]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/icf.cc
[binutils, ARM, 8/16] BFL infrastructure with new global reloc R_ARM_THM_BF18
[thirdparty/binutils-gdb.git] / gold / icf.cc
CommitLineData
ef15dade
ST
1// icf.cc -- Identical Code Folding.
2//
82704155 3// Copyright (C) 2009-2019 Free Software Foundation, Inc.
ef15dade
ST
4// Written by Sriraman Tallam <tmsriram@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23// Identical Code Folding Algorithm
24// ----------------------------------
25// Detecting identical functions is done here and the basic algorithm
55a2bb35 26// is as follows. A checksum is computed on each foldable section using
ef15dade
ST
27// its contents and relocations. If the symbol name corresponding to
28// a relocation is known it is used to compute the checksum. If the
29// symbol name is not known the stringified name of the object and the
30// section number pointed to by the relocation is used. The checksums
31// are stored as keys in a hash map and a section is identical to some
32// other section if its checksum is already present in the hash map.
33// Checksum collisions are handled by using a multimap and explicitly
34// checking the contents when two sections have the same checksum.
35//
36// However, two functions A and B with identical text but with
55a2bb35
ST
37// relocations pointing to different foldable sections can be identical if
38// the corresponding foldable sections to which their relocations point to
ef15dade
ST
39// turn out to be identical. Hence, this checksumming process must be
40// done repeatedly until convergence is obtained. Here is an example for
41// the following case :
42//
43// int funcA () int funcB ()
44// { {
45// return foo(); return goo();
46// } }
47//
48// The functions funcA and funcB are identical if functions foo() and
49// goo() are identical.
50//
51// Hence, as described above, we repeatedly do the checksumming,
52// assigning identical functions to the same group, until convergence is
53// obtained. Now, we have two different ways to do this depending on how
54// we initialize.
55//
56// Algorithm I :
57// -----------
58// We can start with marking all functions as different and repeatedly do
59// the checksumming. This has the advantage that we do not need to wait
60// for convergence. We can stop at any point and correctness will be
61// guaranteed although not all cases would have been found. However, this
62// has a problem that some cases can never be found even if it is run until
63// convergence. Here is an example with mutually recursive functions :
64//
65// int funcA (int a) int funcB (int a)
66// { {
67// if (a == 1) if (a == 1)
68// return 1; return 1;
69// return 1 + funcB(a - 1); return 1 + funcA(a - 1);
70// } }
71//
72// In this example funcA and funcB are identical and one of them could be
73// folded into the other. However, if we start with assuming that funcA
74// and funcB are not identical, the algorithm, even after it is run to
75// convergence, cannot detect that they are identical. It should be noted
76// that even if the functions were self-recursive, Algorithm I cannot catch
77// that they are identical, at least as is.
78//
79// Algorithm II :
80// ------------
81// Here we start with marking all functions as identical and then repeat
82// the checksumming until convergence. This can detect the above case
83// mentioned above. It can detect all cases that Algorithm I can and more.
84// However, the caveat is that it has to be run to convergence. It cannot
85// be stopped arbitrarily like Algorithm I as correctness cannot be
86// guaranteed. Algorithm II is not implemented.
87//
88// Algorithm I is used because experiments show that about three
89// iterations are more than enough to achieve convergence. Algorithm I can
90// handle recursive calls if it is changed to use a special common symbol
91// for recursive relocs. This seems to be the most common case that
92// Algorithm I could not catch as is. Mutually recursive calls are not
93// frequent and Algorithm I wins because of its ability to be stopped
94// arbitrarily.
95//
96// Caveat with using function pointers :
97// ------------------------------------
98//
99// Programs using function pointer comparisons/checks should use function
100// folding with caution as the result of such comparisons could be different
101// when folding takes place. This could lead to unexpected run-time
102// behaviour.
103//
21bb3914
ST
104// Safe Folding :
105// ------------
106//
107// ICF in safe mode folds only ctors and dtors if their function pointers can
108// never be taken. Also, for X86-64, safe folding uses the relocation
109// type to determine if a function's pointer is taken or not and only folds
110// functions whose pointers are definitely not taken.
111//
112// Caveat with safe folding :
113// ------------------------
114//
115// This applies only to x86_64.
116//
117// Position independent executables are created from PIC objects (compiled
118// with -fPIC) and/or PIE objects (compiled with -fPIE). For PIE objects, the
119// relocation types for function pointer taken and a call are the same.
