8e7b59a5 309 volatile struct gdb_exception except;
1bb9788d 310 CORE_ADDR pc;
8b93c638 311
9d49bdc2
PA
312 /* Parse and evaluate the expression, filling in as much of the
313 variable's data as possible. */
314
315 if (has_stack_frames ())
316 {
581e13c1 317 /* Allow creator to specify context of variable. */
9d49bdc2
PA
318 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
319 fi = get_selected_frame (NULL);
320 else
321 /* FIXME: cagney/2002-11-23: This code should be doing a
322 lookup using the frame ID and not just the frame's
323 ``address''. This, of course, means an interface
324 change. However, with out that interface change ISAs,
325 such as the ia64 with its two stacks, won't work.
326 Similar goes for the case where there is a frameless
327 function. */
328 fi = find_frame_addr_in_frame_chain (frame);
329 }
8b93c638 330 else
9d49bdc2 331 fi = NULL;
8b93c638 332
581e13c1 333 /* frame = -2 means always use selected frame. */
73a93a32 334 if (type == USE_SELECTED_FRAME)
a5defcdc 335 var->root->floating = 1;
73a93a32 336
1bb9788d 337 pc = 0;
8b93c638
JM
338 block = NULL;
339 if (fi != NULL)
1bb9788d
TT
340 {
341 block = get_frame_block (fi, 0);
342 pc = get_frame_pc (fi);
343 }
8b93c638
JM
344
345 p = expression;
346 innermost_block = NULL;
73a93a32 347 /* Wrap the call to parse expression, so we can
581e13c1 348 return a sensible error. */
8e7b59a5
KS
349 TRY_CATCH (except, RETURN_MASK_ERROR)
350 {
1bb9788d 351 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
352 }
353
354 if (except.reason < 0)
73a93a32 355 {
f748fb40 356 do_cleanups (old_chain);
73a93a32
JI
357 return NULL;
358 }
8b93c638 359
581e13c1 360 /* Don't allow variables to be created for types. */
608b4967
TT
361 if (var->root->exp->elts[0].opcode == OP_TYPE
362 || var->root->exp->elts[0].opcode == OP_TYPEOF
363 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638
JM
364 {
365 do_cleanups (old_chain);
bc8332bb
AC
366 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
367 " as an expression.\n");
8b93c638
JM
368 return NULL;
369 }
370
371 var->format = variable_default_display (var);
372 var->root->valid_block = innermost_block;
1b36a34b 373 var->name = xstrdup (expression);
02142340 374 /* For a root var, the name and the expr are the same. */
1b36a34b 375 var->path_expr = xstrdup (expression);
8b93c638
JM
376
377 /* When the frame is different from the current frame,
378 we must select the appropriate frame before parsing
379 the expression, otherwise the value will not be current.
581e13c1 380 Since select_frame is so benign, just call it for all cases. */
4e22772d 381 if (innermost_block)
8b93c638 382 {
4e22772d
JK
383 /* User could specify explicit FRAME-ADDR which was not found but
384 EXPRESSION is frame specific and we would not be able to evaluate
385 it correctly next time. With VALID_BLOCK set we must also set
386 FRAME and THREAD_ID. */
387 if (fi == NULL)
388 error (_("Failed to find the specified frame"));
389
7a424e99 390 var->root->frame = get_frame_id (fi);
c5b48eac 391 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 392 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 393 select_frame (fi);
8b93c638
JM
394 }
395
340a7723 396 /* We definitely need to catch errors here.
8b93c638 397 If evaluate_expression succeeds we got the value we wanted.
581e13c1 398 But if it fails, we still go on with a call to evaluate_type(). */
8e7b59a5
KS
399 TRY_CATCH (except, RETURN_MASK_ERROR)
400 {
401 value = evaluate_expression (var->root->exp);
402 }
403
404 if (except.reason < 0)
e55dccf0
VP
405 {
406 /* Error getting the value. Try to at least get the
407 right type. */
408 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 409
e55dccf0
VP
410 var->type = value_type (type_only_value);
411 }
8264ba82
AG
412 else
413 {
414 int real_type_found = 0;
415
416 var->type = value_actual_type (value, 0, &real_type_found);
417 if (real_type_found)
418 value = value_cast (var->type, value);
419 }
acd65feb 420
8b93c638 421 /* Set language info */
ca20d462 422 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 423
d32cafc7
JB
424 install_new_value (var, value, 1 /* Initial assignment */);
425
581e13c1 426 /* Set ourselves as our root. */
8b93c638
JM
427 var->root->rootvar = var;
428
581e13c1 429 /* Reset the selected frame. */
35633fef
JK
430 if (frame_id_p (old_id))
431 select_frame (frame_find_by_id (old_id));
8b93c638
JM
432 }
433
73a93a32 434 /* If the variable object name is null, that means this
581e13c1 435 is a temporary variable, so don't install it. */
73a93a32
JI
436
437 if ((var != NULL) && (objname != NULL))
8b93c638 438 {
1b36a34b 439 var->obj_name = xstrdup (objname);
8b93c638
JM
440
441 /* If a varobj name is duplicated, the install will fail so
581e13c1 442 we must cleanup. */
8b93c638
JM
443 if (!install_variable (var))
444 {
445 do_cleanups (old_chain);
446 return NULL;
447 }
448 }
449
450 discard_cleanups (old_chain);
451 return var;
452}
453
581e13c1 454/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
455
456char *
457varobj_gen_name (void)
458{
459 static int id = 0;
e64d9b3d 460 char *obj_name;
8b93c638 461
581e13c1 462 /* Generate a name for this object. */
8b93c638 463 id++;
b435e160 464 obj_name = xstrprintf ("var%d", id);
8b93c638 465
e64d9b3d 466 return obj_name;
8b93c638
JM
467}
468
61d8f275
JK
469/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
470 error if OBJNAME cannot be found. */
8b93c638
JM
471
472struct varobj *
473varobj_get_handle (char *objname)
474{
475 struct vlist *cv;
476 const char *chp;
477 unsigned int index = 0;
478 unsigned int i = 1;
479
480 for (chp = objname; *chp; chp++)
481 {
482 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
483 }
484
485 cv = *(varobj_table + index);
486 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
487 cv = cv->next;
488
489 if (cv == NULL)
8a3fe4f8 490 error (_("Variable object not found"));
8b93c638
JM
491
492 return cv->var;
493}
494
581e13c1 495/* Given the handle, return the name of the object. */
8b93c638
JM
496
497char *
498varobj_get_objname (struct varobj *var)
499{
500 return var->obj_name;
501}
502
581e13c1 503/* Given the handle, return the expression represented by the object. */
8b93c638
JM
504
505char *
506varobj_get_expression (struct varobj *var)
507{
508 return name_of_variable (var);
509}
510
511/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
512 otherwise deletes only the children; returns a malloc'ed list of
513 all the (malloc'ed) names of the variables that have been deleted
581e13c1 514 (NULL terminated). */
8b93c638
JM
515
516int
517varobj_delete (struct varobj *var, char ***dellist, int only_children)
518{
519 int delcount;
520 int mycount;
521 struct cpstack *result = NULL;
522 char **cp;
523
581e13c1 524 /* Initialize a stack for temporary results. */
8b93c638
JM
525 cppush (&result, NULL);
526
527 if (only_children)
581e13c1 528 /* Delete only the variable children. */
8b93c638
JM
529 delcount = delete_variable (&result, var, 1 /* only the children */ );
530 else
581e13c1 531 /* Delete the variable and all its children. */
8b93c638
JM
532 delcount = delete_variable (&result, var, 0 /* parent+children */ );
533
581e13c1 534 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
535 if (dellist != NULL)
536 {
537 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
538
539 cp = *dellist;
540 mycount = delcount;
541 *cp = cppop (&result);
542 while ((*cp != NULL) && (mycount > 0))
543 {
544 mycount--;
545 cp++;
546 *cp = cppop (&result);
547 }
548
549 if (mycount || (*cp != NULL))
8a3fe4f8 550 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 551 mycount);
8b93c638
JM
552 }
553
554 return delcount;
555}
556
d8b65138
JK
557#if HAVE_PYTHON
558
b6313243
TT
559/* Convenience function for varobj_set_visualizer. Instantiate a
560 pretty-printer for a given value. */
561static PyObject *
562instantiate_pretty_printer (PyObject *constructor, struct value *value)
563{
b6313243
TT
564 PyObject *val_obj = NULL;
565 PyObject *printer;
b6313243 566
b6313243 567 val_obj = value_to_value_object (value);
b6313243
TT
568 if (! val_obj)
569 return NULL;
570
571 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
572 Py_DECREF (val_obj);
573 return printer;
b6313243
TT
574}
575
d8b65138
JK
576#endif
577
581e13c1 578/* Set/Get variable object display format. */
8b93c638
JM
579
580enum varobj_display_formats
581varobj_set_display_format (struct varobj *var,
582 enum varobj_display_formats format)
583{
584 switch (format)
585 {
586 case FORMAT_NATURAL:
587 case FORMAT_BINARY:
588 case FORMAT_DECIMAL:
589 case FORMAT_HEXADECIMAL:
590 case FORMAT_OCTAL:
591 var->format = format;
592 break;
593
594 default:
595 var->format = variable_default_display (var);
596 }
597
ae7d22a6
VP
598 if (varobj_value_is_changeable_p (var)
599 && var->value && !value_lazy (var->value))
600 {
6c761d9c 601 xfree (var->print_value);
99ad9427
YQ
602 var->print_value = varobj_value_get_print_value (var->value,
603 var->format, var);
ae7d22a6
VP
604 }
605
8b93c638
JM
606 return var->format;
607}
608
609enum varobj_display_formats
610varobj_get_display_format (struct varobj *var)
611{
612 return var->format;
613}
614
b6313243
TT
615char *
616varobj_get_display_hint (struct varobj *var)
617{
618 char *result = NULL;
619
620#if HAVE_PYTHON
0646da15
TT
621 struct cleanup *back_to;
622
623 if (!gdb_python_initialized)
624 return NULL;
625
626 back_to = varobj_ensure_python_env (var);
d452c4bc 627
bb5ce47a
YQ
628 if (var->dynamic->pretty_printer != NULL)
629 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
d452c4bc
UW
630
631 do_cleanups (back_to);
b6313243
TT
632#endif
633
634 return result;
635}
636
0cc7d26f
TT
637/* Return true if the varobj has items after TO, false otherwise. */
638
639int
640varobj_has_more (struct varobj *var, int to)
641{
642 if (VEC_length (varobj_p, var->children) > to)
643 return 1;
644 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
bb5ce47a 645 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
646}
647
c5b48eac
VP
648/* If the variable object is bound to a specific thread, that
649 is its evaluation can always be done in context of a frame
650 inside that thread, returns GDB id of the thread -- which
581e13c1 651 is always positive. Otherwise, returns -1. */
c5b48eac
VP
652int
653varobj_get_thread_id (struct varobj *var)
654{
655 if (var->root->valid_block && var->root->thread_id > 0)
656 return var->root->thread_id;
657 else
658 return -1;
659}
660
25d5ea92
VP
661void
662varobj_set_frozen (struct varobj *var, int frozen)
663{
664 /* When a variable is unfrozen, we don't fetch its value.
