]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/varobj.c
Make varobj::children an std::vector
[thirdparty/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
61baf725 3 Copyright (C) 1999-2017 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
28335dcc 29#include "vec.h"
6208b47d
VP
30#include "gdbthread.h"
31#include "inferior.h"
827f100c 32#include "varobj-iter.h"
8b93c638 33
b6313243
TT
34#if HAVE_PYTHON
35#include "python/python.h"
36#include "python/python-internal.h"
bde7b3e3 37#include "python/py-ref.h"
50389644
PA
38#else
39typedef int PyObject;
b6313243
TT
40#endif
41
8b93c638
JM
42/* Non-zero if we want to see trace of varobj level stuff. */
43
ccce17b0 44unsigned int varobjdebug = 0;
920d2a44
AC
45static void
46show_varobjdebug (struct ui_file *file, int from_tty,
47 struct cmd_list_element *c, const char *value)
48{
49 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
50}
8b93c638 51
581e13c1 52/* String representations of gdb's format codes. */
a121b7c1 53const char *varobj_format_string[] =
1c35a88f 54 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
8b93c638 55
0cc7d26f
TT
56/* True if we want to allow Python-based pretty-printing. */
57static int pretty_printing = 0;
58
59void
60varobj_enable_pretty_printing (void)
61{
62 pretty_printing = 1;
63}
64
8b93c638
JM
65/* Data structures */
66
67/* Every root variable has one of these structures saved in its
4d01a485 68 varobj. */
8b93c638 69struct varobj_root
72330bd6 70{
4d01a485
PA
71 /* The expression for this parent. */
72 expression_up exp;
8b93c638 73
581e13c1 74 /* Block for which this expression is valid. */
9e5b9d2b 75 const struct block *valid_block = NULL;
8b93c638 76
44a67aa7
VP
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
9e5b9d2b 79 struct frame_id frame = null_frame_id;
8b93c638 80
5d5658a1 81 /* The global thread ID that this varobj_root belongs to. This field
581e13c1 82 is only valid if valid_block is not NULL.
c5b48eac
VP
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
9e5b9d2b 86 int thread_id = 0;
c5b48eac 87
a5defcdc
VP
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
581e13c1 90 always updated in the specific scope/thread/frame. */
9e5b9d2b 91 int floating = 0;
73a93a32 92
8756216b
DP
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
9e5b9d2b 95 int is_valid = 1;
8756216b 96
99ad9427
YQ
97 /* Language-related operations for this variable and its
98 children. */
9e5b9d2b 99 const struct lang_varobj_ops *lang_ops = NULL;
8b93c638 100
581e13c1 101 /* The varobj for this root node. */
9e5b9d2b 102 struct varobj *rootvar = NULL;
8b93c638 103
72330bd6 104 /* Next root variable */
9e5b9d2b 105 struct varobj_root *next = NULL;
72330bd6 106};
8b93c638 107
bb5ce47a 108/* Dynamic part of varobj. */
8b93c638 109
bb5ce47a
YQ
110struct varobj_dynamic
111{
b6313243
TT
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
9e5b9d2b 116 int children_requested = 0;
b6313243 117
0cc7d26f
TT
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
9e5b9d2b 121 PyObject *constructor = NULL;
0cc7d26f 122
b6313243
TT
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
9e5b9d2b 125 PyObject *pretty_printer = NULL;
0cc7d26f
TT
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
9e5b9d2b 129 struct varobj_iter *child_iter = NULL;
0cc7d26f
TT
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
9e5b9d2b 136 varobj_item *saved_item = NULL;
72330bd6 137};
8b93c638 138
8b93c638
JM
139/* A list of varobjs */
140
141struct vlist
72330bd6
AC
142{
143 struct varobj *var;
144 struct vlist *next;
145};
8b93c638
JM
146
147/* Private function prototypes */
148
581e13c1 149/* Helper functions for the above subcommands. */
8b93c638 150
30914ca8 151static int delete_variable (struct varobj *, int);
8b93c638 152
30914ca8 153static void delete_variable_1 (int *, struct varobj *, int, int);
8b93c638 154
a14ed312 155static int install_variable (struct varobj *);
8b93c638 156
a14ed312 157static void uninstall_variable (struct varobj *);
8b93c638 158
2f408ecb 159static struct varobj *create_child (struct varobj *, int, std::string &);
8b93c638 160
b6313243 161static struct varobj *
5a2e0d6e
YQ
162create_child_with_value (struct varobj *parent, int index,
163 struct varobj_item *item);
b6313243 164
8b93c638
JM
165/* Utility routines */
166
a14ed312 167static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 168
8264ba82
AG
169static int update_type_if_necessary (struct varobj *var,
170 struct value *new_value);
171
acd65feb
VP
172static int install_new_value (struct varobj *var, struct value *value,
173 int initial);
174
581e13c1 175/* Language-specific routines. */
8b93c638 176
b09e2c59 177static int number_of_children (const struct varobj *);
8b93c638 178
2f408ecb 179static std::string name_of_variable (const struct varobj *);
8b93c638 180
2f408ecb 181static std::string name_of_child (struct varobj *, int);
8b93c638 182
30b28db1 183static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 184
c1cc6152 185static struct value *value_of_child (const struct varobj *parent, int index);
8b93c638 186
2f408ecb
PA
187static std::string my_value_of_variable (struct varobj *var,
188 enum varobj_display_formats format);
8b93c638 189
b09e2c59 190static int is_root_p (const struct varobj *var);
8b93c638 191
9a1edae6 192static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 193 struct varobj_item *item);
b6313243 194
8b93c638
JM
195/* Private data */
196
581e13c1 197/* Mappings of varobj_display_formats enums to gdb's format codes. */
1c35a88f 198static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
8b93c638 199
581e13c1 200/* Header of the list of root variable objects. */
8b93c638 201static struct varobj_root *rootlist;
8b93c638 202
581e13c1 203/* Prime number indicating the number of buckets in the hash table. */
5fa13070 204/* A prime large enough to avoid too many collisions. */
8b93c638
JM
205#define VAROBJ_TABLE_SIZE 227
206
581e13c1 207/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
208static struct vlist **varobj_table;
209
8b93c638
JM
210\f
211
212/* API Implementation */
b2c2bd75 213static int
b09e2c59 214is_root_p (const struct varobj *var)
b2c2bd75
VP
215{
216 return (var->root->rootvar == var);
217}
8b93c638 218
d452c4bc 219#ifdef HAVE_PYTHON
6cd67bea
TT
220
221/* See python-internal.h. */
222gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
223: gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
224{
225}
226
d452c4bc
UW
227#endif
228
7d8547c9
AC
229/* Return the full FRAME which corresponds to the given CORE_ADDR
230 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
231
232static struct frame_info *
233find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
234{
235 struct frame_info *frame = NULL;
236
237 if (frame_addr == (CORE_ADDR) 0)
238 return NULL;
239
9d49bdc2
PA
240 for (frame = get_current_frame ();
241 frame != NULL;
242 frame = get_prev_frame (frame))
7d8547c9 243 {
1fac167a
UW
244 /* The CORE_ADDR we get as argument was parsed from a string GDB
245 output as $fp. This output got truncated to gdbarch_addr_bit.
246 Truncate the frame base address in the same manner before
247 comparing it against our argument. */
248 CORE_ADDR frame_base = get_frame_base_address (frame);
249 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 250
1fac167a
UW
251 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
252 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
253
254 if (frame_base == frame_addr)
7d8547c9
AC
255 return frame;
256 }
9d49bdc2
PA
257
258 return NULL;
7d8547c9
AC
259}
260
5fa13070
SM
261/* Creates a varobj (not its children). */
262
8b93c638 263struct varobj *
2f408ecb
PA
264varobj_create (const char *objname,
265 const char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638 266{
581e13c1 267 /* Fill out a varobj structure for the (root) variable being constructed. */
9e5b9d2b 268 std::unique_ptr<varobj> var (new varobj (new varobj_root));
8b93c638
JM
269
270 if (expression != NULL)
271 {
e4195b40 272 struct frame_info *fi;
35633fef 273 struct frame_id old_id = null_frame_id;
3977b71f 274 const struct block *block;
bbc13ae3 275 const char *p;
e55dccf0 276 struct value *value = NULL;
1bb9788d 277 CORE_ADDR pc;
8b93c638 278
9d49bdc2
PA
279 /* Parse and evaluate the expression, filling in as much of the
280 variable's data as possible. */
281
282 if (has_stack_frames ())
283 {
581e13c1 284 /* Allow creator to specify context of variable. */
9d49bdc2
PA
285 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
286 fi = get_selected_frame (NULL);
287 else
288 /* FIXME: cagney/2002-11-23: This code should be doing a
289 lookup using the frame ID and not just the frame's
290 ``address''. This, of course, means an interface
291 change. However, with out that interface change ISAs,
292 such as the ia64 with its two stacks, won't work.
293 Similar goes for the case where there is a frameless
294 function. */
295 fi = find_frame_addr_in_frame_chain (frame);
296 }
8b93c638 297 else
9d49bdc2 298 fi = NULL;
8b93c638 299
581e13c1 300 /* frame = -2 means always use selected frame. */
73a93a32 301 if (type == USE_SELECTED_FRAME)
a5defcdc 302 var->root->floating = 1;
73a93a32 303
1bb9788d 304 pc = 0;
8b93c638
JM
305 block = NULL;
306 if (fi != NULL)
1bb9788d
TT
307 {
308 block = get_frame_block (fi, 0);
309 pc = get_frame_pc (fi);
310 }
8b93c638
JM
311
312 p = expression;
313 innermost_block = NULL;
73a93a32 314 /* Wrap the call to parse expression, so we can
581e13c1 315 return a sensible error. */
492d29ea 316 TRY
8e7b59a5 317 {
1bb9788d 318 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
319 }
320
492d29ea 321 CATCH (except, RETURN_MASK_ERROR)
73a93a32
JI
322 {
323 return NULL;
324 }
492d29ea 325 END_CATCH
8b93c638 326
581e13c1 327 /* Don't allow variables to be created for types. */
608b4967
TT
328 if (var->root->exp->elts[0].opcode == OP_TYPE
329 || var->root->exp->elts[0].opcode == OP_TYPEOF
330 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638 331 {
bc8332bb
AC
332 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
333 " as an expression.\n");
8b93c638
JM
334 return NULL;
335 }
336
9e5b9d2b 337 var->format = variable_default_display (var.get ());
8b93c638 338 var->root->valid_block = innermost_block;
2f408ecb 339 var->name = expression;
02142340 340 /* For a root var, the name and the expr are the same. */
2f408ecb 341 var->path_expr = expression;
8b93c638
JM
342
343 /* When the frame is different from the current frame,
344 we must select the appropriate frame before parsing
345 the expression, otherwise the value will not be current.