120// Now, it is not always possible to tell if an object used in the link of
121// a pie executable is a PIC object or a PIE object. Hence, for pie
122// executables, using relocation types to disambiguate function pointers is
123// currently disabled.
124//
125// Further, it is not correct to use safe folding to build non-pie
126// executables using PIC/PIE objects. PIC/PIE objects have different
127// relocation types for function pointers than non-PIC objects, and the
128// current implementation of safe folding does not handle those relocation
129// types. Hence, if used, functions whose pointers are taken could still be
130// folded causing unpredictable run-time behaviour if the pointers were used
131// in comparisons.
132//
133//
ef15dade 134//
55a2bb35 135// How to run : --icf=[safe|all|none]
ef15dade
ST
136// Optional parameters : --icf-iterations <num> --print-icf-sections
137//
138// Performance : Less than 20 % link-time overhead on industry strength
139// applications. Up to 6 % text size reductions.
140
141#include "gold.h"
142#include "object.h"
143#include "gc.h"
144#include "icf.h"
145#include "symtab.h"
146#include "libiberty.h"
032ce4e9 147#include "demangle.h"
41cbeecc
ST
148#include "elfcpp.h"
149#include "int_encoding.h"
ef15dade
ST
150
151namespace gold
152{
153
154// This function determines if a section or a group of identical
155// sections has unique contents. Such unique sections or groups can be
156// declared final and need not be processed any further.
157// Parameters :
158// ID_SECTION : Vector mapping a section index to a Section_id pair.
159// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
160// sections is already known to be unique.
161// SECTION_CONTENTS : Contains the section's text and relocs to sections
162// that cannot be folded. SECTION_CONTENTS are NULL
163// implies that this function is being called for the
164// first time before the first iteration of icf.
165
166static void
167preprocess_for_unique_sections(const std::vector<Section_id>& id_section,
168 std::vector<bool>* is_secn_or_group_unique,
169 std::vector<std::string>* section_contents)
170{
171 Unordered_map<uint32_t, unsigned int> uniq_map;
172 std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool>
173 uniq_map_insert;
174
175 for (unsigned int i = 0; i < id_section.size(); i++)
176 {
177 if ((*is_secn_or_group_unique)[i])
178 continue;
179
180 uint32_t cksum;
181 Section_id secn = id_section[i];
182 section_size_type plen;
183 if (section_contents == NULL)
184 {
5f9bcf58
CC
185 // Lock the object so we can read from it. This is only called
186 // single-threaded from queue_middle_tasks, so it is OK to lock.
187 // Unfortunately we have no way to pass in a Task token.
188 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
189 Task_lock_obj<Object> tl(dummy_task, secn.first);
ef15dade
ST
190 const unsigned char* contents;
191 contents = secn.first->section_contents(secn.second,
192 &plen,
193 false);
194 cksum = xcrc32(contents, plen, 0xffffffff);
195 }
196 else
197 {
198 const unsigned char* contents_array = reinterpret_cast
199 <const unsigned char*>((*section_contents)[i].c_str());
200 cksum = xcrc32(contents_array, (*section_contents)[i].length(),
201 0xffffffff);
202 }
203 uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i));
204 if (uniq_map_insert.second)
205 {
206 (*is_secn_or_group_unique)[i] = true;
207 }
208 else
209 {
210 (*is_secn_or_group_unique)[i] = false;
211 (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false;
212 }
213 }
214}
215
84d543b7
ST
216// For SHF_MERGE sections that use REL relocations, the addend is stored in
217// the text section at the relocation offset. Read the addend value given
218// the pointer to the addend in the text section and the addend size.
219// Update the addend value if a valid addend is found.
220// Parameters:
221// RELOC_ADDEND_PTR : Pointer to the addend in the text section.
222// ADDEND_SIZE : The size of the addend.
223// RELOC_ADDEND_VALUE : Pointer to the addend that is updated.
