]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/xtensa-tdep.c
Constify execute_command
[thirdparty/binutils-gdb.git] / gdb / xtensa-tdep.c
CommitLineData
ca3bf3bd
DJ
1/* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
61baf725 3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
ca3bf3bd
DJ
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
ca3bf3bd
DJ
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
ca3bf3bd
DJ
19
20#include "defs.h"
21#include "frame.h"
ee967b5f 22#include "solib-svr4.h"
ca3bf3bd
DJ
23#include "symtab.h"
24#include "symfile.h"
25#include "objfiles.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "value.h"
29#include "dis-asm.h"
30#include "inferior.h"
40045d91 31#include "osabi.h"
ca3bf3bd
DJ
32#include "regcache.h"
33#include "reggroups.h"
34#include "regset.h"
35
36#include "dummy-frame.h"
fa8f86ff 37#include "dwarf2.h"
ca3bf3bd
DJ
38#include "dwarf2-frame.h"
39#include "dwarf2loc.h"
ca3bf3bd
DJ
40#include "frame-base.h"
41#include "frame-unwind.h"
42
43#include "arch-utils.h"
44#include "gdbarch.h"
45#include "remote.h"
46#include "serial.h"
47
48#include "command.h"
49#include "gdbcmd.h"
ca3bf3bd 50
bdb4c075 51#include "xtensa-isa.h"
ca3bf3bd 52#include "xtensa-tdep.h"
94a0e877 53#include "xtensa-config.h"
325fac50 54#include <algorithm>
ca3bf3bd
DJ
55
56
ccce17b0 57static unsigned int xtensa_debug_level = 0;
ca3bf3bd
DJ
58
59#define DEBUGWARN(args...) \
60 if (xtensa_debug_level > 0) \
61 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
62
63#define DEBUGINFO(args...) \
64 if (xtensa_debug_level > 1) \
65 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
66
67#define DEBUGTRACE(args...) \
68 if (xtensa_debug_level > 2) \
69 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
70
71#define DEBUGVERB(args...) \
72 if (xtensa_debug_level > 3) \
73 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
74
75
76/* According to the ABI, the SP must be aligned to 16-byte boundaries. */
ca3bf3bd
DJ
77#define SP_ALIGNMENT 16
78
79
bdb4c075
MG
80/* On Windowed ABI, we use a6 through a11 for passing arguments
81 to a function called by GDB because CALL4 is used. */
bdb4c075
MG
82#define ARGS_NUM_REGS 6
83#define REGISTER_SIZE 4
ca3bf3bd 84
ca3bf3bd 85
bdb4c075
MG
86/* Extract the call size from the return address or PS register. */
87#define PS_CALLINC_SHIFT 16
88#define PS_CALLINC_MASK 0x00030000
89#define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
90#define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
ca3bf3bd 91
98689b25
MG
92/* On TX, hardware can be configured without Exception Option.
93 There is no PS register in this case. Inside XT-GDB, let us treat
94 it as a virtual read-only register always holding the same value. */
95#define TX_PS 0x20
96
bdb4c075 97/* ABI-independent macros. */
91d8eb23
MD
98#define ARG_NOF(gdbarch) \
99 (gdbarch_tdep (gdbarch)->call_abi \
100 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
101#define ARG_1ST(gdbarch) \
102 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
94a0e877 103 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
91d8eb23 104 : (gdbarch_tdep (gdbarch)->a0_base + 6))
ca3bf3bd 105
ca3bf3bd
DJ
106/* XTENSA_IS_ENTRY tests whether the first byte of an instruction
107 indicates that the instruction is an ENTRY instruction. */
108
91d8eb23
MD
109#define XTENSA_IS_ENTRY(gdbarch, op1) \
110 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
4c6b5505 111 ? ((op1) == 0x6c) : ((op1) == 0x36))
ca3bf3bd 112
bdb4c075 113#define XTENSA_ENTRY_LENGTH 3
ca3bf3bd
DJ
114
115/* windowing_enabled() returns true, if windowing is enabled.
116 WOE must be set to 1; EXCM to 0.
117 Note: We assume that EXCM is always 0 for XEA1. */
118
bdb4c075
MG
119#define PS_WOE (1<<18)
120#define PS_EXC (1<<4)
121
0dd5cbc5
AH
122/* Big enough to hold the size of the largest register in bytes. */
123#define XTENSA_MAX_REGISTER_SIZE 64
124
b801de47 125static int
98689b25
MG
126windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
127{
128 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
129 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
130 return 0;
131
132 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
133}
134
581e13c1
MS
135/* Convert a live A-register number to the corresponding AR-register
136 number. */
91d8eb23 137static int
ee967b5f 138arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
91d8eb23
MD
139{
140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ee967b5f 141 int arreg;
91d8eb23 142
ee967b5f
MG
143 arreg = a_regnum - tdep->a0_base;
144 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
145 arreg &= tdep->num_aregs - 1;
91d8eb23 146
ee967b5f
MG
147 return arreg + tdep->ar_base;
148}
149
150/* Convert a live AR-register number to the corresponding A-register order
151 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
152static int
153areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
154{
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156 int areg;
157
158 areg = ar_regnum - tdep->ar_base;
159 if (areg < 0 || areg >= tdep->num_aregs)
160 return -1;
161 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
162 return (areg > 15) ? -1 : areg;
91d8eb23
MD
163}
164
68d6df83 165/* Read Xtensa register directly from the hardware. */
b801de47 166static unsigned long
08b9c608
MG
167xtensa_read_register (int regnum)
168{
169 ULONGEST value;
170
171 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
172 return (unsigned long) value;
173}
174
68d6df83 175/* Write Xtensa register directly to the hardware. */
b801de47 176static void
08b9c608
MG
177xtensa_write_register (int regnum, ULONGEST value)
178{
179 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
180}
181
ca3bf3bd
DJ
182/* Return the window size of the previous call to the function from which we
183 have just returned.
184
185 This function is used to extract the return value after a called function
bdb4c075 186 has returned to the caller. On Xtensa, the register that holds the return
ca3bf3bd
DJ
187 value (from the perspective of the caller) depends on what call
188 instruction was used. For now, we are assuming that the call instruction
189 precedes the current address, so we simply analyze the call instruction.
190 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
191 method to call the inferior function. */
192
193static int
91d8eb23 194extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
ca3bf3bd 195{
e17a4113 196 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bdb4c075 197 int winsize = 4;
ca3bf3bd 198 int insn;
ff7a4c00 199 gdb_byte buf[4];
ca3bf3bd
DJ
200
201 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
202
203 /* Read the previous instruction (should be a call[x]{4|8|12}. */
204 read_memory (pc-3, buf, 3);
e17a4113 205 insn = extract_unsigned_integer (buf, 3, byte_order);
ca3bf3bd
DJ
206
207 /* Decode call instruction:
208 Little Endian
209 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
210 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
211 Big Endian
212 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
213 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
214
e17a4113 215 if (byte_order == BFD_ENDIAN_LITTLE)
ca3bf3bd
DJ
216 {
217 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
bdb4c075 218 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
ca3bf3bd
DJ
219 }
220 else
221 {
222 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
bdb4c075 223 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
ca3bf3bd
DJ
224 }
225 return winsize;
226}
227
228
229/* REGISTER INFORMATION */
230
08b9c608
MG
231/* Find register by name. */
232static int
a121b7c1 233xtensa_find_register_by_name (struct gdbarch *gdbarch, const char *name)
08b9c608
MG
234{
235 int i;
236
237 for (i = 0; i < gdbarch_num_regs (gdbarch)
238 + gdbarch_num_pseudo_regs (gdbarch);
239 i++)
240
241 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
242 return i;
243
244 return -1;
245}
246
ca3bf3bd 247/* Returns the name of a register. */
ca3bf3bd 248static const char *
d93859e2 249xtensa_register_name (struct gdbarch *gdbarch, int regnum)
ca3bf3bd
DJ
250{
251 /* Return the name stored in the register map. */
d93859e2
UW
252 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
253 + gdbarch_num_pseudo_regs (gdbarch))
254 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
ca3bf3bd 255
ca3bf3bd
DJ
256 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
257 return 0;
258}
259
ca3bf3bd
DJ
260/* Return the type of a register. Create a new type, if necessary. */
261
ca3bf3bd
DJ
262static struct type *
263xtensa_register_type (struct gdbarch *gdbarch, int regnum)
264{
df4df182
UW
265 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
266
ca3bf3bd 267 /* Return signed integer for ARx and Ax registers. */
df4df182
UW
268 if ((regnum >= tdep->ar_base
269 && regnum < tdep->ar_base + tdep->num_aregs)
270 || (regnum >= tdep->a0_base
271 && regnum < tdep->a0_base + 16))
0dfff4cb 272 return builtin_type (gdbarch)->builtin_int;
ca3bf3bd 273
6b50c0b0 274 if (regnum == gdbarch_pc_regnum (gdbarch)
df4df182 275 || regnum == tdep->a0_base + 1)
fde6c819 276 return builtin_type (gdbarch)->builtin_data_ptr;
ca3bf3bd
DJ
277
278 /* Return the stored type for all other registers. */
6b50c0b0
UW
279 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
280 + gdbarch_num_pseudo_regs (gdbarch))
ca3bf3bd 281 {
df4df182 282 xtensa_register_t* reg = &tdep->regmap[regnum];
ca3bf3bd 283
bdb4c075 284 /* Set ctype for this register (only the first time). */
ca3bf3bd
DJ
285
286 if (reg->ctype == 0)
287 {
288 struct ctype_cache *tp;
289 int size = reg->byte_size;
290
bdb4c075
MG
291 /* We always use the memory representation,
292 even if the register width is smaller. */
ca3bf3bd
DJ
293 switch (size)
294 {
295 case 1:
df4df182 296 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
ca3bf3bd
DJ
297 break;
298
299 case 2:
df4df182 300 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
ca3bf3bd
DJ
301 break;
302
303 case 4:
df4df182 304 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
ca3bf3bd
DJ
305 break;
306
307 case 8:
df4df182 308 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
ca3bf3bd
DJ
309 break;
310
311 case 16:
df4df182 312 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
ca3bf3bd
DJ
313 break;
314
315 default:
df4df182 316 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
ca3bf3bd
DJ
317 if (tp->size == size)
318 break;
319
320 if (tp == NULL)
321 {
1448a0a2 322 char *name = xstrprintf ("int%d", size * 8);
8d749320
SM
323
324 tp = XNEW (struct ctype_cache);
df4df182
UW
325 tp->next = tdep->type_entries;
326 tdep->type_entries = tp;
ca3bf3bd 327 tp->size = size;
e9bb382b 328 tp->virtual_type
1448a0a2
PM
329 = arch_integer_type (gdbarch, size * 8, 1, name);
330 xfree (name);
ca3bf3bd
DJ
331 }
332
333 reg->ctype = tp->virtual_type;
334 }
335 }
336 return reg->ctype;
337 }
338
ca3bf3bd
DJ
339 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
340 return 0;
341}
342
343
bdb4c075 344/* Return the 'local' register number for stubs, dwarf2, etc.
ca3bf3bd
DJ
345 The debugging information enumerates registers starting from 0 for A0
346 to n for An. So, we only have to add the base number for A0. */
347
348static int
d3f73121 349xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
ca3bf3bd
DJ
350{
351 int i;
352
353 if (regnum >= 0 && regnum < 16)
d3f73121 354 return gdbarch_tdep (gdbarch)->a0_base + regnum;
ca3bf3bd 355
f57d151a 356 for (i = 0;
d3f73121 357 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 358 i++)
d3f73121 359 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
ca3bf3bd
DJ
360 return i;
361
0fde2c53 362 return -1;
ca3bf3bd
DJ
363}
364
365
bdb4c075
MG
366/* Write the bits of a masked register to the various registers.