581e13c1 346 Since select_frame is so benign, just call it for all cases. */
4e22772d 347 if (innermost_block)
8b93c638 348 {
4e22772d
JK
349 /* User could specify explicit FRAME-ADDR which was not found but
350 EXPRESSION is frame specific and we would not be able to evaluate
351 it correctly next time. With VALID_BLOCK set we must also set
352 FRAME and THREAD_ID. */
353 if (fi == NULL)
354 error (_("Failed to find the specified frame"));
355
7a424e99 356 var->root->frame = get_frame_id (fi);
5d5658a1 357 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
35633fef 358 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 359 select_frame (fi);
8b93c638
JM
360 }
361
340a7723 362 /* We definitely need to catch errors here.
8b93c638 363 If evaluate_expression succeeds we got the value we wanted.
581e13c1 364 But if it fails, we still go on with a call to evaluate_type(). */
492d29ea 365 TRY
8e7b59a5 366 {
4d01a485 367 value = evaluate_expression (var->root->exp.get ());
8e7b59a5 368 }
492d29ea 369 CATCH (except, RETURN_MASK_ERROR)
e55dccf0
VP
370 {
371 /* Error getting the value. Try to at least get the
372 right type. */
4d01a485 373 struct value *type_only_value = evaluate_type (var->root->exp.get ());
a109c7c1 374
e55dccf0
VP
375 var->type = value_type (type_only_value);
376 }
492d29ea 377 END_CATCH
8264ba82 378
492d29ea
PA
379 if (value != NULL)
380 {
381 int real_type_found = 0;
382
383 var->type = value_actual_type (value, 0, &real_type_found);
384 if (real_type_found)
385 value = value_cast (var->type, value);
386 }
acd65feb 387
8b93c638 388 /* Set language info */
ca20d462 389 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 390
9e5b9d2b 391 install_new_value (var.get (), value, 1 /* Initial assignment */);
d32cafc7 392
581e13c1 393 /* Set ourselves as our root. */
9e5b9d2b 394 var->root->rootvar = var.get ();
8b93c638 395
581e13c1 396 /* Reset the selected frame. */
35633fef
JK
397 if (frame_id_p (old_id))
398 select_frame (frame_find_by_id (old_id));
8b93c638
JM
399 }
400
73a93a32 401 /* If the variable object name is null, that means this
581e13c1 402 is a temporary variable, so don't install it. */
73a93a32
JI
403
404 if ((var != NULL) && (objname != NULL))
8b93c638 405 {
2f408ecb 406 var->obj_name = objname;
8b93c638
JM
407
408 /* If a varobj name is duplicated, the install will fail so
581e13c1 409 we must cleanup. */
9e5b9d2b
SM
410 if (!install_variable (var.get ()))
411 return NULL;
8b93c638
JM
412 }
413
9e5b9d2b 414 return var.release ();
8b93c638
JM
415}
416
581e13c1 417/* Generates an unique name that can be used for a varobj. */
8b93c638 418
2d6960b4 419std::string
8b93c638
JM
420varobj_gen_name (void)
421{
422 static int id = 0;
8b93c638 423
581e13c1 424 /* Generate a name for this object. */
8b93c638 425 id++;
2d6960b4 426 return string_printf ("var%d", id);
8b93c638
JM
427}
428
61d8f275
JK
429/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
430 error if OBJNAME cannot be found. */
8b93c638
JM
431
432struct varobj *
2f408ecb 433varobj_get_handle (const char *objname)
8b93c638
JM
434{
435 struct vlist *cv;
436 const char *chp;
437 unsigned int index = 0;
438 unsigned int i = 1;
439
440 for (chp = objname; *chp; chp++)
441 {
442 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
443 }
444
445 cv = *(varobj_table + index);
2f408ecb 446 while (cv != NULL && cv->var->obj_name != objname)
8b93c638
JM
447 cv = cv->next;
448
449 if (cv == NULL)
8a3fe4f8 450 error (_("Variable object not found"));
8b93c638
JM
451
452 return cv->var;
453}
454
581e13c1 455/* Given the handle, return the name of the object. */
8b93c638 456
2f408ecb 457const char *
b09e2c59 458varobj_get_objname (const struct varobj *var)
8b93c638 459{
2f408ecb 460 return var->obj_name.c_str ();
8b93c638
JM
461}
462
2f408ecb
PA
463/* Given the handle, return the expression represented by the
464 object. */
8b93c638 465
2f408ecb 466std::string
b09e2c59 467varobj_get_expression (const struct varobj *var)
8b93c638
JM
468{
469 return name_of_variable (var);
470}
471
30914ca8 472/* See varobj.h. */
8b93c638
JM
473
474int
30914ca8 475varobj_delete (struct varobj *var, int only_children)
8b93c638 476{
30914ca8 477 return delete_variable (var, only_children);
8b93c638
JM
478}
479
d8b65138
JK
480#if HAVE_PYTHON
481
b6313243
TT
482/* Convenience function for varobj_set_visualizer. Instantiate a
483 pretty-printer for a given value. */
484static PyObject *
485instantiate_pretty_printer (PyObject *constructor, struct value *value)
486{
b6313243
TT
487 PyObject *val_obj = NULL;
488 PyObject *printer;
b6313243 489
b6313243 490 val_obj = value_to_value_object (value);
b6313243
TT
491 if (! val_obj)
492 return NULL;
493
494 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
495 Py_DECREF (val_obj);
496 return printer;
b6313243
TT
497}
498
d8b65138
JK
499#endif
500
581e13c1 501/* Set/Get variable object display format. */
8b93c638
JM
502
503enum varobj_display_formats
504varobj_set_display_format (struct varobj *var,
505 enum varobj_display_formats format)
506{
507 switch (format)
508 {
509 case FORMAT_NATURAL:
510 case FORMAT_BINARY:
511 case FORMAT_DECIMAL:
512 case FORMAT_HEXADECIMAL:
513 case FORMAT_OCTAL:
1c35a88f 514 case FORMAT_ZHEXADECIMAL:
8b93c638
JM
515 var->format = format;
516 break;
517
518 default:
519 var->format = variable_default_display (var);
520 }
521
ae7d22a6
VP
522 if (varobj_value_is_changeable_p (var)
523 && var->value && !value_lazy (var->value))
524 {
99ad9427
YQ
525 var->print_value = varobj_value_get_print_value (var->value,
526 var->format, var);
ae7d22a6
VP
527 }
528
8b93c638
JM
529 return var->format;
530}
531
532enum varobj_display_formats
b09e2c59 533varobj_get_display_format (const struct varobj *var)
8b93c638
JM
534{
535 return var->format;
536}
537
9b972014 538gdb::unique_xmalloc_ptr<char>
b09e2c59 539varobj_get_display_hint (const struct varobj *var)
b6313243 540{
9b972014 541 gdb::unique_xmalloc_ptr<char> result;
b6313243
TT
542
543#if HAVE_PYTHON
0646da15
TT
544 if (!gdb_python_initialized)
545 return NULL;
546
bde7b3e3 547 gdbpy_enter_varobj enter_py (var);
d452c4bc 548
bb5ce47a
YQ
549 if (var->dynamic->pretty_printer != NULL)
550 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
b6313243
TT
551#endif
552
553 return result;
554}
555
0cc7d26f
TT
556/* Return true if the varobj has items after TO, false otherwise. */
557
558int
b09e2c59 559varobj_has_more (const struct varobj *var, int to)
0cc7d26f 560{
ddf0ea08 561 if (var->children.size () > to)
0cc7d26f 562 return 1;
ddf0ea08
SM
563
564 return ((to == -1 || var->children.size () == to)
bb5ce47a 565 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
566}
567
c5b48eac
VP
568/* If the variable object is bound to a specific thread, that
569 is its evaluation can always be done in context of a frame
570 inside that thread, returns GDB id of the thread -- which
581e13c1 571 is always positive. Otherwise, returns -1. */
c5b48eac 572int
b09e2c59 573varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
574{
575 if (var->root->valid_block && var->root->thread_id > 0)
576 return var->root->thread_id;
577 else
578 return -1;
579}
580
25d5ea92
VP
581void
582varobj_set_frozen (struct varobj *var, int frozen)
583{
584 /* When a variable is unfrozen, we don't fetch its value.
585 The 'not_fetched' flag remains set, so next -var-update
586 won't complain.