665 The 'not_fetched' flag remains set, so next -var-update
666 won't complain.
667
668 We don't fetch the value, because for structures the client
669 should do -var-update anyway. It would be bad to have different
670 client-size logic for structure and other types. */
671 var->frozen = frozen;
672}
673
674int
675varobj_get_frozen (struct varobj *var)
676{
677 return var->frozen;
678}
679
0cc7d26f
TT
680/* A helper function that restricts a range to what is actually
681 available in a VEC. This follows the usual rules for the meaning
682 of FROM and TO -- if either is negative, the entire range is
683 used. */
684
99ad9427
YQ
685void
686varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
0cc7d26f
TT
687{
688 if (*from < 0 || *to < 0)
689 {
690 *from = 0;
691 *to = VEC_length (varobj_p, children);
692 }
693 else
694 {
695 if (*from > VEC_length (varobj_p, children))
696 *from = VEC_length (varobj_p, children);
697 if (*to > VEC_length (varobj_p, children))
698 *to = VEC_length (varobj_p, children);
699 if (*from > *to)
700 *from = *to;
701 }
702}
703
d8b65138
JK
704#if HAVE_PYTHON
705
0cc7d26f
TT
706/* A helper for update_dynamic_varobj_children that installs a new
707 child when needed. */
708
709static void
710install_dynamic_child (struct varobj *var,
711 VEC (varobj_p) **changed,
8264ba82 712 VEC (varobj_p) **type_changed,
0cc7d26f
TT
713 VEC (varobj_p) **new,
714 VEC (varobj_p) **unchanged,
715 int *cchanged,
716 int index,
5e5ac9a5 717 char *name,
0cc7d26f
TT
718 struct value *value)
719{
720 if (VEC_length (varobj_p, var->children) < index + 1)
721 {
722 /* There's no child yet. */
723 struct varobj *child = varobj_add_child (var, name, value);
a109c7c1 724
0cc7d26f
TT
725 if (new)
726 {
727 VEC_safe_push (varobj_p, *new, child);
728 *cchanged = 1;
729 }
730 }
bf8793bb 731 else
0cc7d26f
TT
732 {
733 varobj_p existing = VEC_index (varobj_p, var->children, index);
8264ba82 734 int type_updated = update_type_if_necessary (existing, value);
bf8793bb 735
8264ba82
AG
736 if (type_updated)
737 {
738 if (type_changed)
739 VEC_safe_push (varobj_p, *type_changed, existing);
740 }
0cc7d26f
TT
741 if (install_new_value (existing, value, 0))
742 {
8264ba82 743 if (!type_updated && changed)
0cc7d26f
TT
744 VEC_safe_push (varobj_p, *changed, existing);
745 }
8264ba82 746 else if (!type_updated && unchanged)
0cc7d26f
TT
747 VEC_safe_push (varobj_p, *unchanged, existing);
748 }
749}
750
0cc7d26f
TT
751static int
752dynamic_varobj_has_child_method (struct varobj *var)
753{
754 struct cleanup *back_to;
bb5ce47a 755 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f
TT
756 int result;
757
0646da15
TT
758 if (!gdb_python_initialized)
759 return 0;
760
0cc7d26f
TT
761 back_to = varobj_ensure_python_env (var);
762 result = PyObject_HasAttr (printer, gdbpy_children_cst);
763 do_cleanups (back_to);
764 return result;
765}
766
767#endif
768
b6313243
TT
769static int
770update_dynamic_varobj_children (struct varobj *var,
771 VEC (varobj_p) **changed,
8264ba82 772 VEC (varobj_p) **type_changed,
0cc7d26f
TT
773 VEC (varobj_p) **new,
774 VEC (varobj_p) **unchanged,
775 int *cchanged,
776 int update_children,
777 int from,
778 int to)
b6313243
TT
779{
780#if HAVE_PYTHON
b6313243
TT
781 struct cleanup *back_to;
782 PyObject *children;
b6313243 783 int i;
bb5ce47a 784 PyObject *printer = var->dynamic->pretty_printer;
b6313243 785
0646da15
TT
786 if (!gdb_python_initialized)
787 return 0;
788
d452c4bc 789 back_to = varobj_ensure_python_env (var);
b6313243
TT
790
791 *cchanged = 0;
792 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
793 {
794 do_cleanups (back_to);
795 return 0;
796 }
797
bb5ce47a 798 if (update_children || var->dynamic->child_iter == NULL)
b6313243 799 {
0cc7d26f
TT
800 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
801 NULL);
b6313243 802
0cc7d26f
TT
803 if (!children)
804 {
805 gdbpy_print_stack ();
806 error (_("Null value returned for children"));
807 }
b6313243 808
0cc7d26f 809 make_cleanup_py_decref (children);
b6313243 810
bb5ce47a
YQ
811 Py_XDECREF (var->dynamic->child_iter);
812 var->dynamic->child_iter = PyObject_GetIter (children);
813 if (var->dynamic->child_iter == NULL)
0cc7d26f
TT
814 {
815 gdbpy_print_stack ();
816 error (_("Could not get children iterator"));
817 }
818
bb5ce47a
YQ
819 Py_XDECREF (var->dynamic->saved_item);
820 var->dynamic->saved_item = NULL;
0cc7d26f
TT
821
822 i = 0;
b6313243 823 }
0cc7d26f
TT
824 else
825 i = VEC_length (varobj_p, var->children);
b6313243 826
0cc7d26f
TT
827 /* We ask for one extra child, so that MI can report whether there
828 are more children. */
829 for (; to < 0 || i < to + 1; ++i)
b6313243 830 {
0cc7d26f 831 PyObject *item;
a4c8e806 832 int force_done = 0;
b6313243 833
0cc7d26f 834 /* See if there was a leftover from last time. */
bb5ce47a 835 if (var->dynamic->saved_item)
0cc7d26f 836 {
bb5ce47a
YQ
837 item = var->dynamic->saved_item;
838 var->dynamic->saved_item = NULL;
0cc7d26f
TT
839 }
840 else
bb5ce47a 841 item = PyIter_Next (var->dynamic->child_iter);
b6313243 842
0cc7d26f 843 if (!item)
a4c8e806
TT
844 {
845 /* Normal end of iteration. */
846 if (!PyErr_Occurred ())
847 break;
848
849 /* If we got a memory error, just use the text as the
850 item. */
851 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
852 {
853 PyObject *type, *value, *trace;
854 char *name_str, *value_str;
855
856 PyErr_Fetch (&type, &value, &trace);
857 value_str = gdbpy_exception_to_string (type, value);
858 Py_XDECREF (type);
859 Py_XDECREF (value);
860 Py_XDECREF (trace);
861 if (!value_str)
862 {
863 gdbpy_print_stack ();
864 break;
865 }
866
867 name_str = xstrprintf ("<error at %d>", i);
868 item = Py_BuildValue ("(ss)", name_str, value_str);
869 xfree (name_str);
870 xfree (value_str);
871 if (!item)
872 {
873 gdbpy_print_stack ();
874 break;
875 }
876
877 force_done = 1;
878 }
879 else
880 {
881 /* Any other kind of error. */
882 gdbpy_print_stack ();
883 break;
884 }
885 }
b6313243 886
0cc7d26f
TT
887 /* We don't want to push the extra child on any report list. */
888 if (to < 0 || i < to)
b6313243 889 {
0cc7d26f 890 PyObject *py_v;
ddd49eee 891 const char *name;
0cc7d26f
TT
892 struct value *v;
893 struct cleanup *inner;
894 int can_mention = from < 0 || i >= from;
895
896 inner = make_cleanup_py_decref (item);
897
898 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
a4c8e806
TT
899 {
900 gdbpy_print_stack ();
901 error (_("Invalid item from the child list"));
902 }
0cc7d26f
TT
903
904 v = convert_value_from_python (py_v);
8dc78533
JK
905 if (v == NULL)
906 gdbpy_print_stack ();
0cc7d26f 907 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 908 can_mention ? type_changed : NULL,
0cc7d26f
TT
909 can_mention ? new : NULL,
910 can_mention ? unchanged : NULL,
5e5ac9a5
YQ
911 can_mention ? cchanged : NULL, i,
912 xstrdup (name), v);
0cc7d26f 913 do_cleanups (inner);
b6313243 914 }
0cc7d26f 915 else
b6313243 916 {
bb5ce47a
YQ
917 Py_XDECREF (var->dynamic->saved_item);
918 var->dynamic->saved_item = item;
b6313243 919
0cc7d26f
TT
920 /* We want to truncate the child list just before this
921 element. */
922 break;
923 }
a4c8e806
TT
924
925 if (force_done)
926 break;
b6313243
TT
927 }
928
929 if (i < VEC_length (varobj_p, var->children))
930 {
0cc7d26f 931 int j;
a109c7c1 932
0cc7d26f
TT
933 *cchanged = 1;
934 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
935 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
936 VEC_truncate (varobj_p, var->children, i);
b6313243 937 }
0cc7d26f
TT
938
939 /* If there are fewer children than requested, note that the list of
940 children changed. */
941 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
942 *cchanged = 1;
943
b6313243
TT
944 var->num_children = VEC_length (varobj_p, var->children);
945
946 do_cleanups (back_to);
947
b6313243
TT
948 return 1;
949#else
9e77999c 950 gdb_assert_not_reached ("should never be called if Python is not enabled");
b6313243
TT
951#endif
952}
25d5ea92 953
8b93c638
JM
954int
955varobj_get_num_children (struct varobj *var)
956{
957 if (var->num_children == -1)
b6313243 958 {
bb5ce47a 959 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
960 {
961 int dummy;
962
963 /* If we have a dynamic varobj, don't report -1 children.