367 Only the masked areas of these registers are modified; the other
368 fields are untouched. The size of masked registers is always less
369 than or equal to 32 bits. */
ca3bf3bd
DJ
370
371static void
9c9acae0
UW
372xtensa_register_write_masked (struct regcache *regcache,
373 xtensa_register_t *reg, const gdb_byte *buffer)
ca3bf3bd 374{
0dd5cbc5 375 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
ca3bf3bd
DJ
376 const xtensa_mask_t *mask = reg->mask;
377
378 int shift = 0; /* Shift for next mask (mod 32). */
379 int start, size; /* Start bit and size of current mask. */
380
381 unsigned int *ptr = value;
382 unsigned int regval, m, mem = 0;
383
384 int bytesize = reg->byte_size;
385 int bitsize = bytesize * 8;
386 int i, r;
387
388 DEBUGTRACE ("xtensa_register_write_masked ()\n");
389
390 /* Copy the masked register to host byte-order. */
ac7936df 391 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
392 for (i = 0; i < bytesize; i++)
393 {
394 mem >>= 8;
395 mem |= (buffer[bytesize - i - 1] << 24);
396 if ((i & 3) == 3)
397 *ptr++ = mem;
398 }
399 else
400 for (i = 0; i < bytesize; i++)
401 {
402 mem >>= 8;
403 mem |= (buffer[i] << 24);
404 if ((i & 3) == 3)
405 *ptr++ = mem;
406 }
407
408 /* We might have to shift the final value:
409 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
410 bytesize & 3 == x -> shift (4-x) * 8. */
411
412 *ptr = mem >> (((0 - bytesize) & 3) * 8);
413 ptr = value;
414 mem = *ptr;
415
416 /* Write the bits to the masked areas of the other registers. */
417 for (i = 0; i < mask->count; i++)
418 {
419 start = mask->mask[i].bit_start;
420 size = mask->mask[i].bit_size;
421 regval = mem >> shift;
422
423 if ((shift += size) > bitsize)
424 error (_("size of all masks is larger than the register"));
425
426 if (shift >= 32)
427 {
428 mem = *(++ptr);
429 shift -= 32;
430 bitsize -= 32;
431
432 if (shift > 0)
433 regval |= mem << (size - shift);
434 }
435
436 /* Make sure we have a valid register. */
437 r = mask->mask[i].reg_num;
438 if (r >= 0 && size > 0)
439 {
440 /* Don't overwrite the unmasked areas. */
9c9acae0
UW
441 ULONGEST old_val;
442 regcache_cooked_read_unsigned (regcache, r, &old_val);
ca3bf3bd
DJ
443 m = 0xffffffff >> (32 - size) << start;
444 regval <<= start;
9c9acae0
UW
445 regval = (regval & m) | (old_val & ~m);
446 regcache_cooked_write_unsigned (regcache, r, regval);
ca3bf3bd
DJ
447 }
448 }
449}
450
451
bdb4c075
MG
452/* Read a tie state or mapped registers. Read the masked areas
453 of the registers and assemble them into a single value. */
ca3bf3bd 454
05d1431c 455static enum register_status
9c9acae0
UW
456xtensa_register_read_masked (struct regcache *regcache,
457 xtensa_register_t *reg, gdb_byte *buffer)
ca3bf3bd 458{
0dd5cbc5 459 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
ca3bf3bd
DJ
460 const xtensa_mask_t *mask = reg->mask;
461
462 int shift = 0;
463 int start, size;
464
465 unsigned int *ptr = value;
466 unsigned int regval, mem = 0;
467
468 int bytesize = reg->byte_size;
469 int bitsize = bytesize * 8;
470 int i;
471
472 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
473 reg->name == 0 ? "" : reg->name);
474
475 /* Assemble the register from the masked areas of other registers. */
476 for (i = 0; i < mask->count; i++)
477 {
478 int r = mask->mask[i].reg_num;
9c9acae0
UW
479 if (r >= 0)
480 {
05d1431c 481 enum register_status status;
9c9acae0 482 ULONGEST val;
05d1431c
PA
483
484 status = regcache_cooked_read_unsigned (regcache, r, &val);
485 if (status != REG_VALID)
486 return status;
9c9acae0
UW
487 regval = (unsigned int) val;
488 }
489 else
490 regval = 0;
491
ca3bf3bd
DJ
492 start = mask->mask[i].bit_start;
493 size = mask->mask[i].bit_size;
494
495 regval >>= start;
496
497 if (size < 32)
498 regval &= (0xffffffff >> (32 - size));
499
500 mem |= regval << shift;
501
502 if ((shift += size) > bitsize)
503 error (_("size of all masks is larger than the register"));
504
505 if (shift >= 32)
506 {
507 *ptr++ = mem;
508 bitsize -= 32;
509 shift -= 32;
510
511 if (shift == 0)
512 mem = 0;
513 else
514 mem = regval >> (size - shift);
515 }
516 }
517
518 if (shift > 0)
519 *ptr = mem;
520
521 /* Copy value to target byte order. */
522 ptr = value;
523 mem = *ptr;
524
ac7936df 525 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
526 for (i = 0; i < bytesize; i++)
527 {
528 if ((i & 3) == 0)
529 mem = *ptr++;
530 buffer[bytesize - i - 1] = mem & 0xff;
531 mem >>= 8;
532 }
533 else
534 for (i = 0; i < bytesize; i++)
535 {
536 if ((i & 3) == 0)
537 mem = *ptr++;
538 buffer[i] = mem & 0xff;
539 mem >>= 8;
540 }
05d1431c
PA
541
542 return REG_VALID;
ca3bf3bd
DJ
543}
544
545
546/* Read pseudo registers. */
547
05d1431c 548static enum register_status
ca3bf3bd
DJ
549xtensa_pseudo_register_read (struct gdbarch *gdbarch,
550 struct regcache *regcache,
551 int regnum,
552 gdb_byte *buffer)
553{
e17a4113
UW
554 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
555
ca3bf3bd 556 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
d93859e2 557 regnum, xtensa_register_name (gdbarch, regnum));
ca3bf3bd 558
bdb4c075 559 /* Read aliases a0..a15, if this is a Windowed ABI. */
6b50c0b0 560 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
94a0e877 561 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
6b50c0b0 562 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
ca3bf3bd 563 {
c185f580 564 ULONGEST value;
05d1431c 565 enum register_status status;
ca3bf3bd 566
c185f580
AH
567 status = regcache_raw_read_unsigned (regcache,
568 gdbarch_tdep (gdbarch)->wb_regnum,
569 &value);
05d1431c
PA
570 if (status != REG_VALID)
571 return status;
c185f580 572 regnum = arreg_number (gdbarch, regnum, value);
ca3bf3bd
DJ
573 }
574
bdb4c075 575 /* We can always read non-pseudo registers. */
6b50c0b0 576 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
05d1431c 577 return regcache_raw_read (regcache, regnum, buffer);
94a0e877
MG
578
579 /* We have to find out how to deal with priveleged registers.
580 Let's treat them as pseudo-registers, but we cannot read/write them. */
581
0d0bf81a
MF
582 else if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only
583 || regnum < gdbarch_tdep (gdbarch)->a0_base)
94a0e877
MG
584 {
585 buffer[0] = (gdb_byte)0;
586 buffer[1] = (gdb_byte)0;
587 buffer[2] = (gdb_byte)0;
588 buffer[3] = (gdb_byte)0;
05d1431c 589 return REG_VALID;
94a0e877 590 }
ca3bf3bd 591 /* Pseudo registers. */
f57d151a 592 else if (regnum >= 0
6b50c0b0
UW
593 && regnum < gdbarch_num_regs (gdbarch)
594 + gdbarch_num_pseudo_regs (gdbarch))
ca3bf3bd 595 {
6b50c0b0 596 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd 597 xtensa_register_type_t type = reg->type;
6b50c0b0 598 int flags = gdbarch_tdep (gdbarch)->target_flags;
ca3bf3bd 599
bdb4c075 600 /* We cannot read Unknown or Unmapped registers. */
ca3bf3bd
DJ
601 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
602 {
603 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
604 {
605 warning (_("cannot read register %s"),
d93859e2 606 xtensa_register_name (gdbarch, regnum));
05d1431c 607 return REG_VALID;
ca3bf3bd
DJ
608 }
609 }
610
611 /* Some targets cannot read TIE register files. */
612 else if (type == xtRegisterTypeTieRegfile)
613 {
614 /* Use 'fetch' to get register? */
615 if (flags & xtTargetFlagsUseFetchStore)
616 {
617 warning (_("cannot read register"));
05d1431c 618 return REG_VALID;
ca3bf3bd
DJ
619 }
620
621 /* On some targets (esp. simulators), we can always read the reg. */
622 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
623 {
624 warning (_("cannot read register"));
05d1431c 625 return REG_VALID;
ca3bf3bd
DJ
626 }
627 }
628
629 /* We can always read mapped registers. */
630 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
05d1431c 631 return xtensa_register_read_masked (regcache, reg, buffer);
ca3bf3bd
DJ
632
633 /* Assume that we can read the register. */
05d1431c 634 return regcache_raw_read (regcache, regnum, buffer);
ca3bf3bd 635 }
ca3bf3bd
DJ
636 else
637 internal_error (__FILE__, __LINE__,
638 _("invalid register number %d"), regnum);
639}
640
641
642/* Write pseudo registers. */
643
644static void
645xtensa_pseudo_register_write (struct gdbarch *gdbarch,
646 struct regcache *regcache,
647 int regnum,
648 const gdb_byte *buffer)
649{
e17a4113
UW
650 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
651
ca3bf3bd 652 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
d93859e2 653 regnum, xtensa_register_name (gdbarch, regnum));
ca3bf3bd 654
bdb4c075 655 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
6b50c0b0 656 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
94a0e877 657 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
6b50c0b0 658 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
ca3bf3bd 659 {
c185f580
AH
660 ULONGEST value;
661 regcache_raw_read_unsigned (regcache,
662 gdbarch_tdep (gdbarch)->wb_regnum, &value);
663 regnum = arreg_number (gdbarch, regnum, value);
ca3bf3bd
DJ
664 }
665
666 /* We can always write 'core' registers.
667 Note: We might have converted Ax->ARy. */
6b50c0b0 668 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
ca3bf3bd
DJ
669 regcache_raw_write (regcache, regnum, buffer);
670
94a0e877
MG
671 /* We have to find out how to deal with priveleged registers.
672 Let's treat them as pseudo-registers, but we cannot read/write them. */
673
674 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
675 {
676 return;
677 }
ca3bf3bd 678 /* Pseudo registers. */
f57d151a 679 else if (regnum >= 0
6b50c0b0
UW
680 && regnum < gdbarch_num_regs (gdbarch)
681 + gdbarch_num_pseudo_regs (gdbarch))
ca3bf3bd 682 {
6b50c0b0 683 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd 684 xtensa_register_type_t type = reg->type;
6b50c0b0 685 int flags = gdbarch_tdep (gdbarch)->target_flags;
ca3bf3bd 686
bdb4c075
MG
687 /* On most targets, we cannot write registers
688 of type "Unknown" or "Unmapped". */
ca3bf3bd
DJ
689 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
690 {
691 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
692 {
693 warning (_("cannot write register %s"),
d93859e2 694 xtensa_register_name (gdbarch, regnum));
ca3bf3bd
DJ
695 return;
696 }
697 }
698
699 /* Some targets cannot read TIE register files. */
700 else if (type == xtRegisterTypeTieRegfile)
701 {
702 /* Use 'store' to get register? */
703 if (flags & xtTargetFlagsUseFetchStore)
704 {
705 warning (_("cannot write register"));
706 return;
707 }
708
709 /* On some targets (esp. simulators), we can always write
710 the register. */
ca3bf3bd
DJ
711 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
712 {
713 warning (_("cannot write register"));
714 return;
715 }
716 }
717
718 /* We can always write mapped registers. */
719 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
720 {
9c9acae0 721 xtensa_register_write_masked (regcache, reg, buffer);
ca3bf3bd
DJ
722 return;
723 }
724
725 /* Assume that we can write the register. */
726 regcache_raw_write (regcache, regnum, buffer);
727 }
ca3bf3bd
DJ
728 else
729 internal_error (__FILE__, __LINE__,
730 _("invalid register number %d"), regnum);
731}
732
ca3bf3bd
DJ
733static struct reggroup *xtensa_ar_reggroup;
734static struct reggroup *xtensa_user_reggroup;
735static struct reggroup *xtensa_vectra_reggroup;
7b871568 736static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
ca3bf3bd
DJ
737
738static void
739xtensa_init_reggroups (void)
740{
98689b25 741 int i;
98689b25 742
ca3bf3bd
DJ
743 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
744 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
745 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
ca3bf3bd 746
98689b25 747 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
9c3cc999 748 xtensa_cp[i] = reggroup_new (xstrprintf ("cp%d", i), USER_REGGROUP);
7b871568 749}
ca3bf3bd
DJ
750
751static void
752xtensa_add_reggroups (struct gdbarch *gdbarch)
753{
7b871568
MG
754 int i;
755
756 /* Predefined groups. */
ca3bf3bd
DJ
757 reggroup_add (gdbarch, all_reggroup);
758 reggroup_add (gdbarch, save_reggroup);
759 reggroup_add (gdbarch, restore_reggroup);
760 reggroup_add (gdbarch, system_reggroup);
7b871568
MG
761 reggroup_add (gdbarch, vector_reggroup);
762 reggroup_add (gdbarch, general_reggroup);
763 reggroup_add (gdbarch, float_reggroup);
764
765 /* Xtensa-specific groups. */
766 reggroup_add (gdbarch, xtensa_ar_reggroup);
767 reggroup_add (gdbarch, xtensa_user_reggroup);
768 reggroup_add (gdbarch, xtensa_vectra_reggroup);
ca3bf3bd 769
7b871568
MG
770 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
771 reggroup_add (gdbarch, xtensa_cp[i]);
ca3bf3bd
DJ
772}
773
7b871568
MG
774static int
775xtensa_coprocessor_register_group (struct reggroup *group)
776{
777 int i;
778
779 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
780 if (group == xtensa_cp[i])
781 return i;
782
783 return -1;
784}
ca3bf3bd
DJ
785
786#define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
787 | XTENSA_REGISTER_FLAGS_WRITABLE \
788 | XTENSA_REGISTER_FLAGS_VOLATILE)
789
790#define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
791 | XTENSA_REGISTER_FLAGS_WRITABLE)
792
793static int
794xtensa_register_reggroup_p (struct gdbarch *gdbarch,
795 int regnum,
796 struct reggroup *group)
797{
6b50c0b0 798 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd
DJ
799 xtensa_register_type_t type = reg->type;
800 xtensa_register_group_t rg = reg->group;
7b871568 801 int cp_number;
ca3bf3bd 802
57041825
MG
803 if (group == save_reggroup)
804 /* Every single register should be included into the list of registers
805 to be watched for changes while using -data-list-changed-registers. */
806 return 1;
807
ca3bf3bd
DJ
808 /* First, skip registers that are not visible to this target
809 (unknown and unmapped registers when not using ISS). */
810
811 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
812 return 0;
813 if (group == all_reggroup)
814 return 1;
815 if (group == xtensa_ar_reggroup)
816 return rg & xtRegisterGroupAddrReg;
817 if (group == xtensa_user_reggroup)
818 return rg & xtRegisterGroupUser;
819 if (group == float_reggroup)
820 return rg & xtRegisterGroupFloat;
821 if (group == general_reggroup)
822 return rg & xtRegisterGroupGeneral;
ca3bf3bd
DJ
823 if (group == system_reggroup)
824 return rg & xtRegisterGroupState;
825 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
826 return rg & xtRegisterGroupVectra;
57041825 827 if (group == restore_reggroup)
6b50c0b0 828 return (regnum < gdbarch_num_regs (gdbarch)
ca3bf3bd 829 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
1448a0a2
PM
830 cp_number = xtensa_coprocessor_register_group (group);
831 if (cp_number >= 0)
7b871568 832 return rg & (xtRegisterGroupCP0 << cp_number);
ca3bf3bd
DJ
833 else
834 return 1;
835}
836
837
ca3bf3bd
DJ
838/* Supply register REGNUM from the buffer specified by GREGS and LEN
839 in the general-purpose register set REGSET to register cache
bdb4c075 840 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
ca3bf3bd
DJ
841
842static void
843xtensa_supply_gregset (const struct regset *regset,
844 struct regcache *rc,
845 int regnum,
846 const void *gregs,
847 size_t len)
848{
19ba03f4 849 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
ac7936df 850 struct gdbarch *gdbarch = rc->arch ();
ca3bf3bd
DJ
851 int i;
852
cce7e648 853 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
ca3bf3bd 854
6b50c0b0
UW
855 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
856 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
857 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
858 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
859 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
860 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
304fe255 861 (char *) &regs->windowbase);
6b50c0b0
UW
862 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
863 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
304fe255 864 (char *) &regs->windowstart);
6b50c0b0
UW
865 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
866 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
304fe255 867 (char *) &regs->lbeg);
6b50c0b0
UW
868 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
869 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
304fe255 870 (char *) &regs->lend);
6b50c0b0
UW
871 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
872 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
304fe255 873 (char *) &regs->lcount);
6b50c0b0
UW
874 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
875 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
304fe255 876 (char *) &regs->sar);
6b50c0b0
UW
877 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
878 && regnum < gdbarch_tdep (gdbarch)->ar_base
879 + gdbarch_tdep (gdbarch)->num_aregs)
304fe255
UW
880 regcache_raw_supply (rc, regnum,
881 (char *) &regs->ar[regnum - gdbarch_tdep
6b50c0b0 882 (gdbarch)->ar_base]);
ca3bf3bd
DJ
883 else if (regnum == -1)
884 {
6b50c0b0
UW
885 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
886 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
304fe255 887 (char *) &regs->ar[i]);
ca3bf3bd
DJ
888 }
889}
890
891
892/* Xtensa register set. */
893
894static struct regset
895xtensa_gregset =
896{
897 NULL,
898 xtensa_supply_gregset
899};
900
901
97094034 902/* Iterate over supported core file register note sections. */
ca3bf3bd 903
97094034
AA
904static void
905xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
906 iterate_over_regset_sections_cb *cb,
907 void *cb_data,
908 const struct regcache *regcache)
ca3bf3bd 909{
97094034 910 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
ca3bf3bd 911
97094034
AA
912 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
913 NULL, cb_data);
ca3bf3bd
DJ
914}
915
916
bdb4c075 917/* Handling frames. */
ca3bf3bd 918
bdb4c075
MG
919/* Number of registers to save in case of Windowed ABI. */
920#define XTENSA_NUM_SAVED_AREGS 12
ca3bf3bd 921
bdb4c075
MG
922/* Frame cache part for Windowed ABI. */
923typedef struct xtensa_windowed_frame_cache
ca3bf3bd 924{
ee967b5f
MG
925 int wb; /* WINDOWBASE of the previous frame. */
926 int callsize; /* Call size of this frame. */
08b9c608
MG
927 int ws; /* WINDOWSTART of the previous frame. It keeps track of
928 life windows only. If there is no bit set for the
929 window, that means it had been already spilled
930 because of window overflow. */
931
932 /* Addresses of spilled A-registers.