587
588 We don't fetch the value, because for structures the client
589 should do -var-update anyway. It would be bad to have different
590 client-size logic for structure and other types. */
591 var->frozen = frozen;
592}
593
594int
b09e2c59 595varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
596{
597 return var->frozen;
598}
599
0cc7d26f
TT
600/* A helper function that restricts a range to what is actually
601 available in a VEC. This follows the usual rules for the meaning
602 of FROM and TO -- if either is negative, the entire range is
603 used. */
604
99ad9427 605void
ddf0ea08
SM
606varobj_restrict_range (const std::vector<varobj *> &children,
607 int *from, int *to)
0cc7d26f 608{
ddf0ea08
SM
609 int len = children.size ();
610
0cc7d26f
TT
611 if (*from < 0 || *to < 0)
612 {
613 *from = 0;
ddf0ea08 614 *to = len;
0cc7d26f
TT
615 }
616 else
617 {
ddf0ea08
SM
618 if (*from > len)
619 *from = len;
620 if (*to > len)
621 *to = len;
0cc7d26f
TT
622 if (*from > *to)
623 *from = *to;
624 }
625}
626
627/* A helper for update_dynamic_varobj_children that installs a new
628 child when needed. */
629
630static void
631install_dynamic_child (struct varobj *var,
632 VEC (varobj_p) **changed,
8264ba82 633 VEC (varobj_p) **type_changed,
fe978cb0 634 VEC (varobj_p) **newobj,
0cc7d26f
TT
635 VEC (varobj_p) **unchanged,
636 int *cchanged,
637 int index,
5a2e0d6e 638 struct varobj_item *item)
0cc7d26f 639{
ddf0ea08 640 if (var->children.size () < index + 1)
0cc7d26f
TT
641 {
642 /* There's no child yet. */
5a2e0d6e 643 struct varobj *child = varobj_add_child (var, item);
a109c7c1 644
fe978cb0 645 if (newobj)
0cc7d26f 646 {
fe978cb0 647 VEC_safe_push (varobj_p, *newobj, child);
0cc7d26f
TT
648 *cchanged = 1;
649 }
650 }
bf8793bb 651 else
0cc7d26f 652 {
ddf0ea08 653 varobj *existing = var->children[index];
5a2e0d6e 654 int type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 655
8264ba82
AG
656 if (type_updated)
657 {
658 if (type_changed)
659 VEC_safe_push (varobj_p, *type_changed, existing);
660 }
5a2e0d6e 661 if (install_new_value (existing, item->value, 0))
0cc7d26f 662 {
8264ba82 663 if (!type_updated && changed)
0cc7d26f
TT
664 VEC_safe_push (varobj_p, *changed, existing);
665 }
8264ba82 666 else if (!type_updated && unchanged)
0cc7d26f
TT
667 VEC_safe_push (varobj_p, *unchanged, existing);
668 }
669}
670
576ea091
YQ
671#if HAVE_PYTHON
672
0cc7d26f 673static int
b09e2c59 674dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f 675{
bb5ce47a 676 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f 677
0646da15
TT
678 if (!gdb_python_initialized)
679 return 0;
680
bde7b3e3
TT
681 gdbpy_enter_varobj enter_py (var);
682 return PyObject_HasAttr (printer, gdbpy_children_cst);
0cc7d26f 683}
576ea091 684#endif
0cc7d26f 685
e5250216
YQ
686/* A factory for creating dynamic varobj's iterators. Returns an
687 iterator object suitable for iterating over VAR's children. */
688
689static struct varobj_iter *
690varobj_get_iterator (struct varobj *var)
691{
576ea091 692#if HAVE_PYTHON
e5250216
YQ
693 if (var->dynamic->pretty_printer)
694 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 695#endif
e5250216
YQ
696
697 gdb_assert_not_reached (_("\
698requested an iterator from a non-dynamic varobj"));
699}
700
827f100c
YQ
701/* Release and clear VAR's saved item, if any. */
702
703static void
704varobj_clear_saved_item (struct varobj_dynamic *var)
705{
706 if (var->saved_item != NULL)
707 {
708 value_free (var->saved_item->value);
0a8beaba 709 delete var->saved_item;
827f100c
YQ
710 var->saved_item = NULL;
711 }
712}
0cc7d26f 713
b6313243
TT
714static int
715update_dynamic_varobj_children (struct varobj *var,
716 VEC (varobj_p) **changed,
8264ba82 717 VEC (varobj_p) **type_changed,
fe978cb0 718 VEC (varobj_p) **newobj,
0cc7d26f
TT
719 VEC (varobj_p) **unchanged,
720 int *cchanged,
721 int update_children,
722 int from,
723 int to)
b6313243 724{
b6313243 725 int i;
b6313243 726
b6313243 727 *cchanged = 0;
b6313243 728
bb5ce47a 729 if (update_children || var->dynamic->child_iter == NULL)
b6313243 730 {
e5250216
YQ
731 varobj_iter_delete (var->dynamic->child_iter);
732 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 733
827f100c 734 varobj_clear_saved_item (var->dynamic);
b6313243 735
e5250216 736 i = 0;
b6313243 737
bb5ce47a 738 if (var->dynamic->child_iter == NULL)
827f100c 739 return 0;
b6313243 740 }
0cc7d26f 741 else
ddf0ea08 742 i = var->children.size ();
b6313243 743
0cc7d26f
TT
744 /* We ask for one extra child, so that MI can report whether there
745 are more children. */
746 for (; to < 0 || i < to + 1; ++i)
b6313243 747 {
827f100c 748 varobj_item *item;
b6313243 749
0cc7d26f 750 /* See if there was a leftover from last time. */
827f100c 751 if (var->dynamic->saved_item != NULL)
0cc7d26f 752 {
bb5ce47a
YQ
753 item = var->dynamic->saved_item;
754 var->dynamic->saved_item = NULL;
0cc7d26f
TT
755 }
756 else
a4c8e806 757 {
e5250216 758 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
759 /* Release vitem->value so its lifetime is not bound to the
760 execution of a command. */
761 if (item != NULL && item->value != NULL)
762 release_value_or_incref (item->value);
a4c8e806 763 }
b6313243 764
e5250216
YQ
765 if (item == NULL)
766 {
767 /* Iteration is done. Remove iterator from VAR. */
768 varobj_iter_delete (var->dynamic->child_iter);
769 var->dynamic->child_iter = NULL;
770 break;
771 }
0cc7d26f
TT
772 /* We don't want to push the extra child on any report list. */
773 if (to < 0 || i < to)
b6313243 774 {
0cc7d26f
TT
775 int can_mention = from < 0 || i >= from;
776
0cc7d26f 777 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 778 can_mention ? type_changed : NULL,
fe978cb0 779 can_mention ? newobj : NULL,
0cc7d26f 780 can_mention ? unchanged : NULL,
5e5ac9a5 781 can_mention ? cchanged : NULL, i,
827f100c
YQ
782 item);
783
0a8beaba 784 delete item;
b6313243 785 }
0cc7d26f 786 else
b6313243 787 {
bb5ce47a 788 var->dynamic->saved_item = item;
b6313243 789
0cc7d26f
TT
790 /* We want to truncate the child list just before this
791 element. */
792 break;
793 }
b6313243
TT
794 }
795
ddf0ea08 796 if (i < var->children.size ())
b6313243 797 {
0cc7d26f 798 *cchanged = 1;
ddf0ea08
SM
799 for (int j = i; j < var->children.size (); ++j)
800 varobj_delete (var->children[j], 0);
801
802 var->children.resize (i);
b6313243 803 }
0cc7d26f
TT
804
805 /* If there are fewer children than requested, note that the list of
806 children changed. */
ddf0ea08 807 if (to >= 0 && var->children.size () < to)
0cc7d26f
TT
808 *cchanged = 1;
809
ddf0ea08 810 var->num_children = var->children.size ();
b6313243 811
b6313243 812 return 1;
b6313243 813}
25d5ea92 814
8b93c638
JM
815int
816varobj_get_num_children (struct varobj *var)
817{
818 if (var->num_children == -1)
b6313243 819 {
31f628ae 820 if (varobj_is_dynamic_p (var))
0cc7d26f
TT
821 {
822 int dummy;
823
824 /* If we have a dynamic varobj, don't report -1 children.
825 So, try to fetch some children first. */
8264ba82 826 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
827 0, 0, 0);
828 }
829 else
b6313243
TT
830 var->num_children = number_of_children (var);
831 }
8b93c638 832
0cc7d26f 833 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
834}
835
836/* Creates a list of the immediate children of a variable object;
581e13c1 837 the return code is the number of such children or -1 on error. */
8b93c638 838
ddf0ea08 839const std::vector<varobj *> &
0cc7d26f 840varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 841{
ddf0ea08 842 int children_changed;
b6313243 843
bb5ce47a 844 var->dynamic->children_requested = 1;
b6313243 845
31f628ae 846 if (varobj_is_dynamic_p (var))
0cc7d26f 847 {
b6313243
TT
848 /* This, in theory, can result in the number of children changing without
849 frontend noticing. But well, calling -var-list-children on the same
850 varobj twice is not something a sane frontend would do. */
8264ba82
AG
851 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
852 &children_changed, 0, 0, *to);
99ad9427 853 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
854 return var->children;
855 }
8b93c638 856
8b93c638
JM
857 if (var->num_children == -1)
858 var->num_children = number_of_children (var);
859
74a44383
DJ
860 /* If that failed, give up. */
861 if (var->num_children == -1)
d56d46f5 862 return var->children;
74a44383 863
28335dcc
VP
864 /* If we're called when the list of children is not yet initialized,
865 allocate enough elements in it. */
ddf0ea08
SM
866 while (var->children.size () < var->num_children)
867 var->children.push_back (NULL);
28335dcc 868
ddf0ea08 869 for (int i = 0; i < var->num_children; i++)
8b93c638 870 {
ddf0ea08 871 if (var->children[i] == NULL)
28335dcc
VP
872 {
873 /* Either it's the first call to varobj_list_children for
874 this variable object, and the child was never created,
875 or it was explicitly deleted by the client. */
2f408ecb 876 std::string name = name_of_child (var, i);
ddf0ea08 877 var->children[i] = create_child (var, i, name);
28335dcc 878 }
8b93c638
JM
879 }
880
99ad9427 881 varobj_restrict_range (var->children, from, to);
d56d46f5 882 return var->children;
8b93c638
JM
883}
884
b6313243 885static struct varobj *
5a2e0d6e 886varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 887{
ddf0ea08
SM
888 varobj *v = create_child_with_value (var, var->children.size (), item);
889
890 var->children.push_back (v);
a109c7c1 891
b6313243
TT
892 return v;
893}
894
8b93c638 895/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
896 prints on the console. The caller is responsible for freeing the string.
897 */
8b93c638 898
2f408ecb 899std::string
8b93c638
JM
900varobj_get_type (struct varobj *var)
901{
8ab91b96 902 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
903 NULL, too.)
904 Do not return a type for invalid variables as well. */
905 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
2f408ecb 906 return std::string ();
8b93c638 907
1a4300e9 908 return type_to_string (var->type);
8b93c638
JM
909}
910
1ecb4ee0
DJ
911/* Obtain the type of an object variable. */
912
913struct type *
b09e2c59 914varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
915{
916 return var->type;
917}
918
85254831
KS
919/* Is VAR a path expression parent, i.e., can it be used to construct
920 a valid path expression? */
921
922static int
b09e2c59 923is_path_expr_parent (const struct varobj *var)
85254831 924{
9a9a7608
AB
925 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
926 return var->root->lang_ops->is_path_expr_parent (var);
927}
85254831 928
9a9a7608
AB
929/* Is VAR a path expression parent, i.e., can it be used to construct
930 a valid path expression? By default we assume any VAR can be a path
931 parent. */
85254831 932
9a9a7608 933int
b09e2c59 934varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608
AB
935{
936 return 1;
85254831
KS
937}
938
939/* Return the path expression parent for VAR. */
940
c1cc6152
SM
941const struct varobj *
942varobj_get_path_expr_parent (const struct varobj *var)
85254831 943{
c1cc6152 944 const struct varobj *parent = var;
85254831
KS
945
946 while (!is_root_p (parent) && !is_path_expr_parent (parent))
947 parent = parent->parent;
948
949 return parent;
950}
951
02142340
VP
952/* Return a pointer to the full rooted expression of varobj VAR.