964 So, try to fetch some children first. */
8264ba82 965 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
966 0, 0, 0);
967 }
968 else
b6313243
TT
969 var->num_children = number_of_children (var);
970 }
8b93c638 971
0cc7d26f 972 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
973}
974
975/* Creates a list of the immediate children of a variable object;
581e13c1 976 the return code is the number of such children or -1 on error. */
8b93c638 977
d56d46f5 978VEC (varobj_p)*
0cc7d26f 979varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 980{
8b93c638 981 char *name;
b6313243
TT
982 int i, children_changed;
983
bb5ce47a 984 var->dynamic->children_requested = 1;
b6313243 985
bb5ce47a 986 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 987 {
b6313243
TT
988 /* This, in theory, can result in the number of children changing without
989 frontend noticing. But well, calling -var-list-children on the same
990 varobj twice is not something a sane frontend would do. */
8264ba82
AG
991 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
992 &children_changed, 0, 0, *to);
99ad9427 993 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
994 return var->children;
995 }
8b93c638 996
8b93c638
JM
997 if (var->num_children == -1)
998 var->num_children = number_of_children (var);
999
74a44383
DJ
1000 /* If that failed, give up. */
1001 if (var->num_children == -1)
d56d46f5 1002 return var->children;
74a44383 1003
28335dcc
VP
1004 /* If we're called when the list of children is not yet initialized,
1005 allocate enough elements in it. */
1006 while (VEC_length (varobj_p, var->children) < var->num_children)
1007 VEC_safe_push (varobj_p, var->children, NULL);
1008
8b93c638
JM
1009 for (i = 0; i < var->num_children; i++)
1010 {
d56d46f5 1011 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
1012
1013 if (existing == NULL)
1014 {
1015 /* Either it's the first call to varobj_list_children for
1016 this variable object, and the child was never created,
1017 or it was explicitly deleted by the client. */
1018 name = name_of_child (var, i);
1019 existing = create_child (var, i, name);
1020 VEC_replace (varobj_p, var->children, i, existing);
1021 }
8b93c638
JM
1022 }
1023
99ad9427 1024 varobj_restrict_range (var->children, from, to);
d56d46f5 1025 return var->children;
8b93c638
JM
1026}
1027
d8b65138
JK
1028#if HAVE_PYTHON
1029
b6313243 1030static struct varobj *
5e5ac9a5 1031varobj_add_child (struct varobj *var, char *name, struct value *value)
b6313243
TT
1032{
1033 varobj_p v = create_child_with_value (var,
1034 VEC_length (varobj_p, var->children),
1035 name, value);
a109c7c1 1036
b6313243 1037 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
1038 return v;
1039}
1040
d8b65138
JK
1041#endif /* HAVE_PYTHON */
1042
8b93c638 1043/* Obtain the type of an object Variable as a string similar to the one gdb
581e13c1 1044 prints on the console. */
8b93c638
JM
1045
1046char *
1047varobj_get_type (struct varobj *var)
1048{
8ab91b96 1049 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
1050 NULL, too.)
1051 Do not return a type for invalid variables as well. */
1052 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1053 return NULL;
1054
1a4300e9 1055 return type_to_string (var->type);
8b93c638
JM
1056}
1057
1ecb4ee0
DJ
1058/* Obtain the type of an object variable. */
1059
1060struct type *
1061varobj_get_gdb_type (struct varobj *var)
1062{
1063 return var->type;
1064}
1065
85254831
KS
1066/* Is VAR a path expression parent, i.e., can it be used to construct
1067 a valid path expression? */
1068
1069static int
1070is_path_expr_parent (struct varobj *var)
1071{
1072 struct type *type;
1073
1074 /* "Fake" children are not path_expr parents. */
1075 if (CPLUS_FAKE_CHILD (var))
1076 return 0;
1077
99ad9427 1078 type = varobj_get_value_type (var);
85254831
KS
1079
1080 /* Anonymous unions and structs are also not path_expr parents. */
1081 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1082 || TYPE_CODE (type) == TYPE_CODE_UNION)
1083 && TYPE_NAME (type) == NULL);
1084}
1085
1086/* Return the path expression parent for VAR. */
1087
99ad9427
YQ
1088struct varobj *
1089varobj_get_path_expr_parent (struct varobj *var)
85254831
KS
1090{
1091 struct varobj *parent = var;
1092
1093 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1094 parent = parent->parent;
1095
1096 return parent;
1097}
1098
02142340
VP
1099/* Return a pointer to the full rooted expression of varobj VAR.
1100 If it has not been computed yet, compute it. */
1101char *
1102varobj_get_path_expr (struct varobj *var)
1103{
1104 if (var->path_expr != NULL)
1105 return var->path_expr;
1106 else
1107 {
1108 /* For root varobjs, we initialize path_expr
1109 when creating varobj, so here it should be
1110 child varobj. */
1111 gdb_assert (!is_root_p (var));
ca20d462 1112 return (*var->root->lang_ops->path_expr_of_child) (var);
02142340
VP
1113 }
1114}
1115
fa4d0c40 1116const struct language_defn *
8b93c638
JM
1117varobj_get_language (struct varobj *var)
1118{
fa4d0c40 1119 return var->root->exp->language_defn;
8b93c638
JM
1120}
1121
1122int
1123varobj_get_attributes (struct varobj *var)
1124{
1125 int attributes = 0;
1126
340a7723 1127 if (varobj_editable_p (var))
581e13c1 1128 /* FIXME: define masks for attributes. */
8b93c638
JM
1129 attributes |= 0x00000001; /* Editable */
1130
1131 return attributes;
1132}
1133
0cc7d26f
TT
1134int
1135varobj_pretty_printed_p (struct varobj *var)
1136{
bb5ce47a 1137 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1138}
1139
de051565
MK
1140char *
1141varobj_get_formatted_value (struct varobj *var,
1142 enum varobj_display_formats format)
1143{
1144 return my_value_of_variable (var, format);
1145}
1146
8b93c638
JM
1147char *
1148varobj_get_value (struct varobj *var)
1149{
de051565 1150 return my_value_of_variable (var, var->format);
8b93c638
JM
1151}
1152
1153/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1154 value of the given expression. */
1155/* Note: Invokes functions that can call error(). */
8b93c638
JM
1156
1157int
1158varobj_set_value (struct varobj *var, char *expression)
1159{
34365054 1160 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1161 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1162 We need to first construct a legal expression for this -- ugh! */
1163 /* Does this cover all the bases? */
8b93c638 1164 struct expression *exp;
34365054 1165 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1166 int saved_input_radix = input_radix;
bbc13ae3 1167 const char *s = expression;
8e7b59a5 1168 volatile struct gdb_exception except;
8b93c638 1169
340a7723 1170 gdb_assert (varobj_editable_p (var));
8b93c638 1171
581e13c1 1172 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1bb9788d 1173 exp = parse_exp_1 (&s, 0, 0, 0);
8e7b59a5
KS
1174 TRY_CATCH (except, RETURN_MASK_ERROR)
1175 {
1176 value = evaluate_expression (exp);
1177 }
1178
1179 if (except.reason < 0)
340a7723 1180 {
581e13c1 1181 /* We cannot proceed without a valid expression. */
340a7723
NR
1182 xfree (exp);
1183 return 0;
8b93c638
JM
1184 }
1185
340a7723
NR
1186 /* All types that are editable must also be changeable. */
1187 gdb_assert (varobj_value_is_changeable_p (var));
1188
1189 /* The value of a changeable variable object must not be lazy. */
1190 gdb_assert (!value_lazy (var->value));
1191
1192 /* Need to coerce the input. We want to check if the
1193 value of the variable object will be different
1194 after assignment, and the first thing value_assign
1195 does is coerce the input.