933 AREGS[i] == -1, if corresponding AR is alive. */
ca3bf3bd 934 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
bdb4c075
MG
935} xtensa_windowed_frame_cache_t;
936
937/* Call0 ABI Definitions. */
938
581e13c1
MS
939#define C0_MAXOPDS 3 /* Maximum number of operands for prologue
940 analysis. */
bdb4c075
MG
941#define C0_CLESV 12 /* Callee-saved registers are here and up. */
942#define C0_SP 1 /* Register used as SP. */
943#define C0_FP 15 /* Register used as FP. */
944#define C0_RA 0 /* Register used as return address. */
945#define C0_ARGS 2 /* Register used as first arg/retval. */
946#define C0_NARGS 6 /* Number of A-regs for args/retvals. */
947
948/* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
949 A-register where the current content of the reg came from (in terms
950 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
951 mean that the orignal content of the register was saved to the stack.
952 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
953 know where SP will end up until the entire prologue has been analyzed. */
954
955#define C0_CONST -1 /* fr_reg value if register contains a constant. */
956#define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
957#define C0_NOSTK -1 /* to_stk value if register has not been stored. */
958
959extern xtensa_isa xtensa_default_isa;
960
961typedef struct xtensa_c0reg
962{
dbab50de
MG
963 int fr_reg; /* original register from which register content
964 is derived, or C0_CONST, or C0_INEXP. */
965 int fr_ofs; /* constant offset from reg, or immediate value. */
966 int to_stk; /* offset from original SP to register (4-byte aligned),
967 or C0_NOSTK if register has not been saved. */
bdb4c075
MG
968} xtensa_c0reg_t;
969
bdb4c075
MG
970/* Frame cache part for Call0 ABI. */
971typedef struct xtensa_call0_frame_cache
972{
dbab50de
MG
973 int c0_frmsz; /* Stack frame size. */
974 int c0_hasfp; /* Current frame uses frame pointer. */
975 int fp_regnum; /* A-register used as FP. */
976 int c0_fp; /* Actual value of frame pointer. */
977 int c0_fpalign; /* Dinamic adjustment for the stack
978 pointer. It's an AND mask. Zero,
979 if alignment was not adjusted. */
980 int c0_old_sp; /* In case of dynamic adjustment, it is
981 a register holding unaligned sp.
982 C0_INEXP, when undefined. */
983 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
984 stack offset. C0_NOSTK otherwise. */
985
986 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
bdb4c075
MG
987} xtensa_call0_frame_cache_t;
988
989typedef struct xtensa_frame_cache
990{
ee967b5f 991 CORE_ADDR base; /* Stack pointer of this frame. */
08b9c608
MG
992 CORE_ADDR pc; /* PC of this frame at the function entry point. */
993 CORE_ADDR ra; /* The raw return address of this frame. */
994 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
995 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
bdb4c075
MG
996 int call0; /* It's a call0 framework (else windowed). */
997 union
998 {
999 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1000 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1001 };
ca3bf3bd
DJ
1002} xtensa_frame_cache_t;
1003
1004
1005static struct xtensa_frame_cache *
bdb4c075 1006xtensa_alloc_frame_cache (int windowed)
ca3bf3bd
DJ
1007{
1008 xtensa_frame_cache_t *cache;
1009 int i;
1010
1011 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1012
1013 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1014
1015 cache->base = 0;
1016 cache->pc = 0;
1017 cache->ra = 0;
ca3bf3bd 1018 cache->ps = 0;
ca3bf3bd 1019 cache->prev_sp = 0;
bdb4c075
MG
1020 cache->call0 = !windowed;
1021 if (cache->call0)
1022 {
1023 cache->c0.c0_frmsz = -1;
1024 cache->c0.c0_hasfp = 0;
1025 cache->c0.fp_regnum = -1;
1026 cache->c0.c0_fp = -1;
dbab50de
MG
1027 cache->c0.c0_fpalign = 0;
1028 cache->c0.c0_old_sp = C0_INEXP;
1029 cache->c0.c0_sp_ofs = C0_NOSTK;
ca3bf3bd 1030
bdb4c075
MG
1031 for (i = 0; i < C0_NREGS; i++)
1032 {
1033 cache->c0.c0_rt[i].fr_reg = i;
1034 cache->c0.c0_rt[i].fr_ofs = 0;
1035 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1036 }
1037 }
1038 else
1039 {
1040 cache->wd.wb = 0;
ee967b5f 1041 cache->wd.ws = 0;
bdb4c075 1042 cache->wd.callsize = -1;
ca3bf3bd 1043
bdb4c075
MG
1044 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1045 cache->wd.aregs[i] = -1;
1046 }
ca3bf3bd
DJ
1047 return cache;
1048}
1049
1050
1051static CORE_ADDR
1052xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1053{
1054 return address & ~15;
1055}
1056
1057
1058static CORE_ADDR
1059xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1060{
ff7a4c00 1061 gdb_byte buf[8];
0dfff4cb 1062 CORE_ADDR pc;
ca3bf3bd 1063
a74ce742
PM
1064 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1065 host_address_to_string (next_frame));
ca3bf3bd 1066
6b50c0b0 1067 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1068 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
ca3bf3bd 1069
0dfff4cb 1070 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
ca3bf3bd 1071
0dfff4cb 1072 return pc;
ca3bf3bd
DJ
1073}
1074
1075
1076static struct frame_id
5142f611 1077xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
ca3bf3bd
DJ
1078{
1079 CORE_ADDR pc, fp;
ca3bf3bd 1080
5142f611 1081 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
ca3bf3bd 1082
5142f611
MG
1083 pc = get_frame_pc (this_frame);
1084 fp = get_frame_register_unsigned
1085 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
ca3bf3bd
DJ
1086
1087 /* Make dummy frame ID unique by adding a constant. */
bdb4c075 1088 return frame_id_build (fp + SP_ALIGNMENT, pc);
ca3bf3bd
DJ
1089}
1090
08b9c608
MG
1091/* Returns true, if instruction to execute next is unique to Xtensa Window
1092 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1093
1094static int
1095xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1096{
1097 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1098 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1099 unsigned int code;
1100
1101 if (byte_order == BFD_ENDIAN_BIG)
1102 {
1103 /* Check, if this is L32E or S32E. */
1104 code = insn & 0xf000ff00;
1105 if ((code == 0x00009000) || (code == 0x00009400))
1106 return 1;
1107 /* Check, if this is RFWU or RFWO. */
1108 code = insn & 0xffffff00;
1109 return ((code == 0x00430000) || (code == 0x00530000));
1110 }
1111 else
1112 {
1113 /* Check, if this is L32E or S32E. */
1114 code = insn & 0x00ff000f;
1115 if ((code == 0x090000) || (code == 0x490000))
1116 return 1;
1117 /* Check, if this is RFWU or RFWO. */
1118 code = insn & 0x00ffffff;
1119 return ((code == 0x00003400) || (code == 0x00003500));
1120 }
1121}
1122
ee967b5f
MG
1123/* Returns the best guess about which register is a frame pointer
1124 for the function containing CURRENT_PC. */
1125
d4709618
MG
1126#define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1127#define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
ee967b5f
MG
1128
1129static unsigned int
1130xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1131{
1132#define RETURN_FP goto done
1133
1134 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1135 CORE_ADDR start_addr;
1136 xtensa_isa isa;
1137 xtensa_insnbuf ins, slot;
948f8e3d 1138 gdb_byte ibuf[XTENSA_ISA_BSZ];
ee967b5f
MG
1139 CORE_ADDR ia, bt, ba;
1140 xtensa_format ifmt;
1141 int ilen, islots, is;
1142 xtensa_opcode opc;
1143 const char *opcname;
1144
1145 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1146 if (start_addr == 0)
1147 return fp_regnum;
1148
ee967b5f
MG
1149 isa = xtensa_default_isa;
1150 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1151 ins = xtensa_insnbuf_alloc (isa);
1152 slot = xtensa_insnbuf_alloc (isa);
1153 ba = 0;
1154
1155 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1156 {
1157 if (ia + xtensa_isa_maxlength (isa) > bt)
1158 {
1159 ba = ia;
1160 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1161 ? ba + XTENSA_ISA_BSZ : current_pc;
d4709618
MG
1162 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1163 RETURN_FP;
ee967b5f
MG
1164 }
1165
1166 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1167 ifmt = xtensa_format_decode (isa, ins);
1168 if (ifmt == XTENSA_UNDEFINED)
1169 RETURN_FP;
1170 ilen = xtensa_format_length (isa, ifmt);
1171 if (ilen == XTENSA_UNDEFINED)
1172 RETURN_FP;
1173 islots = xtensa_format_num_slots (isa, ifmt);
1174 if (islots == XTENSA_UNDEFINED)
1175 RETURN_FP;
1176
1177 for (is = 0; is < islots; ++is)
1178 {
1179 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1180 RETURN_FP;
1181
1182 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1183 if (opc == XTENSA_UNDEFINED)
1184 RETURN_FP;
1185
1186 opcname = xtensa_opcode_name (isa, opc);
1187
1188 if (strcasecmp (opcname, "mov.n") == 0
1189 || strcasecmp (opcname, "or") == 0)
1190 {
1191 unsigned int register_operand;
1192
1193 /* Possible candidate for setting frame pointer
581e13c1 1194 from A1. This is what we are looking for. */
ee967b5f
MG
1195
1196 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1197 is, slot, &register_operand) != 0)
1198 RETURN_FP;
1199 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1200 RETURN_FP;
1201 if (register_operand == 1) /* Mov{.n} FP A1. */
1202 {
1203 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1204 &register_operand) != 0)
1205 RETURN_FP;
1206 if (xtensa_operand_decode (isa, opc, 0,
1207 &register_operand) != 0)
1208 RETURN_FP;
1209
581e13c1
MS
1210 fp_regnum
1211 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
ee967b5f
MG
1212 RETURN_FP;
1213 }
1214 }
1215
1216 if (
1217 /* We have problems decoding the memory. */
1218 opcname == NULL
1219 || strcasecmp (opcname, "ill") == 0
1220 || strcasecmp (opcname, "ill.n") == 0
1221 /* Hit planted breakpoint. */
1222 || strcasecmp (opcname, "break") == 0
1223 || strcasecmp (opcname, "break.n") == 0
1224 /* Flow control instructions finish prologue. */
1225 || xtensa_opcode_is_branch (isa, opc) > 0
1226 || xtensa_opcode_is_jump (isa, opc) > 0
1227 || xtensa_opcode_is_loop (isa, opc) > 0
1228 || xtensa_opcode_is_call (isa, opc) > 0
1229 || strcasecmp (opcname, "simcall") == 0
1230 || strcasecmp (opcname, "syscall") == 0)
1231 /* Can not continue analysis. */
1232 RETURN_FP;
1233 }
1234 }
1235done:
1236 xtensa_insnbuf_free(isa, slot);
1237 xtensa_insnbuf_free(isa, ins);
1238 return fp_regnum;
1239}
1240
bdb4c075
MG
1241/* The key values to identify the frame using "cache" are
1242
ee967b5f 1243 cache->base = SP (or best guess about FP) of this frame;
bdb4c075 1244 cache->pc = entry-PC (entry point of the frame function);
581e13c1 1245 cache->prev_sp = SP of the previous frame. */
bdb4c075
MG
1246
1247static void
5142f611 1248call0_frame_cache (struct frame_info *this_frame,
dbab50de 1249 xtensa_frame_cache_t *cache, CORE_ADDR pc);
ca3bf3bd 1250
08b9c608
MG
1251static void
1252xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1253 xtensa_frame_cache_t *cache,
1254 CORE_ADDR pc);
1255
ca3bf3bd 1256static struct xtensa_frame_cache *
5142f611 1257xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
ca3bf3bd
DJ
1258{
1259 xtensa_frame_cache_t *cache;
ca3bf3bd 1260 CORE_ADDR ra, wb, ws, pc, sp, ps;
5142f611 1261 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 1262 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ee967b5f 1263 unsigned int fp_regnum;
98689b25 1264 int windowed, ps_regnum;
ca3bf3bd 1265
ca3bf3bd 1266 if (*this_cache)
19ba03f4 1267 return (struct xtensa_frame_cache *) *this_cache;
ca3bf3bd 1268
98689b25
MG
1269 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1270 ps_regnum = gdbarch_ps_regnum (gdbarch);
68d6df83
MG
1271 ps = (ps_regnum >= 0
1272 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
98689b25
MG
1273
1274 windowed = windowing_enabled (gdbarch, ps);
bdb4c075 1275
ca3bf3bd 1276 /* Get pristine xtensa-frame. */
bdb4c075 1277 cache = xtensa_alloc_frame_cache (windowed);
ca3bf3bd
DJ
1278 *this_cache = cache;
1279
bdb4c075 1280 if (windowed)
ca3bf3bd 1281 {
a08b52b5 1282 LONGEST op1;
98689b25 1283
bdb4c075 1284 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
5142f611
MG
1285 wb = get_frame_register_unsigned (this_frame,
1286 gdbarch_tdep (gdbarch)->wb_regnum);
1287 ws = get_frame_register_unsigned (this_frame,
1288 gdbarch_tdep (gdbarch)->ws_regnum);
ca3bf3bd 1289
a08b52b5
MF
1290 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1291 && XTENSA_IS_ENTRY (gdbarch, op1))
ca3bf3bd 1292 {
bdb4c075 1293 int callinc = CALLINC (ps);
5142f611
MG
1294 ra = get_frame_register_unsigned
1295 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
bdb4c075
MG
1296
1297 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1298 cache->wd.callsize = 0;
1299 cache->wd.wb = wb;
1300 cache->wd.ws = ws;
5142f611
MG
1301 cache->prev_sp = get_frame_register_unsigned
1302 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
ee967b5f
MG
1303
1304 /* This only can be the outermost frame since we are
1305 just about to execute ENTRY. SP hasn't been set yet.