224
225inline void
226get_rel_addend(const unsigned char* reloc_addend_ptr,
227 const unsigned int addend_size,
228 uint64_t* reloc_addend_value)
229{
230 switch (addend_size)
231 {
232 case 0:
233 break;
234 case 1:
235 *reloc_addend_value =
236 read_from_pointer<8>(reloc_addend_ptr);
237 break;
238 case 2:
239 *reloc_addend_value =
240 read_from_pointer<16>(reloc_addend_ptr);
241 break;
242 case 4:
243 *reloc_addend_value =
244 read_from_pointer<32>(reloc_addend_ptr);
245 break;
246 case 8:
247 *reloc_addend_value =
248 read_from_pointer<64>(reloc_addend_ptr);
249 break;
250 default:
251 gold_unreachable();
252 }
253}
254
ef15dade
ST
255// This returns the buffer containing the section's contents, both
256// text and relocs. Relocs are differentiated as those pointing to
257// sections that could be folded and those that cannot. Only relocs
258// pointing to sections that could be folded are recomputed on
259// subsequent invocations of this function.
260// Parameters :
261// FIRST_ITERATION : true if it is the first invocation.
262// SECN : Section for which contents are desired.
263// SECTION_NUM : Unique section number of this section.
264// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
265// to ICF sections.
266// KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
267// SECTION_CONTENTS : Store the section's text and relocs to non-ICF
268// sections.
269
270static std::string
271get_section_contents(bool first_iteration,
272 const Section_id& secn,
273 unsigned int section_num,
274 unsigned int* num_tracked_relocs,
275 Symbol_table* symtab,
276 const std::vector<unsigned int>& kept_section_id,
277 std::vector<std::string>* section_contents)
278{
880473a6
DK
279 // Lock the object so we can read from it. This is only called
280 // single-threaded from queue_middle_tasks, so it is OK to lock.
281 // Unfortunately we have no way to pass in a Task token.
282 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
283 Task_lock_obj<Object> tl(dummy_task, secn.first);
284
ef15dade
ST
285 section_size_type plen;
286 const unsigned char* contents = NULL;
ef15dade 287 if (first_iteration)
880473a6 288 contents = secn.first->section_contents(secn.second, &plen, false);
ef15dade
ST
289
290 // The buffer to hold all the contents including relocs. A checksum
291 // is then computed on this buffer.
292 std::string buffer;
293 std::string icf_reloc_buffer;
294
295 if (num_tracked_relocs)
296 *num_tracked_relocs = 0;
297
b487ad64
ST
298 Icf::Reloc_info_list& reloc_info_list =
299 symtab->icf()->reloc_info_list();
ef15dade 300
b487ad64
ST
301 Icf::Reloc_info_list::iterator it_reloc_info_list =
302 reloc_info_list.find(secn);
ef15dade
ST
303
304 buffer.clear();
305 icf_reloc_buffer.clear();
306
307 // Process relocs and put them into the buffer.
308
b487ad64 309 if (it_reloc_info_list != reloc_info_list.end())
ef15dade 310 {
c4eb27e1 311 Icf::Sections_reachable_info &v =
b487ad64 312 (it_reloc_info_list->second).section_info;
ef38fd8a 313 // Stores the information of the symbol pointed to by the reloc.
c4eb27e1 314 const Icf::Symbol_info &s = (it_reloc_info_list->second).symbol_info;
ef38fd8a 315 // Stores the addend and the symbol value.
c4eb27e1 316 Icf::Addend_info &a = (it_reloc_info_list->second).addend_info;
ef38fd8a 317 // Stores the offset of the reloc.
c4eb27e1
ST
318 const Icf::Offset_info &o = (it_reloc_info_list->second).offset_info;
319 const Icf::Reloc_addend_size_info &reloc_addend_size_info =
41cbeecc 320 (it_reloc_info_list->second).reloc_addend_size_info;
b487ad64 321 Icf::Sections_reachable_info::iterator it_v = v.begin();
c4eb27e1 322 Icf::Symbol_info::const_iterator it_s = s.begin();
ef15dade 323 Icf::Addend_info::iterator it_a = a.begin();
c4eb27e1
ST
324 Icf::Offset_info::const_iterator it_o = o.begin();
325 Icf::Reloc_addend_size_info::const_iterator it_addend_size =
41cbeecc 326 reloc_addend_size_info.begin();
ef15dade 327
41cbeecc 328 for (; it_v != v.end(); ++it_v, ++it_s, ++it_a, ++it_o, ++it_addend_size)
ef15dade 329 {
651d1620
CC
330 Symbol* gsym = *it_s;
331 bool is_section_symbol = false;
332
333 // A -1 value in the symbol vector indicates a local section symbol.