1196 For example, if we are assigning an array to a pointer variable we
b021a221 1197 should compare the pointer with the array's address, not with the
340a7723
NR
1198 array's content. */
1199 value = coerce_array (value);
1200
8e7b59a5
KS
1201 /* The new value may be lazy. value_assign, or
1202 rather value_contents, will take care of this. */
1203 TRY_CATCH (except, RETURN_MASK_ERROR)
1204 {
1205 val = value_assign (var->value, value);
1206 }
1207
1208 if (except.reason < 0)
340a7723 1209 return 0;
8e7b59a5 1210
340a7723
NR
1211 /* If the value has changed, record it, so that next -var-update can
1212 report this change. If a variable had a value of '1', we've set it
1213 to '333' and then set again to '1', when -var-update will report this
1214 variable as changed -- because the first assignment has set the
1215 'updated' flag. There's no need to optimize that, because return value
1216 of -var-update should be considered an approximation. */
581e13c1 1217 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1218 input_radix = saved_input_radix;
1219 return 1;
8b93c638
JM
1220}
1221
0cc7d26f
TT
1222#if HAVE_PYTHON
1223
1224/* A helper function to install a constructor function and visualizer
bb5ce47a 1225 in a varobj_dynamic. */
0cc7d26f
TT
1226
1227static void
bb5ce47a 1228install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1229 PyObject *visualizer)
1230{
1231 Py_XDECREF (var->constructor);
1232 var->constructor = constructor;
1233
1234 Py_XDECREF (var->pretty_printer);
1235 var->pretty_printer = visualizer;
1236
1237 Py_XDECREF (var->child_iter);
1238 var->child_iter = NULL;
1239}
1240
1241/* Install the default visualizer for VAR. */
1242
1243static void
1244install_default_visualizer (struct varobj *var)
1245{
d65aec65
PM
1246 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1247 if (CPLUS_FAKE_CHILD (var))
1248 return;
1249
0cc7d26f
TT
1250 if (pretty_printing)
1251 {
1252 PyObject *pretty_printer = NULL;
1253
1254 if (var->value)
1255 {
1256 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1257 if (! pretty_printer)
1258 {
1259 gdbpy_print_stack ();
1260 error (_("Cannot instantiate printer for default visualizer"));
1261 }
1262 }
1263
1264 if (pretty_printer == Py_None)
1265 {
1266 Py_DECREF (pretty_printer);
1267 pretty_printer = NULL;
1268 }
1269
bb5ce47a 1270 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1271 }
1272}
1273
1274/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1275 make a new object. */
1276
1277static void
1278construct_visualizer (struct varobj *var, PyObject *constructor)
1279{
1280 PyObject *pretty_printer;
1281
d65aec65
PM
1282 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1283 if (CPLUS_FAKE_CHILD (var))
1284 return;
1285
0cc7d26f
TT
1286 Py_INCREF (constructor);
1287 if (constructor == Py_None)
1288 pretty_printer = NULL;
1289 else
1290 {
1291 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1292 if (! pretty_printer)
1293 {
1294 gdbpy_print_stack ();
1295 Py_DECREF (constructor);
1296 constructor = Py_None;
1297 Py_INCREF (constructor);
1298 }
1299
1300 if (pretty_printer == Py_None)
1301 {
1302 Py_DECREF (pretty_printer);
1303 pretty_printer = NULL;
1304 }
1305 }
1306
bb5ce47a 1307 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1308}
1309
1310#endif /* HAVE_PYTHON */
1311
1312/* A helper function for install_new_value. This creates and installs
1313 a visualizer for VAR, if appropriate. */
1314
1315static void
1316install_new_value_visualizer (struct varobj *var)
1317{
1318#if HAVE_PYTHON
1319 /* If the constructor is None, then we want the raw value. If VAR
1320 does not have a value, just skip this. */
0646da15
TT
1321 if (!gdb_python_initialized)
1322 return;
1323
bb5ce47a 1324 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f
TT
1325 {
1326 struct cleanup *cleanup;
0cc7d26f
TT
1327
1328 cleanup = varobj_ensure_python_env (var);
1329
bb5ce47a 1330 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1331 install_default_visualizer (var);
1332 else
bb5ce47a 1333 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1334
1335 do_cleanups (cleanup);
1336 }
1337#else
1338 /* Do nothing. */
1339#endif
1340}
1341
8264ba82
AG
1342/* When using RTTI to determine variable type it may be changed in runtime when
1343 the variable value is changed. This function checks whether type of varobj
1344 VAR will change when a new value NEW_VALUE is assigned and if it is so
1345 updates the type of VAR. */
1346
1347static int
1348update_type_if_necessary (struct varobj *var, struct value *new_value)
1349{
1350 if (new_value)
1351 {
1352 struct value_print_options opts;
1353
1354 get_user_print_options (&opts);
1355 if (opts.objectprint)
1356 {
1357 struct type *new_type;
1358 char *curr_type_str, *new_type_str;
1359
1360 new_type = value_actual_type (new_value, 0, 0);
1361 new_type_str = type_to_string (new_type);
1362 curr_type_str = varobj_get_type (var);
1363 if (strcmp (curr_type_str, new_type_str) != 0)
1364 {
1365 var->type = new_type;
1366
1367 /* This information may be not valid for a new type. */
1368 varobj_delete (var, NULL, 1);
1369 VEC_free (varobj_p, var->children);
1370 var->num_children = -1;
1371 return 1;
1372 }
1373 }
1374 }
1375
1376 return 0;
1377}
1378
acd65feb
VP
1379/* Assign a new value to a variable object. If INITIAL is non-zero,
1380 this is the first assignement after the variable object was just
1381 created, or changed type. In that case, just assign the value
1382 and return 0.
581e13c1
MS
1383 Otherwise, assign the new value, and return 1 if the value is
1384 different from the current one, 0 otherwise. The comparison is
1385 done on textual representation of value. Therefore, some types
1386 need not be compared. E.g. for structures the reported value is
1387 always "{...}", so no comparison is necessary here. If the old
1388 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1389
1390 The VALUE parameter should not be released -- the function will
1391 take care of releasing it when needed. */
acd65feb
VP
1392static int
1393install_new_value (struct varobj *var, struct value *value, int initial)
1394{
1395 int changeable;
1396 int need_to_fetch;
1397 int changed = 0;
25d5ea92 1398 int intentionally_not_fetched = 0;
7a4d50bf 1399 char *print_value = NULL;
acd65feb 1400
acd65feb 1401 /* We need to know the varobj's type to decide if the value should
3e43a32a 1402 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1403 don't have a type. */
acd65feb 1404 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1405 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1406
1407 /* If the type has custom visualizer, we consider it to be always
581e13c1 1408 changeable. FIXME: need to make sure this behaviour will not
b6313243 1409 mess up read-sensitive values. */
bb5ce47a 1410 if (var->dynamic->pretty_printer != NULL)
b6313243
TT
1411 changeable = 1;
1412
acd65feb
VP
1413 need_to_fetch = changeable;
1414
b26ed50d
VP
1415 /* We are not interested in the address of references, and given
1416 that in C++ a reference is not rebindable, it cannot
1417 meaningfully change. So, get hold of the real value. */
1418 if (value)
0cc7d26f 1419 value = coerce_ref (value);
b26ed50d 1420
acd65feb
VP
1421 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1422 /* For unions, we need to fetch the value implicitly because
1423 of implementation of union member fetch. When gdb
1424 creates a value for a field and the value of the enclosing
1425 structure is not lazy, it immediately copies the necessary
1426 bytes from the enclosing values. If the enclosing value is
1427 lazy, the call to value_fetch_lazy on the field will read
1428 the data from memory. For unions, that means we'll read the
1429 same memory more than once, which is not desirable. So
1430 fetch now. */
1431 need_to_fetch = 1;
1432
1433 /* The new value might be lazy. If the type is changeable,
1434 that is we'll be comparing values of this type, fetch the
1435 value now. Otherwise, on the next update the old value
1436 will be lazy, which means we've lost that old value. */
1437 if (need_to_fetch && value && value_lazy (value))
1438 {
25d5ea92
VP
1439 struct varobj *parent = var->parent;
1440 int frozen = var->frozen;
a109c7c1 1441
25d5ea92
VP
1442 for (; !frozen && parent; parent = parent->parent)
1443 frozen |= parent->frozen;
1444
1445 if (frozen && initial)
1446 {
1447 /* For variables that are frozen, or are children of frozen
1448 variables, we don't do fetch on initial assignment.
1449 For non-initial assignemnt we do the fetch, since it means we're
1450 explicitly asked to compare the new value with the old one. */
1451 intentionally_not_fetched = 1;
1452 }
8e7b59a5 1453 else
acd65feb 1454 {
8e7b59a5
KS
1455 volatile struct gdb_exception except;
1456
1457 TRY_CATCH (except, RETURN_MASK_ERROR)
1458 {
1459 value_fetch_lazy (value);
1460 }
1461
1462 if (except.reason < 0)
1463 {
1464 /* Set the value to NULL, so that for the next -var-update,
1465 we don't try to compare the new value with this value,
1466 that we couldn't even read. */
1467 value = NULL;
1468 }
acd65feb 1469 }
acd65feb
VP
1470 }
1471
e848a8a5
TT
1472 /* Get a reference now, before possibly passing it to any Python
1473 code that might release it. */
1474 if (value != NULL)
1475 value_incref (value);
b6313243 1476
7a4d50bf
VP
1477 /* Below, we'll be comparing string rendering of old and new
1478 values. Don't get string rendering if the value is
1479 lazy -- if it is, the code above has decided that the value
1480 should not be fetched. */
bb5ce47a
YQ
1481 if (value != NULL && !value_lazy (value)
1482 && var->dynamic->pretty_printer == NULL)
99ad9427 1483 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1484
acd65feb
VP
1485 /* If the type is changeable, compare the old and the new values.
1486 If this is the initial assignment, we don't have any old value
1487 to compare with. */
7a4d50bf 1488 if (!initial && changeable)
acd65feb 1489 {
3e43a32a
MS
1490 /* If the value of the varobj was changed by -var-set-value,
1491 then the value in the varobj and in the target is the same.
1492 However, that value is different from the value that the
581e13c1 1493 varobj had after the previous -var-update. So need to the
3e43a32a 1494 varobj as changed. */
acd65feb 1495 if (var->updated)
57e66780 1496 {
57e66780
DJ
1497 changed = 1;
1498 }
bb5ce47a 1499 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1500 {
1501 /* Try to compare the values. That requires that both
1502 values are non-lazy. */
25d5ea92
VP
1503 if (var->not_fetched && value_lazy (var->value))
1504 {
1505 /* This is a frozen varobj and the value was never read.
1506 Presumably, UI shows some "never read" indicator.
1507 Now that we've fetched the real value, we need to report
1508 this varobj as changed so that UI can show the real
1509 value. */
1510 changed = 1;
1511 }
1512 else if (var->value == NULL && value == NULL)
581e13c1 1513 /* Equal. */
acd65feb
VP
1514 ;
1515 else if (var->value == NULL || value == NULL)
57e66780 1516 {
57e66780
DJ
1517 changed = 1;
1518 }
acd65feb
VP
1519 else
1520 {
1521 gdb_assert (!value_lazy (var->value));
1522 gdb_assert (!value_lazy (value));
85265413 1523
57e66780 1524 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1525 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1526 changed = 1;
acd65feb
VP
1527 }
1528 }
1529 }
85265413 1530
ee342b23
VP
1531 if (!initial && !changeable)
1532 {
1533 /* For values that are not changeable, we don't compare the values.