1306 We can assume any frame size, because it does not
1307 matter, and, let's fake frame base in cache. */
98689b25 1308 cache->base = cache->prev_sp - 16;
ee967b5f
MG
1309
1310 cache->pc = pc;
1311 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1312 cache->ps = (ps & ~PS_CALLINC_MASK)
1313 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1314
1315 return cache;
bdb4c075
MG
1316 }
1317 else
1318 {
ee967b5f 1319 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
5142f611
MG
1320 ra = get_frame_register_unsigned (this_frame,
1321 gdbarch_tdep (gdbarch)->a0_base);
bdb4c075 1322 cache->wd.callsize = WINSIZE (ra);
304fe255 1323 cache->wd.wb = (wb - cache->wd.callsize / 4)
6b50c0b0 1324 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
bdb4c075 1325 cache->wd.ws = ws & ~(1 << wb);
ca3bf3bd 1326
5142f611 1327 cache->pc = get_frame_func (this_frame);
f6402f18 1328 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
ee967b5f
MG
1329 cache->ps = (ps & ~PS_CALLINC_MASK)
1330 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1331 }
bdb4c075
MG
1332
1333 if (cache->wd.ws == 0)
ca3bf3bd 1334 {
bdb4c075 1335 int i;
ca3bf3bd 1336
bdb4c075 1337 /* Set A0...A3. */
5142f611
MG
1338 sp = get_frame_register_unsigned
1339 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
bdb4c075
MG
1340
1341 for (i = 0; i < 4; i++, sp += 4)
1342 {
1343 cache->wd.aregs[i] = sp;
1344 }
ca3bf3bd 1345
bdb4c075 1346 if (cache->wd.callsize > 4)
ca3bf3bd 1347 {
bdb4c075 1348 /* Set A4...A7/A11. */
ee967b5f
MG
1349 /* Get the SP of the frame previous to the previous one.
1350 To achieve this, we have to dereference SP twice. */
e17a4113
UW
1351 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1352 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
bdb4c075
MG
1353 sp -= cache->wd.callsize * 4;
1354
ee967b5f 1355 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
bdb4c075
MG
1356 {
1357 cache->wd.aregs[i] = sp;
1358 }
ca3bf3bd
DJ
1359 }
1360 }
ca3bf3bd 1361
bdb4c075 1362 if ((cache->prev_sp == 0) && ( ra != 0 ))
08b9c608
MG
1363 /* If RA is equal to 0 this frame is an outermost frame. Leave
1364 cache->prev_sp unchanged marking the boundary of the frame stack. */
ca3bf3bd 1365 {
ee967b5f 1366 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
bdb4c075
MG
1367 {
1368 /* Register window overflow already happened.
1369 We can read caller's SP from the proper spill loction. */
5142f611
MG
1370 sp = get_frame_register_unsigned
1371 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
e17a4113 1372 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
bdb4c075
MG
1373 }
1374 else
1375 {
1376 /* Read caller's frame SP directly from the previous window. */
ee967b5f 1377 int regnum = arreg_number
91d8eb23 1378 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
304fe255 1379 cache->wd.wb);
ca3bf3bd 1380
08b9c608 1381 cache->prev_sp = xtensa_read_register (regnum);
bdb4c075 1382 }
ca3bf3bd
DJ
1383 }
1384 }
08b9c608
MG
1385 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1386 {
1387 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1388
1389 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1390 /* Everything was set already, including cache->base. */
1391 return cache;
1392 }
bdb4c075
MG
1393 else /* Call0 framework. */
1394 {
dbab50de 1395 call0_frame_cache (this_frame, cache, pc);
ee967b5f 1396 fp_regnum = cache->c0.fp_regnum;
bdb4c075 1397 }
ca3bf3bd 1398
5142f611 1399 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
ca3bf3bd 1400
ca3bf3bd
DJ
1401 return cache;
1402}
1403
dbab50de
MG
1404static int xtensa_session_once_reported = 1;
1405
1406/* Report a problem with prologue analysis while doing backtracing.
1407 But, do it only once to avoid annoyng repeated messages. */
1408
4e6ca6d5
MG
1409static void
1410warning_once (void)
dbab50de
MG
1411{
1412 if (xtensa_session_once_reported == 0)
1413 warning (_("\
1414\nUnrecognised function prologue. Stack trace cannot be resolved. \
1415This message will not be repeated in this session.\n"));
1416
1417 xtensa_session_once_reported = 1;
1418}
1419
1420
ca3bf3bd 1421static void
5142f611 1422xtensa_frame_this_id (struct frame_info *this_frame,
ca3bf3bd
DJ
1423 void **this_cache,
1424 struct frame_id *this_id)
1425{
1426 struct xtensa_frame_cache *cache =
5142f611 1427 xtensa_frame_cache (this_frame, this_cache);
ca3bf3bd
DJ
1428
1429 if (cache->prev_sp == 0)
1430 return;
1431
5142f611 1432 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
bdb4c075 1433}
ca3bf3bd 1434
5142f611
MG
1435static struct value *
1436xtensa_frame_prev_register (struct frame_info *this_frame,
ca3bf3bd 1437 void **this_cache,
5142f611 1438 int regnum)
ca3bf3bd 1439{
5142f611
MG
1440 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1441 struct xtensa_frame_cache *cache;
1442 ULONGEST saved_reg = 0;
ca3bf3bd
DJ
1443 int done = 1;
1444
5142f611
MG
1445 if (*this_cache == NULL)
1446 *this_cache = xtensa_frame_cache (this_frame, this_cache);
19ba03f4 1447 cache = (struct xtensa_frame_cache *) *this_cache;
ca3bf3bd 1448
6b50c0b0 1449 if (regnum ==gdbarch_pc_regnum (gdbarch))
bdb4c075 1450 saved_reg = cache->ra;
6b50c0b0 1451 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
bdb4c075
MG
1452 saved_reg = cache->prev_sp;
1453 else if (!cache->call0)
ca3bf3bd 1454 {
6b50c0b0 1455 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
ee967b5f 1456 saved_reg = cache->wd.ws;
6b50c0b0 1457 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
bdb4c075 1458 saved_reg = cache->wd.wb;
6b50c0b0 1459 else if (regnum == gdbarch_ps_regnum (gdbarch))
bdb4c075 1460 saved_reg = cache->ps;
ca3bf3bd 1461 else
bdb4c075 1462 done = 0;
ca3bf3bd 1463 }
ca3bf3bd
DJ
1464 else
1465 done = 0;
1466
1467 if (done)
5142f611 1468 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
ca3bf3bd 1469
bdb4c075 1470 if (!cache->call0) /* Windowed ABI. */
ca3bf3bd 1471 {
ee967b5f
MG
1472 /* Convert A-register numbers to AR-register numbers,
1473 if we deal with A-register. */
94a0e877 1474 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
6b50c0b0 1475 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
ee967b5f 1476 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
ca3bf3bd 1477
ee967b5f 1478 /* Check, if we deal with AR-register saved on stack. */
6b50c0b0
UW
1479 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1480 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1481 + gdbarch_tdep (gdbarch)->num_aregs))
bdb4c075 1482 {
ee967b5f 1483 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
ca3bf3bd 1484
bdb4c075
MG
1485 if (areg >= 0
1486 && areg < XTENSA_NUM_SAVED_AREGS
1487 && cache->wd.aregs[areg] != -1)
5142f611
MG
1488 return frame_unwind_got_memory (this_frame, regnum,
1489 cache->wd.aregs[areg]);
ca3bf3bd
DJ
1490 }
1491 }
bdb4c075
MG
1492 else /* Call0 ABI. */
1493 {
6b50c0b0
UW
1494 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1495 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
304fe255 1496 + C0_NREGS))
6b50c0b0 1497 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
ca3bf3bd 1498
bdb4c075
MG
1499 if (reg < C0_NREGS)
1500 {
1501 CORE_ADDR spe;
1502 int stkofs;
1503
1504 /* If register was saved in the prologue, retrieve it. */
1505 stkofs = cache->c0.c0_rt[reg].to_stk;
1506 if (stkofs != C0_NOSTK)
1507 {
1508 /* Determine SP on entry based on FP. */
1509 spe = cache->c0.c0_fp
1510 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
5142f611 1511
581e13c1
MS
1512 return frame_unwind_got_memory (this_frame, regnum,
1513 spe + stkofs);
bdb4c075
MG
1514 }
1515 }
1516 }
1517
1518 /* All other registers have been either saved to
1519 the stack or are still alive in the processor. */
ca3bf3bd 1520
5142f611 1521 return frame_unwind_got_register (this_frame, regnum, regnum);
ca3bf3bd
DJ
1522}
1523
1524
1525static const struct frame_unwind
5142f611 1526xtensa_unwind =
ca3bf3bd
DJ
1527{
1528 NORMAL_FRAME,
8fbca658 1529 default_frame_unwind_stop_reason,
ca3bf3bd 1530 xtensa_frame_this_id,
5142f611
MG
1531 xtensa_frame_prev_register,
1532 NULL,
1533 default_frame_sniffer
ca3bf3bd
DJ
1534};
1535
ca3bf3bd 1536static CORE_ADDR
5142f611 1537xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
ca3bf3bd
DJ
1538{
1539 struct xtensa_frame_cache *cache =
5142f611 1540 xtensa_frame_cache (this_frame, this_cache);
ca3bf3bd
DJ
1541
1542 return cache->base;
1543}
1544
1545static const struct frame_base
1546xtensa_frame_base =
1547{
5142f611 1548 &xtensa_unwind,
ca3bf3bd
DJ
1549 xtensa_frame_base_address,
1550 xtensa_frame_base_address,
1551 xtensa_frame_base_address
1552};
1553
1554
1555static void
1556xtensa_extract_return_value (struct type *type,
1557 struct regcache *regcache,
1558 void *dst)
1559{
ac7936df 1560 struct gdbarch *gdbarch = regcache->arch ();
19ba03f4 1561 bfd_byte *valbuf = (bfd_byte *) dst;
ca3bf3bd
DJ
1562 int len = TYPE_LENGTH (type);
1563 ULONGEST pc, wb;
1564 int callsize, areg;
1565 int offset = 0;
1566
1567 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1568
1569 gdb_assert(len > 0);
1570
6b50c0b0 1571 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075
MG
1572 {
1573 /* First, we have to find the caller window in the register file. */
6b50c0b0 1574 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
91d8eb23 1575 callsize = extract_call_winsize (gdbarch, pc);
ca3bf3bd 1576
bdb4c075
MG
1577 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1578 if (len > (callsize > 8 ? 8 : 16))
1579 internal_error (__FILE__, __LINE__,
581e13c1
MS
1580 _("cannot extract return value of %d bytes long"),
1581 len);
ca3bf3bd 1582
bdb4c075
MG
1583 /* Get the register offset of the return
1584 register (A2) in the caller window. */
304fe255 1585 regcache_raw_read_unsigned
6b50c0b0 1586 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
ee967b5f 1587 areg = arreg_number (gdbarch,
91d8eb23 1588 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
bdb4c075
MG
1589 }
1590 else
1591 {
1592 /* No windowing hardware - Call0 ABI. */
94a0e877 1593 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
bdb4c075 1594 }
ca3bf3bd
DJ
1595
1596 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1597
6b50c0b0 1598 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1599 offset = 4 - len;
1600
1601 for (; len > 0; len -= 4, areg++, valbuf += 4)
1602 {
1603 if (len < 4)
1604 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1605 else
1606 regcache_raw_read (regcache, areg, valbuf);
1607 }
1608}
1609
1610
1611static void
1612xtensa_store_return_value (struct type *type,
1613 struct regcache *regcache,
1614 const void *dst)
1615{
ac7936df 1616 struct gdbarch *gdbarch = regcache->arch ();
19ba03f4 1617 const bfd_byte *valbuf = (const bfd_byte *) dst;
ca3bf3bd
DJ
1618 unsigned int areg;
1619 ULONGEST pc, wb;
1620 int callsize;
1621 int len = TYPE_LENGTH (type);
1622 int offset = 0;
1623
1624 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1625
6b50c0b0 1626 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075 1627 {
6b50c0b0
UW
1628 regcache_raw_read_unsigned
1629 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1630 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
91d8eb23 1631 callsize = extract_call_winsize (gdbarch, pc);
ca3bf3bd 1632
bdb4c075
MG
1633 if (len > (callsize > 8 ? 8 : 16))
1634 internal_error (__FILE__, __LINE__,
1635 _("unimplemented for this length: %d"),
1636 TYPE_LENGTH (type));
ee967b5f
MG
1637 areg = arreg_number (gdbarch,
1638 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
ca3bf3bd 1639
bdb4c075 1640 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
ca3bf3bd 1641 callsize, (int) wb);
bdb4c075
MG
1642 }
1643 else
1644 {
94a0e877 1645 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
bdb4c075 1646 }
ca3bf3bd 1647
6b50c0b0 1648 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1649 offset = 4 - len;
1650
ca3bf3bd
DJ
1651 for (; len > 0; len -= 4, areg++, valbuf += 4)
1652 {
1653 if (len < 4)
1654 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1655 else
1656 regcache_raw_write (regcache, areg, valbuf);
1657 }
1658}
1659
1660
bdb4c075 1661static enum return_value_convention
ca3bf3bd 1662xtensa_return_value (struct gdbarch *gdbarch,
6a3a010b 1663 struct value *function,
ca3bf3bd
DJ
1664 struct type *valtype,
1665 struct regcache *regcache,
1666 gdb_byte *readbuf,
1667 const gdb_byte *writebuf)
1668{
bdb4c075 1669 /* Structures up to 16 bytes are returned in registers. */
ca3bf3bd
DJ
1670
1671 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1672 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1673 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1674 && TYPE_LENGTH (valtype) > 16);
1675
1676 if (struct_return)
1677 return RETURN_VALUE_STRUCT_CONVENTION;
1678
1679 DEBUGTRACE ("xtensa_return_value(...)\n");
1680
1681 if (writebuf != NULL)
1682 {
1683 xtensa_store_return_value (valtype, regcache, writebuf);
1684 }
1685
1686 if (readbuf != NULL)
1687 {
1688 gdb_assert (!struct_return);
1689 xtensa_extract_return_value (valtype, regcache, readbuf);
1690 }
1691 return RETURN_VALUE_REGISTER_CONVENTION;
1692}
1693
1694
1695/* DUMMY FRAME */
1696
1697static CORE_ADDR
1698xtensa_push_dummy_call (struct gdbarch *gdbarch,
1699 struct value *function,
1700 struct regcache *regcache,
1701 CORE_ADDR bp_addr,
1702 int nargs,
1703 struct value **args,
1704 CORE_ADDR sp,
1705 int struct_return,
1706 CORE_ADDR struct_addr)
1707{
e17a4113 1708 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ca3bf3bd
DJ
1709 int i;
1710 int size, onstack_size;
ff7a4c00 1711 gdb_byte *buf = (gdb_byte *) alloca (16);
ca3bf3bd
DJ
1712 CORE_ADDR ra, ps;
1713 struct argument_info
1714 {
1715 const bfd_byte *contents;
1716 int length;
1717 int onstack; /* onstack == 0 => in reg */
1718 int align; /* alignment */
1719 union
1720 {
581e13c1
MS
1721 int offset; /* stack offset if on stack. */
1722 int regno; /* regno if in register. */
ca3bf3bd
DJ
1723 } u;
1724 };
1725
1726 struct argument_info *arg_info =
1727 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1728
1729 CORE_ADDR osp = sp;
1730
1731 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1732
1733 if (xtensa_debug_level > 3)
1734 {
1735 int i;
1736 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1737 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1738 "struct_addr=0x%x\n",
1739 (int) sp, (int) struct_return, (int) struct_addr);
1740
1741 for (i = 0; i < nargs; i++)
1742 {
1743 struct value *arg = args[i];
1744 struct type *arg_type = check_typedef (value_type (arg));
3329c4b5
PM
1745 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1746 host_address_to_string (arg),
1747 TYPE_LENGTH (arg_type));
ca3bf3bd
DJ
1748 switch (TYPE_CODE (arg_type))
1749 {
1750 case TYPE_CODE_INT:
1751 fprintf_unfiltered (gdb_stdlog, "int");
1752 break;
1753 case TYPE_CODE_STRUCT:
1754 fprintf_unfiltered (gdb_stdlog, "struct");
1755 break;
1756 default:
1757 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1758 break;
1759 }
3329c4b5
PM
1760 fprintf_unfiltered (gdb_stdlog, " %s\n",
1761 host_address_to_string (value_contents (arg)));
ca3bf3bd
DJ
1762 }
1763 }
1764
1765 /* First loop: collect information.