334 if (gsym == reinterpret_cast<Symbol*>(-1))
335 {
336 is_section_symbol = true;
337 gsym = NULL;
338 }
339
ad3d8a2f
AM
340 if (first_iteration
341 && it_v->first != NULL)
342 {
343 Symbol_location loc;
344 loc.object = it_v->first;
345 loc.shndx = it_v->second;
346 loc.offset = convert_types<off_t, long long>(it_a->first
347 + it_a->second);
348 // Look through function descriptors
349 parameters->target().function_location(&loc);
350 if (loc.shndx != it_v->second)
351 {
352 it_v->second = loc.shndx;
353 // Modify symvalue/addend to the code entry.
354 it_a->first = loc.offset;
355 it_a->second = 0;
356 }
357 }
358
b487ad64 359 // ADDEND_STR stores the symbol value and addend and offset,
9b547ce6 360 // each at most 16 hex digits long. it_a points to a pair
ef15dade
ST
361 // where first is the symbol value and second is the
362 // addend.
b487ad64 363 char addend_str[50];
bb0bfe4f
DK
364
365 // It would be nice if we could use format macros in inttypes.h
366 // here but there are not in ISO/IEC C++ 1998.
651d1620 367 snprintf(addend_str, sizeof(addend_str), "%llx %llx %llx",
bb0bfe4f
DK
368 static_cast<long long>((*it_a).first),
369 static_cast<long long>((*it_a).second),
370 static_cast<unsigned long long>(*it_o));
ef38fd8a
ST
371
372 // If the symbol pointed to by the reloc is not in an ordinary
373 // section or if the symbol type is not FROM_OBJECT, then the
374 // object is NULL.
375 if (it_v->first == NULL)
376 {
377 if (first_iteration)
378 {
379 // If the symbol name is available, use it.
651d1620
CC
380 if (gsym != NULL)
381 buffer.append(gsym->name());
ef38fd8a
ST
382 // Append the addend.
383 buffer.append(addend_str);
384 buffer.append("@");
385 }
386 continue;
387 }
388
ef15dade
ST
389 Section_id reloc_secn(it_v->first, it_v->second);
390
391 // If this reloc turns back and points to the same section,
392 // like a recursive call, use a special symbol to mark this.
393 if (reloc_secn.first == secn.first
394 && reloc_secn.second == secn.second)
395 {
396 if (first_iteration)
397 {
398 buffer.append("R");
399 buffer.append(addend_str);
400 buffer.append("@");
401 }
402 continue;
403 }
404 Icf::Uniq_secn_id_map& section_id_map =
405 symtab->icf()->section_to_int_map();
406 Icf::Uniq_secn_id_map::iterator section_id_map_it =
407 section_id_map.find(reloc_secn);
651d1620
CC
408 bool is_sym_preemptible = (gsym != NULL
409 && !gsym->is_from_dynobj()
410 && !gsym->is_undefined()
411 && gsym->is_preemptible());
ce97fa81
ST
412 if (!is_sym_preemptible
413 && section_id_map_it != section_id_map.end())
ef15dade
ST
414 {
415 // This is a reloc to a section that might be folded.
416 if (num_tracked_relocs)
417 (*num_tracked_relocs)++;
418
419 char kept_section_str[10];
420 unsigned int secn_id = section_id_map_it->second;
421 snprintf(kept_section_str, sizeof(kept_section_str), "%u",
422 kept_section_id[secn_id]);
423 if (first_iteration)
424 {
425 buffer.append("ICF_R");
426 buffer.append(addend_str);
427 }
428 icf_reloc_buffer.append(kept_section_str);
429 // Append the addend.
430 icf_reloc_buffer.append(addend_str);
431 icf_reloc_buffer.append("@");
432 }
433 else
434 {
435 // This is a reloc to a section that cannot be folded.
436 // Process it only in the first iteration.