953 If it has not been computed yet, compute it. */
2f408ecb
PA
954
955const char *
c1cc6152 956varobj_get_path_expr (const struct varobj *var)
02142340 957{
2f408ecb 958 if (var->path_expr.empty ())
02142340
VP
959 {
960 /* For root varobjs, we initialize path_expr
961 when creating varobj, so here it should be
962 child varobj. */
c1cc6152 963 struct varobj *mutable_var = (struct varobj *) var;
02142340 964 gdb_assert (!is_root_p (var));
2568868e 965
c1cc6152 966 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 967 }
2568868e 968
2f408ecb 969 return var->path_expr.c_str ();
02142340
VP
970}
971
fa4d0c40 972const struct language_defn *
b09e2c59 973varobj_get_language (const struct varobj *var)
8b93c638 974{
fa4d0c40 975 return var->root->exp->language_defn;
8b93c638
JM
976}
977
978int
b09e2c59 979varobj_get_attributes (const struct varobj *var)
8b93c638
JM
980{
981 int attributes = 0;
982
340a7723 983 if (varobj_editable_p (var))
581e13c1 984 /* FIXME: define masks for attributes. */
8b93c638
JM
985 attributes |= 0x00000001; /* Editable */
986
987 return attributes;
988}
989
cde5ef40
YQ
990/* Return true if VAR is a dynamic varobj. */
991
0cc7d26f 992int
b09e2c59 993varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 994{
bb5ce47a 995 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
996}
997
2f408ecb 998std::string
de051565
MK
999varobj_get_formatted_value (struct varobj *var,
1000 enum varobj_display_formats format)
1001{
1002 return my_value_of_variable (var, format);
1003}
1004
2f408ecb 1005std::string
8b93c638
JM
1006varobj_get_value (struct varobj *var)
1007{
de051565 1008 return my_value_of_variable (var, var->format);
8b93c638
JM
1009}
1010
1011/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1012 value of the given expression. */
1013/* Note: Invokes functions that can call error(). */
8b93c638
JM
1014
1015int
2f408ecb 1016varobj_set_value (struct varobj *var, const char *expression)
8b93c638 1017{
34365054 1018 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1019 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1020 We need to first construct a legal expression for this -- ugh! */
1021 /* Does this cover all the bases? */
34365054 1022 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1023 int saved_input_radix = input_radix;
bbc13ae3 1024 const char *s = expression;
8b93c638 1025
340a7723 1026 gdb_assert (varobj_editable_p (var));
8b93c638 1027
581e13c1 1028 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
4d01a485 1029 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
492d29ea 1030 TRY
8e7b59a5 1031 {
4d01a485 1032 value = evaluate_expression (exp.get ());
8e7b59a5
KS
1033 }
1034
492d29ea 1035 CATCH (except, RETURN_MASK_ERROR)
340a7723 1036 {
581e13c1 1037 /* We cannot proceed without a valid expression. */
340a7723 1038 return 0;
8b93c638 1039 }
492d29ea 1040 END_CATCH
8b93c638 1041
340a7723
NR
1042 /* All types that are editable must also be changeable. */
1043 gdb_assert (varobj_value_is_changeable_p (var));
1044
1045 /* The value of a changeable variable object must not be lazy. */
1046 gdb_assert (!value_lazy (var->value));
1047
1048 /* Need to coerce the input. We want to check if the
1049 value of the variable object will be different
1050 after assignment, and the first thing value_assign
1051 does is coerce the input.
1052 For example, if we are assigning an array to a pointer variable we
b021a221 1053 should compare the pointer with the array's address, not with the
340a7723
NR
1054 array's content. */
1055 value = coerce_array (value);
1056
8e7b59a5
KS
1057 /* The new value may be lazy. value_assign, or
1058 rather value_contents, will take care of this. */
492d29ea 1059 TRY
8e7b59a5
KS
1060 {
1061 val = value_assign (var->value, value);
1062 }
1063
492d29ea
PA
1064 CATCH (except, RETURN_MASK_ERROR)
1065 {
1066 return 0;
1067 }
1068 END_CATCH
8e7b59a5 1069
340a7723
NR
1070 /* If the value has changed, record it, so that next -var-update can
1071 report this change. If a variable had a value of '1', we've set it
1072 to '333' and then set again to '1', when -var-update will report this
1073 variable as changed -- because the first assignment has set the
1074 'updated' flag. There's no need to optimize that, because return value
1075 of -var-update should be considered an approximation. */
581e13c1 1076 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1077 input_radix = saved_input_radix;
1078 return 1;
8b93c638
JM
1079}
1080
0cc7d26f
TT
1081#if HAVE_PYTHON
1082
1083/* A helper function to install a constructor function and visualizer
bb5ce47a 1084 in a varobj_dynamic. */
0cc7d26f
TT
1085
1086static void
bb5ce47a 1087install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1088 PyObject *visualizer)
1089{
1090 Py_XDECREF (var->constructor);
1091 var->constructor = constructor;
1092
1093 Py_XDECREF (var->pretty_printer);
1094 var->pretty_printer = visualizer;
1095
e5250216 1096 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1097 var->child_iter = NULL;
1098}
1099
1100/* Install the default visualizer for VAR. */
1101
1102static void
1103install_default_visualizer (struct varobj *var)
1104{
d65aec65
PM
1105 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1106 if (CPLUS_FAKE_CHILD (var))
1107 return;
1108
0cc7d26f
TT
1109 if (pretty_printing)
1110 {
1111 PyObject *pretty_printer = NULL;
1112
1113 if (var->value)
1114 {
1115 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1116 if (! pretty_printer)
1117 {
1118 gdbpy_print_stack ();
1119 error (_("Cannot instantiate printer for default visualizer"));
1120 }
1121 }
1122
1123 if (pretty_printer == Py_None)
1124 {
1125 Py_DECREF (pretty_printer);
1126 pretty_printer = NULL;
1127 }
1128
bb5ce47a 1129 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1130 }
1131}
1132
1133/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1134 make a new object. */
1135
1136static void
1137construct_visualizer (struct varobj *var, PyObject *constructor)
1138{
1139 PyObject *pretty_printer;
1140
d65aec65
PM
1141 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1142 if (CPLUS_FAKE_CHILD (var))
1143 return;
1144
0cc7d26f
TT
1145 Py_INCREF (constructor);
1146 if (constructor == Py_None)
1147 pretty_printer = NULL;
1148 else
1149 {
1150 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1151 if (! pretty_printer)
1152 {
1153 gdbpy_print_stack ();
1154 Py_DECREF (constructor);
1155 constructor = Py_None;
1156 Py_INCREF (constructor);
1157 }
1158
1159 if (pretty_printer == Py_None)
1160 {
1161 Py_DECREF (pretty_printer);
1162 pretty_printer = NULL;
1163 }
1164 }
1165
bb5ce47a 1166 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1167}
1168
1169#endif /* HAVE_PYTHON */
1170
1171/* A helper function for install_new_value. This creates and installs
1172 a visualizer for VAR, if appropriate. */
1173
1174static void
1175install_new_value_visualizer (struct varobj *var)
1176{
1177#if HAVE_PYTHON
1178 /* If the constructor is None, then we want the raw value. If VAR
1179 does not have a value, just skip this. */
0646da15
TT
1180 if (!gdb_python_initialized)
1181 return;
1182
bb5ce47a 1183 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f 1184 {
bde7b3e3 1185 gdbpy_enter_varobj enter_py (var);
0cc7d26f 1186
bb5ce47a 1187 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1188 install_default_visualizer (var);
1189 else
bb5ce47a 1190 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1191 }
1192#else
1193 /* Do nothing. */
1194#endif
1195}
1196
8264ba82
AG
1197/* When using RTTI to determine variable type it may be changed in runtime when
1198 the variable value is changed. This function checks whether type of varobj
1199 VAR will change when a new value NEW_VALUE is assigned and if it is so
1200 updates the type of VAR. */
1201
1202static int
1203update_type_if_necessary (struct varobj *var, struct value *new_value)
1204{
1205 if (new_value)
1206 {
1207 struct value_print_options opts;
1208
1209 get_user_print_options (&opts);
1210 if (opts.objectprint)
1211 {
2f408ecb
PA
1212 struct type *new_type = value_actual_type (new_value, 0, 0);
1213 std::string new_type_str = type_to_string (new_type);
1214 std::string curr_type_str = varobj_get_type (var);
8264ba82 1215
2f408ecb
PA
1216 /* Did the type name change? */
1217 if (curr_type_str != new_type_str)
8264ba82
AG
1218 {
1219 var->type = new_type;
1220
1221 /* This information may be not valid for a new type. */
30914ca8 1222 varobj_delete (var, 1);
ddf0ea08 1223 var->children.clear ();
8264ba82
AG
1224 var->num_children = -1;
1225 return 1;
1226 }
1227 }
1228 }
1229
1230 return 0;
1231}
1232
acd65feb
VP
1233/* Assign a new value to a variable object. If INITIAL is non-zero,
1234 this is the first assignement after the variable object was just
1235 created, or changed type. In that case, just assign the value
1236 and return 0.
581e13c1
MS
1237 Otherwise, assign the new value, and return 1 if the value is
1238 different from the current one, 0 otherwise. The comparison is
1239 done on textual representation of value. Therefore, some types
1240 need not be compared. E.g. for structures the reported value is
1241 always "{...}", so no comparison is necessary here. If the old
1242 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1243
1244 The VALUE parameter should not be released -- the function will
1245 take care of releasing it when needed. */
acd65feb
VP
1246static int
1247install_new_value (struct varobj *var, struct value *value, int initial)
1248{
1249 int changeable;
1250 int need_to_fetch;
1251 int changed = 0;
25d5ea92 1252 int intentionally_not_fetched = 0;
acd65feb 1253
acd65feb 1254 /* We need to know the varobj's type to decide if the value should
3e43a32a 1255 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1256 don't have a type. */
acd65feb 1257 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1258 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1259
1260 /* If the type has custom visualizer, we consider it to be always
581e13c1 1261 changeable. FIXME: need to make sure this behaviour will not
b6313243 1262 mess up read-sensitive values. */
bb5ce47a 1263 if (var->dynamic->pretty_printer != NULL)
b6313243
TT
1264 changeable = 1;
1265
acd65feb
VP
1266 need_to_fetch = changeable;
1267
b26ed50d
VP
1268 /* We are not interested in the address of references, and given
1269 that in C++ a reference is not rebindable, it cannot
1270 meaningfully change. So, get hold of the real value. */
1271 if (value)
0cc7d26f 1272 value = coerce_ref (value);
b26ed50d 1273
acd65feb
VP
1274 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1275 /* For unions, we need to fetch the value implicitly because
1276 of implementation of union member fetch. When gdb
1277 creates a value for a field and the value of the enclosing
1278 structure is not lazy, it immediately copies the necessary
1279 bytes from the enclosing values. If the enclosing value is
1280 lazy, the call to value_fetch_lazy on the field will read
1281 the data from memory. For unions, that means we'll read the
1282 same memory more than once, which is not desirable. So
1283 fetch now. */
1284 need_to_fetch = 1;
1285
1286 /* The new value might be lazy. If the type is changeable,
1287 that is we'll be comparing values of this type, fetch the
1288 value now. Otherwise, on the next update the old value
1289 will be lazy, which means we've lost that old value. */
1290 if (need_to_fetch && value && value_lazy (value))
1291 {
c1cc6152 1292 const struct varobj *parent = var->parent;
25d5ea92 1293 int frozen = var->frozen;
a109c7c1 1294
25d5ea92
VP
1295 for (; !frozen && parent; parent = parent->parent)
1296 frozen |= parent->frozen;
1297
1298 if (frozen && initial)
1299 {
1300 /* For variables that are frozen, or are children of frozen
1301 variables, we don't do fetch on initial assignment.
1302 For non-initial assignemnt we do the fetch, since it means we're
1303 explicitly asked to compare the new value with the old one. */
1304 intentionally_not_fetched = 1;
1305 }
8e7b59a5 1306 else
acd65feb 1307 {
8e7b59a5 1308
492d29ea 1309 TRY
8e7b59a5
KS
1310 {
1311 value_fetch_lazy (value);
1312 }
1313
492d29ea 1314 CATCH (except, RETURN_MASK_ERROR)
8e7b59a5
KS
1315 {
1316 /* Set the value to NULL, so that for the next -var-update,
1317 we don't try to compare the new value with this value,
1318 that we couldn't even read. */
1319 value = NULL;
1320 }
492d29ea 1321 END_CATCH
acd65feb 1322 }
acd65feb
VP
1323 }
1324
e848a8a5
TT
1325 /* Get a reference now, before possibly passing it to any Python
1326 code that might release it. */
1327 if (value != NULL)
1328 value_incref (value);
b6313243 1329
7a4d50bf
VP
1330 /* Below, we'll be comparing string rendering of old and new
1331 values. Don't get string rendering if the value is
1332 lazy -- if it is, the code above has decided that the value
1333 should not be fetched. */
2f408ecb 1334 std::string print_value;
bb5ce47a
YQ
1335 if (value != NULL && !value_lazy (value)
1336 && var->dynamic->pretty_printer == NULL)
99ad9427 1337 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1338
acd65feb
VP
1339 /* If the type is changeable, compare the old and the new values.