1766 Cast into type_long. (This shouldn't happen often for C because
1767 GDB already does this earlier.) It's possible that GDB could
1768 do it all the time but it's harmless to leave this code here. */
1769
1770 size = 0;
1771 onstack_size = 0;
1772 i = 0;
1773
1774 if (struct_return)
1775 size = REGISTER_SIZE;
1776
1777 for (i = 0; i < nargs; i++)
1778 {
1779 struct argument_info *info = &arg_info[i];
1780 struct value *arg = args[i];
1781 struct type *arg_type = check_typedef (value_type (arg));
1782
1783 switch (TYPE_CODE (arg_type))
1784 {
1785 case TYPE_CODE_INT:
1786 case TYPE_CODE_BOOL:
1787 case TYPE_CODE_CHAR:
1788 case TYPE_CODE_RANGE:
1789 case TYPE_CODE_ENUM:
1790
1791 /* Cast argument to long if necessary as the mask does it too. */
0dfff4cb
UW
1792 if (TYPE_LENGTH (arg_type)
1793 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
ca3bf3bd 1794 {
0dfff4cb 1795 arg_type = builtin_type (gdbarch)->builtin_long;
ca3bf3bd
DJ
1796 arg = value_cast (arg_type, arg);
1797 }
bdb4c075
MG
1798 /* Aligment is equal to the type length for the basic types. */
1799 info->align = TYPE_LENGTH (arg_type);
ca3bf3bd
DJ
1800 break;
1801
1802 case TYPE_CODE_FLT:
1803
1804 /* Align doubles correctly. */
0dfff4cb
UW
1805 if (TYPE_LENGTH (arg_type)
1806 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1807 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
ca3bf3bd 1808 else
0dfff4cb 1809 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
ca3bf3bd
DJ
1810 break;
1811
1812 case TYPE_CODE_STRUCT:
1813 default:
0dfff4cb 1814 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
ca3bf3bd
DJ
1815 break;
1816 }
1817 info->length = TYPE_LENGTH (arg_type);
1818 info->contents = value_contents (arg);
1819
1820 /* Align size and onstack_size. */
1821 size = (size + info->align - 1) & ~(info->align - 1);
1822 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1823
91d8eb23 1824 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
ca3bf3bd
DJ
1825 {
1826 info->onstack = 1;
1827 info->u.offset = onstack_size;
1828 onstack_size += info->length;
1829 }
1830 else
1831 {
1832 info->onstack = 0;
91d8eb23 1833 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
ca3bf3bd
DJ
1834 }
1835 size += info->length;
1836 }
1837
1838 /* Adjust the stack pointer and align it. */
1839 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1840
bdb4c075 1841 /* Simulate MOVSP, if Windowed ABI. */
6b50c0b0 1842 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
304fe255 1843 && (sp != osp))
ca3bf3bd
DJ
1844 {
1845 read_memory (osp - 16, buf, 16);
1846 write_memory (sp - 16, buf, 16);
1847 }
1848
1849 /* Second Loop: Load arguments. */
1850
1851 if (struct_return)
1852 {
e17a4113 1853 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
91d8eb23 1854 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
ca3bf3bd
DJ
1855 }
1856
1857 for (i = 0; i < nargs; i++)
1858 {
1859 struct argument_info *info = &arg_info[i];
1860
1861 if (info->onstack)
1862 {
1863 int n = info->length;
1864 CORE_ADDR offset = sp + info->u.offset;
1865
1866 /* Odd-sized structs are aligned to the lower side of a memory
1867 word in big-endian mode and require a shift. This only
1868 applies for structures smaller than one word. */
1869
4c6b5505 1870 if (n < REGISTER_SIZE
6b50c0b0 1871 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1872 offset += (REGISTER_SIZE - n);
1873
1874 write_memory (offset, info->contents, info->length);
1875
1876 }
1877 else
1878 {
1879 int n = info->length;
1880 const bfd_byte *cp = info->contents;
1881 int r = info->u.regno;
1882
1883 /* Odd-sized structs are aligned to the lower side of registers in
1884 big-endian mode and require a shift. The odd-sized leftover will
1885 be at the end. Note that this is only true for structures smaller
1886 than REGISTER_SIZE; for larger odd-sized structures the excess
1887 will be left-aligned in the register on both endiannesses. */
1888
e17a4113 1889 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
ca3bf3bd 1890 {
e17a4113
UW
1891 ULONGEST v;
1892 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
ca3bf3bd
DJ
1893 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1894
e17a4113 1895 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
ca3bf3bd
DJ
1896 regcache_cooked_write (regcache, r, buf);
1897
1898 cp += REGISTER_SIZE;
1899 n -= REGISTER_SIZE;
1900 r++;
1901 }
1902 else
1903 while (n > 0)
1904 {
ca3bf3bd
DJ
1905 regcache_cooked_write (regcache, r, cp);
1906
ca3bf3bd
DJ
1907 cp += REGISTER_SIZE;
1908 n -= REGISTER_SIZE;
1909 r++;
1910 }
1911 }
1912 }
1913
ca3bf3bd 1914 /* Set the return address of dummy frame to the dummy address.
bdb4c075 1915 The return address for the current function (in A0) is
ca3bf3bd
DJ
1916 saved in the dummy frame, so we can savely overwrite A0 here. */
1917
6b50c0b0 1918 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075 1919 {
98689b25 1920 ULONGEST val;
68d6df83 1921
bdb4c075 1922 ra = (bp_addr & 0x3fffffff) | 0x40000000;
98689b25
MG
1923 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1924 ps = (unsigned long) val & ~0x00030000;
304fe255 1925 regcache_cooked_write_unsigned
6b50c0b0 1926 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
bdb4c075 1927 regcache_cooked_write_unsigned (regcache,
6b50c0b0 1928 gdbarch_ps_regnum (gdbarch),
bdb4c075 1929 ps | 0x00010000);
94a0e877
MG
1930
1931 /* All the registers have been saved. After executing
1932 dummy call, they all will be restored. So it's safe
1933 to modify WINDOWSTART register to make it look like there
1934 is only one register window corresponding to WINDOWEBASE. */
1935
1936 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
e17a4113
UW
1937 regcache_cooked_write_unsigned
1938 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1939 1 << extract_unsigned_integer (buf, 4, byte_order));
bdb4c075
MG
1940 }
1941 else
1942 {
1943 /* Simulate CALL0: write RA into A0 register. */
304fe255 1944 regcache_cooked_write_unsigned
94a0e877 1945 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
bdb4c075 1946 }
ca3bf3bd
DJ
1947
1948 /* Set new stack pointer and return it. */
304fe255 1949 regcache_cooked_write_unsigned (regcache,
6b50c0b0 1950 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
ca3bf3bd
DJ
1951 /* Make dummy frame ID unique by adding a constant. */
1952 return sp + SP_ALIGNMENT;
1953}
1954
cd6c3b4f
YQ
1955/* Implement the breakpoint_kind_from_pc gdbarch method. */
1956
d19280ad
YQ
1957static int
1958xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1959{
1960 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1961 return 2;
1962 else
1963 return 4;
1964}
ca3bf3bd
DJ
1965
1966/* Return a breakpoint for the current location of PC. We always use
1967 the density version if we have density instructions (regardless of the
1968 current instruction at PC), and use regular instructions otherwise. */
1969
1970#define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1971#define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1972#define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1973#define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1974
cd6c3b4f
YQ
1975/* Implement the sw_breakpoint_from_kind gdbarch method. */
1976
d19280ad
YQ
1977static const gdb_byte *
1978xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
ca3bf3bd 1979{
d19280ad 1980 *size = kind;
ca3bf3bd 1981
d19280ad 1982 if (kind == 4)
ca3bf3bd 1983 {
d19280ad
YQ
1984 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1985 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1986
67d57894 1987 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
d19280ad 1988 return big_breakpoint;
ca3bf3bd 1989 else
d19280ad 1990 return little_breakpoint;
ca3bf3bd
DJ
1991 }
1992 else
1993 {
d19280ad
YQ
1994 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1995 static unsigned char density_little_breakpoint[]
1996 = DENSITY_LITTLE_BREAKPOINT;
1997
67d57894 1998 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
d19280ad 1999 return density_big_breakpoint;
ca3bf3bd 2000 else
d19280ad 2001 return density_little_breakpoint;
ca3bf3bd
DJ
2002 }
2003}
2004
bdb4c075
MG
2005/* Call0 ABI support routines. */
2006
f976a05d
MG
2007/* Return true, if PC points to "ret" or "ret.n". */
2008
2009static int
2010call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2011{
2012#define RETURN_RET goto done
2013 xtensa_isa isa;
2014 xtensa_insnbuf ins, slot;
948f8e3d 2015 gdb_byte ibuf[XTENSA_ISA_BSZ];
f976a05d
MG
2016 CORE_ADDR ia, bt, ba;
2017 xtensa_format ifmt;
2018 int ilen, islots, is;
2019 xtensa_opcode opc;
2020 const char *opcname;
2021 int found_ret = 0;
2022
2023 isa = xtensa_default_isa;
2024 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2025 ins = xtensa_insnbuf_alloc (isa);
2026 slot = xtensa_insnbuf_alloc (isa);
2027 ba = 0;
2028
2029 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2030 {
2031 if (ia + xtensa_isa_maxlength (isa) > bt)
2032 {
2033 ba = ia;
2034 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2035 ? ba + XTENSA_ISA_BSZ : finish_pc;
2036 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2037 RETURN_RET;
2038 }
2039
2040 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2041 ifmt = xtensa_format_decode (isa, ins);
2042 if (ifmt == XTENSA_UNDEFINED)
2043 RETURN_RET;
2044 ilen = xtensa_format_length (isa, ifmt);
2045 if (ilen == XTENSA_UNDEFINED)
2046 RETURN_RET;
2047 islots = xtensa_format_num_slots (isa, ifmt);
2048 if (islots == XTENSA_UNDEFINED)
2049 RETURN_RET;
2050
2051 for (is = 0; is < islots; ++is)
2052 {
2053 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2054 RETURN_RET;
2055
2056 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2057 if (opc == XTENSA_UNDEFINED)
2058 RETURN_RET;
2059
2060 opcname = xtensa_opcode_name (isa, opc);
2061
2062 if ((strcasecmp (opcname, "ret.n") == 0)
2063 || (strcasecmp (opcname, "ret") == 0))
2064 {
2065 found_ret = 1;
2066 RETURN_RET;
2067 }
2068 }
2069 }
2070 done:
2071 xtensa_insnbuf_free(isa, slot);
2072 xtensa_insnbuf_free(isa, ins);
2073 return found_ret;
2074}
2075
bdb4c075
MG
2076/* Call0 opcode class. Opcodes are preclassified according to what they
2077 mean for Call0 prologue analysis, and their number of significant operands.
2078 The purpose of this is to simplify prologue analysis by separating
2079 instruction decoding (libisa) from the semantics of prologue analysis. */
2080
68d6df83
MG
2081typedef enum
2082{
bdb4c075
MG
2083 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2084 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2085 c0opc_flow, /* Flow control insn. */
2086 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2087 c0opc_break, /* Debugger software breakpoints. */
2088 c0opc_add, /* Adding two registers. */
2089 c0opc_addi, /* Adding a register and an immediate. */
dbab50de 2090 c0opc_and, /* Bitwise "and"-ing two registers. */
bdb4c075
MG
2091 c0opc_sub, /* Subtracting a register from a register. */
2092 c0opc_mov, /* Moving a register to a register. */
2093 c0opc_movi, /* Moving an immediate to a register. */
2094 c0opc_l32r, /* Loading a literal. */
08b9c608
MG
2095 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2096 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2097 c0opc_l32e, /* L32E instruction. */
2098 c0opc_s32e, /* S32E instruction. */
2099 c0opc_rfwo, /* RFWO instruction. */
2100 c0opc_rfwu, /* RFWU instruction. */
bdb4c075
MG
2101 c0opc_NrOf /* Number of opcode classifications. */
2102} xtensa_insn_kind;
2103
08b9c608
MG
2104/* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2105
2106static int
2107rwx_special_register (const char *opcname)
2108{
2109 char ch = *opcname++;
2110
2111 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2112 return 0;
2113 if (*opcname++ != 's')
2114 return 0;
2115 if (*opcname++ != 'r')
2116 return 0;
2117 if (*opcname++ != '.')