437 if (!first_iteration)
438 continue;
439
440 uint64_t secn_flags = (it_v->first)->section_flags(it_v->second);
441 // This reloc points to a merge section. Hash the
442 // contents of this section.
c95e9f27 443 if ((secn_flags & elfcpp::SHF_MERGE) != 0
b3ce541e 444 && parameters->target().can_icf_inline_merge_sections())
ef15dade
ST
445 {
446 uint64_t entsize =
447 (it_v->first)->section_entsize(it_v->second);
ce97fa81 448 long long offset = it_a->first;
651d1620
CC
449
450 // Handle SHT_RELA and SHT_REL addends. Only one of these
451 // addends exists. When pointing to a merge section, the
452 // addend only matters if it's relative to a section
453 // symbol. In order to unambiguously identify the target
454 // of the relocation, the compiler (and assembler) must use
455 // a local non-section symbol unless Symbol+Addend does in
456 // fact point directly to the target. (In other words,
457 // a bias for a pc-relative reference or a non-zero based
458 // access forces the use of a local symbol, and the addend
459 // is used only to provide that bias.)
460 uint64_t reloc_addend_value = 0;
461 if (is_section_symbol)
462 {
463 // Get the SHT_RELA addend. For RELA relocations,
464 // we have the addend from the relocation.
465 reloc_addend_value = it_a->second;
466
467 // Handle SHT_REL addends.
468 // For REL relocations, we need to fetch the addend
469 // from the section contents.
470 const unsigned char* reloc_addend_ptr =
471 contents + static_cast<unsigned long long>(*it_o);
472
473 // Update the addend value with the SHT_REL addend if
474 // available.
475 get_rel_addend(reloc_addend_ptr, *it_addend_size,
476 &reloc_addend_value);
477
478 // Ignore the addend when it is a negative value.
479 // See the comments in Merged_symbol_value::value
480 // in object.h.
481 if (reloc_addend_value < 0xffffff00)
482 offset = offset + reloc_addend_value;
483 }
41cbeecc 484
ef15dade 485 section_size_type secn_len;
84d543b7 486
ef15dade
ST
487 const unsigned char* str_contents =
488 (it_v->first)->section_contents(it_v->second,
489 &secn_len,
490 false) + offset;
84d543b7
ST
491 gold_assert (offset < (long long) secn_len);
492
ef15dade
ST
493 if ((secn_flags & elfcpp::SHF_STRINGS) != 0)
494 {
495 // String merge section.
496 const char* str_char =
497 reinterpret_cast<const char*>(str_contents);
498 switch(entsize)
499 {
500 case 1:
501 {
502 buffer.append(str_char);
503 break;
504 }
505 case 2:
506 {
507 const uint16_t* ptr_16 =
508 reinterpret_cast<const uint16_t*>(str_char);
509 unsigned int strlen_16 = 0;
510 // Find the NULL character.
511 while(*(ptr_16 + strlen_16) != 0)
512 strlen_16++;
513 buffer.append(str_char, strlen_16 * 2);
514 }
515 break;
516 case 4:
517 {
518 const uint32_t* ptr_32 =
519 reinterpret_cast<const uint32_t*>(str_char);
520 unsigned int strlen_32 = 0;
521 // Find the NULL character.
522 while(*(ptr_32 + strlen_32) != 0)
523 strlen_32++;
524 buffer.append(str_char, strlen_32 * 4);
525 }
526 break;
527 default:
528 gold_unreachable();
529 }
530 }
531 else
532 {
84d543b7
ST
533 // Use the entsize to determine the length to copy.
534 uint64_t bufsize = entsize;
535 // If entsize is too big, copy all the remaining bytes.
536 if ((offset + entsize) > secn_len)
537 bufsize = secn_len - offset;
538 buffer.append(reinterpret_cast<const
ef15dade 539 char*>(str_contents),
84d543b7 540 bufsize);
ef15dade 541 }
d62d0f5f 542 buffer.append("@");
ef15dade 543 }
651d1620 544 else if (gsym != NULL)
ef15dade
ST
545 {
546 // If symbol name is available use that.
651d1620 547 buffer.append(gsym->name());
ef15dade
ST
548 // Append the addend.
549 buffer.append(addend_str);
550 buffer.append("@");
551 }
552 else
553 {
554 // Symbol name is not available, like for a local symbol,
555 // use object and section id.
556 buffer.append(it_v->first->name());
557 char secn_id[10];
558 snprintf(secn_id, sizeof(secn_id), "%u",it_v->second);
559 buffer.append(secn_id);
560 // Append the addend.
561 buffer.append(addend_str);
562 buffer.append("@");
563 }
564 }
565 }
566 }
567
568 if (first_iteration)
569 {
570 buffer.append("Contents = ");
571 buffer.append(reinterpret_cast<const char*>(contents), plen);
5c3024d2 572 // Store the section contents that don't change to avoid recomputing
ef15dade
ST
573 // during the next call to this function.