1534 However, we want to notice if a value was not NULL and now is NULL,
1535 or vise versa, so that we report when top-level varobjs come in scope
1536 and leave the scope. */
1537 changed = (var->value != NULL) != (value != NULL);
1538 }
1539
acd65feb 1540 /* We must always keep the new value, since children depend on it. */
25d5ea92 1541 if (var->value != NULL && var->value != value)
acd65feb
VP
1542 value_free (var->value);
1543 var->value = value;
25d5ea92
VP
1544 if (value && value_lazy (value) && intentionally_not_fetched)
1545 var->not_fetched = 1;
1546 else
1547 var->not_fetched = 0;
acd65feb 1548 var->updated = 0;
85265413 1549
0cc7d26f
TT
1550 install_new_value_visualizer (var);
1551
1552 /* If we installed a pretty-printer, re-compare the printed version
1553 to see if the variable changed. */
bb5ce47a 1554 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
1555 {
1556 xfree (print_value);
99ad9427
YQ
1557 print_value = varobj_value_get_print_value (var->value, var->format,
1558 var);
e8f781e2
TT
1559 if ((var->print_value == NULL && print_value != NULL)
1560 || (var->print_value != NULL && print_value == NULL)
1561 || (var->print_value != NULL && print_value != NULL
1562 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1563 changed = 1;
1564 }
1565 if (var->print_value)
1566 xfree (var->print_value);
1567 var->print_value = print_value;
1568
b26ed50d 1569 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1570
1571 return changed;
1572}
acd65feb 1573
0cc7d26f
TT
1574/* Return the requested range for a varobj. VAR is the varobj. FROM
1575 and TO are out parameters; *FROM and *TO will be set to the
1576 selected sub-range of VAR. If no range was selected using
1577 -var-set-update-range, then both will be -1. */
1578void
1579varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1580{
0cc7d26f
TT
1581 *from = var->from;
1582 *to = var->to;
b6313243
TT
1583}
1584
0cc7d26f
TT
1585/* Set the selected sub-range of children of VAR to start at index
1586 FROM and end at index TO. If either FROM or TO is less than zero,
1587 this is interpreted as a request for all children. */
1588void
1589varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1590{
0cc7d26f
TT
1591 var->from = from;
1592 var->to = to;
b6313243
TT
1593}
1594
1595void
1596varobj_set_visualizer (struct varobj *var, const char *visualizer)
1597{
1598#if HAVE_PYTHON
34fa1d9d
MS
1599 PyObject *mainmod, *globals, *constructor;
1600 struct cleanup *back_to;
b6313243 1601
0646da15
TT
1602 if (!gdb_python_initialized)
1603 return;
1604
d452c4bc 1605 back_to = varobj_ensure_python_env (var);
b6313243
TT
1606
1607 mainmod = PyImport_AddModule ("__main__");
1608 globals = PyModule_GetDict (mainmod);
1609 Py_INCREF (globals);
1610 make_cleanup_py_decref (globals);
1611
1612 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1613
0cc7d26f 1614 if (! constructor)
b6313243
TT
1615 {
1616 gdbpy_print_stack ();
da1f2771 1617 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1618 }
1619
0cc7d26f
TT
1620 construct_visualizer (var, constructor);
1621 Py_XDECREF (constructor);
b6313243 1622
0cc7d26f
TT
1623 /* If there are any children now, wipe them. */
1624 varobj_delete (var, NULL, 1 /* children only */);
1625 var->num_children = -1;
b6313243
TT
1626
1627 do_cleanups (back_to);
1628#else
da1f2771 1629 error (_("Python support required"));
b6313243
TT
1630#endif
1631}
1632
7a290c40
JB
1633/* If NEW_VALUE is the new value of the given varobj (var), return
1634 non-zero if var has mutated. In other words, if the type of
1635 the new value is different from the type of the varobj's old
1636 value.
1637
1638 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1639
1640static int
1641varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1642 struct type *new_type)
1643{
1644 /* If we haven't previously computed the number of children in var,
1645 it does not matter from the front-end's perspective whether
1646 the type has mutated or not. For all intents and purposes,
1647 it has not mutated. */
1648 if (var->num_children < 0)
1649 return 0;
1650
ca20d462 1651 if (var->root->lang_ops->value_has_mutated)
8776cfe9
JB
1652 {
1653 /* The varobj module, when installing new values, explicitly strips
1654 references, saying that we're not interested in those addresses.
1655 But detection of mutation happens before installing the new
1656 value, so our value may be a reference that we need to strip
1657 in order to remain consistent. */
1658 if (new_value != NULL)
1659 new_value = coerce_ref (new_value);
1660 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1661 }
7a290c40
JB
1662 else
1663 return 0;
1664}
1665
8b93c638
JM
1666/* Update the values for a variable and its children. This is a
1667 two-pronged attack. First, re-parse the value for the root's
1668 expression to see if it's changed. Then go all the way
1669 through its children, reconstructing them and noting if they've
1670 changed.
1671
25d5ea92
VP
1672 The EXPLICIT parameter specifies if this call is result
1673 of MI request to update this specific variable, or
581e13c1 1674 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1675 update frozen variables.
705da579 1676
581e13c1 1677 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1678 returns TYPE_CHANGED, then it has done this and VARP will be modified
1679 to point to the new varobj. */
8b93c638 1680
1417b39d
JB
1681VEC(varobj_update_result) *
1682varobj_update (struct varobj **varp, int explicit)
8b93c638 1683{
25d5ea92 1684 int type_changed = 0;
8b93c638 1685 int i;
30b28db1 1686 struct value *new;
b6313243 1687 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1688 VEC (varobj_update_result) *result = NULL;
8b93c638 1689
25d5ea92
VP
1690 /* Frozen means frozen -- we don't check for any change in
1691 this varobj, including its going out of scope, or
1692 changing type. One use case for frozen varobjs is
1693 retaining previously evaluated expressions, and we don't
1694 want them to be reevaluated at all. */
1695 if (!explicit && (*varp)->frozen)
f7f9ae2c 1696 return result;
8756216b
DP
1697
1698 if (!(*varp)->root->is_valid)
f7f9ae2c 1699 {
cfce2ea2 1700 varobj_update_result r = {0};
a109c7c1 1701
cfce2ea2 1702 r.varobj = *varp;
f7f9ae2c
VP
1703 r.status = VAROBJ_INVALID;
1704 VEC_safe_push (varobj_update_result, result, &r);
1705 return result;
1706 }
8b93c638 1707
25d5ea92 1708 if ((*varp)->root->rootvar == *varp)
ae093f96 1709 {
cfce2ea2 1710 varobj_update_result r = {0};
a109c7c1 1711
cfce2ea2 1712 r.varobj = *varp;
f7f9ae2c
VP
1713 r.status = VAROBJ_IN_SCOPE;
1714
581e13c1 1715 /* Update the root variable. value_of_root can return NULL
25d5ea92 1716 if the variable is no longer around, i.e. we stepped out of
581e13c1 1717 the frame in which a local existed. We are letting the
25d5ea92
VP
1718 value_of_root variable dispose of the varobj if the type
1719 has changed. */
25d5ea92 1720 new = value_of_root (varp, &type_changed);
8264ba82
AG
1721 if (update_type_if_necessary(*varp, new))
1722 type_changed = 1;
f7f9ae2c 1723 r.varobj = *varp;
f7f9ae2c 1724 r.type_changed = type_changed;
ea56f9c2 1725 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1726 r.changed = 1;
ea56f9c2 1727
25d5ea92 1728 if (new == NULL)
f7f9ae2c 1729 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1730 r.value_installed = 1;
f7f9ae2c
VP
1731
1732 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1733 {
0b4bc29a
JK
1734 if (r.type_changed || r.changed)
1735 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1736 return result;
1737 }
1738
1739 VEC_safe_push (varobj_update_result, stack, &r);
1740 }
1741 else
1742 {
cfce2ea2 1743 varobj_update_result r = {0};
a109c7c1 1744
cfce2ea2 1745 r.varobj = *varp;
b6313243 1746 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1747 }
8b93c638 1748
8756216b 1749 /* Walk through the children, reconstructing them all. */
b6313243 1750 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1751 {
b6313243
TT
1752 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1753 struct varobj *v = r.varobj;
1754
1755 VEC_pop (varobj_update_result, stack);
1756
1757 /* Update this variable, unless it's a root, which is already
1758 updated. */
1759 if (!r.value_installed)
7a290c40
JB
1760 {
1761 struct type *new_type;
1762
b6313243 1763 new = value_of_child (v->parent, v->index);
8264ba82
AG
1764 if (update_type_if_necessary(v, new))
1765 r.type_changed = 1;
7a290c40
JB
1766 if (new)
1767 new_type = value_type (new);
1768 else
ca20d462 1769 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40
JB
1770
1771 if (varobj_value_has_mutated (v, new, new_type))
1772 {
1773 /* The children are no longer valid; delete them now.
1774 Report the fact that its type changed as well. */
1775 varobj_delete (v, NULL, 1 /* only_children */);
1776 v->num_children = -1;
1777 v->to = -1;
1778 v->from = -1;
1779 v->type = new_type;
1780 r.type_changed = 1;
1781 }
1782
1783 if (install_new_value (v, new, r.type_changed))
b6313243
TT
1784 {
1785 r.changed = 1;
1786 v->updated = 0;
1787 }
1788 }
1789
1790 /* We probably should not get children of a varobj that has a
1791 pretty-printer, but for which -var-list-children was never
581e13c1 1792 invoked. */
bb5ce47a 1793 if (v->dynamic->pretty_printer != NULL)
b6313243 1794 {
8264ba82
AG
1795 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1796 VEC (varobj_p) *new = 0;
26f9bcee 1797 int i, children_changed = 0;
b6313243
TT
1798
1799 if (v->frozen)
1800 continue;
1801
bb5ce47a 1802 if (!v->dynamic->children_requested)
0cc7d26f
TT
1803 {
1804 int dummy;
1805
1806 /* If we initially did not have potential children, but
1807 now we do, consider the varobj as changed.