2118 return 0;
2119
2120 return 1;
2121}
bdb4c075
MG
2122
2123/* Classify an opcode based on what it means for Call0 prologue analysis. */
2124
2125static xtensa_insn_kind
2126call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2127{
2128 const char *opcname;
2129 xtensa_insn_kind opclass = c0opc_uninteresting;
2130
2131 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2132
2133 /* Get opcode name and handle special classifications. */
2134
2135 opcname = xtensa_opcode_name (isa, opc);
2136
2137 if (opcname == NULL
2138 || strcasecmp (opcname, "ill") == 0
2139 || strcasecmp (opcname, "ill.n") == 0)
2140 opclass = c0opc_illegal;
2141 else if (strcasecmp (opcname, "break") == 0
2142 || strcasecmp (opcname, "break.n") == 0)
2143 opclass = c0opc_break;
2144 else if (strcasecmp (opcname, "entry") == 0)
2145 opclass = c0opc_entry;
08b9c608
MG
2146 else if (strcasecmp (opcname, "rfwo") == 0)
2147 opclass = c0opc_rfwo;
2148 else if (strcasecmp (opcname, "rfwu") == 0)
2149 opclass = c0opc_rfwu;
bdb4c075
MG
2150 else if (xtensa_opcode_is_branch (isa, opc) > 0
2151 || xtensa_opcode_is_jump (isa, opc) > 0
2152 || xtensa_opcode_is_loop (isa, opc) > 0
2153 || xtensa_opcode_is_call (isa, opc) > 0
2154 || strcasecmp (opcname, "simcall") == 0
2155 || strcasecmp (opcname, "syscall") == 0)
2156 opclass = c0opc_flow;
2157
2158 /* Also, classify specific opcodes that need to be tracked. */
2159 else if (strcasecmp (opcname, "add") == 0
2160 || strcasecmp (opcname, "add.n") == 0)
2161 opclass = c0opc_add;
dbab50de
MG
2162 else if (strcasecmp (opcname, "and") == 0)
2163 opclass = c0opc_and;
bdb4c075
MG
2164 else if (strcasecmp (opcname, "addi") == 0
2165 || strcasecmp (opcname, "addi.n") == 0
2166 || strcasecmp (opcname, "addmi") == 0)
2167 opclass = c0opc_addi;
2168 else if (strcasecmp (opcname, "sub") == 0)
2169 opclass = c0opc_sub;
2170 else if (strcasecmp (opcname, "mov.n") == 0
2171 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2172 opclass = c0opc_mov;
2173 else if (strcasecmp (opcname, "movi") == 0
2174 || strcasecmp (opcname, "movi.n") == 0)
2175 opclass = c0opc_movi;
2176 else if (strcasecmp (opcname, "l32r") == 0)
2177 opclass = c0opc_l32r;
2178 else if (strcasecmp (opcname, "s32i") == 0
2179 || strcasecmp (opcname, "s32i.n") == 0)
2180 opclass = c0opc_s32i;
08b9c608
MG
2181 else if (strcasecmp (opcname, "l32e") == 0)
2182 opclass = c0opc_l32e;
2183 else if (strcasecmp (opcname, "s32e") == 0)
2184 opclass = c0opc_s32e;
2185 else if (rwx_special_register (opcname))
2186 opclass = c0opc_rwxsr;
bdb4c075
MG
2187
2188 return opclass;
2189}
2190
2191/* Tracks register movement/mutation for a given operation, which may
2192 be within a bundle. Updates the destination register tracking info
2193 accordingly. The pc is needed only for pc-relative load instructions
2194 (eg. l32r). The SP register number is needed to identify stores to
dbab50de
MG
2195 the stack frame. Returns 0, if analysis was succesfull, non-zero
2196 otherwise. */
bdb4c075 2197
dbab50de
MG
2198static int
2199call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
bdb4c075 2200 xtensa_insn_kind opclass, int nods, unsigned odv[],
dbab50de 2201 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
bdb4c075 2202{
e17a4113 2203 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
dbab50de 2204 unsigned litbase, litaddr, litval;
bdb4c075
MG
2205
2206 switch (opclass)
2207 {
2208 case c0opc_addi:
2209 /* 3 operands: dst, src, imm. */
2210 gdb_assert (nods == 3);
2211 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2212 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2213 break;
2214 case c0opc_add:
2215 /* 3 operands: dst, src1, src2. */
08b9c608 2216 gdb_assert (nods == 3);
bdb4c075
MG
2217 if (src[odv[1]].fr_reg == C0_CONST)
2218 {
2219 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2220 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2221 }
2222 else if (src[odv[2]].fr_reg == C0_CONST)
2223 {
2224 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2225 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2226 }
2227 else dst[odv[0]].fr_reg = C0_INEXP;
2228 break;
dbab50de
MG
2229 case c0opc_and:
2230 /* 3 operands: dst, src1, src2. */
2231 gdb_assert (nods == 3);
2232 if (cache->c0.c0_fpalign == 0)
2233 {
2234 /* Handle dynamic stack alignment. */
2235 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2236 {
2237 if (src[odv[2]].fr_reg == C0_CONST)
2238 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2239 break;
2240 }
2241 else if ((src[odv[0]].fr_reg == spreg)
2242 && (src[odv[2]].fr_reg == spreg))
2243 {
2244 if (src[odv[1]].fr_reg == C0_CONST)
2245 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2246 break;
2247 }
2248 /* else fall through. */
2249 }
2250 if (src[odv[1]].fr_reg == C0_CONST)
2251 {
2252 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2253 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2254 }
2255 else if (src[odv[2]].fr_reg == C0_CONST)
2256 {
2257 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2258 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2259 }
2260 else dst[odv[0]].fr_reg = C0_INEXP;
2261 break;
bdb4c075
MG
2262 case c0opc_sub:
2263 /* 3 operands: dst, src1, src2. */
2264 gdb_assert (nods == 3);
2265 if (src[odv[2]].fr_reg == C0_CONST)
2266 {
2267 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2268 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2269 }
2270 else dst[odv[0]].fr_reg = C0_INEXP;
2271 break;
2272 case c0opc_mov:
2273 /* 2 operands: dst, src [, src]. */
2274 gdb_assert (nods == 2);
dbab50de
MG
2275 /* First, check if it's a special case of saving unaligned SP
2276 to a spare register in case of dynamic stack adjustment.
2277 But, only do it one time. The second time could be initializing
2278 frame pointer. We don't want to overwrite the first one. */
2279 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2280 cache->c0.c0_old_sp = odv[0];
2281
bdb4c075
MG
2282 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2283 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2284 break;
2285 case c0opc_movi:
2286 /* 2 operands: dst, imm. */
2287 gdb_assert (nods == 2);
2288 dst[odv[0]].fr_reg = C0_CONST;
2289 dst[odv[0]].fr_ofs = odv[1];
2290 break;
2291 case c0opc_l32r:
2292 /* 2 operands: dst, literal offset. */
2293 gdb_assert (nods == 2);
dbab50de
MG
2294 /* litbase = xtensa_get_litbase (pc); can be also used. */
2295 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2296 ? 0 : xtensa_read_register
2297 (gdbarch_tdep (gdbarch)->litbase_regnum);
bdb4c075
MG
2298 litaddr = litbase & 1
2299 ? (litbase & ~1) + (signed)odv[1]
2300 : (pc + 3 + (signed)odv[1]) & ~3;
e17a4113 2301 litval = read_memory_integer (litaddr, 4, byte_order);
bdb4c075
MG
2302 dst[odv[0]].fr_reg = C0_CONST;
2303 dst[odv[0]].fr_ofs = litval;
2304 break;
2305 case c0opc_s32i:
2306 /* 3 operands: value, base, offset. */
2307 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
dbab50de
MG
2308 /* First, check if it's a spill for saved unaligned SP,
2309 when dynamic stack adjustment was applied to this frame. */
2310 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2311 && (odv[1] == spreg) /* SP usage indicates spill. */
2312 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2313 cache->c0.c0_sp_ofs = odv[2];
2314
bdb4c075
MG
2315 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2316 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2317 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2318 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2319 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2320 {
2321 /* ISA encoding guarantees alignment. But, check it anyway. */
2322 gdb_assert ((odv[2] & 3) == 0);
2323 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2324 }
2325 break;
dbab50de
MG
2326 /* If we end up inside Window Overflow / Underflow interrupt handler
2327 report an error because these handlers should have been handled
2328 already in a different way. */
2329 case c0opc_l32e:
2330 case c0opc_s32e:
2331 case c0opc_rfwo:
2332 case c0opc_rfwu:
2333 return 1;
bdb4c075 2334 default:
dbab50de 2335 return 1;
bdb4c075 2336 }
dbab50de 2337 return 0;
bdb4c075
MG
2338}
2339
dbab50de 2340/* Analyze prologue of the function at start address to determine if it uses
bdb4c075 2341 the Call0 ABI, and if so track register moves and linear modifications
dbab50de
MG
2342 in the prologue up to the PC or just beyond the prologue, whichever is
2343 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2344 prologue. The prologue may overlap non-prologue instructions but is
2345 guaranteed to end by the first flow-control instruction (jump, branch,
2346 call or return). Since an optimized function may move information around
2347 and change the stack frame arbitrarily during the prologue, the information
2348 is guaranteed valid only at the point in the function indicated by the PC.
bdb4c075
MG
2349 May be used to skip the prologue or identify the ABI, w/o tracking.
2350
2351 Returns: Address of first instruction after prologue, or PC (whichever
2352 is first), or 0, if decoding failed (in libisa).
2353 Input args:
2354 start Start address of function/prologue.
2355 pc Program counter to stop at. Use 0 to continue to end of prologue.
2356 If 0, avoids infinite run-on in corrupt code memory by bounding
2357 the scan to the end of the function if that can be determined.
dbab50de 2358 nregs Number of general registers to track.
bdb4c075 2359 InOut args:
dbab50de 2360 cache Xtensa frame cache.
bdb4c075
MG
2361
2362 Note that these may produce useful results even if decoding fails
2363 because they begin with default assumptions that analysis may change. */
2364
2365static CORE_ADDR
e17a4113 2366call0_analyze_prologue (struct gdbarch *gdbarch,
dbab50de
MG
2367 CORE_ADDR start, CORE_ADDR pc,
2368 int nregs, xtensa_frame_cache_t *cache)
bdb4c075
MG
2369{
2370 CORE_ADDR ia; /* Current insn address in prologue. */
2371 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2372 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
948f8e3d 2373 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
bdb4c075
MG
2374 xtensa_isa isa; /* libisa ISA handle. */
2375 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2376 xtensa_format ifmt; /* libisa instruction format. */
2377 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2378 xtensa_opcode opc; /* Opcode in current slot. */
2379 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2380 int nods; /* Opcode number of operands. */
2381 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2382 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2383 int j; /* General loop counter. */
2384 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2385 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2386 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2387
2388 struct symtab_and_line prologue_sal;
2389
2390 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2391 (int)start, (int)pc);
2392
2393 /* Try to limit the scan to the end of the function if a non-zero pc
2394 arg was not supplied to avoid probing beyond the end of valid memory.
2395 If memory is full of garbage that classifies as c0opc_uninteresting.
2396 If this fails (eg. if no symbols) pc ends up 0 as it was.
26c4b26f 2397 Initialize the Call0 frame and register tracking info.
bdb4c075
MG
2398 Assume it's Call0 until an 'entry' instruction is encountered.
2399 Assume we may be in the prologue until we hit a flow control instr. */
2400
2401 rtmp = NULL;
8179e739 2402 body_pc = UINT_MAX;
bdb4c075
MG
2403 end_pc = 0;
2404
2405 /* Find out, if we have an information about the prologue from DWARF. */
2406 prologue_sal = find_pc_line (start, 0);
2407 if (prologue_sal.line != 0) /* Found debug info. */
2408 body_pc = prologue_sal.end;
2409
2410 /* If we are going to analyze the prologue in general without knowing about
2411 the current PC, make the best assumtion for the end of the prologue. */
2412 if (pc == 0)
2413 {
2414 find_pc_partial_function (start, 0, NULL, &end_pc);
325fac50 2415 body_pc = std::min (end_pc, body_pc);
bdb4c075
MG
2416 }
2417 else
325fac50 2418 body_pc = std::min (pc, body_pc);
bdb4c075 2419
dbab50de
MG
2420 cache->call0 = 1;
2421 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
bdb4c075
MG
2422
2423 isa = xtensa_default_isa;
2ff5e605 2424 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
bdb4c075
MG
2425 ins = xtensa_insnbuf_alloc (isa);
2426 slot = xtensa_insnbuf_alloc (isa);
2427
2428 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2429 {
2430 /* (Re)fill instruction buffer from memory if necessary, but do not
2431 read memory beyond PC to be sure we stay within text section
2432 (this protection only works if a non-zero pc is supplied). */
2433
2434 if (ia + xtensa_isa_maxlength (isa) > bt)
2435 {
2436 ba = ia;
2ff5e605 2437 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
dbab50de
MG
2438 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2439 error (_("Unable to read target memory ..."));
bdb4c075
MG
2440 }
2441
2442 /* Decode format information. */
2443
2444 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2445 ifmt = xtensa_format_decode (isa, ins);
2446 if (ifmt == XTENSA_UNDEFINED)
2447 {
2448 fail = 1;
2449 goto done;
2450 }
2451 ilen = xtensa_format_length (isa, ifmt);
2452 if (ilen == XTENSA_UNDEFINED)
2453 {
2454 fail = 1;
2455 goto done;
2456 }
2457 islots = xtensa_format_num_slots (isa, ifmt);
2458 if (islots == XTENSA_UNDEFINED)
2459 {
2460 fail = 1;
2461 goto done;
2462 }
2463
2464 /* Analyze a bundle or a single instruction, using a snapshot of
2465 the register tracking info as input for the entire bundle so that
2466 register changes do not take effect within this bundle. */
ca3bf3bd 2467
bdb4c075 2468 for (j = 0; j < nregs; ++j)
dbab50de 2469 rtmp[j] = cache->c0.c0_rt[j];
bdb4c075
MG
2470
2471 for (is = 0; is < islots; ++is)
2472 {
2473 /* Decode a slot and classify the opcode. */
2474
2475 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2476 if (fail)
2477 goto done;
2478
2479 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
dbab50de 2480 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
bdb4c075
MG
2481 (unsigned)ia, opc);
2482 if (opc == XTENSA_UNDEFINED)
2483 opclass = c0opc_illegal;
2484 else
2485 opclass = call0_classify_opcode (isa, opc);
2486
2487 /* Decide whether to track this opcode, ignore it, or bail out. */
2488
2489 switch (opclass)
2490 {
2491 case c0opc_illegal:
2492 case c0opc_break:
2493 fail = 1;
2494 goto done;
2495
2496 case c0opc_uninteresting:
2497 continue;
2498
dbab50de
MG
2499 case c0opc_flow: /* Flow control instructions stop analysis. */
2500 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
bdb4c075
MG
2501 goto done;
2502
2503 case c0opc_entry:
dbab50de 2504 cache->call0 = 0;
bdb4c075
MG
2505 ia += ilen; /* Skip over 'entry' insn. */
2506 goto done;
2507
2508 default:
dbab50de 2509 cache->call0 = 1;
bdb4c075
MG
2510 }
2511
2512 /* Only expected opcodes should get this far. */
bdb4c075
MG
2513
2514 /* Extract and decode the operands. */
2515 nods = xtensa_opcode_num_operands (isa, opc);
2516 if (nods == XTENSA_UNDEFINED)
2517 {
2518 fail = 1;
2519 goto done;
2520 }
2521
2522 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2523 {
2524 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2525 is, slot, &odv[j]);
2526 if (fail)
2527 goto done;
2528
2529 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2530 if (fail)
2531 goto done;
2532 }
2533
2534 /* Check operands to verify use of 'mov' assembler macro. */
2535 if (opclass == c0opc_mov && nods == 3)
2536 {
2537 if (odv[2] == odv[1])
dbab50de
MG
2538 {
2539 nods = 2;
2540 if ((odv[0] == 1) && (odv[1] != 1))
2541 /* OR A1, An, An , where n != 1.