1340 If this is the initial assignment, we don't have any old value
1341 to compare with. */
7a4d50bf 1342 if (!initial && changeable)
acd65feb 1343 {
3e43a32a
MS
1344 /* If the value of the varobj was changed by -var-set-value,
1345 then the value in the varobj and in the target is the same.
1346 However, that value is different from the value that the
581e13c1 1347 varobj had after the previous -var-update. So need to the
3e43a32a 1348 varobj as changed. */
acd65feb 1349 if (var->updated)
57e66780 1350 {
57e66780
DJ
1351 changed = 1;
1352 }
bb5ce47a 1353 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1354 {
1355 /* Try to compare the values. That requires that both
1356 values are non-lazy. */
25d5ea92
VP
1357 if (var->not_fetched && value_lazy (var->value))
1358 {
1359 /* This is a frozen varobj and the value was never read.
1360 Presumably, UI shows some "never read" indicator.
1361 Now that we've fetched the real value, we need to report
1362 this varobj as changed so that UI can show the real
1363 value. */
1364 changed = 1;
1365 }
1366 else if (var->value == NULL && value == NULL)
581e13c1 1367 /* Equal. */
acd65feb
VP
1368 ;
1369 else if (var->value == NULL || value == NULL)
57e66780 1370 {
57e66780
DJ
1371 changed = 1;
1372 }
acd65feb
VP
1373 else
1374 {
1375 gdb_assert (!value_lazy (var->value));
1376 gdb_assert (!value_lazy (value));
85265413 1377
2f408ecb
PA
1378 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1379 if (var->print_value != print_value)
7a4d50bf 1380 changed = 1;
acd65feb
VP
1381 }
1382 }
1383 }
85265413 1384
ee342b23
VP
1385 if (!initial && !changeable)
1386 {
1387 /* For values that are not changeable, we don't compare the values.
1388 However, we want to notice if a value was not NULL and now is NULL,
1389 or vise versa, so that we report when top-level varobjs come in scope
1390 and leave the scope. */
1391 changed = (var->value != NULL) != (value != NULL);
1392 }
1393
acd65feb 1394 /* We must always keep the new value, since children depend on it. */
25d5ea92 1395 if (var->value != NULL && var->value != value)
acd65feb
VP
1396 value_free (var->value);
1397 var->value = value;
25d5ea92
VP
1398 if (value && value_lazy (value) && intentionally_not_fetched)
1399 var->not_fetched = 1;
1400 else
1401 var->not_fetched = 0;
acd65feb 1402 var->updated = 0;
85265413 1403
0cc7d26f
TT
1404 install_new_value_visualizer (var);
1405
1406 /* If we installed a pretty-printer, re-compare the printed version
1407 to see if the variable changed. */
bb5ce47a 1408 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 1409 {
99ad9427
YQ
1410 print_value = varobj_value_get_print_value (var->value, var->format,
1411 var);
2f408ecb
PA
1412 if ((var->print_value.empty () && !print_value.empty ())
1413 || (!var->print_value.empty () && print_value.empty ())
1414 || (!var->print_value.empty () && !print_value.empty ()
1415 && var->print_value != print_value))
1416 changed = 1;
0cc7d26f 1417 }
0cc7d26f
TT
1418 var->print_value = print_value;
1419
b26ed50d 1420 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1421
1422 return changed;
1423}
acd65feb 1424
0cc7d26f
TT
1425/* Return the requested range for a varobj. VAR is the varobj. FROM
1426 and TO are out parameters; *FROM and *TO will be set to the
1427 selected sub-range of VAR. If no range was selected using
1428 -var-set-update-range, then both will be -1. */
1429void
b09e2c59 1430varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1431{
0cc7d26f
TT
1432 *from = var->from;
1433 *to = var->to;
b6313243
TT
1434}
1435
0cc7d26f
TT
1436/* Set the selected sub-range of children of VAR to start at index
1437 FROM and end at index TO. If either FROM or TO is less than zero,
1438 this is interpreted as a request for all children. */
1439void
1440varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1441{
0cc7d26f
TT
1442 var->from = from;
1443 var->to = to;
b6313243
TT
1444}
1445
1446void
1447varobj_set_visualizer (struct varobj *var, const char *visualizer)
1448{
1449#if HAVE_PYTHON
bde7b3e3 1450 PyObject *mainmod;
b6313243 1451
0646da15
TT
1452 if (!gdb_python_initialized)
1453 return;
1454
bde7b3e3 1455 gdbpy_enter_varobj enter_py (var);
b6313243
TT
1456
1457 mainmod = PyImport_AddModule ("__main__");
7780f186 1458 gdbpy_ref<> globals (PyModule_GetDict (mainmod));
bde7b3e3 1459 Py_INCREF (globals.get ());
b6313243 1460
7780f186
TT
1461 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1462 globals.get (), globals.get ()));
b6313243 1463
bde7b3e3 1464 if (constructor == NULL)
b6313243
TT
1465 {
1466 gdbpy_print_stack ();
da1f2771 1467 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1468 }
1469
bde7b3e3 1470 construct_visualizer (var, constructor.get ());
b6313243 1471
0cc7d26f 1472 /* If there are any children now, wipe them. */
30914ca8 1473 varobj_delete (var, 1 /* children only */);
0cc7d26f 1474 var->num_children = -1;
b6313243 1475#else
da1f2771 1476 error (_("Python support required"));
b6313243
TT
1477#endif
1478}
1479
7a290c40
JB
1480/* If NEW_VALUE is the new value of the given varobj (var), return
1481 non-zero if var has mutated. In other words, if the type of
1482 the new value is different from the type of the varobj's old
1483 value.
1484
1485 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1486
1487static int
b09e2c59 1488varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1489 struct type *new_type)
1490{
1491 /* If we haven't previously computed the number of children in var,
1492 it does not matter from the front-end's perspective whether
1493 the type has mutated or not. For all intents and purposes,
1494 it has not mutated. */
1495 if (var->num_children < 0)
1496 return 0;
1497
ca20d462 1498 if (var->root->lang_ops->value_has_mutated)
8776cfe9
JB
1499 {
1500 /* The varobj module, when installing new values, explicitly strips
1501 references, saying that we're not interested in those addresses.
1502 But detection of mutation happens before installing the new
1503 value, so our value may be a reference that we need to strip
1504 in order to remain consistent. */
1505 if (new_value != NULL)
1506 new_value = coerce_ref (new_value);
1507 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1508 }
7a290c40
JB
1509 else
1510 return 0;
1511}
1512
8b93c638
JM
1513/* Update the values for a variable and its children. This is a
1514 two-pronged attack. First, re-parse the value for the root's
1515 expression to see if it's changed. Then go all the way
1516 through its children, reconstructing them and noting if they've
1517 changed.
1518
25d5ea92
VP
1519 The EXPLICIT parameter specifies if this call is result
1520 of MI request to update this specific variable, or
581e13c1 1521 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1522 update frozen variables.
705da579 1523
581e13c1 1524 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1525 returns TYPE_CHANGED, then it has done this and VARP will be modified
1526 to point to the new varobj. */
8b93c638 1527
1417b39d 1528VEC(varobj_update_result) *
fe978cb0 1529varobj_update (struct varobj **varp, int is_explicit)
8b93c638 1530{
25d5ea92 1531 int type_changed = 0;
8b93c638 1532 int i;
fe978cb0 1533 struct value *newobj;
b6313243 1534 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1535 VEC (varobj_update_result) *result = NULL;
8b93c638 1536
25d5ea92
VP
1537 /* Frozen means frozen -- we don't check for any change in
1538 this varobj, including its going out of scope, or
1539 changing type. One use case for frozen varobjs is
1540 retaining previously evaluated expressions, and we don't
1541 want them to be reevaluated at all. */
fe978cb0 1542 if (!is_explicit && (*varp)->frozen)
f7f9ae2c 1543 return result;
8756216b
DP
1544
1545 if (!(*varp)->root->is_valid)
f7f9ae2c 1546 {
cfce2ea2 1547 varobj_update_result r = {0};
a109c7c1 1548
cfce2ea2 1549 r.varobj = *varp;
f7f9ae2c
VP
1550 r.status = VAROBJ_INVALID;
1551 VEC_safe_push (varobj_update_result, result, &r);
1552 return result;
1553 }
8b93c638 1554
25d5ea92 1555 if ((*varp)->root->rootvar == *varp)
ae093f96 1556 {
cfce2ea2 1557 varobj_update_result r = {0};
a109c7c1 1558
cfce2ea2 1559 r.varobj = *varp;
f7f9ae2c
VP
1560 r.status = VAROBJ_IN_SCOPE;
1561
581e13c1 1562 /* Update the root variable. value_of_root can return NULL
25d5ea92 1563 if the variable is no longer around, i.e. we stepped out of
581e13c1 1564 the frame in which a local existed. We are letting the
25d5ea92
VP
1565 value_of_root variable dispose of the varobj if the type
1566 has changed. */
fe978cb0
PA
1567 newobj = value_of_root (varp, &type_changed);
1568 if (update_type_if_necessary(*varp, newobj))
8264ba82 1569 type_changed = 1;
f7f9ae2c 1570 r.varobj = *varp;
f7f9ae2c 1571 r.type_changed = type_changed;
fe978cb0 1572 if (install_new_value ((*varp), newobj, type_changed))
f7f9ae2c 1573 r.changed = 1;
ea56f9c2 1574
fe978cb0 1575 if (newobj == NULL)
f7f9ae2c 1576 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1577 r.value_installed = 1;
f7f9ae2c
VP
1578
1579 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1580 {
0b4bc29a
JK
1581 if (r.type_changed || r.changed)
1582 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1583 return result;
1584 }
1585
1586 VEC_safe_push (varobj_update_result, stack, &r);
1587 }
1588 else
1589 {
cfce2ea2 1590 varobj_update_result r = {0};
a109c7c1 1591
cfce2ea2 1592 r.varobj = *varp;
b6313243 1593 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1594 }
8b93c638 1595
8756216b 1596 /* Walk through the children, reconstructing them all. */
b6313243 1597 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1598 {
b6313243
TT
1599 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1600 struct varobj *v = r.varobj;
1601
1602 VEC_pop (varobj_update_result, stack);
1603
1604 /* Update this variable, unless it's a root, which is already
1605 updated. */
1606 if (!r.value_installed)
7a290c40
JB
1607 {
1608 struct type *new_type;
1609
fe978cb0
PA
1610 newobj = value_of_child (v->parent, v->index);
1611 if (update_type_if_necessary(v, newobj))
8264ba82 1612 r.type_changed = 1;
fe978cb0
PA
1613 if (newobj)
1614 new_type = value_type (newobj);
7a290c40 1615 else
ca20d462 1616 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40 1617
fe978cb0 1618 if (varobj_value_has_mutated (v, newobj, new_type))
7a290c40
JB
1619 {
1620 /* The children are no longer valid; delete them now.