574 (*section_contents)[section_num] = buffer;
575 }
576 else
577 {
578 gold_assert(buffer.empty());
579 // Reuse the contents computed in the previous iteration.
580 buffer.append((*section_contents)[section_num]);
581 }
582
583 buffer.append(icf_reloc_buffer);
584 return buffer;
585}
586
587// This function computes a checksum on each section to detect and form
588// groups of identical sections. The first iteration does this for all
589// sections.
590// Further iterations do this only for the kept sections from each group to
591// determine if larger groups of identical sections could be formed. The
592// first section in each group is the kept section for that group.
593//
594// CRC32 is the checksumming algorithm and can have collisions. That is,
595// two sections with different contents can have the same checksum. Hence,
596// a multimap is used to maintain more than one group of checksum
597// identical sections. A section is added to a group only after its
598// contents are explicitly compared with the kept section of the group.
599//
600// Parameters :
601// ITERATION_NUM : Invocation instance of this function.
602// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
603// to ICF sections.
604// KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
605// ID_SECTION : Vector mapping a section to an unique integer.
606// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
9b547ce6 607// sections is already known to be unique.
ef15dade
ST
608// SECTION_CONTENTS : Store the section's text and relocs to non-ICF
609// sections.
610
611static bool
612match_sections(unsigned int iteration_num,
613 Symbol_table* symtab,
614 std::vector<unsigned int>* num_tracked_relocs,
615 std::vector<unsigned int>* kept_section_id,
616 const std::vector<Section_id>& id_section,
ac423761 617 const std::vector<uint64_t>& section_addraligns,
ef15dade
ST
618 std::vector<bool>* is_secn_or_group_unique,
619 std::vector<std::string>* section_contents)
620{
621 Unordered_multimap<uint32_t, unsigned int> section_cksum;
622 std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator,
623 Unordered_multimap<uint32_t, unsigned int>::iterator> key_range;
624 bool converged = true;
625
626 if (iteration_num == 1)
627 preprocess_for_unique_sections(id_section,
628 is_secn_or_group_unique,
629 NULL);
630 else
631 preprocess_for_unique_sections(id_section,
632 is_secn_or_group_unique,
633 section_contents);
634
635 std::vector<std::string> full_section_contents;
636
637 for (unsigned int i = 0; i < id_section.size(); i++)
638 {
639 full_section_contents.push_back("");
640 if ((*is_secn_or_group_unique)[i])
641 continue;
642
643 Section_id secn = id_section[i];
644 std::string this_secn_contents;
645 uint32_t cksum;
646 if (iteration_num == 1)
647 {
648 unsigned int num_relocs = 0;
649 this_secn_contents = get_section_contents(true, secn, i, &num_relocs,
650 symtab, (*kept_section_id),
651 section_contents);
652 (*num_tracked_relocs)[i] = num_relocs;
653 }
654 else
655 {
656 if ((*kept_section_id)[i] != i)
657 {
ac423761 658 // This section is already folded into something.
ef15dade
ST
659 continue;
660 }
661 this_secn_contents = get_section_contents(false, secn, i, NULL,
662 symtab, (*kept_section_id),
663 section_contents);
664 }
665
666 const unsigned char* this_secn_contents_array =
667 reinterpret_cast<const unsigned char*>(this_secn_contents.c_str());
668 cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(),
669 0xffffffff);
670 size_t count = section_cksum.count(cksum);
671
672 if (count == 0)
673 {
674 // Start a group with this cksum.
675 section_cksum.insert(std::make_pair(cksum, i));
676 full_section_contents[i] = this_secn_contents;
677 }
678 else
679 {
680 key_range = section_cksum.equal_range(cksum);
681 Unordered_multimap<uint32_t, unsigned int>::iterator it;
682 // Search all the groups with this cksum for a match.
683 for (it = key_range.first; it != key_range.second; ++it)
684 {
685 unsigned int kept_section = it->second;
686 if (full_section_contents[kept_section].length()
687 != this_secn_contents.length())
688 continue;
689 if (memcmp(full_section_contents[kept_section].c_str(),
690 this_secn_contents.c_str(),
691 this_secn_contents.length()) != 0)
692 continue;
ac423761
GN
693
694 // Check section alignment here.