2542 This means we are inside epilogue already. */
2543 goto done;
2544 }
bdb4c075
MG
2545 else
2546 {
2547 opclass = c0opc_uninteresting;
2548 continue;
2549 }
2550 }
2551
2552 /* Track register movement and modification for this operation. */
dbab50de
MG
2553 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2554 opclass, nods, odv, ia, 1, cache);
2555 if (fail)
2556 goto done;
bdb4c075
MG
2557 }
2558 }
2559done:
2560 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2561 (unsigned)ia, fail ? "failed" : "succeeded");
2562 xtensa_insnbuf_free(isa, slot);
2563 xtensa_insnbuf_free(isa, ins);
d4709618 2564 return fail ? XTENSA_ISA_BADPC : ia;
bdb4c075
MG
2565}
2566
5142f611 2567/* Initialize frame cache for the current frame in CALL0 ABI. */
bdb4c075
MG
2568
2569static void
5142f611 2570call0_frame_cache (struct frame_info *this_frame,
dbab50de 2571 xtensa_frame_cache_t *cache, CORE_ADDR pc)
bdb4c075 2572{
5142f611 2573 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 2574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bdb4c075
MG
2575 CORE_ADDR start_pc; /* The beginning of the function. */
2576 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2577 CORE_ADDR sp, fp, ra;
dbab50de 2578 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
bdb4c075 2579
dbab50de
MG
2580 sp = get_frame_register_unsigned
2581 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2582 fp = sp; /* Assume FP == SP until proven otherwise. */
2583
bdb4c075
MG
2584 /* Find the beginning of the prologue of the function containing the PC
2585 and analyze it up to the PC or the end of the prologue. */
2586
2587 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2588 {
dbab50de 2589 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
d4709618
MG
2590
2591 if (body_pc == XTENSA_ISA_BADPC)
dbab50de
MG
2592 {
2593 warning_once ();
2594 ra = 0;
2595 goto finish_frame_analysis;
2596 }
bdb4c075
MG
2597 }
2598
bdb4c075
MG
2599 /* Get the frame information and FP (if used) at the current PC.
2600 If PC is in the prologue, the prologue analysis is more reliable
dbab50de
MG
2601 than DWARF info. We don't not know for sure, if PC is in the prologue,
2602 but we do know no calls have yet taken place, so we can almost
bdb4c075
MG
2603 certainly rely on the prologue analysis. */
2604
2605 if (body_pc <= pc)
2606 {
2607 /* Prologue analysis was successful up to the PC.
2608 It includes the cases when PC == START_PC. */
2609 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2610 /* c0_hasfp == true means there is a frame pointer because
2611 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2612 was derived from SP. Otherwise, it would be C0_FP. */
2613 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2614 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
6b50c0b0 2615 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
bdb4c075
MG
2616 }
2617 else /* No data from the prologue analysis. */
2618 {
2619 c0_hasfp = 0;
6b50c0b0 2620 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
bdb4c075
MG
2621 c0_frmsz = 0;
2622 start_pc = pc;
2623 }
2624
dbab50de
MG
2625 if (cache->c0.c0_fpalign)
2626 {
2627 /* This frame has a special prologue with a dynamic stack adjustment
2628 to force an alignment, which is bigger than standard 16 bytes. */
2629
2630 CORE_ADDR unaligned_sp;
2631
2632 if (cache->c0.c0_old_sp == C0_INEXP)
2633 /* This can't be. Prologue code should be consistent.
2634 Unaligned stack pointer should be saved in a spare register. */
2635 {
2636 warning_once ();
2637 ra = 0;
2638 goto finish_frame_analysis;
2639 }
2640
2641 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2642 /* Saved unaligned value of SP is kept in a register. */
2643 unaligned_sp = get_frame_register_unsigned
2644 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2645 else
2646 /* Get the value from stack. */
2647 unaligned_sp = (CORE_ADDR)
2648 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2649
2650 prev_sp = unaligned_sp + c0_frmsz;
2651 }
2652 else
2653 prev_sp = fp + c0_frmsz;
bdb4c075
MG
2654
2655 /* Frame size from debug info or prologue tracking does not account for
2656 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2657 if (c0_hasfp)
2658 {
5142f611 2659 fp = get_frame_register_unsigned (this_frame, fp_regnum);
bdb4c075 2660
bdb4c075
MG
2661 /* Update the stack frame size. */
2662 c0_frmsz += fp - sp;
2663 }
2664
2665 /* Get the return address (RA) from the stack if saved,
2666 or try to get it from a register. */
2667
2668 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2669 if (to_stk != C0_NOSTK)
2670 ra = (CORE_ADDR)
e17a4113
UW
2671 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2672 4, byte_order);
bdb4c075
MG
2673
2674 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2675 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2676 {
dbab50de
MG
2677 /* Special case for terminating backtrace at a function that wants to
2678 be seen as the outermost one. Such a function will clear it's RA (A0)
2679 register to 0 in the prologue instead of saving its original value. */
bdb4c075
MG
2680 ra = 0;
2681 }
2682 else
2683 {
dbab50de
MG
2684 /* RA was copied to another register or (before any function call) may
2685 still be in the original RA register. This is not always reliable:
2686 even in a leaf function, register tracking stops after prologue, and
2687 even in prologue, non-prologue instructions (not tracked) may overwrite
2688 RA or any register it was copied to. If likely in prologue or before
2689 any call, use retracking info and hope for the best (compiler should
2690 have saved RA in stack if not in a leaf function). If not in prologue,
2691 too bad. */
bdb4c075
MG
2692
2693 int i;
1448a0a2
PM
2694 for (i = 0;
2695 (i < C0_NREGS)
2696 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
bdb4c075
MG
2697 ++i);
2698 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2699 i = C0_RA;
5142f611 2700 if (i < C0_NREGS)
bdb4c075 2701 {
5142f611
MG
2702 ra = get_frame_register_unsigned
2703 (this_frame,
2704 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
bdb4c075
MG
2705 }
2706 else ra = 0;
2707 }
2708
dbab50de 2709 finish_frame_analysis:
bdb4c075
MG
2710 cache->pc = start_pc;
2711 cache->ra = ra;
2712 /* RA == 0 marks the outermost frame. Do not go past it. */
2713 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2714 cache->c0.fp_regnum = fp_regnum;
2715 cache->c0.c0_frmsz = c0_frmsz;
2716 cache->c0.c0_hasfp = c0_hasfp;
2717 cache->c0.c0_fp = fp;
2718}
2719
08b9c608
MG
2720static CORE_ADDR a0_saved;
2721static CORE_ADDR a7_saved;
2722static CORE_ADDR a11_saved;
2723static int a0_was_saved;
2724static int a7_was_saved;
2725static int a11_was_saved;
2726
68d6df83 2727/* Simulate L32E instruction: AT <-- ref (AS + offset). */
08b9c608
MG
2728static void
2729execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2730{
2731 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2732 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2733 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2734 unsigned int spilled_value
2735 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2736
2737 if ((at == 0) && !a0_was_saved)
2738 {
2739 a0_saved = xtensa_read_register (atreg);
2740 a0_was_saved = 1;
2741 }
2742 else if ((at == 7) && !a7_was_saved)
2743 {
2744 a7_saved = xtensa_read_register (atreg);
2745 a7_was_saved = 1;
2746 }
2747 else if ((at == 11) && !a11_was_saved)
2748 {
2749 a11_saved = xtensa_read_register (atreg);
2750 a11_was_saved = 1;
2751 }
2752
2753 xtensa_write_register (atreg, spilled_value);
2754}
2755
68d6df83 2756/* Simulate S32E instruction: AT --> ref (AS + offset). */
08b9c608
MG
2757static void
2758execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2759{
2760 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2761 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2762 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2763 ULONGEST spilled_value = xtensa_read_register (atreg);
2764
2765 write_memory_unsigned_integer (addr, 4,
2766 gdbarch_byte_order (gdbarch),
2767 spilled_value);
2768}
2769
2770#define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2771
68d6df83
MG
2772typedef enum
2773{
08b9c608
MG
2774 xtWindowOverflow,
2775 xtWindowUnderflow,
2776 xtNoExceptionHandler
2777} xtensa_exception_handler_t;
2778
68d6df83 2779/* Execute instruction stream from current PC until hitting RFWU or RFWO.
08b9c608
MG
2780 Return type of Xtensa Window Interrupt Handler on success. */
2781static xtensa_exception_handler_t
2782execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2783{
2784 xtensa_isa isa;
2785 xtensa_insnbuf ins, slot;
948f8e3d 2786 gdb_byte ibuf[XTENSA_ISA_BSZ];
08b9c608
MG
2787 CORE_ADDR ia, bt, ba;
2788 xtensa_format ifmt;
2789 int ilen, islots, is;
2790 xtensa_opcode opc;
2791 int insn_num = 0;
08b9c608
MG
2792 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2793
19afdd07 2794 uint32_t at, as, offset;
08b9c608
MG
2795
2796 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2797 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2798
2799 isa = xtensa_default_isa;
2800 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2801 ins = xtensa_insnbuf_alloc (isa);
2802 slot = xtensa_insnbuf_alloc (isa);
2803 ba = 0;
2804 ia = current_pc;
2805 bt = ia;
2806
2807 a0_was_saved = 0;
2808 a7_was_saved = 0;
2809 a11_was_saved = 0;
2810
2811 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2812 {
2813 if (ia + xtensa_isa_maxlength (isa) > bt)
2814 {
2815 ba = ia;
2816 bt = (ba + XTENSA_ISA_BSZ);
2817 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2818 return xtNoExceptionHandler;
2819 }
2820 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2821 ifmt = xtensa_format_decode (isa, ins);
2822 if (ifmt == XTENSA_UNDEFINED)
2823 return xtNoExceptionHandler;
2824 ilen = xtensa_format_length (isa, ifmt);
2825 if (ilen == XTENSA_UNDEFINED)
2826 return xtNoExceptionHandler;
2827 islots = xtensa_format_num_slots (isa, ifmt);
2828 if (islots == XTENSA_UNDEFINED)
2829 return xtNoExceptionHandler;
2830 for (is = 0; is < islots; ++is)
2831 {
2832 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2833 return xtNoExceptionHandler;
2834 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2835 if (opc == XTENSA_UNDEFINED)
2836 return xtNoExceptionHandler;
2837 switch (call0_classify_opcode (isa, opc))
2838 {
2839 case c0opc_illegal:
2840 case c0opc_flow:
2841 case c0opc_entry:
2842 case c0opc_break:
2843 /* We expect none of them here. */
2844 return xtNoExceptionHandler;
2845 case c0opc_l32e:
2846 func = execute_l32e;
2847 break;
2848 case c0opc_s32e:
2849 func = execute_s32e;
2850 break;
2851 case c0opc_rfwo: /* RFWO. */
2852 /* Here, we return from WindowOverflow handler and,
2853 if we stopped at the very beginning, which means
2854 A0 was saved, we have to restore it now. */
2855 if (a0_was_saved)
2856 {
2857 int arreg = arreg_number (gdbarch,
2858 gdbarch_tdep (gdbarch)->a0_base,
2859 wb);
2860 xtensa_write_register (arreg, a0_saved);
2861 }
2862 return xtWindowOverflow;
2863 case c0opc_rfwu: /* RFWU. */
2864 /* Here, we return from WindowUnderflow handler.