1621 Report the fact that its type changed as well. */
30914ca8 1622 varobj_delete (v, 1 /* only_children */);
7a290c40
JB
1623 v->num_children = -1;
1624 v->to = -1;
1625 v->from = -1;
1626 v->type = new_type;
1627 r.type_changed = 1;
1628 }
1629
fe978cb0 1630 if (install_new_value (v, newobj, r.type_changed))
b6313243
TT
1631 {
1632 r.changed = 1;
1633 v->updated = 0;
1634 }
1635 }
1636
31f628ae
YQ
1637 /* We probably should not get children of a dynamic varobj, but
1638 for which -var-list-children was never invoked. */
1639 if (varobj_is_dynamic_p (v))
b6313243 1640 {
8264ba82 1641 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
fe978cb0 1642 VEC (varobj_p) *newobj = 0;
26f9bcee 1643 int i, children_changed = 0;
b6313243
TT
1644
1645 if (v->frozen)
1646 continue;
1647
bb5ce47a 1648 if (!v->dynamic->children_requested)
0cc7d26f
TT
1649 {
1650 int dummy;
1651
1652 /* If we initially did not have potential children, but
1653 now we do, consider the varobj as changed.
1654 Otherwise, if children were never requested, consider
1655 it as unchanged -- presumably, such varobj is not yet
1656 expanded in the UI, so we need not bother getting
1657 it. */
1658 if (!varobj_has_more (v, 0))
1659 {
8264ba82 1660 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
1661 &dummy, 0, 0, 0);
1662 if (varobj_has_more (v, 0))
1663 r.changed = 1;
1664 }
1665
1666 if (r.changed)
1667 VEC_safe_push (varobj_update_result, result, &r);
1668
1669 continue;
1670 }
1671
b6313243
TT
1672 /* If update_dynamic_varobj_children returns 0, then we have
1673 a non-conforming pretty-printer, so we skip it. */
fe978cb0 1674 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
8264ba82 1675 &unchanged, &children_changed, 1,
0cc7d26f 1676 v->from, v->to))
b6313243 1677 {
fe978cb0 1678 if (children_changed || newobj)
b6313243 1679 {
0cc7d26f 1680 r.children_changed = 1;
fe978cb0 1681 r.newobj = newobj;
b6313243 1682 }
0cc7d26f
TT
1683 /* Push in reverse order so that the first child is
1684 popped from the work stack first, and so will be
1685 added to result first. This does not affect
1686 correctness, just "nicer". */
8264ba82
AG
1687 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1688 {
1689 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1690 varobj_update_result r = {0};
1691
1692 /* Type may change only if value was changed. */
1693 r.varobj = tmp;
1694 r.changed = 1;
1695 r.type_changed = 1;
1696 r.value_installed = 1;
1697 VEC_safe_push (varobj_update_result, stack, &r);
1698 }
0cc7d26f 1699 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1700 {
0cc7d26f 1701 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1702 varobj_update_result r = {0};
a109c7c1 1703
cfce2ea2 1704 r.varobj = tmp;
0cc7d26f 1705 r.changed = 1;
b6313243
TT
1706 r.value_installed = 1;
1707 VEC_safe_push (varobj_update_result, stack, &r);
1708 }
0cc7d26f
TT
1709 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1710 {
1711 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1712
0cc7d26f
TT
1713 if (!tmp->frozen)
1714 {
cfce2ea2 1715 varobj_update_result r = {0};
a109c7c1 1716
cfce2ea2 1717 r.varobj = tmp;
0cc7d26f
TT
1718 r.value_installed = 1;
1719 VEC_safe_push (varobj_update_result, stack, &r);
1720 }
1721 }
b6313243
TT
1722 if (r.changed || r.children_changed)
1723 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 1724
8264ba82
AG
1725 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1726 because NEW has been put into the result vector. */
0cc7d26f 1727 VEC_free (varobj_p, changed);
8264ba82 1728 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
1729 VEC_free (varobj_p, unchanged);
1730
b6313243
TT
1731 continue;
1732 }
1733 }
28335dcc
VP
1734
1735 /* Push any children. Use reverse order so that the first
1736 child is popped from the work stack first, and so
1737 will be added to result first. This does not
1738 affect correctness, just "nicer". */
ddf0ea08 1739 for (i = v->children.size () - 1; i >= 0; --i)
8b93c638 1740 {
ddf0ea08 1741 varobj *c = v->children[i];
a109c7c1 1742
28335dcc 1743 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1744 if (c != NULL && !c->frozen)
28335dcc 1745 {
cfce2ea2 1746 varobj_update_result r = {0};
a109c7c1 1747
cfce2ea2 1748 r.varobj = c;
b6313243 1749 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1750 }
8b93c638 1751 }
b6313243
TT
1752
1753 if (r.changed || r.type_changed)
1754 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1755 }
1756
b6313243
TT
1757 VEC_free (varobj_update_result, stack);
1758
f7f9ae2c 1759 return result;
8b93c638
JM
1760}
1761\f
1762
1763/* Helper functions */
1764
1765/*
1766 * Variable object construction/destruction
1767 */
1768
1769static int
30914ca8 1770delete_variable (struct varobj *var, int only_children_p)
8b93c638
JM
1771{
1772 int delcount = 0;
1773
30914ca8
SM
1774 delete_variable_1 (&delcount, var, only_children_p,
1775 1 /* remove_from_parent_p */ );
8b93c638
JM
1776
1777 return delcount;
1778}
1779
581e13c1 1780/* Delete the variable object VAR and its children. */
8b93c638
JM
1781/* IMPORTANT NOTE: If we delete a variable which is a child
1782 and the parent is not removed we dump core. It must be always
581e13c1 1783 initially called with remove_from_parent_p set. */
8b93c638 1784static void
30914ca8 1785delete_variable_1 (int *delcountp, struct varobj *var, int only_children_p,
72330bd6 1786 int remove_from_parent_p)
8b93c638 1787{
581e13c1 1788 /* Delete any children of this variable, too. */
ddf0ea08 1789 for (varobj *child : var->children)
28335dcc 1790 {
214270ab
VP
1791 if (!child)
1792 continue;
ddf0ea08 1793
8b93c638 1794 if (!remove_from_parent_p)
28335dcc 1795 child->parent = NULL;
ddf0ea08 1796
30914ca8 1797 delete_variable_1 (delcountp, child, 0, only_children_p);
8b93c638 1798 }
ddf0ea08 1799 var->children.clear ();
8b93c638 1800
581e13c1 1801 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1802 if (only_children_p)
1803 return;
1804
581e13c1 1805 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2f408ecb 1806 /* If the name is empty, this is a temporary variable, that has not
581e13c1 1807 yet been installed, don't report it, it belongs to the caller... */
2f408ecb 1808 if (!var->obj_name.empty ())
8b93c638 1809 {
8b93c638
JM
1810 *delcountp = *delcountp + 1;
1811 }
1812
581e13c1 1813 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1814 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1815 (as indicated by remove_from_parent_p) we don't bother doing an
1816 expensive list search to find the element to remove when we are
581e13c1 1817 discarding the list afterwards. */
72330bd6 1818 if ((remove_from_parent_p) && (var->parent != NULL))
ddf0ea08 1819 var->parent->children[var->index] = NULL;
72330bd6 1820
2f408ecb 1821 if (!var->obj_name.empty ())
73a93a32 1822 uninstall_variable (var);
8b93c638 1823
581e13c1 1824 /* Free memory associated with this variable. */
9e5b9d2b 1825 delete var;
8b93c638
JM
1826}
1827
581e13c1 1828/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 1829static int
fba45db2 1830install_variable (struct varobj *var)
8b93c638
JM
1831{
1832 struct vlist *cv;
1833 struct vlist *newvl;
1834 const char *chp;
1835 unsigned int index = 0;
1836 unsigned int i = 1;
1837
2f408ecb 1838 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1839 {
1840 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1841 }
1842
1843 cv = *(varobj_table + index);
2f408ecb 1844 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1845 cv = cv->next;
1846
1847 if (cv != NULL)
8a3fe4f8 1848 error (_("Duplicate variable object name"));
8b93c638 1849
581e13c1 1850 /* Add varobj to hash table. */
8d749320 1851 newvl = XNEW (struct vlist);
8b93c638
JM
1852 newvl->next = *(varobj_table + index);
1853 newvl->var = var;
1854 *(varobj_table + index) = newvl;
1855
581e13c1 1856 /* If root, add varobj to root list. */
b2c2bd75 1857 if (is_root_p (var))
8b93c638 1858 {
581e13c1 1859 /* Add to list of root variables. */
8b93c638
JM
1860 if (rootlist == NULL)
1861 var->root->next = NULL;
1862 else
1863 var->root->next = rootlist;
1864 rootlist = var->root;
8b93c638
JM
1865 }
1866
1867 return 1; /* OK */
1868}
1869
581e13c1 1870/* Unistall the object VAR. */
8b93c638 1871static void
fba45db2 1872uninstall_variable (struct varobj *var)
8b93c638
JM
1873{
1874 struct vlist *cv;
1875 struct vlist *prev;
1876 struct varobj_root *cr;
1877 struct varobj_root *prer;
1878 const char *chp;
1879 unsigned int index = 0;
1880 unsigned int i = 1;
1881
581e13c1 1882 /* Remove varobj from hash table. */
2f408ecb 1883 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1884 {
1885 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1886 }
1887
1888 cv = *(varobj_table + index);
1889 prev = NULL;
2f408ecb 1890 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1891 {
1892 prev = cv;
1893 cv = cv->next;
1894 }
1895
1896 if (varobjdebug)
2f408ecb 1897 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
8b93c638
JM
1898
1899 if (cv == NULL)
1900 {
72330bd6
AC
1901 warning
1902 ("Assertion failed: Could not find variable object \"%s\" to delete",
2f408ecb 1903 var->obj_name.c_str ());
8b93c638
JM
1904 return;
1905 }
1906
1907 if (prev == NULL)
1908 *(varobj_table + index) = cv->next;
1909 else
1910 prev->next = cv->next;
1911
b8c9b27d 1912 xfree (cv);
8b93c638 1913
581e13c1 1914 /* If root, remove varobj from root list. */
b2c2bd75 1915 if (is_root_p (var))
8b93c638 1916 {
581e13c1 1917 /* Remove from list of root variables. */
8b93c638
JM
1918 if (rootlist == var->root)
1919 rootlist = var->root->next;
1920 else
1921 {
1922 prer = NULL;
1923 cr = rootlist;
1924 while ((cr != NULL) && (cr->rootvar != var))
1925 {
1926 prer = cr;
1927 cr = cr->next;
1928 }
1929 if (cr == NULL)
1930 {
8f7e195f
JB
1931 warning (_("Assertion failed: Could not find "
1932 "varobj \"%s\" in root list"),
2f408ecb 1933 var->obj_name.c_str ());
8b93c638
JM
1934 return;
1935 }
1936 if (prer == NULL)
1937 rootlist = NULL;
1938 else
1939 prer->next = cr->next;
1940 }
8b93c638
JM
1941 }
1942
1943}
1944
837ce252
SM
1945/* Create and install a child of the parent of the given name.