1808 Otherwise, if children were never requested, consider
1809 it as unchanged -- presumably, such varobj is not yet
1810 expanded in the UI, so we need not bother getting
1811 it. */
1812 if (!varobj_has_more (v, 0))
1813 {
8264ba82 1814 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
1815 &dummy, 0, 0, 0);
1816 if (varobj_has_more (v, 0))
1817 r.changed = 1;
1818 }
1819
1820 if (r.changed)
1821 VEC_safe_push (varobj_update_result, result, &r);
1822
1823 continue;
1824 }
1825
b6313243
TT
1826 /* If update_dynamic_varobj_children returns 0, then we have
1827 a non-conforming pretty-printer, so we skip it. */
8264ba82
AG
1828 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1829 &unchanged, &children_changed, 1,
0cc7d26f 1830 v->from, v->to))
b6313243 1831 {
0cc7d26f 1832 if (children_changed || new)
b6313243 1833 {
0cc7d26f
TT
1834 r.children_changed = 1;
1835 r.new = new;
b6313243 1836 }
0cc7d26f
TT
1837 /* Push in reverse order so that the first child is
1838 popped from the work stack first, and so will be
1839 added to result first. This does not affect
1840 correctness, just "nicer". */
8264ba82
AG
1841 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1842 {
1843 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1844 varobj_update_result r = {0};
1845
1846 /* Type may change only if value was changed. */
1847 r.varobj = tmp;
1848 r.changed = 1;
1849 r.type_changed = 1;
1850 r.value_installed = 1;
1851 VEC_safe_push (varobj_update_result, stack, &r);
1852 }
0cc7d26f 1853 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1854 {
0cc7d26f 1855 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1856 varobj_update_result r = {0};
a109c7c1 1857
cfce2ea2 1858 r.varobj = tmp;
0cc7d26f 1859 r.changed = 1;
b6313243
TT
1860 r.value_installed = 1;
1861 VEC_safe_push (varobj_update_result, stack, &r);
1862 }
0cc7d26f
TT
1863 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1864 {
1865 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1866
0cc7d26f
TT
1867 if (!tmp->frozen)
1868 {
cfce2ea2 1869 varobj_update_result r = {0};
a109c7c1 1870
cfce2ea2 1871 r.varobj = tmp;
0cc7d26f
TT
1872 r.value_installed = 1;
1873 VEC_safe_push (varobj_update_result, stack, &r);
1874 }
1875 }
b6313243
TT
1876 if (r.changed || r.children_changed)
1877 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 1878
8264ba82
AG
1879 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1880 because NEW has been put into the result vector. */
0cc7d26f 1881 VEC_free (varobj_p, changed);
8264ba82 1882 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
1883 VEC_free (varobj_p, unchanged);
1884
b6313243
TT
1885 continue;
1886 }
1887 }
28335dcc
VP
1888
1889 /* Push any children. Use reverse order so that the first
1890 child is popped from the work stack first, and so
1891 will be added to result first. This does not
1892 affect correctness, just "nicer". */
1893 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1894 {
28335dcc 1895 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1896
28335dcc 1897 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1898 if (c != NULL && !c->frozen)
28335dcc 1899 {
cfce2ea2 1900 varobj_update_result r = {0};
a109c7c1 1901
cfce2ea2 1902 r.varobj = c;
b6313243 1903 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1904 }
8b93c638 1905 }
b6313243
TT
1906
1907 if (r.changed || r.type_changed)
1908 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1909 }
1910
b6313243
TT
1911 VEC_free (varobj_update_result, stack);
1912
f7f9ae2c 1913 return result;
8b93c638
JM
1914}
1915\f
1916
1917/* Helper functions */
1918
1919/*
1920 * Variable object construction/destruction
1921 */
1922
1923static int
fba45db2
KB
1924delete_variable (struct cpstack **resultp, struct varobj *var,
1925 int only_children_p)
8b93c638
JM
1926{
1927 int delcount = 0;
1928
1929 delete_variable_1 (resultp, &delcount, var,
1930 only_children_p, 1 /* remove_from_parent_p */ );
1931
1932 return delcount;
1933}
1934
581e13c1 1935/* Delete the variable object VAR and its children. */
8b93c638
JM
1936/* IMPORTANT NOTE: If we delete a variable which is a child
1937 and the parent is not removed we dump core. It must be always
581e13c1 1938 initially called with remove_from_parent_p set. */
8b93c638 1939static void
72330bd6
AC
1940delete_variable_1 (struct cpstack **resultp, int *delcountp,
1941 struct varobj *var, int only_children_p,
1942 int remove_from_parent_p)
8b93c638 1943{
28335dcc 1944 int i;
8b93c638 1945
581e13c1 1946 /* Delete any children of this variable, too. */
28335dcc
VP
1947 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1948 {
1949 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1950
214270ab
VP
1951 if (!child)
1952 continue;
8b93c638 1953 if (!remove_from_parent_p)
28335dcc
VP
1954 child->parent = NULL;
1955 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1956 }
28335dcc 1957 VEC_free (varobj_p, var->children);
8b93c638 1958
581e13c1 1959 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1960 if (only_children_p)
1961 return;
1962
581e13c1 1963 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 1964 /* If the name is null, this is a temporary variable, that has not
581e13c1 1965 yet been installed, don't report it, it belongs to the caller... */
73a93a32 1966 if (var->obj_name != NULL)
8b93c638 1967 {
5b616ba1 1968 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1969 *delcountp = *delcountp + 1;
1970 }
1971
581e13c1 1972 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1973 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1974 (as indicated by remove_from_parent_p) we don't bother doing an
1975 expensive list search to find the element to remove when we are
581e13c1 1976 discarding the list afterwards. */
72330bd6 1977 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1978 {
28335dcc 1979 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1980 }
72330bd6 1981
73a93a32
JI
1982 if (var->obj_name != NULL)
1983 uninstall_variable (var);
8b93c638 1984
581e13c1 1985 /* Free memory associated with this variable. */
8b93c638
JM
1986 free_variable (var);
1987}
1988
581e13c1 1989/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 1990static int
fba45db2 1991install_variable (struct varobj *var)
8b93c638
JM
1992{
1993 struct vlist *cv;
1994 struct vlist *newvl;
1995 const char *chp;
1996 unsigned int index = 0;
1997 unsigned int i = 1;
1998
1999 for (chp = var->obj_name; *chp; chp++)
2000 {
2001 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2002 }
2003
2004 cv = *(varobj_table + index);
2005 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2006 cv = cv->next;
2007
2008 if (cv != NULL)
8a3fe4f8 2009 error (_("Duplicate variable object name"));
8b93c638 2010
581e13c1 2011 /* Add varobj to hash table. */
8b93c638
JM
2012 newvl = xmalloc (sizeof (struct vlist));
2013 newvl->next = *(varobj_table + index);
2014 newvl->var = var;
2015 *(varobj_table + index) = newvl;
2016
581e13c1 2017 /* If root, add varobj to root list. */
b2c2bd75 2018 if (is_root_p (var))
8b93c638 2019 {
581e13c1 2020 /* Add to list of root variables. */
8b93c638
JM
2021 if (rootlist == NULL)
2022 var->root->next = NULL;
2023 else
2024 var->root->next = rootlist;
2025 rootlist = var->root;
8b93c638
JM
2026 }
2027
2028 return 1; /* OK */
2029}
2030
581e13c1 2031/* Unistall the object VAR. */
8b93c638 2032static void
fba45db2 2033uninstall_variable (struct varobj *var)
8b93c638
JM
2034{
2035 struct vlist *cv;
2036 struct vlist *prev;
2037 struct varobj_root *cr;
2038 struct varobj_root *prer;
2039 const char *chp;
2040 unsigned int index = 0;
2041 unsigned int i = 1;
2042
581e13c1 2043 /* Remove varobj from hash table. */
8b93c638
JM
2044 for (chp = var->obj_name; *chp; chp++)
2045 {
2046 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2047 }
2048
2049 cv = *(varobj_table + index);
2050 prev = NULL;
2051 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2052 {
2053 prev = cv;
2054 cv = cv->next;
2055 }
2056
2057 if (varobjdebug)
2058 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2059
2060 if (cv == NULL)
2061 {
72330bd6
AC
2062 warning
2063 ("Assertion failed: Could not find variable object \"%s\" to delete",
2064 var->obj_name);
8b93c638
JM
2065 return;
2066 }
2067
2068 if (prev == NULL)
2069 *(varobj_table + index) = cv->next;
2070 else
2071 prev->next = cv->next;
2072
b8c9b27d 2073 xfree (cv);
8b93c638 2074
581e13c1 2075 /* If root, remove varobj from root list. */
b2c2bd75 2076 if (is_root_p (var))
8b93c638 2077 {
581e13c1 2078 /* Remove from list of root variables. */
8b93c638
JM
2079 if (rootlist == var->root)
2080 rootlist = var->root->next;
2081 else
2082 {
2083 prer = NULL;
2084 cr = rootlist;
2085 while ((cr != NULL) && (cr->rootvar != var))
2086 {
2087 prer = cr;
2088 cr = cr->next;
2089 }
2090 if (cr == NULL)
2091 {
8f7e195f
JB
2092 warning (_("Assertion failed: Could not find "
2093 "varobj \"%s\" in root list"),
3e43a32a 2094 var->obj_name);
8b93c638
JM
2095 return;
2096 }
2097 if (prer == NULL)
2098 rootlist = NULL;
2099 else
2100 prer->next = cr->next;
2101 }
8b93c638
JM
2102 }
2103
2104}
2105
581e13c1 2106/* Create and install a child of the parent of the given name. */
8b93c638 2107static struct varobj *
fba45db2 2108create_child (struct varobj *parent, int index, char *name)
b6313243
TT
2109{
2110 return create_child_with_value (parent, index, name,
2111 value_of_child (parent, index));
2112}
2113
2114static struct varobj *
5e5ac9a5 2115create_child_with_value (struct varobj *parent, int index, char *name,
b6313243 2116 struct value *value)
8b93c638
JM
2117{
2118 struct varobj *child;
2119 char *childs_name;
2120
2121 child = new_variable ();
2122
5e5ac9a5
YQ
2123 /* NAME is allocated by caller. */
2124 child->name = name;
8b93c638 2125 child->index = index;
8b93c638
JM
2126 child->parent = parent;
2127 child->root = parent->root;
85254831 2128
99ad9427 2129 if (varobj_is_anonymous_child (child))
85254831
KS
2130 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2131 else
2132 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638 2133 child->obj_name = childs_name;
85254831 2134
8b93c638
JM
2135 install_variable (child);
2136
acd65feb
VP
2137 /* Compute the type of the child. Must do this before
2138 calling install_new_value. */
2139 if (value != NULL)
2140 /* If the child had no evaluation errors, var->value
581e13c1 2141 will be non-NULL and contain a valid type. */
8264ba82 2142 child->type = value_actual_type (value, 0, NULL);
acd65feb 2143 else
581e13c1 2144 /* Otherwise, we must compute the type. */
ca20d462
YQ
2145 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2146 child->index);
acd65feb
VP
2147 install_new_value (child, value, 1);
2148
8b93c638
JM
2149 return child;
2150}
8b93c638
JM
2151\f
2152
2153/*
2154 * Miscellaneous utility functions.