2865 Let's see if either A7 or A11 has to be restored. */
2866 if (WindowUnderflow12)
2867 {
2868 if (a11_was_saved)
2869 {
2870 int arreg = arreg_number (gdbarch,
2871 gdbarch_tdep (gdbarch)->a0_base + 11,
2872 wb);
2873 xtensa_write_register (arreg, a11_saved);
2874 }
2875 }
2876 else if (a7_was_saved)
2877 {
2878 int arreg = arreg_number (gdbarch,
2879 gdbarch_tdep (gdbarch)->a0_base + 7,
2880 wb);
2881 xtensa_write_register (arreg, a7_saved);
2882 }
2883 return xtWindowUnderflow;
2884 default: /* Simply skip this insns. */
2885 continue;
2886 }
2887
2888 /* Decode arguments for L32E / S32E and simulate their execution. */
2889 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2890 return xtNoExceptionHandler;
2891 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2892 return xtNoExceptionHandler;
2893 if (xtensa_operand_decode (isa, opc, 0, &at))
2894 return xtNoExceptionHandler;
2895 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2896 return xtNoExceptionHandler;
2897 if (xtensa_operand_decode (isa, opc, 1, &as))
2898 return xtNoExceptionHandler;
2899 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2900 return xtNoExceptionHandler;
2901 if (xtensa_operand_decode (isa, opc, 2, &offset))
2902 return xtNoExceptionHandler;
2903
2904 (*func) (gdbarch, at, as, offset, wb);
2905 }
2906
2907 ia += ilen;
2908 }
2909 return xtNoExceptionHandler;
2910}
2911
2912/* Handle Window Overflow / Underflow exception frames. */
2913
2914static void
2915xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2916 xtensa_frame_cache_t *cache,
2917 CORE_ADDR pc)
2918{
2919 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2920 CORE_ADDR ps, wb, ws, ra;
2921 int epc1_regnum, i, regnum;
2922 xtensa_exception_handler_t eh_type;
2923
2924 /* Read PS, WB, and WS from the hardware. Note that PS register
2925 must be present, if Windowed ABI is supported. */
2926 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2927 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2928 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2929
2930 /* Execute all the remaining instructions from Window Interrupt Handler
2931 by simulating them on the remote protocol level. On return, set the
2932 type of Xtensa Window Interrupt Handler, or report an error. */
2933 eh_type = execute_code (gdbarch, pc, wb);
2934 if (eh_type == xtNoExceptionHandler)
2935 error (_("\
2936Unable to decode Xtensa Window Interrupt Handler's code."));
2937
2938 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2939 cache->call0 = 0; /* It's Windowed ABI. */
2940
2941 /* All registers for the cached frame will be alive. */
2942 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2943 cache->wd.aregs[i] = -1;
2944
2945 if (eh_type == xtWindowOverflow)
2946 cache->wd.ws = ws ^ (1 << wb);
2947 else /* eh_type == xtWindowUnderflow. */
2948 cache->wd.ws = ws | (1 << wb);
2949
2950 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2951 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2952 cache->wd.wb);
2953 ra = xtensa_read_register (regnum);
2954 cache->wd.callsize = WINSIZE (ra);
2955 cache->prev_sp = xtensa_read_register (regnum + 1);
2956 /* Set regnum to a frame pointer of the frame being cached. */
2957 regnum = xtensa_scan_prologue (gdbarch, pc);
2958 regnum = arreg_number (gdbarch,
2959 gdbarch_tdep (gdbarch)->a0_base + regnum,
2960 cache->wd.wb);
2961 cache->base = get_frame_register_unsigned (this_frame, regnum);
2962
2963 /* Read PC of interrupted function from EPC1 register. */
2964 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2965 if (epc1_regnum < 0)
2966 error(_("Unable to read Xtensa register EPC1"));
2967 cache->ra = xtensa_read_register (epc1_regnum);
2968 cache->pc = get_frame_func (this_frame);
2969}
2970
bdb4c075
MG
2971
2972/* Skip function prologue.
2973
2974 Return the pc of the first instruction after prologue. GDB calls this to
2975 find the address of the first line of the function or (if there is no line
2976 number information) to skip the prologue for planting breakpoints on
2977 function entries. Use debug info (if present) or prologue analysis to skip
2978 the prologue to achieve reliable debugging behavior. For windowed ABI,
2979 only the 'entry' instruction is skipped. It is not strictly necessary to
2980 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2981 backtrace at any point in the prologue, however certain potential hazards
2982 are avoided and a more "normal" debugging experience is ensured by
2983 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2984 For example, if we don't skip the prologue:
2985 - Some args may not yet have been saved to the stack where the debug
2986 info expects to find them (true anyway when only 'entry' is skipped);
2987 - Software breakpoints ('break' instrs) may not have been unplanted
2988 when the prologue analysis is done on initializing the frame cache,
2989 and breaks in the prologue will throw off the analysis.
ca3bf3bd
DJ
2990
2991 If we have debug info ( line-number info, in particular ) we simply skip
2992 the code associated with the first function line effectively skipping
bdb4c075 2993 the prologue code. It works even in cases like
ca3bf3bd
DJ
2994
2995 int main()
2996 { int local_var = 1;
2997 ....
2998 }
2999
3000 because, for this source code, both Xtensa compilers will generate two
3001 separate entries ( with the same line number ) in dwarf line-number
3002 section to make sure there is a boundary between the prologue code and
3003 the rest of the function.
3004
bdb4c075
MG
3005 If there is no debug info, we need to analyze the code. */
3006
3007/* #define DONT_SKIP_PROLOGUE */
ca3bf3bd 3008
63807e1d 3009static CORE_ADDR
6093d2eb 3010xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
ca3bf3bd 3011{
bdb4c075
MG
3012 struct symtab_and_line prologue_sal;
3013 CORE_ADDR body_pc;
3014
ca3bf3bd
DJ
3015 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3016
bdb4c075
MG
3017#if DONT_SKIP_PROLOGUE
3018 return start_pc;
3019#endif
3020
3021 /* Try to find first body line from debug info. */
3022
3023 prologue_sal = find_pc_line (start_pc, 0);
3024 if (prologue_sal.line != 0) /* Found debug info. */
ca3bf3bd 3025 {
f976a05d
MG
3026 /* In Call0, it is possible to have a function with only one instruction
3027 ('ret') resulting from a one-line optimized function that does nothing.
3028 In that case, prologue_sal.end may actually point to the start of the
3029 next function in the text section, causing a breakpoint to be set at
3030 the wrong place. Check, if the end address is within a different
3031 function, and if so return the start PC. We know we have symbol
3032 information. */
ca3bf3bd 3033
bdb4c075
MG
3034 CORE_ADDR end_func;
3035
f976a05d
MG
3036 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3037 && call0_ret (start_pc, prologue_sal.end))
3038 return start_pc;
3039
bdb4c075
MG
3040 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3041 if (end_func != start_pc)
ca3bf3bd
DJ
3042 return start_pc;
3043
bdb4c075 3044 return prologue_sal.end;
ca3bf3bd 3045 }
ca3bf3bd 3046
bdb4c075 3047 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
dbab50de
MG
3048 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3049 xtensa_alloc_frame_cache (0));
bdb4c075
MG
3050 return body_pc != 0 ? body_pc : start_pc;
3051}
ca3bf3bd
DJ
3052
3053/* Verify the current configuration. */
ca3bf3bd
DJ
3054static void
3055xtensa_verify_config (struct gdbarch *gdbarch)
3056{
d7e74731
PA
3057 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3058 string_file log;
ca3bf3bd
DJ
3059
3060 /* Verify that we got a reasonable number of AREGS. */
3061 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
d7e74731 3062 log.printf (_("\
bdb4c075 3063\n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
d7e74731 3064 tdep->num_aregs);
ca3bf3bd
DJ
3065
3066 /* Verify that certain registers exist. */
bdb4c075 3067
ca3bf3bd 3068 if (tdep->pc_regnum == -1)
d7e74731 3069 log.printf (_("\n\tpc_regnum: No PC register"));
bdb4c075 3070 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
d7e74731 3071 log.printf (_("\n\tps_regnum: No PS register"));
bdb4c075
MG
3072
3073 if (tdep->isa_use_windowed_registers)
3074 {
3075 if (tdep->wb_regnum == -1)
d7e74731 3076 log.printf (_("\n\twb_regnum: No WB register"));
bdb4c075 3077 if (tdep->ws_regnum == -1)
d7e74731 3078 log.printf (_("\n\tws_regnum: No WS register"));
bdb4c075 3079 if (tdep->ar_base == -1)
d7e74731 3080 log.printf (_("\n\tar_base: No AR registers"));
bdb4c075
MG
3081 }
3082
ca3bf3bd 3083 if (tdep->a0_base == -1)
d7e74731 3084 log.printf (_("\n\ta0_base: No Ax registers"));
ca3bf3bd 3085
d7e74731 3086 if (!log.empty ())
ca3bf3bd 3087 internal_error (__FILE__, __LINE__,
d7e74731 3088 _("the following are invalid: %s"), log.c_str ());
ca3bf3bd
DJ
3089}
3090
94a0e877
MG
3091
3092/* Derive specific register numbers from the array of registers. */
3093
63807e1d 3094static void
94a0e877
MG
3095xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3096{
3097 xtensa_register_t* rmap;
3098 int n, max_size = 4;
3099
3100 tdep->num_regs = 0;
3101 tdep->num_nopriv_regs = 0;
3102
3103/* Special registers 0..255 (core). */
3104#define XTENSA_DBREGN_SREG(n) (0x0200+(n))
f74f865e
MF
3105/* User registers 0..255. */
3106#define XTENSA_DBREGN_UREG(n) (0x0300+(n))
94a0e877
MG
3107
3108 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3109 {
3110 if (rmap->target_number == 0x0020)
3111 tdep->pc_regnum = n;
3112 else if (rmap->target_number == 0x0100)
3113 tdep->ar_base = n;
3114 else if (rmap->target_number == 0x0000)
3115 tdep->a0_base = n;
3116 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3117 tdep->wb_regnum = n;
3118 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3119 tdep->ws_regnum = n;
3120 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3121 tdep->debugcause_regnum = n;
3122 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3123 tdep->exccause_regnum = n;
3124 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3125 tdep->excvaddr_regnum = n;
3126 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3127 tdep->lbeg_regnum = n;
3128 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3129 tdep->lend_regnum = n;
3130 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3131 tdep->lcount_regnum = n;
3132 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3133 tdep->sar_regnum = n;
3134 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3135 tdep->litbase_regnum = n;
3136 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3137 tdep->ps_regnum = n;
f74f865e
MF
3138 else if (rmap->target_number == XTENSA_DBREGN_UREG(231))
3139 tdep->threadptr_regnum = n;
94a0e877
MG
3140#if 0
3141 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3142 tdep->interrupt_regnum = n;
3143 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3144 tdep->interrupt2_regnum = n;
3145 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3146 tdep->cpenable_regnum = n;
3147#endif
3148
3149 if (rmap->byte_size > max_size)
3150 max_size = rmap->byte_size;
3151 if (rmap->mask != 0 && tdep->num_regs == 0)
3152 tdep->num_regs = n;
3153 /* Find out out how to deal with priveleged registers.
3154
3155 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3156 && tdep->num_nopriv_regs == 0)
3157 tdep->num_nopriv_regs = n;
3158 */
3159 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3160 && tdep->num_regs == 0)
3161 tdep->num_regs = n;
3162 }
3163
3164 /* Number of pseudo registers. */
3165 tdep->num_pseudo_regs = n - tdep->num_regs;
3166
3167 /* Empirically determined maximum sizes. */
3168 tdep->max_register_raw_size = max_size;
3169 tdep->max_register_virtual_size = max_size;
3170}
3171
ca3bf3bd
DJ
3172/* Module "constructor" function. */
3173
94a0e877
MG
3174extern struct gdbarch_tdep xtensa_tdep;
3175
ca3bf3bd
DJ
3176static struct gdbarch *
3177xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3178{
3179 struct gdbarch_tdep *tdep;
3180 struct gdbarch *gdbarch;
ca3bf3bd
DJ
3181
3182 DEBUGTRACE ("gdbarch_init()\n");
3183
a4398628
MF
3184 if (!xtensa_default_isa)
3185 xtensa_default_isa = xtensa_isa_init (0, 0);
3186
ca3bf3bd 3187 /* We have to set the byte order before we call gdbarch_alloc. */
94a0e877 3188 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
ca3bf3bd 3189
94a0e877 3190 tdep = &xtensa_tdep;
ca3bf3bd 3191 gdbarch = gdbarch_alloc (&info, tdep);
94a0e877 3192 xtensa_derive_tdep (tdep);
ca3bf3bd
DJ
3193
3194 /* Verify our configuration. */
3195 xtensa_verify_config (gdbarch);
dbab50de 3196 xtensa_session_once_reported = 0;
ca3bf3bd 3197
53375380
PA
3198 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3199 set_gdbarch_wchar_signed (gdbarch, 0);
3200
bdb4c075 3201 /* Pseudo-Register read/write. */
ca3bf3bd
DJ
3202 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3203 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3204
3205 /* Set target information. */
3206 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3207 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3208 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3209 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3210 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3211
ba2b1c56 3212 /* Renumber registers for known formats (stabs and dwarf2). */
ca3bf3bd 3213 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
ca3bf3bd
DJ
3214 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3215
3216 /* We provide our own function to get register information. */
3217 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3218 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3219
581e13c1 3220 /* To call functions from GDB using dummy frame. */
ca3bf3bd
DJ
3221 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3222
3223 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3224
3225 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3226
3227 /* Advance PC across any prologue instructions to reach "real" code. */
3228 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3229
3230 /* Stack grows downward. */
3231 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3232
3233 /* Set breakpoints. */
04180708
YQ
3234 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3235 xtensa_breakpoint_kind_from_pc);
3236 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3237 xtensa_sw_breakpoint_from_kind);
ca3bf3bd
DJ
3238
3239 /* After breakpoint instruction or illegal instruction, pc still
3240 points at break instruction, so don't decrement. */
3241 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3242
3243 /* We don't skip args. */
3244 set_gdbarch_frame_args_skip (gdbarch, 0);
3245
3246 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3247
3248 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3249
5142f611 3250 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
ca3bf3bd
DJ
3251
3252 /* Frame handling. */
3253 frame_base_set_default (gdbarch, &xtensa_frame_base);
5142f611
MG
3254 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3255 dwarf2_append_unwinders (gdbarch);
ca3bf3bd 3256
ca3bf3bd
DJ
3257 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3258
3259 xtensa_add_reggroups (gdbarch);
3260 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3261
97094034
AA
3262 set_gdbarch_iterate_over_regset_sections
3263 (gdbarch, xtensa_iterate_over_regset_sections);
ca3bf3bd 3264
ee967b5f
MG
3265 set_solib_svr4_fetch_link_map_offsets
3266 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3267
40045d91
MF
3268 /* Hook in the ABI-specific overrides, if they have been registered. */
3269 gdbarch_init_osabi (info, gdbarch);
3270
ca3bf3bd
DJ
3271 return gdbarch;
3272}
3273
ca3bf3bd 3274static void
6b50c0b0 3275xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
ca3bf3bd
DJ
3276{
3277 error (_("xtensa_dump_tdep(): not implemented"));
3278}
3279
ca3bf3bd
DJ
3280void
3281_initialize_xtensa_tdep (void)
3282{
ca3bf3bd
DJ
3283 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3284 xtensa_init_reggroups ();
3285
ccce17b0
YQ
3286 add_setshow_zuinteger_cmd ("xtensa",
3287 class_maintenance,
3288 &xtensa_debug_level,
581e13c1
MS
3289 _("Set Xtensa debugging."),
3290 _("Show Xtensa debugging."), _("\
ca3bf3bd
DJ
3291When non-zero, Xtensa-specific debugging is enabled. \
3292Can be 1, 2, 3, or 4 indicating the level of debugging."),
ccce17b0
YQ
3293 NULL,
3294 NULL,
3295 &setdebuglist, &showdebuglist);
ca3bf3bd 3296}