695 // The section with the larger alignment requirement
696 // should be kept. We assume alignment can only be
5c3024d2 697 // zero or positive integral powers of two.
ac423761
GN
698 uint64_t align_i = section_addraligns[i];
699 uint64_t align_kept = section_addraligns[kept_section];
700 if (align_i <= align_kept)
701 {
702 (*kept_section_id)[i] = kept_section;
703 }
704 else
705 {
706 (*kept_section_id)[kept_section] = i;
707 it->second = i;
708 full_section_contents[kept_section].swap(
709 full_section_contents[i]);
710 }
711
ef15dade
ST
712 converged = false;
713 break;
714 }
715 if (it == key_range.second)
716 {
717 // Create a new group for this cksum.
718 section_cksum.insert(std::make_pair(cksum, i));
719 full_section_contents[i] = this_secn_contents;
720 }
721 }
722 // If there are no relocs to foldable sections do not process
723 // this section any further.
724 if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0)
725 (*is_secn_or_group_unique)[i] = true;
726 }
727
ac423761
GN
728 // If a section was folded into another section that was later folded
729 // again then the former has to be updated.
730 for (unsigned int i = 0; i < id_section.size(); i++)
731 {
732 // Find the end of the folding chain
733 unsigned int kept = i;
734 while ((*kept_section_id)[kept] != kept)
735 {
736 kept = (*kept_section_id)[kept];
737 }
738 // Update every element of the chain
739 unsigned int current = i;
740 while ((*kept_section_id)[current] != kept)
741 {
742 unsigned int next = (*kept_section_id)[current];
743 (*kept_section_id)[current] = kept;
744 current = next;
745 }
746 }
747
ef15dade
ST
748 return converged;
749}
750
032ce4e9 751// During safe icf (--icf=safe), only fold functions that are ctors or dtors.
4e271fff 752// This function returns true if the section name is that of a ctor or a dtor.
032ce4e9
ST
753
754static bool
4e271fff 755is_function_ctor_or_dtor(const std::string& section_name)
032ce4e9 756{
4e271fff
ST
757 const char* mangled_func_name = strrchr(section_name.c_str(), '.');
758 gold_assert(mangled_func_name != NULL);
759 if ((is_prefix_of("._ZN", mangled_func_name)
760 || is_prefix_of("._ZZ", mangled_func_name))
761 && (is_gnu_v3_mangled_ctor(mangled_func_name + 1)
762 || is_gnu_v3_mangled_dtor(mangled_func_name + 1)))
032ce4e9
ST
763 {
764 return true;
765 }
766 return false;
767}
ef15dade
ST
768
769// This is the main ICF function called in gold.cc. This does the
770// initialization and calls match_sections repeatedly (twice by default)
771// which computes the crc checksums and detects identical functions.
772
773void
774Icf::find_identical_sections(const Input_objects* input_objects,
775 Symbol_table* symtab)
776{
777 unsigned int section_num = 0;
2ea97941 778 std::vector<unsigned int> num_tracked_relocs;
ac423761 779 std::vector<uint64_t> section_addraligns;
ef15dade
ST
780 std::vector<bool> is_secn_or_group_unique;
781 std::vector<std::string> section_contents;
21bb3914 782 const Target& target = parameters->target();
ef15dade
ST
783
784 // Decide which sections are possible candidates first.
785
786 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
787 p != input_objects->relobj_end();
788 ++p)
789 {
5f9bcf58
CC
790 // Lock the object so we can read from it. This is only called
791 // single-threaded from queue_middle_tasks, so it is OK to lock.
792 // Unfortunately we have no way to pass in a Task token.
793 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
794 Task_lock_obj<Object> tl(dummy_task, *p);
795
ef15dade
ST
796 for (unsigned int i = 0;i < (*p)->shnum(); ++i)
797 {
4e271fff 798 const std::string section_name = (*p)->section_name(i);
55a2bb35 799 if (!is_section_foldable_candidate(section_name))
ef15dade
ST
800 continue;
801 if (!(*p)->is_section_included(i))
802 continue;
803 if (parameters->options().gc_sections()
804 && symtab->gc()->is_section_garbage(*p, i))
805 continue;
55a2bb35
ST
806 // With --icf=safe, check if the mangled function name is a ctor
807 // or a dtor. The mangled function name can be obtained from the
808 // section name by stripping the section prefix.