1946
1947 The created VAROBJ takes ownership of the allocated NAME. */
1948
8b93c638 1949static struct varobj *
2f408ecb 1950create_child (struct varobj *parent, int index, std::string &name)
b6313243 1951{
5a2e0d6e
YQ
1952 struct varobj_item item;
1953
2f408ecb 1954 std::swap (item.name, name);
5a2e0d6e
YQ
1955 item.value = value_of_child (parent, index);
1956
1957 return create_child_with_value (parent, index, &item);
b6313243
TT
1958}
1959
1960static struct varobj *
5a2e0d6e
YQ
1961create_child_with_value (struct varobj *parent, int index,
1962 struct varobj_item *item)
8b93c638 1963{
9e5b9d2b 1964 varobj *child = new varobj (parent->root);
8b93c638 1965
5e5ac9a5 1966 /* NAME is allocated by caller. */
2f408ecb 1967 std::swap (child->name, item->name);
8b93c638 1968 child->index = index;
8b93c638 1969 child->parent = parent;
85254831 1970
99ad9427 1971 if (varobj_is_anonymous_child (child))
2f408ecb
PA
1972 child->obj_name = string_printf ("%s.%d_anonymous",
1973 parent->obj_name.c_str (), index);
85254831 1974 else
2f408ecb
PA
1975 child->obj_name = string_printf ("%s.%s",
1976 parent->obj_name.c_str (),
1977 child->name.c_str ());
85254831 1978
8b93c638
JM
1979 install_variable (child);
1980
acd65feb
VP
1981 /* Compute the type of the child. Must do this before
1982 calling install_new_value. */
5a2e0d6e 1983 if (item->value != NULL)
acd65feb 1984 /* If the child had no evaluation errors, var->value
581e13c1 1985 will be non-NULL and contain a valid type. */
5a2e0d6e 1986 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 1987 else
581e13c1 1988 /* Otherwise, we must compute the type. */
ca20d462
YQ
1989 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1990 child->index);
5a2e0d6e 1991 install_new_value (child, item->value, 1);
acd65feb 1992
8b93c638
JM
1993 return child;
1994}
8b93c638
JM
1995\f
1996
1997/*
1998 * Miscellaneous utility functions.
1999 */
2000
581e13c1 2001/* Allocate memory and initialize a new variable. */
9e5b9d2b
SM
2002varobj::varobj (varobj_root *root_)
2003: root (root_), dynamic (new varobj_dynamic)
8b93c638 2004{
8b93c638
JM
2005}
2006
581e13c1 2007/* Free any allocated memory associated with VAR. */
9e5b9d2b
SM
2008
2009varobj::~varobj ()
8b93c638 2010{
9e5b9d2b
SM
2011 varobj *var = this;
2012
d452c4bc 2013#if HAVE_PYTHON
bb5ce47a 2014 if (var->dynamic->pretty_printer != NULL)
d452c4bc 2015 {
bde7b3e3 2016 gdbpy_enter_varobj enter_py (var);
bb5ce47a
YQ
2017
2018 Py_XDECREF (var->dynamic->constructor);
2019 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
2020 }
2021#endif
2022
827f100c
YQ
2023 varobj_iter_delete (var->dynamic->child_iter);
2024 varobj_clear_saved_item (var->dynamic);
36746093
JK
2025 value_free (var->value);
2026
b2c2bd75 2027 if (is_root_p (var))
4d01a485 2028 delete var->root;
8b93c638 2029
9e5b9d2b 2030 delete var->dynamic;
74b7792f
AC
2031}
2032
6e2a9270
VP
2033/* Return the type of the value that's stored in VAR,
2034 or that would have being stored there if the
581e13c1 2035 value were accessible.
6e2a9270
VP
2036
2037 This differs from VAR->type in that VAR->type is always
2038 the true type of the expession in the source language.
2039 The return value of this function is the type we're
2040 actually storing in varobj, and using for displaying
2041 the values and for comparing previous and new values.
2042
2043 For example, top-level references are always stripped. */
99ad9427 2044struct type *
b09e2c59 2045varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
2046{
2047 struct type *type;
2048
2049 if (var->value)
2050 type = value_type (var->value);
2051 else
2052 type = var->type;
2053
2054 type = check_typedef (type);
2055
aa006118 2056 if (TYPE_IS_REFERENCE (type))
6e2a9270
VP
2057 type = get_target_type (type);
2058
2059 type = check_typedef (type);
2060
2061 return type;
2062}
2063
8b93c638 2064/* What is the default display for this variable? We assume that
581e13c1 2065 everything is "natural". Any exceptions? */
8b93c638 2066static enum varobj_display_formats
fba45db2 2067variable_default_display (struct varobj *var)
8b93c638
JM
2068{
2069 return FORMAT_NATURAL;
2070}
2071
8b93c638
JM
2072/*
2073 * Language-dependencies
2074 */
2075
2076/* Common entry points */
2077
8b93c638
JM
2078/* Return the number of children for a given variable.
2079 The result of this function is defined by the language
581e13c1 2080 implementation. The number of children returned by this function
8b93c638 2081 is the number of children that the user will see in the variable
581e13c1 2082 display. */
8b93c638 2083static int
b09e2c59 2084number_of_children (const struct varobj *var)
8b93c638 2085{
ca20d462 2086 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2087}
2088
2f408ecb
PA
2089/* What is the expression for the root varobj VAR? */
2090
2091static std::string
b09e2c59 2092name_of_variable (const struct varobj *var)
8b93c638 2093{
ca20d462 2094 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2095}
2096
2f408ecb
PA
2097/* What is the name of the INDEX'th child of VAR? */
2098
2099static std::string
fba45db2 2100name_of_child (struct varobj *var, int index)
8b93c638 2101{
ca20d462 2102 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2103}
2104
2213e2be
YQ
2105/* If frame associated with VAR can be found, switch
2106 to it and return 1. Otherwise, return 0. */
2107
2108static int
b09e2c59 2109check_scope (const struct varobj *var)
2213e2be
YQ
2110{
2111 struct frame_info *fi;
2112 int scope;
2113
2114 fi = frame_find_by_id (var->root->frame);
2115 scope = fi != NULL;
2116
2117 if (fi)
2118 {
2119 CORE_ADDR pc = get_frame_pc (fi);
2120
2121 if (pc < BLOCK_START (var->root->valid_block) ||
2122 pc >= BLOCK_END (var->root->valid_block))
2123 scope = 0;
2124 else
2125 select_frame (fi);
2126 }
2127 return scope;
2128}
2129
2130/* Helper function to value_of_root. */
2131
2132static struct value *
2133value_of_root_1 (struct varobj **var_handle)
2134{
2135 struct value *new_val = NULL;
2136 struct varobj *var = *var_handle;
2137 int within_scope = 0;
2213e2be
YQ
2138
2139 /* Only root variables can be updated... */
2140 if (!is_root_p (var))
2141 /* Not a root var. */
2142 return NULL;
2143
5ed8105e 2144 scoped_restore_current_thread restore_thread;
2213e2be
YQ
2145
2146 /* Determine whether the variable is still around. */
2147 if (var->root->valid_block == NULL || var->root->floating)
2148 within_scope = 1;
2149 else if (var->root->thread_id == 0)
2150 {
2151 /* The program was single-threaded when the variable object was
2152 created. Technically, it's possible that the program became
2153 multi-threaded since then, but we don't support such
2154 scenario yet. */
2155 within_scope = check_scope (var);
2156 }
2157 else
2158 {
5d5658a1
PA
2159 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2160
2161 if (!ptid_equal (minus_one_ptid, ptid))
2213e2be
YQ
2162 {
2163 switch_to_thread (ptid);
2164 within_scope = check_scope (var);
2165 }
2166 }
2167
2168 if (within_scope)
2169 {
2213e2be
YQ
2170
2171 /* We need to catch errors here, because if evaluate
2172 expression fails we want to just return NULL. */
492d29ea 2173 TRY
2213e2be 2174 {
4d01a485 2175 new_val = evaluate_expression (var->root->exp.get ());
2213e2be 2176 }
492d29ea
PA
2177 CATCH (except, RETURN_MASK_ERROR)
2178 {
2179 }
2180 END_CATCH
2213e2be
YQ
2181 }
2182
2213e2be
YQ
2183 return new_val;
2184}
2185
a5defcdc
VP
2186/* What is the ``struct value *'' of the root variable VAR?
2187 For floating variable object, evaluation can get us a value
2188 of different type from what is stored in varobj already. In
2189 that case:
2190 - *type_changed will be set to 1
2191 - old varobj will be freed, and new one will be
2192 created, with the same name.
2193 - *var_handle will be set to the new varobj
2194 Otherwise, *type_changed will be set to 0. */
30b28db1 2195static struct value *
fba45db2 2196value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2197{
73a93a32
JI
2198 struct varobj *var;
2199
2200 if (var_handle == NULL)
2201 return NULL;
2202
2203 var = *var_handle;
2204
2205 /* This should really be an exception, since this should
581e13c1 2206 only get called with a root variable. */
73a93a32 2207
b2c2bd75 2208 if (!is_root_p (var))
73a93a32
JI
2209 return NULL;
2210
a5defcdc 2211 if (var->root->floating)
73a93a32
JI
2212 {
2213 struct varobj *tmp_var;
6225abfa 2214
2f408ecb 2215 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
73a93a32
JI
2216 USE_SELECTED_FRAME);
2217 if (tmp_var == NULL)
2218 {
2219 return NULL;
2220 }
2f408ecb
PA
2221 std::string old_type = varobj_get_type (var);
2222 std::string new_type = varobj_get_type (tmp_var);
2223 if (old_type == new_type)
73a93a32 2224 {
fcacd99f
VP
2225 /* The expression presently stored inside var->root->exp
2226 remembers the locations of local variables relatively to
2227 the frame where the expression was created (in DWARF location
2228 button, for example). Naturally, those locations are not
2229 correct in other frames, so update the expression. */
2230
4d01a485 2231 std::swap (var->root->exp, tmp_var->root->exp);
fcacd99f 2232
30914ca8 2233 varobj_delete (tmp_var, 0);
73a93a32
JI
2234 *type_changed = 0;
2235 }
2236 else
2237 {
2f408ecb 2238 tmp_var->obj_name = var->obj_name;
0cc7d26f
TT
2239 tmp_var->from = var->from;
2240 tmp_var->to = var->to;
30914ca8 2241 varobj_delete (var, 0);
a5defcdc 2242
73a93a32
JI
2243 install_variable (tmp_var);
2244 *var_handle = tmp_var;
705da579 2245 var = *var_handle;
73a93a32
JI
2246 *type_changed = 1;
2247 }
2248 }
2249 else
2250 {
2251 *type_changed = 0;
2252 }
2253
7a290c40
JB
2254 {
2255 struct value *value;
2256
2213e2be 2257 value = value_of_root_1 (var_handle);
7a290c40
JB
2258 if (var->value == NULL || value == NULL)
2259 {
2260 /* For root varobj-s, a NULL value indicates a scoping issue.