2155 */
2156
581e13c1 2157/* Allocate memory and initialize a new variable. */
8b93c638
JM
2158static struct varobj *
2159new_variable (void)
2160{
2161 struct varobj *var;
2162
2163 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2164 var->name = NULL;
02142340 2165 var->path_expr = NULL;
8b93c638
JM
2166 var->obj_name = NULL;
2167 var->index = -1;
2168 var->type = NULL;
2169 var->value = NULL;
8b93c638
JM
2170 var->num_children = -1;
2171 var->parent = NULL;
2172 var->children = NULL;
2173 var->format = 0;
2174 var->root = NULL;
fb9b6b35 2175 var->updated = 0;
85265413 2176 var->print_value = NULL;
25d5ea92
VP
2177 var->frozen = 0;
2178 var->not_fetched = 0;
bb5ce47a
YQ
2179 var->dynamic
2180 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2181 var->dynamic->children_requested = 0;
0cc7d26f
TT
2182 var->from = -1;
2183 var->to = -1;
bb5ce47a
YQ
2184 var->dynamic->constructor = 0;
2185 var->dynamic->pretty_printer = 0;
2186 var->dynamic->child_iter = 0;
2187 var->dynamic->saved_item = 0;
8b93c638
JM
2188
2189 return var;
2190}
2191
581e13c1 2192/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2193static struct varobj *
2194new_root_variable (void)
2195{
2196 struct varobj *var = new_variable ();
a109c7c1 2197
3e43a32a 2198 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
ca20d462 2199 var->root->lang_ops = NULL;
8b93c638
JM
2200 var->root->exp = NULL;
2201 var->root->valid_block = NULL;
7a424e99 2202 var->root->frame = null_frame_id;
a5defcdc 2203 var->root->floating = 0;
8b93c638 2204 var->root->rootvar = NULL;
8756216b 2205 var->root->is_valid = 1;
8b93c638
JM
2206
2207 return var;
2208}
2209
581e13c1 2210/* Free any allocated memory associated with VAR. */
8b93c638 2211static void
fba45db2 2212free_variable (struct varobj *var)
8b93c638 2213{
d452c4bc 2214#if HAVE_PYTHON
bb5ce47a 2215 if (var->dynamic->pretty_printer != NULL)
d452c4bc
UW
2216 {
2217 struct cleanup *cleanup = varobj_ensure_python_env (var);
bb5ce47a
YQ
2218
2219 Py_XDECREF (var->dynamic->constructor);
2220 Py_XDECREF (var->dynamic->pretty_printer);
2221 Py_XDECREF (var->dynamic->child_iter);
2222 Py_XDECREF (var->dynamic->saved_item);
d452c4bc
UW
2223 do_cleanups (cleanup);
2224 }
2225#endif
2226
36746093
JK
2227 value_free (var->value);
2228
581e13c1 2229 /* Free the expression if this is a root variable. */
b2c2bd75 2230 if (is_root_p (var))
8b93c638 2231 {
3038237c 2232 xfree (var->root->exp);
8038e1e2 2233 xfree (var->root);
8b93c638
JM
2234 }
2235
8038e1e2
AC
2236 xfree (var->name);
2237 xfree (var->obj_name);
85265413 2238 xfree (var->print_value);
02142340 2239 xfree (var->path_expr);
bb5ce47a 2240 xfree (var->dynamic);
8038e1e2 2241 xfree (var);
8b93c638
JM
2242}
2243
74b7792f
AC
2244static void
2245do_free_variable_cleanup (void *var)
2246{
2247 free_variable (var);
2248}
2249
2250static struct cleanup *
2251make_cleanup_free_variable (struct varobj *var)
2252{
2253 return make_cleanup (do_free_variable_cleanup, var);
2254}
2255
6e2a9270
VP
2256/* Return the type of the value that's stored in VAR,
2257 or that would have being stored there if the
581e13c1 2258 value were accessible.
6e2a9270
VP
2259
2260 This differs from VAR->type in that VAR->type is always
2261 the true type of the expession in the source language.
2262 The return value of this function is the type we're
2263 actually storing in varobj, and using for displaying
2264 the values and for comparing previous and new values.
2265
2266 For example, top-level references are always stripped. */
99ad9427
YQ
2267struct type *
2268varobj_get_value_type (struct varobj *var)
6e2a9270
VP
2269{
2270 struct type *type;
2271
2272 if (var->value)
2273 type = value_type (var->value);
2274 else
2275 type = var->type;
2276
2277 type = check_typedef (type);
2278
2279 if (TYPE_CODE (type) == TYPE_CODE_REF)
2280 type = get_target_type (type);
2281
2282 type = check_typedef (type);
2283
2284 return type;
2285}
2286
8b93c638 2287/* What is the default display for this variable? We assume that
581e13c1 2288 everything is "natural". Any exceptions? */
8b93c638 2289static enum varobj_display_formats
fba45db2 2290variable_default_display (struct varobj *var)
8b93c638
JM
2291{
2292 return FORMAT_NATURAL;
2293}
2294
581e13c1 2295/* FIXME: The following should be generic for any pointer. */
8b93c638 2296static void
fba45db2 2297cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2298{
2299 struct cpstack *s;
2300
2301 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2302 s->name = name;
2303 s->next = *pstack;
2304 *pstack = s;
2305}
2306
581e13c1 2307/* FIXME: The following should be generic for any pointer. */
8b93c638 2308static char *
fba45db2 2309cppop (struct cpstack **pstack)
8b93c638
JM
2310{
2311 struct cpstack *s;
2312 char *v;
2313
2314 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2315 return NULL;
2316
2317 s = *pstack;
2318 v = s->name;
2319 *pstack = (*pstack)->next;
b8c9b27d 2320 xfree (s);
8b93c638
JM
2321
2322 return v;
2323}
2324\f
2325/*
2326 * Language-dependencies
2327 */
2328
2329/* Common entry points */
2330
8b93c638
JM
2331/* Return the number of children for a given variable.
2332 The result of this function is defined by the language
581e13c1 2333 implementation. The number of children returned by this function
8b93c638 2334 is the number of children that the user will see in the variable
581e13c1 2335 display. */
8b93c638 2336static int
fba45db2 2337number_of_children (struct varobj *var)
8b93c638 2338{
ca20d462 2339 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2340}
2341
3e43a32a 2342/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2343 string. */
8b93c638 2344static char *
fba45db2 2345name_of_variable (struct varobj *var)
8b93c638 2346{
ca20d462 2347 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2348}
2349
3e43a32a 2350/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2351 string. */
8b93c638 2352static char *
fba45db2 2353name_of_child (struct varobj *var, int index)
8b93c638 2354{
ca20d462 2355 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2356}
2357
2213e2be
YQ
2358/* If frame associated with VAR can be found, switch
2359 to it and return 1. Otherwise, return 0. */
2360
2361static int
2362check_scope (struct varobj *var)
2363{
2364 struct frame_info *fi;
2365 int scope;
2366
2367 fi = frame_find_by_id (var->root->frame);
2368 scope = fi != NULL;
2369
2370 if (fi)
2371 {
2372 CORE_ADDR pc = get_frame_pc (fi);
2373
2374 if (pc < BLOCK_START (var->root->valid_block) ||
2375 pc >= BLOCK_END (var->root->valid_block))
2376 scope = 0;
2377 else
2378 select_frame (fi);
2379 }
2380 return scope;
2381}
2382
2383/* Helper function to value_of_root. */
2384
2385static struct value *
2386value_of_root_1 (struct varobj **var_handle)
2387{
2388 struct value *new_val = NULL;
2389 struct varobj *var = *var_handle;
2390 int within_scope = 0;
2391 struct cleanup *back_to;
2392
2393 /* Only root variables can be updated... */
2394 if (!is_root_p (var))
2395 /* Not a root var. */
2396 return NULL;
2397
2398 back_to = make_cleanup_restore_current_thread ();
2399
2400 /* Determine whether the variable is still around. */
2401 if (var->root->valid_block == NULL || var->root->floating)
2402 within_scope = 1;
2403 else if (var->root->thread_id == 0)
2404 {
2405 /* The program was single-threaded when the variable object was
2406 created. Technically, it's possible that the program became
2407 multi-threaded since then, but we don't support such
2408 scenario yet. */
2409 within_scope = check_scope (var);
2410 }
2411 else
2412 {
2413 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2414 if (in_thread_list (ptid))
2415 {
2416 switch_to_thread (ptid);
2417 within_scope = check_scope (var);
2418 }
2419 }
2420
2421 if (within_scope)
2422 {
2423 volatile struct gdb_exception except;
2424
2425 /* We need to catch errors here, because if evaluate
2426 expression fails we want to just return NULL. */
2427 TRY_CATCH (except, RETURN_MASK_ERROR)
2428 {
2429 new_val = evaluate_expression (var->root->exp);
2430 }
2431 }
2432
2433 do_cleanups (back_to);
2434
2435 return new_val;
2436}
2437
a5defcdc
VP
2438/* What is the ``struct value *'' of the root variable VAR?
2439 For floating variable object, evaluation can get us a value
2440 of different type from what is stored in varobj already. In
2441 that case:
2442 - *type_changed will be set to 1
2443 - old varobj will be freed, and new one will be
2444 created, with the same name.
2445 - *var_handle will be set to the new varobj
2446 Otherwise, *type_changed will be set to 0. */
30b28db1 2447static struct value *
fba45db2 2448value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2449{
73a93a32
JI
2450 struct varobj *var;
2451
2452 if (var_handle == NULL)
2453 return NULL;
2454
2455 var = *var_handle;
2456
2457 /* This should really be an exception, since this should
581e13c1 2458 only get called with a root variable. */
73a93a32 2459
b2c2bd75 2460 if (!is_root_p (var))
73a93a32
JI
2461 return NULL;
2462
a5defcdc 2463 if (var->root->floating)
73a93a32
JI
2464 {
2465 struct varobj *tmp_var;
2466 char *old_type, *new_type;
6225abfa 2467
73a93a32
JI
2468 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2469 USE_SELECTED_FRAME);
2470 if (tmp_var == NULL)
2471 {
2472 return NULL;
2473 }
6225abfa 2474 old_type = varobj_get_type (var);
73a93a32 2475 new_type = varobj_get_type (tmp_var);
72330bd6 2476 if (strcmp (old_type, new_type) == 0)
73a93a32 2477 {
fcacd99f
VP
2478 /* The expression presently stored inside var->root->exp
2479 remembers the locations of local variables relatively to
2480 the frame where the expression was created (in DWARF location
2481 button, for example). Naturally, those locations are not
2482 correct in other frames, so update the expression. */
2483
2484 struct expression *tmp_exp = var->root->exp;
a109c7c1 2485
fcacd99f
VP
2486 var->root->exp = tmp_var->root->exp;
2487 tmp_var->root->exp = tmp_exp;
2488
73a93a32
JI
2489 varobj_delete (tmp_var, NULL, 0);
2490 *type_changed = 0;
2491 }
2492 else
2493 {
1b36a34b 2494 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2495 tmp_var->from = var->from;
2496 tmp_var->to = var->to;
a5defcdc
VP
2497 varobj_delete (var, NULL, 0);
2498
73a93a32
JI
2499 install_variable (tmp_var);
2500 *var_handle = tmp_var;
705da579 2501 var = *var_handle;
73a93a32
JI
2502 *type_changed = 1;
2503 }
74dddad3
MS
2504 xfree (old_type);
2505 xfree (new_type);
73a93a32
JI
2506 }
2507 else
2508 {
2509 *type_changed = 0;
2510 }
2511
7a290c40
JB
2512 {
2513 struct value *value;
2514
2213e2be 2515 value = value_of_root_1 (var_handle);
7a290c40
JB
2516 if (var->value == NULL || value == NULL)
2517 {
2518 /* For root varobj-s, a NULL value indicates a scoping issue.