032ce4e9 809 if (parameters->options().icf_safe_folding()
4e271fff 810 && !is_function_ctor_or_dtor(section_name)
21bb3914
ST
811 && (!target.can_check_for_function_pointers()
812 || section_has_function_pointers(*p, i)))
813 {
814 continue;
815 }
ef15dade
ST
816 this->id_section_.push_back(Section_id(*p, i));
817 this->section_id_[Section_id(*p, i)] = section_num;
818 this->kept_section_id_.push_back(section_num);
2ea97941 819 num_tracked_relocs.push_back(0);
ac423761 820 section_addraligns.push_back((*p)->section_addralign(i));
ef15dade
ST
821 is_secn_or_group_unique.push_back(false);
822 section_contents.push_back("");
823 section_num++;
824 }
825 }
826
827 unsigned int num_iterations = 0;
828
829 // Default number of iterations to run ICF is 2.
830 unsigned int max_iterations = (parameters->options().icf_iterations() > 0)
831 ? parameters->options().icf_iterations()
832 : 2;
833
834 bool converged = false;
835
836 while (!converged && (num_iterations < max_iterations))
837 {
838 num_iterations++;
839 converged = match_sections(num_iterations, symtab,
2ea97941 840 &num_tracked_relocs, &this->kept_section_id_,
ac423761
GN
841 this->id_section_, section_addraligns,
842 &is_secn_or_group_unique, &section_contents);
ef15dade
ST
843 }
844
845 if (parameters->options().print_icf_sections())
846 {
847 if (converged)
848 gold_info(_("%s: ICF Converged after %u iteration(s)"),
849 program_name, num_iterations);
850 else
851 gold_info(_("%s: ICF stopped after %u iteration(s)"),
852 program_name, num_iterations);
853 }
854
48c187ce
ST
855 // Unfold --keep-unique symbols.
856 for (options::String_set::const_iterator p =
857 parameters->options().keep_unique_begin();
858 p != parameters->options().keep_unique_end();
859 ++p)
860 {
861 const char* name = p->c_str();
862 Symbol* sym = symtab->lookup(name);
ef5e0cb1
ST
863 if (sym == NULL)
864 {
865 gold_warning(_("Could not find symbol %s to unfold\n"), name);
866 }
867 else if (sym->source() == Symbol::FROM_OBJECT
868 && !sym->object()->is_dynamic())
48c187ce 869 {
efc6fa12 870 Relobj* obj = static_cast<Relobj*>(sym->object());
48c187ce
ST
871 bool is_ordinary;
872 unsigned int shndx = sym->shndx(&is_ordinary);
873 if (is_ordinary)
874 {
875 this->unfold_section(obj, shndx);
876 }
877 }
878
879 }
880
ef15dade
ST
881 this->icf_ready();
882}
883
48c187ce
ST
884// Unfolds the section denoted by OBJ and SHNDX if folded.
885
886void
efc6fa12 887Icf::unfold_section(Relobj* obj, unsigned int shndx)
48c187ce
ST
888{
889 Section_id secn(obj, shndx);
890 Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
891 if (it == this->section_id_.end())
892 return;
893 unsigned int section_num = it->second;
894 unsigned int kept_section_id = this->kept_section_id_[section_num];
895 if (kept_section_id != section_num)
896 this->kept_section_id_[section_num] = section_num;
897}
898
ef15dade
ST
899// This function determines if the section corresponding to the
900// given object and index is folded based on if the kept section
901// is different from this section.
902
903bool
efc6fa12 904Icf::is_section_folded(Relobj* obj, unsigned int shndx)
ef15dade
ST
905{
906 Section_id secn(obj, shndx);
907 Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
908 if (it == this->section_id_.end())
909 return false;
910 unsigned int section_num = it->second;
911 unsigned int kept_section_id = this->kept_section_id_[section_num];
912 return kept_section_id != section_num;
913}
914
915// This function returns the folded section for the given section.
916
917Section_id
efc6fa12 918Icf::get_folded_section(Relobj* dup_obj, unsigned int dup_shndx)
ef15dade
ST
919{
920 Section_id dup_secn(dup_obj, dup_shndx);
921 Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn);
922 gold_assert(it != this->section_id_.end());
923 unsigned int section_num = it->second;
924 unsigned int kept_section_id = this->kept_section_id_[section_num];
925 Section_id folded_section = this->id_section_[kept_section_id];
926 return folded_section;
927}
928
929} // End of namespace gold.