2261 So, nothing to do in terms of checking for mutations. */
2262 }
2263 else if (varobj_value_has_mutated (var, value, value_type (value)))
2264 {
2265 /* The type has mutated, so the children are no longer valid.
2266 Just delete them, and tell our caller that the type has
2267 changed. */
30914ca8 2268 varobj_delete (var, 1 /* only_children */);
7a290c40
JB
2269 var->num_children = -1;
2270 var->to = -1;
2271 var->from = -1;
2272 *type_changed = 1;
2273 }
2274 return value;
2275 }
8b93c638
JM
2276}
2277
581e13c1 2278/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2279static struct value *
c1cc6152 2280value_of_child (const struct varobj *parent, int index)
8b93c638 2281{
30b28db1 2282 struct value *value;
8b93c638 2283
ca20d462 2284 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2285
8b93c638
JM
2286 return value;
2287}
2288
581e13c1 2289/* GDB already has a command called "value_of_variable". Sigh. */
2f408ecb 2290static std::string
de051565 2291my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2292{
8756216b 2293 if (var->root->is_valid)
0cc7d26f 2294 {
bb5ce47a 2295 if (var->dynamic->pretty_printer != NULL)
99ad9427 2296 return varobj_value_get_print_value (var->value, var->format, var);
ca20d462 2297 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2298 }
8756216b 2299 else
2f408ecb 2300 return std::string ();
8b93c638
JM
2301}
2302
99ad9427
YQ
2303void
2304varobj_formatted_print_options (struct value_print_options *opts,
2305 enum varobj_display_formats format)
2306{
2307 get_formatted_print_options (opts, format_code[(int) format]);
2308 opts->deref_ref = 0;
2309 opts->raw = 1;
2310}
2311
2f408ecb 2312std::string
99ad9427
YQ
2313varobj_value_get_print_value (struct value *value,
2314 enum varobj_display_formats format,
b09e2c59 2315 const struct varobj *var)
85265413 2316{
79a45b7d 2317 struct value_print_options opts;
be759fcf
PM
2318 struct type *type = NULL;
2319 long len = 0;
1eba6383 2320 gdb::unique_xmalloc_ptr<char> encoding;
3a182a69
JK
2321 /* Initialize it just to avoid a GCC false warning. */
2322 CORE_ADDR str_addr = 0;
09ca9e2e 2323 int string_print = 0;
57e66780
DJ
2324
2325 if (value == NULL)
2f408ecb 2326 return std::string ();
57e66780 2327
d7e74731 2328 string_file stb;
2f408ecb
PA
2329 std::string thevalue;
2330
b6313243 2331#if HAVE_PYTHON
0646da15
TT
2332 if (gdb_python_initialized)
2333 {
bb5ce47a 2334 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2335
68cdc557 2336 gdbpy_enter_varobj enter_py (var);
09ca9e2e 2337
0646da15
TT
2338 if (value_formatter)
2339 {
2340 /* First check to see if we have any children at all. If so,
2341 we simply return {...}. */
2342 if (dynamic_varobj_has_child_method (var))
d7e74731 2343 return "{...}";
b6313243 2344
0646da15
TT
2345 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2346 {
2347 struct value *replacement;
0646da15 2348
7780f186
TT
2349 gdbpy_ref<> output (apply_varobj_pretty_printer (value_formatter,
2350 &replacement,
2351 &stb));
0646da15
TT
2352
2353 /* If we have string like output ... */
68cdc557 2354 if (output != NULL)
0646da15 2355 {
0646da15
TT
2356 /* If this is a lazy string, extract it. For lazy
2357 strings we always print as a string, so set
2358 string_print. */
68cdc557 2359 if (gdbpy_is_lazy_string (output.get ()))
0646da15 2360 {
68cdc557
TT
2361 gdbpy_extract_lazy_string (output.get (), &str_addr,
2362 &type, &len, &encoding);
0646da15
TT
2363 string_print = 1;
2364 }
2365 else
2366 {
2367 /* If it is a regular (non-lazy) string, extract
2368 it and copy the contents into THEVALUE. If the
2369 hint says to print it as a string, set
2370 string_print. Otherwise just return the extracted
2371 string as a value. */
2372
9b972014 2373 gdb::unique_xmalloc_ptr<char> s
68cdc557 2374 = python_string_to_target_string (output.get ());
0646da15
TT
2375
2376 if (s)
2377 {
e3821cca 2378 struct gdbarch *gdbarch;
0646da15 2379
9b972014
TT
2380 gdb::unique_xmalloc_ptr<char> hint
2381 = gdbpy_get_display_hint (value_formatter);
0646da15
TT
2382 if (hint)
2383 {
9b972014 2384 if (!strcmp (hint.get (), "string"))
0646da15 2385 string_print = 1;
0646da15
TT
2386 }
2387
9b972014 2388 thevalue = std::string (s.get ());
2f408ecb 2389 len = thevalue.size ();
e3821cca 2390 gdbarch = get_type_arch (value_type (value));
0646da15 2391 type = builtin_type (gdbarch)->builtin_char;
0646da15
TT
2392
2393 if (!string_print)
d7e74731 2394 return thevalue;
0646da15
TT
2395 }
2396 else
2397 gdbpy_print_stack ();
2398 }
2399 }
2400 /* If the printer returned a replacement value, set VALUE
2401 to REPLACEMENT. If there is not a replacement value,
2402 just use the value passed to this function. */
2403 if (replacement)
2404 value = replacement;
2405 }
2406 }
2407 }
b6313243
TT
2408#endif
2409
99ad9427 2410 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2411
2412 /* If the THEVALUE has contents, it is a regular string. */
2f408ecb 2413 if (!thevalue.empty ())
d7e74731 2414 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
1eba6383 2415 len, encoding.get (), 0, &opts);
09ca9e2e 2416 else if (string_print)
00bd41d6
PM
2417 /* Otherwise, if string_print is set, and it is not a regular
2418 string, it is a lazy string. */
d7e74731 2419 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
b6313243 2420 else
00bd41d6 2421 /* All other cases. */
d7e74731 2422 common_val_print (value, &stb, 0, &opts, current_language);
57e66780 2423
d7e74731 2424 return std::move (stb.string ());
85265413
NR
2425}
2426
340a7723 2427int
b09e2c59 2428varobj_editable_p (const struct varobj *var)
340a7723
NR
2429{
2430 struct type *type;
340a7723
NR
2431
2432 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2433 return 0;
2434
99ad9427 2435 type = varobj_get_value_type (var);
340a7723
NR
2436
2437 switch (TYPE_CODE (type))
2438 {
2439 case TYPE_CODE_STRUCT:
2440 case TYPE_CODE_UNION:
2441 case TYPE_CODE_ARRAY:
2442 case TYPE_CODE_FUNC:
2443 case TYPE_CODE_METHOD:
2444 return 0;
2445 break;
2446
2447 default:
2448 return 1;
2449 break;
2450 }
2451}
2452
d32cafc7 2453/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2454
99ad9427 2455int
b09e2c59 2456varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2457{
ca20d462 2458 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2459}
2460
5a413362
VP
2461/* Return 1 if that varobj is floating, that is is always evaluated in the
2462 selected frame, and not bound to thread/frame. Such variable objects
2463 are created using '@' as frame specifier to -var-create. */
2464int
b09e2c59 2465varobj_floating_p (const struct varobj *var)
5a413362
VP
2466{
2467 return var->root->floating;
2468}
2469
d32cafc7
JB
2470/* Implement the "value_is_changeable_p" varobj callback for most
2471 languages. */
2472
99ad9427 2473int
b09e2c59 2474varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7
JB
2475{
2476 int r;
2477 struct type *type;
2478
2479 if (CPLUS_FAKE_CHILD (var))
2480 return 0;
2481
99ad9427 2482 type = varobj_get_value_type (var);
d32cafc7
JB
2483
2484 switch (TYPE_CODE (type))
2485 {
2486 case TYPE_CODE_STRUCT:
2487 case TYPE_CODE_UNION:
2488 case TYPE_CODE_ARRAY:
2489 r = 0;
2490 break;
2491
2492 default:
2493 r = 1;
2494 }
2495
2496 return r;
2497}
2498
54333c3b
JK
2499/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2500 with an arbitrary caller supplied DATA pointer. */
2501
2502void
2503all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2504{
2505 struct varobj_root *var_root, *var_root_next;
2506
2507 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2508
2509 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2510 {
2511 var_root_next = var_root->next;
2512
2513 (*func) (var_root->rootvar, data);
2514 }
2515}
8756216b 2516
54333c3b 2517/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2518 defined on globals. It is a helper for varobj_invalidate.
2519
2520 This function is called after changing the symbol file, in this case the
2521 pointers to "struct type" stored by the varobj are no longer valid. All
2522 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2523
54333c3b
JK
2524static void
2525varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2526{
4e969b4f
AB
2527 /* global and floating var must be re-evaluated. */
2528 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2529 {
54333c3b 2530 struct varobj *tmp_var;
2dbd25e5 2531
54333c3b
JK
2532 /* Try to create a varobj with same expression. If we succeed
2533 replace the old varobj, otherwise invalidate it. */
2f408ecb 2534 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
54333c3b
JK
2535 USE_CURRENT_FRAME);
2536 if (tmp_var != NULL)
2537 {
2f408ecb 2538 tmp_var->obj_name = var->obj_name;
30914ca8 2539 varobj_delete (var, 0);
54333c3b 2540 install_variable (tmp_var);
2dbd25e5 2541 }
54333c3b
JK
2542 else
2543 var->root->is_valid = 0;
2dbd25e5 2544 }
54333c3b
JK
2545 else /* locals must be invalidated. */
2546 var->root->is_valid = 0;
2547}
2548
2549/* Invalidate the varobjs that are tied to locals and re-create the ones that
2550 are defined on globals.
2551 Invalidated varobjs will be always printed in_scope="invalid". */
2552
2553void
2554varobj_invalidate (void)
2555{
2556 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2557}
481695ed 2558
1c3569d4
MR
2559void
2560_initialize_varobj (void)
2561{
8d749320 2562 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
1c3569d4
MR
2563
2564 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2565 &varobjdebug,
2566 _("Set varobj debugging."),
2567 _("Show varobj debugging."),
2568 _("When non-zero, varobj debugging is enabled."),
2569 NULL, show_varobjdebug,
2570 &setdebuglist, &showdebuglist);
2571}