2519 So, nothing to do in terms of checking for mutations. */
2520 }
2521 else if (varobj_value_has_mutated (var, value, value_type (value)))
2522 {
2523 /* The type has mutated, so the children are no longer valid.
2524 Just delete them, and tell our caller that the type has
2525 changed. */
2526 varobj_delete (var, NULL, 1 /* only_children */);
2527 var->num_children = -1;
2528 var->to = -1;
2529 var->from = -1;
2530 *type_changed = 1;
2531 }
2532 return value;
2533 }
8b93c638
JM
2534}
2535
581e13c1 2536/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2537static struct value *
fba45db2 2538value_of_child (struct varobj *parent, int index)
8b93c638 2539{
30b28db1 2540 struct value *value;
8b93c638 2541
ca20d462 2542 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2543
8b93c638
JM
2544 return value;
2545}
2546
581e13c1 2547/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2548static char *
de051565 2549my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2550{
8756216b 2551 if (var->root->is_valid)
0cc7d26f 2552 {
bb5ce47a 2553 if (var->dynamic->pretty_printer != NULL)
99ad9427 2554 return varobj_value_get_print_value (var->value, var->format, var);
ca20d462 2555 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2556 }
8756216b
DP
2557 else
2558 return NULL;
8b93c638
JM
2559}
2560
99ad9427
YQ
2561void
2562varobj_formatted_print_options (struct value_print_options *opts,
2563 enum varobj_display_formats format)
2564{
2565 get_formatted_print_options (opts, format_code[(int) format]);
2566 opts->deref_ref = 0;
2567 opts->raw = 1;
2568}
2569
2570char *
2571varobj_value_get_print_value (struct value *value,
2572 enum varobj_display_formats format,
2573 struct varobj *var)
85265413 2574{
57e66780 2575 struct ui_file *stb;
621c8364 2576 struct cleanup *old_chain;
ac91cd70 2577 char *thevalue = NULL;
79a45b7d 2578 struct value_print_options opts;
be759fcf
PM
2579 struct type *type = NULL;
2580 long len = 0;
2581 char *encoding = NULL;
2582 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2583 /* Initialize it just to avoid a GCC false warning. */
2584 CORE_ADDR str_addr = 0;
09ca9e2e 2585 int string_print = 0;
57e66780
DJ
2586
2587 if (value == NULL)
2588 return NULL;
2589
621c8364
TT
2590 stb = mem_fileopen ();
2591 old_chain = make_cleanup_ui_file_delete (stb);
2592
be759fcf 2593 gdbarch = get_type_arch (value_type (value));
b6313243 2594#if HAVE_PYTHON
0646da15
TT
2595 if (gdb_python_initialized)
2596 {
bb5ce47a 2597 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2598
0646da15 2599 varobj_ensure_python_env (var);
09ca9e2e 2600
0646da15
TT
2601 if (value_formatter)
2602 {
2603 /* First check to see if we have any children at all. If so,
2604 we simply return {...}. */
2605 if (dynamic_varobj_has_child_method (var))
2606 {
2607 do_cleanups (old_chain);
2608 return xstrdup ("{...}");
2609 }
b6313243 2610
0646da15
TT
2611 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2612 {
2613 struct value *replacement;
2614 PyObject *output = NULL;
2615
2616 output = apply_varobj_pretty_printer (value_formatter,
2617 &replacement,
2618 stb);
2619
2620 /* If we have string like output ... */
2621 if (output)
2622 {
2623 make_cleanup_py_decref (output);
2624
2625 /* If this is a lazy string, extract it. For lazy
2626 strings we always print as a string, so set
2627 string_print. */
2628 if (gdbpy_is_lazy_string (output))
2629 {
2630 gdbpy_extract_lazy_string (output, &str_addr, &type,
2631 &len, &encoding);
2632 make_cleanup (free_current_contents, &encoding);
2633 string_print = 1;
2634 }
2635 else
2636 {
2637 /* If it is a regular (non-lazy) string, extract
2638 it and copy the contents into THEVALUE. If the
2639 hint says to print it as a string, set
2640 string_print. Otherwise just return the extracted
2641 string as a value. */
2642
2643 char *s = python_string_to_target_string (output);
2644
2645 if (s)
2646 {
2647 char *hint;
2648
2649 hint = gdbpy_get_display_hint (value_formatter);
2650 if (hint)
2651 {
2652 if (!strcmp (hint, "string"))
2653 string_print = 1;
2654 xfree (hint);
2655 }
2656
2657 len = strlen (s);
2658 thevalue = xmemdup (s, len + 1, len + 1);
2659 type = builtin_type (gdbarch)->builtin_char;
2660 xfree (s);
2661
2662 if (!string_print)
2663 {
2664 do_cleanups (old_chain);
2665 return thevalue;
2666 }
2667
2668 make_cleanup (xfree, thevalue);
2669 }
2670 else
2671 gdbpy_print_stack ();
2672 }
2673 }
2674 /* If the printer returned a replacement value, set VALUE
2675 to REPLACEMENT. If there is not a replacement value,
2676 just use the value passed to this function. */
2677 if (replacement)
2678 value = replacement;
2679 }
2680 }
2681 }
b6313243
TT
2682#endif
2683
99ad9427 2684 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2685
2686 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2687 if (thevalue)
ac91cd70 2688 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
09ca9e2e 2689 else if (string_print)
00bd41d6
PM
2690 /* Otherwise, if string_print is set, and it is not a regular
2691 string, it is a lazy string. */
09ca9e2e 2692 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2693 else
00bd41d6 2694 /* All other cases. */
b6313243 2695 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2696
759ef836 2697 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2698
85265413
NR
2699 do_cleanups (old_chain);
2700 return thevalue;
2701}
2702
340a7723
NR
2703int
2704varobj_editable_p (struct varobj *var)
2705{
2706 struct type *type;
340a7723
NR
2707
2708 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2709 return 0;
2710
99ad9427 2711 type = varobj_get_value_type (var);
340a7723
NR
2712
2713 switch (TYPE_CODE (type))
2714 {
2715 case TYPE_CODE_STRUCT:
2716 case TYPE_CODE_UNION:
2717 case TYPE_CODE_ARRAY:
2718 case TYPE_CODE_FUNC:
2719 case TYPE_CODE_METHOD:
2720 return 0;
2721 break;
2722
2723 default:
2724 return 1;
2725 break;
2726 }
2727}
2728
d32cafc7 2729/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2730
99ad9427 2731int
b2c2bd75 2732varobj_value_is_changeable_p (struct varobj *var)
8b93c638 2733{
ca20d462 2734 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2735}
2736
5a413362
VP
2737/* Return 1 if that varobj is floating, that is is always evaluated in the
2738 selected frame, and not bound to thread/frame. Such variable objects
2739 are created using '@' as frame specifier to -var-create. */
2740int
2741varobj_floating_p (struct varobj *var)
2742{
2743 return var->root->floating;
2744}
2745
d32cafc7
JB
2746/* Implement the "value_is_changeable_p" varobj callback for most
2747 languages. */
2748
99ad9427
YQ
2749int
2750varobj_default_value_is_changeable_p (struct varobj *var)
d32cafc7
JB
2751{
2752 int r;
2753 struct type *type;
2754
2755 if (CPLUS_FAKE_CHILD (var))
2756 return 0;
2757
99ad9427 2758 type = varobj_get_value_type (var);
d32cafc7
JB
2759
2760 switch (TYPE_CODE (type))
2761 {
2762 case TYPE_CODE_STRUCT:
2763 case TYPE_CODE_UNION:
2764 case TYPE_CODE_ARRAY:
2765 r = 0;
2766 break;
2767
2768 default:
2769 r = 1;
2770 }
2771
2772 return r;
2773}
2774
54333c3b
JK
2775/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2776 with an arbitrary caller supplied DATA pointer. */
2777
2778void
2779all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2780{
2781 struct varobj_root *var_root, *var_root_next;
2782
2783 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2784
2785 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2786 {
2787 var_root_next = var_root->next;
2788
2789 (*func) (var_root->rootvar, data);
2790 }
2791}
8b93c638
JM
2792\f
2793extern void _initialize_varobj (void);
2794void
2795_initialize_varobj (void)
2796{
2797 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2798
2799 varobj_table = xmalloc (sizeof_table);
2800 memset (varobj_table, 0, sizeof_table);
2801
ccce17b0
YQ
2802 add_setshow_zuinteger_cmd ("debugvarobj", class_maintenance,
2803 &varobjdebug,
2804 _("Set varobj debugging."),
2805 _("Show varobj debugging."),
2806 _("When non-zero, varobj debugging is enabled."),
2807 NULL, show_varobjdebug,
2808 &setlist, &showlist);
8b93c638 2809}
8756216b 2810
54333c3b 2811/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2812 defined on globals. It is a helper for varobj_invalidate.
2813
2814 This function is called after changing the symbol file, in this case the
2815 pointers to "struct type" stored by the varobj are no longer valid. All
2816 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2817
54333c3b
JK
2818static void
2819varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2820{
4e969b4f
AB
2821 /* global and floating var must be re-evaluated. */
2822 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2823 {
54333c3b 2824 struct varobj *tmp_var;
2dbd25e5 2825
54333c3b
JK
2826 /* Try to create a varobj with same expression. If we succeed
2827 replace the old varobj, otherwise invalidate it. */
2828 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2829 USE_CURRENT_FRAME);
2830 if (tmp_var != NULL)
2831 {
2832 tmp_var->obj_name = xstrdup (var->obj_name);
2833 varobj_delete (var, NULL, 0);
2834 install_variable (tmp_var);
2dbd25e5 2835 }
54333c3b
JK
2836 else
2837 var->root->is_valid = 0;
2dbd25e5 2838 }
54333c3b
JK
2839 else /* locals must be invalidated. */
2840 var->root->is_valid = 0;
2841}
2842
2843/* Invalidate the varobjs that are tied to locals and re-create the ones that
2844 are defined on globals.
2845 Invalidated varobjs will be always printed in_scope="invalid". */
2846
2847void
2848varobj_invalidate (void)
2849{
2850 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2851}